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PREFACE.

SINCE the publication of the first edition of this work, six subsequent

editions have been issued
; but, although from time to time many additions

to its pages and revisions of its subject-matter have been made, still its sev-

eral issues have always been printed substantially from the original stereotype

plates. In this edition, however, the book has been extensively remodelled

and expanded, the greater portion of it rewritten, and the whole put in a new

dress by being newly set up in type uniform in style with that of the late

author's recent work, Transverse Strains. To this revision a labor of love to

him he devoted all the time he could spare from his other pressing engage-

ments for a year or more, and by close and arduous application brought the

book to a successful termination, notwithstanding the engrossing nature of

his customary business avocations. Although essentially an elementary work,

and intended originally for a class of minds not generally favored with oppor-

tunities for securing a very extended form of education, either in the store of*
<r * N x* N:

information acquired or in the discipline of mind which culture confers, still

it has been his aim to embody in its pages so complete and exhaustive a treat-

ment of the various subjects discussed, and so practical and useful a collection

of data and the rules governing their application, as to make it also not un-

worthy the attention of those who have been more highly favored in that

respect.

In all the various trades connected with building it is the intelligent

workman that commands the greatest respect, and who receives in all cases

the highest remuneration. As apprentice, journeyman, and master-builder,

his course is upward and onward, and success crowns his efforts in all that he

undertakes. There is a kind of freemasonry in the very air that surrounds

the skilful, intelligent man, that gives him a pass at once into the appreciation

and recognition of all those whose regard is valuable. We admire and respect

the plodding toil of the honest, patient laborer, whose humble task may tax

his muscles though not his mind, but we yield a deeper homage to the skilful

hand and tutored eye that accomplish wonders in art and science through per-

severance in aspiring studies. It was to excite in the minds of workmen like

these an ambition to excel in their calling, and to point out to them the surest

path to -that consummation, that the preparation of this volume was under-

taken
;
that all its tendencies are in that direction, and that it cannot well fail
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of its purpose when judiciously used, must be the conviction of all who will

take the trouble to examine its pages.

In the first part of the book matters more particularly relating to building

are treated of. The first section is in the nature of an introduction, serving

by its historical references to excite an interest in the general subject, while

in the second are presented the methods of erecting edifices in accordance

with the acknowledged principles of sound construction. In the remaining

sections of Part I. the several well-defined branches of house-building, as

stairs, doors and windows, etc., are illustrated and explained. In the second

part the more useful rules and simple problems of mathematics are reduced

to an easily acquired form, and adapted to the necessities of the ordinary

workman. By studying the latter, the young mechanic may not only improve

and strengthen his mind, but grow more self-reliant daily, demonstrating in

his own experience that scientific knowledge gives power. By carefully

studying this part of the book he will see how easy it is to acquire the knowl-

edge of solving problems by signs and symbols, commonly called Algebra

(although looked upon by the uninitiated as almost incomprehensible), and

thus find it easy to understand all the illustrations of the various subjects

wherein those condensed forms of expression are used. Useful problems in

geometry, described in
simple^ language,

and hints upon the subject of draw-

ing and shading, are also to be found in Part II. A glossary of architectural

terms and many useful tables are provided in the Appendix, and finally, an

Index is added to aid in referring to special subjects. The full-plate illustra-

tions are inserted to make it attractive to the general reader, and at the same

time to serve as explanatory of the historical portion of the volume.

It will not be denied that the class of information herein furnished is one

of the most instructive and useful that can.be presented to the practical mind

of a workingman, or to any mind engaged in mechanical pursuits. The im-

press stamped upon it by the author's peculiar line of study is not to be

effaced, but this has given it characteristics of originality and strength not

to be found in a mere compilation.

THE EDITOR.

NEW YORK, 31 Pine Street,

January 6, 1880.
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PART I.

SECTION L ARCHITECTURE.

ART. I. Building Defined. Building" and Architecture

are technical terms by some thought to be synonymous ;

but there is a distinction. Architecture has been defined to

be "the art of building;" but more correctly it is "the

art of designing and constructing buildings, in accordance

with such principles as constitute stability, utility, and

beauty." The literal signification of the Greek word arclii-

tecton, from which the word architect is derived, is chief-

carpenter ;
and the architect who designs and builds well

may truly be considered the chief builder. Of the three

classes into which architecture has >een divided viz., Civil,

Military, and Naval the first is that which refers to the

construction of edifices known as dwellings, churches, and

other public buildings, bridges, etc., for the accommodation

of civilized man and is the subject of the remarks which

follow. .

2. Antique Buildings; Tower of Babel. Building is

one of the most ancient of the arts : the Scriptures inform

us of its existence at a very early period. Cain, the son of

Adam, " builded a city, and called the name of the city

after the name of his son, Enoch ;" but of the peculiar style

or manner of building we are not informed. It is presumed
that it was not remarkable for beauty, but that utility and

perhaps stability were its characteristics. Soon after the

deluge that memorable event, which removed from ex-

istence all traces of the works of man the Tower of Babel
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was commenced. This was a work of such magnitude that

the gathering of the materials, according to some writers,

occupied three years; the period from its commencement

until the work was abandoned was twenty-two years ;
and

the bricks were like blocks of stone, being twenty feet long,

fifteen broad, and seven thick. Learned men have given it

as their opinion that the tower in the temple of Belus at

Babylon was the same as that which in the Scriptures is

called the Tower of Babel. The tower of the temple of

Belus was square at its base, each side measuring one

furlong, and consequently half a mile in circumference. Its

form was that of a pyramid, and its height was 660 feet. It

had a winding passage on the outside from the base to the

summit, which was wide enough for two carriages.

3. Ancient Cities and Monuments. Historical accounts

of ancient cities, such as Babylon, Palmyra, and Nineveh of

the Assyrians ; Sidon, Tyre, Aradus, and Serepta of the

Phoenicians; and Jerusalem, with its splendid temple, of

the Israelites show that architecture among them had

made great advances. Ancient monuments of the art are

found also among other nations
;
the subterraneous temples

of the Hindoos upon the islands Elephanta and Salsetta ;

the ruins of Persepolis in Persia
; pyramids, obelisks, tem-

ples, palaces, and sepulchres in Egypt all prove that the

architects of those early times were possessed of skill and

judgment highly cultivated. The principal characteristics

of their works are gigantic dimensions, immovable solidity,

and, in some instances, harmonious splendor. The extra-

ordinary size of some is illustrated in the pyramids of Egypt.
The largest of these stands not far from the city of Cairo :

its base, which is square, covers about ir acres, and its

height is nearly 500 feet. The stones of which it is built

are immense the smallest being full thirty feet long.

4. Architecture in Greece. Among the Greeks, archi-

tecture was cultivated as a fine art. Dignity and grace
were added to stability and magnificence. In the Doric

order, their first style of building, this is fully exemplified.

Phidias, Ictinus, and Calicrates are spoken of as masters in
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the art at this period : the encouragement and support of

Pericles stimulated them to a noble emulation. The beauti-

ful temple of Minerva, called the Parthenon, erected upon
the acropolis of Athens, the Propyleum, the Odeum, and

others, were lasting monuments of their success. The Ionic

and Corinthian orders were added to the Doric, and many
magnificent edifices arose. These exemplified, in their

chaste proportions, the elegant refinement of Grecian taste.

Improvement in Grecian architecture continued to advance
until perfection seems to have been attained. The speci-
mens which have been partially preserved exhibit a com-
bination of elegant proportion, dignified simplicity, and

majestic grandeur. Architecture among the Greeks was at

the height of its glory at the period immediately preceding
the Peloponnesian war

;
after which the art declined. An

excess of enrichment succeeded its former simple grandeur ;

yet a strict regularity was maintained amid the profusion of

ornament. After the death of Alexander, 323 B.C., a love

of gaudy splendor increased : the consequent decline of the

art was visible, and the Greeks afterwards paid but little

attention to the science.

5. Architecture in Rome. While the Greeks illustrated

their knowledge of architecture in the erection of their

temples and other public buildings, the Romans gave their

attention to the science in the construction of the many
aqueducts and sewers with which Rome abounded

;
build-

ing no such splendid edifices as adorned Athens, Corinth,

and Ephesus, until about 200 years B.C., when their inter-

course with the Greeks became more extended. Grecian

architecture was introduced into Rome by Sylla ; by whom,
as also by Marius and Caesar, many large edifices were

erected in various cities of Italy. But under Csesar Augus-

tus, at about the beginning of the Christian era, the art

arose to the greatest perfection it ever attained in Italy.

Under his patronage Grecian artists were encouraged, and

many emigrated to Rome. It was at about this time that

Solomon's temple at Jerusalem was rebuilt by Herod a

Roman. This was 46 years in the erection, and was most

probably of
'

the Grecian style of building perhaps of the
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provement ;
but very soon after his reign the art began

rapidly to decline, as particularly evidenced in the mean
and trifling character of the ornaments.

7. Architecture Debased. The Goths and Vandals
overran Italy, Greece, Asia, and Africa, destroying most
of their works of ancient architecture. Cultivating no art

but that of war, these savage hordes could not be expected
to take any interest in the beautiful forms and proportions
of their habitations. From this time architecture assumed
an entirely different aspect. The celebrated styles of Greece
were unappreciated and forgotten ;

and modern architec-

ture made its first appearance on the stage of existence.

The Goths, in their conquering invasions, gradually ex-

tended it over Italy, France, Spain, Portugal, and Ger-

many, into England. From the reign of Galienus may be

reckoned the total extinction of the arts among the Romans.
From this time until the sixth or seventh century, architec-

ture was almost entirely neglected. The buildings which
were erected during this suspension of the arts were very
rude. Being constructed of the fragments of the edifices

which had been demolished by the Visigoths in their unre-

strained fury, and the builders being destitute of a proper

knowledge of architecture, many sad blunders and exten-

sive patch-work might have been seen in their construction

entablatures inverted, columns standing on their wrong
ends, and other ridiculous arrangements characterized their

clumsy work. The vast number of columns which the ruins

around them afforded they used as piers in the construction

of arcades which by some is thought, after having passed

through various changes, to have been the origin of the

plan of the Gothic cathedral. Buildings generally, which

are not of the classical styles, and which were erected after

the fall of the Roman empire, have by some been indiscrim-

inately included under the term Gothic. But the changes
which architecture underwent during the Mediaeval age
show that there were then several distinct modes of building.

8. The Otrogoths. Theodoric, a friend of the arts,

who reigned in Italy from A.D. 493 to 525, endeavored to
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restore and preserve some of the ancient buildings; and

erected others, the ruins of which are still seen at Verona

and Ravenna. Simplicity and strength are the character-

istics of the structures erected by him
; they are, however,

devoid of grandeur and elegance, or fine proportions.

These are properly of the GOTHIC style ; by some called

the old Gothic, to distinguish it from the pointed Gothic.

9. The Lombard*, who ruled in Italy from A.D. 568,

had no taste for architecture nor respect for antiquities.

Accordingly, they pulled down the splendid monuments of

classic architecture which they found standing, and erected

in their stead huge buildings of stone which were greatly
destitute of proportion, elegance, or utility their charac-

teristics being scarcely anything more than stability and

immensity combined with ornaments of a puerile character.

Their churches were decorated with rows of small columns

along the cornice of the pediment, small doors and win-

dows with circular heads, roofs supported by arches having
arched buttresses to resist their thrust, and a lavish display
of incongruous ornaments. This kind of architecture is

called the LOMBARD style, and was employed in the seventh

century in Pavia, the chief city of the Lombards
; at which

city, as also at many other places, a great many edifices

were erected in accordance with its peculiar forms.

10. Tlic Byzantine Architects, of Byzantium, Constan-

tinople, erected many spacious edifices; among which are

included the cathedrals of Bamberg, Worms, and Mentz,
and the most ancient part of the minster at Strassburg ;

in

all of these they combined the classic styles with the crude
Lombardian. This style is called the LOMBARD-BYZANTINE.
To the last style there were afterwards added cupolas sim-
ilar to those used in the East, together with numerous slen-

der pillars with elaborate capitals, and the many minarets
which are the characteristics of the proper Byzantine, or
Oriental style.

H. The Moor*. When the Arabs and Moors destroyed
the kingdom of the Goths, the arts and sciences were mostly
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THE MEDLEVAL STYLES. II

in possession of the Musselmen-conquerors ;
at which time

there were three kinds of architecture practised ;
viz. : the

Arabian, the Moorish, and the Lombardian. The ARABIAN

style was formed from Greek models, having circular arches

added, and towers which terminated with globes and mina-

rets. The MOORISH is very similar to the Arabian, being

distinguished from it by arches in the form of a horseshoe.

It originated in Spain in the erection of buildings with the

ruins of Roman architecture, and is seen in all its splendor
in the ancient palace of the Mohammedan monarchs at

Grenada, called the Alhambra, or red-house. The style which

was originated by the Visigoths in Spain by a combination

of the Arabian and Moorish styles, was introduced by Charle-

magne into Germany. On account of the changes and im-

provements it there underwent, it Was, at about the I3th or

I4th century, termed the German or romantic style. It is ex-

hibited in great perfection in the towers of the minster of

Strassburg, the cathedral of Cologne and other edifices.

The most remarkable features of this lofty and aspiring style

are the lancet or pointed arch, clustered pillars, lofty towers,

and flying buttresses. It was principally employed in eccle-

siastical architecture, and in this capacity introduced into

France, Italy, Spain, and England.

12. Ttie Architecture of England: is divided into the

Norman, the Early-English, the Decorated, and the Perpendic-

ular styles. The Norman is principally distinguished by
the character of its ornaments the chevron, or zigzag, being

the most common. Buildings in this style were erected in

the 1 2th century. The Early-English is celebrated for the

beauty of its edifices, the chaste simplicity and purity of

design which they display, and the peculiarly graceful char-

acter of its foliage. This style is of the isth century. The

Decorated style, as its name implies, is characterized by a

great profusion of enrichment, which consists principally of

the crocket, or feathered-ornament, and ball-flower. It was

mostly in use in the Hth century. The Perpendicular style,

which dates from the I5th century, is distinguished by its

high towers, and parapets surmounted with spires similar in

number and grouping to oriental minarets.
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13. Architecture Progresiiive. The styles erroneously

termed Gothic were distinguished by peculiar characteris-

tics as well as by different names. The first symptoms of a

desire to return to a pure style in architecture, after the

ruin caused by the Goths, was manifested in the character

of the art as displayed in the church of St. Sophia at Con-

stantinople, which was erected by Justinian in the 6th

century. The church of St. Mark at Venice, which arose

in the loth or nth century, is a most remarkable building;

a compound of many of the forms of ancient architecture.

The cathedral at Pisa, a wonderful structure for the age,

was erected by a Grecian architect in 1016. The marble

with which the walls of this building were faced, and of

which the four rows of columns that support the roof are

composed, is said to be of an excellent character. The

Campanile, or leaning-tower as it is usually called, was

erected near the cathedral in the I2th century. Its inclina-

tion is generally supposed to have arisen from a poor foun-

dation
; although by some it is said to have been thus con-

structed originally, in order to inspire in the minds of the

beholder sensations of sublimity and awe. In the I3th cen-

tury, the science in Italy was slowly progressing ; many fine

churches were erected, the style of which displayed a de-

cided advance in the progress towards pure classical archi-

tecture. In other parts of Europe, the Gothic, or pointed

style was prevalent. The cathedral at Strassburg, designed

by Irwin Steinbeck, was erected in the I3th and I4th cen-

turies. In France and England during the I4th century,

many very superior edifices were erected in this style.

14-. Architecture in Italy. In the I4th and 1 5th cen-

turies, architecture in Italy was greatly revived. The mas-

ters began to study the remains of ancient Roman edifices
;

and many splendid buildings were erected, which displayed
a purer taste in the science. Among others, St. Peter's of

Rome, which was built about this time, is a lasting monu-
ment of the architectural skill of the age. Giocondo, Mi-
chael Angelo, Palladio, Vignola, and other celebrated archi-

tects, each in their turn, did much to restore the art to its
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former excellence. In the edifices which were erected under
their direction, however, it is plainly to be seen that they
studied not from the pure models of Greece, but from the

remains of the deteriorated architecture of Rome. The
high pedestal, the coupled columns, the rounded pediment,
the many curved-and-twisted enrichments, and the convex

frieze, were unknown to pure Grecian architecture. Yet
their efforts were serviceable in correcting, to a good de-

gree, the very impure taste that had prevailed since the over-

throw of the Roman empire.

15. The Renaissance. The Italian masters and numer-
ous artists who had visited Italy for the purpose, spread the

Roman style over various countries of Europe; which was

gradually received into favor in place of the pointed Gothic.

This fell into disuse
; although it has of late years been

again cultivated. It requires a building of great magnitude
and complexity for a perfect display of its beauties. In

America, the pure Grecian style was at first more or less

studied
;
and perhaps the simplicity of its principles would

be better adapted to a republican country than the more
intricate mediaeval styles ; yet these, during the last quarter
of a century, have been extensively studied, and now wholly

supersede the Grecian styles.

16. Style of Arehiteeture. It is generally acknowl-

edged that the various styles in architecture were the results

of necessity, and originated in accordance with the different

pursuits of the early inhabitants of the earth ; and were

brought by their descendants to their present state of per-

fection, through the propensity for imitation and desire of

emulation which are found more or less among- all nations.

Those that followed agricultural pursuits, from being em-

ployed constantly upon the same piece of land, needed a

permanent residence, and the wooden hut was the offspring

of their wants
;
while the shepherd, who followed his flocks

and was compelled to traverse large tracts of country for

pasture, found the tent to be the most portable habitation ;

again, the man devoted to hunting and fishing an idle and

vagabond way of living is naturally supposed to have been
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content with the cavern as a place of shelter. .The latter is

said to have been the origin of'the Egyptian style; while

the curved roof of Chinese structures gives a strong indica-

tion of their having had the tent for their model ;
and the

simplicity of the original style of the Greeks (the Doric)

shows quite conclusively, as is generally conceded, that its

original was of wood. The pointed, or ecclesiastical style,

is said to have originated in an attempt to imitate the bower,

or grove of trees, in which the ancients performed their idol-

worship. But it is more probably the result of repeated

scientific attempts to secure real strength with apparent

lightness ;
thus giving a graceful, aspiring effect.

17. Order: or styles, in architecture are numerous;
and a knowledge of the peculiarities of each is important to

the student in the art. An ORDER, in architecture, is com-

posed of three principal parts, viz. : the Stylobate, the Col-

umn, and the Entablature. This appertains chiefly to the

classic styles.

18. The Stylobate: is the substructure, or basement,

upon which the columns of an order are arranged. In

Roman architecture especially in the interior of an edi-

fice it frequently occurs that each column has a separate
substructure ;

this is called a pedestal. If possible, the ped-
estal should be avoided in all cases

; because it gives to the

column the appearance of having been originally designed
for a small building, and afterwards pieced out to make it

long enough for a larger one.

19. The Column : is composed of the base, shaft, and

capital.

20. Tlie Entablature: above and supported by the

columns, is horizontal ; and is composed of the architrave,

frieze, and cornice. These principal parts are again divided
into various members and mouldings.

21. The Base: of a column is so called from basis, a

foundation or footing.
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22. The Shaft: the upright part of a column standing

upon the base and crowned with the capital, is from shafto,

to dig in the manner of a well, whose inside is not unlike

the form of a column.

23. The Capital : from kephale or caput, the head, is the

uppermost and crowning part of the column.

24. The Architrave : from archi, chief or principal,
and trabs, a beam, is that part of the entablature which lies

in immediate connection with the column.

25. The Frieze: from fibron, a fringe or border, is that

part of the entablature which is immediately above the

architrave and beneath the cornice. It was called by some
of the ancients zophorus, because it was usually enriched

with sculptured animals.

26. The Corniee: from corona, a crown, is the upper
and projecting part of the entablature being also the upper-
most and crowning part of the whole order.

27. The Pediment: above the entablature, is the tri-

angular portion which is formed by the inclined edges of

the roof at the end of the building. In Gothic architecture,

the pediment is called a gable.

28. The Tympanum: is the perpendicular triangular

surface which is enclosed by the cornice of the pediment.

29. The Attic : is a small order, consisting of pilasters

and entablature, raised above a larger order, instead of a

pediment. An attic story is the upper story, its windows

being usually square.

30. Proportions in an Order. An order has its several

members proportioned to one another by a scale of 60 equal

parts, which are called minutes. If the height of buildings

were always the same, the scale of equal parts would be a

fixed quantity an exact number of feet and inches. But as

buildings are erected of different heights, the column and
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its accompaniments are required to be of different dimen-

sions. To ascertain the scale of equal parts, it is necessary
to know the height to which the whole order is to be

erected. This must be divided by the number of diameters

which is directed for the order under consideration. Then
the quotient obtained by such division is the length of the

scale of equal parts and is, also, the diameter of the column

next above the base. For instance, in the Grecian Doric

order the whole height, including column and entablature,

is 8 diameters. Suppose now it were desirable to construct

an example of this order, forty feet high. Then 40 feet

divided by 8 gives 5 feet for the length of the scale
;
and

this being divided by 60, the scale is completed. The up-

right columns of figures, marked H and P, by the side of

the drawings illustrating the orders, designate the height
and the projection of the members. The projection of each

member is reckoned from a line passing through the axis of

the column, and extending above it to the top of the entab-

lature. The figures represent minutes, or 6oths, of the

major diameter of the shaft of the column.

31. Grecian Styles. The original method of building
among the Greeks was in what is called the Doric order :

to this were afterwards added the Ionic and the Corinthian.

These three were the only styles known among them. Each
is distinguished from the other two by not only a peculiar-

ity of some one or more of its principal parts, but also by a

particular destination. The character of the Doric is robust,

manly, and Herculean-like
; that of the Ionic is more deli-

cate, feminine, matronly; while that of the Corinthian is

extremely delicate, youthful, and virgin-like. However
they may differ in their general character, they are alike
famous for grace and dignity, elegance and grandeur, to a

high degree of perfection.

32 The Doric Order: (Fig. 2,) is so ancient that its

origin is unknown although some have pretended to have
discovered it. But the most general opinion is, that it is

an improvement upon the original wooden buildings of the
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Grecians. These no doubt were very rude, and perhaps
not unlike the following figure.

FIG i. SUPPOSED ORIGIN OF DORIC TEMPLE.

The trunks of trees, set perpendicularly to support the

roof, may be taken for columns
;
the tree laid upon the

tops of the perpendicular ones, the architrave
;

the ends

of the cross-beams which rest upon the architrave, the

triglyphs ;
the tree laid on the cross-beams as a support for

the ends of the rafters, the bed-moulding of the cornice
;
the

ends of the rafters which project beyond the bed-moulding,
the mutules ; and perhaps the projection of the roof in

front, to screen the entrance from the weather, gave origin
to the portico.

The peculiarities of the Doric order are the triglyphs
those parts of the frieze which have perpendicular channels

cut in their surface
;
the absence of a base to the column

as also of fillets between the flutings of the column ;
and the

plainness of the capital. The triglyphs should be so dis-

posed that the width of the metopes the space between

the triglyphs shall be equal to their height.

33. The Intercolumniation : or space between the col-

umns, is regulated by placing the centres of the columns

under the centres of the triglyphs except at the angle of

the building ; where, as may be seen in Fig. 2, one edge of
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the triglyph must be over the centre of the column.*
Where the columns are so disposed that one of them stands

beneath every other triglyph, the arrangement is called

mono-triglyph and is most common. When a column is

placed beneath every third triglyph, the arrangement is

called diastyle ; and when beneath every fourth, arceostyle.

This last style is the worst, and is seldom adopted.

34-. The Doric Order: is suitable for buildings that

are destined for national purposes, for banking-houses, etc.

Its appearance, though massive and grand, is nevertheless

rich and graceful. The Patent Office at Washington, and

the Treasury at New York, are good specimens of this

order.

35. The Ionic Order. (Fig. 3.) The Doric was for

some time the only order in use among the Greeks. They
gave their attention to the cultivation of it, until perfection
seems to have been attained. Their temples were the prin-

* GRECIAN DORIC ORDER. When the width to be occupied by the whole front
is limited, to determine the diameter of the column.

The relation between the parts may be expressed thus :

_ 60 a
~~

~d(b'+ c) + (60 c)

Where a equals the width in feet occupied by the columns, and their inter-

columniations taken collectively, measured at the base
;
b equals the width

of the metope, in minutes ;
c equals the width of the triglyphs in minutes

;
d

equals the number of metopes, and x equals the diameter in feet.

Example. A front of six columns hexastyle 61 feet wide
; the frieze

having one triglyph over each intercolumniation, or mono-triglyph. In this

case, there being five intercolumniations and two metopes over each, therefore

there are 5 x 2 = 10 metopes. Let the metope equal 42 minutes and the

triglyph equal 28. Then a = 61
;
b = 42 ;

c = 28
;
and d= 10

;
and the formula

above becomes

60 x 61 60 x 61 3660x .
---- -----

ST =- = - = 5 feet = the d lameter
10(42 + 28) + (60 28) 10x70 + 32 732

required.

Example. An octastyle front, 8 columns, 184 feet wide, three metopes
over each, intercolumniation, 21 in all, and the metope and triglyph 42 and

28, as before. Then

l84- = H212 = 7.35-rigir feet = the diameter required.
21 (42 + 28) + (60

-
28) 1502
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cipal objects upon which their skill in the art was displayed ;

and as the Doric order seems to have been well fitted, by its

massive proportions, to represent the character of their

male deities rather than the female, there seems to have

been a necessity for another style which should be emble-

matical of feminine graces, and with which they might
decorate such temples as were dedicated to the goddesses.
Hence the origin of the Ionic order. This was invented,

according to historians, by Hermogenes of Alabanda
;
and

he being a native of Caria, then in the possession of the

lonians, the order was called the Ionic.

The distinguishing features of this order are* the volutes

or spirals of the capital ;
and the dentils among the bed-

mouldings of the cornice: although in some instances

dentils are wanting. The volutes are said to have been

designed as a representation of curls of hair on the head of

a matron, of whom the whole column is taken as a sem-

blance.

The Ionic order is appropriate for churches, colleges,

seminaries, libraries, all edifices dedicated to literature and
the arts, and all places of peace and tranquillity. The front

of the Custom-House, New York City, is a good specimen
of this order.

36. The Intercolumniation : of this and the other

orders both Roman and Grecian, with the exception of

the Doric are distinguished as follows. When the interval

is one and a half diameters, it is called pycnostyle, or columns

thick-set; when two diameters, systyle ; when two and a

quarter diameters, eustyle ; when three diameters, diastyle ;

and when more than three diameters, arceostyle, or columns
thin-set. In all the orders, when there are four columns in

one row, the arrangement is called tetrastyle ; when there
are six in a row, hcxastyle ; and when eight, octastyle.

37. To Describe the Ionic Volute. Draw a perpen-
dicular from a to s (Fig. 4), and make a s equal to 20 min.
or to $ of the whole height, a c ; draw s o at right angles to
s a, and equal to I min.

; upon o, with 2^ min. for radius,



PROPORTIONS OF GRECIAN IONIC.

v

FIG. 3. GRECIAN IONIC.



22 ARCHITECTURE.

describe the eye of the volute
;
about o, the centre of the

eye, draw the square, r t i 2, with sides equal to half the

diameter of the eye, viz. 2j min., and divide it into 144 equal

parts, as shown at Fig. 5. The several centres in rotation are

at the angles formed by the heavy lines, as figured, i, 2, 3,

4, 5, 6, etc. The position of these angles is determined by
commencing at the point, i, and making each heavy line one

part less in length than the preceding one. No. i is the

FIG. 4. IONIC VOLUTE.
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centre for the arc a b (Fig. 4 ;)
2 is the centre for the arc

be; and so on to the last. The inside spiral line is to be

described from the centres, x, x, x, etc. (Fig. 5), being the

centre of the first small square towards the middle of the

eye from the centre for the outside arc. The breadth of the

fillet at aj is to be made equal to 2T
3 min. This is for a spiral

of three revolutions ;
but one of any number of revolutions,

as 4 or 6, may be drawn, by dividing of (Fig. 5) into a cor-

responding number of equal parts. Then divide the part
nearest the centre, o, into two parts, as at h ; join o and i,

also o and 2 ; draw h 3 parallel to o i, and h 4 parallel to o

FIG. 5. EYE OF VOLUTE.

2
;
then the lines o i, o 2, // 3, h 4 will determine the length

of the heavy lines, and the place of the centres. (See Art.

288.)

38. The Corinthian Order : (Fig. /,) is in general like

the Ionic, though the proportions are lighter. The Corin-

thian displays a more airy elegance, a richer appearance ;

but its distinguishing feature is its beautiful capital,

is generally supposed to have had its origin in the capitals
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of the columns of Egyptian temples, which, though not ap-

proaching it in elegance, have yet a similarity of form with

the Corinthian. The oft-repeated story of its origin which

is told by Vitruvius an architect

who flourished in Rome in the days
of Augustus Caesar though pretty

generally considered to be fabu-

lous, is nevertheless worthy of be-

ing again recited. It is this : A
young lady of Corinth was sick, and

finally died. Her nurse gathered
, into a deep basket such trinkets and

keepsakes as the lady had been

fond of when alive, and placed them upon her grave, cover-

ing the basket with a flat stone or tile, that its contents

might not be disturbed. The basket was placed accident-

ally upon the stem of an acanthus plant, which, shooting

forth, enclosed the basket with its foliage, some of which,

reaching the tile, turned gracefully over in the form of a

volute.

A celebrated sculptor, Calimachus, saw the basket thus

decorated, and from the hint which it suggested conceived

and constructed a capital for a column. This was called

Corinthian, from the fact that it was invented and first made
use of at Corinth.

The Corinthian being the gayest, the richest, the most

lovely of all the orders, it is appropriate for edifices which
are dedicated to amusement, banqueting, and festivity for

all places where delicacy, gavety, and splendor are desir-

able.

39. Pcrian and Caryatides. In addition to the three

regular orders of architecture, it was customary among the

Greeks and other nations to employ representations of the

human form, instead of columns, to support entablatures
;

these were called Persians and Caryatides.

40. Persian* : are statues of men, and are so called in

commemoration of a victory gained over the Persians by
Pausanias. The Persian prisoners were brought to Athens
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and condemned to abject slavery ;
and in order to represent .

them in the lowest state of servitude and degradation, the

statues were loaded with the heaviest entablature, the Doric.

41. Caryatides: are statues of women dressed in long

robes after the Asiatic manner. Their origin is as follows :

In a war between the Greeks and the Caryans, the latter

were totally vanquished, their male population extinguished,

and their females carried to Athens. To perpetuate the

memory of this event, statues of females, having the form

and dress of the Caryans, were erected, and crowned with

the Ionic or Corinthian entablature. The caryatides were

generally formed of about the human size, but the persians

much larger, in order to produce the greater awe and

astonishment in the beholder. The entablatures were pro-

portioned to a statue in like manner as to a column of the

same height.
These semblances of slavery have been in frequent use

among moderns as well as ancients
; and, as a relief from

the stateliness and formality of the regular orders, are capa-
ble of forming a thousand varieties ; yet in a land of liberty

such marks of human degradation ought not to be perpetu-
ated.

42. Roman Styles. Strictly speaking, Rome had no

architecture of her own ; all she possessed was borrowed

from other nations. Before the Romans exchanged inter-

course with the Greeks, they possessed some edifices of

considerable extent and merit, which were erected by archi-

tects from Etruria
; but Rome was principally indebted to

Greece for what she acquired of the art. Although there is

no such thing as an architecture of Roman invention, yet
no nation, perhaps, ever was so devoted to the cultivation

of the art as the Roman. Whether we consider the number
and extent of their structures, or the lavish richness and

splendor with which they were adorned, we are compelled
to yield to them our admiration and praise. At one time,

under the consuls and emperors, Rome employed 400 ar-

chitects. The public works such as theatres, circuses,

baths, aqueducts, etc. were, in extent and grandeur, be-
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yond anything- attempted in modern times. Aqueducts
were built to convey water from a distance of 60 miles or

more. In the prosecution of this work rocks and mountains
were tunnelled, and valleys bridged. Some of the latter

descended 200 feet below the level of the water; and. in

passing them the canals were supported by an arcade, or

succession of arches. Public baths are spoken of as large as

cities, being fitted up with numerous conveniences for ex-

ercise and amusement. Their decorations were most splen-
did

; indeed, the exuberance of the ornaments alone was
offensive to good taste. So overloaded with enrichments

were the baths of Diocletian that on one occasion of public

festivity great quantities of sculpture fell from the ceilings
and entablatures, killing many of the people.

