THE ARCHITECTURAL FORUM

JUNE 1931

ARCHITECTURAL DESIGN

UNIVERSITY BUILDINGS REFERENCE NUMBER
An Idea That Has Saved Millions

CORD TIRES replaced fabrics; balloons replaced high pressure tires. In building construction Partitions built of everlasting metal in standard interchangeable units are being used instead of partitions made of destructible materials.

Yesterday merely a nebulous idea; today buildings all over the country are equipped with Mills Metal interchangeable partitions.

The reason is altogether logical. Re-arranging offices in the old-fashioned way cost, according to a Building Managers Association survey $15,000,000 a year, a large part of which is saved with Mills Metal Interchangeable Partitions.

An idea that has saved millions of dollars and an idea that is ready now to begin saving money for every building not equipped with interchangeable partitions built of metal. Let us show you this saving as well as other advantages.

Write for details.

THE MILLS COMPANY
A Mills Metal Partition for Every Purpose
903 Wayside Road · Cleveland, Ohio
REPRESENTATIVES IN ALL PRINCIPAL CITIES

INTERCHANGEABLE PARTITIONS

Subdividing partition of Mills Metal. The door may be replaced with a panel, the size of the room changed as desired. Standard panels may be of steel and glass or solid steel as desired.
HANLEY FLAME-TONE HAND FETTLED TILE

Tan, russet, olive—no two exactly alike... These hand fettled tile offer architects and decorators new decorative possibilities. In combination with Holland brick, their mellow appearance of age is particularly adaptable.

HANLEY COMPANY

BOSTON: 260 TREMONT ST.
BRADFORD, PA.
NEW YORK: 565 FIFTH AVE.
For more than a quarter of a century Truscon products have been specified for the construction of fine university buildings.

Truscon quality satisfies the exacting requirements and critical judgment of discriminating purchasers. The complete Truscon Lines provide one dependable source for all Steel Building Products.

STEEL WINDOWS: Double-Hung, Donovan Awning Type, Monumental and Architectural Projected, and Casement Windows for university buildings. Pivoted, Continuous and Commercial Projected Windows for industrial buildings.

STEEL JOISTS: An ideal, light-weight, sound-proof construction for floors of university buildings. Open Truss, Plate Girder and Nailer Types.

STEELDECK ROOFS: In three types, insulated to any degree and waterproofed, A light-weight, fire-proof roofdeck which saves on structural supports.

METAL LATH: Types and weights to meet every condition, Herringbone Doublesheet, 1-A, 2-A, Small Mesh Diamond, Diamond A, 3/8" Rib, Insulmesh, 5/8" Hy-Rib and Self-Sentering; Cornerite, Strip-tite, Corner Beads, Base Screeds, Channels, Pencil Rods and Tie Wire.

REINFORCINGS: A complete line of Reinforcing Steel for reinforced concrete. Also Floretyle and Locktyle.

CHANNELPLATE FLOOR SYSTEM: A solid, all-steel, fire-proof floor construction for heavy or light loads.

STEEL DOORS: Quality Steel Doors that give enduring service. All types of Swing, Slide, Folding, Lift, Bifold, Lift-Swing and Canopy Type Doors.

WATERPROOFINGS: Waterproofing Products for concrete and paints; enamels and varnishes for finishing interiors of university buildings.

Full information and catalogs on request.

TRUSCON STEEL COMPANY, YOUNGSTOWN, OHIO
Engineering Offices and Warehouses in Principal Cities

Below are Morrill Hall, the Stadium and Field House of the University of Nebraska, Lincoln, Nebraska

Davis & Wilson, Architects
The Cutler Mail Chute

The achievement of fifty years' experience in meeting the exacting demands of Post Office and Public use. Manufactured in our own Factory — built, equipped and operated for this purpose exclusively. The only such Factory in the world.

The business is limited and restricted by stringent Postal Regulations, but centered in one establishment it is possible to maintain the organization necessary to give to our customers, the public, and the Post Office Department a quality of work and service satisfactory to them, and to us.

This also justifies the employment of specially designed machinery by which the highest standard of quality is maintained, and the cost of production reduced to the lowest possible level.

Buildings in which large quantities of mail originate are provided with two or more Mail Chutes usually installed in twin form. Recent refinements in the twin construction have reduced the space occupied and greatly improved its appearance.

The Mail Box, which is an integral part of the equipment is furnished in a variety of forms, either from stock or special designs. By the use in part, of stock models and patterns special Architectural requirements can be met at moderate cost. Expert advice, full information and estimates will be gladly given on request.

Cutler Mail Chute Company

J. Warren Cutler, President

General Offices and Factory, Rochester, N.Y.
ROOF VALUE

A marked evidence of the growing appreciation of proper roof texture and color value, is the tendency toward the increased use of tile for Gothic and Ecclesiastic design, in harmony with old English precedents.

A varied selection from the most formal mechanical unit to the crude, time weathered, thick butt slab, gives a choice of color and roof texture to meet almost any individual taste or requirement.

The college building above is a pleasing confirmation of the wisdom in the choice of Hood's Yorkshire shingles laid in a flowing graduation from the dark weathered browns and gunmetals at the eave, to the lighter tans and biscuit browns at the ridge.

Samples and information await your request at Dept. F, Daisy, Tennessee.

B. Willis Hood Company
KIL-KRAFT TILES
DAISY, TENNESSEE

Above all things use Hood Roofing Tile
The Empire-State is faced with Indiana Limestone from the tested quarries of Indiana Limestone Company

New York City's famous new skyscraper, a tribute to ILCO materials and service.

The architects of the already famous Empire-State Building knew that in the proven quarries owned by Indiana Limestone Company they were certain of finding exactly the class of limestone they wanted... in unlimited quantity... delivered with a service that would measure up in every detail to their requirements.

The demonstrated ability of this Company to handle any number of large contract operations is leading architects more and more to entrust their plans to ILCO quarries and mills for execution. This Company is ready and eager to work with you in every possible way.

Whether you need proof with which to convince a client of the desirability of using our stone... or whether it is technical information on some particular problem with reference to stone... do not hesitate to call upon us. The nationwide facilities of this Company are at your disposal at all times.

Let us send you illustrated literature showing examples of the type of building you are now engaged upon. Address box 1666, Service Bureau, Indiana Limestone Company, Bedford, Indiana. (Executive Offices: Tribune Tower, Chicago.)

Our complete specification manual is printed in Sweet's Vol. A.
Page 591 to 616.

INDIANA LIMESTONE COMPANY

The Everlasting Beauty of Ornamental Metal... by FISKE

The Arthur V. Davis swimming pool pavilion at Mill Neck, L. I., views of which are adjacent, is another example of the excellence of FISKE “craftsmanship in metal.” Architects who have worked with FISKE realize that FISKE experience of over 72 years is largely responsible for the complete owner satisfaction which always identifies FISKE installations.

J.W. Fiske IRON WORKS
80 Park Place—New York
ESTABLISHED 1858

SPECIALISTS IN ORNAMENTAL METAL WORK
THIS PLATE ILLUSTRATES THE ADAPTABILITY TO ORIGINAL DESIGN OF STANDARD ANACONDA DRAWN SHAPES. COPPER, COMMERCIAL BRONZE, BRASS ALLOYS, NICKEL SILVER AND AMBRAC CAN BE FURNISHED IN MANY DRAWN SHAPES—OFFERING A CHOICE OF METALS WHICH MAKE POSSIBLE THE ACHIEVEMENT OF PLEASING CONTRASTS OR SUBTLE VARIATIONS IN THE COLOR OF FINISHED METAL WORK.

THE AMERICAN BRASS COMPANY
GENERAL OFFICES • WATERBURY, CONN.
A century and a half of exposure did not damage this grill work of WROUGHT IRON

Architects Apply Highland Wrought Iron to New Uses

Reviving the ancient glory of wrought iron decoration, architects are finding many new uses to add to those which have been established for centuries. Especially in those exposed portions where corrosion causes rapid depletion, Wrought Iron—the Kind that Highland Makes—is coming into greater possibilities than ever in many forms of construction.

About the time our restless and rebellious forebears were dumping tea into Boston Harbor, writing and signing defiant declarations and generally making themselves unpopular with His Majesty, King George the Third, Littleton Dennis built this home, Beverly House, in Worcester County, Maryland.

He imported the Wrought Iron grill work from England. Today—about 150 years later—this lovely framing of the entrance facing the Pocomoke river is as little affected by the elements as if it had been installed last year.

It's Wrought Iron—the Kind that Highland Makes. Its structure contains millions of tiny microscopic layers of Iron Silicate that through the centuries repel the invasion of Rust.

Write us for more of the Wrought Iron story—and why it will save you money.

THE HIGHLAND IRON AND STEEL COMPANY
General Sales Office:
400 West Madison St., Chicago
Dedicated in June by President Hoover

This superb monument of marble at Marion, Ohio, a memorial to the late President Harding, will be dedicated on June 16, 1931 by President Hoover.

National monuments, such as this, are built to stand for all time. For this reason, only the most durable materials were even considered for this structure. The requirements were strict, and the tests to which each material was subjected were severe. Georgia Marble stood out as the wisest choice—considered both for durability and beauty.

THE WARREN G. HARDING MEMORIAL
Henry Hornbostel and Eric Fisher Wood, Archts., E. P. Mellon, Professional Adviser
The Beauty of Hand Craftsmanship—

The new Lupton Georgian Steel Window

Age-old in pattern, the Lupton Georgian Steel Window is wholly new in utility, simplicity and economy. It employs an improved spring balance suspension. Housed in water-and-dust-tight casings, the balances are mounted above the meeting rail on either side of the frame. Provision is made to permit nesting the balances when a narrow mullion is desired. Balances are readily adjustable, and will withstand years of service.

The window is inherently weather-striped. This is done by the use of a simple combination parting and weather-strip at the jambs; an extruded aluminum weathering member at the meeting rail; and by double lap contacts at head and sill.

Another important feature is that all fitting is done at the factory to assure correct sash clearances and proper operation. These clearances are maintained until window is ready for glazing by an ingenious method of self-bracing during shipment and installation.

In cost, the new Lupton Georgian Steel Window compares favorably with the first cost of wood sash with weather-stripping, hardware and fitting—while its long life makes it far more economical and satisfactory in the end. To any building in which wood sash might be used, the new Lupton Georgian Steel Window will bring higher lighting efficiency and far greater beauty.

Write to David Lupton's Sons Company, Philadelphia, Pa., for the free booklet, "The New Georgian Steel Window," describing this window in greater detail.

(On opposite page) One of the 20 sheets of Lupton Approved Installation Details, greatly reduced. Note how this sheet indicates correct construction around (lintel, jambs and sills) a Georgian Steel Window.
A new Lupton service—approved installation details that include the entire window opening

The correct design of a window opening is a matter of proper detailing of the surrounding construction as well as of the setting of the window in the opening. This matter, long neglected by window manufacturers, is a constant problem for every architect and builder.

Lupton has solved this problem through the preparation, by competent architectural consultants, of a series of Lupton Approved Installation Details. These show at 3" scale or at full size, correct and time-tested construction of window openings in solid masonry, masonry veneer, stucco and frame construction. Every detail of flashings, wind stops, and caulking is correctly indicated to assure weather-tight installation of steel windows.

Now the architect can obtain a portfolio of 3" scale details, ready for tracing on his own drawings, for the Lupton Georgian, Residence Casement, Master Casement, Master Office Window and other popular Lupton products. The draftsman may follow them with complete assurance of their correctness and adequacy. If preferred, the architect or builder may obtain from his local Lupton representative full-size details in blueprint or tracing form for use with the architect’s job drawings.

Hitherto steel window installation details have been confined to anchorage of the window in the opening. The new Lupton Approved Installation Details show, for the first time, correct construction of the window “surround.” The saving to architects in designing and drafting time through the use of these sheets is incalculable.

Write to David Lupton’s Sons Company, Philadelphia, Pa., for your portfolio of these Lupton Approved Installation Details, together with a booklet explaining their use and special features.
JOHNS-MANVILLE TILE FLOORING

DECORATIVE AND ENDURING

In flooring, proper color, composition and design are important, but durability is of paramount importance. Where outstanding service and utilitarian values must be combined with pleasing tones of subdued color—you will find resilient, permanent Johns-Manville Tile Flooring, the proper specification. J-M Architectural Representatives are available to confer with you on flooring or any of the other J-M Building Materials such as Roofing, Insulation, Asbestos, Wainscoting or Plaster Board. Address your inquiries to Johns-Manville, 292 Madison Avenue, New York City.

JOHNS-MANVILLE
ARCHITECTURAL SERVICE DEPARTMENT
CRAB ORCHARD Quartzite

A very beautiful material lending itself to a wide variety of uses. Its fine grain, impervious density and remarkably true surface make it especially well adapted for Roofing, Coping, Exterior and Interior Wall Surfaces, Wainscotting, Floors, Treads, Flagging and Stepping Stones.

Specified by many of the best architects for the construction of buildings of outstanding character.

A few of the notable structures in which Crab Orchard Quartzite has been employed are here given:

CRAB ORCHARD STONE CO.
INCORPORATED
NASHVILLE TENNESSEE

In addition to the colorings shown we are able to supply subdued tones of gray and tan, and to ship promptly in sizes up to transportation limits. Our Crab Orchard Quartzite lies in the quarry in separate strata 1/2" to 22" in thickness. The thicker material is used for Dimension stone and Rubble. Write for complete information.
FOLDING WALLS . . . OF UNUSUAL BEAUTY

. . . that FOLD with unequalled ease

All three types of Circle A Folding Partitions operate with perfect smoothness. Quietfold and Standardfold types are supported overhead on ball bearing swivel hangers—floors are unmarred by dirt-harboring floor tracks. Pairfold type doors are floor supported. They are tremendously rigid in construction—to withstand the severe vertical strain placed upon them. They operate smoothly even after years of use—which is unusual in floor-supported doors.

Choice of high-efficiency, insulated or non-insulated construction. Choice of electrical or hand operation in Quietfold and Standardfold types. Choice of panelled surfaces in rich American Walnut, Oak, or other woods—or plain canvas.

Three distinct types permit the most efficient choice for every folding partition installation—whether it be a high gymnasium or a beautifully finished chapel or dining room. Write today for new catalog giving photographs, plan drawings and detailed description.

Circle A Products Corporation, 630 South 23th Street, Newcastle, Ind. New York Office: 425 Fifth Avenue. Also manufacturers of Circle A Rolling Partitions, Sectional Partitions, School Wardrobes, Portable Wood or Steel Bleachers, and Portable or Permanent Steel Grandstands.

CIRCLE A FOLDING PARTITIONS

Quietfold . Standardfold . Pairfold

The sub-title of this volume by one who was for so many years associated with the American Institute of Architects as its general secretary is an accurate resume of its contents. That title is: “A Winning Crusade to Revive George Washington’s Vision of a Capital City.” In his position as the Institute’s most active official, Mr. Brown was one of the most aggressive participants in the development of Washington under Theodore Roosevelt and William H. Taft. His associations with McKim, Burnham, Saint Gaudens and others who were interested in one phase or another of national art are related here with an abundance of interesting anecdotes.

To Mr. Brown’s persistent endeavors, the nation owes a debt of size. It was he more than anyone else who was responsible for the prominence which was finally accorded the Lincoln Memorial in the Washington plan, and it was he whom McKim depended upon in the fight for the preservation of the Park Commission’s plan. These struggles Mr. Brown relates with good grace and interest.

In one chapter, the author traces the development of the A. I. A. from its inception in 1857, through its early days and its gradual growth to an organization of real power. Mr. Brown became secretary in 1898, and held that office until 1913. He recalls many interesting incidents that occurred during his regime, and gives fine portraits of the men with whom he was associated during that time. The book is not a history of American Architecture, but rather one of American Architects. To those whose interest lies in the personalities which have contributed so much to the high standing of the profession, this book should be appealing.

Frank Forster’s popularity as an Eastern residence architect makes this collection of his recent work of interest and value to anyone engaged in that type of work. The book is made up of 183 plates with a short introduction by Mr. Forster on the general character of his work. Photographs, detail drawings and plans are included.

The houses in general follow the French tradition, the Norman Farmhouse, the French Provincial, and the Domestic Gothic. Of these, Mr. Forster expresses his particular liking for the French Provincial. Perhaps this partiality is due to his enthusiasm for detail which is characteristic of almost all his houses.

The illustration above is a country house by Mr. Forster for Harwood Nelms, Esq., in Houston, Texas. The drawing was made by H. R. Bishop, who has contributed several of this type to the book; some of his details are very interesting.

Professor Wattjes has not attempted anything in this book but a complete presentation of modern church architecture through the medium of photographs and plans. His scope is international, including work from almost every European country, and despite the title, only two from America, one by Roland Coate of California, and the other by Julius Gregory of New York. Whatever one might think of the trend of ecclesiastical buildings, this book is adequate proof that there has been more than a superficial revision of style, or perhaps progression of style.
THE EXTENSIVE variety of characterful designs in which Yale Builders' Hardware is made enables you to select complete and appropriate equipment for any building, from modest dwelling to towering business structure.

For many years the name Yale on builders' hardware has been accepted as an assurance both of permanence and distinction.

We invite your correspondence

A Birgeh Mosque from a chapter of "Art Studies"
For your files
....a book on floors....

for schools

“Facts You Should Know About Resilient Floors for Schools” is a concise study prepared for us by architects. Much of its information is in chart form so that it can be comprehended at a glance.

The recommendations in this booklet are not based on guesses as to what our materials might or might not do. Sealex floors have been installed in many of the country’s leading Universities (see partial list at left), and in thousands of high schools and elementary schools. When Sealex materials are installed by Authorized Contractors of Bonded Floors we back them with a Guaranty bond.

Write our Architectural Service Department for a copy of this book and for further information.

Congooleum-Nairn Inc. Kearny, N. J.

This book presents a brief and concise, yet adequate manual of the process of drawing on and printing from zinc and aluminum plates to produce lithographs. Illustrations include thumbnail sketches showing each step in the process and twenty full-page reproductions of prints by Rockwell Kent, Ernest Born, Birger Sandzen, Mildred Rockwell, John Richard Rowe, Wanda Gag, Kenneth M. Adams, George Biddle, William Dickerson, Louis Lozowick, Lloyd C. Folz, Gerald Cassidy and the author.

The text covers graining and preparation of plates to receive the drawing, making the drawing with crayon or wash, finishing the plate, gumming up, selecting and preparing the paper for printing, preparing the plate and etching it, printing by several methods, protecting the plate after printing, storing plates, the transfer method, and miscellaneous points concerning manipulation. Formulas for the various solutions required and a complete list of required materials are given. There is also appended a list of supply houses and professional printers from whom requisites may be obtained.

The use of the lithographic process as a means of securing multiple copies of original drawings, whether for pictorial prints or for architectural renderings, is not new. Artists and draftsmen have been making lithographs for years and have found that the medium possesses many advantages. Strangely enough, however, most of the available literature on the subject has been addressed to the professional lithographic printer. A recent book has provided admirable data for artists concerning stone lithography, but the volume here described is the first to present the allied subject of metal plate lithography from the standpoint of the artist using this medium.

The process is becoming better known and more widely used for making fine prints and architectural presentation drawings. Each print, properly made, is an exact duplicate of the original drawing, whether that drawing was made on stone, metal, or transfer paper. The possibility of duplicating drawings in this way, readily and inexpensively, makes the process of particular value to the architect.

A SERIES of twenty-five sketches by Vernon Howe Bailey, with a foreword by Colonel Starrett comprises this book on the world's tallest building. It is intended more for the public than for the architectural profession, but the illustrations will appeal to all.

BYRNES INSPECTOR'S POCKET BOOK, by Austin T. Byrne, revised by Samuel T. Goldsmith. Published independently, copyrighted by the author and editor.