43. Grecian Order modified by the Romans. The
orders of Greece were introduced into Rome in all their

perfection. But the luxurious Romans, not satisfied with

the simple elegance of their refined proportions, sought to

improve upon them by lavish displays of ornament. They
transformed in many instances the true elegance of the

Grecian art into a gaudy splendor, better suited to their

less refined taste. The Romans remodelled each of the

orders : the Doric (Fig. 8) was modified by increasing the

height of the column to 8 diameters
; by changing the

echinus of the capital for an ovolo, or quarter-round, and

adding an astragal and neck below it
; by placing the centre,

instead of one edge, of the first triglyph over the centre of

the column
;
and introducing horizontal instead of inclined

mutules in the cornice, and in some instances dispensing
with them altogether. The Ionic was modified by diminish-

ing the size of the volutes, and, in some specimens, intro-

ducing a new capital in which the volutes were diagonally

arranged (Fig. 9). This new capital has been termed modern

Ionic. The favorite order at Rome and her colonies was

the Corinthian (Fig. 10). But this order the Roman artists,

in their search for novelty, subjected to many alterations

especially in the foliage of its capital. Into the upper part

of this they introduced the modified Ionic capital ;
thus
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combining the two in one. This change was dignified with

the importance of an order, and received the appellation

+

[29.
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FIG. 8. ROMAN DORIC.

of COMPOSITE, or Roman : the best specimen of which is

found in the Arch of Titus (Fig. n). This style was not
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much used among the Romans themselves, and is but

slightly appreciated now.

44. Tlie Tuscan Order: is said to have been intro-

duced to the Romans by the Etruscan architects, and to

have been the only style used in Italy before the introduc-

tion of the Grecian orders. However this may be, its simi-

larity to the Doric order gives strong indications of its

having been a rude imitation of that style : this is very prob-

able, since history informs us that the Etruscans held inter-

course with the Greeks at a remote period. The rudeness

of this order prevented its extensive use in Italy. All that

is known concerning it is from Vitruvius, no remains of

buildings in this style being found among ancient ruins.

For mills, factories, markets, barns, stables, etc., where

utility and strength are of more importance than beauty,
the improved modification of this order, called the modern

Tuscan (Fig. 12), will be useful; and its simplicity recom-

mends it where economy is desirable.

45. Egyptian Style. The architecture of the ancient

Egyptians to which that of the ancient Hindoos bears

some resemblance is characterized by boldness of outline,

solidity, and grandeur. The amazing labyrinths and exten-

sive artificial lakes, the splendid palaces and gloomy ceme-

teries, the gigantic pyramids and towering obelisks, of the

Egyptians were works of immensity and durability ;
and

their extensive remains are enduring proofs of the enlight-
ened skill of this once-powerful but long since extinct na-

tion. The principal features of the Egyptian style of archi-

tecture are uniformity of plan, never deviating from right
lines and angles ;

thick walls, having the outer surface

slightly deviating inwardly from the perpendicular ;
the

whole building low ; roof flat, composed of stones reaching
in one piece from pier to pier, these being supported by
enormous columns, very stout in proportion to their height ;

the shaft sometimes polygonal, having no base but with a

great variety of handsome capitals, the foliage of these being
of the palm, lotus, and other leaves

; entablatures having
simply an architrave, crowned with a huge cavetto orna-
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mented with sculpture ;
and the intercolumniation very nar-

row, usually i diameters and seldom exceeding 2^. In the

remains of a temple the walls were found to be 24 feet thick ;

and at the gates of Thebes, the walls at the foundation were

50 feet thick and perfectly solid. The immense stones of

which these, as well as Egyptian walls generally, were built,

had both their inside and outside surfaces faced, and the

oints throughout the body of the wall as perfectly close as

upon the outer surface. For this reason, as well as that the

buildings generally partake of the pyramidal form, arise

their great solidity and durability. The dimensions and ex-

tent of the buildings may be judged from the temple of

Jupiter at Thebes, which was 1400 feet long and 300 feet

wide exclusive of the porticos, of which there was a great
number.

It is estimated by Mr. Gliddon, U. S. Consul in Egypt,
that not less than 25,000,000 tons of hewn stone were em-

ployed in the erection of the Pyramids of Memphis alone

or enough to construct 3000 Bunker Hill monuments. Some
of the blocks are 40 feet long, and polished with emery to a

surprising degree. It is conjectured that the stone for these

pyramids was brought, by rafts and canals, from a distance

of six or seven hundred miles.

The general appearance of the Egyptian style of archi-

tecture is that of solemn grandeur amounting sometimes to

sepulchral gloom. For this reason it is appropriate for cem-

eteries, prisons, etc.
;
and being adopted for these purposes,

it is gradually gaining favor.

A great dissimilarity exists in the proportion, form, and

general features of Egyptian columns. In some instances,

there is no uniformity even in those of the same building,

each differing from the others either in its shaft or capital.

For practical use in this country, Fig. 13 may be taken as a

standard of this style. The Halls of Justice in Centre

Street, New York City, is a building in general accordance

with the principles of Egyptian architecture.

46. Buildings in General. In selecting a style for an

edifice, its peculiar requirements must be allowed to govern.
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That style of architecture is to be preferred in which utility,

stability, and regularity are gracefully blended with gran-
deur and elegance. But as an arrangement designed for a

warm country would be inappropriate for a colder climate,

it would seem that the style of building ought to be modified

to suit the wants of the people for whom it is. designed.

High roofs to resist the pressure of heavy snows, and ar-

rangements for artificial heat, are indispensable in northern

climes
;
while they would be regarded as entirely out of

place in buildings at the equator.

Among the Greeks, architecture was employed chiefly

upon their temples and other large buildings ;
and the pro-

portions of the orders, as determined by them, when execu-

ted to such large dimensions, have the happiest effect. But
when used for small buildings, porticos, porches, etc., espe-

cially in country places, they are rather heavy and clumsy ;

in such cases, more slender proportions will be found to pro-
duce a better effect. The English cottage-style is rather

more appropriate, and is becoming extensively practised for

small buildings in the country.

47. Expression. Every building should manifest its

destination. If it be intended for national purposes, it

should be magnificent grand ;
for a private residence, neat

and modest
;
for a banqueting-house, gay and splendid ; for

a monument or cemetery, gloomy melancholy ; or, if for a

church, majestic and graceful by some it has been said,
" somewhat dark and gloomy, as being favorable to a devo-

tional state of feeling ;" but such impressions can only re-

sult from a misapprehension of the nature of true devotion.
" Her ways are ways of pleasantness, and all her paths are

peace." The church should rather be a type of that

brighter world to which it leads. Simply for purposes of

contemplation, however, the glare of the noonday light

should be excluded, that the worshipper may, with Milton

"Love the high, embowed roof,

With antique pillars massy pr*f,
And storied windows

richlyjj^ght,

Casting a dim, religious ligHt."
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However happily the several parts of an edifice may be

disposed, and however pleasing it may appear as a whole,

yet much depends upon its site, as also upon the character

and style of the structures in its immediate vicinity, and the

degree of cultivation of the adjacent country. A splendid

country-seat should have the out-houses and fences in the

same style with itself, the trees and shrubbery neatly

trimmed, and the grounds well cultivated.

48. Durability. Europeans express surprise that we
build so much with wood. And yet, in a new country,
where wood is plenty, that this should be so is no cause for

wonder. Still the practice should not be encouraged. Build-

ings erected with brick or stone are far preferable to those

of wood : they are more durable
;
not so liable to injury by

fire, nor to need repairs ; and will be found in the end quite
as economical. A wooden house is suitable for a temporary
residence only ;

and those who would bequeath a dwelling
to their children will endeavor to build with a more dura-

ble material. Wooden cornices and gutters, attached to

brick houses, are objectionable not only on account of their

frail nature, but also because they render the building liable

to destruction by fire.

4-9. Dwelling-Houses : are built of various dimensions

and styles, according to their destination
;
and to give de-

signs and directions for their erection, it is necessary to know
their situation and object. A dwelling intended for a gar-
dener would require very different dimensions and arrange-
ments from one intended for a retired gentleman with his

servants, horses, etc. ;
nor would a house designed for the

city be appropriate for the country. For city houses, ar-

rangements that would be convenient for one family might
be very inconvenient for two or more. Figs. 14, 15, 16, 17,

1 8, and 19 represent the icJinograpJiical projection, or ground-

plan, of the floors of an ordinary city house, designed to be

occupied by one family only. Fig. 21 is an elevation, or

front view, of the same house. All these plans are drawn at

the same scale which is that at the bottom of
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Fig. 14 is a Plan of the Under-Cellar.

a, is the coal-vault, 6 by 10 feet.

b, is the furnace for heating the house.

<:, d, are front and rear areas.

Fig. 15 is a Plan of the Basement.

a, is the library, or ordinary dining-room, 15 by 20 feet.

by is the kitchen, 15 by 22 feet.

c, is the store-room, 6 by 9 feet.

d, is the pantry, 4 by 7 feet.

e, is the china closet, 4 by 7 feet.

fj is the servants' water-closet.

g, is a closet.

//, is a closet with a dumb-waiter to the first story above.

i, is an ash closet under the front stoop.

j, is the kitchen-range.

k, is the sink for washing and drawing water.

/, are wash-trays.

Fig. 1 6 is a Plan of the First Story.

a, is the parlor, 1 5 by 34 feet.

b, is the dining-room, 16 by 23 feet.

c, is the vestibule.

<, is the closet containing the dumb-waiter from the base-

ment.

/, is the closet containing butler's sink.

g, gy are closets.

//, is a closet for hats and cloaks.

iyjy are front and rear balconies.

Fig. 17 is the Second Story.

a, <?, are chambers, 15 by 13 feet.

b, is a bed-room, 7^ by 13 feet.

c, is the bath-room, 7^ by 13 feet.

d, dy are dressing-rooms, 6 by 7^ feet.

Cy e, are closets.

/, /, are wardrobes.

g, g, ve cupboards.
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FIG. 14.

UNDBR-CELLAR.

FIG- 15-

BASEMENT.

CITY DWELLING.
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UPPER STORIES OF A CITY HOUSE.

Fig. 1 8 is the Third Story.

a, a, are chambers, 15 by 19 feet.

b, b, are bed-rooms, ; by 13 feet.

c, c, are closets.

d, is a linen-closet, 5 by 7 feet.

FIG. 19.

FOURTH STORY.

CITY DWELLING.

e, e, are dressing-closets.

f,f, are wardrobes.

g, g, are cupboards.

Fig. 19 is the Fourth Story.

a, a, are chambers, 14 by 17 feet.
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b, b, are bed-rooms, 8 by 17 feet.

c, c, c, are closets.

d, is the step-ladder to the roof.

Fig. 20 is the Section of the House showing the heights

of the several stories.

Fig. 2 1 is the Front Elevation.

The size of the house is 25 feet front by 55 feet deep ;
this

is about the average depth, although some are extended to

60 and 65 feet in depth.
These are introduced to give some general ideas of the

principles to be followed in designing city houses. In plac-

ing the chimneys in the parlors, set the chimney-breasts

equidistant from the ends of the room. The basement

chimney-breasts may be placed nearly in the middle of the

side of the room, as there is but one flue to pass through
the chimney-breast above

;
but in the second story, as there

are two flues, one from the basement and one from the par-

lor, the breast will have to be placed nearly perpendicular
over the parlor breast, so as to receive the flues within the

jambs of the fire-place. As it is desirable to have the chim-

ney-breast as near the middle of the room as possible, it may
be placed a few inches towards that point from over the

breast below. So in arranging those of the stories above,

always make provision for the flues from below.

50. Arranging the Stairs and Window. There should

be at least as much room in the passage at the side of the

stairs as upon them
;
and in regard to the length of the pas-

sage in the second story, there must be room for the doors

which open from each of the principal rooms into the hall,

and more if the stairs require it. Having assigned a posi-
tion for the stairs of the second story, now generally placed
in the centre of the depth of the house, let the winders of

the other stories be placed perpendicularly over and under
them

;
and be careful to provide for head-room. To ascer-

tain this, when it is doubtful, it is well to draw a vertical

section of the whole stairs
;
but in ordinary cases this is not
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necessary. To dispose the windows properly, the middle

window of each story should be exactly in the middle of the

front
;
but the pier between the two windows which light

the parlor should be in the centre of that room
;
because

when chandeliers or any similar ornaments hang from the

centre-pieces of the parlor ceilings, it is important, in order

to give the better effect, that the pier-glasses at the front

and rear be in a range with them. If both these objects

cannot be attained, an approximation to each must be at-

tempted. The piers should in no case be less in width than

the window openings, else the blinds or shutters, when
thrown open, will interfere with one another

;
in general

practice, it is well to make the outside piers f of the width

of one of the middle piers. When this is desirable, deduct

the amount of the three openings from the width of the

front, and the remainder will be the amount of the width of

all the piers ;
divide this by 10, and the product will be ^ of

a middle pier ;
and then, if the parlor arrangements do not

interfere, give twice this amount to each corner pier, and

three times the same amount to each of the middle piers.

51. Principles of Architecture. To build well requires
close attention and much experience. The science of build-

ing is the result of centuries of study. Its progress towards

perfection must have been exceedingly slow. In the con-

struction of the first frail and rude habitations of men, the

primary object was, doubtless, utility a mere shelter from
sun and rain. But as successive storms shattered his poor
tenement, man was taught by experience the necessity of

building with an idea to durability. And as the symmetry,
proportion, and beauty of nature met his admiring gaze,

contrasting so strangely with the misshapen and dispropor-
tioned work of his own hands, he was led to make gradual
changes, till his abode was rendered not only commodious
and durable, but pleasant in its appearance ;

and building
became a fine art, having utility for its basis.

52. Arrangement. In all designs for buildings of im-

portance, utility, durability, and beauty, the first great prin-

ciples, should be pre-eminent. In order that the edifice be
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useful, commodious, and comfortable, the arrangement of the

apartments should be such as to fit them for their several

destinations
;
for publio assemblies, oratory, state, visitors,

retiring, eating, reading, sleeping, bathing, dressing, etc.

these should each have its own peculiar form and situation.

To accomplish this, and at the same time to make their

relative situation agreeable and pleasant, producing regu-

larity and harmony, require 'in some instances much skill

and sound judgment. Convenience and regularity are very
important, and each should have due attention

; yet when
both cannot be obtained, the latter should in most cases

give place to the former. A building that is neither con-

venient nor regular, whatever other good qualities it may
possess, will be sure of disapprobation.

53. Ventilation. Attention should be given to such

arrangements as are calculated to promote health : among
these, ventilation is by no means the least. For this pur-

pose, the ceilings of the apartments should have a respect-

able height ;
and the sky-light, or any part of the roof that

can be made movable, should be arranged with cord and

pullies, so as to be easily raised and lowered. Small open-

ings near the ceiling, that may be closed at pleasure, should

be made in the partitions that separate the rooms from the

passages especially for those rooms which are used for

sleeping apartments. All the apartments should be so ar-

ranged as to secure their being easily kept dry and clean.

In dwellings, suitable apartments should be fitted up for

bathing with all the necessary apparatus for conveying
water.

54. Stability. To secure this, an edifice should be de-

signed upon well-known geometrical principles : such as

science has demonstrated to be necessary and sufficient for

firmness and durability. It is well, also, that it have the

appearance of stability as well as the reality ; for should it

seem tottering and unsafe, the sensation of fear, rather than

those of admiration and pleasure, Avill be excited in the be-

holder. To secure certainty and accuracy in the applica-

tion of those principles, a knowledge of the strength and
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other properties of the materials used is indispensable ;
and

in order that the whole design be so made as to be capable

of execution, a practical knowledge of the requisite mechan-

ical operations is quite important.

55. Decoration. The elegance of a design, although

chiefly depending upon a just proportion and harmony of

the parts, will be promoted by the introduction of orna-

ments, provided this be judiciously performed ;
for enrich-

ments should not only be ot a proper character to suit the

style of the building, but should also have their true posi-

tion, and be bestowed in proper quantity. The most com-

mon fault, and one which is prominent in Roman architec-

ture, is an excess of enrichment : an error which is carefully

to be guarded against. But those who take the Grecian

models for their standard will not be liable to go to that

extreme. In ornamenting a cornice, or any other assem-

blage ol mouldings, at least every alternate member should

be left plain ; and those that are near the eye should be more

finished than those which are distant. Although the charac-

teristics of good architecture are utility and elegance, in

connection with durability, yet some buildings are designed

expressly for use, and others again for ornament : in the

former, utility, and in the latter, beauty, should be the gov-

erning principle.

56. Elementary Parts of a Building. The builder

should be acquainted with the principles upon which the

essential, elementary parts of a building are founded. A
scientific knowledge of these will insure certainty and secu-

rity, and enable the mechanic to erect the most extensive

and lofty edifices with confidence. The more important

parts are the foundation, the column, the wall, the lintel,

the arch, the vault, the dome, and the roof. A separate

description of the peculiarities of each would seem to be

necessary, and cannot perhaps be better expressed than in

the following language of a modern writer on this subject,

slightly modified :
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57. The Foundation: of a building should be begun
at a certain depth in the earth, to secure a solid basis, below

the reach of frost and common accidents. The most solid

basis is rock, or gravel which has not been moved. Next
to these are clay and sand, provided no other excavations

have been made in the immediate neighborhood. From
this basis a stone wall is carried up to the surface of the

ground, and constitutes the foundation. Where it is in-

tended that the superstructure shall press unequally, as at

its piers, chimneys, or columns, it is sometimes of use to

occupy the space between the points of pressure by an

inverted arch. This distributes the pressure equally, and

prevents the foundation from springing between the differ-

ent points. In loose or muddy situations, it is always un-

safe to build, unless we can reach the solid bottom below.

In salt marshes and flats, this is done by depositing timbers,

or driving wooden piles into the earth, and raising walls

upon them. The preservative quality of the salt will keep
these timbers unimpaired for a great length of time, and

makes the foundation equally secure with one of brick or

stone.

58. The Column, or Pillar: is the simplest member in

any building, though by no means an essential one to all.

This is a perpendicular part, commonly of equal breadth

and thickness, not intended for the purpose of enclosure,

but simply for the support of some part of the superstruc-

ture. The principal force which a column has to resist is

that of perpendicular pressure. In its shape, the shaft of a

column should not be exactly cylindrical, but, since the

lower part must support the weight of the superior part, in

addition to the weight which presses equally on the whole

column, the thickness should gradually decrease from bot-

tom to top. The outline of columns should be a little

curved, so as to represent a portion of a very long spheroid,

or paraboloid, rather than of a cone. This figure is the joint

result of two calculations, independent of beauty of appear-

ance. One of these is, that the form best adapted for sta-

bility of base is that of a cone ;
the other is, that the figure,
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which would be of equal strength throughout for support-

ing a superincumbent weight, would be generated by the

revolution of two parabolas round the axis of the column,

the vertices of the curves being at its extremities. The
swell of the shafts of columns was called the entasis by the

ancients. It has been lately found that the columns of the

Parthenon, at Athens, which have been commonly supposed

straight, deviate about an inch from a straight line, and that

their greatest swell is at about one third of their height.

Columns in the antique orders are usually made to diminish

one sixth or one seventh of their diameter, and sometimes

even one fourth. The Gothic pillar is commonly of equal
thickness throughout.

59. The Wall : another elementary part of a building,

may be considered as the lateral continuation of the column,

answering the purpose both of enclosure and support. A
wall must diminish as it rises, for the same reasons, and in

the same proportion, as the column. It must diminish still

more rapidly if it extends through several stories, support-

ing weights at different heights. A wall, to possess the

greatest strength, must also consist of pieces, the upper and

lower surfaces of which are horizontal and regular, not

rounded nor oblique. The walls of most of the ancient

structures which have stood to the present time are con-

structed in this manner, and frequently have their stones

bound together with bolts and clamps of iron. The same
method is adopted in such modern structures as are intended

to possess great strength and durability, and, in some cases,

the stones are even dovetailed together, as in the light-
houses at Eddystone and Bell Rock. But many of our
modern stone walls, for the sake of cheapness, have only one
face of the stones squared, the inner half of the wall being
completed with brick

;
so that they can, in reality, be con-

sidered only as brick walls faced with stone. Such walls are

said to be liable to become convex outwardly, from the dif-

ference in the shrinking of the cement. Rubble walls are

made of rough, irregular stones, laid in mortar. The stones

should be broken, if possible, so as to produce horizontal
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surfaces. The coffer walls of the ancient Romans were made

by enclosing successive portions of the intended wall in a

box, and filling it with stones, sand, and mortar promis-

cuously. This kind of structure must have been extremely
insecure. The Pantheon and various other Roman build-

ings are surrounded with a double brick wall, having its

vacancy filled up with loose bricks and cement. The whole
has gradually consolidated into a mass of great firmness.

60. The Reticulated Walls : of the Romans com-

posed of bricks with oblique surfaces would, at the present

day, be thought highly unphilosophical. Indeed, they could

not long have stood, had it not been for the great strength
of their cement. Modern brick walls are laid with great

precision, and depend for firmness more upon their position
than upon the strength of their cement. The bricks being
laid in horizontal courses, and continually overlaying each

other, or breaking joints, the whole mass is strongly inter-

woven, and bound together. Wooden walls, composed of

timbers covered with boards, are a common but more per-

ishable kind. They require to be constantly covered with a

coating of a foreign substance, as paint or plaster, to pre-

serve them from spontaneous decomposition. In some parts

of France, and elsewhere, a kind of wall is made of earth,

rendered compact by ramming it in moulds or cases. This

method is called building in pise, and is much more durable

than the nature of the material would lead us to suppose.

Walls of all kinds are greatly strengthened by angles and

curves, also by projections, such as pilasters, chimneys, and

buttresses. These projections serve to increase the breadth

of the foundation, and are always to be made use of in large

buildings, and in walls of considerable length.

61. The Lintel, or Beam: extends in a right line over

a vacant space, from one column or wall to another. The

strength of the lintel will be greater in proportion as its

transverse vertical diameter exceeds the horizontal, the

strength being always as the square of the depth. The

floor is the lateral continuation or connection of beams by

means of a covering of boards.



50 ARCHITECTURE.

62. The Arch : is a transverse member of a building,

answering the same purpose as the lintel, but vastly exceed-

ing it in strength. The arch, unlike the lintel, may consist

of any number of constituent pieces, without impairing its

strength. It is, however, necessary that all the pieces should

possess a uniform shape, the shape of a portion of a

wedge, and that the joints, formed by the contact of their

surfaces, should point towards a common centre. In this

case, no one portion of the arch can be displaced or forced

inward
;
and the arch cannot be broken by any force which

is not sufficient to crush the materials of which it is made.

In arches made of common bricks, the sides of which are

parallel, any one of the bricks might be forced inward, were
it not for the adhesion of the cement. Any two of the bricks,

however, by the disposition of their mortar, cannot collect-

ively be forced inward. An arch of the proper form, when

complete, is rendered stronger, instead of weaker, by the

pressure of a considerable weight, provided this pressure be

uniform. While building, however, it requires to be sup-

ported by a centring of the shape of its internal surface,

until it is complete. The upper stone of an arch is called

the keystone, but is not more essential than any other. In

regard to the shape of the arch, its most simple form is that

of the semicircle. It is, however, very frequently a smaller

arc of a circle, or a portion of an ellipse.

63. Hooke' Theory of an Arch. The simplest theory
of an arch supporting itself only is that of Dr. Hooke.
The arch, when it has only its own weight to bear, may be

considered as the inversion of a chain, suspended at each
end. The chain hangs in such a form that the weight of

each link or portion is held in equilibrium by the result of

two forces acting at its extremities
;
and these forces, or

tensions, are produced, the one by the weight of the portion
of the chain below the link, the other by the same weight
increased by that of the link itself, both of them acting ori-

ginally in a vertical direction. Now, supposing the chain

inverted, so as to constitute an arch of the same form and

weight, the relative situations of the forces will be the same,
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only they will act in contrary directions, so that they are

compounded in a similar manner, and balance each other on
the same conditions.

The arch thus formed is denominated a catenary arch.

In common cases, it differs but little from a circular arch of

the extent of about one third of a whole circle, and rising
from the abutments with an obliquity of about 30 degrees
from a perpendicular. But though the catenary arch is the

best form for supporting its own weight, and also all addi-

tional weight which presses in a vertical direction, it is not

the best form to resist lateral pressure, or pressure like that

of fluids, acting equally in all directions. Thus the arches

of bridges and similar structures, when covered with loose

stones and earth, are pressed sideways, as well as vertically,
in the same manner as if they supported a weight of fluid.

In this case, it is necessary that the arch should arise more

perpendicularly from the abutment, and that its general fig-

ure should be that of the longitudinal segment of an ellipse.

In small arches, in common buildings, where the disturbing
force is not great, it is of little consequence what is the

shape of the curve. The outlines may even be perfectly

straight, as in the tier of bricks which we frequently see

over a window. This is, strictly speaking, a real arch, pro-
vided the surfaces of the bricks tend toward a common
centre. It is the weakest kind of arch, and a part of it

is necessarily superfluous, since no greater portion can act

in supporting a weight above it than can be included be-

tween two curved or arched lines.
f

64. Gothic Arches. Besides these arches, various

others are in use. The acute or lancet arch, much used in

Gothic architecture, is described usually from two cen-

tres outside the arch. It is a strong arch for supporting
vertical pressure. The rampant arch is one in which the two

ends spring from unequal heights. The Jwrseshoe or Moorisli

arch is described from one or more 'centres placed above the

base line. In this arch, the lower parts are in danger of

being forced inward. The ogee arch is concavo-convex, and

therefore fit only for ornament.



52 ARCHITECTURE.

65. Arch: Definition*; Principles. The upper sur-

face is called the extrados, and the inner, the intrados.

The spring is where the intrados meets the abutments. The

span is the distance between the abutments. The wedge-

shaped stones which form an arch are sometimes called

vonssoirs, the uppermost being- the keystone. The part of a

pier from which an arch springs is called the impost, and the

curve formed by the under side of the voussoirs, the archi-

volt. It is necessary that the walls, abutments, and piers on

which arches are supported should be so firm as to resist the

lateral thrust, as well as vertical pressure, of the arch.

It will at once be seen that the lateral or sideway pressure
of an arch is very considerable, when we recollect that every
stone, or portion of the arch, is a wedge, a part of whose
force acts to separate the abutments. For want of attention

to this circumstance, important mistakes have been commit-

ted, the strength of buildings materially impaired, and their

ruin accelerated. In some cases, the want of lateral firmness

in the walls is compensated by a bar of iron stretched across

the span of the arch, and connecting the abutments, like the

tie-beam of a roof. This is the case in the cathedral of Milan
and some other Gothic buildings.

66. An Arcade : or continuation of arches, needs only
that the outer supports of the terminal arches should be

strong enough to resist horizontal pressure. In the inter-

mediate arches, the lateral force of each arch is counter-

acted by the opposing lateral force of the one contiguous to

it. In bridges, however, where individual arches are liable

to be destroyed by accident, it is desirable that each of the

piers should possess sufficient horizontal strength to resist

the lateral pressure of the adjoining arches.

67. The Vault: is the lateral continuation of an arch,

serving to cover an area or passage, and bearing the same
relation to the arch that the wall does to the column. A
simple vault is constructed on the principles of the arch, and
distributes its pressure equally along the walls or abutments.
A complex or groined vault is made by two vaults intersect^

ing each other, in which case the pressure is thrown upon
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springing points, and is greatly increased at those points.
The groined vault is common in Gothic architecture.

68. The Dome: sometimes called cupola,'^ a concave

covering to a building, or part of it, and may be either a

segment of a sphere, of a spheroid, or of any similar figure.
When built of stone, it is a very strong kind of structure,

even more so than the arch, since the tendency of each part
to fall is counteracted, not only by those above and below it,

but also by those on each side. It is only necessary that

the constituent pieces should have a common form, and that

this form should be somewhat like the frustum of a pyra-

mid, so that, when placed in its situation, its four angles may
point toward the centre, or axis, of the dome. During the

erection of a dome, it is not necessary that it should be sup-

ported by a centring, until complete, as is done in the arch.

Each circle of stones, when laid, is capable of supporting
itself without aid from those above it. It follows that the

dome may be left open at top, without a keystone, and

yet be perfectly secure in this respect, being the reverse of

the arch. The dome of the Pantheon, at Rome, has been

always open at top, and yet has stood unimpaired for nearly
2006 years. The upper circle of stones, though apparently
the weakest, is nevertheless often made to support the addi-

tional weight of a lantern or tower above it. In several of

the largest cathedrals, there are two domes, one within the

other, which contribute their joint support to the lantern,

which rests upon the top. In these buildings, the dome
rests upon a circular wall, which is supported, in its turn, by
arches upon massive pillars or piers. This construction is

called building upon pendentivcs, and gives open space and

room for passage beneath the dome.' The remarks which

have been made in regard to the abutments of the arch

apply equally to the walls immediately supporting a dome.

They must be of sufficient thickness and solidity to resist

the lateral pressure of the dome, which is very great. The

walls of the Roman Pantheon are of great depth and solid-

ity. In order that a dome in itself should be perfectly

secure, its lower parts must not be too nearly vertical, since,
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in this case, they- partake of the nature of perpendicular

walls, and are acted upon by the spreading force of the

parts above them. The dome of St. Paul's Church, in Lon-

don, and some others of similar construction, are bound with

chains or hoops of iron, to prevent them from spreading at

bottom. Domes which are made of wood depend, in part*

for their strength on their internal carpentry. The Halle

du Bled, in Paris, had originally a wooden dome more than

200 feet in diameter, and only one foot in thickness. This

has since been replaced by a dome of iron. (See Art-

235.)

69. Tlie Roof: is the most common and cheap method

of covering buildings, to protect them from rain and other

effects of the weather. It is sometimes flat, but more fre-

quently oblique, in its shape. The flat or platform roof is

the least advantageous for shedding rain, and is seldom used

in northern countries. The pent roof, consisting of two

oblique sides meeting at top, is the most common form.

These roofs are made steepest in cold climates, where they
are liable to be loaded with snow. Where the four sides of

the roof are all oblique, it is denominated a hipped roof, and

where there are two portions to the roof, of different ob-

liquity, it is a curb, or mansard roof. In modern times, roofs

are made almost exclusively of wood, though frequently
covered with incombustible materials. The internal struc-

ture or carpentry of roofs is a subject of considerable me-
chanical contrivance. The roof is supported by rafters,

which abut on the walls on each side, like the extremities of

an arch. If no other timbers existed except the rafters,

they would exert a strong lateral pressure on the walls,

tending to separate and overthrow them. To counteract

this lateral force, a tic-beam, as it is called, extends across,

receiving the ends of the rafters, and protecting the wall

from their horizontal thrust. To prevent the tie-beam from

sagging, or bending downward with its own weight, a king-

post is erected from this beam, to the upper angle of the

rafters, serving to connect the whole, and to suspend the

weight of the beam. This is called trussing. Queen-posts
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are sometimes added, parallel to the king-post, in large roofs I

also various other connecting timbers. In Gothic buildings,
where the vaults do not admit of the use of a tie-beam, the

rafters are prevented from spreading, as in an arch, by the

strength of the buttresses.

In comparing the lateral pressure of a high roof with

that of a low one, the length of the tie-beam being the same,
it will be seen that a high roof, from its containing most

materials, may produce the greatest pressure, as far as

weight is concerned. On the other hand, if the weight of

both be equal, then the low roof will exert the greater press-
ure

;
and this will increase in proportion to the distance of

the point at which perpendiculars, drawn from the end of

each rafter, would meet. In roofs, as well as in wooden
domes and bridges, the materials are subjected to an inter-

nal strain, to resist which the cohesive strength of the ma-

terial is relied on. On this account, beams should, when

possible, be of one piece. Where this cannot be effected,

two or more beams are connected together by splicing.