This is the fourth edition of the Pocket Book, the last having appeared in 1911. It is a concise manual on the duties of building inspectors, including a discussion of the materials and their defects, construction and fabrication methods, and a general consideration of the particular things which an inspector must be on the watch for. It would be valuable to the supervising department of an architect's office.

CONSTRUCTION COSTS, 1930. Compiled by Engineering News Record. 9 x 12, 109 pages, paper, illustrated with graphs and charts. Published by Engineering News Record, 342 West 43rd Street, New York City, $1.00.

The material gathered together in this survey of construction costs includes prices of materials and labor in various sections of the country. While it is of more interest to those engaged in public works and utilities construction than it is to those engaged in building construction, many of the facts presented are of significance to both branches of the allied construction industries. For comparisons and estimates it should be helpful to architects and general contractors.
This interesting design is the work of architects Aegerter and Bailey, St. Louis, for Eighth Church of Christ, Scientist, in that city.

The pattern was stenciled on Acousti-Celotex sound absorbing tiles, type BB, which assure perfect acoustics and, in addition, provide an attractive base for the decorative scheme.

The latter feature makes Acousti-Celotex unique among acoustical materials...for it can be decorated repeatedly with any kind of paint without loss of efficiency in maintaining excellent acoustics.

Acousti-Celotex

FOR LESS NOISE—BETTER HEARING

The words Celotex and Acousti-Celotex (Reg. U. S. Pat. Off.) are the trademarks of and indicate manufacture by The Celotex Company.
LEADERSHIP in an industry involves more than merely securing the major portion of the business. It involves the unescapable responsibility of leading, not only in product and policy, but in translating the aims of the industry to the users of its product.

The fact that The E. F. Hauserman Company enjoys more than three-quarters of the steel partition business is not the cause of its leadership, but the result. For fourteen years, Hauserman has pioneered all major improvements that have taken place in the industry. Its products always have had, and always will have, the advantage of advanced engineering and superior beauty.

The hundreds of thousands of dollars expended in research and development is part of the price of Hauserman leadership. Hauserman Partitions; One-Responsibility Service Policy; and Proven Financial Responsibility testify to the validity of Hauserman Leadership.

THE E. F. HAUSERMAN COMPANY
"Organized for Service Nationally"
6853 GRANT AVENUE CLEVELAND, OHIO
Factory Directed Planning and Erection Service From These 14 Factory Branches
Newark Philadelphia Buffalo Boston Kansas City Chicago Pittsburgh
Detroit Cincinnati St. Louis Washington, D.C. Albany New York Cleveland

HAUSERMAN MOBILE STEEL PARTITIONS
NOTICES AND EVENTS

ALLEN H. STEM
1856-1931

ALLEN H. STEM, prominent railroad building architect, died May 19 in St. Paul, Minnesota, after an illness of about three weeks. Mr. Stem, until 1911 a member of the firm of Reed & Stem, was 75 years old.

Perhaps the greatest single project in which he engaged was the Grand Central Terminal in New York. In association with Warren & Wetmore, the firm of Reed & Stem designed the existing terminal and the Biltmore Hotel. Besides the New York Central, other railroads for which he designed stations were the Great Northern, The Northern Pacific, Great Western, Michigan Central, and Norfolk & Western. In all, the firm completed more than 100 stations.

He was also the architect for many buildings in St. Paul, among them the St. Paul Auditorium, the Metropolitan Opera House, medical buildings at the University of Minnesota, St. Paul Athletic Club, and the Hotel St. Paul.

BRIDGE CONTEST WINNERS

FIVE prizes totaling $1,200 were awarded to architectural and engineering students by the American Institute of Steel Construction for the most aesthetic design of a bridge in steel. The first prize of $500 for the best design by a student of architecture was awarded to R. F. Weber of Atelier Adams Nelson, Chicago. Second prize went to Glenn E. Crippen, Iowa State College, and third to Lester W. Casey of the same school.

The jury decided to withhold first prize in the engineering group, awarding second prize to Jeremiah C. Iandolo, University of Pennsylvania, and third to Covert Robertson, University of Michigan.

CITY PLANNING CONFERENCE

THE twenty-third annual meeting of the National Conference on City Planning is to be held in Rochester, New York, from June 22 to June 24. The sessions are open to all.

Among the topics to be discussed are, “Is City Planning Effectively Controlling City Growth in the United States?” “Civic Centers in Smaller Cities,” “County Planning,” “Zoning Administration.” The list of speakers and leaders of group discussions includes many prominent men in the field of city planning, Harland Bartholomew, Charles H. Cheney, Arthur C. Comey, Robert Whitten, and others.

PRIX DE ROME WINNER

HENRY DUSTIN MIRICK, Washington, was announced winner of the 1931 Prix de Rome, for his sketch and plan of a United States army officers’ club in the tropics. Mr. Mirick studied at the University of Pennsylvania School of Architecture, and is a graduate of Princeton University.

In landscape architecture, Neil Hammill Park of Parkin, Arkansas, was the winner. He is a graduate of Little Rock College, and studied landscaping at Cornell University.

On pp. 296 and 297 of the March issue of The Architectural Forum, credit for the photographs of the T. Worth Jamison, Jr., house, shown above, should have been given to Harry B. Leopold, of Baltimore, Md.
At Dartmouth, the enduring beauty of Corbin Colonial Hardware

GOOD BUILDINGS DESERVE GOOD HARDWARE

When you build for the ages, hardware becomes an even more important detail. It should have the permanency, the enduring beauty, of the very stones themselves—and it will if you use Corbin Colonial Hardware. The Colonium metal used in the EH lines is unchanging. With the passage of time it merely develops a ripened, richer patina.

P. & F. CORBIN
SINCE 1849
New Britain, Connecticut, U. S. A.

The American Hardware Corporation, Successor

New York
Chicago
Philadelphia
PART I—ARCHITECTURAL DESIGN

Color study by Max March Feldman

From a lithograph drawing by Constantin A. Pertzoff

Cover Design

Frontispiece: Elliot House at Harvard University

PART II—ARCHITECTURAL ENGINEERING AND BUSINESS

From a field sketch by Constantin A. Pertzoff

Cover Design

Frontispiece: Cupola Construction

THE ARCHITECTURAL FORUM

VOL. LIV, No. 6

CONTENTS

JUNE, 1931
The surging preference for walnut office furniture during the last 10 years presented a new challenge to architects.

It was no little problem to find a partition that harmonized with this trend. Stained or painted materials lacked beauty. Plaster walls, unadaptable, inflexible, immovable, were obviously out of the question. Walnut partition itself was too expensive.

Then along came New Telesco, sponsored by the leading wood partition manufacturer. Because it employs rich-grained, soft-brown American walnut, Telesco gives the impression that it is very expensive. But it only looks expensive. For Telesco eliminates the one objection to the use of harmonious walnut partition—the objection of price.

Make a tour of office buildings. Compare the Telesco-equipped office with any other. Notice how habitually the finer buildings in every locality—like the R. E. Olds Building for example—have standardized on Telesco.

Telesco...so majestic with its rich walnut wood. Telesco...so serviceable with its scratch-resisting finish, its mop-proof base. Telesco so salvage-able and adaptable with its its screw-type construction and exclusive telescoping posts. Telesco, on permanent display at its showroom store at 40 to 46 West 23rd St., New York, invites the inspection of architects in or visiting New York. Or send for illustrated, descriptive booklet.

HENRY KLEIN & COMPANY, INC.
Established 1909
40 to 46 West 23rd Street New York City
Factory: Elmhurst, New York
Branches and representatives in principal cities

THE ARCHITECTURAL FORUM JUNE 1931
ELLIOT HOUSE AT HARVARD UNIVERSITY

FROM A LITHOGRAPH DRAWING
BY CONSTANTIN A. PERTZOFF

The Architectural Forum
We are in a period of transition and development, rather than of standardization, as far as college buildings are concerned. A generation ago the architect’s problem was much more simple and definite. The requirements and provisions of the buildings were fairly well standardized and not a great deal of thought was given to future development except that space allowances were made for additional units. It is well recognized now that the greatest need in buildings for colleges and universities is flexibility, so that the buildings may be changed to serve the purposes of changing educational methods with the least possible demolition and rebuilding. In the earlier days the curriculum was limited and courses and instruction were quite uniform in method. This allowed of standardized classrooms, for the rule was prescribed courses, class recitations, periodic examinations, final grades,—and the course was passed and forgotten. As the colleges expanded, this formula was still the rule and we had what seemed to be mass production of college graduates. Then the prescribed courses gave way to greater freedom in the choice of the studies to be pursued, and we had a period of eclecticism in which it must be acknowledged the student selected courses which he felt were easiest to pass, rather than those of the greatest cultural value. The methods being adopted now endeavor to allow the student to pursue thoroughly the subjects in which he has the greatest interest and, at the same time, prevent his becoming narrow by requiring that he study a certain number of subjects in other fields. There has been a growing feeling that the passing of courses was no guarantee of cultural attainment nor an indication of the student’s grasp of a subject, or of his ability to correlate the knowledge he had gained. For that reason, a system of “comprehensive examinations” has been developed with considerable success. Under this system the object of the student’s study is the mastery of his subject rather than the gaining of credits for courses passed. The mass methods have, to a large extent, given way to more individual instruction. The lecture courses, of course, still have their place of great usefulness, but there is a decided tendency toward seminar work and independent work under tutors and faculty guidance.

One of the latest innovations in American Colleges is that of “reading periods” designed to aid the student in acquiring knowledge for himself rather than having it predigested and handed to him through lectures without mental effort or stimulus on his part. The reading periods are of several weeks’ duration and are designed to show the undergraduate the meaning of self-education as the real basis of the mental training he gets in college. . . . He must perceive that the mere absorption from his instructors counts for little; that to learn,—and for that matter to graduate,—is an active, not a passive verb. No doubt this is not the idea with which men usually enter college, and to some it is not alluring, but it can be infused and probably to most of them made attractive. For that reason it is well that, after they have become accustomed to college teaching, they should be set to work by themselves for a time without help.” * The general guidance in this work is

*A. Lawrence Lowell, President's Report, 1929-30, Harvard University.
usually through contact with tutors or instructors, and the relationship is much more informal and intimate than is possible in the usual lecture and recitation courses. Changes such as this naturally bring changes in the academic buildings as the old classroom and the usual faculty office are not suited for this type of instruction which seems to demand the breaking up of the student body into comparatively small groups, or "Houses," much as the English universities are made up of small colleges with their residential closes. Both Harvard and Yale, through the generosity of Edward S. Harkness, have been able to develop residential groups where students and tutors are housed together.

There are "house systems" of different kinds being developed in universities where the object is to group together graduate students who are pursuing the same courses, as the breadth and intensity of the work is enhanced by the discussions and contacts among men engaged in similar pursuits. Among undergraduates it is considered much wiser to so select the students for any one group that there will be men from various parts of the country with varying tastes and interests and with differing financial ability, the object being rather to broaden the men through such contacts than to concentrate and intensify the predilections of the student.

In most colleges today the problems of housing the students are an integral part of the educational problems. Educators have come to realize that education involves the entire life and activity of the student while in college, rather than being limited to courses of instruction. It was enough, until recently, to provide buildings where the student might take courses, other buildings in which he might hire a room for sleeping or study, but with the growing appreciation of the effect of environment, living conditions and facilities for social activity, the purposes, designs and plans have changed. The present tendency is to do away with the large commons or large eating hall and to provide the dining facilities in closer relation to the living quarters. Although there have been several large dining halls built recently, most forward-looking institutions are abandoning the mass dining idea as well as mass instruction. The present tendency in the design of dormitories with their dining facilities may of course be superseded, after trial, by some other system. For this reason, flexibility of use is as essential in dormitory planning as in the planning of administrative or academic buildings, for it is impossible to foresee what changes in use may be demanded of the buildings.

The growth of interest in the natural and applied sciences has resulted in increasing the number of laboratories, both for teaching and research. The development in the equipment for these laboratories makes a special study necessary on the part of the architect. Each institution has its own programs and preferences, and close cooperation is necessary between the faculty and the architect in planning not only for the probable expansion and change.

The number of subjects now taught in a university is astounding in comparison with that of twenty-five years ago. New courses seem to be added constantly so that almost any topic, from baby care to balloon navigation, is covered by courses in some university. This is more factual than facetious as the women's colleges have
inaugurated many courses, psychological and sociological as well as physical, for the study of infants; and several buildings have recently been erected, by the Guggenheim Foundation, for further research and study in aeronautics. The latter buildings have very definite special requirements to meet the needs of present paths of research, and it is well understood that the further development of the science of aviation may, in a few years, demand quite different facilities.

Change is not limited to scientific study; it is also taking place in cultural study. Courses in the Arts have brought about the construction of excellent college museums for the study of not only the fine arts but the minor arts as well, and there has been a growth in the demands for studios and shops where the arts may be studied in relation to their particular technique as well as by observation. The museum now is built and used rather for constructive and creative work and study than for the mere preservation of "museum pieces" to be gazed upon with awe.

The athletic activities of the college, which in the previous century were more or less spontaneous, had reached their highest point of concentration and commercialization in the early post-war days. The educational authorities have taken cognizance of the fact that vicarious exercise on the part of the students watching highly trained teams was hardly as beneficial as active play on the part of the individuals. Though "gym classes" and team training still continue, facilities are now provided for exercise and recreational play in connection with the living quarters, rather than wholly at the gymnasium. The planners of the college must now take cognizance of the fact that certain areas in the vicinity of the dormitory groups should be set aside for spontaneous games or for organized intra-mural athletic contests. There is good reason for including in the dormitory groups facilities for handball, squash, bowling and similar games through which the student may keep fit. The object of such planning is to foster the participation of as many students as possible in healthful exercise, rather than to foster the creation of a small body of athletes and super-athletes who are members of teams with rather exclusive rights to the athletic facilities. The "house" systems and dormitory systems provide natural competitive groups and the benefits of the increased athletic facilities are enjoyed by larger numbers of students than ever before. The gymnasium planning problem is no longer one of providing space for the training of a certain number of teams, but rather one of providing for the maximum use by the greatest number of students. This has necessitated a careful study of actual use in existing gymnasiums and collaboration with physical directors in establishing the probable and possible athletic programs in order that the gymnasium, field houses, swimming pool, etc., shall have the most efficient use.

Educational thought at present seems to be more and more directed toward consideration of the individual as an individual, rather than en masse. Uniformity of product is no longer the object sought. The mediocrity of mass production of graduates gives way to developing individuals to realize as fully as possible their potentialities, mental, physical, social and spiritual. The environment atmosphere and facilities provided are considered as important as the subjects in the curriculum. The architecture must be in accord with and contribute to these educational aims.

The "house" library makes reading and study natural and pleasurable. Dunster House, Harvard University. Coolidge, Shepley, Bullfinch & Abbott, Architects
The West Court of Lowell House, at Harvard University: Coolidge, Shepley, Bullfinch & Abbott, Architects. These new Houses are typical of an architecture designed to "... create human environment, stimulate imagination, and ... avoid crudity and monotony." In them modern methods and materials have been used to perpetuate, in mass and detail, the established traditions of the University.
EXPRESSION—AND THE COLLEGIATE STYLE

BY

C. HOWARD WALKER

THERE is a confused comprehension of the relation of the fine art of architecture to its expression in the necessary physical factors of material, which are the only means it can employ.

The fact that materials and their assemblings are means and not ends, that their combinations are processes and do not produce nor imply ultimate achievement is too often ignored, even if appreciated. Architecture, which is the entirely artificial and intellectual of the Visual Arts, while it is based upon the satisfaction of physical demands in terms of materials, does not reach a state of more than rude adolescence until it transcends those materials. It has "a material body and a celestial body" and while its material body may be dealt with as an exact science, capable of proof like a sum in arithmetic by reversing the process, its inspiring spirit, which enables it as an art, is incapable of being held in bondage, excepting by the law of gravitation.

As in all times, changes in conditions have created changes in expression, and the new broom in every case has raised a great deal of dust, and created a period of low visibility in which even established facts are made dim and are belittled. Such a period the past century has been. The Machine, which is merely a supplementary hand of more than human capacity for speed and for multiplying and enlarging units, has assisted the material factors of architecture, and has presumed to bind the spiritual side; and with childish arrogance it announces that we are living in a Machine Age, implying that other expressions of man being intangible, must be inferior. As the factors in many operations increase in number, an arrangement of these factors assists speed; and standardization, which is merely the auditing of accounts of large undertakings for the purpose of economy in eliminating waste and delay, appears. It implies mass production and the trademark, and has nothing to do with beauty of design; its one affiliation with that is exercised in a preferred selection for imitation of work which has already been deemed beautiful.

Hence, styles and their uses. It may be reasonably inferred that buildings already in existence in any and all periods, having had similar requirements with those that occur in present problems, will have created and used so-called styles which have in them architectural expression of value at all times for work of the same kind. Their use today is not merely traditional, but results from certain solutions which accord with present conditions.

Such are the cathedral plans, for similar functions in the church today. Have there been in the past, able and adequate solutions for collegiate groups? It is evident that present groups have requirements which existed in the conventual buildings of the Middle Ages, and the palestras, arenas and odeons of religious centres in Greece.
where multitudes congregated, such as at Epidaurus. The precedents are to be found and the immediate problems solved in Classic, Mohammedan and Medieval periods, each producing a distinctive style, in any one of which may be found work of beauty, applicable to similar problems of today. Why, therefore, bind these Protean forms by formulative standardization? Upon the most superficial observation it is obvious that all have common factors, and hence, common divisors. They are few. The first is flexibility of plan and its expression, the second, the universal desire to create results of beauty worthy of all work according to its kind.

Religious buildings of all types were to the glory of God, other monuments to the memory of the work of the living and the dead, whether of triumph or of recognition of merit, and beside these, buildings for moulding successive generations of man. In all cases reverence was shown; and no painstaking study or care was too arduous, no material too precious, no expression of ideals too great to be devoted to the expression by architecture of high ideals. It has been reserved for the mechanical proletariats of today to ignore all attributes excepting those of announcing structure, which is a kindergarten effort of infantile desire.

Philosophies and theories in regard to the quality of beauty are beside the point. All men trained or untrained in observation of visual expression are impressed by two factors—Mass and Detail. A simple geometric solid is never challenged by the layman, who, however, esteem it in relation to its size. A pyramid is the same whether that of Kephen or an ink bottle on a desk; an obelisk may be that of Washington or a small thermometer. The great domes of the world are only inverted bowls, but whether large or small, the geometric solid is universally accepted and uncensored. Great size therefore is constantly sought in large projects. It compels attention and overwhelms carping criticism, and does not foster analytical gymnastics.

The second element that is dear to the untrained man is detail, especially if it indicates skill in mind or hand. The mere amount of work on it, its diversity of statement, its many means and manners of expression seem, and are, marvelous to him; and the more intricate it is the higher he esteems it. All the little pleasant amenities of life are details, interesting, amusing, and destroying drab existence. A prison cell can be made a jewel casket by detail. It is the means of intimate conversation upon so many subjects; the details of painting, literature, and music are always conversational, and welcome for this reason as well as for others.
But between the Mass and Detail is a great realm in design which the layman does not understand because it is a land of adventure, often into previously unknown regions which lie between the mass and the detail. It is a land of experiment, of empirical attempt, of diplomacy, and essentially of wisdom. Men fail or triumph in this land, which is so merciless and so fascinating,—an ogre and a siren; at times it is wise in exploring it to be lashed to the mast of the good ship Tradition which has made the voyage before.

Standardization, if I may be permitted to change the metaphor, cuts its way through this fascinating, intriguing jungle of opportunity in a narrow swath, safe behind a steam roller. Standardization, the mechanism of a paid accountant, sees little of the flowers of the jungle, hears few of its birds, or knows little of its byways.

Art is a Beloved Vagabond, who can be a beggar or a king, but is not regally clothed in tailor-made garments.

Collegiate requirements have become much more complicated and exacting than in the days of Olympia and the Pentathlon, or when the 30,000 monasteries of Europe were sanctuary and were the precursors of universities. The orders of architecture developed upon one story masses, with an occasional second story, and when additional stories were added, the effect was not so dignified. Classicism has struggled for centuries to equal the simple nobility of a Greek temple and has been obliged to be satisfied by porticos and colonnades and domes. But when, as in the University of Virginia, the effect is that of one story masses, classicism leaves little to be desired.

With the serried ranks, one above another, of identical windows, monotony increased, and the classic superposed pattern was called in to combat it, and to give light and shade to the wall. Alberti's triumphal arch motive became a salient and much abused feature, but there is no doubt that the more varied the masses, and the purposes of rooms, the less flexible is classicism; but it has great serenity and dignity, and is a worthy exponent of grand and of even grandiose ideas.

Pavilion treatment at ends of colonnades often higher than the façades was suggested from medieval castles; and the style of Francois I, a blend of Gothic and Renaissance, is indicative of the freedom of action that appears with transitional styles when demands force departure from autocratic academic precedent.

This fact is suggestive and it has been found that work done in these periods of transition has both the virtues of tradition and of flexibility of adaptation to very varied desires. The Francis I style, that of the Tudors, and of Queen Anne in England, all lend themselves to informality and to minor masses, such as orielts, lanterns, grouped windows and traceries, openings proportionate to

The Academic Building, Phillips Exeter Academy; Cram & Ferguson, Architects. Another example of a traditional expression adapted to satisfy modern needs.
the rooms they light, and great latitude in mass, detail and in materials. All this creates an intimate charm woven into and through the entire group—small quadrangles with cloisters threaded on paths of circulation and debouching into great spaces, buildings of small units joining great masses or grouped around them—in fact a multiplicity of parts which can be accommodated at ease, which need never literally repeat themselves, and which are constantly revealing unexpected vistas, each of individual character. There are many types of mind amongst all students; the college buildings which are loved the best as Alma Mater are those which have all the desirable environment of an intellectual life. Classicism when at its apogee may be divine. The tragedies of Euripides voiced the implacable edict of Zeus, but as time went on the Gods themselves became more human, until even Pan and the sylvan denizens were loved. The trees and vines, the gardens and plaisances gather about the transitional styles as the beasts and birds did about Pan.

They are essentially the epitome of the appealing charm of detail suggested by various requirements both recognized by and assimilated to a common purpose. The period of youth, with its enthusiasms and dreams, is best served by imaginative opportunity rather than by coerced conventionalism. Imagination can and does penetrate academic classicism, but it is the life of eclecticism.

This is not an argument, however, for the deliberate abolition of beauty by the crass formalities of crude structure. The recognition, even the reverence of design as influenced by the spirit moulding the physical necessary to its will, and expressing itself in kind, is the ultimate end to be obtained. Educational institutions should in their architecture create human environment, stimulate imagination, and while scholarly, should avoid crudity and monotony. The best solutions will probably be found in suggestion from the flexible transitional styles, tempered by traditions of locality, necessities of economies, and inspirational ideas. All this depends upon basic intention which it is futile to attempt to standardize. A common intention to obtain beauty with freedom of action is a sane and wise method of procedure.

"... great latitude in mass, detail and in materials." A view from within the Harkness Memorial Quadrangle, at Yale; James Gamble Rogers, Architect
HARVARD UNIVERSITY

LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT,
ARCHITECTS
The main entrance and tower of Lowell House. Exterior materials consist of brick in varying tones of red with joints of almost white mortar, pine trim painted white, limestone, copper cornices and a slate roof. The exterior sides of the doors were painted a gray-green. Wide white window frames and sash four panes wide by six panes high match those of the old Colonial buildings in the College Yard.
LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
The Dining Hall of Lowell House. The floor is of marbleized rubber tile in black and white. Walls are of plaster tinted a soft green tone and the ceiling is of acoustic plaster. The trim is pine painted white. The illustration on the opposite page is of the exterior of the Dining Hall and the serving room wing.

LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
LOWELL HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS

JUNE 1931 • THE ARCHITECTURAL FORUM

663
The Lowell House Library has walls of knotty oak, finished a light weathered color. One of the Common Rooms is illustrated below. The paneling and trim is pine, painted white. Some of the walls are covered with scenic wall paper and the floor is of wide oak boards.
The Dunster House Memorial Gateway and a portion of the Charles River facade. The walls of the building are of dark red brick with raked joints of pinkish gray mortar. The wood trim is pine, painted white; the remainder is of limestone. The roof is Welsh slate taken from a building over one hundred years old. The effect is similar to that of Massachusetts Hall in the College Yard or of the buildings at the University of Virginia.

DUNSTER HOUSE
CAMBRIDGE, MASS.
COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
A general view of Dunster House from the Charles River
DUNSTER HOUSE
CAMBRIDGE, MASS.

COOLIDGE, SHEPLEY, BULLFINCH & ABBOTT
ARCHITECTS
The Dining Hall in Dunster House. The walls are of pine, most of it being over a hundred years old. The finish was obtained by waxing and polishing the original, unpainted surface. The floor is of rubber tile in a flagstone pattern with light colored joints of the same material.
The exterior is of water struck brick with limestone trim. The roof is of slate; window frames and sash are of wood painted white. The building, of fireproof construction throughout, contains 549,418 cubic feet, and cost $345,624, or approximately 58 cents per cubic foot.
RECREATION BUILDING

PROVIDENCE, R.I.

ANDREW JONES, BISCOE & WHITMORE
ARCHITECTS
SWARTHMORE COLLEGE

THE CLOTHIER MEMORIAL
SWARTHMORE, PA.
KARCHER & SMITH, ARCHITECTS
The exterior walls are built of local stone in varying shades of buff and gray. The entrance, trim, and window tracery are of cut limestone; the roof is slate. The simplicity of the design characterizes the traditions of the Society of Friends, the founders of the college.
THE CLOTHIER MEMORIAL
SWARTHMORE, PA.
KARCHER & SMITH, ARCHITECTS
Bond Memorial Tower and the Women's Fraternity Group. The walls are of solid masonry, faced with variegated gray local stone. Floors throughout are of oak on wood joists. The roof is of slate. The group contains 171,000 cubic feet, and was built for 70 cents per cubic foot.
A detail of the women's dormitories in Worth Quadrangle. The building is similar in construction and materials to the Women's Fraternity Group, and contains 250,000 cubic feet. Its total cost was $175,000.
The Bond Memorial Tower in Worth Quadrangle. At the left is a view of the Women's Fraternity Group, looking from Bond Memorial Tower.

WORTH QUADRANGLE
SWARTHMORE, PA.
KARCHER & SMITH, ARCHITECTS
DAVIDSON COLLEGE

ADMINISTRATION BUILDING
DAVIDSON, NORTH CAROLINA
HENRY C. HIBBS, ARCHITECT
CUDAHY MEMORIAL LIBRARY
CHICAGO, ILLINOIS
A. N. REBORI, ARCHITECT
LOYOLA UNIVERSITY

CUDAHY MEMORIAL LIBRARY
CHICAGO, ILLINOIS
A. N. REBORI, ARCHITECT
COURTYARD, KERCKHOFF HALL
LOS ANGELES, CALIFORNIA
ALLISON & ALLISON, ARCHITECTS
GEORGE W. KELHAM, SUPERVISING ARCHITECT
THE UNIVERSITY OF CALIFORNIA
AT LOS ANGELES

KERCKHOFF HALL
LOS ANGELES, CALIFORNIA
ALLISON & ALLISON, ARCHITECTS
GEORGE W. KELHAM, SUPERVISING ARCHITECT
ENTRANCE, KERCKHOFF HALL
LOS ANGELES, CALIFORNIA
ALLISON & ALLISON, ARCHITECTS
GEORGE W. KELHAM, SUPERVISING ARCHITECT
Royce Hall is of fireproof construction with foundations and floors of concrete, walls of brick and terra cotta and a roof of terra cotta tile. The windows are steel casements.

ROYCE HALL
LOS ANGELES, CALIFORNIA
ALLISON & ALLISON, ARCHITECTS
GEORGE W. KELHAM, SUPERVISING ARCHITECT
The construction of the Library is similar to that of Royce Hall. The building contains 2,362,000 cubic feet, and cost 26 cents per cubic foot.

LIBRARY BUILDING
LOS ANGELES, CALIFORNIA
GEORGE W. KELHAM, ARCHITECT
YALE UNIVERSITY

STERLING MEMORIAL LIBRARY
NEW HAVEN, CONN.
JAMES GAMBLE ROGERS, ARCHITECT
The Sterling Memorial Library was designed to house over three million volumes and to accommodate some two thousand readers at one time. Its cost was approximately $5,000,000. The University librarian considers the building "as efficient as an up-to-date factory and as beautiful as a cathedral." Much discussion of the merits of the architecture has arisen among the students, one point of view being expressed in the undergraduate magazine, *The Harkness Hoot*, by William Harlan Hale (who subscribes to the philosophy of Wright or Le Corbusier). Mr. Hale has further expressed his ideas in "Old Castles for New Colleges," published on pages 729 through 732. The architect has stated, "We chose an almost modern Gothic . . . because we desired to make this building harmonize with the group of buildings that in the future we hope to see extend from Chapel Street." The question of style is ably discussed by C. Howard Walker, architect, in "Expression, —and The Collegiate Style," pages 653 through 656 of this issue.
STERLING MEMORIAL LIBRARY
NEW HAVEN, CONN.
JAMES GAMBLE ROGERS, ARCHITECT
The room illustrated above is the Linonian and Brother's Library; the one at the left is the Reserve Book Room.
UNLIKE many modern office buildings that are now being erected to last for a certain number of years with quite definite assurance that they will be obsolete, torn down and others designed to take their places, college buildings are usually erected with an eye to permanence. This very permanence must be considered by the architect, for while the physical college is fixed, new needs and new educational methods seem destined to follow each other rapidly.

There are three possibilities in planning and designing college buildings: the first is to erect a permanent monument which will serve the needs of the present; the second is to erect a durable building so constructed as to be flexible in use and easily added to; the third is to erect a modern building of materials having some salvage value with the idea that it may be replaced after a period of fifteen or twenty years. This might be done in frank acknowledgment that there is a possibility that both methods of teaching and materials and methods of construction will have changed so much in that period as to make this the wise course. Building committees in colleges and universities are more apt to adopt the second policy. They are often bound by terms of bequests to use the funds to put up buildings which will not only serve their academic purposes, but will also be memorials to the donors. Temporary memorials are not looked upon with favor.

The growing idea of architectural unity through the adoption of a style of architecture serves as a brake on those who would pursue the third course. The older colleges have passed through periods of styles, each new building being added in the then current architectural fashion,—gems of old Colonial or American Georgian, Richardson Romanesque, Victorian Gothic, and then perhaps a return to adaptations of the styles of the original buildings. Such heterogeneous collections have not been found pleasing even though they have given an historical record, and the tendency at present is to establish definitely a style in the interests of coherence and unity. It does leave an opportunity for the newer colleges to erect thoroughly modern buildings, but few have availed themselves of this opportunity, evidently feeling that the “modern” of to-day is transitional and that the safer course is to follow the venerable style precedent of older institutions.

TO BRING IT BACK

THE building industry is exhorted to get under way with its work so that prosperity may be brought back. We are told that if building would pick up, the suppliers of materials would resume production on a large scale, putting people back to work, giving them purchasing power, new demands for staples and luxuries, more people to supply these and so on, and so on, and the cycle turns upward. The government is doing its best to keep the building industry alive doing federal work while waiting for private projects to be undertaken. States and municipalities likewise. Yet what types of buildings shall the industry concentrate upon to thus bring back prosperity? Certainly the industry itself should know! What means has it of inaugurating projects for its own and the common good? The industry itself is not organized, it does not study the supply of and demand for buildings. It does not, as an industry, plan its work. It depends rather largely on the guess or judgment of the entrepreneur builder (sometimes called “the promoter” or “speculative builder”) and takes it for granted that governmental, institutional, educational and religious buildings will develop about as formerly. The promotional or speculative building activity is controlled by individual initiative in search of quick profit rather than by sound investigation to ascertain a real need and to provide an economic building.

If an office building is successful in a certain section of the city, others will be undertaken nearby in the hope of the same success, until an excess of office space produces abnormal vacancy percentages and lower rentals. Thus a “natural” process of working out of the old law of supply and demand is brought about, with equally “natural” periods of boom and depression in the building industry. The “law of diminishing returns” is relentlessly at work.

This is, of course, not the whole story or the complete picture, but it does indicate that it is imperative for the industry to organize for its own stabilization and protection, to have its own fact-finding and statistical body to study building needs throughout the country and to formulate a production program based on analysis which would be of permanent benefit to all. Capital would not be lacking to back building projects which were in line with such a program. Capital is now shy about construction loans, for it has suffered the
A PLAN OR A PLOT

ALMOST every city has suffered through the unforeseen developments in transportation and traffic and through the mistakes of unplanned growth. Recognizing these conditions, most cities have studied their plans in relation to future needs, and commissions and boards of city and regional planning have done excellent work. Unfortunately, in the consideration of individual building operations, little thought is given to this broader aspect of the project in relation to the city as a whole. Each plot is thought of as an entity in itself,—as so much land costing so much,—therefore, build so much bulk to bring in so much return on the investment. This attitude is natural, but not enlightened, and tends to produce conditions which defeat its own ends. Traffic congestion and abnormal “percentages of vacancy” have followed as results of this attitude on the part of promoters,—and it may continue to do so. This is especially true in large cities.

Smaller cities are prone to follow the larger ones in their building efforts, even though their physical conditions and opportunities for expansion are entirely different. Forward steps in city planning on the part of the larger cities would be a boon to all other cities.

Much interest centers in New York at this time for there are now under consideration two plans for a building development involving two hundred and fifty million dollars or more,—one plan is for the development of three city blocks,—Radio City; the other takes in those blocks, involves five times that area and is a step toward a better city plan.

This latest development in the Radio City discussion is the proposal sponsored by the Fine Arts Federation of New York. It ignores entirely the Radio City project as proposed by the architects for the Metropolitan Corporation, and attacks the problem with a broader view of city planning. In the new scheme, developed by Benjamin Wistar Morris, instead of treating merely the three blocks as high-priced land on which a maximum rental must be obtained, the entire area, from 42nd Street to Central Park, is considered.

Briefly, the proposal is to cut a new avenue between Fifth and Sixth Avenues from 42nd Street to the Park, thus creating on each side of the avenue increased land valuation which, it is estimated, would cover the cost of the excess condemnation proceedings necessary on the part of the city to acquire the property. The creation of this new avenue, perhaps on two levels, would greatly facilitate traffic, although the new buildings on the proposed avenue would undoubtedly attract additional traffic. Further study would, of course, be necessary to take care of congestion that would arise on 42nd Street, and undoubtedly Bryant Park, behind the Library, would be a factor in this solution. An open square is planned in front of the Cathedral which would provide a vista for a monumental building facing the square.

The plan “has everything to recommend it” in the eyes of the Regional Planning Committee, according to its president, George McAneny, as it fits in with the regional plan as developed and now nearly ready to be turned over to the new city Department of City Planning. Instead of increased building bulk in a small center of three blocks, there would be increased openness, light and air, and traffic facilities, with the enhancement of property values not only around the square, but also throughout the whole length of the new avenue. Whether or not this plan is put into effect, it shows breadth of vision without being visionary, for it is well within the realm of possibility. Its practicability and feasibility should be searchingly and scientifically analyzed. It is time that New York considered the economics and aesthetics of city planning rather than mere growth in bulk.
Colgate University, Hamilton, N. Y., has a plan typical of early American universities, with little interference between activities and vehicular traffic. The scheme suggests limited enrollment.

THE PLANNING OF COLLEGES AND UNIVERSITIES

BY

FREDERICK L. ACKERMAN

It is impossible, within the limits of this article, to discuss in any considerable detail the planning of colleges and universities: the field is too broad and too inclusive. The principles of planning applicable to institutions located in small communities or within a rural setting, with relatively ample site available, hardly apply in a highly congested metropolitan center. Climatic conditions, actual size, differential educational aims, likewise condition arrangement.

To venture a prophecy covering the future trend of educational policy would be to enter the field of controversy. The record of the past is plain: but the present is confused and the future obscure. One embarks, therefore, with no little hesitation upon a discussion of the principles of planning that should guide the organization of an adequate physical environment.

Aside from a few exceptional cases and points of detail, the plans of American universities conform to a general pattern: ofttimes growth has confused, but rarely completely obliterated it. We see through even the most complicated arrangement the trace of a campus surrounded by academic structures with residential elements intermingled or adjacent, recreational features close at hand. These patterns reflect the life habits of educational institutions and constitute a history of change and growth.

CHANGE

Current discussions bearing upon educational policies would seem to indicate that radical changes other than such as have occurred in the past may take place. Such changes would radically modify the pattern of universities yet to be launched. So, in any general discussion of the physical arrangement of educational centers, it should be kept clearly in mind that we are dealing with functions that have been stabilized and are at the moment in a state of flux. This fact suggests, therefore, that the central problem of planning educational centers may be briefly and clearly stated. How may we so envelop evolutionary educational processes as not to retard or thwart development?

PERMANENCY AND FLEXIBILITY

In urban centers, business deals with the changing processes of life by destruction and replacement of buildings. This method of dealing with changing events and values is accepted without question: and the rate at which destruction and replacement takes place constitutes a scale.
The prize design for the University of California, by E. Bernard of Paris in the Phoebe A. Hearst competition of 1899, was never executed, but reflects the then current viewpoint as to composition and design.

General plan for Dennison University, Arnold W. Brunner, Architect. A residential character is obtained by the non-interference of pedestrian and vehicular traffic, and elimination of roads in courts by which we measure "progress." The financial structure of the educational institution, however, not only precludes, but is likely to continue to preclude, the adoption of such a plan of action. Conditions surrounding procurement of funds for plant and endowment give rise to the need for high standards of structural durability, from which it follows that structures should be designed and located with a view to flexibility of operation. Durability and permanence call for an architectural expression more deeply rooted in reason than the extremes of fashion which pass in a day.

Many will take issue with this summary handling of a controversial question and insist that through the erection of relatively temporary structures alone will progress be assured. The position here assumed is that there is no occasion, in the case of such institutions, to regard the physical setting and architectural envelope as a temporary thing. Plans which provide freedom of action are plans for the future. The problem, therefore, involves making a broad assumption as to what aims will retain their validity through the years to come.

While it is probable that experimental projects will be launched which, in respect to educational policy will differ radically from existing institutions, it is probable that experimentation will be confined at first to small units. We will no doubt continue to think in terms of the current functional divisions and categories and group them in structures designated as administrative, academic (containing class and lecture rooms, and laboratories), libraries, unions, residential halls, dormitories, etc.

THE ENROLLMENT FACTOR

For the educational unit with definitely limited enrollment, numbered in the hundreds, the characteristic arrangement of an open space surrounded by academic structures with residential units intermingled or adjacent, and recreational features conveniently located, offers what appears to be an entirely satisfactory solution. Under such conditions, the academic structures—that is, buildings containing class rooms, lecture rooms, laboratories, and the like—may be so placed that the time required to traverse the campus will not exceed a few minutes. This arrangement insures a sense of unity and intimacy.
A nearly maximum expansion of the simple, centrally located campus with limited enrollment. It is free of vehicular traffic ways except in the central open space where the plan is cut by roads.

Small, limited enrollment makes it possible, by allowing a reasonable amount of space for the expansion of elements, to adjust from time to time the unequal growth of departments. The utility of structures over a considerable period of time, in a well arranged educational unit of this size, would depend, of course, upon durability, but to a far greater degree upon whether the structures had been designed in the first instance as simple volumes, readily adaptable to changing needs or as highly complex structures designed to accommodate snugly a minutely detailed program of operation.

Institutions of the next higher category in respect to enrollment accommodating, say 2,000 to 5,000 students, present problems many of which do not appear to have been satisfactorily disposed of in plans that conform too rigidly to the general pattern derived from earlier campus schemes. Such institutions ordinarily have many departments or colleges—educational institutions in themselves. They may be co-educational; they may again be subdivided by graduate schools or colleges which bisect the two other sub-divisions.