Spliced beams are never so strong as whole ones, yet they

may be made to approach the same strength, by affixing lat-

eral pieces, or by making the ends overlay each other, and

connecting them with bolts and straps of iron. The ten-

dency to separate is also resisted, by letting the two pieces
into each other by the process called scarfing. Mortices, in-

tended to truss or suspend one piece by another, should be

formed upon similar principles.
Roofs in the United States, after being boarded, receive

a secondary covering of shingles. When intended to be

incombustible, they are covered with slates or earthen tiles,

or with sheets of lead, copper, or tinned iron. Slates are

preferable to tiles, being lighter, and absorbing less moisture.

Metallic sheets are chiefly used for flat roofs, wooden domes,
and curved and angular surfaces, which require a flexible

material to cover them, or have not a sufficient pitch to shed

the rain from slates or shingles. Various artificial composi-
tions are occasionally used to cover roofs, the most common
of which are mixtures of tar with lime, and sometimes with

sand and gravel. Ency. Am. (See Art. 202.)
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ART. 70. Contructioii EseiUiai. Construction is that

part of the Science of Building which treats of the Laws of

Pressure and the strength of materials. To the architect

and builder a knowledge of it is absolutely essential. It de-

serves a larger place in a volume of this kind than is gene-

rally allotted to it. Something, indeed, has been said upon
the styles and principles, by which the best arrangements

may be ascertained ; yet, besides this, there is much to be

learned. For however precise or workmanlike the several

parts may be made, what will it avail, should the system of

framing, from deficient material, or an erroneous position of

its timbers, fail to sustain even its own weight ? Hence the

necessity for a knowledge of the laws of pressure and the

strength of materials. These being once understood, we
can with confidence determine the best position and dimen-

sions for the several pieces which compose a floor or a roof,

a partition or a bridge. As systems of framing are more or

less exposed to heavy weights and strains, and, in case of

failure, cause not only a loss of labor and material, but fre-

quently that of life itself, it is vety important that the mate-

rials employed be of the proper quantity and quality to serve

their destination. And, on the other hand, any superfluous
material is not only useless, but a positive injury, as it is an

unnecessary load upon the points of support. It is neces-

sary, therefore, to know the least quantity of material that

will suffice for strength. Not the least common fault in

framing is that of using an excess of material. Economy, at

least, would seem to require that this evil be abated. <

Before proceeding to consider the principles upon which
a system of framing should be constructed, let us attend to

a few of the elementary laws in Mechanics, which will be

found to be of great value in determining those principles.



INTERIOR OF THE CATHEDRAL, SIENNA.





DIRECT AND OBLIQUE SUPPORTS. 57

71. ILaws of Preure. (i.) A heavy body always ex-

erts a pressure equal to its own weight in a vertical direc-

tion. Example : Suppose an iron ball weighing 100 Ibs. be

supported upon the top of a perpendicular post (Fig. 22-A) ;

then the pressure exerted upon that post will be equal to

the weight of the ball, viz., 100 Ibs. (2.) But if two inclined

posts (Fig. 22-B) be substituted for the perpendicular sup-

port, the united pressures upon these posts will be more
than equal to the weight, and will be in proportion to their

position. The farther apart their feet are spread the greater
will be the pressure, and vice versa. Hence tremendous

strains may be exerted by a comparatively small weight.
And it follows, therefore, that a piece of timber intended

for a strut or post should be so placed that its axis may
coincide, as nearly as possible, with the direction of the

pressure. The direction of the pressure of the weight W
(Fig. 22-B) is in the vertical line b d\ and the weight W
would fall in that line if the two posts were removed

;
hence

the best position for a support for the weight would be in

A.
FlG. 22.

that line. But as it rarely occurs in systems of framing

that weights can be supported by any single resistance, they

requiring generally two or more supports (as in the case of

a roof supported by its rafters), it becomes important, there-

fore, to know the exact amount of pressure any certain

weight is capable of exerting upon oblique supports. Now,

it has been ascertained that the three lines of a triangle,

drawn parallel with the direction of three concurring forces

in equilibrium, are in proportion respectively to these
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forces. For example, in Fig. 22-B, we have a representation
of three forces concurring in a point, which forces are in

equilibrium and at rest
; thus, the weight W is one force,

and the resistances exerted by the two pieces of timber are

the other two forces. The direction in which the first force

acts is vertical downwards
;
the direction of the two other

forces is in the axis of each piece of timber respectively.
These three forces all tend towards the point b.

Draw the axes a b and b c of the two supports ;
make b d

vertical, and from d draw d e and df parallel with the axes

b c and b a repectively. Then the triangle b d e has its

lines parallel respectively with the direction of the three

forces
; thus, bd is in the direction of the weight W, d e paral-

lel with the axis of the timber D, and e b is in the direction of

the timber C. In accordance with the principle above stated,

the lengths of the sides of the triangle b d e are in propor-
tion respectively to the three forces aforesaid

; thus

As the length of the line b d
Is to the number of pounds in the weight W,
So is the length of the line e

To the number of pounds' pressure resisted by the

timber C.

Again
As the length of the line b d
Is to the number of pounds in the weight W,
So is the length of the line d c

To the number of pounds' pressure resisted by the

timber D.

And again
As the length of the line b e

Is to the pounds' pressure resisted by C,

So is the length of the line d e

To the pounds' pressure resisted by D.

These proportions are more briefly stated thus

\st. bd\ W\\be\P,

P being used as a symbol to represent the number of pounds'
pressure resisted by the timber C.
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2d. b d : W : : d e : Q,

Q representing the number of pounds' pressure resisted by
the timber D.

3d. b e \P\\de\ Q.

72. Parallelogram of Forces. This relation between
lines and pressures is applicable in ascertaining the pres-
sures induced by known weights throughout any system of

framing. The parallelogram b e df is called the Parallelo-

%ram of Forces ; the two lines If e- and bf being called the

components, and the line b d the resultant. Where it is re-

quired to find the components from a given resultant (Fig.

22-B\ the fourth line df/need not be drawn, for the triangle
b d e gives the desired result. But when the resultant is to

be ascertained from given components (Fig. 28), it is more
convenient to draw the fourth line.

73. The Resolution of Forces : Is the finding of two

or more forces which, acting in different directions, shall

exactly balance the pressure of any given single force. To
make a practical application of this, let it be required to

ascertain the oblique pressure in Fig. 22-B. In this figure the

line bd measures half an inch (0-5 inch), and the line be

three tenths of an inch (0-3 inch). Now if the weight W
be supposed to be 1200 pounds, then the first stated propor-

tion above,

b d\ W: : b e : P, becomes 0-5 : 1200 : : 0-3 : P.

And since the product of the means divided by one of the

extremes gives the other extreme, this proportion may be

put in the form of an equation^ thus

I200X 0-3 _ p
0-5

Performing the arithmetical operation here indicated -that

is, multiplying together the two quantities above the line,

and dividing the product by the quantity under the line the
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quotient will be equal to the quantity represented by P, viz.,

the pressure resisted by the timber C. Thus

1 200

0-5)360-0

720 = P.

The strain upon the timber C is, therefore, equal to 720

pounds; and since, in this case (the two timbers being in-

clined equally from the vertical), the line e d is equal to the

line b e, therefore the strain upon the other timber D is

also 720 pounds.

FIG. 23.

74. Inclination of Supports Unequal. In Fig. 23 the

pressures in the two supports are unequal. The supports
are also unequal in length. The length of the supports,

however, does not alter the amount of pressure from the

concentrated load supported ; but generally long timbers
are not so capable of resistance as shorter ones. For, not

being so stiff, they bend more readily, and, since the com-

pression is in proportion to the length, they therefore

shorten more. To ascertain the pressures in Fig. 23, let the

weight suspended from b d be equal to two and three quarter
tons (2-75 tons). The line b d measures five and a half

tenths of an inch (0-55 inch), and the line b e half an inch

(0-5 inch). Therefore, the proportion

b d\ W \\ b e : P becomes 0-55 : 2-75 : : 0-5 : P,
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and 2.75x0.5 /
0-55 (UNIVERSITY

0'55)i -375(2- 5 = ^.
I 10

275
275

The strain upon the timber A. is, therefore, equal to two
and a half tons.

Again, the line e d measures four tenths of an inch (0-4
inch) ; therefore, the proportion

b d \ W \ : e d \ Q becomes 0-55 : 2-75 : : 0-4 : Q,

and 2./5 x 0-4 __ ^
o-55

2-75
0-4

0-55) 1-100(2 = Q.
I 10

The strain upon the timber B is, therefore, equal to two
tons.

'/5. The Strains Exceed tBie Weights. Thus the united

pressures upon the two inclined supports always exceed the

weight. In the last case, 2f tons exert a pressure of 2\ and
2 tons, equal together to 4^ tons

;
and in the former case,

1200 pounds exert a pressure of twice 720 pounds, equal to

1440 pounds. The smaller the angle of inclination to the
'

horizontal, the greater will be the pressure upon the sup-

ports. So, in the frame of a roof, the strain upon the rafters

decreases gradually with the increase of the angle of incli-

nation to the horizon, the length of the rafter remaining the

same.
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This is true in comparing one system of framing with

another ;
but in a system where the concentrated weight to

be supported is not in the middle (see Fig. 23), and, in con-

sequence, the supports are not inclined equally, the strain

will be greatest upon that support which has the greatest

inclination to the horizon.

76. Minimum Thrust of Rafter. Ordinarily, as in

roofs, the load is not concentrated, it being that of the fram-

ing itself. Here the amount of the load will be in proportion

to the length of the rafter, and this will increase with the

increase of the angle of inclination, the span remaining the

same. So it is seen that in enlarging the angle of inclina-

tion to the horizon in order to lessen the oblique thrust, the

load is increased in consequence of the elongation of the

rafter, thus increasing the oblique thrust. Hence there is

an economical angle of inclination. A rafter will have the

least oblique thrust when its angle of inclination .to the

horizon is 35 16' nearly. This angle is attained very nearly
when the rafter rises 8J inches per foot, or when the height
B C (Fig. 32) is to the base A C as 8 is to 12, or as 0-7071 is

to i-o.

77. Practical Method ofDetermining Strain. A com-

parison of pressures in timbers, according to their position,

may be readily made by drawing various designs of framing
and estimating the several strains in accordance with the

parallelogram of forces, always drawing the triangle b d e

so that the three lines shall be parallel with the three forces

or pressures respectively. The length of the lines forming
this triangle is unimportant, but it will be found more con-

venient if the line drawn parallel with the known force is

made to contain as many inches as the known force contains

pounds, or as many tenths of an inch as pounds, or as many
inches as to is, or tenths of an inch as tons; or, in general,
as many divisions of any convenient scale as there are units

of weight or pressure in the known force. If drawn in this

manner, then the number of divisions of the same scale

found in the other two lines of the triangle will equal the

units of pressure or weight of the other two forces respect-
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ively, and the pressures sought will be ascertained simply by
applying the scale to the lines of the triangle.

For example, in Fig. 23, the vertical line b d, of the tri-

angle, measures fifty-five hundredths of an inch (0-55 inch) ;

the line b e, fifty hundredths (0-50 inch); and the line e d>

forty (0-40 inch). Now, if it be supposed that the vertical

pressure, or the weight suspended below b d, is equal to 55

pounds, then the pressure on A will equal 50 pounds, and

that on B will equal 40 pounds ; for, by the proportion above

stated,

b d: W-.-.b e:P,

55 : 55 :: 50: 50;

and so of the other pressure.
If a scale cannot be had of equal proportions with the

forces, the arithmetical process will be shortened somewhat

by making the line of the triangle that represents the known

weight equal to unity of a decimally divided scale, then the

other lines will be measured in tenths or hundredths ;
and

in the numerical statement of the proportions between the

lines and forces, the first term being unity, the fourth term

will be ascertained simply by multiplying the second and

third terms together.
For example, if the three lines are i, 0-7, and 1-3, and

the known weight is 6 tons, then

b d : W : : b e : P becomes

I : 6 : : 0-7 : P 4-2,

equals four and two tenths tons. Again

bd\ W : : e d : Q becomes

I :6:: 1-3: Q = 7-8,

equals seven and eight tenths tons.

78. Horizontal Thrust. In Fig. 24, the weight ^presses

the struts in the direction of their length ;
their feet, n n,

therefore, tend to move in the direction n o, and would so

move were they not opposed by a sufficient resistance from

the blocks, A and A. If a piece of each block be cut off at
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the horizontal line, a n, the feet of the struts would slide

away from each other along that line, in the direction na;

but if, instead of these, two pieces were cut off at the verti-

cal line, nb, then the struts would descend vertically. To

estimate the horizontal and the vertical pressures exerted by

the struts, let n o be made equal (upon any scale of equal

parts) to the number of tons with which the strut is pressed ;

FIG. 24.

construct the parallelogram of forces by drawing o c parallel

to an, and of parallel to bn; then nf (by the same scale)

shows the number of tons pressure that is exerted by the

strut in the direction n a, and n e shows the amount exerted

in the direction n b. By constructing designs similar to this,

giving various and dissimilar positions to the struts, and

then estimating the pressures, it will be found in every case

that the horizontal pressure of one strut is exactly equal to

that of the other, however much one strut may be inclined

more than the other; and also, that the united vertical

pressure of the two struts is exactly equal to the weight W.

(In this calculation the weight of the timbers has not been

taken into consideration, simply to avoid complication to

the learner. In practice it is requisite to include the weight
of the framing with the load upon the framing.)

Suppose that the two1

struts, B and B (Fig. 24), were
rafters of a roof, and that instead of the blocks, A and A, the

walls of a building were the supports: then, to prevent
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the walls from being thrown over by the thrust of B and B,
it would be desirable to remove the horizontal pressure.
Tnis may be done by uniting- the feet of the rafters with a

u
FIG. 25.

rope, iron rod, or piece of timber, as in Fig. 25. This figure
is similar to the truss of a roof. The horizontal strains on
the tie-beam, tending to pull it asunder in the direction of

its length, may be measured at the foot of the rafter, as was
shown at Fig* 24 ; but, it can be more readily and as accu-

rately measured by drawing from f and e horizontal lines to

the vertical line, b d, meeting it in o and o ; then/0 will be

the horizontal thrust at B, and co at A ; these will be found

to equal one another. When the rafters of a roof are thus

connected, all tendency to thrust out the walls horizontally
is removed, the only pressure on them is in a vertical direc-

tion, being equal to the weight of the roof and whatever it

has to support. This pressure is beneficial rather than

otherwise, as a roof having trusses thus formed, and the

trusses well braced to each other, tends to steady the walls.

79. Position of Supports./^. 26 and 27 exhibit two

methods of supporting the equal weights, W and W. Let

it be required to measure and compare the strains produced

on the pieces, A B and A C. Construct the parallelogram of

forces, ebfd, according to Art. 71. Then 3/will show the
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strain on A B, and b e the strain on A C. By comparing the

figures, bd being equal in each, it will be seen that the

strains in Fig. 26 are about three times as great as those in

B

FIG. 27.

Fig. 27 ;
the position of the pieces, A B and A C, in Fig. 27,

is therefore far preferable.

FIG. 28.

80. The Composition of Force : consists in ascertain-

ing the direction and amount of one force which shall be

just capable of balancing tivo or more given forces, acting in

different directions. This is only the reverse of the resolu-
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tion of forces ;
and the two are founded on one and the

same principle, and may be solved in the same manner. For

example, let A and B (Fig. 28) be two pieces of timber*

pressed in the direction of their length towards b A by a

force equal to 6 tons weight, and B 9 tons. To find the

direction and amount of pressure they would unitedly exert,

draw the lines b e and bf in a line with the axes of the

timbers, and make b e equal to the pressure exerted by B,

viz., 9 ;
also make bf equal to the pressure on A, viz., 6, and

complete the parallelogram of forces ebfd; then bd, the

diagonal of the parallelogram, will be the direction, and its

length, 9-25, will be the amount, of the united pressures of

A and of B. The line b d is termed the resultant of the two

forces bf and be. If A and B are to be supported by one

post, C
t
the best position for that post will be in the direc-

tion of the diagonal bd\ and it will require to be sufficiently

strong to support the united pressures of A and of B, which

are equal to 9-25 or 9^ tons.

FIG. 29.

81. Another Example. Let Fig. 29 represent a piece of

Laming commonly called a crane, which is used for hoist-

ing heavy weights by means of the rope, B bf, which passes

over a pulley at b. This, though similar to Figs. 26 and 27, is,

however, still materially different. In those figures, the

strain is in one direction only, viz., from b to d\ but in this

there are two strains, from A to B and from A to W.
^

The

strain in the direction A B is evidently equal to that in the
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direction A W. To ascertain the best position for the strut

A C, make b e equal to bf, and complete the parallelogram of

forces ebfd; then draw the diagonal bd, and it will be the

position required. Should the foot, C, of the strut be placed

either higher or lower, the strain on A C would be in-

creased. In constructing cranes, it is advisable, in order

that the piece B A may be under a gentle pressure, to place

the foot of the. strut a trifle lower than where the diagonal

bd would indicate, but never higher.

W

FIG. 30.

82. Tie and Strut. Timbers in a state of tension are

called ties, while such as are in a state of compression are

termed struts. This subject can be illustrated in the follow-

ing manner :

Let A and B (Fig. 30) represent beams of timber sup-

porting the weights W, W, and W'

; A having but one sup-

port, which is in the middle of its length, and B two, one at

each end. To show the nature of the strains, let each beam
be sawed in the middle from a to b. The effects are obvious:

the cut in the beam A will open, whereas that in B will

close. If the weights are heavy enough, the beam A will

break at b
;
while the cut in B will be closed perfectly tight

at a, and the beam be very little injured by it. But if, on

the other hand, the cuts be made in the bottom edge of the

timbers, from c to b, B will be seriously injured, while A
will scarcely be affected. . By this it appears evident that,

in a piece of timber subject to a pressure across the direction

of its length, the fibres are exposed to contrary strains. If

the timber is supported at both ends, as at B, those from the

top edge down to the middle are compressed in the direction
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of their length, while those from the middle to the bottom

edge are in a state of tension
;
but if the beam is supported

as at A, the contrary effect is produced ; while the fibres at

the middle of either beam are not at all strained. The strains

in a framed truss are of the same nature as those in a single
beam. The truss for a roof, being supported at each end,
has its tie-beam in a state of tension, while its rafters are

compressed in the direction of their length. By this, it

appears highly important that pieces in a state of tension

should be distinguished from such as are compressed, in

order that the former may be preserved continuous. A strut

may be constructed of two or more pieces ; yet, where there

are many joints, it will not resist compression so well.

83. To Distinguish Ties from Struts. This may be done

by the following rule. In Fig. 22-B, the timbers C and D are

the sustaining forces, and the weight Fis the straining force ;

and if the support be removed, the straining force would
move from the point of support b towards d. Let it be

required to ascertain whether the sustaining forces arc

stretched or pressed by the straining force. Rule : Upon the

direction of the straining force b d, as a diagonal, construct

a parallelogram ebfd whose sides shall be parallel with the

direction of the sustaining forces C and D\ through the

point b draw a line parallel to the diagonal ef\ this may
then be called the dividing line between ties and struts.

Because all those supports which are on that side of the

dividing line which the straining force would occupy if

unresisted are compressed, while those on the other side of

the dividing line are stretched.

In Fig. 22-B, the supports are both compressed, being on

that side of the dividing line which the straining force would

occupy if unresisted. In Figs. 26 and 27, in which A B and

A C are the sustaining forces, A C is compressed, whereas

A B is in a state of tension
;
A C being on that side of the

line h i which the straining force would occupy if unresisted,

and A B on the opposite side. The place of the latter might
be supplied by a chain or rope. In Fig. 25, the foot of the

rafter at A is sustained by two forces, the wall and the tie-
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beam, one perpendicular
and the other horizontal: the

direction of the straining force is indicated by the line b a.

The dividing line h i, ascertained by the rule, shows that the

wall is pressed and the tie-beam stretched.

FIG. 31.

84. Another Example. Let E A B F (Fig. 31) represent

a gate, supported by hinges at A and E. In this case, the

straining force is the weight of the materials, and the direc-

tion of course vertical. Ascertain the dividing line at the

several points, G, B, /, J, H, and F. It will then appear that

the force at G is sustained by A G and G E, and the dividing

line shows that th'e former is stretched and the latter com-

pressed. The force at H is supported by A H and HE the

former stretched and the latter compressed. The force at B
is opposed by HB and A B, one pressed, the other stretched.

The force at F is sustained by G F and FE, G F being
stretched and FE pressed. By this it appears that A B is in

a state of tension, and E F of compression ; also, that A H
and G F are stretched, while BH and G E are compressed :

which shows the necessity of having A H and G F each in

one whole length, while BH and G E may be, as they are

shown, each in two pieces. The force at J is sustained by
GJ and J H, the former stretched and the latter compressed.
The piece C D is neither stretched nor pressed, and could

be dispensed with if the joinings at J and / could be made
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as effectually without it. In case A B should fail, then C D
would be in a state of tension.

85. Centre of Gravity. The centre of gravity of a uni-

form prism or cylinder is in its axis, at the middle of its

length ;
that of a triangle is in a line drawn from one angle

to the middle of the opposite side, and at one third of the

length of the line from that side
;
that of a right-angled tri-

angle, at a point distant from the perpendicular equal to one
third of the base, and distant from the base equal to one
third of the perpendicular ; that of a pyramid or cone, in

the axis and at one quarter of the height from the base.

The centre of gravity of a trapezoid (a four-sided, figure

having only two of its sides parallel) is in a line joining the

centres of the two parallel sides, and at a distance from the

longest of the parallel sides equal to the product of the

length in the sum of twice the shorter added to the longer
of the parallel sides, divided by three times the sum of the

two parallel sides. Algebraically thus :

,_'_(2_-

3 ( +

where d equals the distance from the longest of the parallel

sides, / the length of the line joining the two parallel sides,

and a the shorter and b the longer of the parallel sides.

Example. A rafter 25 feet long has the larger end 14

inches wide, and the smaller end 10 inches wide: how far

from the larger end is the centre of gravity located ?

Here / = 25, a |f, and b = |f,

- _ .

25_x_ = 25x34,
"

WP)
'

3(W + )

"

3xff 3x24
-

=11-8 = 11 feet 9! inches nearly.

In irregular bodies with plain sides, the centre of gravity

may be found by balancing them upon the edge of a prism

upon the edge of a table in two positions, making a line

each time upon the body in a line with the edge of the prism,

and the intersection of those lines will indicate the point re-
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quired. Or suspend the article by a cord or thread attached

to one corner or edge ;
also from the same point of suspen-

sion hang a plumb-line, and mark its position on the face of

the article; again, suspend the article from another corner

or side (nearly at right angles to its former position), and

mark the position of the plumb-line upon its face
;
then the

intersection of the two lines will be the centre of gravity.

FIG. 32.

86. Effect of the Weight of Inclined Beam. An in-

clined post or strut supporting some heavy pressure applied
at its upper end, as at Fig. 25, exerts a pressure at its foot in

the direction of its length, or nearly so. But when such a

beam is loaded uniformly over its whole length, as the rafter

of a roof, the pressure at its foot varies considerably from

the direction of its length. For example, let A B (Fig. 32)

be a beam leaning against the wall B c, and supported at its

foot by the abutment A, in the beam A c, and let o be the

centre of gravity of the beam. Through o draw the verti-

cal line b d
y
and from B draw the horizontal line B b, cutting

b dm b\ join b and A, and b A will be the direction of the

thrust. To prevent the beam from loosing its footing, the

joint at A should be made at right angles to b A. The
amount of pressure will be found thus : Let b d (by any scale

of equal parts) equal the number of tons upon the beam
A B\ draw d e parallel to B b ; then /; c (by the same scale)

equals the pressure in the direction b A
;
and e d the pres-

sure against the wall at B and also the horizontal thrust at

A^ as these are always equal in a construction of this kind.

The horizontal thrust of an inclined beam (Fig. 32) the
effect of its own weight may be calculated thus :

Rule. Multiply the weight of the beam in pounds by
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its base, A C, in feet, and by the distance in feet of its centre

of gravity, o (see Art. 85), from the lower end, at A, and
divide this product by the product of the length, A B, into

the height, B C, and the quotient will be the horizontal

thrust in pounds. This may be stated thus : H =
,

where d equals the distance of the centre of gravity, 0, from
the lower end

;
b equals the base, A C ; iv equals the weight

of the beam
;
h equals the height, D C ; /equals the length

of the beam ; and H equals the horizontal thrust.

Example. A beam 20 feet long weighs 300 pounds; its

centre of gravity is at 9 feet from its lower end
;

it is so in-

clined that its base is 16 feet and its height 12 feet : what is

the horizontal thrust ?

TT d b w , o x 16 x 300 Q x 4 x 25Here becomes - 0x4x5hi 12x20 5

= 180 =H =. the horizontal thrust.

This rule is for cases where the centre of gravity does

not occur at the middle of the length of the beam, although
it is applicable when it does occur at the middle

; yet a

shorter rule will suffice in this case, and it is thus:

Rule. Multiply the weight of the rafter in pounds by
the base, A C (Fig. 32), in feet, and divide the product by
twice the height, B C, in feet, and the quotient will be the

horizontal thrust, when the centre of gravity occurs at the

middle of the beam.

If the inclined beam is loaded with an equally distributed

load, add this load to the weight of the beam, and use this

total weight in the rule instead of the weight of the beam.

And generally, if the centre of gravity of the combined

weights of the beam and load does not occur at the centre

of the length of the beam, then the former rule is to be used.

In Fig. 33, two equal beams are supported at their feet by
the abutments in the tie-beam. This case is similar to the

last ; for it is obvious that each beam is in precisely the

position of the beam in Fig. 32. The horizontal pressures at

B, being equal and opposite, balance one another ;
and their

horizontal thrusts at the tie-beam are also equal. (See Art.
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78 Fig. 25.) When the height of a roof (Fig. 33) is one

fourth of the span, or of a shed (Fig. 32) is one halt the

span, the horizontal thrust of a rafter, whose centre of grav-

FIG. 33.

ity is at the middle of its length, is exactly equal to the

weight distributed uniformly over its surface.

In shed or lean-to roofs, as Fig. 32, the horizontal pressure
will be entirely removed if the bearings of the rafters, as A
and B (Fig. 34), are made horizontal provided, however,

FIG. 34.

that the rafters and other framing do not bend between the

points of support. If a beam or rafter have a natural curve,
the convex or rounding edge should be laid uppermost.

87. Effect of Load 011 Beam. The strain in a uniformly
loaded beam, supported at each end, is greatest at the

middle of its length. Hence mortices, large knots, and other

defects should be kept as far as possible from that point ;

and in resting a load upon a beam, as a partition upon a

floor-beam, the weight should be so adjusted, if possible,

that it will bear at or near the ends.

Twice the weight that will break a beam, acting at the

centre of its length, is required to break it when equally
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distributed over its length ; and precisely the same deflec-

tion or .rag- 'will be produced on a beam by a load equally
distributed that five eighths ot the load will produce if act-

ing at the centre of its length.

88. Effect 011 Bern-ings. When a uniformly loaded
beam is supported at each end on level bearings (the beam
itself being either horizontal or inclined), the amount of

pressure caused by the load on each point of support is

equal to one half the load ; and this is also the ase when
the load is concentrated at the middle of the beam, or has

its centre of gravity at the middle of the beam ; but when
the load is unequally distributed, or concentrated so that its

centre of gravity occurs at some other point than the middle

of the beam, then the amount of pressure caused by the

load on one of the points of support is unequal to that on

the other. The precise amount on each may be ascertained

by the following rule.

Rule. Multiply the weight W (Fig. 35) by its distance,

C B, from its nearest point of support, B y
and divide the pro-,

duct by the length, A B, of the beam, and the quotient will

FIG 35.

be the amount of pressure on the remote point of support, A.

Again, deduct this amount from the weight W, and the re-

mainder will be the amount of pressure on the near point of

support, B ; or, multiply the weight W by its distance, A C,

from the remote point of support, A, and divide the pro-

duct by the length, A B, and the quotient will be the amount

of pressure on the near point of support, B.

When / equals the length between the bearings A and B,

n AC, m C B, and W the load ; then
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I

JL_/- A = the amount of pressure at A, and

. ? = ,5 = the amount of pressure at ^?.

Example. A beam 20 feet long between the bearings

has a load of 100 pounds concentrated at 3 feet from one of

the bearings : what is the portion of this weight sustained by
each bearing ?

Here W 100 ; , 17 ; m, 3 ;
and /, 20.

W m
Hence A=-j-

Load on A = 15 pounds.
Load on ^ = 85 pounds,
Total weight = 100 pounds.

RESISTANCE OF MATERIALS.

89. Weight Strength. Preliminary to designing a roof-

truss or other piece of framing, a knowledge of two subjects

is essential : one is, the effect of gravity acting upon the

various parts of the intended structure ;
the other, the power

of resistance possessed by the materials of which the framing
is to be constructed. The former subject having been

treated of in the preceding pages, it remains now to call at-

tention to the latter.

90. Quality of Materials. Materials used in construc-

tion are constituted in their structure either of fibres

(threads) or of grains, and are termed, the former fibrous,

the latter granular. All woods and wrought metals are

fibrous, while cast iron, stone, glass, etc., are granular. The

strength of a granular material lies in the power of attrac-

tion acting among the grains of matter of which the mate-

rial is composed, by which it resists any attempt to separate
its grains or particles of matter. A fibre of wood or ot
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wrought metal has a strength by which it resists being com-

pressed or shortened, and finally crushed
; also a strength

by which it resists being extended or made longer, and

finally sundered. There is another kind of strength in a

fibrous material : it is the adhesion of one fibre to another

along their sides, or the lateral adhesion of the fibres.

91. Manner of Rcisting. In the strain applied to a

post supporting a weight imposed upon it (Fig. 36), we
have an instance of an essay to shorten the fibres of which

the timber is composed. The strength of the timber in

this case is termed the resistance to compression. In the strain

on a piece of timber like a king-post or suspending piece

(A, Fig. 37), we have an instance of an essay to extend or

lengthen the fibres of the material. The strength here ex-

hibited is termed the resistance to tension. When a piece of

timber is strained like a floor-beam or any horizontal piece

FIG 37.

FIG 38.

carrying a load (Fig. 38). we have an instance in which the

two strains of compression and tension are both brought

into action ; the fibres of the upper portion of the beam be-

ing compressed, and those of the under part being stretched.
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This kind of strength of timber is termed resistance to cross-

strains. In each of these three kinds of strain to which tim-

ber is subjected, the power of resistance is in a measure due

to the lateral adhesion of the fibres, not so much perhaps in

the simple tensile strain, yet to a considerable degree in the

compressive and cross strains. But the power of timber,

by which it resists -a pressure acting compressively in the

direction of the length of the fibres, tending to separate the

timber by splitting off a part, as in the case of the end of a

tie-beam, against which the foot of the rafter presses, is

wholly due to the lateral adhesion of the fibres.

92. Strength and Stiffne. The strengtJi of materials

is their power to resist fracture, while the stiffness of mate-

rials is their capability to resist deflection or sagging. A
knowledge of their strengtJi is useful, in order to determine

their limits of size to sustain given weights safely ;
but a

knowledge of their stiffness is more important, as in almost

all constructions it is desirable not only that the load be safely

sustained, but that no appearance of weakness be manifested

by any sensible deflection or sagging.

93. Experiments : Constants In the investigation of

the laws applicable to the resistance of materials, it is found

that the dimensions length, breadth, and thickness bear

certain relations to the weight or pressure to which the

piece is subjected. These relations are general ; they exist

quite independently of the peculiarities of any specific piece
of material. These proportions between the dimensions

and the load are found to exist alike in wood, metal, stone,

and glass, or other material. One law applies alike to all

materials
;
but the capability of materials to resist differs in

accordance with the compactness and cohesion of particles,
and the tenacity and adhesion of fibres, those qualities upon
which depends the superiority of one kind of material over
another. The capability of each particular kind of material

is ascertained by experiments, made upon several specimens,
and an average of the results thus obtained is taken as an
index of the capability of that material, and is introduced
in the rules as a constant number, each specific kind of ma-
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terial having- its own special constant, obtained by ex-

perimenting- on specimens of that peculiar material. The
results of experiments made to test the resistance of various
materials useful in construction their capability to resist

the three strains before named will now be introduced.