THE TIME ELEMENT

Within the lower brackets it is possible to group, as to capacity, the structures to house the purely academic functions about a centrally located open space. But so long as hourly periods constitute the dominant time schedule upon which the university operates, difficulties will be found in grouping the academic structures in the larger institutions as to place them definitely within a time-distance diameter of seven or eight minutes. This difficulty, taken in conjunction with the changing demands for increase in physical equipment at certain points, leads one to the conclusion that for the larger institutions of fixed or limited enrollment and for those of unlimited capacity, a radically different type of plan or pattern will be evolved. This will be dealt with later.

A definite problem often arises out of conditions that develop beyond the physical boundaries of the university proper. Within large urban centers, the housing of students and faculty is often disposed of by allowing them to shift for themselves. In some measure this is true in communities of smaller size. But when an institution is located in open country or adjacent to a small community, the housing of students and faculty becomes a part of the problem. Space limits the discussion of this phase of the question to considerations bearing upon the general plan. Experience points to the importance, for social and economic reasons, of setting aside areas sufficient to house adequately both students and faculty. The present outlook indicates the advisability, in co-educational institutions, of providing three segregated areas. This is not to say that the separation of students and faculty must needs be defined by rigid physical boundaries. Segregation should be definitive as between men and women, and areas should be reserved for the faculty; but certain faculty accommodations might advantageously be provided within the boundaries reserved.
for student use. As graduate schools increase in size, housing facilities are needed for a group that occupies a position between faculty and undergraduates.

The distance that should intervene between housing facilities and academic structures cannot be set down as a definite quantity. A walk of fifteen or twenty minutes is not harmful to anyone. However, physical intimacy between housing facilities and recreational features would seem to express a rational aim. Such structures as unions, gymnasias, particularly facilities for casual play, should be convenient to residential groups. This does not apply to stadiums and facilities used primarily for intercollegiate contests, which features may well be placed at a distance and in close relation to ample areas for parking.

In establishing the general plan, the actual size of individual residential units need not concern us. For flexibility with respect to future use would be insured if the arrangement of traffic ways provided sites of sufficient area to accommodate the larger units. It is a relatively simple matter to sub-divide a large site; it is sometimes difficult or impossible to increase the area of sites if the same are bounded by well established traffic ways.

TRAFFIC AND RESIDENTIAL AREAS

Residential areas for both faculty and students might well be designed in accordance with the general principles of planning as applied at Radburn, New Jersey. A system of roads and pedestrian ways should be arranged indepedently of each other. The pedestrian ways should occupy positions of importance and serve as the principal means of intercommunication within the residential areas and the important connecting links to the academic group. The roads would be designed for service and vehicular access and located in a secondary relation with reference to walks.

While the same general principles of planning would hold for areas occupied by faculty and by students, application of the principles would differ in response to differential uses. For the most part, the faculty would require facilities characteristic of zones of residential occupancy. Single and multi-family habitations with garages and with open spaces for play constitute the principal elements of the program. Although multi-family houses and dormitory accommodations would no doubt be demanded within the areas occupied by the faculty, the usual requirements associated with single family occupancy would serve to determine the spacing of roads, walks and plots in this part of the plan. While it is true that “dormitory” (as distinct from “residential”) units do not necessarily require vehicular access, and while such units would be more pleasantly situated in areas undisturbed by roads, it would be unwise to so locate such structures that vehicular access could not be provided in the future, should the occupancy of such structures change.

Except in rare instances, it would hardly be possible, if deemed desirable, to provide within residential groups in intimate relation to each unit, adequate facilities for casual play and recreation. Facilities to meet the rapidly expanding
demand for physical recreation—intramural contests, organized recreation and casual play—should, however, be located adjacent.

SIZES OF RESIDENTIAL UNITS

Since this statement deals with the problems of planning, it should not concern itself with the much discussed question as to what should constitute the capacity of residential units or with the social or educational problems involved in their occupancy. It may be pointed out, however, that in residential units housing less than one hundred, the living rooms, dining rooms, etc., which are nicely adjusted in size to meet the requirements of use produce, by reason of their actual dimensions, a definite atmosphere of intimacy. The difference in effect between the common rooms that are properly adjusted to an occupancy of 75 and to an occupancy of 300 or more is suggested by "residential" and "public."

The preference so generally voiced in favor of residential units of moderate capacity cannot, of course, be explained in a few words. Many factors are involved, but one of the most important, particularly in relation to dining rooms and services, is management. Given the same point of view, there is, for example, no valid reason why the character of management, service and food in a unit of a thousand should differ appreciably from that in a unit of one hundred. But in reality, such units differ in atmosphere, as everyone who has observed conditions very well knows. It is assumed that large units must be under the guidance of most efficient management; managers are chosen for their business efficiency rather than for their knowledge of adequate standards of living, which is in no small measure a matter of aesthetics or taste. As it works out, increasing efficiency in the conduct of such units is seemingly had at the expense of qualities which would stimulate interest in the art of living.

The provision of dining facilities is certain to involve no end of discussion. It would be presumptuous at this time to attempt a statement representing a consensus. The most that may be said with any degree of safety is that the current drift of opinion is away from the great commons so popular in the nineties. Certain broad statements may be made, however, that so closely approximate facts that one may venture. Decision as to capacity of kitchen and service units need not concern itself with the economics of the problem when the question involves capacities of more than one hundred. Smaller units are more expensive to operate; but there is little evidence to indicate that very large units are appreciably more economical than those of moderate capacity. If we eliminate from the general planning problem the great centralized commons and distribute dining facilities within the residential areas, all that need concern us in the general plan is vehicular and pedestrian access to all sites. If our sites are adequate for the larger residential units, they will be adequate for dining facilities.

THE LIBRARY

A volume could readily be written concerning the many problems of placement and location of the several elements that make up the academic group. We are dealing with the general problems of planning and need make reference, therefore, to only one. The library should occupy a central location, so placed with respect to traffic ways and adjacent structures as to allow ample space for future expansion. It would be located in an ideal way in respect to use and functions were it placed between academic structures and residential groups and not far distant from the structures given over to general social use. These broad statements hold, regardless of the policy adopted in a given case with respect to the decentralization of library facilities. For it may be assumed that there will always be a demand for a central library with facilities for expansion.

TRAFFIC.—MOTORS AND MEN

Ordinarily, in dealing with a community planning problem, for such this is, roads and traffic are discussed at the outset. In this case it seemed advisable to consider first the nature of the functions involved in the problem.

Many will insist that architectural design should aim at the fullest utilization of modern inventions and hence that the modern university community should be planned for the use of the automobile. In small institutions the use of the auto by students and faculty does not introduce planning problems of a serious nature. But with an enrollment numbered by thousands its unrestricted use not only introduces difficulties but raises a major question as to the character of the environment. To provide adequate roads and parking facilities for several thousand autos would necessitate such a separation of structures as would be counter to the interests of pedestrian use. Concentration in tall structures served by elevators would probably counteract the effect of horizontal separation. But the introduction of the elevator is counter to the interests of operating economy; and can only be justified in the case of highly restricted sites and excessive land values.

The bundle of functions and activities which makes up the university establishes its character as a restricted residential community in which the movements of students and faculty would normally weave a pattern of pedestrian ways. While vehicular access is necessary to the majority of structures, and while such structures as audi-
The University of Iowa. A scattered arrangement with conflicting traffic ways. Growth would probably involve the use of the central open spaces or an even wider scattering of related structures.

Auditoriums and stadia must be provided with ample traffic ways and parking spaces, it remains true that vehicular traffic is of secondary importance and a disturbing feature. The differential importance of vehicular and pedestrian traffic should be acknowledged throughout the general plan.

To summarize this important point in the planning of universities: only secondary roads should be allowed within the frontiers. These should pass through secondary spaces with a view to providing service to buildings. Pedestrian ways or walks should occupy the important locations and provide the simplest and most direct means of inter-communication. These broad statements must be qualified. Auditoriums and stadia used by the public should be approached by ample traffic ways and provided with parking facilities in relation to their capacity; and all of the features requiring a considerable volume of vehicular traffic should be located near the frontiers.

LARGE INSTITUTIONS

Institutions with an enrollment of 10,000, more or less, the same as those organized with a view to indefinite expansion, present problems of planning that cannot be solved along lines already suggested. The distances involved in such institutions would suggest the abandonment of the pattern with large, centrally located, open space. It would seem that academic units, in order to avoid too great distances between them, must be centrally located in a single structure or in a closely united series of elements. Considerations in respect to ample light, circulation of air and noise interference would determine the minimum size of courts and open spaces which could be used in a closely integrated grouping.

In recognition of this the central campus would completely disappear and the general pattern would be made up of open spaces or a series of campuses arranged in a radial pattern. Intensity of uses and occupancy should diminish toward the boundaries. This general principle would control with equal force, regardless of whether the scheme was based upon fixed enrollment or one in which the future looked to indefinite expansion.

This note cannot be concerned with the relative merits of limited enrollment as against a policy looking toward indefinite expansion of enrollment and facilities. But it may very properly point out that a program of indefinite expansion imposes what may very properly be referred to as an impossible problem in design. If expansion were merely a matter of adding autonomous or self-contained units, little more would be required in the first instance than the setting aside of a very considerable area for future use. Physical expansion would involve the enlargement of practically every element. A plan that would provide for expansion without limit would impose handicaps upon operation at all stages of development.

These brief notes have purposely avoided a discussion of educational aims and policies; and matters of detail have been ignored. The purpose was, as stated at the outset, to focus attention upon the nature of the problem; dealing with functions and uses that are constantly changing.

THE FINAL OBJECTIVE

The university community is a living organism: unfolding events give rise to new functions; growth may take place without an increase in magnitude. In the degree that the architectural environment provides freedom for action, in that degree would it be truly functional. It would also be functional if its qualities were such as to make it a congenial setting for the development of the larger cultural aims of education. It might be functional in respect to an endless number of purely mechanical operations and yet stand to deny the central cultural purpose which gave rise to institutions of this class. A plan might fulfill every conceivable utilitarian need and the buildings might function perfectly in respect to the mechanical operations involved; but it would not follow that the architectural problem had been solved if the whole failed to illuminate by its intrinsic beauty the purpose of education.
The Women's League Building is typical of a structure planned to fulfill all the social needs of a large collegiate group. It contains a large ball room, a theater, lounge and reading rooms, ample dining facilities, club rooms, and hotel accommodations for guests. The various details of college union requirements are set forth in an article by Irving K. Pond on pages 771 to 778 of this issue.

WOMEN'S LEAGUE BUILDING
ANN ARBOR, MICHIGAN
POND & POND, MARTIN & LLOYD, ARCHITECTS
The picture above shows the theater wing and the garden at the rear of the building. The garden is screened from the street by a high brick wall; it was planned in conjunction with the building, and is an important recreational facility. At the left is a detail of an oriel window and one of the wings that flank the main entrance shown on preceding page.
WOMEN'S LEAGUE BUILDING
ANN ARBOR, MICHIGAN
POND & POND, MARTIN & LLOYD, ARCHITECTS
WOMEN'S LEAGUE BUILDING
ANN ARBOR, MICHIGAN
POND & POND. MARTIN & LLOYD, ARCHITECTS
DARTMOUTH COLLEGE

BAKER MEMORIAL LIBRARY
HANOVER, NEW HAMPSHIRE
JENS FREDRICK LARSON, ARCHITECT
SANBORN HALL
HANOVER, NEW HAMPSHIRE
JENS FREDRICK LARSON, ARCHITECT
Sanborn Hall, an English Department house, is unusual among American college buildings in that it includes faculty study rooms, seminars and club rooms which permit a more informal mode of study than is ordinarily the case. The basement and first floor plans indicate its close proximity to Baker Memorial Library.
The library has, at the present time, a stack capacity of 500,000 volumes, but its plan will permit the addition of another large stack room between the two wings of the building which will increase the capacity to 2,000,000 or more volumes. Additional illustrations and a complete description of the building will be found in the Architectural Forum of April, 1929, pages 537 to 564. The lower photograph is another view of Sanborn Hall.

THE BAKER MEMORIAL LIBRARY
HANOVER, NEW HAMPSHIRE
JENS FREDICK LARSON, ARCHITECT
THE BAKER MEMORIAL LIBRARY
HANOVER, NEW HAMPSHIRE
JENS FREDRICK LARSON, ARCHITECT
The original buildings of Dartmouth College were simple Colonial structures of painted brick. The new buildings, though planned to fulfill the more complex requirements of modern usage, have been designed in the same tradition with materials similar to those used in the old structures.
LYONS HALL
NOTRE DAME, INDIANA
KERVICK & PAGAN, ARCHITECTS
The exterior walls of this group are constructed of grayish-blue Ithaca stone which, when weathered, takes on various tones of red and yellow. The trim is limestone. The roof is slate of graded color, thickness and length, nailed to gypsum slabs which are supported on steel tees. The colors selected were weathering green, sea-green, and shades of purple and gray. The windows are leaded.

THE BALCH HALLS FOR WOMEN
ITHACA, NEW YORK
FREDERICK L. ACKERMAN, ARCHITECT
NOTRE DAME UNIVERSITY

HOWARD HALL
NOTRE DAME, INDIANA
KERVICK & FAGAN, ARCHITECTS

JUNE 1931 • THE ARCHITECTURAL FORUM
DINING HALL, NOTRE DAME, IND.
CRAM & FERGUSON, ARCHITECTS
KERVICK & FAGAN, ASSOCIATE ARCHITECTS

LYONS HALL
NOTRE DAME, INDIANA
KERVICK & FAGAN, ARCHITECTS
THE BALCH HALLS FOR WOMEN
ITHACA, NEW YORK
FREDERICK L. ACKERMAN, ARCHITECT
THE BALCH HALLS FOR WOMEN
ITHACA, NEW YORK
FREDERICK L. ACKERMAN, ARCHITECT

The upper terrace. It overlooks the interior court treated as a garden

A reception room. The floor is covered with cork tile in rectangles about 18 x 32 in. The paneling is of pine, finished with rottenstone and wax, to produce an effect of age. The upper portion of the wall and the ceiling is smooth painted plaster.
PURDUE UNIVERSITY

MEMORIAL UNION BUILDING
EAST LAFAYETTE, INDIANA
POND & POND, MARTIN & LLOYD, ARCHITECTS
View from the southwest. The building was completed in 1930, has a gross volume of 1,729,000 cubic feet and cost $726,580 or approximately 42 cents per cubic foot. The blocks on the entrance piers will eventually be carved with figures symbolic of college life.
A view from the southeast and a detail of the corner bay window. The exterior materials are sawed Indiana limestone, brick in red and purple tones and slate in graduated shades of purple and green. The windows are of the double hung type with 10 in. by 12 in. leaded panes.
MEMORIAL UNION BUILDING
EAST LAFAYETTE, INDIANA
POND & POND, MARTIN & LLOYD, ARCHITECTS
This dining hall will connect through arcades with two dormitories, Harris Hall (shown on the following page) and one to be constructed in the future. The "rood screen" serves as the vestibule dividing the hall into two well proportioned rooms. The space above the screen is used as a special dining room. The ceiling is sound-absorbing and heat-insulating.

DINING HALL
ATLANTA, GEORGIA
HAROLD BUSH-BROWN, ARCHITECT
Two dormitories designed to house students efficiently and economically. Rooms average approximately 150 square feet, each accommodating two students. This area includes two closets approximately three feet square. Furniture consists of double-decker pipe-frame beds, two desk tables and chairs. Large stock casement windows give adequate light and ventilation.

N. E. HARRIS DORMITORY
ATLANTA, GEORGIA
BUSH-BROWN AND STOWELL, ARCHITECTS
WELLESLEY COLLEGE

STONE-DAVIS HALL
WELLESLEY, MASS.
CHARLES Z. KLAUDER, ARCHITECT
Stone-Davis Hall, though in appearance a single building, in reality is composed of two separate dormitories of the study-bedroom type. Each dormitory unit has its own reception room, living room, matron's suite, and dining room, all located on the first floor of the central portion of the building. The dormitory wings form the court shown above. The service areas are also centrally located and one large kitchen serves both of the dining rooms.
Severance Hall is built on the side of a hill, most of the study-bedrooms being on the upper level. The reception room, matron's suite, and the dining and living rooms are centrally located between the dormitory wings on the lower level.
SEVERANCE HALL
WELLESLEY, MASS.
CHARLES Z. KLAUDER, ARCHITECT

The picture above shows one of the entrances to the dining room; the one below shows the east windows of the living room, with the reception room and dormitory wing beyond.
The University of Colorado is one of the few institutions in the country that has been able to plan from the beginning the entire development of its educational plant and has consistently carried on its building program toward a definite goal. The buildings illustrated here are units of a complete scheme, conceived in 1918 and illustrated fully in The Architectural Forum of September, 1919. Most of the exterior materials are common to the locality. The stone for the walls is a sort of shale that slits naturally into long, thin pieces and ranges in color from a pale yellow-brown to a deep brown-red, that in contrast is almost purple. The trim is of cut limestone, and the roof is of variegated, dull red tile, similar in color to the roofs of the old country buildings of northern Italy.

THE UNIVERSITY OF COLORADO
AT BOULDER, COLORADO
Gymnasium Buildings
Boulder, Colorado
Day & Klauder, Architects
The first floor of the building contains the lounge room, divided by the partition shown in the illustration into separate areas for men and women. The dining and club rooms with all service facilities are in the basement; a large ball room is on the second floor.

MEMORIAL STUDENT UNION
BOULDER, COLORADO
DAY & KLAUDER, ARCHITECTS

JUNE 1931 • THE • ARCHITECTURAL • FORUM
CRAVEN DORMITORY
DURHAM, NORTH CAROLINA
HORACE TRUMBauer, ARCHITECT
A portion of Kilgo dormitory with the tower of Crowell dormitory in the background. The photographs on the opposite page are of the Craven dormitory group, the lower one being of the interior courtyard.

DUKE UNIVERSITY

KILGO AND CROWELL DORMITORIES
DURHAM, NORTH CAROLINA
HORACE TRUMBAUER, ARCHITECT
The development of Duke University has been planned fully from the beginning and building has been consistently carried on toward a definite goal. Though actually a coeducational institution, the difference in architectural style between the men's buildings and those of the women serves as a sharp line of distinction between the two types of students.

WOMEN'S AUDITORIUM, EAST CAMPUS
DURHAM, NORTH CAROLINA
HORACE TRUMBAUER, ARCHITECT
OLD CASTLES FOR NEW COLLEGES

BY WILLIAM HARLAN HALE

The author of this article is a student in Yale University, the editor of *The Harkness Hour* (a new undergraduate literary magazine), and the author of "Yale's Cathedral Orgy," published in a recent issue of *The Nation*.

AMERICA'S Coming of Age implies not only a bigger navy, a closer railroad net, and a larger population total per square mile, but also a new consciousness of cultural aims. Men who made hundreds of millions out of America's physical growth now donate tens of millions to establish America's mental maturity. It has become a sign of enlightenment to provide funds for the erecting of a college library, a dormitory, or a monumental tower which exalts the estate of learning and advertises the assets of the favored institution.

Wealthy donors have turned American colleges from provincial organizations; their contribution to America's educational life has been immeasurable. One must keep this fact in mind when one presumes to doubt the excellence of many endowments, or the good judgment of many philanthropists.

Intentions have been of the best; while taste, however, has frequently been of the worst. The overwealthy retired magnate, conceiving a sudden passion for culture, is less likely to turn over a million dollars to be used simply and efficiently than to devote that million to the erection of a magnificent edifice, luxuriously furnished and gorgeously decorated, as a memorial to his generosity. His tendency is to get as much personal glory as possible out of his million dollars.

Thus our colleges are likely to become nuisances if gilt and glory rather than workplaces of simplicity and directness. Thus we do not get a library built with plain materials and designed for a maximum of light and air and freedom. We get a ponderous palace instead, heavily Gothic, or deadly Classical, equipped with fortunes of useless ornament and inefficient detail. We get libraries with cathedral windows so ornate that they can never be opened; with cornices and columns so deep that light cannot enter; with interiors so theatrical and luxurious that they divert the mind from all serious concentration.

In the house plans of Yale and Harvard lay great opportunities for the construction of the best fitted types of residential structures. Almost limitless funds were at hand, and the plans were so extensive that a unity of many buildings was envisaged. Some observers dreamed of modern designs—of bold clear shapes as suggested by the Dessau Bauhaus, the Weissenhof settlement, or the other European communal developments. Rash visionaries fondly hoped that here the trappings of antiquity might be dropped, and a bold path be struck toward the formulation of a new style. They thought that academic leadership might mean artistic or cultural leadership.

Hundreds of institutional buildings hide their proper life and function under a garment stolen from the past. Intended to exhibit the wealth of donor and university, such buildings cry out in poverty. Built to appear matchless in their glory and timeless in their splendor, they actually display the tawdriness of the age and the timidity...
Connecticut Hall at Yale University. The building, one of the oldest on the college campus, is a masterpiece of Colonial simplicity and thoroughly honest construction.

The Sterling Law Buildings at Yale University, a modern group, that in contrast with the picture above, or with that on the opposite page, shows the elaborate mediaeval forms applied to buildings of modern construction.

of its educational leaders. Although millions have been sunk into them, they have few treasures to give the young. They are copies, imitations, veritable thefts. They are not habitations of young life, and they can father no new spirit.

What, then, should the college building be? Our first requirement is a simple one: it must be honest. It cannot be built of faked materials, in a fraudulent manner (such as hiding steel girders under enormous buttresses), on a basis of untruth. During some of the most impressionable years of his life, a young man must live among college buildings. And if that environment is one of falsity, he soon will breathe that same spirit. The infection may be unconscious, but it will be real.

College buildings must not be wasteful. The rampant or egotistic desires of a benefactor have no right to determine the century-long character of a college structure. Better no buildings at all than a collection of gilded monstrosities. Better no developments at all than developments in the channel of show-off and exhibitionism. It is difficult and often apparently impossible for a university to reject an offer of some million dollars' building endowment; but a rigid censor-
The Bauhaus School in Dessau, Germany, though unapt perhaps for an American college, embodies excellent ideas of light, air, cleanliness, and clarity of construction.

ship must be exerted, so the university will betray its own first principles. Perhaps, indeed, government or expert commissions should be established to investigate every endowment offer, and over a period of some years test its sanity.

College buildings must not, by reviving dead styles of architecture, exalt the past. A twentieth-century Gothic building can revive only the form of the old style, never the substance. The unreality of using antiqued effects and dead methods cannot be escaped. In the course of his life in such a building the student may win some familiarity with Gothic ornaments or Classical orders or Colonial woodwork; but how false is such acquaintance ship compared with a true one in Chartres, Athens, or the houses of Salem!

Life is possible only in a living style. Reconstructions of the past are doomed at the start. They remain just as dead as the copies of Rembrandts by those resigned old lady painters who haunt our museum halls. If the college building hopes to infect its inhabitants with a sense of the living force of the university, and of its meaning to the current world, such a building must be born of a living spirit. Yale has one great building: Connecticut Hall, built in 1750, a masterpiece of Colonial symmetry and harmony of every detail. Today, another Connecticut Hall might be built: light and airy, simple in material and economical in construction, designed with a view to health and openness. It could have all the spontaneous beauty of the 1750 building; we need not be ashamed of modern architecture, nor make apologies for the use of new design. A great tradition of emancipated building is in the making. Universities in joining that tradition would not be playing with the experimental; they would rather be completing the transformation of the experimental into the classic.

The college building must have originality and independence from the "artistic" cult. While necessarily built by men who feel the full current of a living style, it must avoid the pitfalls of self-conscious tendency and momentary mannerism. To detect the difference between a genuine artist and a maker of pseudo-modern confections is not as easy as it might seem; it requires the utmost in taste and constant alertness.

This would imply that a certain conservatism is bound to linger in college buildings. Such a tendency seems inevitable. Academic removal and scholarly seriousness will express themselves in a desire to avoid the insurgent or spectacular or unprecedented. This un-radical position is fully justified; it is not justified, however, when it prescribes Gothic as the college style, and the thirteenth century as the source of all inspiration.

The student needs the influence and environment of ideas of integrity, economy, liberalism, and good judgment. If his buildings are deceitful, extravagant, antiquarian, and tasteless, the influences upon him will be altered in accordance. Nobody would ask for skyscrapers as dormitories, factories as recitation buildings, or grain elevators as recreation halls; but one must demand the universal employment of modern conceptions of simplicity, light, air, and therefore freedom. A race of men who are sound and fearless can be reared only with difficulty in a world of buildings that are false and cowardly.
"... The student needs the influence and environment of ideas of integrity, economy, liberalism, and good judgment. If his buildings are deceitful, extravagant, antiquarian, and tasteless, the influences upon him will be altered in accordance"
AN ENTRANCE TO THE HARKNESS MEMORIAL
AT YALE UNIVERSITY
JAMES GAMBLE ROGERS, ARCHITECT

SOME ENTRANCES TO COLLEGE BUILDINGS
The picture at the top of the page is of the main entrance to the Armory, located at the Champaign branch of the University of Illinois. The one at the left is the entrance to the Chemistry Building, in Urbana.
BROWN UNIVERSITY
PROVIDENCE, R. I.
DAY & KLAUDER, ARCHITECTS
A general view of The Quadrangle, one of the men’s dormitories, and a detail of one of the entrances.
The entrance to this building is entirely of concrete. Plaster moulds of the ornament were set in the wood forms and the regular concrete mix was used throughout.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
JAMES M. WHITE, ARCHITECT
ANTIOCH COLLEGE
ANTIOCH, OHIO
EASTMAN & BUDKE AND HERBERT BÀUMER
ASSOCIATED ARCHITECTS

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
JAMES M. WHITE, ARCHITECT
COLLEGE ARCHITECTURE REFERENCES

PLANNING AND DESIGN, GENERAL

University Buildings Reference Number, THE ARCHITECTURAL FORUM, December, 1925. The subjects treated include: Dormitories, Fraternity Houses, College Y. M. C. A. and Religious Buildings, Common Rooms and Dining Halls, Gymnasiums and Stadiums. Illustrations are of College and University Buildings throughout the United States. Plans, details, and construction and cost data are given.

University Buildings Reference Number, THE ARCHITECTURAL FORUM, June, 1926. The subjects included in this Reference Number are: Memorial Buildings, Lecture Halls, Libraries, Chapels, Laboratories, Infirmaries and Administration Buildings. Illustrations are of College and University Buildings throughout the United States. Plans, details, and construction and cost data are given.

Small College Campus Plan, A. Granger, il. plans, Amer. Landscape Arch. 2:20-5, April, 1930.

Selecting the Site for the Small College, F. A. C. Smith, il. plan, Amer. Landscape Arch. 2:24-9, May, 1930.

Program for Campus Development of Mount Holyoke College, A. A. Shurtleff, il. Amer. Landscape Arch. 2:10-17, January, 1930.

University of Illinois Campus Plan, Thomas E. O'Donnell, Western Architect, 1929, v. 38, p. 31-34. Plates.

Architectural Style of the College Group, A. Granger, Amer. Landscape Arch. 3:22-7, July, 1930.

Bernau Schule, German Federated Trades Unions Build Their First Ideal College, A. Behne, il. plan, Creative Art, 7:302-6, October, 1930.

Monograph of American College University Buildings, American Arch., v. 129, May, 1926.

Concordia Seminary, St. Louis, Mo., Charles Z. Klauder, archt., Arch. Record, 1928, v. 64, p. 177-182, 199-224, il.

College Architecture in Relation to Student Recreation, A. Granger, il. plan, Amer. Landscape Arch., 3:24-30, September, 1930.

ACADEMIC AND ADMINISTRATION BUILDINGS

Graduate School of Business Administration, Harvard University, McKim, Mead & White, Archts. Charles W. Killam, Arch Forum, 1927, v. 47, p. 305-332, il.

LIBRARIES AND MUSEUMS

Stetson Hall, the Williams College Library, Architecture, 1924, v. 48, p. 257-264.

DORMITORIES, DINING HALLS

CHAPELS

RECREATIONAL BUILDINGS
AND AUDITORIUMS

The New Student Union Building, University of Wisconsin, American Arch., 1929, v. 130, p. 1-8, il.

ATHLETIC BUILDINGS
GENERAL
Proceedings of the Thirty-third Annual Meeting of the Society of Directors of Physical Education in Colleges, December 31, 1929, New York. Published by the Rice Institute, Houston, Texas.

GYMNASIUMS

Medart Gymnasium Equipment, Published by Fred Medart Manufacturing Co., St. Louis, Mo.

Gymnasium Construction, Published by Narragansett Machine Co., Providence, R. I.

The Ventilation of Locker Rooms, Arch. Forum, March, 1925, p. 197.

Physical Education Buildings, Part One—Gymnasiums and Lockers, Published by The Society of Directors of Physical Education in Colleges, 129 Lexington Avenue, New York City, 1923.

SWIMMING POOLS

FIELD HOUSE, RINKS, ETC.

The Structure of Indoor Tennis Courts, Arch. Forum, August, 1928, Part II, p. 270.

STADIUMS

The Grant Park Stadium, Arch. Forum, February, 1925, p. 79; Small City Stadium, Arch. Forum, June, 1925, p. 53.

Among the other users of A.C.F. architectural woodcarvings are the following:

GOTHIC OAK. . . No term more aptly suggests the feel and fibre of this exceptional wood. . . Its full-depth tone of seasoned brown recalls at once rood-screens and panels of ancient England; its fine, workable texture supplies a ready medium for the re-creation of those decorative treatments and carved details in which the Thirteenth Century stands exalted. . . The obedience of Gothic Oak to chisel and spindle is clearly shown in the delicately-executed carvings illustrated on the opposite page. . . From every standpoint Gothic Oak is a remarkable wood—color (finished without filler or stain), workability, permanence, economy. . . Architects who see Gothic Oak for the first time are at once inspired to new ideals in interior finishing. . . We urge you to send for samples. . . The coupon below is merely for your convenience.

WOOD-MOSAIC CO., Incorporated • • • LOUISVILLE, KENTUCKY

PHOTOGRAPH OPPOSITE: The John Timothy Stone Chapel, Fourth Presbyterian Church, Chicago. CRAM & FERGUSON, Boston, Architects; Dwight G. Wallace, Chicago, Associated. All interior woodwork of GOTHIC OAK.

Wood-Mosaic
LUMBER • VENEERS • FLOORING

WOOD-MOSAIC CO., Incorporated, LOUISVILLE, K.Y.
Send, without obligation, sample of Gothic Oak for interior trim and descriptive literature.

Name

Firm

Address

JUNE • 1931 • THE • ARCHITECTURAL • FORUM
Decorators and their clients are cordially invited to visit the Johnson & Faulkner Building and to inspect, in surroundings especially designed for the purpose, an impressive display of every type of quality fabric favored in the decoration of the modern home.
Selected List of Manufacturers' Publications

FOR THE SERVICE OF ARCHITECTS, ENGINEERS, DECORATORS, AND CONTRACTORS

The publications listed in these columns are the most important of those issued by leading manufacturers identified with the building industry. They may be had without charge unless otherwise noted, by applying on your business stationery to The Architectural Forum, 521 Fifth Ave., New York, or the manufacturer direct, in which case kindly mention this publication.

ACOUSTICS

R. Guarino Co., 40 Court Street, Boston.

Masonry acoustical materials (AUGUSTOLITH Tile and AUGUSTOLITH Plaster) and Timbrel Arch Construction. Brochure, 14 pages, 8½ x 11 inches. Illustrated.

ARCHITECTURAL BRONZE AND IRON

The Kawneer Company, Niles, Mich.

4-page folder, 8½ x 11 ins. A. I. A. File No. featuring Ornamental Bronze and Iron. This folder is included in Catalog Portfolio "N" which contains 4-page folders featuring Store Fronts, Doors, Windows, Architectural Bronze and Iron and Architectural Metal Mouldings.

ARCHITECTURAL METAL MOULDINGS

The Kawneer Company, Niles, Mich.

Large Sheet folded to 8½ x 11 ins. featuring our various Mouldings. This sheet is included in Catalog Portfolio "N" which contains 4-page folders featuring Store Fronts, Doors, Windows, Architectural Bronze and Iron and Architectural Metal Mouldings.

ASH HOISTS

Gillis & Geoghegan, Inc., 544 West Broadway, New York.

G & G Telescopic Hoist catalog, 8½ x 11, A.I.A. Standard Classification 9211 contains complete descriptions, method of selecting correct model to fit the building's needs, scaled drawings showing space requirements and specifications.

ASH HOISTS—TELESCOPIC

Gillis & Geoghegan, Inc., 544 West Broadway, New York.

G & G Telescopic Hoist catalog, 8½ x 11, A.I.A. Standard Classification 9211 contains complete descriptions, method of selecting correct model to fit the building's needs, scaled drawings showing space requirements and specifications.

BRICK

General Catalog. 16 pp., 8½ x 11 ins. Illustrated. Bradford Red. Folder. 8 pp., 3 x 4 ins. Illustrated.

CABINET WORK

Henry Klein & Co., 25 Grand Street, Elmhurst, L. I., N. Y.

CARPET

Collins & Alkman Corporation, 25 Madison Ave., New York, N. Y.

"There's Something New About." Booklet, 12 pp., 8 x 11 ins. Illustrated. Describing entire line of sisal-clad and corrugated fire doors, complete with automatic closers, track hangers and all the latest equipment—all approved and labeled by Underwriters' Laboratories.

Truscon Steel Company, Youngstown, Ohio.

Fireproof Steel Doors. Catalog 110. booklet, 48 pp., 8½ x 11 ins. Illustrated.

DOORS—SHOWER BATH

The Kawneer Company, Niles, Mich.

Folder 8½ x 11 ins. A. I. A. File No. featuring Welded Shower Stall Doors. This folder is included in Catalog Portfolio "N" which contains 4-page folders featuring Store Fronts, Doors, Windows, Architectural Bronze and Iron and Architectural Metal Mouldings.

CEMENT

Louisville Cement Co., 315 Guthrie St., Louisville, Ky.

Attractive Small Houses of Concrete Masonry. A series of 20 plates, 8½ x 11 ins., in a folder bearing the A. I. A. File No. 3042.

Concrete Masonry Construction. Booklet, 48 pp., 8½ x 11 ins. Illustrated. Deals with various forms of construction.

Cement—Continued

DAMPROOFING

Complete Index of all Minwax Products. Folder, 6 pp., 8½ x 11 ins. Illustrated. Complete description and detailed specifications.

DOORS

The Kawneer Company, Niles, Mich.

4-page folder, 8½ x 11 ins. A. I. A. File No. featuring Metal Doors. This folder is included in Catalog Portfolio "N" which contains 4-page folders featuring Store Fronts, Doors, Windows, Architectural Bronze and Iron and Architectural Metal Mouldings.

J. G. Wilson Corporation, 11 East 50th St., New York City, N. Y.

A page catalog on Rolling Steel Doors and Shutters, including specifications, dimensions and other data including Illustrations of installations and drawings. Two catalogs on Sectionfold Doors Operating Overhead, contain complete information, including photographs, details, specifications and an outline of their many uses.

DOORS AND TRIM, METAL

The American Brass Company, Waterbury, Conn.

Anacorda Architectural Bronze Extruded Shapes. Brochure, 180 pp., 8½ x 11 ins. Illustrated and describing more than 2,000 standard bronze shapes of cornices, jambs casings, moldings, etc.

William Bayley Co., 147 North Street, Springfield, Ohio.

Finishing Door Openings. A.I.A. file holder with 20 loose-leaf sheets of details and specifications.

Fire-Doors and Hardware. Booklet, 8½ x 11 ins., 64 pp. Illustrated. Describes entire line of tile-clad and corrugated fire doors, complete with automatic closers, track hangers and all the latest equipment—all approved and labeled by Underwriters' Laboratories.

Truscon Steel Company, Youngstown, Ohio.

DRAINAGE FITTINGS

The Evanston Soundproof Door. Folder, 8 pp., 8½ x 11 ins. Illustrated. Deals with a valuable type of door.

JUNE • 1931 • THE ARCHITECTURAL FORUM

REQUEST FOR CATALOGS

To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to The Architectural Forum, 521 Fifth Avenue, New York.

Name .. Business

Address
SELECTED LIST OF MANUFACTURERS' PUBLICATIONS

DRAINAGE FITTINGS—Continued

Josam New Saw Tooth-Roof Drain. Folder, 4 pp., 8¼ x 11 ins. Illustrated.

ELECTRICAL EQUIPMENT

The Bryant Home of Ideas. Contains data and suggestions useful in connection with residence wiring. 8½ x 10 ins. 16 pp. “KnxEX” and “HooKEx” Bulletin No. 5139. Contains data and specifications pertaining to devices for use in connection with the hanging of lighting fixtures, making such fixtures portable or removable, soldered joints being eliminated. 8½ x 10 ins. 6 pp.

WARD LEONARD ELECTRIC CO., Mt. Vernon, N. Y.
Mobile Color Lighting. booklet, 46 pp., 8¼ x 11 ins. Illustrated. Valuable work on the subject.

WESTINGHOUSE ELECTRIC & MFG. CO., East Pittsburgh, Pa.
Electric Power for Buildings. Brochure, 14 pp., 8¼ x 11 ins. Illustrated. A publication important to architects and engineers.
Variable-Voltage Central Systems as Applied to Electric Elevators. Booklet, 12 pp., 8½ x 11 ins. Illustrated. Deals with an important detail of elevator mechanism.

ELECTRICAL EQUIPMENT—Continued

Thermal Equipment for Heating and Ventilating Systems. Booklet, 12 pp., 8¼ x 11 ins. Illustrated. This is “Motor Application Circular 7379.”
Beauty; Power; Silence; Westinghouse Fans. (Dealer Catalog 45). Brochure, 36 pp., 9½ x 11 ins. Illustrated. Valuable information on fans and their uses.
Westinghouse Commercial Cooking Equipment (Catalog 280). Booklet, 32 pp., 8½ x 11 ins. Illustrated. Equipment for cooking on a large scale.
Electric Appliances (Catalog 44-A). 32 pp., 8½ x 11 ins. Illustrated. Deals with accessories for home use.

ELEVATORS

Otis Elevator Company, 260 Eleventh Ave., New York, N. Y.
Otis Push Button Controlled Elevators. Descriptive leaflet, 8½ x 11 ins. Illustrated. Full details of machines, motors and controllers for these types.
Otis Geared and Gearless Traction. Elevators of All Types. Descriptive leaflet, 8½ x 11 ins. Illustrated. Full details of machines, motors and controllers for these types.

REQUEST FOR CATALOGS

To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to THE ARCHITECTURAL FORUM, 521 Fifth Avenue, New York.
Do you know that you can now use RUBBER FLOORING

Rubber has never been cheaper. The enormous stocks of crude rubber which have accumulated have made world prices very low. Goodyear passes on the saving for the benefit of builders. Now for a cost of around 60¢ a foot, and in large installations for even less, you can specify Rubber Flooring with all its advantages in design and as integral structure with your finished buildings.

The new prices for Goodyear Rubber Flooring are the more fortunate today in that Goodyear has recently improved the architectural qualities of the material. Everyone knows rubber is naturally fitted for floors. It is quiet, sanitary, comfortable, and famously durable. But for flooring — at a price scarcely higher than ordinary floor covering — Goodyear has now added to the natural toughness and resilience of rubber a perfect versatility of color and texture for employment in architectural design.