94. Resistance to Compression. The following table

exhibits the results of experiments made to test the resist-

ance to compression of such woods as are in common use in

this country for the purposes of construction.

TABLE I. RESISTANCE TO COMPRESSION.

MATERIAL.
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pieces submitted to experiment were of ordinary good

quality, such as would be deemed proper to be used in

framing. The prisms crushed were generally small, about

2 inches long, and from I inch to i-J inches square ;
some

were wider one way than the other, but all containing in

area of cross section from I to 2 inches. The weight given
in the table is the average weight per superficial inch.

Of the first six woods named, there were nine specimens
of each tested ;

of the others, generally three specimens.
The results for the first six woods named are taken

from the author's work on Transverse Strains, published by

John Wiley & Sons, New York. The results for these six

woods, as well as those for all the others named in the table,

were obtained by experiments carefully made by the author.

The first six woods named were tested in 1874 and 1876, and

upon a testing machine, in which the power is transmitted

to the pieces tested, by levers acting upon knife-edges.
For a description of this machine, see Transverse Strains,

Art. 704. The woods named in the table, other than the

first six, were tested some twenty years since, and upon a

hydraulic press, which, owing to friction, gave results too

low.

The results, as thus ascertained, were given to the public
in the 7th edition of this work, in 1857. In the present edi-

tion, the figures in Table I., for these woods, are those

which have resulted by adding to the results given by the

hydraulic press a certain quantity thought to be requisite
to compensate for the loss by friction. Thus corrected, the

figures in the table may be taken as sufficiently near approx-
imations for use in the rules, although not so trustworthy
as the results given for the first six woods named, as these
were obtained upon a superior testing machine, as above
stated.

In the preceding table, the second column contains the

specific gravity of the several kinds of wood, showing their

comparative density. The weight in pounds of a cubic foot
of any kind of wood or other material is equal to its

specific gravity multiplied by 62-5, this number being the

weight in pounds of a cubic foot of water. The third column
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contains the weight in pounds required to crush a prism

having a base of one inch square ;
the pressure applied to

the fibres longitudinally. In practice, it is usual never to

load material exposed to compression with more than one

fourth of the crushing weight, and generally with from one

sixth to one tenth only. The fourth column contains the

weight in pounds w
r

hich, applied in line with the length of the

fibres, is required to force off a part of the piece, causing the

fibres to separate by sliding, the surface separated being one

inch square. The fifth column contains the weight in pounds

required to crush the piece when the pressure is applied to the

fibres transversely, the piece being one inch thick, and the

surface crushed being one inch square, and depressed one

twentieth of an inch deep. The sixth column contains the

value of P in the rules
;
P being the weight in pounds, ap-

plied to the fibres transversely, which is required to make a

sensible impression one inch square on the side of the piece,

this being the greatest weight that would be proper for a

post to be loaded with per inch surface of bearing, resting

on the side of the kind of wood set opposite in the table. A

greater weight would, in proportion to the excess, crush the

side of the wood under the post, and proportionably derange

the framing, if not cause a total failure. It will be observed

that the measure of this resistance is useful in limiting the

load on a post according to the kind of material contained,

not in the post, but in the timber upon which the post presses.

95. Heitance to Tension. The resistance of materials

to the force of stretching, as exemplified in the case of a

rope from which a weight is suspended, is termed the resist-

ance to tension. In fibrous materials, this force will be differ-

ent in the same specimen, in accordance \vith the direction

in which the force acts, whether in the direction of the length

of the fibres or at right angles to the direction of their length.

It has been found that, in hard woods, the resistance in the

former direction is about eight to ten times what it is in the

latter; and in soft woods, straight, grained, such as white

pine, the resistance is from sixteen to twenty times. A

knowledge of the resistance in the direction of the 1

the most useful in practice.
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In the following table are recorded the results of ex-

periments made to test this resistance in some of the woods

in common use, and also in iron, cast and wrought. Each

specimen of the woods was turned cylindrical, and about 2

inches diameter, and then the middle part reduced to about

f of an inch diameter, at the middle of the reduced part,

and thence gradually increased toward each end, where it

was considerably larger at its junction with the enlarged
end. The results, in the case of the iron and of the first six

woods named, are taken from the author's work, Trans-

verse Strains, Table XX. Experiments were made upon
the other three woods named by a hydraulic press, some

twenty years since, and the results were first published in

the 7th edition of this work, in 1857. These results, owing
to friction, were too low. Adding to them what is supposed
to be the loss by friction of the machine, the results thus

corrected are what are given for these three woods in the

following table, and may be taken as fair approximations,
but are not so trustworthy as the figures given for the other

six woods and for the metals.

TABLE II. RESISTANCE TO TENSION.

MATERIAL.
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produce rupture. Just what portion of this should be taken

as the safe capability will depend upon the nature of the

strain to which the material is to be exposed. In practice it

is found that, through defects in workmanship, the attach-

ments may be so made as to cause the strain to act along one

side of the piece, instead of through its axis; and that in this

case fracture will be produced with one third of the strain

that can be sustained through the axis. Due to this and

other contingencies, it is usual to subject materials exposed
to tensile strain with only from one sixth to one tenth of

the breaking weight.

96. Resistance to Transverse Strains. In the follow-

ing table are recorded the results of experiments made to

test the capability of the various materials named to resist

the effects of transverse strain. The figures are taken from

the author's work, Transverse Strains, before referred to.

TABLE III. TRANSVERSE STRAINS.

MATERIAL.



84 CONSTRUCTION.

The figures in the second column, headed B, denote the

weight in pounds required to break a unit of the material

named when suspended from the middle, the piece being

supported at each end. The unit of material is a bar one inch

square and one foot long between the bearings. The third

column, headed F, contains the values of the several mate-

rials named as to their resistance to flexure, as explained in

Arts. 302-305, Transverse Strains. These values of F, as

constants, are used in the rules. The fourth column, headed

^, contains the values of the several materials named, denot-

ing the elasticity of the fibres, as explained in Art. 312,

Transverse Strains. These values of e, as constants, are

used in the rules.

The fifth column, headed a
y
contains for the several ma-

terials named the ratio of the resistance to flexure as com-

pared with that to rupture, and which, as constants used

in the rules, indicate the margin of safety to be given for

each kind of material. The figures given in each case show
the smallest possible value that may be safely given to a, the

factor of safety, x In practice it is generally taken higher
than the amount given in the table. For example, in the

table the value of B, the constant for rupture by transverse

strain for spruce, is 550.

Now, if the dimensions of a spruce beam to carry a given

weight be computed by the rules, using the constant B, at

550, the beam will be of such a size that the given weight
will just break it.

But if, in the computation, instead of taking the full

value of B, only a part of it be taken, then the beam will not

break immediately; and if the part taken be so small that

its effect upon the fibres shall not be sufficient to strain them

beyond their limit of elasticity, the beam will be capable of

sustaining the weight for an indefinite period ;
in this case

the beam will be loaded by what is termed the safe weight.

Or, since the value of a for spruce is 2-23 in the table, if, in-

stead of taking B at 550, its full value, only the quotient

arising from a division of B by a be taken or 550 divided

by 2-23, which equals 246-6 then the beam will be of suffi-

cient size to carry the load safely. Therefore, while the con-
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slant B is to be used for a breaking weight, for a safe load
n

the quotient of - is to be used. But, again, if a be taken at

its value as given in the table, the computed beam will be

loaded up to its limit of safety. So loaded that, if the load

be increased only in a small degree, the limit of safety will

be passed, and the beam liable, in time, to fail by rupture.

Therefore, as the values of a, in the table, are the smallest

possible, it is prudent in practice always to take a larger
than the table value. For example, the table value of

a for spruce is 2-23, but in practice let it be taken at 3

or 4.

97. Resistance to Compression. The resistance of ma-

terials to the force of compression may be considered in

several ways. Posts having their heights less than ten

times their least sides will crush before bending ;
these

belong to one class : another class is that which com-

prises all posts the height of which is equal to ten times

their least sides, or more than ten times
;

these will bend

before crushing. Then there remains to be considered

the manner in which the pressure is applied : whether in

line with the fibres, or transversely to them
; and, again,

whether the pressure tends to crush the fibres, or simply
to force off a part of the piece by splitting. The various

pressures may be comprised in the four classes following,

namely :

ist. When the pressure is applied to the fibres trans-

versely.
2d. When the pressure is applied to the fibres longi-

tudinally, and so as to split off the part pressed against,

causing the fibres to separate by sliding.

3d. When the pressure is applied to the fibres longi-

tudinally, and on short pieces.

4th. When the pressure is applied to the fibres longi-

tudinally, and on long pieces.
These four classes will now be considered in their reg-

ular order.
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98. Compression Transversely to the Fibres. In this

first class of compression, experiment has shown that the

resistance is in proportion to the number of fibres pressed,
that is, in proportion to the area. For example, if 5000

pounds is required to crush a prism with a base i inch

square, it will require 20,000 pounds to crush a prism having
a base of 2 by 2 inches, equal to 4 inches area

;
because 4

times 5000 equals 20000.

Therefore, if any given surface pressed be multiplied by
the pressure per inch which the kind of material pressed

may be safely trusted with, the product will be the total

pressure which may with safety be put upon the given sur-

face. Now, the capability for this kind of resistance is given
in column P, in Table I., for each kind of material named in

the table. Therefore, to find the limit of weight, proceed
as follows:

99. The Limit of Weight. To ascertain what weight
a post may be loaded with, so as not to crush the surface

against which it presses, we have

Rule 1. Multiply the area of the post in inches by the

value of P, Table I., and the product will be the weight re-

quired in pounds ; or

W=AP. (i.)

Example. A post, 8 by 10 inches, stands upon a white-

pine girder; the area equals 8 x 10 = 80 inches. This being

multiplied by 320, the value of P, Table I., set opposite white

pine, the product, 25600, is the required weight in pounds.

100. Area of Post. To ascertain what area a post must
have in order to prevent the post, loaded with a given

weight, from crushing the surface against which it presses,
we have

Rule II. Divide the given weight in pounds by the value

of P, Table I., and the quotient will be the area required in

inches
;
or--
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Example. A post standing on a Georgia-pine girder is

loaded with 100,000 pounds: what must be its area? The

weight, 100000, divided by 900, the value of /> Table I., set

opposite Georgia pine, the quotient, in- 11, is the required
area in inches. The post may be 10 by ii|, or 10 by 11

inches; or if square each side will be 10-54 inches, or II T
'

inches diameter if round.

101. Rupture by Sliding. In this the second class of

rupture by compression, it has been ascertained by ex-

periment that the resistance is in proportion to the area of

the surface separated without regard to the form of the sur-

face. Now, in Table I., column //, we have the ultimate

resistance to this strain of the several materials named.

But to obtain the safe load per inch, the ultimate resist-

ance of the table is to be divided by a factor of safety, of

such value as circumstances may seem to require. Gener-

ally this factor may be taken at 3. Then to obtain the safe

load for any given case, we have but to multiply the given
surface by the ultimate resistance, and divide by the factor

of safety ; therefore, proceed as follows :

102. Tle Limit of Weight. To ascertain what weight

may be sustained safely by the resistance of a given area of

surface, when the weight tends to split off the part pressed

against by causing, in case of fracture, one surface to slide

on the other, we have

Rule III. Multiply the area of the surface by the value

of Hi in Table I. divide by the factor of safety, and the

quotient will be the weight required in pounds ;
or

W = -*-Z (3-)

Example. The foot of a rafter is framed into the end of

its tie-beam, so that the uncut substance of the tie-beam is

1 5 inches long from the end of the tie-beam to the joint of

the rafter; the tie-beam is of white pine, and is 6 inches

thick: what amount of horizontal thrust will this end of

the tie-beam sustain, without danger of having the end oi
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the tie-beam split off? Here the area of surface that sus-

tains the pressure is 6 by 15 inches, equal to 90 inches.

This multiplied by 480, the value of H, set opposite to

white pine, Table I., and divided by 3, as a factor of safety,

gives a quotient of 14400, and this is the required weight in

pounds.

103. Area of Surface. To ascertain the area of surface

that is required to sustain a given weight safely, when the

weight tends to split off the part pressed against, by causing,
in case of fracture, one 'surface to slide on the other, we
have

Rule IV. Divide the given weight in pounds by the

value of H, Table I.
; multiply the quotient by the factor of

safety, and the product will be the required area in inches ;

or

(40

Example. The load on a rafter causes a horizontal thrust

at its foot of 40,000 pounds, tending to split off the end of

the tie-beam : what must be the length of the tie-beam be-

yond the line where the foot of the rafter is framed into it,

the tie-beam being of Georgia pine, and 9 inches thick ?

The weight, or horizontal thrust, 40000, divided by 840, the

value of //, Table I., set opposite Georgia pine, gives a quo-
tient of 47-619, and this multiplied by 3, as a factor of safety,

gives a product of 142-857. This, the area of surface in

inches, divided by 9, the breadth of the surface strained

(equal to the thickness of the tie-beam), the quotient, 15.87,
is the length in inches from the end of the tie-beam to the
rafter joint, say 16 inches.

I04.-Tcnon and Splices.-A knowledge of this kind of

resistance of materials is useful, also, in ascertaining the

length of framed tenons, so as to prevent the pin, or key,
with which they are fastened from tearing out

; and, also, in

cases where tie-beams, or other timber under a tensile strain,
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are spliced, this rule gives the length of the joggle at each

end of the splice.

105. Stout Post. These comprise the third class of ob-

jects subject to compression (Art. 97), and include all posts
which are less than ten diameters high. The resistance to

compression, in this class, is ascertained to be directly in pro-

portion to the area of cross-section of the post.

Now in Table I., column C
y
the ultimate resistance to

crushing is given for the several kinds of materials named ;

from which the safe resistance per inch may be obtained by

dividing it by a proper factor of safety. Having the safe

resistance per inch, the resistance of any given post may be

determined by multiplying it by the area of the cross-section

of the post. Therefore, proceed as follows :

106. TBie Limit of Weight. To find the weight that can

be safely sustained by a post, when the height of the post is

less than ten times the diameter if round, or ten times the

thickness if rectangular, and the direction of the pressure

coinciding with the axis, we have

RHle V. Multiply the area of the cross-section of the

post in inches by the value of C, in Table I.
;
divide the pro-

duct by the factor of safety, and the quotient will be the re-

quired weight in pounds ;
or

W= ^-. (5.)

Example. A Georgia-pine post is 6 feet high, and in

cross-section 8 x 12 inches: what weight will it safely sus-

tain? The height of this post, 12 x 6 = 72 inches, which is

less than lox 8 (the size of the narrowest side) 80 inches ;

it therefore belongs to the class coming under this rule. The

area = 8 x 12 = 96 inches
;
this multiplied by 9500, the value

of C, in the table, set opposite Georgia pine, and divided by

6, as a factor of safety, the quotient, 152000, is the weight in

pounds required. It will be observed that the weight would

be the same for a Georgia-pine post of any height less than
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10 times 8 inches = So inches = 6 feet 8 inches, provided its

breadth and thickness remain the same, 12 and 8 inches.

107. Area of Post. To find the area of the cross-sec-

tion of a post to sustain a given weight safely, the height of

the post being less than ten times the diameter if round, or

ten times the least side if rectangular, the pressure coinciding
with the axis, we have

Rule VI. Divide the given weight in pounds by the

value of C, in Table I.
-, multiply the quotient by the factor

of safety, and the product will be the required area in

inches ;
or

(6.)

Example. A weight of 40,000 pounds is to be sustained

by a white-pine post 4 feet high : what must be its area of

section to sustain the weight safely ? Here, 40000 divided

by 6650, the value of C, in Table I., set opposite white pine,
and the quotient multiplied by 6, as a factor of safety, the pro-
duct is 36 ; this, therefore, is the required area, and such a

post may be 6 x 6 inches. To find the least side, so that it

shall not be less than one tenth of the height, divide the

height, reduced to inches, by 10, and make the least side to

exceed this quotient. The area divided by the least side so

determined will give the wide side. If, however, by this

process, the first side found should prove to be the greatest,
then the size of the post is to be found by Rule IX., X., or

XI.

108. Area of Round Pot. In case the post is to be

round, its diameter may be found by reference to the Table
of Circles in the Appendix, in the column of diameters, op-

posite to the area of the post to be found in the column of

areas, or opposite to the next nearest area. For example,
suppose the required area, as just found by the example
under Rule VI., is 36 : by reference to the column of areas,

35.78 is the nearest to 36, and the diameter set opposite is
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6.75, which is a trifle too small. The post may therefore be,

say, 6| inches diameter.

109. Slender Posts. When the height of a post is less

than ten times its diameter, the resistance of the post to

crushing is approximately in proportion to its area of cross-

section. But when the height is equal to or more than ten

diameters, the resistance per square inch is diminished. The
resistance diminishes as the height is increased, the diameter

remaining the same (Transverse Strains, Art. 643). The

strength of a slender post consists in a combination of the

resistances of the material to bending and to crushing, and

is represented in the following rule :

110. The Limit of Weight. To ascertain the weight
that can be sustained safely by a post the height of which

is at least ten times its least side if rectangular, or ten times

its diameter if round, the direction of the pressure coincid-

ing with the axis, we have

Rule VII. Divide the height of the post in inches by the

diameter, or least side, in inches
; multiply the quotient by

itself, or take its square ; multiply the square by the value

of e, in Table III., set opposite the kind of material of which

the post is made ; to the product add the half of itself ;
to

the sum add unity (or one) ; multiply this sum by the factor

of safety, and reserve the product for use, as below. Now

multiply the area of cross-section of the post in inches by
the value of C, in Table I., set opposite the material of the

post, and divide the product by the above reserved product;

the quotient will be the required weight in pounds ;
or

(7.)

Example : A Round Post. What weight may be safely

placed upon a post of Georgia pine 10 inches diameter and

10 feet high, the pressure coinciding with the axis of the

post? The height of the post, dox 12 =) 120 inches, divided

by 10, its diameter, gives a quotient of 12; this multiplied
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by itself gives 144, its square; and this by -00109, the value

of e for Georgia pine, in Table III., gives 15696 ;
to which

adding its half, the sum is 0-23544; to which adding unity,
the sum is 1-23544 ;

and this multiplied by 7, as a factor of

safety, the product is 8 -648, the reserved divisor. Now the

area of the post is (see Table of Areas of Circles, in the Ap-
pendix, opposite its diameter, 10) 78-54; this multiplied by
9500, the value of C for Georgia pine, in Table I., gives a

product of 746130; which divided by 8-648, the above re-

served divisor, gives a quotient of 86278, the required weight
in pounds.

Anotlier Example : A Rectangular Post. What weight may
be safely placed upon a white-pine post lox 12 inches, and

15 feet high, the pressure coinciding with the axis of the

post? Proceeding according to the rule, we find the height
of the post to be 180 inches, which divided by 10, the least

side of the post, gives 18
;
this multiplied by itself gives 324*

its square ; which multiplied by -0014, the value of e for

white pine, in Table III., gives -4536; to which adding its

half, the sum is -6804; to which adding unity, the sum is

i -6804 ; and this multiplied by 8, as a factor of safety, the pro-
duct is 13-4432, the reserved divisor. Now the area of the

post, ( 10 x 12 =) 120 inches, multiplied by 6650, the value of

C for white pine, in Table I., gives a product of 798,000, and
this divided by 13-4432, the above reserved divisor, the quo-
tient, 59360, is the required weight in pounds.

III. Diameter of the Post: when Round. To ascertain
the size of a round post to sustain safely a given weight,
when the height of the post is at least ten times the diameter

;

the direction of the pressure coinciding with the axis of the

post; we have

Rule VIII. Multiply the given weight by the factor of

safety, and divide the product by 1-5708 times the value of C
for the material of the post, found in Table I. ; reserve the

quotient, calling its value G. Now multiply 432 times the
value of c for the material of the post, found in Table III.,

by the square of the height in feet, and by the above quo-
tient G ; to the product add the square of G : extract the
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square root of the sum, and to it add the value of G
; then

the square root of this sum will be the required diameter;
or

r Wa
Cr nzr

,5708 L

d =4 / . / At? (T~f / 8 O. f^ 4- /C
* (90

Example. What should be the diameter of a locust post
10 feet high to sustain safely 40,000 pounds, the pressure

coinciding with the axis ? Proceeding by the rule, the given

weight multiplied by 6, taken as a factor of safety, equals

240000. Dividing this by 1-5708 times 11700, the value of

C for locust, in Table I., the quotient, 13-06, is the value of

G, the square of which is 170-53. Now, the value of e for

locust, in Table III., is -0015. This multiplied by 432, by
100, the square of the height, and by the above value of G,

gives a product of 846-2 ;
which added to 170-53, the above

square of G, gives the sum of 1016-73. To 31-89, the square
root of this, add the above value of G ; then 6-7, the square
root of this sum, is the required diameter of the post. The

post therefore requires to be 6-7, say 6- inches diameter.

112. Side of tlic Post: when Square. To ascertain the

side of a square post to sustain safely a given weight, when

the height of the post is at least ten times the side ;
the pres-

sure coinciding with the axis ; we have

Rule IX. Multiply the given weight by the factor of

safety, and divide the product by twice the value of C for

the material of the post, found in Table I.
;
reserve the quo-

tient, calling its value G.. Now multiply 432 times the value

of e for the material of the post, found in Table III., by the

square of the height in feet, and by the above quotient G\

to the product add the square of G ; extract the square root

of the sum, and to it add the value of G ; then the square

root of this sum will be the required side of the post ; or

. Co-)
2 C
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S =4/ 4/432 Ge I
* + G'

2 + G.

Example. What should be the side of a Georgia-pine

square post 1 5 feet high to sustain safely 50,000 pounds, the

pressure coinciding with the axis of the post? Proceeding

by the rule, 50,000 pounds multiplied by 6, as a factor of

safety, gives 300000 ;
this divided by 2 x 9500 (the value of

)= 19000, the quotient, 15-789, is the value of G. The
value of e for Georgia pine is -00109; tne square of the

height is 225 ; then, 432 times -00109 by 225 and by 15-789

(the above value of G) gives a product of 1672 - 86 ; the square
of equals 249-31 ;

this added to 1672-86 gives a sum of

1922- 17, the square root of which is 43-843 ; which added* to

15-789, the value of G, gives 59-632, the square root of which

is 7-722, the required side of the post. The post, therefore,

requires to be, say, 7f inches square.

113. Thickness of a Rectangular Post. This may be

definitely ascertained when the proportion which the thick-

ness shall bear to the breadth shall have been previously
determined. For example, when the proportion is as 6 to 8,

then i J times 6 equals 8, and the proportion is as 1 to i;
again, when the proportion is as 8 to 10, then ij times 8

equals 10, and in this case the proportion is as i to ij. Let

the latter figure of the ratio i to ij, i to ij, etc., be called

n, or so that the proportion shall be as i to n
y
then

To ascertain the thickness of a post to sustain safely a

given weight, when the height is at least ten times the thick-

ness
;
the action of the weight coinciding with the axis

;
we

have

Rule X. Multiply the given weight by the factor of

safety, and divide the product by twice the value of C for

the material of the post, found in Table I., multiplied by ;/,

as above explained ; reserve the quotient, calling it G. Now
multiply 432 times the value of e for the material of the post, .

found in Table III., by the square of the height in feet, and

by the above quotient G ;
to the product add the square of

G ; extract the square root of the sum, and to it add th value
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of G
;
then the square root of this sum will be the required

thickness of the post ;
or

WaG-~
TT-

-.
(12.)2 C n v '

t = V 1/432 G (130

Example. What should be the thickness of a white-pine
rectangular post 20 feet high to sustain safely 30,000 pounds,
the pressure coinciding with the axis, and the proportion
between the thickness and breadth to be as 10 to 12, or as I

to i -2 ? Proceeding according to the rule, we have the pro-
duct of 30000, the given weight, by 6, as a factor of safety,

equals 180000 ; this divided by twice Cx n, or 2 x 6650 x i -2,

(=15960) gives a quotient of 11-278, the value of G. Then,
we have c= -0014, the square of the height equals 400;

therefore, 432 x -0014x400x11.278 = 2728-43. Tothisadd-

ing 127-2, the square of
,
we have 2855 63, the square

root of which is 53-438; and this added to G gives 64-716,
the square root of which is 8-045, tne required thickness of

the post. Now, since the thickness is in proportion to the

breadth as i to 1-2, therefore 8-045 x 1-2 = 9-654, the re-

quired width. The post, therefore, may be made 8x9!
inches.

114-. Breadth of a Rectangular Post. When the thick-

ness of a post is fixed, and the breadth required ; then, to

ascertain the breadth of a rectangular post to sustain safely

a given weight, the direction of the pressure of which coin-

cides with the axis of the post, we have

Rule XI. Divide the height in inches by the given thick-

ness, and multiply the quotient by itself, or take its square ;

multiply this square by the value of e for the material of the

post, found in Table 111.
;
to the product add its half, and to

the sum add unity ; multiply this sum by the given weight,

and by the factor of safety ;
divide the product by the pro-

duct of the given thickness multiplied by the value of C for
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the material of the post, found in Table I., and the quotient
will be the required breadth ; or

Example. What should be the breadth of a spruce post
1 8 feet high and 6 inches thick to sustain safely 25,000

pounds, the pressure coinciding with the axis of the post ?

According to the rule, 216 (= 12 x 18), the height in inches,

divided by 6, the given thickness, gives a quotient of 36, the

square of which is 1296; the value of e for spruce is -00098 ;

this multiplied by 1296, the above square, equals i -27 ;
which

increased by -635, its half, amounts to 1-905 ;
this increased

by unity, the sum is 2-905 ;
which multiplied by the given

weight, and by the factor of safety, gives a product of

435749; and this divided by 6 (the given thickness) times 7850

(the value of C for spruce) = 47 1 oo, gives a quotient of 9 2 5 1 6,

the required breadth of the post. The post, therefore, re-

quires to be 6 x 9^ inches.

Observe that when the breadth obtained by the rule is

less than the given thickness, the result shows that the con-

ditions of the case are incompatible with the rule, and that

a new computation must be made
; taking now for the

breadth what was before understood to be the thickness,

and proceeding in this case, by Rule X., to find the thickness.

115. Resistance to Tenion. In Art. 95 are recorded the

results of experiments made to test the resistance of vari-

ous materials to tensile strain, showing in each case the ca-

pability to such resistance per square inch of sectional area.

The action of materials in resisting a tensile strain is quite

simple ;
their resistance is found to be directly as their sec-

tional area. Hence

116. The rim it of Weight. To ascertain the weight or

pressure that may be safely applied to a beam or rod as a

tensile strain, we have

Rule XII. Multiply the area of the cross-section of the

beam or rod in inches by the value of 'T, Table II.
;
divide
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the product by the factor of safety, and the quotient will be
the required weight in pounds ;

or

(150

The cross-section here intended is that taken at the small-

est part of the beam or rod. A beam, in framing, is usually
cut with mortices

;
the area will probably be smallest at the

severest cutting ;
the area used in the rule must be that of the

uncut fibres only.

Example. The tie-beam of a roof-truss is of white pine,
6 x 10 inches

;
the cutting for the foot of the rafter reduces

the uncut area to 40 inches : what amount of horizontal thrust

from the foot of the rafter will this tie-beam safely sustain ?

Here 40 times 12000, the value of T, equals 480000; this

divided by 6, as a factor of safety, gives 80000, the required

weight in pounds.

(17. Sectional Area. To ascertain the sectional area of

a beam or rod that will sustain a given weight safely, when

applied as a tensile strain, we have

Rule XIII. Multiply the given weight in pounds by the

factor of safety ;
divide the product by the value of T, Table

II., and the quotient will be the area required in inches;

or

A=^. (16.)

This is the area of uncut fibres. If the piece is to be cut

for mortices, or for any other purpose, then for this an

adequate addition is to be made to the result found by the

rule.

Example. A rafter produces a thrust horizontally of 80,000

pounds ;
the tie-beam is to be of oak : what must be the

area of the cross-section of the tie-beam in order to sustain

the rafter safely ? The given weight, 80000, multiplied by

10, as a factor of safety, gives 800000; this divided by 19500,

the value of 7", Table II., the quotient, 41, is the area of uncut

fibres. This should have usually one half of its amount
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added to it as an allowance for cutting; therefore, 41+21
= 62. The tie-beam may be 6 x loj inches.

Another Example. A tie-rod of American refined

wrought iron is required to sustain safely 36,000 pounds :

what should be its area of cross-section ? Taking 7 as the

factor of safety, 7x36000= 252000; and this divided by
60000, the value of 7", Table II., gives a quotient of 4- 2 inches,

the required area of the rod.

118. Weight of the Suspending Piece Included. Pieces

subjected to a tensile strain are frequently suspended verti-

cally. In this case, at the upper end, ,the strain is due not

only to the weight attached at the lower end, but also to the

weight of the rod itself. Usually, in timber, this is small

in comparison with the load, and may be neglected ;

although in very long timbers, and where accuracy is decid-

edly essential, as, also, when the rod is of iron, it may form

a part of the rule. Taking the effect of the weight of the

beam into account, the relation existing between the weights
and the beam requires that the rule for the weight should

be as follows :

Rule XIV. Divide the value of T for the material of the

beam or rod, Table II., by the factor of safety ;
from the

quotient subtract 0-434 times the specific gravity of the ma-
terial in the beam or rod multiplied by the length of the

beam or rod in feet
; multiply the remainder by the area of

cross-section in inches, and the product will be the required

weight in pounds ;
or

W=A -0-434

N. B. This rule is based upon the condition that the sus-

pending piece be not cut by mortices or in any other way.
Example. What weight may be safely sustained by a

white-pine rod 4x6 inches, 40 feet long, suspended verti-

cally? For white pine the value of T is 12000; this divid-

ed by 8, as a factor of safety, gives 1 500 ;
from which sub-

tracting 0-434 times 0-458 (the specific gravity of white pine,
Table II.) multiplied by 40, the length in feet, the remainder
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is 1492-049; which multiplied by 24 (
= 4x6, the area of

cross-section) equals 35,761 pounds, the required weight to be

carried. The weight which the rule would give, neglecting
the weight of the rod, would have been 36000; ordinarily,
so slight a difference would be quite unimportant.

119. Area of Suspending Piece. To ascertain the area

of a suspended rod to sustain safely a given. weight, when

the^ weight of the suspending piece is regarded, we have

Rule XV. Multiply 0-434 times the specific gravity of

the suspending piece by the length in feet
;
deduct the pro-

duct from the quotient arising from a division of the value

of T, Table II., by the factor of safety, and with the remain-

der divide the given weight in pounds ;
the quotient will be

the required area in inches
;
or

A = T ,

'

(18.)
o-434/.y

a'

N.B. This rule is based upon the condition that the rod

be not injured in anywise by cutting.

Example. What should be the area of a bar of English

cast iron 20 feet long to sustain safely, suspended from its

lower end, a weight of 5000 pounds ? Taking the factor of

safety at 7-0, and the specific gravity also at 7, and the

value of T, Table II., at 17000, we have the product of

0-434 x 7-0 x 20 = 60-76; then 17000 divided by 7 gives

a quotient of 2428-57; from which deducting the above

60-76, there remains 2367-81 ; dividing 5000, the given

weight, by this remainder, we have the quotient, 2-11, which

is the required area in inches.

RESISTANCE TO TRANSVERSE STRAINS.

120. Tranvere Strains: Rupture. A load placed

upon a beam, laid horizontally or inclined, will bend it, and,

if the weight be proportionally large, will break it. The

power in the material that resists this bending or breaking

is termed the resistance to cross-strains, or transverse strains.
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While in posts or struts the material is compressed or short-

ened, and in ties and suspending pieces it is extended or

lengthened, in beams subjected to cross-strains the material

is both compressed and extended. (See Art. 91.) When the

beam is bent the fibres on the concave side are compressed,
while those on the convex side are extended. The line

where these two portions of the beam meet that is, the

portion compressed and the portion extended the hori-

zontal line of juncture, is termed the neutral line or plane.