One works with Goodyear Rubber Flooring in planning beautiful floors with an artist's freedom. The material invites unrestricted agreement with the plan, uses, and color scheme of the building. There are colors bright and dark in a wide variety of tones — in textures which do not show dust. You fashion them as you wish for formal, informal, public, or domestic uses. Yet always the lustrous rubber stuff of the pattern has structural permanence — a thrifty floor which is maintained at little cost as long as the building stands.

Goodyear gladly cooperates with architects in the preparation of whole floor designs. For information about the new prices, samples, and A.I.A. File 23C containing color plates and complete data for specification, just write to Goodyear, Akron, Ohio, or Los Angeles, California.

THE GREATEST NAME IN RUBBER

GOODYEAR RUBBER FLOORING

Copyright 1931, by The Goodyear Tire & Rubber Co., Inc.

JUNE 1931 • THE ARCHITECTURAL FORUM

33
SELECTED LIST OF MANUFACTURERS' PUBLICATIONS—Continued from page 32

FURNITURE
- American Seating Co., 14 E. Jackson Blvd., Chicago, Ill.
- Deals with line of furniture for hotels, clubs, institutions, schools, etc.
- Kittinger Co., 1893 Elmwood Ave., Buffalo, N. Y.
- Data on furniture for hotels and clubs.
- General Catalog.

HARDWARE
- P. & F. Corbin, New Britain, Conn.
- Early English and Colonial Hardware. Brochure, 8½ x 11 ins.
- An important illustrated work on this type of hardware.
- Locks and Builders' Hardware. Bound Volume, 486 pp., 8½ x 11 ins.
- An exhaustive, splendidly prepared volume.
- Colonial and Early English Hardware. Booklet, 48 pp., 8½ x 11 ins.
- Illustrated for houses in these styles.
- Corbin Door Closers, 8½ x 11 ins.
- A description of the principles of operation and performance of Corbin door closers.
- Automatic Exit Fixtures, 8½ x 11 ins.
- A catalog of hardware for exit and entrance doors to auditoriums.
- Cutler Mail Chute Company, Rochester, N. Y.
- Cutler Mail Chute Model F. Booklet, 4 x 9½ ins., 8 pp. Illustrated.
- Complete information accompanied by data and illustrations on different kinds of garage door hardware.
- Distinctive Elevator Door Hardware. Booklet, 90 pp., 8½ x 11 ins. Illustrated.
- Deals with residence hardware.
- Door Closer Booklet. Brochure, 16 pp., 3½ x 6 ins.
- Data on a valuable detail.
- Garage Hardware. Booklet, 12 pp., 3½ x 6 ins.
- Hardware intended for garage use.
- Famous Homes of New England. Series of folders on old homes and hardware in style of each.

HEATING EQUIPMENT
- Heating and Ventilating Utilities. A binder containing a large number of valuable publications, each 8½ x 11 ins., on these important subjects.
- American Radiator Company, The, 40 West 44th St., N. Y. C.
- Ideal Boilers for Oil Burning. Catalog 545 x 8½ ins., 36 pp.
- Illustrated in 4 colors. Describing a line of Heating Boilers especially adapted to use with Oil Burners.
- Illustrated.
- A brochure on a space-saving radiator of beauty and high efficiency.
- Ideal Aroea Radiator Warmth. Brochure, 645 x 9½ ins. Illustrated.
- Describes a central all-on-one-floor heating plant with radiators for small residences, stores, and offices.
- Data on heating and hot water supply.
- New American Radiator Products. Booklet, 44 pp., 5 x 7¾ ins. Illustrated.
- Complete line of heating products.
- Data on the IN-AIRID invisible air valve.
- In-Airid, the Invisible Air Valve. Folder, 8 pp., 9½ x 6 ins. Illustrated.
- The 909 ARCO Packless Radiator Valve. Folder, 8 pp., 9½ x 6 ins. Illustrated.

REQUEST FOR CATALOGS
To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to THE ARCHITECTURAL FORUM, 521 Fifth Avenue, New York.
What is this material?

You would logically suppose that this is natural marble. AMBLER MARBLEITE is a perfect reproduction of the finest marbles—all the beauty, all the wearing qualities, and yet the cost is but one-third to one-fifth of the cost of the quality marble it reproduces. MARBLEITE is available in three types—Verd Antique (Italian Type), Jaune Fleuri (Spanish Type) and Black and Gold (African Type). The hard polished surface can be readily cleaned, and MARBLEITE involves no maintenance cost whatsoever. It will not crack or chip, and the 32 x 48-inch fireproof asbestos sheets are readily installed. You will find AMBLER MARBLEITE ideal both for exteriors and interiors, as it is weatherproof and waterproof.

In addition, the economy of MARBLEITE allows it to be used in many places where the beauty and lasting qualities of such a material have been previously impossible on account of the prohibitive cost. Write today for data sheets and samples for your files, and keep AMBLER MARBLEITE in mind on your next specifications.

Ambler MARBLEITE

AMBLER ASBESTOS SHINGLE & SHEATHING COMPANY AMBLER, PENNA. ST. LOUIS, MO.
SELECTED LIST OF MANUFACTURERS’ PUBLICATIONS—Continued from page 34

HEATING EQUIPMENT—Continued

Catalog No. 79, 6 x 9 ins. Illustrated. Describes Kewanee power boilers and smokeless tubular boilers with specifications.
McQuay Concealed Radiators. Brochure, 4 pp., 8¼ x 11 ins. Illustrated.
McQuay Unit Heater. Booklet, 8 pp., 8½ x 11 ins. Illustrated. Gives specifications and radiator capacities.
Minneapolis-Honeywell Regulator Co., Minneapolis, Minn. The Modulat, a self-contained automatic room temperature control valve for individual radiators. Leaflet, 1 pp., 8½ x 11 ins. Illustrated.
Modine Mfg. Co., Racine, Wis.
Modine Copper Radiation. Booklet, 28 pp., 8½ x 11 ins. Illustrated. Deals with industrial, commercial and domestic heating.
A Few Short Years. Folder, 4 pp., 8½ x 11 ins. Illustrated. Heating for garages.
Dairy Plant Heating. Folder, 4 pp., 8½ x 11 ins. Illustrated. Industrial Heating. Folder, 4 pp., 8½ x 11 ins. Illustrated.
Modine Unit Heater. Folder, 6 pp., 8¼ x 11 ins. Illustrated.
Nash Engineering Company, South Norwalk, Conn.
Armstrong's Floors Have Passed Strict Entrance Exams at Leading Universities

Duke, Purdue, Chicago, Penn State — the universities of California, Illinois, Michigan, Missouri, Oregon, Washington — at these and other schools Armstrong's Floors have matriculated. They are doing heavy post-graduate work—and will be for years to come.

No other single type of building gives architects so many complex problems as a group of university buildings. But the floor problems need not be troublesome. In Armstrong's Floors lie the answers to the question, "What goes underfoot?"

Quietness — appearance — durability — comfort — sanitation—every single quality essential in floors must be considered in choosing flooring material for schools. Armstrong's Floors are selected time after time because they measure up to each specification—cost included.

Armstrong's Linoleum can be used for almost every floor in college. Battleship for heavy traffic areas, Inlaid Marble designs, Embossed Tile patterns, and Jasper for lounges, dormitories, offices, and other places where decorative floors are required. Over 300 patterns available—all surfaced by the Accolac Process which keeps them bright and smiling.

Custom floors of Linotile and cork tile offer limitless possibilities for colorful designs. Built for heavy duty, they will go through college with generations of classes. For libraries, chapels, and study halls, where forest quiet is imperative, Armstrong's Cork Tile is particularly well qualified.

May we send you complete information about these modern floors? Write for "Custom-Built Floors of Cork" and our current file-size specification book. Also for colorplates and samples, if you wish. Armstrong Cork Company, Custom Floors Department, Lancaster, Penna.

Schools need bulletin boards, too. Would you like samples of Armstrong's Cork Bulletin and Tack Boards?

Armstrong's Floors

LINOLEUM • LINOFLOK • LINOTILE • CORK TILE
LATH, METAL AND REINFORCING—Continued

Better Walls for Better Homes. Brochure, 16 pp., 7x6 x 11x4 ins. Illustrated. Metal lath, particularly for residencies.
Steeltek for Floors. Booklet, 24 pp., 8x5 x 11 ins. Illustrated. Combined reinforcing and form for concrete or gypsum floors and roofs.
Steeltek Data Sheet No. 1. Folder, 8 pp., 8x5 x 11 ins. Illustrated. Steeltek for floors on steel joists with round top chords.
Steeltek Data Sheet No. 2. Folder, 8 pp., 8x5 x 11 ins. Illustrated. Steeltek for floors on steel joists with flat top flanges.
Steeltek Data Sheet No. 3. Folder, 8 pp., 8x5 x 11 ins. Illustrated. Steeltek for folders on wood joists.

Truscon Steel Company, Youngstown, Ohio.

LAUNDRY MACHINERY

The American Laundry Machinery Company, Norwood Station, Cincinnati, Ohio.
The Laundry in the Hotel, Hospital, School, Club, Office Building... even in the large Residence. Brochure, 25 pp., 8x5 x 11 ins. Arranged in convenient size folder. Contains blue prints of prominent laundry installations.

Troy Laundry Machinery Co., Inc. 9 Park Place, New York City.

LIGHTING EQUIPMENT

The Frink Co., Inc., 369 Lexington Ave., New York, N. Y.
Catalog 415, 8x6 x 11 ins., 40 pp. Photographs and scaled cross-sections. Specialized bank lighting, screen and partition reflectors, double and single deck reflectors and Polarlite Signs.
Kliegl Bros. Universal Electric Stage Lighting Co., Inc., 321 West 50th Street, New York, N. Y.
Catalogue No. 30, 24 pp., 8x5 x 11 ins. Illustrated.

Industrial Lighting Equipment. Booklet, 32 pp., 8x5 x 11 ins. Illustrated.

Ways of Illuminating Football Fields. Folder, 8x5 x 11 ins. Illustrated.

A New Contribution to the Joy of Swimming. Folder, 8 pp., 8x5 x 11 ins. Illustrated.

LOCKERS

Durabilt Steel Locker Co., Aurora, Ill.
Steel Storage Equipment for the Modern School Shop. Catalogue, 11 pp., 8x5 x 11 ins. Illustrated.

MAIL CHUTES

Cutler Mail Chute Company, Rochester, N. Y.
Cutler Mail Chute Model F. Booklet, 4 x 9x4 ins., 8 pp. Illustrated.

MANTELS

Henry Klein & Co., Inc. 40-46 West 23rd Street, New York.
Driwood Mantels. Booklet, 12 pp., 8x5 x 11 ins. Illustrated. Fine line of eighteenth century English and American mantels.

MARBLE

The Georgia Marble Company, Tate, Ga.; New York Office, 1228 Broadway.
Why Georgia Marble Is Better. Booklet, 3x6 x 6 ins. Gives analysis, physical qualities, comparison of absorption with granite, opinions of authorities, etc.

REQUEST FOR CATALOGS

To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to THE ARCHITECTURAL FORUM, 521 Fifth Avenue, New York.

NAME_____________________________BUSINESS______________________________
ADDRESS______________________________

THE ARCHITECTURAL FORUM JUNE 1931 38
At lowest maintenance cost

Cost of maintenance of a *CELLized Wood Block floor, properly finished with a penetrating finish, is at least 50% less than that of other floor materials suitable for schools. The floor simply requires occasional going over with a soft dry broom, and where needed, a renewal of the finish about twice a year at a cost not exceeding two cents per square foot. The life of the floor itself is practically indefinite; laid in EVERBOND directly over concrete, there is no air space below, eliminating the danger of wood-boring insects, and reducing the fire hazard.

In addition, *CELLized Wood Block floors are quiet, warm and healthful under foot, combining with the all-round merit of wood as a material, the outstanding advantages of beauty and style. Square or rectangles, or combinations in various sizes, with choice of several woods, permit unusual pattern effects.

* *CELLized Wood Floor Blocks are laid only by Licensed Flooring Contractors, who have been carefully selected by *CELLized Oak Flooring, Inc., and who have the ability to install Blocks strictly in accordance with Standard Specifications. Names of those licensed will be sent on request.

*CELLized Oak Flooring Inc.
MEMPHIS — TENNESSEE
SELECTED LIST OF MANUFACTURERS’ PUBLICATIONS—Continued

PARTITIONS—Continued

Telesco Office Partition, 25 Grand St., Elmhurst, L. I., N. Y. (See Henry Klein & Co.)

J. G. Wilson Corporation, 11 East 38th St., New York City, N. Y.

Sectional and Rolling Partitions, also Light Retarding Rolling Shutters. Thirty-two-page catalog with illustrations, specification details, etc.

PIECE

The American Brass Company, Waterbury, Conn.

American Rolling Mill Company, Middletown, Ohio.

Bethlehem Steel Company, Bethlehem, Pa.

Bethlehem Wrought Steel Pipe, Catalog P. Booklet, 20 pp., 4% x 7% ins. Illustrated.

Clow & Sons, James B., 534 S. Franklin St., Chicago, Ill.

Catalog A, 4 x 10% ins., 700 pp. Illustrated. Shows a full line of steam, gas and water works supplies.

Duriron Company, Dayton, Ohio.

Duriron Acid, Alkali and Rust-Proof Drain Pipe and Fittings. Booklet, 20 pp., 8% x 11 ins. Illustrated. Important data on a valuable line of pipe.

Maurice A. Knight, Akron, Ohio.

Knightwire in the Princeton Chemical Laboratory. Booklet, 16 pp., 8% x 11% ins. Illustrated.

National Tube Co., Frick Building, Pittsburgh, Pa.

“National” Bulletin No. 2. Corrosion of Hot Water Pipe, 8% x 11 ins., 24 pp. Illustrated. In this bulletin is summed up the most important research dealing with hot water systems. The text matter consists of seven investigations by authorities on this subject.

“National” Bulletin No. 3. The Protection of Pipe Against Internal Corrosion. 8% x 11 ins., 20 pp. Illustrated. Discusses various causes of corrosion, and details are given of the deactivating and deactivating systems for eliminating or retarding corrosion in hot water supply lines.

“National” Bulletin No. 25. “National” Pipe in Large Buildings. 8% x 11 ins., 88 pp. This bulletin contains 23 illustrations of prominent buildings of all types, containing “National” Pipe, and considerable engineering data of value to architects, engineers, etc.

Modern Welded Pipe. Book of 88 pp., 8% x 11 ins., profusely illustrated with balkite and line engravings of the important operations in the manufacture of pipe.

Walworth Company, Statler Office Building, Boston, Mass.

Approved Valves and Fittings for Fire Lines in New York. Folder, 6 pp., 8% x 11 ins. Illustrated.

PLUMBING EQUIPMENT

Clow & Sons, James B., 534 S. Franklin St., Chicago, Ill.

Catalog M, 9% x 12 ins., 184 pp. Illustrated. Shows complete line of plumbing fixtures for Schools, Railroads and Industrial Plants.

Duriron Company, Dayton, Ohio.

Duriron Acid, Alkali and Rust-Proof Drain Pipe and Fittings. Booklet, 8% x 11 ins., 20 pp. Full details regarding a valuable line of pigging.

Imperial Brass Mfg. Co., 1200 W. Harrison St., Chicago, Ill.

Watrox Patent Flush Valves, Dauget Water Closets, Liquid Soap Fixtures, etc. 8% x 11 ins., 136 pp., loose-leaf catalog, showing roughing-in measurements, etc.

PLUMBING EQUIPMENT—Continued

Scovill Manufacturing Company, Watervliet, Conn.

Scovill Flush Valve Catalogue, 45 pp., 8% x 11 ins. Illustrated.

Spalding Company, Birmingham, Del.

A. I. A. File Catalogue No. 29-11-1. 16 pp., 8% x 11 ins. Illustrated. Data on shower equipment and installation.

Catalog K. Booklet, 150 pp., 8% x 10% ins. Illustrated. Data on showers and equipment details.

PNEUMATIC TUBE SYSTEMS

12 pp., 8% x 11 ins. Illustrated booklet of tube systems for retail stores and other buildings.

4 pp., 8% x 11 ins. Data Sheet showing schematic diagrams for hotel, bank, factory and wholesale buildings, table of sizes, space requirements and preliminary layout steps. A.I.A. 5Shl.

PUMPS

C. A. Dunham Co., 450 East Ohio Street, Chicago, Ill.

Dunham Vacuum Pump. Booklet, 16 pp., 8% x 11 ins. Illustrated.

Nash Engineering Company, South Norwalk, Conn.

Bulletin 52. Brochure, 6 pp., 10% x 7% ins. Illustrated. Devoted to Jennings Standard Centrifugal Pumps for house service, boosting city water pressure to supply top stories, for circulating warm water, etc.

Nash, 97. Booklet, 16 pp., 10% x 7% ins. Illustrated. Describes the design, construction and operation of the Jennings Suction Sump Pump.

REFRIGERATION

The Fulton Syphon Company, Knoxville, Tenn.

Temperature Control of Refrigeration Systems. Booklet, 8 pp., 8% x 11 ins. Illustrated. Deals with cold storage, chilling of water, etc.

REINFORCED CONCRETE—See also Construction, Concrete

Kalman Steel Company, Chicago, Ill.

Building for Durability. Booklet, 8 pp., 8% x 11 ins. Reinforced concrete products.

Truscot Steel Company, Youngstown, Ohio.

Shearing Stresses in Reinforced Concrete Beams. Booklet, 8% x 11 ins., 12 pp.

ROOFING

Johns-Manville Corporation, New York.

Ludowici-Celadon Company, 104 So. Michigan Ave., Chicago, Ill.

“Ancient” Tapered Mission Tiles. Leaflet, 8% x 11 ins., 4 pp. Illustrated. For architects who desire something out of the ordinary this leaflet has been prepared. Describes briefly the “Ancient” Tapered Mission Tiles, hand-made with full corners and designed to be applied with irregular exposures.

Milcor Steel Co., Milwaukee.

Milcor Architectural Sheet Metal Guide. Booklet, 72 pp., 8% x 11 ins. Illustrated. Metal tile roofing, skylights, ventilators, etc.

Milcor Sheet Metal Handbook. Brochure, 128 pp., 8% x 11 ins. Illustrated. Deals with rain-carrying equipment, etc.

SEWAGE DISPOSAL

Nash Engineering Company, South Norwalk, Conn.

Bulletin 67. Booklet, 16 pp. 10% x 7% ins. Illustrated in color. Describes Type A Jennings Sewage Ejector for handling screened sewage and raising it from basements below sewer level.

Bulletin 103. Brochure, 16 pp., 10% x 7% ins. Illustrated in color. Deals with small size Type B Jennings Sewage Ejector.
THIS attractive office is that of the president of the Cinderella Manufacturing Company of Minneapolis. Formica has been used liberally as wainscot, veneer on doors, basing and various other purposes to achieve the very striking modernistic effect.

Leading architects are specifying Formica for many uses: Wainscot, store front bulk-heads, spandrels and for kitchen cabinet tops and window stools in residences and apartments.

There are more than 20 attractive modern colors. The material will not spot with liquids, chip or break.

Write for literature and data.

THE FORMICA INSULATION COMPANY
4620 Spring Grove Ave., Cincinnati, O.

FORMICA

for BUILDING PURPOSES
SELECTED LIST OF MANUFACTURERS’ PUBLICATIONS—Continued from page 40

TELEPHONE SERVICE ARRANGEMENTS

All Bell Telephone Companies. Apply nearest Business Office, or American Telephone and Telegraph Company, 195 Broadway, New York.

Planning for Home Telephone Conveniences. Booklet, 52 pp., 8½ x 11 ins. Illustrated.

TIMBER TILE VAULTS

R. Guastavino Co., 40 Court Street, Boston.

Masonry acoustical materials (AKOUSTOLITH Tile and AKOUSTOLITH Plaster) and Timber Arch Construction. Brochure, 14 pages, 8½ x 11 inches. Illustrated.