It is so called because at this line the fibres are neither com-

pressed nor extended, and hence are under no strain what-

ever. The location of this line or plane is not far from the

middle of the depth of the beam, when the strain is not suf-

ficient to injure the elasticity of the material
;

but it re-

moves towards the concave or convex side of the beam as

the strain is increased, until, at the period of rupture, its

distance from the top of the beam is in proportion to its dis-

tance from the bottom of the beam as the tensile strength of

the material is to its compressive strength.

121. Location of Mortices. In order that the diminution

of the strength of a beam by framing be as small as possible,
all mortices should be located at or near the middle of the

depth. There is a prevalent idea with some, who are aware
that the upper fibres of a beam are compressed when sub-

ject to cross-strains, that it is not injurious to cut these top

fibres, provided that the cutting be for the insertion of an-

other piece of timber as in the case of gaining the ends of

beams into the side of a girder. They suppose that the piece
filled in will as effectually resist the compression as the part
removed would have done, had it not been taken out. Now,
besides the effect of shrinkage, which of itself is quite suf-

ficient to prevent the proper resistance to the strain, there
is the mechanical difficulty of fitting the joints perfectly
throughout ; and, also, a great loss in the power of resist-

ance, as the material is so much less capable of resistance
when pressed at right angles to the direction of the fibres

than when directly with them, as the results of the experi-
ments in the tables show.
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122. Transverse Strains : Relation of Weight to Di-

mensions. The strength of various materials, in their re-

sistance to cross-strains, is given in Table III., Art. 96. The
second column of the table contains the results of experi-
ments made to test their resistance to rupture. In the case

of each material, the figures given and represented by B
indicate the pounds at the middle required to break a unit

of the material, or a piece i inch square and i foot long
between the bearings upon which the piece rests. To be

able to use these indices of strength, in the computation of

the strength of large beams, it is requisite, first, to establish

the relation between the unit of material and the larger
beam. Now, it may be easily comprehended that the strength
of beams will be in proportion to their breadth

;
that is,

when the length and depth remain the same, the strength
will be directly as the breadth

;
lor it is evident that a beam

2 inches broad will bear twice as much as one which is only
i inch broad, or that one which is 6 inches broad will bear

three times as much as one which is 2 inches broad. This

establishes the relation of the weight to the breadth. With
the depth, however, the relation is different

;
the strength is

greater than simply in proportion to the depth. If the

boards cut from a squared piece of timber be piled up in

the order in which they came from the timber, and be loaded

with a heavy weight at the middle, the boards will deflect

or sag much more than they would have done in the timber

before sawing. The greater strength of the material when

in a solid piece of timber is due to the cohesion of the fibres

at the line of separation, by which the several boards, before

sawing, are prevented from sliding upon each other, and

thus the resistance to compression and tension is made to

contribute to the strength. This resistance is found to be

in proportion to the depth. Thus the strength due to the

depth is, first, that which arises from the quantity of the

material (the greater the depth, the more the material),

which is in proportion to the depth ; then, that which en-

sues from the cohesion of the fibres in such a manner as to

prevent sliding ;
this is also as the depth. Combining the

two, we have, as the total result, the resistance in proportion
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to the square of the depth. The relation between the

weight and the length is such that the longer the beam is,

the less it will resist
;
a beam which is 20 feet long will sus-

tain only half as much as one which is 10 feet long ;
the

breadth and depth each being the same in the two beams.

From this it results that the resistance is inversely in pro-

portion to the length. To obtain, therefore, the relation

between the strength of the unit of material and that of a

larger beam, we have these facts, namely : the strength of

the unit is the value of B, as recorded in Table III.
;
and

the strength of the larger beam, represented . by W, the

weight required to break it, is the product of the breadth

into the square of the depth, divided by the length ; or,

while for the unit we have the ratio

B\ i,

we have for the larger beam the ratio

Therefore, putting these ratios in an expressed proportion,
we have

From which (the product of the means equalling the pro-
duct of the extremes

;
see Art. 373) we have

w =

In which W represents the pounds required to break a

beam, when acting at the middle between the two supports

upon which the beam is laid
;
of which beam b represents

the breadth and d the depth, both in inches, and / the length
in feet between the supports ;

and B is from Table III., and

represents the pounds required to break a unit of material

like that contained in the larger beam.
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123. Safe Weight: Load at Middle. The relation

established, in the last article, between the weight and the

dimensions is that which exists at the moment of rupture.
The rule (19.) derived therefrom is not, therefore, directly

practicable for computing the dimensions of beams for

buildings. From it, however, one may readily be deduced
which shall be practicable. In the fifth column of Table III.

are given the least values of a, the factor of safety, explained
in Art. 96. Now, if in place of B y the symbol for the break-

ing weight, the quotient of B divided by a be substituted,

then the rule at once becomes practicable ;
the results now

being in consonance with the requirements for materials

used in buildings. Thus, with this modification, we have

Therefore, to ascertain the weight which a beam may be

safely loaded with at the centre, we have

Rule XVI. Multiply the value of B, Table HI., for the

kind of material in the beam by the breadth and by the

square of the depth of the beam in inches
;
divide the pro-

duct by the product of the factor of safety into the length

of the beam between bearings in feet, and the quotient will

be the weight in pounds that the beam will safely sustain

at the middle of its length.

Example. What weight in pounds can be suspended

safely from the middle of a Georgia-pine beam 4x 10 inches,

and 20 feet long between the bearings ? For Georgia pine the

value of B, in Table III., is 850, and the least value of a is

1-84. For reasons given in Art. 96, let a be taken as high

as 4; then, in this case, the value of b is 4, and that of d is

10,' while that of/ is 20. Therefore, proceeding by the rule,

850 x 4 x io
2 = 340000 ;

this divided by 4 x 20 ( 80) gives

a quotient of 4250 pounds, the required weight.

Observe that, had the value of a been taken at 3, instead

of 4, the result by the rule would have been a load of 5667

pounds, instead of 4250, and the larger amount would be

none too much for a safe load upon such a beam ; although,
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with it, the deflection would be one third greater than with

the lesser load. The value of a should always be assigned

higher than the figures of the table, which show it at its

least value ;
but just how much higher must depend upon

the firmness required and the conditions of each particular

case.

124. Breadth of Beam willi Safe Load. By a simple

transposition of the factors in equation (20.), we obtain

a rule for the breadth of the beam.

Therefore, to ascertain what should be the breadth of a

beam of given depth and length to safely sustain at the

middle a given weight, we have

Rule XVII. Multiply the given weight in pounds by
the factor of safety, and by the length in feet, and divide the

product by the square of the depth multiplied by the value

of B for the material in the beam, in Table III.
;
the quotient

will be the required breadth.

Example. What should be the breadth of a white-pine
beam 8 inches deep and 10 feet long between bearings to

sustain safely 2400 pounds at the middle ? For white pine
the value of B, in Table III., is 500. Taking the value of a

at 4, and proceeding by the rule, we have 2400 x4x 10 =
96000 ; this divided by (8

a x 500 =) 32000 gives a quotient
of 3, the required breadth of the beam.

125. Depth of Beam with Safe Load. A transposition
of the factors in equation (21.), and marking it for extraction

of the square root, gives

a rule for the depth of a beam. Therefore, to ascertain what
should be the depth of a beam of given breadth and length
to safely sustain a given weight at the middle, we have
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Rule XVIIL Multiply the given weight by the factor of

safety, and by the length in feet
;
divide the product by the

product of the breadth into the value of B for the kind of

wood, Table III.
; then the square root of the quotient will

be the required depth.

Example. What should be the depth of a spruce beam
5 inches broad and lofeet long between bearings to sustain

safely, at middle, 4500 pounds ? The value of B from the table

is 550; taking a at 4, and proceeding by the rule, we have

4500 x 4 x 15 = 270000; this divided by (550 x 5 =) 2750

gives a quotient of 98-18, the square root of which is 9-909,
the required depth of the beam. The beam should be 5 x 10

inches.

126. Safe Load at any Point. When the load is at the

middle of a beam it exerts the greatest possible strain
;
at

any other point the strain would be less. The strain de-

creases gradually as it approaches one of the bearings, and

when arrived at the bearing its effect upon the beam as a

cross-strain is zero. The effect of a weight upon a beam is

in proportion to its distance from one of the bearings, mul-

tiplied by the portion of the load borne by that bearing.
The load upon a beam is divided upon the two bearings,

as shown at Art. 88. The weight which is required to rup-
ture a beam is in proportion to the breadth and square of

the depth, b d*, as before shown, and also in proportion to

the length divided by 4 times the rectangle of the two parts

into which the load divides the length, or (see Fig. 35).
4 MI 11

This, when the load is at the middle, may be put as

= i a result coinciding with the relation before

4x|./xi/ /

given in Art. 122, viz. : "The resistance is inversely in pro-

portion to the length." The total resistance, therefore, put-

b d* I

ting the two statements together, is in proportion to -
A /// /

7727

There are, therefore, these two ratios, viz., W \
- - and
4 m i*

B : I, from which we have the proportion
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4 m n

from which we have

4 ; n
(23 .}

r>

This is the relation at the point of rupture, and when is

used instead of B, the expression gives the safe weight.

Therefore

(24.)
4 a m n

is an expression for the safe weight. Now, to ascertain the

weight which may be safely borne by a beam at any point
in its length, we have

Rule XIX. Multiply the breadth by the square of the

depth, by the length in feet, and by the value of B for the

material of the beam, in Table III.
;
divide the product by

the product of four times the factor of safety into the rec-

tangle of the two parts into which the centre of gravity of

the weight divides the beam, and the quotient will be the

required weight in pounds.

Example. What weight may be safely sustained at 3 feet

from one end of a Georgia-pine beam which is 4 x 10 inches,

and 20 feet long? The value of B for Georgia pine, in

Table III., is 850 ; therefore, by the rule, 4 x io
a
x 20 x 850 =

6800000. Taking the factor of safety at 4, we have

4x4x3x17=816. Using this as a divisor with which to

divide the former product, we have as a quotient 8333

pounds, the required weight.

127. Breadth or Depth: Load at any Point. By a

proper transposition of the factors of (24.) we obtain

, , a 4 W a in 11

an expression showing- the product of the breadth into the

square of the depth ; hence, to ascertain the breadth or
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depth of a beam to sustain safely a given weight located at

any point on the beam, we have

Rule XX. Multiply four times the given weight by the

factor of safety, and by the rectangle of the two parts into

which the load divides the length ;
divide the product by

the product of the length into the value of B for the mate-
rial of the beam, found in Table III., and the quotient will be

equal to the product of the breadth into the square of the

depth. Now, to obtain the breadth, divide this product by
the square of the depth, and the quotient will be the required
breadth. But if, instead of the breadth, the depth be de-

sired, divide the said product by the breadth ; then the

square root of the quotient will be the required depth.

Example. What should be the breadth (the depth being

8) of a white-pine beam 12 feet long to safely sustain 3500

pounds at 3 feet from one end ? Also, what should oe its

depth when the breadth is 3 inches? By the rule, taking
the factor of safety at 4, 4 x 3500 x 4 x 3 x 9 = 1512000.

The value of B for white pine, in Table III., is 500 ;
there-

fore, 500 x 12 = 6000; with this as divisor, dividing 1512000,

the quotient is 252. Now, to obtain the breadth when the

depth is 8, 252 divided by (8 x 8 =) 64 gives a quotient of

3-9375, the required breadth ;
or the beam may be, say, 4 x 8.

Again, when the breadth is 3 inches, we have for the quotient

of 252 divided by 3
= 84, and the square root of 84 is 9- 165,

or 9^ inches. For this case, therefore, the beam should be,

say, 3 x 9J inches.

128. Weight Uniformly Distributed. When the load is

spread out uniformly over the length of a beam, the beam

will require just twice the weight to break it that would be

required if the weight were concentrated at the centre.

Therefore, we have W , where U represents the dis-

tributed load. Substituting this value of W in equation

(20.), we have

U__Bbd\
2

~~ '

a I
'

U= 2-*** (26.)

-

a I
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Therefore, to ascertain the weight which may be safely sus-

tained, when uniformly distributed over the length of a

beam, we have

Rule XXI. Multiply twice the breadth by the square of

the depth, and by the value of B for the material of the

beam, in Table III., and divide the product by the product
of the length in feet by the factor of safety, and the quotient

will be the required weight in pounds.

Example. What weight uniformly distributed may be

safely sustained upon a hemlock beam 4x9 inches, and 20

feet long? The value of B for hemlock, in Table III., is

450 ; therefore, by the rule, 2 x 4 x 9' x 450 = 291600. Tak-

ing the factor of safety at 4, we have 4 x 20 80, the pro-

duct by which the former product is to be divided. This

division produces a quotient of 3645, the required weight.

129. Breadth or Depth : Load Uniformly Distributed.

By a proper transposition of factors in (26.), we obtain

an expression giving the value of the breadth into the square
of the depth. From this, therefore, to ascertain the breadth

or the depth of a beam to sustain safely a given weight uni-

formly distributed over the length of a beam, we have
Rule XXII. Multiply the given weight by the factor of

safety, and by the length ;
divide the product by the pro-

duct of twice the value of B for the material of the beam,
in Table III., and the quotient will be equal to the breadth

into the square of the depth. Now, to find the breadth,
divide the said quotient by the square of the depth ;

but if,

instead of the breadth, the depth be required, then divide

said quotient by the breadth, and the square root of this

quotient will be the required depth.

Example. What should be the size of a white-pine beam 20
feet long to sustain safely 10,000 pounds uniformly distributed

over its length ? The value of B for white pine, in Table III.,

is 500. Let the factor of safety be taken at 4. Then, by the

rule, loooo x 4 x 20 = 800000 ; this divided by (2 x 500 =)
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1000 gives a quotient of 800. Now, if the depth be fixed at

12, then the said quotient, 800, divided by (12 x 12=) 144

gives 5-5-,
the required breadth of beam

;
and the beam may

be, say, 5! x 12. Again, if the breadth is fixed, say, at 6, and
the depth is required, then the said quotient, 8co, divided by
6 gives 133^, the square root of which, 1 1 -

55, is the required

depth. The beam in this case should therefore be, say,
6 x I if inches.

130. [Load per Foot Superficial. When several^beams
are laid in a tier, placed at equal distances apart, as in a tier

of floor-beams, it is desirable to know what should be their

size in order to sustain a load equally distributed over the

floor.

If the distance apart at which they are placed, measured

from the centres of the beams, be multiplied by the length
of the beams between bearings, the product will equal the

area of the floor sustained by one beam
;
and if this area be

multiplied by the weight upon a superficial foot of the floor,

the product will equal the total load uniformly distributed

over the length of the beam
; or, if c be put to represent the

distance apart between the centres of the beams in feet, and

/ represent the length in feet of the beam between bearings,

and/ equal the pounds per superficial foot on the floor,

then the product of these, or cf I, will represent the uni-

formly distributed load on a beam
;
but this load was before

represented by U (Art. 128); therefore, we have cfl= U,

and they may be substituted for it in (26.) and (27.). Thus

we have

b d* = cflal

or

(28.)

Therefore, to ascertain the size of floor-beams to sustain

safely a given load per superficial foot, we have

Rule XXIII. Multiply the given weight per superficial

foot by the factor of safety, by the distance between the
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centres of the beams in feet, and by the square of the length

in feet; divide the product by twice the value of B for the

material of the beams, in Table III., and the quotient will be

equal to the breadth into the square of the depth. Now, to

obtain the breadth, divide said quotient by the square of the

depth, and this quotient will be the required breadth. But

if, instead of the breadth, the depth be required, divide the

aforesaid quotient by the breadth ;
then the square root of

this quotient will be the required depth.

Example. What should be the size of white-pine floor-

beams 20 feet long, placed i# inches from centres, to sustain

safely 90 pounds per superficial foot, including the weight
of the materials of construction the beams, flooring, plas-

tering, etc. ? The value of B for white pine is 500 ;
the

factor of safety may be put at 5. Then, by the rule, we
have 90 x 5 x -ff x 2O

2 = 240000. This divided by (2 x 500

=) 1000 gives 240. Now, for the breadth, if the depth be

fixed at 9 inches, then 240 divided by (9*
=

)
8 1 gives a

quotient of 2-963. The beams therefore should be, say,

3x9. But if the breadth be fixed, say, at 2-5 inches, then

240 divided by 2-5 gives a quotient of 96, the square root of

which is 9-8 nearly. The beams in this case would require
therefore to be, say, 2^ x 10 inches.

N. B. It is well to observe that the question decided

by Rule XXII. is simply that of strcngtli only. Floor-beams

computed by it will be quite safe against rupture, but they
will in most cases deflect much more than would be consist-

ent with their good appearance. Floor-beams should be

computed by the rules which include the effect of deflection.

(See Art. 152.)

131. Levers: Load at One End. The beams so far con-

sidered as being exposed to transverse strains have been

supposed to be supported at each end. When a piece is

held firmly at one end only, and loaded at the other, it is

termed a lever ; and the load which a piece so held and
loaded will sustain is equal to one fourth that which the

same piece would sustain if it were supported at each end
and loaded at the middle. Or, the strain in a beam sup-



LEVERS TO SUSTAIN GIVEN WEIGHTS. Ill

ported at each end caused by a given weight located at the

middle is equal to that in a lever of the same breadth and

depth, when the length of the latter is equal to on6 half that

of the beam, and the load at its end is equal to one half of

that at the middle of the beam. Or, when P represents the

load at the end of the lever, and n its length, then W2P,
and l2n. Substituting these values of W and / in equa-
tion (20.), we have

4

2an
from which

p-Bbd*
T^P

Hence, to ascertain the weight which may be safely sus-

tained at the end of a lever, we have

Rule XXIV. Multiply the breadth of the lever by the

square of its depth, and by the value of B for the material

of the lever, in Table III. ;
divide the product by the pro-

duct of four times the length in feet into the factor of safety,

and the quotient will be the required weight in pounds.

Example. What weight can be safely sustained at the

end of a maple lever of which the breadth is 2 inches, the

depth is 4 inches, and the length is 6 feet ? The value of B
for maple, in Table III., is uoo; therefore, by the rule,

2 x4
2
x i TOO = 35200. And, taking the factor of safety at 5,

4x5x6= 1 20, and 35200 divided by 120 gives a quotient of

293 '33> or 293^- pounds.
N. B. When a lever is loaded with a weight uniformly

distributed over its length, it will sustain just twice the load

which can be sustained at the end.

132. Levers: Breadth or Depth. By a proper trans-

position of the factors in (29.), we obtain

L (30.)
Z>

Hence, to ascertain the breadth or depth of a lever to sus-

tain safely a given weight, we have



I I2 CONSTRUCTION.

Rule XXV. Multiply four times the given weight by
the length of the lever, and by the factor of safety ;

divide

the product by the value of B for the material of the lever,

in Table III., and the quotient will be equal to the breadth

multiplied by the square of the depth. Now, if the breadth

be required, divide said quotient by the square of the depth,

and this quotient will be the required breadth
;

but if,

instead of the breadth, the depth be required, divide the

said quotient by the breadth ;
then the square root of this

quotient will be the required depth.

Example. What should be the size of a cherry lever 5

feet long to sustain safely 250 pounds at its end? Proceed-

ing by the rule, taking the factor of safety at 5, we have

4x250x5x5 = 25000. The value of B for cherry, in Table

III., is 650 ;
and 25000 divided by 650 gives a quotient of

38-46. Now, if the depth be fixed at 4, then 38-46 divided

by (4x4 =) 16 gives a quotient of 2-4, the required breadth.

But if the breadth be fixed at 2, then 38-46 divided by 2

gives a quotient of 19-23, the square root of which is 4-38,

the required depth. Therefore, the lever maybe 2-4x4,
or 2 x

4-f- inches.

133. Deflection: Relation to Weight. When a load is

placed upon a beam supported at each end, the beam bends

more or less
; the distance that the beam descends under

the operation of the load, measured at the middle of .its

length, is termed its deflection. In an investigation of the

laws of deflection it has been demonstrated, and experiments
have confirmed it, that while the elasticity of the material

remains uninjured by the pressure, or is injured in but a

small degree, the amount of deflection is directly in propor-
tion to the weight producing it

;
for example, if 1000 pounds

laid upon a beam is found to cause it to deflect or descend at

the middle a quarter of an inch, then 2000 pounds will cause

it to deflect half an inch, 3000 pounds will deflect it three

fourths of an inch, and so on.

134. Deflection : Relation to Dimensions. In Table
III. are recorded the results of experiments made to test the
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resistance of the materials named to deflection. The fig-

ures in the third column designated by the letter F (for flex-

ure) show the number of pounds required to deflect a unit

of material one inch. This is an extreme state of the case,

for in most kinds of material this amount of depression
would exceed the limits of elasticity ;

and hence the rule

would here fail to give the correct relation as between the

dimensions and pressure. For the law of deflection as above

stated (the deflections being in proportion to the weights)
is true only while the depressions are small in comparison
with the length. Nothing useful is, therefore, derived from

this position of the question, except to give an idea of the

nature of the quantity represented by the constant F\ it

being in reality an index of the stiffness of the kind of mate-

rial used in comparing one material with another. Whatever

be the dimensions of the beam, F will always be the same

quantity for the same material
; but among various materials

/''will vary according to the flexibility or stiffness of each

particular material. For example, F will be much greater
for iron than for wood

;
and again, among the various kinds

of wood, it will be larger for the stiff woods than for those

that are flexible. The value of F, therefore, is the weight
which would deflect the unit of material one inch, upon the

supposition that the deflections, from zero to the depth of

one inch, continue regularly in proportion to the increments

of weight producing the deflections, or, for each deflection

F : I : : W :
<?,

from which we have

in which cJ represents the deflection in inches corresponding

to W
t
the weight producing it. This is for the unit of ma-

terial. For beams of larger dimensions, investigations have

shown (Transverse Strains, Chapters XIII. and XIV.) that

the power of a beam to resist deflection by a weight at mid-

dle is in proportion to its breadth and the cube of its depth,

and it is inversely in proportion to the cube of the length ;
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or, when the resistance of the unit of material is measured,

as above, by ,
we have the relation between it and a

larger beam of

Putting this ratio in a proportion with that of the unit of

material, we have

.

..; .

.

;

"

;

i

>: ' :: T '
b

-r-- :

which gives
W _Fbd*
6

~

T
'

from which we have

W= F
-^-. (31.)

135. Deflection : Weight when at MidklQc. In equation

(31.) we have a rule by which to ascertain what weight is

required to deflect a given beam to a given depth of deflec-

tion ; this, in words at length, is

Rule XXVI. Multiply the breadth of the beam by the

cube of its depth, and by the given deflection, all in inches,

and by the value of .Ffor the material of the beam, in Table

III.; divide the product by the cube of the length in feet,

and the quotient will be the required weight in pounds.

Example. What weight is required at the middle of a

4x12 inch Georgia-pine beam 20 feet long to deflect it

three quarters of an inch ? The value of F for Georgia
pine, in Table III., is 5900; therefore, by the rule, we have

4 x i2
3
x 0-75 x 5900 = 30585600, which divided by (20x20

x 20 =) 8000 gives a quotient of 3823-2, the required weight
in pounds.

136. Deflection: Breadth or Depth, Weight at middle.

By a transposition of equation (31.), we obtain
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a rule by which may be found the breadth or depth of a

beam, with a given load at middle and with a given deflec-

tion
; this, in words at length, is

Rule XXVII. Multiply the given load by the cube of

the length in feet, and divide the product by the product of

the deflection into the value of F for the material of the

beam, in Table III.
;
then the quotient will be equal to the

breadth of the beam multiplied by the cube of its depth,
both in inches.

Now, to obtain the breadth, divide the said quotient by
the cube of the depth, and this quotient will be the required
breadth. But if, instead of the breadth, the depth be re-

quired, then divide the said quotient by the breadth, and
the cube root of this quotient will be the required depth.
But if neither breadth nor depth be previously fixed, but it

be required that they bear a certain proportion to each

other
; such that d : b : : i : r, r being a decimal, then b = rd,

and b d* r d*
; then, to find the depth, divide the aforesaid

quotient by the decimal r, and the fourth root (or the square
root of the square root) will be the required depth, and this

multiplied by the decimal r will give the breadth.

Example. What should be the size of a spruce beam 20

feet long between bearings, sustaining 2000 pounds at the

middle, with a deflection of one inch ? By the rule, the

weight into the cube of the length is 2000 x 8000 = 16000000.

The value of Ffor spruce, in Table III., is 3500; this by the

deflection = i gives 3500, which used as a divisor in divid-

ing the above 16000000 gives a quotient of 4571 -43. Now,
if the breadth be required, the depth being fixed, say, at 10,

then 4571-43 divided by (lox lox 10 =) 1000 gives 4-57, the

required breadth. The beam should be, say, 4$ by 10 inches.

But if the depth be required, the breadth being fixed, say, at

4, then 4571-43 divided by 4 gives 1142-86, the cube root

of which is 10-46; so in this case, therefore, the beam is

required to be 4 x io inches. Again, if the breadth is to

bear a certain proportion to the depth, or that the ratio be-

tween them is to be, say, 0-6 to i, then let r = 0-6, and then

457i. 43 = o-6^ 4

,
and dividing by 0-6, we have 7619-05

= d\ This equals d*xd*\ therefore the square root of 7619
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is 87-29, and the square root of this is 9-343, the required

depth in inches. Now 9-343x0-6 equals the breadth, or

9.343x0-6=5-6; therefore the beam is required to be

5 -6 x 9- 34 inches, or, say, 5f x 9^ inches.

137. Deflection : when Weight i at Middle. By a trans-

position of the factors in (32.), we obtain

a rule by which the deflection of any given beam may be as-

certained, and which, in words at length, is

Rule XXVIIL Multiply the given weight by the cube

of the length in feet
; divide the product by the product of

the breadth into the cube of the depth in inches, multiplied

by the value of Fior the material of the beam, in Table III.,

and the quotient will be the required deflection in inches!

Example. To what depth will 1000 pounds deflect a

3x10 inch white-pine beam 20 feet long, the weight being
at the middle of the beam ? By the rule, we have 1000 x 2o

3

= 8000000; then, since the value of F for white pine, in

Table III., is 2900, we have 3 x io
3
x 2900 = 8700000 ; using

this product as a divisor and by it dividing the former pro-

duct, we obtain a quotient of 0.9195, the required deflection

in inches.

138. Deflection: Load . Uniformly Distributed. In two
beams of equal capacity, suppose the one loaded at the

middle, and the other with its load uniformly distributed

over its length, and so loaded that the deflection in one beam
shall equal that in the other ; then the weight at the middle

of the former beam will be equal to five eighths of that on
the latter. This proportion between the two has been de-

monstrated by writers on the strength of materials. (See p.

484, Mechanics of Eng. and Arch., by Prof. Mosely, Am. eel. by
Prof. Mahan, 1856.) Hence, when /is put to represent the

uniformly distributed load, we have
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or, when an equally distributed load deflects a beam to a
certain depth, five eighths of that load, if concentrated at
the middle, would cause an equal deflection. This value of

W may therefore be substituted for it in equation (31.), and
give

from which we obtain

i-u= --
JT
--

> (34-)

a rule for a uniformly distributed load.

139. Deflection: Weight when Uniformly Distributed.

In equation (34.) we have a rule by which we may ascertain

what weight is required to deflect to a given depth any
given beam. This, in words at length, is

Rule XXIX. Multiply 1-6 times the deflection by the

breadth of the beam, and by the cube of its depth, all in

inches, and by the value of Ffor the material of the beam,
in Table III. ; divide the product by the cube of the length
in feet, and the quotient will be the required weight in

pounds.

Example. What weight, uniformly distributed over the

length of a spruce beam, will be required to deflect it to the

depth ot 0-5 ot an inch, the beam being 3 x 10 inches and 10

feet long? The value of F ior spruce, in Table III., is 3500.

Therefore, by the rule, we have j -6x0-5 x 3 x io 3 x 3500 =

8400000, and this divided by (10x10x10=) 1000 gives

8400, the required weight in pounds.

(40,__Deflection: Breadth or Depth, Load Uniformly

Distributed. By transposition of the factors in equation

(54.), we obtain

a rule for the dimensions, which, in words at length, is
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Rule XXX. Multiply the given weight by the cube of

the length of the beam
; divide the product by i -6 times the

given deflection in inches, multiplied by the value of F for

the material of the beam, in Table III., and the quotient will

equal the breadth into the cube of the depth. Now, to ob-

tain the breadth, divide this quotient by the cube of the depth,
and the resulting quotient will be the required breadth in

inches. But if, instead of the breadth, the depth be required,
then divide the aforesaid quotient by the breadth, and the

cube root of the resulting quotient will be the required depth
in inches. Again, if neither breadth nor depth be previously
determined, but to be in proportion to each other at a given
ratio, as r to i, r being a decimal fixed at pleasure, then di-

vide the aforesaid quotient by the value of r, and take the

square root of the quotient; then the square root of this

square root will be the required depth in inches. The breadth

will equal the depth multiplied by the value of the deci-

mal r.

Example. What should be the size of a locust beam 10

feet long which is to be loaded with 6000 pounds equally
distributed over the length, and with which the beam is to

be deflected of an inch ? The value of F for locust, in

Table 1 1 1., is 5050. By the rule, we have 6000 x(io x 10 x 10 =)
1000= 6000000, which is to be divided by (i -6xo- 75 x 5050 =)
6060, giving a quotient of 990-1. Now, if the depth be, say,
6 inches, then 990- 1 divided by (6x6x6) 216 gives a quo-
tient of 4-584, the required breadth in inches, say 4^. But
if the breadth be assumed at 4 inches, then 990- 1 divided by
4.gives a quotient of 247- 5 2 5, the cube root of which is 6-279,
the required depth in inches, or, say, 6J. And, again, if the
ratio between the breadth and depth be as o- 7 to i, then 990- 1

divided by 0-7 gives a quotient of 1414-43, the square root
of which is 37-609, of which the square root is 6-1326, the

required depth in inches, or, say, 6J- ; and then 6-1326x0-7 =
4-293, the required breadth in inches; or, the beam shoujd
be 4T\ x 6J- inches.

14-1. Deflection : when Weight is Uniformly Distributed.

By a transposition of the factors of equation (35.), we ob-

tain
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a result nearly the same as that in equation (33.), which is a

rule for deflection by a weight at middle, and which by
slight modifications may be used for deflection by an equally
distributed load. Thus by

Rule XXXI. Proceed as directed in Rule XXVIII. (Art.

137), using the equally distributed weight instead of a con-

centrated weight, and then divide the result there obtained

for deflection by I -6
;
then the quotient will be the required

deflection in inches.

Example. Taking the example given under Rule

XXVI 1 1., \uArt. 137, and assuming that the 1000 pounds load

with which the beam is loaded be equally distributed, then

0-9195, the result for deflection as there found, divided by i -6,

as by the above rule, gives 0-5747, the required deflection.

This result is just five eighths of 0-9195, the deflection by the

load at middle.

N.B. The deflection by a uniformly distributed load is

just five eighths of that produced by the same load when

concentrated at the middle of the beam; therefore, five

eighths of the deflection obtained by Rule XXVIII. will be

the deflection of the same beam when the same weight is

uniformly distributed.

142. Deflection of Levers. The deflection of a lever is

the same as that of a beam of the same breadth and depth,

but of twice the length, and loaded at the middle with a load

equal to twice that which is at the end of the lever. There-

fore, if P represents the weight at the end of a lever, and n

the length of the lever in feet, then 2 P= W smd 2 n = t, and

if these values of Wand /be substituted for those in equa-

tion (33.), we obtain

2 P x 2 n 3

which reduces to

-.,,., (37-)
Fbd"
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a result 16 times that in equation (33.), which is the deflection

in a beam. Therefore, when a beam and a lever equal in

sectional area and in length be loaded by equal weights, the

one at the middle, the other at one end, the deflection of the

lever will be 16 times that of the beam. This proportion is

based upon the condition that neither the beam nor the lever

shall be deflected beyond the limits of elasticity.

14-3. Deflection of a Lever: Load at End. Equation

(37.), in words at length, is

Ride XXXII. Multiply 16 times the given weight by
the cube of the length in feet

;
divide the product by the

product of the breadth into the cube of the depth multiplied

by the value of .Ffor the material of the lever, in Table III.,

and the quotient will be the required deflection.

Example. What would be the deflection of a bar of

American wrought iron one inch broad, two inches deep,
loaded with 150 pounds at a point 5 feet distant from the

wall in which the bar is imbedded ? The value of F for

American wrought iron, in Table III., is 62000. Therefore,

by the rule, 16 x 150 x 5" = 300000. This divided by
(i x 2

3
x 62000 =) 496000 gives 0-6048, the required deflec-

tion nearly f of an inch.

(4-4-. Deflection of a Lever: Weight when at End. By
a transposition of the factors in equation (37.), we obtain

This result is equal to one sixteenth of that shown in equa-
tion (31.), a rule for the weight at the middle. Therefore,
for

Rule XXXIII. Proceed as directed in Rule XXVII.;
divide the quotient there obtained by 16, and the resulting

quotient will be the required weight in pounds.
Example. What weight is required at the end of a 4 x 12

inch Georgia-pine lever 20 feet long to deflect it three

quarters of an inch? Proceeding by Rule XXVII., we ob-

tain a quotient of 3823-2; this divided by 16 gives

say 239, the required weight in pounds.
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145. Deflection of a Lever : Breadth or Depth, Load
at End. A transposition of the factors of equation (38.)

gives
, 73 i6Pn*

a rule by which to obtain the sectional area of the lever.

By comparison with equation (32.) it is seen that the result

in (39.) is 16 times that found by (32.). Therefore, the dimen-
sions for a lever loaded at the end may be found by

Rule XXXIV. Multiply by 16 the first quotient found

by Rule XXVII., and then proceed as farther directed in

Rule XXVII., using the product of 16 times the quotient,
instead of the said quotient.

Example. What should be the size of a spruce lever 20

feet long, between weight and wall, to sustain 2000 pounds
at the end with a deflection of I inch? Proceeding by Rule

XXVII., we obtain a first quotient of 4571-43. By Rule

XXXIV., 4571-43 x 16 73144-88. Now, if the depth be

fixed, say, at 20, then 73144-88 divided by (20 x 20 x 20 =)
8000 gives 9- 143, the required breadth. But to obtain the

depth, fixing the breadth, say, at 9, we have for 73144-88 di-

vided by 9 = 8127-21, the cube root of which is- 20- 1055, the

required depth. Again, if the breadth and depth are to be

in proportion, say, as 0-7 to i-o, then 73144-88 divided by

0-7 gives 104492-7, the square root of which is 323-254, of

which the square root is 17-98, the required depth in inches
;

and 17-98 x 0-7 = 12-586, the required breadth in inches.

The lever, therefore, should be, say, I2f x 18 inches.

146. Deflection of Levers: Weight Uniformly Distrib-

uted. A comparison of the effects of loads upon levers

shows (Transverse Strains, Art. 347) that the deflection by a

uniformly distributed load is equal to that which would be

produced by three eighths of that load if suspended from

the end of the lever. Or, P f U. Substituting this value

of P, in equation (37.), gives
16 x | Un*
Fb<T* '

which reduces to
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a rule for the deflection of levers loaded with an equally dis-

tributed load.

(47._Deflection of Severs with Uniformly Distributed

Load. The deflection shown in equation .(40.) is just six

times that shown in equation (33.). The result by (33.) mul-

tiplied by 6 will equal the result by (40.); therefore, we

have

Rule XXXV. Proceed as directed in Rule XXVIII.
;

the result thereby obtained multiplied by 6 will give the

required deflection.

Example. To what depth will 500 pounds deflect a 3 x 10

inch white-pine lever 10 feet long, the weight uniformly

distributed over the lever? Here, by Rule XXVIII. ,
we

obtain the result 0-05747 ;
this multiplied by 6 gives 0-3448,

the required deflection.

(4-8. Deflection of Levers : Weight when Uniformly
Distributed. By a transposition of factors in (40.), we ob-

tain

This is equal to one sixth that of equation (31.) ; therefore,

we have

Rule XXXVI. Proceed as directed in Rule XXVI.;
the quotient thereby obtained divide by 6, and the quotient
thus obtained will be the required weight.

Example. What weight will be required to deflect a

4x5 inch spruce lever I inch, the weight uniformly dis-

tributed over its length ? Proceeding as directed in Rule

XXVI., the result thereby obtained is 1750; this divided by
6 gives 29 if, the required weight in pounds.

14-9. Deflection of Severs : ISreadth or Depth, Load
Uniformly Distributed. A transposition of factors in equa-
tion (41.) gives
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This result is just six times that of equation (32.); we, there-

fore, have

Rule XXXVII. Proceed as directed in Rule XXVII.
;

multiply the first quotient thereby obtained by 6
;
then in

the subsequent directions use this multiplied quotient in-

stead of the said first quotient, to obtain the required breadth

and depth.

Example. What should be the size of a spruce lever 10

feet long, sustaining 2666| pounds, uniformly distributed

over its length, with a deflection of I inch ? Proceeding

by Rule XXVII., the first quotient obtained is 761-905;

this multiplied by 6 gives 4571-43, the multiplied quotient

which is to be used in place of the said first quotient. Now,
to obtain the breadth, the depth being fixed, say, at 10 ;

4571 -43 divided by (cube of 10
) 1000, the quotient, 4-57, is

the required breadth. But if the breadth be fixed, say, at

4, then, to obtain the depth, 4571-43 divided by 4 gives

1142-86, the cube root of which is 10-46, the required depth.

Again, if the breadth and depth are to be in proportion, say,

as 0-6 to i -o, then 4571 -43 divided by 0-6 gives 7619-05, the

square root of which is 87-27, of which the square root is

9-343, the required depth in inches
;
and 9-343 x ' 6 equals

5-6, the required breadth in inches; or, the lever may be,

say, 5f x 9- inches.

CONSTRUCTION IN GENERAL.

150. Construction: Object Clearly Defined. In the

various parts of timber construction, known as floors, par-

titions, roofs, bridges, etc., each has a specific object, and in

all designs for such constructions this object should be kept

clearly in view, the various parts being so disposed as to

serve the design with the least quantity of material. The

simplest form is the best, not only because it is the most

economical, but for many other reasons. The great number

of joints, in a complex design, render the construction liable

to derangement by multiplied compressions, shrinkage, and,

in consequence, highly increased oblique strains ; by which

its stability and durability are greatly lessened.
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FLOORS.

151. Floor Described. Floors are most generally con,

structed single; that is, simply a series of parallel beams, each

FIG. 39.

spanning the width of the building, as seen at Fig. 39* Oc-

FIG. 40.

casionally floors are constructed double, as at Fig. 40 ;
and

sometimes framed, as at Fig. 41 ;
but these methods are
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seldom practised, inasmuch as either of these requires more
timber than the single floor. Where lathing and plastering
is attached to the floor-beams to form a ceiling below, the
springing of the beams, by customary use, is liable to crack
the plastering. To obviate this in good dwellings, the double
and framed floors have been resorted to, but more in former
times than now, as the cross-furring (a series of narrow strips
of board or plank nailed transversely to the underside of

UNIVERSITY

FIG. 41.

the beams to receive the lathing for the plastering) serves a
like purpose very nearly as well.

152. Floor-Beams. The size of floor-beams can be as-

certained by the preceding rules for the stiffness of materials.

These rules give the required dimensions for the various

kinds of material in common use. The rules may be some-

what abridged for ordinary use, if some of the quantities

represented in the formula be made constant within certain

limits. For example, if the load per foot superficial upon
the floor be fixed, and the deflection, then these, together
with the constant 'represented by Fy may be reduced to one
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constant. For dwellings, the load per foot may be taken at

70 pounds, the weight proper to be allowed for a crowd
of people on their feet. (Transverse Strains, Art. 114.) To
this add 20 for the weight of the material of which the floor

is composed, and the sum, 90, is the value off, or the weight

per foot superficial for dwellings. Then eft-. U (Art. 130).

The rate of deflection allowable for this load may be fixed

at 0-03 inch per foot of the length, or d =. 0-03 /. Substitut-

ing these values in equation (35.), we obtain

b d*= cfl*

9 c/3
= 1875 */ 3

i -6 Fx -03 /
~ ~

i -6 x -03 /^
~ F

or

. ,

'

i<r=2*ZL f r.
(43 .)

T X*7 C

Putting/ to represent ,
we have

(44.)

T 8*7 C

Now, by reducing -, for the six woods in common use,

the value ofj for each is found as follows:

Georgia Pine ......................... / = 0-32
Locust ...... ......................... j = 0-37
White Oak.... ........................ j = 0-6

Spruce ............................... j 0-54
White Pine ............

'

............... j = 0-65
Hemlock .... .......................... j ^0-67

Equation (44.") is a rule for the floor-beams of dwellings ;

it may be used also to obtain the dimensions of beams for

stores for all ordinary business- for it will require from 3 to

5 times the weight used in this rule, or from 200 to 400

(average 300) pounds to increase the deflection to the limit

of elasticity in beams of the usual depths and lengths. For

light stores, therefore, loaded, say, to 150 pounds per foot,

the beams would be safe, but the deflection would be in-
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creased to 0-06 per foot. When so great a deflection as this,

would not be objectionable to the eye, then this rule (44.)
will serve for the beams of light stores. But for first-class

stores, taking the rate of deflection at -04 per foot, and
*

fixing the weight per superficial foot at 275 pounds, includ-

ing the weight of the material of which the floor is con-

structed, and letting k represent the constant, then

bd*=kcl\ (45.)

and for

Georgia Pine k = 0-73
Locust k = 0-85
White Oak k = 1-38

Spruce k 1-48
White Pine k = 1-23
Hemlock. . , k 1-53

153. Floor-Beam^ for Dwellings To find the dimen-

sions of floor-beams for dwellings, when the rate of deflection"

is 0-03 inch per foot, or for ordinary stores when the load is

about 150 pounds per foot, and the deflection caused by this

weight is within the limits of the elasticity of the material,

we have the following rule :

Rule XXXVIIL Multiply the cube of the length by
the distance apart between the beams (from centres), both in

feet, and multiply the product by the value of/ (Art. 152)

for the material of the beam, and the product will equal the

product of the breadth into the cube of the depth. Now,
to find the breadth, divide this product by the cube of the

depth in inches, and the quotient will be the breadth in

inches. But if the depth is sought, divide the said product

by the breadth in inches, and the cube root of the quotient

will be the depth in inches
;
or if the breadth and depth are

to be in proportion as r is to unity, r representing any re-

quired decimal, then divide the aforesaid product by the

value of r, and extract the square root of the quotient, and

the square root of this square root will be the depth re-

quired in inches, and the depth multiplied by the value of i

will be the breadth in inches.
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Example. In a dwelling Or ordinary stOre, what must be

the breadth of the beams, when placed 15 inches from

centres, to support a floor covering a span of 16 feet, the

depth being 1 1 inches, the beams of white oak ? By the

rule, 4096, the cube of the length, by i|, the distance from

centres, and by 0-6, the value of j for white oak, equals

3072. This divided by 1331, the cube of the depth, equals

2-31 inches, or 2T^ inches, the required breadth. But if, in-

stead of the breadth, the depth be required, the breadth

being fixed at 3 inches, then the product, 3072, as above, di-

vided by 3, the breadth, equals 1024 ;
the cube root of this

is 10-08, or, say, 10 inches nearly. But if the breadth and

depth are to be in proportion, say, as 0-3 to i-o, then the

aforesaid product, 3072, divided by 0-3, the value of r,

equals 10240, the square root of which is 101-2, and the

square root of this is 10-06, the required depth. This

multiplied by 0-3, the value of r, equals 3-02, the re-

quired breadth ; the beam is therefore to be, say, 3 x 10

inches.

154. Floor-Beams for First-Class Stores. To find the

breadth and depth of the beams for a floor of a first-class

store sufficient to sustain 250 pounds per foot superficial

(exclusive of the weight of the material in the floor), with

a deflection of 0-04 inch per foot of the length, we have

Rule XXXIX. The same as XXXVIIL, with the ex-

ception that the value of k (Art. 152) is to be used instead

of the value of j.

Example. The beams of the floor of a first-class store

are to be of Georgia pine, with a clear bearing between the

walls of 18 feet, and placed 14 inches from centres: what
must be the breadth when the depth is 1 1 inches ? By the

rule, 5832, the cube of the length, and i, the distance from

centres, and 0-73, the value of k for Georgia pine, all multi-

plied together equal 4966-92 ;
and this product divided by

1331, the cube of the depth, equals 3-732, the required
breadth, or 3| inches.

But if, instead of the breadth, the depth be required :

what must be the depth when the breadth is 3 inches ?
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The said product, 4966-92, divided by 3, the breadth, equals

1655-64, and the cube root of this, 11-83, or
>
sav

>
I2 inches,

is the depth required.

But if the breadth and depth are to be in a given pro-

portion, say 0-35 to i-o, the 4966-92 aforesaid divided by
0-35, the value of r, equals 14191, the square root of

which is 119-13, and the square root of this square root is

10-91, or, say, n inches, the required depth. And 10-91

multiplied by 0-35, the value of r, equals 3-82, the required

breadth, say 3^ inches.

I55 Floor -Beams: Distance from Centres. It is

sometimes desirable, when the breadth and depth of the

beams are fixed, or when the beams have been sawed and

are now ready for use, to know the distance from cen-

tres at which such beams should be placed in order that the

floor be sufficiently stiff. By a transposition of the factors

in equation (44.), we obtain

bd*

In like manner, equation (45.) produces

_bd*
(470

These, in words at length, are as follows :

Rule XL. Multiply the cube of the depth by the breadth,

both in inches, and divide the product by the cube of the

length in feet multiplied by the value of /, for dwellings

and for ordinary stores, or by k, for first-class stores, and

the quotient will be the distance apart from centres in feet.

Example. K span of 17 feet, in a dwelling, is to be cov-

ered by white-pine beams 3x12 inches: at what distance

apart from centres should they be placed? By the rule,

1728, the cube of the depth, multiplied by 3, the breadth,

equals 5184. The cube of 17 is 4913 ;
this by 0-65, the value

of j for white pine, equals 3193-45- The aforesaid 5184

divided by this 3193-45 equals 1-6233 feet, or, say, 20 inches.
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156. Framed Openings for Chimney* and Stairs.

Where chimneys, flues, stairs, etc., occur to interrupt the

bearing, the beams are framed into a piece, b (Fig. 42), called

a header. The beams, a a, into which the header is framed

are called trimmers or carriage-beams. These framed beams

require to be made thicker than the common beams. The

header must be strong enough to sustain one half of the

weight that is sustained upon the &w7-beams, c c (the wall at

the opposite end or another header there sustaining the other

half), and the trimmers must each sustain one half of the

weight sustained by the header in addition to the weight it

supports as a common beam. It is usual in practice to make

these framed beams one inch thicker than the common beams
for dwellings, and two inches thicker for heavy stores. This

practice in ordinary cases answers very well, but in extreme

cases these dimensions are not proper. Rules applicable

generally must be deduced from the conditions of the case

the load to be sustained and the strength of the material.

157. Breadth of Headers. The load sustained by. a

header is equally distributed, and is equal to the superficial
area of the floor supported by the header multiplied by the

load on every superficial foot of the floor. This is equal to

the length of the header multiplied by half the length of the

tail-beams, and by the load per superficial foot. Putting g
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for the length of the header, n for the length of the tail-

beams, and / for the load per superficial foot
; U, the uni-

formly distributed load carried by the header, will equal

f n g. By substituting for /, in equation (35.), this value of

it, we obtain

The symbols g and / here both represent the same thing,

the length of the header
; combining these, and for # putting

its value gry
we obtain

.

3-2 Fr

To allow for the weakening of the header by the mor-

tices for the tail-beams (which should be cut as near the

middle of the depth of the header as practicable), the depth
should be taken at, say, one inch less than the actual depth.

With this modification, we obtain

If /be taken at 90, and r at 0-03, we have, by reducing

h _ 937- 5 "g*
(4Q.)-~'

which is a rule for the breadth of headers for dwellings and

for ordinary stores. This, in words, is as follows :

Rule XLL Multiply 937-5 times the length of the tail-

beams by the cube of the'length of the header, both in feet.

The product divided by the cube of one less than the depth

multiplied by the value of F, Table III., will equal the

breadth of the header in inches for dwellings or ordinary

stores.

Example. K header of white pine, for a dwelling, is 10

feet long, and sustains tail-beams 20 feet long ;
its depth is

\2 inches: what must be its breadth? By the rule,

937. 5x20x10*= 18750000.' This divided by (12- i)
3x 2900^
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3859900, equals 4-858, say 5 inches, the required breadth.

F or first-class stores,/ should be taken at 275, and r at 0-04.

With these values the constants in equation (48.) reduce to

2I48-4375, or, say, 2150. This gives

a rule for the breadth of a header for first-class stores. It

is the same as that for dwellings, except that the constant

2150 is to be used in place of 937-5. Taking the same ex-

ample, and using the constant 2150 instead of 937-5, we

obtain 1 1 14 as the required breadth of the header for a first-

class store. Modifying the question by using Georgia pine

instead of white pine, we obtain 5 -476 as the required thick-

ness, say 5^ inches.

158. Breadth of Carriage-Beams. A carriage-beam or

trimmer, in addition to its load as a common beam, carries

one half of the load on the header, which, as has been

seen in the last article, is equal to one half of the superficial

area of the floor supported by the tail-beams multiplied by
the weight per superficial foot of the load upon the floor

;

therefore, when the length of the header in feet is repre-

sented by g, and the length of the tail-beams by n, w equals

- x - x /, equals fg n*

For a load not at middle, we have (25.)

4 W
'amn

b d =
BJ

*The load from the header, instead of being \fg n, is, more accurately,

i/(g c) : because the surface of floor carried by the header is only
that which occurs between the surfaces carried by the carriage-beams, each of

which carries so much of the floor as extends half way to the first tail-beam

from it, or the distance -
; therefore, the width of the surface carried equals

the length of the header less ( 2 x - = W, or g c. When, however, it is con-

sidered that the carriage-beam is liable to receive some weight from a stairs or

other article in the well-hole, the small additional load above referred to is

not only not objectionable, but is really quite necessary to be included in the

calculation.
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This is a rule based upon resistance to rupture. By substi-

7? /

tuting for a, the factor of safety, -p-j-,
its value in terms of

resistance to flexure {Transverse Strains, (154.)), we have

h j* 4 WB Im n
__ 4 Wm n

.

BIFdr Fdr

In this expression, W is a concentrated weight at the dis-

tances m and n from the two ends of the beam. Taking the

load upon a carriage-beam due to the load from the header,

as above found, and substituting it for W, we obtain

,,* __ fgmn*bd = --

This is the expression required for the concentrated load.

To this is to be added the uniformly distributed load upon
the carriage-beam ;

this is given in equation (35.). Substi-

tuting for U of this equation its value, fc /, gives

, ,,

-T67^" Fr

Combining these two equations, we have for the total load

r r

If, in this equation, /be taken at 90, and r at 0-03, these

reduce to 3000 ; therefore, with this value of -, we have

/ N

This rule for the breadth of carriage-beams with one

header, for dwellings and for ordinary stores, is put in words

as follows :
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Rule XLII. Multiply the length of the framed opening

by its breadth, and by the square of the length of the tail-

beams ;
to this product add f of the cube of the length into

the distance of the common beams from centres all in feet ;

divide 3000 times the sum by the cube of the depth in inches

multiplied by the value of F for the material of the beam, in

Table III., and the quotient will be the breadth in inches.

Example. In a tier of 3 x 10 inch beams, placed 14 inches

from centres, what should be the breadth of a Georgia-pine

carriage-beam 20 feet long, carrying a header 12 feet long,

.having tail-beams 1 5 feet long? Here the framed opening
is 5-x 1 2 feet. Therefore, according to the rule, 12 x 5 x 15' =
13500; to which add(|x2o

3 x jf =)5833i; the sum is
19333^,

and this by 3000= 58000000. The value of F for Georgia

pine, in Table III., is 5900; the cube of the depth is 1000;

the product of these two is 5900000; therefore, dividing
the above 58000000 by 5900000 gives a quotient of 9.83,

the required breadth in inches. If, in equation (51.), f be

taken at 275, and r at 0-04, then - becomes 6875, and the

equation becomes

, ~~
Fd*

a rule for the breadth of carriage-beams for first-class stores ;

the same as that for dwellings, except that the constant is

6875 instead of 3000.

fl59. Breadth of Carriage-Beams Carrying Two Sets

of Tail-Beams. r-A rule for this is the same as that for a car-

riage-beam carrying one set of tail-beams, if to it there be
added the effect of the second set of tail-beams. Equation
(51.) with the additibn named becomes

, ,

(54

in which n is the length of one set of tail-beams, and s the

length of the other set
;
and m + n = I.
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If / be taken at 90, and r at 0-03, these two reduce to

3000, and we have

_ 3000 [,;/ (;;?;; -Kr
2

)-f | r/ 3

]

Pd*~
9

a rule for the breadth of a carriage-beam carrying two sets

of headers, for dwellings and for ordinary stores. It may
be stated in words as follows :

Rule XLIII. Multiply the length of the longer set of

tail-beams by the difference between this length and the

length of the carriage-beam, and to the product add the

square of the length of the shorter set of tail-beams
;
mul-

tiply the sum by the length of the longer set of tail-beams,

and by the length of the header
;
to this product add f of

the product of the cube of the length of the carriage-
beam into the distance apart from centres of the common
beams ; multiply this sum by 3000 ;

divide this product by
the product of the cube of the depth in inches into the value

of F ior the material of the carriage-beam, in Table III., and

the quotient will be the required breadth.

Example. In a tier of 3 x 12 inch beams, placed 14 inches

from centres, what should be the breadth of a spruce car-

riage-beam 20 feet long in the clear of the bearings, carry-

ing two sets of tail-beams, one of them 9 feet long, the

other 5 feet
;
the headers being 15 feet long ? The difference

between the longer set of tail-beams and the carriage-beam
is (20 9 =) 1 1 feet. Therefore, by the rule, 9 x 1 1 + 5*

=
124; then (124x9x15=) 16740 + (f x 203 x |f ) 5833^- =
22573i; then 22573^x3000 = 67720000. Now the value of

F for spruce, Table III., is 3500; this by I2
3

,
the cube of

the depth, equals 6048000; by this dividing the aforesaid

67720000, we obtain a quotient of 11-197, the required

breadth of the carriage-beam. If, in equation (54.), / be

taken at 275, and > at 0-04, these reduce to 6875, and we

obtain

a rule for the breadth of carriage -beams carrying two sets
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of tail-beams, in the floors of first-class stores. -This is like

the rule for dwellings, except that the constant is 6875 in-

stead of 3000.

160._Breadth o Carriage - Beam willi Well-Hole at

middle. When the framed opening between the two sets of

tail-beams occurs at the middle, or when the lengths of the

two sets of tail-beams are equal, then equation (54.) reduces

to

and if /be taken at 90, and r at 0-03, these reduce to 3000,

and we have

a rule for the breadth of a carriage-beam carrying two sets

of tail-beams of equal length, in the floor of a dwelling or of

an ordinary store ; and which in words is as follows:

Rule XLIV. Multiply the length of the header by the

square of the length of the tail-beams, and to the product
add | of the product of the square of the length of the car-

riage-beam by the distance apart from centres of the com-
mon beams; multiply the sum by 3000 times the length of

the carriage-beam ; divide the product by the product of

the cube of the depth into the value of F for the material of

the carriage-beam, in Table III., and the quotient will be the

required breadth.

Example. In a tier of 3x12 inch beams, placed 12 inches

from centres, what must be the thickness of a hemlock car-

riage-beam 20 feet long, carrying two sets of tail-beams,

each 8 feet long, with headers 10 feet long? By the rule,

10 x 8" + x i x 20* 890 ; 890 x 3000 x 20 = 53400000. Now,
the value of F, in Table III., for hemlock is 2800 ; this by the

cube of the depth, 1728, equals 4838400; by this dividing
the former product, 53400000, and the quotient, 11-0367, is

the required breadth of the carriage-beam.
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If, in equation (57.), /be taken at 275, and rat 0.04, these
will reduce, to 6875, and we shall have

6875
(59-)

a result the same as in equation (58.), except that the
constant is 6875 instead of 3000. Equation (59.) is a rule for

the breadth of carriage-beams carrying two sets of tail-beams
of equal length, in the floor of a first-class store. In words
at length, it is the same as Rule XLIV., except that the con-
stant 6875 is to be used in place of 3000.

161. ro-Bridgiiig, or Herring-Bone Bridging. The
diagonal struts set between floor-beams, as in Fig. 43, are
known as cross- bridging, or herring-
bone bridging. By connecting the

beams thus at intervals, say, of from

5 to 8 feet, the stiffness of the floor

is greatly increased. The absolute

strength of a tier of beams to resist a

weight uniformly distributed over
the whole tier is augmented but lit-

tle by cross-bridging ;
but the power

of any one beam in the tier to re-

sist a concentrated load upon it, as a heavy article of fur-

niture or an iron safe, is greatly increased by the cross-

bridging; for this device, by connecting the loaded beam
with the adjacent beams on each side, causes these beams to

assist in carrying the load. To secure the full benefit of the

diagonal struts, it is very important that the beams be well

secured from separating laterally, by having strips, such as

cross-furring, firmly nailed to the under edges of the beams.

The tie thus made, together with that of the floor-plank on

the top edges, will prevent the thrust of the struts from sep-

arating the beams.

162. Bridging: Value to Resit Concentrated L,oad.

A rule for determining the additional load which
any

one

beam connected by bridging will be capable of sustaining,

by the assistance derived from the other beams, through the

FIG. 43.
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bridging, may be found in Chapter XVIII., Transverse Strains.

This rule may be stated thus : *

R = -(1 + 22 + 3V 4
2+ etc.) ; (60.)

in which R is the increased resistance, equal to the addi-

tional load which may be put upon the loaded beam ;
c is the

distance from centres in feet at which the beams in the tier

are placed ; /is the load in pounds per superficial foot upon
the floor ; / is the length of the beams in feet

;
and d is the

depth of the beams in inches. The squares within the

bracket are to be extended to as many places as there are

beams on each side which contribute assistance through the

bridging. The rule given in the work referred to, for ascer-

taining the number of spaces between the beams, is

d f ,- \= 7r; (61.)

or, the depth of the beam in inches divided by the square of

the distance from centres, in leet, at which the beams are

placed will give the number of spaces between the beams
which contribute on each side in sustaining the concentrated

load. The nearest whole number, minus unity, will equal
the required number of beams.

The value of c for beams in floors of dwellings is given in

equation (46.), and lor those in first-class stores in equation

(47.). By a modification of equation (34.), putting cf I for

U, we have

and- c =

= (63 .)

These equations give general rules for the value of c.
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Now, the rule, in words at length, for the resistance offered

by the adjoining beams to a weight concentrated upon one
of the beams sustained by cross-bridging to the others, is

Rule XLV. Divide the depth of the beam in inches by
the square of the distance apart from centres in feet at

which the floor-beams are placed ;
from the quotient deduct

unity, and call the whole number nearest to the remainder
the First Result. Take the sum of the squares of the con-

secutive numbers from unity to as many places as shall equal
the above first result

; multiply this sum by 5 times the

length in feet, by the load per foot superficial upon the floor,

and by the fifth power of the distance apart from centres in

feet at which the beams are placed ;
divide the product by

4 times the square of the depth in inches, and the quotient
will be the weight in pounds required.

Example. In a tier of 3 x 12 inch floor-beams 20 feet

long, placed in a dwelling 16 inches from centres and well

bridged, what load maybe uniformly distributed upon one of

the beams, additional to the load which that beam is capable
of sustaining safely when unassisted by bridging? Here,

according to the rule, 12 divided by (ij+ ij = ) i-J equals

6f ; 6J i 5|, the nearest whole number to which is 6, the

first result. The sum of the square of the first 6 numbers

equals (i + 2
2 + 3' + 4* + 5 + 62

=) I +4 + 9+ 16 + 25 + 36 = 91.

Therefore, 91 x 5 x 20 x 90 x
(|-)

r' = 345 1266.* The square of

the depth (12 x 12 =
) H4x4 = 576; by this dividing the

above 3451266, we have the quotient 5991-78, say 5992

pounds, the required weight. This is the additional load

which may be placed upon the beam. At 90 pounds per

superficial foot, the common load on each beam, we have

* The value of c, 16 inches, equals feet. The fifth power of this, or ()
6

,

is obtained by involving both numerator and denominator to the fifth power,

and dividing the fifth power of the former by the fifth power of the latter ;
for

(i)
5 = i_. For the numerator we have 4x4x4x4x4=1024, and for the de-

3
5

nominator 3x3x3x3x3= 243. The former divided by the latter gives as a

quotient 4-214, the value of (j)
5
. The process of involving a number to a high

power, or the reverse operation of extracting high roots, may be performed by

logarithms with great facility. (See Art. 427.)
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90 x 20 x | = 2400 as the common load. To this add 5992,
the load sustained through the bridging by the other beams,
and the sum, 8392 pounds, will be the total load which may
be safely sustained, uniformly distributed, upon one beam

nearly 3^ times the common load.

163. Crirclers. When the distance between the walls of

a building is greater than that which would be the limit for

the length of ordinary single beams, it becomes requisite to

introduce one or more additional supports. Where sup-

ports are needed for a floor and partitions are not desirable,

it is usual to use a large piece of timber called a girder, sus-

tained by posts set at intervals of from 8 to 1 5 feet
; or, when

posts are objectionable, a framed construction called a

framed girder (Art. 196) ;
or an iron box called a tubular

iron girder (Art. 182). When a simple timber girder is used
it is advisable, if it be large, to divide it vertically from end
to end and reverse the two pieces, exposing the heart of the

timber to the aii in order that it may dry quickly, and also

to detect decay at the heart. When the halves are bolted

together, thin slips of wood should be inserted between
them at the several points at which they are bolted, in order
to leave sufficient space for the air to circulate freely in the

space thus formed between them. This tends to prevent

decay, which will be found first at such parts as are not

exactly tight, nor yet far enough apart to permit the escape
of moisture. When girders are required for a long bear-

ing, it is usual to truss them
;

that is, to insert between
the halves two pieces of oak which are inclined towards each

other, and which meet at the centre of the length of the

girder like the rafters of a roof-truss, though nearly if not

quite concealed within the girder. This and many similar

methods, though extensively practised, are generally worse
than useless

; since it has been ascertained that, in nearly all

such cases, the operation has positively weakened the girder.
A girder may be strengthened by mechanical contrivance,

when its depth is required to be greater than any one piece
of timber will allow. Fig. 44 shows a very simple yet invalu-

able method of doing this. The two pieces of which the gir-
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der is composed are bolted or pinned together,, having keys
inserted between to prevent the pieces from sliding. The

keys should be of hard wood, well seasoned. The two

pieces should be about equal in depth, in order that the

joint between them may be in the neutral line. (See Arts.

120, 121.) The thickness of the keys should be about half

their breadth, and the amount of their united thickness

should be equal to a trifle over the depth and one third of

the depth of the girder. Instead of bolts orpins, iron hoops
are sometimes used

;
and when they can be procured, they

are far preferable. In this case, the girder is diminished at

the ends, and the hoops driven from each end towards the

middle. A girder may be spliced if timber of a sufficient

length cannot be obtained
; though not at or near the mid-

FIG. 44-

die, if it can be avoided. (See Art. 87.) Girders should

rest from 9 to 12 inches on each wall, and a space should be

left for the air to circulate around the ends, that the damp-
ness may evaporate.

164. Girders : IMmeniions. The size of a girder, for

any special case, may be determined by equations (21.), (22.),

(25,), (27.), and (28.), to resist rupture ;
and to resist deflection,

by equations (32.) and (35.). For girders in dwellings, equa-

tion (44.) may be used. In this case, the value of c is to be

taken equal to the width of floor supported by the girder,

which is equal to the sum of the distances half way to the

wall or next bearing on each side. When there is but one
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girder between the two walls, the value of c is equal to half

the distance between the walls. The rule for girders for

dwellings, in words, is

Rule XLVL Multiply the cube of the length of the gir-

der by the sum of the distances from the girder half way to

the next bearing on each side, and by the value of j for the

material of the girder, in Art. 152; the product -will equal
the product of the breadth of the girder into the cube of the

depth. To obtain the breadth, divide this product by the

cube of the depth ;
the quotient will be the breadth. To

obtain the depth, divide the said product by the breadth
;

the cube root of the quotient will be the depth. If the

breadth and depth are to be in a given proportion, say as

r : i-o, then divide the aforesaid quotient by the value of

r
; take the square root of the quotient; then the square root

of this square root will be the depth, and the depth multi-

plied by the value of r will be. the breadth.