TILE, STRUCTURAL CLAY

Natco Vitritile Bulletin No. 164. 40 pp., 8½ x 11 ins. Illustrated. Shows color charts, sizes and shapes, actual installations, etc.

Natco Header Backer Tile Bulletin. 8½ x 11 ins. 4 pp. Illustrated.

Natco Unibacker Tile Bulletin. 8½ x 11 ins. 4 pp. Illustrated.

TILES

Vitocraft Tiles, Unglazed. Folder, 4 pp., 8½ x 11 ins. Illustrated. Details of patterns in full color. Ask for Form A-322.

Faience Tiles for Bathrooms. Folder, 49 pp., 8½ x 11 ins. Illustrated. Ask for Form A-303.

Flintcraft Files. Folder, 4 pp., 8½ x 11 ins. Illustrated. Machine-made floor or wall tile. Ask for Form A-306.

Hanley Quarry Tile. Folder. 4 pp., 5 x 8 ins. Illustrated.

TRUSSES

McKeown Bros. Company, 523 South Keeler Avenue, Chicago.

Truth in Architecture. Folder, 4 pp., 8½ x 11 ins. Illustrated. Deals with trusses of wood.

Factory Built Bowstring Trusses. Folder, 4 pp., 8½ x 11 ins. Illustrated. Timber Trusses. Folder, 4 pp., 8½ x 11 ins. Illustrated.

VALVES

C. A. Dunham Co., 450 East Ohio St., Chicago, Ill.

The Dunham Packless Radiator Valve. Brochure, 12 pp., 8 x 11 ins. Illustrated. Data on an important type of valve.

Jenkins Brothers, 80 White Street, New York.

Walworth Company, Statler Office Building, Boston, Mass.

Walworth Valves, Fittings and Tools, Catalog 88. Bound Volume giving data on a wide variety of details.

REQUEST FOR CATALOGS

To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to The Architectural Forum, 521 Fifth Avenue, New York.

Name .. Business

Address ...
HOW WIDTHS OF COLLINS & AIKMAN CARPET ARE JOINED, AND WHY THE RESULT IS seemingly seamless

Collins & Aikman Carpet is made in 54-inch widths. But when these widths are joined by the new process, they give a broadloom appearance—at the price of old-fashioned narrow-width carpet with stitched seams. The resilient back locks the pile firmly, and allows the carpet to form its own selvage when cut in any direction. No binding or stitching needed.

One of the outstanding features of Collins & Aikman Carpet is its ease of cleaning. The resilient back is dust-proof and moisture-proof. The Better Fabrics Testing Bureau has made a series of tests, and their recent report states: "The goods actually clean more easily than an all-fabric carpet because embedded soil cannot penetrate to the back interlacing yarns." For complete information about its advantages, write to Collins & Aikman Corporation, 25 Madison Ave., New York City.
SELECTED LIST OF MANUFACTURERS' PUBLICATIONS—Continued from page 42

VENETIAN BLINDS

VENTILATION

WATERPROOFING
Minwax Company, Inc., 11 West 42nd St., New York. Transparent Waterproofings for All Masonry Walls and Surfaces. Folder, 8 pp., 8½ x 11 ins. Illustrated.

Transparent Waterproofings for Masonry Walls. Folder, 4 pp., 8½ x 11 ins. Illustrated.

Data Sheet on Membrane Waterproofing. Folder, 4 pp., 8½ x 11 ins. Illustrated.

WEATHER STRIPS
Athey Company, 635 West 65th St., Chicago, Ill. The Only Weatherstrip with a Cloth to Metal Contact. Booklet, 16 pp., 8½ x 11 ins. Illustrated. Data on an important type of weather stripping.

WINDOW GLASS

WINDOWS

WOOD—See also Millwork

WOOD FINISH

REQUEST FOR CATALOGS
To get any of the catalogs described in this section, put down the title of the catalog desired, the name of the manufacturer and send coupon to THE ARCHITECTURAL FORUM, 521 Fifth Avenue, New York.

Name
Address
Business
And at Harvard

The eyes of the educational world are on the new Harvard Houses. In their dining halls and in more than eight hundred tutors' and students' rooms, Stedman Reinforced Rubber Floors have been chosen for their built-in beauty, long life, low maintenance costs, silence and comfort. Stedman Floors may be laid equally well in new or existing buildings. Send for architectural catalogue, with charts in full color.

STEDMAN RUBBER FLOORING COMPANY • South Braintree, Mass.

Stedman Reinforced* Rubber Tile

*REINFORCED: In the Stedman Process minute cotton filaments, uniting with the rubber under high pressure and heat, are responsible for its unusual resistance to wear and distortion, its lasting resiliency and smooth impervious surface - characterized by color veinings of great fineness and beauty.

Dunster House at Harvard University, Coolidge, Shepley, Bulfinch & Abbott, Architects. In the Dining Hall, shown below, the Stedman Rubber Floor is laid in rectangles of O.S. Red with interliners of Plain White.
THE ARCHITECTURAL FORUM

presents

this REFERENCE NUMBER on

“UNIVERSITY and COLLEGE BUILDINGS”

the second of four scheduled for the year 1931

Do you have the time and the facilities to conduct a nation-wide canvass on the problems of design, construction, and equipment on each of the types of buildings which your office handles?

THE ARCHITECTURAL FORUM DOES.

If you did have time, would you be able to obtain that information when you wanted it?

THE ARCHITECTURAL FORUM GIVES IT TO YOU.

Your file of reference material cannot be complete without THE ARCHITECTURAL FORUM REFERENCE NUMBERS. Each one is a concise, yet complete study of one type of building. There is no service of greater value. Separately, these REFERENCE NUMBERS (if not out of print) cost $3.00 each. You get FOUR of them each year with your regular subscription for $7.00, two years for $12.00. To be SURE of your copies, fill in the blank below.

THE ARCHITECTURAL FORUM
521 Fifth Avenue, New York City

Enclosed please find $7.00 for one year's subscription to THE ARCHITECTURAL FORUM ($12.00 for two years).

Name

Street Address
City and State

Please attach your card or letterhead.
20% more people bought Davey Tree Surgery Service in 1930 than in the previous year

In 1929 Davey Tree Surgeons served 22,368 clients, and in 1930 they served 26,848—in the far-flung territory from Boston to beyond Kansas City, between Montreal, Toronto and the Gulf.

In view of the general business conditions prevailing in the past year, is it not highly significant that so many more people bought Davey service than in the unusually prosperous year preceding?

It is the business of Davey Tree Surgeons to save trees when they can be saved. They are a unique group of men—more than 1000 of them—carefully selected for fitness, all Davey-trained and supervised and disciplined, educated scientifically in the Davey Institute of Tree Surgery, the only school of its kind in the world.

The Davey standard of professional service requires that no client's money shall be wasted on trees too far gone to save.

There are many border-line cases where there is a reasonable question about the chances of saving certain trees. Davey standards require that only first-aid treatment be given in an effort to build up the vitality in such cases, before a larger investment is made.

There are many starving trees encountered, and Davey standards require that such trees be properly fed and their vigor re-established before investing more of the client's money.

You can trust Davey Tree Surgeons. They follow definite rules of professional procedure and are held to it by regular supervision and strict organization discipline.

Branch offices maintained in the larger cities and permanent representatives in many other places. Write or wire our nearest representative or our home office in Kent, Ohio, for a free examination of your priceless trees without obligation on your part.

The Davey Tree Expert Co., Inc.
609 City Bank Bldg., Kent, Ohio

In Canada—Davey Tree Expert Company of Canada, Limited—Toronto and Montreal

There are no Davey Tree Surgeons except those in the employ of The Davey Tree Expert Company

DAVEY TREE SURGEONS
Save Floor Space and Building Costs in Colleges and Universities

Wilson Sectionfold Partitions enable a large gymnasium to be divided into two smaller ones—space economy. Inset shows doors folded back against the wall out of the way.

Whether for an appearance of great beauty or for utility alone, Wilson Sectionfold Partitions meet requirements for colleges and university buildings.

Wilson Sectionfold Partitions are carried on the floor, and not hung overhead, a superior and exclusive feature. They also operate in pairs and not in one large unwieldy unit. Rack for folding at head eliminates any possible risk of doors jamming or falling. No complicated mechanism—operation is "fool-proof." May be fitted with glass, if desired, or with blackboards. Doors may be placed anywhere in the partitions. May be installed in new or old buildings.

Write for Catalogue No. 3-F

The J. G. Wilson Corporation
11 East 38th Street New York
Box 1194, Norfolk, Va.
Offices in All Principal Cities

Save Money on a Complete Office Service...

The publishers of The Architectural Forum offer you the opportunity of securing collateral magazine service at greatly reduced cost.

GOOD FURNITURE AND DECORATION

The carrying out of interior decorating schemes in harmony with the general architectural design is increasingly coming within the realm of architectural practice. This magazine, a recognized authority in the decorative field, presents the best of current decorative work of both architects and professional decorators. In its pages are to be found indications of present and future style trends as well as informative articles relating to the various products entering into a decorative ensemble.

Annual Subscription Price $5.00.
In Combination with Architectural Forum $2.50.
Additional Postage to Canada $1.00.
Overseas $2.50.

HEATING AND VENTILATING

All architects desire to be informed on progress of developments affecting heating, ventilating, and air conditioning, whether the work is done by their own staffs or by consulting engineers.

HEATING AND VENTILATING is a professional magazine covering the field mentioned above. Edited by professional men of long experience in both design and installation it has been recognized for twenty-seven years as an authority. By it, was developed the Degree-Day Method of determining thermal requirements of heating load for any building anywhere, and predetermination of fuel consumption.

Annual Subscription Price $2.00.
In Combination with The Architectural Forum $1.00.
Additional Postage to Canada $1.00.
Overseas $2.00.

This saving of 50% is available only with new or renewal subscriptions to The Architectural Forum.

for
The Architectural Forum
$10.50 per year
Good Furniture and Decoration

$9.50 per year
Heating and Ventilating

$8.00 per year
The Architectural Forum

$8.00 per year
Good Furniture and Decoration

$8.00 per year
Heating and Ventilating

THE ARCHITECTURAL FORUM
521 Fifth Ave., New York

48
STAIR TREADS • • • • • •
THAT STAND UP UNDER DECADES OF ABRASION

Alberene Stone (Virginia quarried soapstone) retains its beautiful blue-grey color—does not stain—is easily swept or mopped clean. It never becomes slippery—gives just the right bite to the ball of the foot. There are no maintenance or repair costs on stair treads of specially selected hard Alberene Stone, which is important since university buildings are built to enjoy a long span of useful years.

SHOWERS COMPARTMENTS • • •
THAT REMAIN SOUND, CLEAN, SANITARY

The major requirement for shower compartments is sanitation. Alberene Stone, because of its close-grain density is practically non-absorbent, which assures not only ease of cleaning and sanitation, but long life. Alberene Stone is extremely tough—even very thin slabs can withstand severe and sudden impacts without danger of fracturing.

Alberene Stone Company, 153 West 23rd Street, New York.
Branches: Boston; Chicago; Newark, N. J.; Washington, D. C.; Cleveland; Pittsburgh; Richmond; Philadelphia; Rochester. Quarries and Mills at Schuyler, Va.

ALBERENE STONE
STAIR TREADS AND SHOWER COMPARTMENTS

SOAPSTONE’S CONTRIBUTION TO
Science • History • Architecture

CHEMICAL LABORATORIES

Alberene, Table Tops, Shelves, Sinks and Fence Posts, Aluminum Research Laboratories, New Kensington, Pa.

Over 90% of the important chemical laboratories erected during the last 50 years have used Alberene for the laboratory table tops. Its structural soundness and all-around resiliency qualities have established it as the standard material for this use.

INDEPENDENCE HALL

Detail of Soapstone Quoins and Water Table, Independence Hall

The use of soapstone for exterior trim is not a new development. It is, rather, a revival of interest in this natural stone whose heritage in America goes back to the early 1700’s. Independence Hall erected in 1736, for which soapstone was used as trim for quoins, coping, water table, window heads and sills, etc., is a monument not only to the age and weather-resisting qualities of soapstone, but also to a historical record of the use of soapstone for decoration and color contrast.

SPANDRELS FOR
MODERN BUILDINGS

City Hall, Buffalo, N. Y.; Dietel and Waddell, and Sulliven W. Jones, Architects; Alberene Spandrels used.

The exteriors of a large percentage of the outstanding office, public and commercial buildings built during the last five years have been of the pier and spandrel type; and in most cases the spandrels, for structural or economical reasons have been a different material from the masonry pier, and for the sake of beauty and design have been of a contrasting color.

Its pleasing color, structural soundness, and durability establish the suitability of Alberene Stone for spandrels.

Other uses of Alberene Stone are explained in the brochure “Architectural Alberene” which contains actual color reproductions showing contrasts produced by using Alberene in conjunction with other stones. This book will be sent to any architect requesting it, together with samples of Alberene Stone.
REVIEWS OF MANUFACTURERS' PUBLICATIONS

UNITED STATES RADIATOR CORPORATION, Detroit, Mich. "Capitol Cast-Iron Concealed Radiators."

This 32-page catalogue thoroughly explains the development of concealed radiation and the use of the cast-iron radiator with the one-pipe, two-pipe, vapor or vacuum steam system and also with the open tank, closed system or forced circulation system of heating with hot water. Illustrations, charts, data, and detail sheets showing the different shapes and sizes of the radiators and suggesting methods of enclosing them are all included and make the catalogue of real value. The company will gladly furnish copies of the catalogue upon request.

MAURICE A. KNIGHT, Akron, Ohio. Knight-ware Acid Proof Laboratory Equipment.

This 48-page catalogue describes the various products which are manufactured by this company and lists their uses under the following headings: laboratory sinks, waste and drainage, ventilating pipes and fittings, sumps and dilution basins, and miscellaneous. The catalogue is profusely illustrated with photographs and details of installations applicable to educational, hospital and commercial laboratories.

KLEIGEL BROS., UNIVERSAL ELECTRIC STAGE LIGHTING CO., New York, N. Y.

"Kleigel Theatrical, Decorative, Spectacular Lighting," is the title given to the first published section of a new catalogue which contains valuable information on permanently installed lighting equipment. Portable lighting apparatus, stage and scenic effects, accessories and appliances used in conjunction with apparatus, electrical fittings, parts and supplies and general data are now in the course of preparation and will be forwarded to users of the new catalogue when published. The completed publication will be a valuable, timely and informative reference on every phase of stage lighting.

MINNEAPOLIS HONEYWELL REGULATOR COMPANY, Minneapolis, Minn.

A four-page leaflet describes the Modustat, a self-contained automatic room temperature control valve, for individual radiators. The use of this appliance fosters economy of steam consumption and permits the maintenance of a steady room temperature at any point desired between 80 and 40 degrees. A paragraph on the design of the mechanism and others descriptive of its construction and application add to an already interesting description of the product.

WESTINGHOUSE ELECTRIC AND MANUFACTURING CO., East Pittsburgh, Pa.

"Ways of Illuminating Football Fields," is the title of an eight-page folder which describes the latest approved methods of floodlighting for this purpose. It is comprehensively illustrated with photographs and drawings. Because artificial lighting has begu1n to play an important part in the fields of scholastic, collegiate and professional sport, the publication should be greeted with widespread interest.

FEDERAL-AMERICAN CEMENT TILE CO., Chicago, Ill.

Featherweight Concrete Insulating Roof Slabs. A comparatively new development in concrete construction, are fireproof, lightweight; of value as insulation, and supply a surface when desired. They are permanent and require no maintenance. This 48-page catalogue contains detail drawings, specifications and essential data regarding the use of the cast-iron slabs, wall and floor slabs. The text explains the composition and methods of manufacture of the various products and includes many interesting photographs.

DURABLET STEEL LOCKER CO., Aurora, Ill. Steel Storage Equipment for the Modern School Shop.

The Durabelt Steel Locker Company has developed a steel storage cabinet with interchangeable shelves, partitions, drawers, boxes, trays, sacks, bins, etc., which will allow the user to arrange the interior of the cabinet to suit his individual needs. The efficiency and advantages of this equipment are outlined in their booklet which may be obtained on request.

F. B. STURTEVANT COMPANY, Boston, Mass.

A new bulletin, No. 385, describes the new line of Sturtevant Propeller Fans. They are made of welded pressed steel and the motors are of the ball bearing type. This fan wheel is a new design which has proved more effective than those used in the past. The bulletin contains photographic illustrations, specifications and prices, dimensions and other data for different types of installations. Another catalogue, No. 377, describes and illustrates in detail their new flexible Unit Ventilator, and its function in helping to solve present day ventilating problems. With this new piece of apparatus it is possible when desired to admit 50 per cent out-of-door air and recirculate 50 per cent of the indoor air. This arrangement obviates any necessity of opening the windows of the school rooms, and also completely dissipates any objectionable odors that may tend to accumulate in the modern school room or any building where people congregate in large numbers.

SCOVILL MANUFACTURING COMPANY, Waterville, Conn.

A new 48-page catalogue on Scovill Flush Valves facilitates quick reference and selection of equipment by architects and others. The left-hand pages of the catalogue show complete installations, which display the usual type of flush valve and give the roughing in dimension for each. The text describes the equipment in full. The right-hand pages list complete price tables for the installations shown on the opposite pages. The catalogue also contains an accessory section descriptive of miscellaneous articles illustrated with cross sectional views, to aid in ordering parts.

THERMAX CORPORATION, Chicago, Ill.

Thermax is a modern, light weight, structurally strong building material used for fireproofing, heat and cold insulation, and sound deadening. It is, in effect, a building board or slab constructed of a rock and wood combination, and is suitable for use in practically every type of building. These and other particulars are enlarged upon in a leaflet illustrated with photographs and details, which is available upon request.

AMERICAN SHEET & TIN PLATE CO., Frick Building, Pittsburgh. "Stainless and Heat Resisting Steels."

The Subsidiary Manufacturing Companies of the United States Steel Corporation, of which American Sheet and Tin Plate Co. is a member, are now producing five different types of straight chromium steels and chromium-nickel low carbon steels. The physical properties of and recommended practice for each are given in this booklet, which tells its story in a simple, straightforward manner. What can be done as well as what cannot be done with the various metals is recounted.

The five different alloys with which the booklet deals are the familiar 18-8, and the 25-12 chromium-nickel steels, and the straight 17, 12, and 27 chromium steels. Naturally, no one alloy of any kind is equally well adapted to all purposes. But there is a metal for every use. How the chrome-steels and chrome-nickel-steels can be used most effectively is a subject about which architects are eager to learn all they can. This booklet will help.
Another School Problem Solved

THE UNUSUAL attractiveness of the corridors of the Thomas Jefferson High School is, in a large measure, due to the wainscoting of Cardiff Green Marble.

Not only does Cardiff Green Marble create beauty but it solves an equally important problem. In the corridors of a school the walls always receive a great deal of abuse. Often marred by disfiguring scratches and finger marks they soon present an untidy appearance.

The Cardiff Green Marble wainscoting throughout the corridors of the Thomas Jefferson High School eliminates this evil.

For interior or exterior installations, Cardiff Green Marble can be specified with every confidence as to durability and uniformity of color. Write us for facts!

THE CARDIFF GREEN MARBLE COMPANY, Inc.

Quarry Office:
Cardiff
Maryland

Sales Office:
350 Madison Ave.
New York
REVIEWS OF MANUFACTURERS' PUBLICATIONS

E. L. BRUCE COMPANY, Memphis, Tenn. Plank Floors.

"Historic floors for the new environment" suggests the working principles of the E. L. Bruce Company. Their catalogue, A. I. A. file number 19-E, is an exposition on the transition of Renaissance and early American floor designs into patterns suitable for present day needs. The catalogue is profusely illustrated, giving an idea of the beauty of these floors and their capacity for harmonizing with many different types of rooms. Mention is also made of CELLized floor planks which are chemically processed to prevent expansion and shrinkage. Architects interested in this type of flooring will find the catalogue invaluable.