Example. In the floor of a dwelling, what should be the

size of a Georgia-pine girder 14 feet long between posts,

placed at 10 feet from one wall and 20 feet from the other?

The value of c here is V~ + % = J 5- The value of j
for Georgia pine (Art. 152) is 0-32. By the rule, 14' x 15 x

0-32 = 13171-2. Now, to find the breadth when the depth
is 12 inches

; 13171 -2 divided by the cube of 12, or by 1728,

gives a quotient of 7-622, or 7$, the required breadth.

Again,, to find the depth, when the breadth is 8 inches :

13171-2 divided by 8 gives 1646-4, the cube root of which is

1 1 -808, or, say, uj inches, the required depth. But if

neither breadth nor depth have been previously determined,

except as to their proportion, say as 0-7 to i-o, then

13171-2 divided by 0-7 gives 18816, of which the square
root is 137-171, and of this the square root is 11-712, or, say,
I if inches, the required depth. For the breadth, we have

11-712 by 0-7 equals 8-198, or, say, 8J, the required
breadth. Thus the girder is required to be 7$- x 12, 8 x iij,

or 8J xi if inches. This example is one in a dwelling or

ordinary store ; (or first-class stores the rule for girders is the

same as the last, except that the value of k is to be taken

instead ofy, in Art. 152.
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165. Solid Timber Floors. Floors constructed with

rolled-iron beams and brick arches are proof against fire

only to a limited degree ;
for experience has shown that the

heat, in an extensive conflagration, is sufficiently intense to

deprive the iron of its rigidity, and consequently of its

strength. Singular as it may seem, it is nevertheless true

that wood, under certain circumstances, has a greater fire-

resisting quality than iron. Floors of timber constructed,

as is usual, with the beams set apart, have but little power
to resist fire, but if the spaces between the beams be filled

up solid with other beams, which thus close the openings

against the passage of the flames, and the under surface be

coated with plastering mortar containing a large portion of

plaster of Paris, and finished smooth, then this wooden
floor will resist the action of fire longer than a floor of iron

beams and brick arches. The wooden beams should be se-

cured to each other by dowels or spikes.

166. Solid Timber Floors for Dwellings and Assem-

bly-Rooms. From Transverse Strains, Art. 702, we have

which may be modified so as to take this form :

which is a rule for the depth or thickness of solid timber

floors for dwellings, assembly-rooms, or office buildings, and

in which y and h are constants depending upon the mate-

rial
; thus, for

Georgia Pine ................y 4 and h =

Spruce ......................^ = 2i,
"

// = 0-365

White Pine ..................y = 2j,
"

// = 0-389

Hemlock .....................y = 2,
' 7*=o-39

The rule may be stated in words thus :

Rule XLVIL Multiply the length by the value of
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and by the value of /i, as above given ;
to the product add

82
; multiply the sum by the cube of the length ;

divide this

product by 0-576 times the value of F, in Table III.
;
then

the cube root of the quotient will be the required depth in

inches.

Example. What depth is required for a solid Georgia-

pine floor to cover a span of 20 feet ? For Georgia pine
F= 5900 ; y, as above given, equals 4, and h equals 0-314 ;

therefore, by the rule

d- _ = 6.318;
0-576x5900 3398 '4

or, the depth required is, say, 6-32 or 6^ inches.

167. Solid Timber Floors for First-Clas Si ores. The

equation given for first-class stores, in Transverse Strains,

Art. 702, is

-(263

which may be changed to this form :

in which y is as before, and k for

Georgia Pine equals 0-4

Spruce equals o 472

White Pine equals 0-502
Hemlock equals o 506

This rule may be put in words the same as Rule XLVIL,
except as to the constants, which require that 263 be used in

place of 82, that k be used in place of /*, and that 0-768 be

used in place of 0-576. Table XXI. of Transverse Strains

contains the results of computation showing the depths of

solid timber floors for dwellings and assembly-rooms and

for first-class stores, in floors of spans varying from 8 to 30

feet, and for the four kinds of timber before named.
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I6ff. Rolled - Iron Beam*. The dimensions of iron

beams, whether Avrought or cast, are to be ascertained by
the rules already given, when the beams are of rectangular
form in their cross-section; these rules are applicable alike

to wood and iron (Art. 93), and may be used for any mate-

rial, provided the constant appropriate to the given mate-
rial be used. But when the form of cross-

section is such as that which is usual for

rolled-iron beams (Fig. 45), the rules

need modifying. Without' attempting
to explain these modifications (referring
for this to Transverse Strains, Art. 457
and following article), it may be re-

marked that the elements of resistance

to flexure in a beam constitute what is

termed the Moment of Inertia. This, in
. FIG. 45.

a beam of rectangular cross-section, is

equal to -J^ of the breadth into the cube of the depth ;
or

I=^bd\ (66.)

This would be appropriate to rolled-iron beams if the

hollow on each side were filled with metal, so as to complete
the form of cross-section into a rectangle. The proper ex-

pression for them may be obtained by taking first the

moment for the beam as if it were a solid rectangle, and

from this deducting the moment for the part which on each

side is wanting, or for the rectangles of the hollows. In

accordance with this view of the case, we have

b,d^; (67.)

in which b is the breadth of the beam or width of the

flanges ; b, is the breadth of the two hollows, or is equal to#

less the thickness of the web or stem ; d is the depth includ-

ing top and bottom flanges ; and d
t
is the depth in the clear

between the top and bottom flanges.

Now, if equation (32.) be divided by 12, we shall have
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and since -^ b d* represents the moment of inertia, we have-

(68.)
12 Fd

This gives the value of / for a beam of any form in cross-

section loaded at the middle. By this equation the values

of / have been computed for rolled -iron beams of many
sizes, and the results recorded in Table XVII., Transverse

Strains. A few of these are included in Table IV., as follows :

TABLE IV. ROLLED- IRON BEAMS.

NAME.
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moment of inertia of the required beam, and may be found,
or the next nearest number, in Table IV. in column headed
7. Opposite to the number thus found, to the left, will be

found the name, -depth, and weight per yard of the required
beam.

Example. Which of the beams of Table IV. would be

proper to carry 10,000 pounds at the middle with a deflection

of one inch, the length between bearings being 20 feet ?