These fixtures, for indirect illumination, are described in a clear, concise manner in this folder. Information as to size, proper spacing and cost is contained therein, also a few paragraphs on the development in America of a desire for higher and higher intensity of illumination and what that development portends. Its probable influence on design in the near future should prove interesting to architects.

AMERICAN SEATING COMPANY, Chicago, Ill. School Furniture.

The American Seating Company's catalogue number 262 on school furniture briefly outlines the conclusions resulting from the activities of their research department. It describes various types of desks and chairs which in the opinion of experienced educators and other school authorities are best suited to present day needs. Steel desks are featured in this catalogue whose contents will prove valuable indeed to architects confronted with seating problems. Fifteen other pamphlets have been prepared which cover additional problems in seating. All of them are available upon request.

THE AMERICAN BRASS COMPANY, Waterbury, Conn. Brass Pipe.

A. I. A. file catalogue number 29-B-4 has been issued to provide the architectural profession with concise, up-to-date information on Anaconda Pipe for water distribution and service lines. The data contained therein supersedes that of "Brass Pipe for Water Service," previously published. It contains a discussion of the advantages of permanent plumbing, an outline of a ten year corrosion test on various brass pipe alloys, recommended specifications and installation suggestions. The catalogue is truly educational.

PORTLAND CEMENT ASSOCIATION, Chicago, Ill. Cement.

Several years ago the Portland Cement Association published a book, The Design and Control of Concrete Mixtures. Since that time 420,000 copies have been distributed, but due to many requests for a pocket size edition which could be passed on to the job foreman, the association has brought out its Quality Concrete Manual. This little volume emphasizes the factors that produce watertight and weather-proof as well as strong concrete. Factors controlling concrete quality are simple, but must be understood before they can be used. The small job as well as the large one may benefit from the use of this information as no special equipment is needed in its use.

AMERICAN SEATING CO., Chicago, Ill.

A. I. A. catalogue 35-A-42 is an extremely interesting group of photographs of carved wood church appointments designed by architects throughout the country and executed by the American Seating Company. Ecclesiastical designers and architects will find in it many striking examples of contemporary wood carving. The folder contains fifty-three loose plates, each one a possible inspiration.

INDIANA LIMESTONE CO., Bedford, Ind. Indiana Limestone.

"HCO News," a publication issued monthly and distributed to twenty thousand architects, contractors and business men, is a pictorial story of limestone in which only worth-while buildings are illustrated. It is an attempt to create a current encyclopedia of limestone buildings for the architect. The copies reviewed for this column seem to state that the "attempt" is already an established fact. Done in the manner of the Sunday rotogravure section of the morning papers, "HCO News" contains a series of striking photostatic studies of definite worth.

This appliance, attached to any furnace, enables the user to reduce needless waste of fuel to a minimum. When the air supply is properly regulated the amount of carbon dioxide contained in the stack gases will be at the maximum. In other words, all of the fuel will be utilized rather than "blowing up" in the flue. The instrument permits such regulation and a resulting decrease in maintenance cost. The catalogue describes fully the CO2 meter and its operation.

This recently issued bulletin describes the "Filticooler," a new machine for washing, filtering, cooling, humidifying and dehumidifying air. The Filticooler was designed to occupy considerably less space than the ordinary unit and at the same time handle an equal amount of air at the same water pressure and with equal air velocities. The booklet contains sketches showing the construction of this machine and tables listing the resistance to air flow, physical data and performance of a standard unit. Any architect interested in reducing waste space will find this booklet worthy of his attention.

THE KELSO COMPANY, Houston, Texas. Plumbing Fixtures.

The Kelso Company's circular describes an entirely new closet bowl that will neither overflow nor become stopped up and which can be so regulated that it becomes absolutely silent. It is a flush valve type and unlike others, water from a small pipe at low pressure is sufficient to operate it. A method of quick calculation of correct water pipe sizes in a simplified form is also presented in this catalogue in conjunction with a discussion of "back siphonage" and how to prevent it. The circular has been approved as having been informative by leading architects and engineers and is available to others who are interested.

LEAD INDUSTRIES ASSOCIATION, 420 Lexington Ave., New York, Lead.

The Lead Industries Association, in its booklet of January, 1931, describes in an interesting manner some of the many ways that lead is used in building construction. Lead pipe, gutters, flashing, paint, roofing, waterproofing, insulation against x-rays in hospitals, lead ornament, etc., are all dealt with in their story of one of the most widely used metals.

KOHLER COMPANY, Kohler, Wis. Plumbing Fixtures.

A new kitchen sink has been developed by the Kohler Company embodying many innovations of interest to the architect. It is illustrated and described in the new and revised Kohler catalogue sheets effective January first of this year. In addition are many other new designs for various fixtures which will no doubt prove popular.
In this Methodist Episcopal Church at Hanson Place, in Brooklyn, New York, cooperation of the local electric company with the architects resulted in an electrical installation that assures the church against electrical obsolescence.

For information about trends in lighting standards and about adequate wiring, call on the lighting bureau of your local electric service company, or write direct.

NATIONAL ELECTRIC LIGHT ASSOCIATION
420 LEXINGTON AVENUE.... NEW YORK, NEW YORK

DISAPPEARING Footlights

WHEN not needed they close down flush with the stage floor, leaving an unobstructed platform—very serviceable where the stage is used sometimes for entertainments and at other times for speakers and lecturers as in school auditoriums, concert halls, assembly rooms, community centers, and the like.

Furnished completely assembled and wired in standard five-foot lengths, ready for installations, each section fitted with disconnecting switches, eliminating all possibility of lights being left on with footlight closed. Details of the several different types available, forwarded on request.

OTHER KLEIGL LIGHTING SPECIALTIES

Footlights Exit Signs Floor Packs Floodlights Borderlights Aisle Lights Wall Packs Spotlights Cove Lights Step Lights Panel Boards Music Stands Color Lighting Auto-Prills Dimmers Scene Stands

Write for detailed descriptions—or for information about their use in Yale, Harvard, Princeton and other leading Universities.

KLEIGL BROS
UNIVERSAL ELECTRIC STAGE LIGHTING CO., INC.
ESTABLISHED 1896
THEATRICAL • DECORATIVE • SPECTACULAR LIGHTING
321 WEST 50TH STREET
NEW YORK, N.Y.

OUR NEW CATALOG PORTFOLIO HAS BEEN MAILED

IF YOUR COPY HAS NOT ARRIVED, SEND US YOUR NAME AND ADDRESS

CONTAINS FULL DESCRIPTION OF OUR SEALAIR WINDOWS, DOORS, ARCHITECTURAL CASTINGS AND STORE FRONTS OF RUSTLESS METAL

THE KAWNEER COMPANY
NILES, MICHIGAN
AND SUBSIDIARIES

ARCHITECTS DESIGN «» KAWNEER BUILDS
INDEX TO ADVERTISING ANNOUNCEMENTS

Part 1—Architectural Design

<table>
<thead>
<tr>
<th>Company/Association</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberene Stone Company</td>
<td>49</td>
</tr>
<tr>
<td>Ambler Asbestos Shingle & Sheathing Company</td>
<td>35</td>
</tr>
<tr>
<td>American Brass Company, The</td>
<td>7</td>
</tr>
<tr>
<td>American Car and Foundry Company</td>
<td>27</td>
</tr>
<tr>
<td>Armstrong Cork Co.</td>
<td>37</td>
</tr>
<tr>
<td>Cardiff Green Marble Company, Inc.</td>
<td>51</td>
</tr>
<tr>
<td>CELLized Oak Flooring, Inc.</td>
<td>39</td>
</tr>
<tr>
<td>Celotex Company, The</td>
<td>19</td>
</tr>
<tr>
<td>Circle A Products Corporation</td>
<td>14</td>
</tr>
<tr>
<td>Collins & Aikman Corporation</td>
<td>43</td>
</tr>
<tr>
<td>Congoleum-Nairi, Inc.</td>
<td>17</td>
</tr>
<tr>
<td>Crab Orchard Stone Co.</td>
<td>13</td>
</tr>
<tr>
<td>Cutler Mail Chute Company</td>
<td>3</td>
</tr>
<tr>
<td>Davey Tree Expert Co., Inc., The</td>
<td>47</td>
</tr>
<tr>
<td>Fiske Iron Works, J. W.</td>
<td>6</td>
</tr>
<tr>
<td>Formica Insulation Company, The</td>
<td>41</td>
</tr>
<tr>
<td>Georgia Marble Company, The</td>
<td>9</td>
</tr>
<tr>
<td>Goodyear</td>
<td>33</td>
</tr>
<tr>
<td>Hanley Company, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Hauserman Co., The E. F.</td>
<td>20</td>
</tr>
<tr>
<td>Higgins & Co., Chas. M.</td>
<td>51</td>
</tr>
<tr>
<td>Highland Iron and Steel Company, The</td>
<td>8</td>
</tr>
<tr>
<td>Hood Company, B. Mifflin</td>
<td>4</td>
</tr>
<tr>
<td>Indiana Limestone Company</td>
<td>5</td>
</tr>
<tr>
<td>Johns-Manville</td>
<td>12</td>
</tr>
<tr>
<td>Johnson & Faulkner</td>
<td>30</td>
</tr>
<tr>
<td>Kawneer Company, The</td>
<td>33</td>
</tr>
<tr>
<td>Kleis & Co., Inc., Henry</td>
<td>24</td>
</tr>
<tr>
<td>Kling Bros.</td>
<td>53</td>
</tr>
<tr>
<td>Kokomo Opalescent Glass Co., Third Cover</td>
<td>48</td>
</tr>
<tr>
<td>Lupton's Sons Company, David</td>
<td>10, 11</td>
</tr>
<tr>
<td>Mills Company, The</td>
<td>Second Cover</td>
</tr>
<tr>
<td>National Electric Light Association</td>
<td>53</td>
</tr>
<tr>
<td>National Lead Company</td>
<td>56</td>
</tr>
<tr>
<td>Pittsburgh Plate Glass Co.</td>
<td>53</td>
</tr>
<tr>
<td>Rambusch</td>
<td>51</td>
</tr>
<tr>
<td>Stedman Rubber Flooring Company</td>
<td>45</td>
</tr>
<tr>
<td>Truscon Steel Company</td>
<td>2</td>
</tr>
<tr>
<td>Westinghouse Electric Elevator Company</td>
<td>Fourth Cover</td>
</tr>
<tr>
<td>Wilson Corporation, The J. G.</td>
<td>48</td>
</tr>
<tr>
<td>Wood-Mosaic Co., Inc.</td>
<td>28, 29</td>
</tr>
<tr>
<td>Yale & Towne Mfg. Co., The</td>
<td>16</td>
</tr>
</tbody>
</table>

Part 2—Architectural Engineering and Business

<table>
<thead>
<tr>
<th>Company/Association</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Electric Company, Frank</td>
<td>102</td>
</tr>
<tr>
<td>American Brass Company, The</td>
<td>93</td>
</tr>
<tr>
<td>American Laundry Machinery Co., The</td>
<td>86</td>
</tr>
<tr>
<td>American Sheet and Tin Plate Company</td>
<td>73, 74</td>
</tr>
<tr>
<td>American Steel and Wire Company</td>
<td>73, 74</td>
</tr>
<tr>
<td>American Telephone & Telegraph Co.</td>
<td>65</td>
</tr>
<tr>
<td>American Trade Association Executives</td>
<td>98</td>
</tr>
<tr>
<td>Armstrong Cork & Insulation Co.</td>
<td>90, 111</td>
</tr>
<tr>
<td>Barber Asphalt Company, The</td>
<td>122</td>
</tr>
<tr>
<td>Bethlehem Steel Company</td>
<td>128</td>
</tr>
<tr>
<td>Byers Company, A. M.</td>
<td>98</td>
</tr>
<tr>
<td>Carbonsdale Machine Co., The</td>
<td>138</td>
</tr>
<tr>
<td>Carey Company, The Philip</td>
<td>60</td>
</tr>
<tr>
<td>Carnegie Steel Company, The</td>
<td>73, 74, 127</td>
</tr>
<tr>
<td>Carter Blausend Flooring Company</td>
<td>102</td>
</tr>
<tr>
<td>Century Electric Company, The</td>
<td>101</td>
</tr>
<tr>
<td>Chow & Sons, James B.</td>
<td>94</td>
</tr>
<tr>
<td>D. G. C. Trap & Valve Co.</td>
<td>75</td>
</tr>
<tr>
<td>Diebold Safe and Lock Company</td>
<td>78</td>
</tr>
<tr>
<td>Douglas Fir Plywood Manufacturers</td>
<td>123</td>
</tr>
<tr>
<td>Electric Storage Battery Company, The</td>
<td>67</td>
</tr>
<tr>
<td>Elevator Supplies Company, The</td>
<td>79</td>
</tr>
<tr>
<td>Fulton Sylphon Co., The</td>
<td>115</td>
</tr>
<tr>
<td>General Electric Company, The</td>
<td>87</td>
</tr>
<tr>
<td>G. & C. Atlas Systems, Inc.</td>
<td>62</td>
</tr>
<tr>
<td>Grinnell Company, Inc.</td>
<td>80, 81</td>
</tr>
<tr>
<td>Hamlin, Irving</td>
<td>104</td>
</tr>
<tr>
<td>Heating & Ventilating</td>
<td>76</td>
</tr>
<tr>
<td>Heggie-Simplex Boiler Co.</td>
<td>88</td>
</tr>
<tr>
<td>Hoffman & Billings Mfg. Co.</td>
<td>98</td>
</tr>
<tr>
<td>Hoffman Specialty Company, Inc.</td>
<td>126</td>
</tr>
<tr>
<td>Illinois Steel Company, The</td>
<td>73, 74, 125</td>
</tr>
<tr>
<td>Illinois Stecker Company, Inc.</td>
<td>133</td>
</tr>
<tr>
<td>International Nickel Company, The</td>
<td>64, 99, 135</td>
</tr>
<tr>
<td>Jenkins Bros.</td>
<td>59</td>
</tr>
<tr>
<td>Johnson Service Company</td>
<td>129</td>
</tr>
<tr>
<td>Jones & Laughlin Steel Corporation</td>
<td>71</td>
</tr>
<tr>
<td>Josam Manufacturing Company</td>
<td>68, 69</td>
</tr>
<tr>
<td>Kalman Steel Company</td>
<td>72</td>
</tr>
<tr>
<td>Kewanee Boiler Corporation</td>
<td>122</td>
</tr>
<tr>
<td>Kimball Bros., Co.</td>
<td>100</td>
</tr>
<tr>
<td>Kinney Manufacturing Co., The</td>
<td>104</td>
</tr>
<tr>
<td>Knight, Maurice A.</td>
<td>96</td>
</tr>
<tr>
<td>Lincoln Electric Co., The</td>
<td>Second Cover</td>
</tr>
<tr>
<td>McGraw Radiator Corporation</td>
<td>Third Cover</td>
</tr>
<tr>
<td>Master Builders Co., The</td>
<td>84</td>
</tr>
<tr>
<td>Medusa Portland Cement Company</td>
<td>66</td>
</tr>
<tr>
<td>Minneapolis-Honeywell Regulator Co.</td>
<td>133</td>
</tr>
<tr>
<td>Nash Engineering Co., The</td>
<td>109</td>
</tr>
<tr>
<td>National Steel Fabric Co.</td>
<td>119</td>
</tr>
<tr>
<td>National Tube Company</td>
<td>73, 74, 95</td>
</tr>
<tr>
<td>Otis Elevator Company</td>
<td>82</td>
</tr>
<tr>
<td>Rail Steel Bar Association</td>
<td>137</td>
</tr>
<tr>
<td>Raymond Concrete Pipe Company</td>
<td>57</td>
</tr>
<tr>
<td>Republic Steel Corporation</td>
<td>112</td>
</tr>
<tr>
<td>Revere Copper and Brass, Inc. Fourth Cover</td>
<td>105</td>
</tr>
<tr>
<td>Sarco Co., Inc.</td>
<td>130</td>
</tr>
<tr>
<td>Servel Sales, Inc.</td>
<td>83</td>
</tr>
<tr>
<td>Spencer Heater Company</td>
<td>124</td>
</tr>
<tr>
<td>Spencer Turbine Co., The</td>
<td>103</td>
</tr>
<tr>
<td>Troy Laundry Machinery Co., Inc.</td>
<td>105</td>
</tr>
<tr>
<td>Tube Turnis, Inc.</td>
<td>61</td>
</tr>
<tr>
<td>United Engineers & Constructors</td>
<td>97</td>
</tr>
<tr>
<td>Vogel Co., Joseph A.</td>
<td>58</td>
</tr>
<tr>
<td>Walkabout Company</td>
<td>63</td>
</tr>
<tr>
<td>Warren Webster & Company</td>
<td>77</td>
</tr>
<tr>
<td>Westco Pump Corporation</td>
<td>109</td>
</tr>
<tr>
<td>Westinghouse Electric & Mfg. Co.</td>
<td>106</td>
</tr>
<tr>
<td>Westinghouse Traction Brake Co.</td>
<td>117</td>
</tr>
<tr>
<td>Wood Engineering Co., Gar</td>
<td>121</td>
</tr>
<tr>
<td>York Ice Machinery Corporation</td>
<td>70</td>
</tr>
</tbody>
</table>
You'll have NO TROUBLE getting PENNVERNON

PENNVERNON Window Glass is unique—in two ways. First, because of its quality. Due to our new process by which Pennvernon is manufactured, it has a new flatness, clearness of vision and brilliancy. A remarkable freedom from flaws and defects. And yet it costs no more than ordinary window glass.

Second, Pennvernon is unique in that it is more readily available than any other window glass. Manufactured by the Pittsburgh Plate Glass Company, Pennvernon is distributed through the same vast warehouse system that handles the other famous products of this company. Sixty-five warehouses have Pennvernon Window Glass ready for you—a warehouse in every principal city and each fully equipped to render prompt, satisfactory service. In addition, this flatter, clearer glass is available at all leading glass jobbers.

Get to know Pennvernon. Write us for samples—large or small—and examine them. We will send you, too, upon request, our special booklet on Pennvernon manufacture. Address Pittsburgh Plate Glass Co., Grant Building, Pittsburgh, Pa.
The Home of Oklahoma's Historical Society

Add to the list of important buildings throughout the country on which Dutch Boy White-Lead is used, this stately, new $500,000 home of the Oklahoma Historical Society.

No matter where you may be... in large city or small...there you are sure to find Dutch Boy jobs...jobs that prove how good paint can really be.

Paint for interiors must be more than good-looking paint. It must be long-wearing and washable as well. Paint made with Dutch Boy White-Lead and flatting oil meets every requirement of beauty and durability and, in addition, it is thoroughly washable.

White-lead can be used for painting every type of surface—wood, plaster, wall board, fabric, masonry or metal. It can also be used to obtain flat or eggshell finishes...undercoatings for enamels...mottled and figured effects...and to produce the plastic paint that gives low-relief textures. Paint made with Dutch Boy White-Lead and flatting oil can be tinted to any desired color.

From the owner's standpoint, this adaptability means economy. To the architect, it means a saving in time and trouble. To the painter, it is a sure means of producing quality jobs.

The National Lead Co. maintains a Department of Color Research and Decoration to assist architects and others with painting and decorating problems. Service is free. Address this department care of nearest office.

DUTCH BOY WHITE-LEAD
NATIONAL LEAD COMPANY
New York, 111 Broadway; Buffalo, 116 Oak Street; Chicago, 900 W. 18th Street; Cincinnati, 659 Freeman Avenue; Cleveland, 820 W. Superior Avenue; St. Louis, 722 Chestnut Street; San Francisco, 2240 24th Street; Boston, National-Boston Lead Co., 800 Albany Street; Pittsburgh, National Lead & Oil Co. of Pa., 316 Fourth Avenue; Philadelphia, John T. Lewis & Bros. Co., Widener Building.

...again demonstrating DUTCH BOY'S advantages