Here we have, substituting for the symbols their values

WY 3

_ioooox2o
3 _ 80000000

~
744000 tf

~~~

744000 x i

~~

744000
3 ' '

or, the moment of inertia of the required beam is 107-527, the

nearest to which, in the table, is 107-793, pertaining to the

Phoenix 9-inch, 84-pound beam. This, then, is the required
beam.

170. Rolled-Iron Beams: Deflection when Weight is

at Middle. By a transposition of symbols in equation (69.),

we have

W l
z~-~

(70.)

or a rule for the deflection of rolled-iron beams when the

weight is at the middle. This, in words, is

Rule XLIX. Multiply the weight in pounds by the

cube of the length in feet
;
divide the product by 744000

times the value of / for the given beam, and the quotient

will be the required deflection in inches.

Example.-JN\Mi\. will be the deflection of a Phoenix 9-

inch, 70-pound beam 20 feet long, loaded at the middle with

7500 pounds ? The value of / for this beam, in Table IV.,

is 92-207; therefore, substituting for the symbols their val-

ues, and proceeding by the rule, we have

__ ___. ="

744000 /
" "

744000 x 92 - 207

or, the deflection will be, say, f of an inch.
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171. Rolled -Iron Beams : Weight when at middle.
A transposition of factors in equation (70.) gives

IV 744QQQ / <?

/
3

(71.)

This is a rule for the weight at middle, and, in words, is

Rule L. Multiply 744000 times the value of 7 by the

deflection in inches
;
divide the product by the cube of the

length, and the quotient will be the required weight in

pounds.

Example. What weight at the middle of a Buffalo g-inch,

go-pound beam will deflect it one inch, the length between

bearings being 20 feet ? The value of 7 for this beam, in

Table IV., 18109-117; therefore

744000 /<? 744000x109-117x1
^ 20 3

: IO147 -WSJ

or, the required weight is, say, 10,148 pounds.

172. Rolled -Iron Beam : Weight at any Point. The

equation for a load at any point is (Transverse Strains, Art.

485)-

186000 IS
r^r,r -

(72.)

in which m and n represent the two parts m feet into which

the point where the load rests divides the length. This, in

words, is as follows :

Rule LI. Multiply 186000 times the value of 7 by the

deflection in inches
; divide the product by the product of

the length into the rectangle formed by the two parts into

which the point where the load rests divides the length ;

the quotient will be the required weight in pounds.
Example. What weight is required, located at 10 feet

from one end, to deflect i inches a Paterson 12^-inch, 125-

pound beam 25 feet long between bearings ? The value of

7 for this beam, in Table IV., is 292-05 ;
m 10, and n = I

- m = 25 10 ^ 15 ;
therefore
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,,, I86OOO Id I86OOO X 2Q2-O5 X I -s- -

or, the required weight is, say, 21,730 pounds.

(73. Rolled-Iron Beams: Dimension* Weight at any
Point. By transposition of factors in equation (72.), we ob-

tain

Wlmn
'"

186000 tf* (73-)

This may be expressed in words as follows :

Rule LI I. Multiply the weight by the length, and by the

rectangle of the two parts into which the point where the

weight rests divides the length ;
divide the product by 186000

times the deflection, and the quotient will be the value of 7,

which (or its next nearest number) may be found in Table

IV., opposite to which will be found the required beam.

Example. What beam 10 feet long will be required to

carry 5000 pounds at 3 feet from one end with a deflection

of 0-4 inch? Here we have m equal 3, and n equal 7;

therefore

Wlmn 5000x10x3x7-.

U '
- -

J
A . J I ?

1 86000 tf

"

1 86000 x o 4

The value of /is 14-113, the nearest number to which in

the table, is 14-317, the moment of inertia of the Phoenix 5-

inch, 36-pound beam
; this, therefore, is the .beam required.

174. Rolled-Iron Beams: Dimensions; Weight Uniform-

ly Distributed. Since f U = W(Art. 138), equation (69.) may
be modified by the substitution of this value of W, when we

obtain

which reduces to

7 =
744000 $'

/ = p (74.)
1 190400 6
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a rule for the dimensions of a beam for a uniformly distrib-

uted load, which, in words, is as follows :

Rule LIII. Multiply the uniformly distributed load by
the cube of the length ;

divide the product by 1 190400 times

the deflection, and the quotient will be the value of /, corre-

sponding to which, or to its next nearest number will be

found in Table IV/the required beam.

Example. What beam 10 feet long is required to sus-

tain an equally distributed load of 14,000 pounds with a de-

flection of half an inch ? For this we have

14000 x io 8

1190400x0-5

This is the moment of inertia of the required beam
; nearly.

the same as 23-761, in Table IV., the value of / fora Tren-

ton 6-inch, Ao-pound beam, which will serve as the re-

quired beam.

175. Rolled-Iron Beam* : Deflection ; Weight Uniformly
Distributed. A transposition of the factors in equation (74.)

gives

*=
UIS

11904007' (75-)

a rule for the deflection of a uniformly loaded beam, and

which may be put in these words, namely :

Rule LIV. Multiply the uniformly distributed load by
the cube of the length ;

divide the product by 1190400 times

the value of /, Table IV., and the quotient will be the re-

quired deflection.

Example. To what depth will 14,000 pounds, uniformly

distributed, deflect a Buffalo lo^-inch, 9O-pound beam 20

feet long? The value of /for this beam, as per the table, is

151- 436 ;
therefore

14000 X 20 3

?= 0-6213 ;

1 190400 x 151 -436

or, the required deflection is, say, of an inch.
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! 7 6. Rolled -Iron Beam: Weight when Uniformly
Distributed. Equation (75.), by a transposition of factors,

gives

*
9 (76.)

a rule for the weight uniformly distributed, and which may
be worded thus :

Rule LV. Multiply 1190400 times the value of /, Table

IV., by the deflection
;
divide the product by the cube of

the length, and the quotient will be the required weight.

Example. What weight uniformly distributed upon a

Buffalo loj-inch, 105 -pound beam 25 feet long between

bearings will deflect it f of an inch ?

The value of / for this beam, as per Table IV., is 175-645 ;

therefore

1190400 17

or, the required weight is, say, 10,036 pounds.

(77. Rolled-Iron Beam: Floors of Dwellings or As-

semfoly- Rooms. From Transverse Strains, Art. 500, we

have

a rule for the distance from centres of rolled-iron beams in

floors of dwellings, assembly-rooms, or offices, where the

spaces between the beams are filled in with brick arches and

concrete. In the equation, c is the distance apart from cen-

tres in feet, and y is the weight per yard of the beam. This,

in words, is thus expressed :

Rule LVL Divide 255 times the value of / by the cube

of the length ;
from the quotient deduct one 42oth part of

the weight of the beam per yard, and the remainder will

the required distance apart from centres.

Example. What should be the distance apart from cen-
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tres of Buffalo I2j-inch, 125 -pound beams 25 feet lo.ng

between bearings, in the floor of an assembly-room ? For
these beams, in Table IV., / equals 286-019, and y= 125;

therefore

_ 255 x 286-oi9_ 125 m

~^J
~
420

'

-
-298 = 4-37;

15625 420

or, the required distance from centres is, say, 4 feet 4^
inches.

178. Rolled-Iron Beams : Floor of First-Class Stores.

From Transverse Strains, Art. 504, we have

a rule for the distance from centres of rolled-iron beams in

the floor of a first-class store ;
the spaces between the beams

being filled with brick arches and concrete. This rule may
be put in words as follows:

Rule LVIL Divide 148-8 times the value of 7 by the

cube of the length ;
from the quotient deduct one 96oth

part of the weight of the beam per yard, and the remainder

will be the distance apart of the beams from centres in

feet.

Example. What should be the distance apart from cen-

tres of Buffalo I2j-inch, i8o-pound beams 20 feet long
between bearings, in the floor of a first-class store? For
these beams the value of /, Table IV., is 418-945, and the

value of y is 180; therefore

c = I48 ' 8 x 418-945 _ 180
6o .

203
960

or, the required distance from centres is, say, 7 feet /|
inches.
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179. Floor-A rolles : Oeneral Considerations. In fill-

ing the spaces between the iron beams of a floor, the arches
should be constructed with hard whole brick of good shape,
laid upon the supporting centre in contact with each other,
and the joints thoroughly filled with cement grout, and

keyed with slate. Made in this manner, the arches need not
be over four inches thick at the crown for spans extending
to 7 or 8 feet, and 8 inches thick at the springing, where

they should be started upon a proper skew-back. The rise

of the arch should not be less than i inches for each foot

of the span.

180. Floor - Arches ; Tie -Rods: Dwellings. From
Transverse Strains

',
Art. 507, we have

d = V0-0198 c s, (79.)

which is a rule for the diameter in inches of a tie-rod for

an arch in the floor of a bank, office building, or assembly-
room

;
in which d is the diameter in inches of the rod, s is

the span of the arch, and c is the distance apart between the

rods (s and c both in feet). This rule requires that the arch

rise i^ inches per foot of the span, and that the brick-work

and the superimposed load each weigh 70 pounds, or to-

gether 140 pounds. This rule, in words, is -as follows:

Rule LVIII. Multiply the span of the arch by the dis-

tance apart at which the rods are placed, and by the decimal

0-0198 ;
the square root of the product will be the diameter

of the required rod.

Example. What should be the diameter of the wrought-
iron ties of brick arches of 5 feet span, in a bank or hall of

assembly, where the ties are 8 feet apart ? For this we

have

d 1/0-0198 x^8 x 5
= 1/-792 = 0-89;

or, the diameter of the required rods should be, say, -J
of an

inch.

181. Floor-Arches ; Tie-Rods: First-Class Stores. From

the same source as in last article, we have

d = V o- 04527 c~s, (80.)
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which is a rule for the size of tie-rods for the brick arches

of the floors of first-class stores, where the arches have a

rise of i inches for each foot of the span, and where the

weight of the brick arch and concrete is not over 70 pounds

per superficial foot of the floor, and the loading does not

exceed 250 pounds per superficial foot. As the rule is the

same as the one in the preceding article, except the deci-

mal, a recital of the rule, in words, is not here needed. To
obtain the required diameter, proceed as directed in Rule

LVIII., using the decimal 0-04527 instead of the one there

given.

TUBULAR IRON GIRDERS.

182. Tubular Iron Girders: Decripfion. The use of

wooden beams for floors is limited to spans of about 25 feet.

When greater spans than this are to be covered, some expe-
dient must be resorted to by which
intermediate bearings for the floor-

beams may be provided. Wooden

girders may be used, but these

need to be supported by posts at

intervals of from 10 to 15 feet,

unless the girders are trussed, or

made up of top and bottom chords,

struts, and ties. And even this

is objectionable, owing to the

height such a piece of framing

requires, and which encumbers
the otherwise free space of the

hall. A substitute for the framed

girder has been found in the

tubular iron girder, as in Fig. 46, made of rolled plate
iron and angle irons, riveted. They require to be stiffened

by an occasional upright T iron along eachside, and a

cross-head at least at each bearing.

183. Tubular Iron Girders: Area of Flangc ;
Load

at Middle. In wrought-iron tubular girders it is usual to

make the top and bottom flanges of equal thickness. From
Transverse Strains, Art. 551, we have

FIG. 46.
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a rule for the area of the bottom flange ; in which a' equals
the area of the flange in inches, W the weight in pounds at

the middle, / the length and d the depth of the girder, both

in feet, and k the saTe load in pounds per inch with which

the metal may be loaded, and which is usually taken at

9000. The rule may be stated thus :

Rule LIX. Multiply the weight by the length ; divide

the product by 4 times the depth into the value of k, and

the quotient will be the required area of the bottom flange.

Example. In a girder 40 feet long and 3 feet high, to

carry 75,000 pounds at the middle, what area of metal is

required in the bottom flange, putting k at 9000? For this

we have, by the rule

. W I 75000 x 40
f,' j__j_

~
, ^7 77'*

4 d k 4 x 3 x 9000

or, the area required is 27$ inches. This is the amount of

uncut metal. An allowance is required for that which will

be cut by rivet-holes. This is usually an addition of one

sixth.

184. Tubular Iron Girders : Area of Flanges; Load at

any Point. The equation suitable for this (Transverse

Strains, Art. 553) is

(82 -}

in which m and n are the distances respectively from the lo-

cation of the load to the two ends of the girder. The other

symbols are the same as in the last article. This rule may
be thus stated :

Rule LX. Multiply the weight by the values of m and

of n
;
divide the product by the product of the depth into

the length and into the value of k, and the quotient will be

the required area of the bottom flange.

Example. In a girder 50 feet long between bearings and
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3J- feet high, what area of metal is required in the bottom

flange to sustain 50,000 pounds at 20 feet from one end, when
k equals 9000

*
By the rule, we have

rr m n 50000 x 20 x 30

or, each flange requires 19 inches of solid metal uncut for

rivets.

185. Tubular Iron Girder : Area of Flange ; Load
Uniformly Distributed. The equation appropriate here is

(Transverse Strains, Art, 555)

This is a rule by which to obtain the area of cross-sec-

tion of the bottom flange at any point in the length of the

girder, the load uniformly distributed
;
m and n being the

respective distances from the point measured to the two
ends of the girder, and U representing the uniformly dis-

tributed load in pounds. This, in words, is described as

follows :

Rule LXI. Divide the weight by the product of twice

the depth into the length and into the value of k
;
then the

quotient multiplied by the values of m and of n will be the

required area of the bottom flange at the point measured,
the distance of which from the ends equals m and n.

Examplc.~\n a girder 50 feet long and 3^ feet high, to

carry a uniformly distributed load of 120,000 pounds, what

area of cross-section is required in the bottom flange, at the

middle and at intervals of 5 feet thence, to each support ; k

being taken at 9000? Here we have, first

. m n 1 20000 m n
a = U -jT-r = - = 0-038005 m n.2dkl 2x3^x9000x50

Now, when m = n = 25, we have the middle point ;
then

a' = 0-038095 m n = 0-038095 x 25 x 25 = 23-81 ;
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SRJ^r
or, the area of the bottom flange at mid-length is 23
inches.

When ;;/ = 20, then n = 30, and

a' = 0-038095 X2ox 30 = 22-86;

or, the required area, at 5 feet either way from the middle,
is 22-J inches.

When m = 15, then n = 35, and

a = 0-038095 x 15 x 35 = 20-0 ;

or, at 10 feet either way from the middle, the required area

is 20 inches.

When m= 10, then n = 40, and

a' 0-038095 x 10x40 = 15-24 ;

or, at 15 feet either way from the middle, the required area

is 15^ inches.

When m = 5, then n 45, and

a' = 0-038095 x 5x45 =8-57;

or, at 20 feet each side of the middle, the required area is 8f
inches.

The area of cross-section found in every case is that of

the uncut fibres
;
to this is to be added as much as will be

cut by the rivets. This is usually about one sixth of the area

given by the rule. The top flange is to be made equal in

area to the bottom flange. The flanges are unvarying in

width from end to end, the variation of area being obtained

by varying the thickness of the flanges, and this being at-

tained by building the flange in lamina, or plates ;
but these

should not be less than a quarter of an inch thick. There

should be added to the length of the girder, in the clear,

about one tenth of its length for supports on the walls : thus,

a girder 30 feet long requires 3 feet added for supports, or

1 8 inches on each wall.

186. Tubular Iron Girdcr: Shearing Strain. The top

and bottom flanges are provided of sufficient size to resist
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the transverse strain ; the two upright plates, technically

termed the web, need, therefore, to be thick enough to resist

only the shearing strain. This, upon a beam uniformly
loaded, is at the middle theoretically nothing, but from
thence it increases regularly towards each support, where it

equals half the whole weight. For example, the girder of

Art. 185, 50 feet long between supports, carries 120,000

pounds uniformly distributed over its length. In this case

the shearing strain at the wall at each end is the half of

120,000 pounds, or 60,000 pounds; at 5 feet from the wall it

is -fg or
-J less, or 48,000 pounds ;

at 10 feet from the wall it

is f less, or 36,000 pounds ;
at 15 feet it is 24,000 ;

at 20 feet

it is 12,000; and at 25 feet or the middle, it is nothing.

187. Tubular Iron Girder: Thickness of Wefo. The

equation appropriate for this is

in which t is the thickness of the web (equal to the sum of

the thicknesses of the two side plates), d is the height of the

plate (/ and d both in inches), G is the shearing strain, and k'

is the effective resistance of wrought iron to shearing per
inch of cross-section. This may be put in words as follows :

Rule LXII. Divide the shearing strain by the product of

the depth in inches into the value of /', and the quotient
will be the thickness of the web, or of the two side plates
taken together.

Example. What is the required thickness of web in a

girder 50 feet between bearings, side plates 38 inches high
between top and bottom flanges, and to carry 120,000 pounds,

uniformly distributed ? Here, putting the shearing resistance

of the plates at 7000 pounds per inch, we have

dk'
'

38x7000 266000*

The shearing strain at the supports, as in last article, is

60000
; therefore, we have for this point
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60000
1

"266000"
^ ' 225 '

When G = 48000, then

48000
:

"^660^0"-
' I8;

and when G = 36000, then

36000
/ -?

0-135.266000

Those nearer the middle of the girder are still less than

these
;
and these are all below the practicable thickness,

which is half an inch for the two plates. The plates ought
not in practice ever to be made less than a quarter of an

inch thick.

188. Tubular Iron Girder, for Floors of

Acmbly-Room, and Office Buildings. When the floors of

these buildings are constructed with rolled-iron beams and

brick arches, then the following (Art. 568, Transverse Strains]

is the appropriate equation for the area of cross-section of

the bottom flange of the girder :

in which a' is in inches, and c, c
, d, /, m, and n are in feet.

Also, a' is the area required ; y is the weight per yard of the

rolled-iron beam of the floor ; c, their distances from centres ;

c', the distance from centres at which the tubular girders are

placed, or the breadth of floor carried by one girder; d, the

depth of the girder; k, the effective resistance of the metal

per inch in the flanges of the girder ; and ;// and n are the

distances respectively from the two ends of the girder to the

point at which the area of cross-section of the bottom flange

is required. The rule may be thus described :

Rule LXIIL Divide the weight per yard of the rolled-

iron beams by 3 times their distance from centres; to the

quotient add 140 and reserve the sum ; deduct the length

in feet from 700, and with the remainder as a divisor divide

700 ; multiply the quotient by the above reserved sum, and
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by the value of c'
;
divide the product by the product of

twice the depth into the value of k, and the quotient multi-

plied by the values of m and of n will be the required area

of cross-section of the bottom flange at the point in the

length distant from the two ends equal to m and n respec-

tively.

Example. In a floor of 9-inch, /o-pound beams, 4 feet

from centres, what ought to be the area of the bottom flange

of a tubular girder 40 feet long between bearings, 2 feet 8

inches deep, and placed 17 feet from the walls or from other

girders ; the area of the flange to be ascertained at every 5

feet of the length : the value of k to be put at 9000 ? Here

y =. 70, c = 4, c
f = 17, 7=40, and d= 2f. Therefore, by

the rule

/ 70 \ 700 17
a = I 14.0+ ) x o x m n :

V 3 x 47 700 - 40 2 x 2f x 9000

a' 145 8^- x I -0606 x 0-0003 54 rf x mn\

a' = 0-05478 m n.

The values of m and n are

At the middle m = 20 ; n = 20

5 feet from middle m 15; n = 25

10 " " " m = 10
;
n = 30

15
.

" " " m= 5 ; n = 35

These give

At the middle a' 0-05478 x 20 x 20 = 21 -91
"

5 feet from middle a' = 0-05478 x 15 x 25 = 20-54
"10 " " "

a' = 0-05478 x 10 x 30 16-43

"15
" " " *' = 0-05478 x 5x35= 9-59

These are the areas of uncut fibres at the points named, in

the lower flange ;
the upper flange requires the same sizes.

(89. Tubular Iron Girders, for Floors of First-Class

Stores. The equation proper for this is (Transverse Strains,

Art. 570)
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a rule the same in form as that of the previous article
;
hence

it needs no particular exemplification.
Rule LXIII. of last article may be used for this case,

simply by using the constant 320 in place of that of 140.

CAST-IRON GIRDERS.

190. Cast-iron Girders: Inferior. Rolled- iron beams
have been so extensively introduced within a few years as

to have superseded almost entirely the formerly much used

cast-iron beam or girder. The tensile strength of cast iron

is far inferior to that of wrought iron. This inferiority and

the contingencies to which the metal is subject in casting

render it very untrustworthy ;
it should not be used where

rolled-iron beams can be procured. A very substantial gir-

der to carry a brick wall is made by placing two or more

rolled-iron beams side by side, and securing them together

by bolts at mid-height of the web ; placing thimbles or sep-

arators at each bolt. As there may be cases, however, in

which cast-iron girders will be used, a few rules for them

will here be given.

1 9 1._Cast-Iron Girder: Load at Middle. The form of

cross-section given to this girder usually is as shown in

Fig. 47.

In the cross-section, the bottom flange

is made to contain in area four times as

much as the top flange. The strength

will be in proportion to the area of the

bottom flange, and to the height or

depth of the girder at middle. Hence,

to obtain the greater strength from a

given amount of material, it is requisite

to make the upright part, or the web,

rather thin ; yet, in order to prevent

injurious strains in the casting while it

is cooling, the parts should be nearly

equal in thickness. The thickness of the three parts web,
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top flange, and bottom flange may be made in proportion
as 5, 6, and 8.

For a weight at middle, the form of the web should be

that of a triangle ;
the top flange forming two straight lines

declining from the centre each way to the bottom flange at

the ends, like the rafters of a roof to its tie-beam. From
Transverse Strains, Art. 583, we have

which is a rule for the area in inches of the bottom flange,

for a load at middle
;
the area of the top flange is to be equal

to one fourth of that of the bottom flange. To secure this,

make the width of the top flange equal to one third of the

width of the bottom flange ;
the thickness of the former,

as before directed, being made equal to f or f of the lat-

ter. The weight W is in pounds ;
the length / is in feet ;

and the depth d is in inches. The factor of safety a should

be taken at not less than 3 ;
better at 4 or 5.

The equation in words may be as follows :

Rule LXIV. Multiply the weight by the length, and by
the factor of safety ;

divide the product by 4850 times the

depth at middle, and the quotient will be the area in inches

of the bottom flange ;
divide this area by the width of the

bottom flange, and the quotient will be its thickness. Of the

top flange make its width equal one third that of the bot-

tom flange, and its thickness equal to three quarters that of

the latter. Make the thickness of the web equal to
f-

that

of the bottom flange.

Example. What should be the dimensions of the cross-

section of a cast-iron girder 20 feet long between bearings,
and 24 inches high at middle, where 30,000 pounds is to be
carried

;
the factor of safety being put at 5 ?

Here we have W 30000 ;
a 5 ;

/ 20
;

and d =
24 ; therefore, by the rule

30000 x 5 x 20
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This is the area of the bottom flange. If the width of this

flange be 12 inches, then 25-773 divided by 12 gives 2 -15, or

2-J- full, as the thickness. One third of 12 equals 4, equals
the width of the top flange ;

and j- of 2 1 5 equals i 6 1
,
or i f

its thickness. The thickness of the web equals -|
x 2-15 =

i -34 or i-J inches.

192 Cast-iron Girder: Load Uniformly Distributed.
The equation suitable to this is

Ual
9700 (f (88.)

a rule of like form with that of the last article
; therefore,

Rule LXIV. may be used for this case, simply by substitut-

ing 9700 for 4850.

193. Cast -Iron Bowstring Girder. An arched girder,
such as that in Fig. 48, is technically termed a "

bowstring

girder." The curved part is a cast-iron beam of T form in

section, and the horizon-

tal line is a wrought-iron
tie-rod attached to the

ends of the arch. This

girder has but little to

commend it, and is by no

means worthy the confi-

dence placed in it by
FlG- 48 '

builders, with many of whom it is quite popular. The brick

arch usually turned over it is adequate to sustain the entire

compressive force induced from the load (the brick wall

built above it), and it thereby supersedes the necessity for the

iron arch, which is a useless expense. The tie-rod is the

only useful part of the bowstring girder, but it is usually

made too small, and not infrequently is seriously injured by
the needless strain to which it is subjected when it is

" shrunk in" to the sockets in the ends of the arch. The bow-

string girder, therefore, should never be used.

(94. Substitute for tlie Bowstring Girder. As the cast-

iron arch of a bowstring girder serves only to resist com-
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pression, its place can as well be filled by an arch of brick,

footed on a pair of cast-iron skew-backs
;
and these held

in position by a pair of wrought-iron tie-rods, as shown in

Fig. 49. This system of construction is preferable to the

bowstring girder, in that the

tie-rods are not liable to injury

by
"
shrinking in," and the

cost is less. From Transverse

Strains, Art. 596, we have

D =
Ul

9425 d
(89.)

FIG. 49.

an equation in which D is the

diameter in inches of each of

the two tie-rods of the brick

arch ;
U is the load in pounds

uniformly distributed over the arch
;

/ is the span of the

arch in feet
;
and d, in inches, is its versed sine, or its height

measured from the centre of the tie-rod to the centre of the

thickness or height of the arch at middle.

This equation may be put in words as follows :

Rule LXV. Multiply the weight by the length ; divide

the product by 9425 times the depth, and the square root of

the quotient will be the diameter of each rod.

Example. What should be the diameter of each of the

pair of tie-rods required to sustain a brick arch 20 feet span
from centres, with a versed sine or height at middle of 30

inches, to carry a brick wall 12 inches thick and 30 feet high,

weighing TOO pounds per cubic foot? The load upon this

arch will be for so much of the wall as will occur over the

opening, which will be about one foot less than the span of

the arch, or 20 i = 19 feet. Therefore, the load will

equal 19 x 3ox i x 100 = 57,000. pounds ;
and hence, U

57000, / = 20, d 30, and, by the rule

57000 x 20
__. -- = 1/4-0318 = 2. 008;

9425 x 30

or, the diameter of each rod is required to be 2 inches.
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FRAMED GIRDERS.

195 Graphic Representation of Strain In the first

part of this section, commencing at Art. 71, the metfiod was
developed of ascertaining the strains in the various parts of
a frame by the parallelogram or triangle of forces. The
method, so far as there explained, is adequate to solve sim-

ple cases
;
but when more than three pieces of a frame con-

verge in one point, the task bv that method becomes difficult.

This difficulty, however, disappears when recourse is had to
the method known as that of 4<

Reciprocal Figures, Frames,
and Diagrams of Forces," proposed by Professor I. Clerk
Maxwell in 1867. This is an extension of the method by
the triangle of forces, and may be illustrated as follows :

FIG. 50. FIG. 51.

Let the lines in Fig. 50 represent, in direction and

amount, four converging forces in equilibrium in any frame,

as, for example, the truss of a roof; let the lines in Fig. 51

be drawn parallel to those in Fig. 50, in the manner fol-

lowing, namely : Let the line A B be drawn parallel with the

line of Fig. 50 which is between the corresponding letters

A and B, and let it be of corresponding length ;
from B draw

the line B C parallel with the line of Fig. 50 which is be-

tween the letters B and C, and of corresponding length ;

then from C draw CD, and from A draw A D, respectively

parallel with the lines of Fig. 50 designated by the corre-

sponding letters, and extend them till they intersect at D.

The lengths of these two lines, the last two drawn, are de-

termined by the point D where they intersect; their lengths,

therefore, need not be previously known,. The lengths of

the lines in Fig. 51 are respectively in proportion to the
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several strains in Fig. 50, provided these strains are in

equilibrium. Fig. 5 1 is termed a closed polygon of forces.

A system of such polygons, one for each point, in the frame

where forces converge, so constructed that no line repre-

senting a force shall be repeated, is termed a diagram of

forces. This diagram of forces is a reciprocal of the frame

from which it is drawn, its lines and angles being the same.

The facility of tracing the forces in the diagram of forces

depends materially upon the system of lettering here shown,
and which was proposed by Mr. Bow, in his excellent work

on the Economics of Construction. In this system each

line of the frame is designated by the two letters which it

separates ;
thus the line between A and B is called line A B

;

that between C and D is called line CD
;
and so of others

;

and in the diagram the corresponding lines are called by the

same letters, but here the letters designating the line are, as

usual, at the ends of the line. Any point in a frame where

forces converge is designated by the several letters which

cluster around it; as, for example, in Fig. 50, the point of

convergence there shown is designated as point A B C D.

This invaluable method of denning graphically the

strains in the various pieces composing a frame, such as a

girder or roof-truss, is remarkably simple, and is of general

application. Its utility will now be exemplified in its appli-

cation to framed girders, and afterwards to roof-trusses.

196. Framed 4*irder. Girders of solid timber are use-

ful for the support of floors only where posts are admissible

as supports, at intervals of from 8 to 15 feet. For unob-

structed long spans it becomes requisite to construct a frame

to serve as a girder (Arts. 163, 182). A frame of this kind

requires two horizontal pieces, a top and a bottom chord,

and a system of struts and suspension-pieces by which

the top and bottom chords are held in position, and the

strains from the load are transmitted to the bearings at the

ends of the girders. Various methods of arranging these

struts and ties have been proposed. One of the most simple
and effective is shown in Fig. 52, forming a series of isos-

celes triangles. The proportion between the length and

height of a girder is important as an element of economy
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both of space and cost. When circumstances do not control

in limiting- the height, it may be determined by this equation
from Transverse Strains, Art. 624

, (I75+/)/

2400
;

(90.)

in which d is the depth or height between the axes of the

top and bottom chords, and / is the length between the cen-

tres of bearings at the supports (d and / both in feet). This

equation in words is as follows :

Rule LXVI. To the length add 175 ; multiply the sum

by the length ;
divide the product by 2400, and the quotient

will be the required height between the axes of the top and

bottom chords.

Example. What should be the depth of a girder which

is 40 feet long between the centres of action at the supports?
For this the rule gives

(175+40^40
s

2400

or, the proper depth for economy of material is 3 feet and

7 inches.

The number of bays, panels, or triangles into which the

bottom chord may be divided is a matter of some considera-

tion. Usually girders from

20 to 59 feet long should have 5 bays.

59 85
" " " " 6 "

85
"

107
" " " "

7
"

107
"

127
" " " " 8

"

127
"

146
" " "

9

(97. Framed Girder and Diagram of Force. Let Fig.

52 represent a framed girder of six bays of, say, n feet

each, or of a total length of 66 feet.

The lines shown are the axial lines, or the imaginary lines

passing through the axes of the several pieces composing the

frame. The. six arrows indicate the six pressures into which

the equally distributed load is supposed to be divided. Each

of these is at the apex of a triangle, the base of which 1

along the lower chord.
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The spaces between the arrows are lettered ; so, also, the

space between the last arrow at either end and the point of

support has a letter, and so has each triangle, and there is

one for the space beneath the lower chord. These letters

are to be used in describing the diagram of forces, as was

explained in Art. 195. The diagram of forces (Fig. 53) for

this girder-frame is drawn as follows, namely : Upon a verti-

FIG. 52.

cal line A ^Vmark the points A, O, P, Q, R, S, and N, at equal

distances, to represent the six equal vertical pressures indi-

cated by the arrows in Fig. 52. The equal distances A O,

OP, etc., may be made of any convenient size; but it will

HGrF

FIG. 53.

serve to facilitate the measurement of the forces in the dia-

gram if they are made by a scale of equal parts, and the

number of parts given to each division be made equal to the

number of tons of 2000 pounds each which is contained in

the pressure indicated by each arrow. On this vertical line

the distance A represents the load at the apex of the tri-

angle B, or the point A OCB (Art. 195); the distance OP
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represents the weight at the second arrow, or at the point
O PR D C, and so of the rest. If the weights upon the

points in the upper chord had been unequal, then the divi-

sion of the vertical line A N would have had to be corre-

spondingly unequal, each division being laid off by the scale,

to accord with the weight represented by each. The line

of loads, A N, being adjusted, the other lines are drawn from
it (Art. 195), so as to make a closed polygon for the forces

converging at each point of the frame, Fig. 52 commenc-

ing with the point A B T, Fig. 52, where there are three

forces, namely, the force acting through the inclined strut

A B, the horizontal force in B 7", and the vertical reaction

A T at the point of support. This last is equal to half the

entire load, or equal to the pressure indicated by the three

arrows, A O, O P, and P Q, and is represented in Fig. 53 by
A Q or A T. From the point Q draw a horizontal line Q B ;

this is parallel with the force B T of Fig. 52, in the lower

chord. From the point A draw A B parallel with the strut

A B of Fig. 52. This line intersects the line B T in B and

closes the polygon A B TA ; the point B defines the length
of the lines A B and B 7", and these lines measured by the

scale by which the line of loads was constructed give the

required pressures in the corresponding lines, A B and B T,

of Fig. 52.

Taking next, the point ABCO, where four forces meet,

of which we already have two, namely, the force in the

strut A B and the load A O from the point O draw the hori-

zontal line O C
;

this is parallel to the horizontal force O C
of Fig. 52. Now from B draw B C parallel with the suspen-

sion-piece B C of Fig. 52. This line intersects O C in C, and

the point C limits the lines O C and B C and closes the poly-

gon A B C O A, the four sides of which are respectively in

proportion to the four forces converging at the point A B CO
of Fig. 52, and when measured by the scale by which the

line of loads was constructed give the required strains re-

spectively in each. Taking next the point B CD T, where

four forces converge, of which we already have two, B C
and B T from B extend the horizontal line TB to D\ from

C draw CD parallel with CD of Fig. 52, and extend it to in-

tersect TD in D, and thus close the polygon TB CD T.
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The lines in a part of this polygon coincide those from
B to T\ this is because the two strains B T and D T, Fig. 52,

lie in the same horizontal line. Again, taking the point
OCD EP, where five forces meet, three of which, O P, O C,

and CD, we already have draw from D the line DE parallel
with D E of Fig. 52, and from P the line PE horizontally or

parallel with PE of Fig. 52. These two lines intersect at E
and close the polygon PO CD E P, the sides of which meas-

ure the forces converging in the point PO CD E, Fig: 52.

Next in order is the point D EF T, Fig. 52, where four forces

meet, two of which, TD and D E, are known. From E draw
EF parallel with EF'm Fig. 52; and from 7

1

,
TF parallel

with TFin Fig. 52 ; these two lines meet in F and close the

polygon TDE F T, the sides of which measure the required
strains in the lines converging at the point DEFT, Fig. 52.

Taking next the point PEFG Q9 Fig. 52, where five forces

meet, of which we already have three, QP, P,and E F
Irom F draw a line parallel with F G of Fig. 52, and from Q
a line parallel with Q G of Fig. 52. These two intersect at G
and complete the polygon QPEFG Q, the lines of which
measure the forces converging at PEFG Q in Fig. 52.

In this last polygon, a peculiarity seems to indicate an

error: the line FG has no length ; it begins and ends at the

same point ; or, rather, the polygon is complete without it.

This is easily understood when it is considered that the two
lines FG and GH do not contribute any strength towards

sustaining the loads P Q and QR, and in so far as these

weights are concerned they might be dispensed with, and

the space occupied by the three triangles F , G, and H left

free, and be designated by only one letter instead of three.

Thus it appears that there are only four instead of five forces

at the point PEFG Q, and that the four are represented by
the lines of the polygon QPEFQ.

The peculiarity above explained arises from considering
loads only on the top chord : the analysis of the case is cor-

rect as worked from the premises given ;
but in practice

there is always more or less load on the bottom chord at the

middle, which should be considered. This will be included

in a case proposed in the next article. One half of the dia-
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gram of forces is now complete. The other half being ex-

actly the same, except that it is in reversed order, need not

here be drawn.

198. Framed Girders: Load on Both Chords Let

Fig. 54 represent the axial lines of a girder carrying an

FIG. 54.

equally distributed load on each chord, represented by the

arrows and balls shown in the figure. Let each bay measure

IO feet, or the length ot the girder be 50 feet, and its height

/\7
XXX

M

FIG. 55-

be 4J- feet. The diagram of forces (Fig. 55) for this girder

is obtained thus :

The plan of the girder, Fig. 54> requires to be lettered

as shown ; having one letter within each panel and outside

the frame, and one between every two weights or strains.

Then, in Fig. 55, mark the vertical line K V at L, M, N, V,
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and P
t dividing it by scale into equal parts, corresponding

with the weights on the top chord represented by the ar-

rows. For example, if the load at each arrow equals 6J

tons, make K L, L M, MN, etc., each equal to 6^ parts of the

scale. Then KP will equal the total load on the top flange.
Make the distance P V equal to the sum of the loads on the

bottom chord. Then K V equals the total load on the gir-

der. Bisect K Fin U\ then K U or U Fequals half the total

load
; consequently, equals the reaction of the bearing at K

or P of Fig. 54.

Now, to obtain the polygon of forces converging at

KA U, Fig. 54, we have one of these forces, K U, or the re-

action of the bearing at KA U, equal to K U, Fig. 55. From
f/draw UA parallel with UA of Fig. 54, and from 1C draw
KA parallel with the strut KA, Fig. 54, and intersecting the

line UA at A, a point which marks the limit of KA and UA,
and closes the polygon KA UK, the sides of which are in

proportion respectively to the three strains which converge
at the point A UK, Fig. 54. For example, since the line K U
by scale measures the vertical reaction, K U, of the bearing
at A UK, Fig. 54, therefore the line KA of the diagram of

forces by the same scale measures the strain in the strut KA,
Fig. 54, and the line A U of the diagram by the same scale

measures the strain in the bottom chord at A U, Fig. 54. For
the strains converging at KA B L, Fig. 54, of which two,
KA and K L, are already known, we draw from A the line

A B parallel with the line A B, Fig. 54, and from L draw L B
parallel with L B, Fig. 54, meeting A B at B, a point which
limits the two lines and closes the polygon KA B L K, the

lines of which are in proportion respectively to the strains

converging at the point KA B L, Fig. 54, as before explained.
Of the five strains converging at UA B C T, we already have
three T U, UA,and AB* to obtain the other two, make

UQ equal to PV, equal to the total load upon the lower

flange ;
divide U Q into four equal parts, QR, RS, S T, and

T U, corresponding with the four weights on the lower

chord, and represented by the four balls, Fig. 54. Now,
from T, the point marking the first of these divisions, draw
TC parallel with T C, Fig. 54, and from B draw B C paral-
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lei with the strut EC, Fig. 54, meeting TC in C, a point
which limits the lines B C and TC and closes the polygon
T UA B C T, the sides of which are in proportion respectively
to the strains converging in the point T UA B C T, Fig. 54.

Of the five forces converging at MLB CD, we already have

three ML, LB, and B C\ to obtain the other two, from M
draw MD parallel with M D, Fig. 54, and from C draw CD
parallel with CD, Fig. 54, meeting MD at D, a point limit-

ing the lines MD and CD and closing the polygon
MLBCDM,i\\Q sides of which are in proportion to the

strains converging at the point MLB CD, Fig. 54. Of the

five forces converging at the point 5 TCD E, three S T,

T C, and CD are known; to obtain the other two, from 5
draw SE parallel with SE, Fig. 54, and from D draw D E,

parallel with the strut D E, Fig. 54, meeting the line SE in

E
t
a point limiting the two lines S E and D E and closing the

polygon 5 TCD E S, the sides of which are in proportion to

the strains converging at 5 TCDE, Fig. 54. One half of the

strains in Fig. 54 are now shown in its diagram of forces, Fig.

55 ;
and since the two halves of the girder are symmetrical,

the forces in one half corresponding to those in the other,

hence the lines of the diagram for one half of the forces

may be used for the corresponding forces of the other half.

199. Framed Girders : Dimensions of Parl. The

parts of a framed girder are the two horizontal chords (top

and bottom) and the diagonals the struts and ties. The top

chord is in a state of compression, while the bottom chord

experiences a tensile strain. Those of the diagonal pieces

which have a direction from the top to the bottom chord,

and from the middle towards one of the bearings of the

girder, as KA, B C, or D E, Fig. 54, are struts, and are sub-

jected to compression. The diagonal pieces which have a

direction from the bottom to the top chord, and from the

middle towards one of the supports, as A B or CD, Fig. 54.

are ties, and are subjected to extension, (Art. 83). The

amount of strain in each piece in a framed girder having

been ascertained in a diagram of forces, as shown in Arts.

197 and 198, the dimensions of each piece may be obtained
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by rules already given. The dimensions of the pieces in a

state of compression are to be ascertained by the rules for

posts in Arts. 107 to 114, and those in a state of tension by
A: m

ts. 117 to 119 (see Arts. 226 to 229). Care is required, in

obtaining the size of the lower chord, to allow for the joints

which necessarily occur in long ties, for the reason that tim-

ber is not readily obtained sufficiently long without splicing.

Usually, in cases where the length of the girder is too great
to obtain a bottom chord in one piece, the chord is made up
of vertical lamina, and in as long lengths as practicable, and

secured with bolts. A chord thus made will usually require
about twice the material ; or, its sectional area of cross-sec-

tion will require to be twice the size of a chord which is in

one whole piece ;
and in this chord it is usual to put the fac-

tor of safety at from 8 to 10.

The diagonal ties are usually made of wrought iron, and

it is well to secure the struts, especially the end ones, with

iron stirrups and bolts. And, to prevent the evil effects of

shrinkage, it is well to provide iron bearings extending

through the depth of each chord, so shaped that the struts

and rods may have their bearings upon it, instead of upon
the wood.

PARTITIONS.

200 Partitions Such partitions as are required for

the divisions in ordinary houses are usually formed by tim-

ber of small size, termed studs or joists. These are placed

upright at 12 or 16 inches from centres, and Avell nailed.

Upon these studs lath are nailed, and these are covered

with plastering. The strength of the plastering depends in

a great measure upon the clinch iormed by the mortar which
has been pressed through between the lath. That this

clinch may be interfered with in the least possible degree, it

is proper that the edges of the partition-joists which are

presented to receive the lath should be as narrow as prac-
ticable

;
those which are necessarily large should be reduced

by chamfering the corners. The derangements in floors,

plastering, and doors which too frequently disfigure the

interior of pretentious houses with gaping cracks in the
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plastering and in the door-casings are due in nearly all cases
to defective partitions, and to the shrinkage of floor-timbers.
A plastered partition is too heavy to be trusted upon an ordi-

nary tier of beams, unless so braced as to prevent its weight
from pressing upon the beams. This precaution becomes es-

pecially important when, in addition to its own weight, the

partition serves as a girder to carry the weight of the floor-

beams next above it. In order to reduce to the smallest

practicable degree the derangements named, it is important
that the studs in a partition should be trussed or braced so

as to throw the weight upon firmly sustained points in the

construction beneath, and that the timber in both partitions
and floors should be well seasoned and carefully framed.

To avoid the settlement due to the shrinkage of a tier of

beams, it is important, in a partition standing over one in the

story below or over a girder, that the studs pass between
the beams to the plate of the lower partition, or to the

girder ; and, to be able to do this, it is also important to ar-

range the partitions of the several stories vertically over

each other. All principal partitions should be of brick,

especially such as are required to assist in sustaining the

floors of the building.

FIG. 56.

201. Examples of Partition&.Fig. 56 represents a par-

tition having a door in the middle. Its construction is simple

but effective. Fig. 57 shows the manner of constructing a
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partition having- doors near the ends. The truss is formed

above the door-heads, and the lower parts are suspended
from it. The posts a and b are halved, and nailed to the

tie c d and the sill ef. The braces in a trussed partition

r

a b

FIG 57-

should be placed so as to form, as near as possible, an angle
of 40 degrees with the horizon. The braces in a partition

should be so placed as to discharge the weight upon the

FIG. 58.

points of support. All oblique pieces that fail to do this

should be omitted.

When the principal timbers of a partition require to be

large for the purpose of greater strength, it is a good plan
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to omit the upright filling-in pieces, and in their stead to

place a few horizontal pieces, as in Fig. 58, in order that upon
these and the principal timbers upright battens may be

nailed at the proper distances for lathing. A partition thus

constructed requires a little more space than others ; but it

has the advantage of insuring greater stability to the plas-

tering, and also of preventing to a good degree the conver-

sation of one room from being overheard in the adjoining
one. Ordinary partitions are constructed with 3x4, 3x5,
or 4x6 inch joists, for the principal pieces, and with 2x4,

2x5, or 2x6 filling-in studs, well strutted at intervals of

about 5 feet. When a partition is required to support, in

addition to its own weight, that of a floor or some other

burden resting upon it, the dimensions of the timbers should

be ascertained, by applying the principles which regulate

the laws of pressure and those of the resistance of timber,

as explained in the first part of this section, and in Arts. 196

to 199 for framed girders. The following data may assist in

calculating the amount of pressure upon partitions :

White-pine timber weighs from 22 to 32 pounds per cubic

loot, varying in accordance with the amount of seasoning it

has had. Assuming it to weigh 30 pounds, the weight of

the beams and floor-plank in every superficial foot of the

flooring will be

6 pounds when the beams are 3 x 8 inches, and placed 20 inches from centres

7\
" " "

3 x 10
" " 18

9
" "

3 x 12
" " 16

II
"

3 XI2
" 12

I 3
" " " 4X12

" " 12

I 3 4x14
"

14

In addition to the beams and plank, there is generally the

plastering, of the ceiling of the apartments beneath, and some-

times the deafening. Plastering may be assumed to weigh 9

pounds per superficial foot, and deafening 1 1 pounds.

Hemlock weighs about the same as white pine. A parti-

tion of 3x4 joists of hemlock, set 12 inches from centres,

therefore, will weigh about 2j pounds per foot superficial

and when plastered on both sides, 2o pounds.
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ROOFS.

202. Roof*. In ancient Norman and Gothic buildings,

the walls and buttresses were erected so massive and firm

that it was customary to construct their roofs without a tie-

beam, the walls being abundantly capable of resisting the

lateral pressure exerted by the rafters. But in modern

buildings, usually the walls are so slightly built as to be in-

capable of resisting much if any oblique pressure ;
hence

the necessity of care in constructing the roof so as to avoid

oblique and lateral strains. The roof so constructed, instead

of tending to separate the walls, will bind and steady them.

FIG. 59. FIG. 60. FIG. 61.

FIG. 62. FIG. 63. FIG. 64,

FIG. 65. FIG. 66. FIG. 67.

203. Comparison of Roof-Truses. Designs for roof-

trusses, illustrating various principles of roof construction,
are herewith presented.

The designs at Figs. 59 to 63 are distinguished from those
at Figs. 64 to 67 by having a horizontal tie-beam. In the

latter group, and in all designs similarly destitute of the

horizontal tie at the foot of the rafters,- the strains are much
greater than in those having the tie, unless the truss be pro-
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tected by exterior resistance, such as may be afforded by
competent buttresses.

To the uninitiated it may appear preferable, in Fig. 64,

to extend the inclined ties to the rafters, as shown by the

dotted lines. But this would not be beneficial
;
on the con-

trary, it would be injurious. The point of the rafter where
the tie would be attached is near the middle of its length,
and consequently is a point the least capable of resisting
transverse strains. The weight of the roofing itself tends to

bend the rafter ;
and the inclined tie, were it attached to the

rafter, would, by its tension, have a tendency to increase this

bending. As a necessary consequence, the feet of the rafters

would separate, and the ridge descend.

In Fig. 65 the inclined ties are extended to the rafters ;

but here the horizontal strut or straining beam, located at

the points of contact between the ties and rafters, counteracts

the bending tendency of the rafters and renders these points

stable. In this design, therefore, and only in such designs, it

is permissible to extend the ties through to the rafters.

Even here it is not advisable to do so, because of the in-

creased strain produced. (See Figs. 77 and 79.) The design

in Fig. 64, 66, or 67 is to be preferred to that in Fig. 65.

204. Force Diagram : L,oacl upon Each Support. By a

comparison of the force diagrams hereinafter given, of each

of the foregoing designs, we* may see that the strains in the

trusses without horizontal tie-beams at the feet of the rafters

are greatly in excess of those having the tie. In constructing

these diagrams, the first step is to ascertain the reaction of,

or load carried by, each of the supports at the ends of the

truss. In symmetrically loaded trusses, the weight upon

each support is always just one half of the whole load.

205. Force Diagram for Trus in Fig. 59. To obtain

the force diagram appropriate to the design in Fig. 59, first

letter the figure as directed in Art. 195, and as in Fig. 68.

Then draw a vertical line, EF (Fig. 69), equal to the weight W
at the apex of roof

;
or (which is the same thing in effect)

equal to the sum of the two loads of the roof, one extending

on each side of W half-way to the foot of the rafter. Di-
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vide EF into two equal parts at G. Make G C and GD eacTi

equal to one half of the weight N. Now, since G is equal
to one half of the upper load, and GD to one half of the low-

er load, therefore their sum, E G + GD ED, is equal to

one half of the total load, or to the reaction of each support,
E or F. From D draw DA parallel with DA of Fig. 68, and

from E draw EA parallel with EA of Fig. 68. The three

lines of the triangle A ED represent the strains, respectively,

in the three lines converging at the point A DE of Fig. 68.

Draw the other lines of the diagram parallel with the lines of

c-

FIG. 69.

Fig. 68, and as directed in Arts. 195 and 197. The various

lines of Fig. 69 will represent the forces in the corresponding
lines of Fig. 68 ; bearing in mind (Art. 195.) that while a line

in the force diagram is designated in the usual manner by the

letters at the two ends of it, a line of the frame diagram is

designated by the two letters between which it passes. Thus,
the horizontal lines A D, the vertical lines A B, and the in-

clined lines A E have these letters at their ends in Fig. 69,

while they pass between these letters in Fig. 68.

206. Force Diagram for Truss in Fig. 60. For this truss

we have, in Fig. 70, a like design, repeated and lettered as

required. We here have one load on the tie-beam, and three

loads above the truss: one on each rafter and one at the

ridge. In the force diagram, Fig. 71, make G H, H J, and

J K, by any convenient scale, equal respectively to the

weights GH, HJ, and JK oi Fig. 70. Divide GK into two

equal parts at L. Make LE and ZFeach equal to one half

the weight E F (Fig. 70). Then G Fis equal to one half the
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total load, or to the load upon the support G (Art. 205).
Complete the diagram by drawing its several lines parallel
with the lines of Fig. 70, as indicated by the letters (see Art.
205), commencing with G F, the load on the support G (Fig.
70). Draw from F and G the two lines FA and GA paral-
lel with these lines in Fig. 70. Their point of intersection
defines the point A. From this the several points B, C, and
D are developed, and the figure completed. Then the lines
m Fig. 71 will represent the forces in the corresponding lines
of Fig. 70, as indicated by the lettering. (See Art. 195.)

K A

FIG. 70. FIG. 71.

207. Force Diagram for Tru in Fig 61. For this truss

we have, in Fig. 72, a similar design, properly prepared by
weights and lettering ;

and in Fig. 73 the force diagram ap-

propriate to it.

In the construction of this diagram, proceed as directed

in the previous example, by first constructing N S, the ver-

tical line of weights ;
in which lineNO y OP,PQ,QR, and R S

are made respectively equal to the several weights above
the truss in Fig. 72. Then divide NS into two equal parts at T.

Make 7^ and TL each equal to the half of the weight K L.

Make JK and LM equal to the weights JK and LM of Fig.

72. Now, since M"N is equal to one half of the weights above

the truss plus one half of the weights below the truss, or half of

the whole weight, it is therefore the weight upon the support
N (Fig. 72), and represents the reaction of that support. A
horizontal line drawn from M will meet the inclined line

drawn from N, parallel with the rafter A N (Fig. 72), in the
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point^, and the three sides of the triangle A MN, Fig. 73, will

give the strains in the three corresponding lines meeting at

the point A MN, Fig. 72. The sides of the triangleHJ 5, Fig.

FIG. 72.

73, give likewise the strains in the three corresponding lines

meeting at the point H J 5, Fig. 72. Continuing the con-

struction, draw all the other lines of the force diagram parallel

FIG. 73.

with the corresponding lines of Fig. 72, and as directed in

Art. 195. The completed diagram will measure the strains

in all the lines of Fig. 72.
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208, Force Diagram for Truss in Fig. 63. The roof
truss indicated at Fig. 63 is repeated in Fig. 74, with the ad

FIG. 74.

FIG. 75-

dition of the lettering required for the construction of

force diagram, Fig. 75.
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In this case there are seven weights, or loads, above the

truss, and three below. Divide the vertical line O V at W
into two equal parts, and place the lower loads in two equal

parts on each side of W. Owing to the middle one of these

loads not being on the tie-beam with the other two, but on

the upper tie-beam, the line G H, its representative in the

force diagram, has to be removed to the vertical BJ, and

the letter M is duplicated. The line NO equals half the

whole weight of the truss, or 3^ of the upper loads, plus one

of the lower loads, plus half of the load at the upper tie-

beam. It is, therefore, the true reaction of the support NO,
and A N is the horizontal strain in the beam there. It will

be observed also that while H'M and GM (Fig. 75), which

are equal lines, show the strain in the lower tie-beam at the

middle of the truss, the lines CH and FG, also equal 'but

considerably shorter lines, show the strains in the upper
tie-beam. Ordinarily, in a truss of this design, the strain in

the upper beam would be equal to that in the lower one,

which becomes true when the rafters and braces above the

upper beam are omitted. In the present case, the thrusts of

the upper rafters produce tension in the upper beam equal

to CM or FM of Fig. 75, and thus, by counteracting the

compression in the beam, reduce it to CH or FG of the

force diagram, as shown.

209. Force Diagram for Truss in Fig. 64. The force

diagram for the roof-truss at Fig. 64 is given in Fig". 77,

while Fig. 78 is the truss reproduced, with the lettering

requisite for the construction of Fig. 77.

The vertical EF (Fig. 77) represents the load at the

ridge. Divide this equally at W, and place half the lower

weight each side of W, so that CD equals the lower

weight. Then ED is equal to half the whole load, and

equal to the reaction of the support E (Fig. 76). The lines

in the triangle A D E give the strains in the corresponding
lines converging at the point A D E of Fig. 76. The other

lines, according to the lettering, give the strains in the cor-

responding lines of the truss. (See Art. 195.)
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210. Force Diagram for Trus in Fig. 65. This truss is

reproduced in Fig. 78, with the letters proper for use in the

force diagram, Fig. 79.

<

FIG. 79.

Here the vertical G K, containing the three upper loads

GH, HJ, and J K, is divided equally at W, and the lower
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load EF is placed half on each side of W, and extends from E
to F. Then FG represents one half of the whole load of the

truss, and therefore the reaction of the support G (Fig. 78).

Drawing the several lines of Fig. 79 parallel with the corre-

sponding lines of Fig. 78, the force diagram is complete, and

the strains in the several lines of 78 are measured by the cor-

responding lines of 79. (See Art. 195.)

A comparison of the force diagram of the truss in Fig. 76
with that of the truss in Fig. 78 shows much greater strains

in the latter, and we thus see that Fig. 76 or 64 is the more
economical form.

FIG. 80.

211. Force Diagram for Truss in Fig. 66. This truss is

reproduced and prepared by proper lettering in Fig. 80, and

its force diagram is given in Fig. 81.

Here the vertical JM contains the three upper loads

JK, KL, and LM. Divide 7 J/ into two equal parts at

G, and make FG and GH respectively equal to the two

loads FG and GH of Fig.Zo. Then HJ represents one

half of the whole weight of the truss, and therefore the reac-

tion of the support J. From H and J draw lines par-

allel with A H and A J of Fig. 80, and the sides of the tri-

angle A H J will give the strains in the three lines concen-

trating in the point A H J (Fig. 80). The other lines of Fig,
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8 1 are all drawn parallel with their corresponding lines in

Fig. 80, as indicated by the lettering. (See Art. 195.)

FIG. 81.

212 Roof-Truss: Effect of Elevating tbe Tie-Beam.

From Arts. 670, 671, Transverse Strains, it appears that the

FIG. 83

effect of substituting inclined ties for the horizontal tie at

feet of rafters is
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in which P represents half the weight of the whole truss and

the load upon it
;
a + & = height of the truss at middle above

a horizontal line drawn at the feet of the rafters
;
a equals

the height from this line to the point where the two inclined

ties meet ; b, the height thence to the top of the truss
;
and

F, the additional vertical strain at the middle of the truss

due to elevating the tie from a horizontal line.

Examples are given to show that when the elevation of

the tie equals i of the whole height, the vertical strain there-

by induced is equal to a weight which equals \ of half the

whole load ; and that when the elevation equals half the

whole height, the vertical strain is equal to half the whole

load. This is the strain in the vertical rod at middle. The
strains in the rafters and inclined ties are proportionately
increased.

213. Planning a Roof. In designing a roof for a build-

ing, the first point requiring attention is the location of the

trusses. These should be so placed as to secure solid bear-

ings upon the walls
;
care being taken not to place either of

the trusses over an opening, such as those for windows or

doors, in the wall below. Ordinarily, trusses are placed so

as to be centrally over the piers between the windows
;
the

number of windows consequently ruling in determining the

number of trusses and their distances from centres. This

distance should be from ten to twenty feet
;
fifteen feet apart

being a suitable medium distance. The farther apart the

trusses are placed, the more they will have to carry ;
not

only in having a larger surface to support, but also in that

the roof-timbers will be heavier ; for the size and weight, of

the roof-beams will increase with the span over which they
have to reach.

In the roof-covering itself, the roof-planking may be laid

upon jack-rafters, carried by purlins supported by the

trusses ;
or upon roof-beams laid directly upon the back of

the principal rafters in the trusses. In either case, proper
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struts should be provided, and set at proper intervals to re-

sist the bending of the rafter. Jn case purlins are used, one of

these struts should be placed at the location of each purlin.

The number of these points of support rules largely in

determining the design for the truss, thus :

For a short span, where the rafter will not require sup-

port at an intermediate point, Fig. 59 or 64 will be proper.
For a span in which the rafter requires supporting at one

intermediate point, take Fig. 60, 65, or 66.

For a span with two intermediate points of support for

the rafter, take Fig. 61 or 67.

For a span with three intermediate points, take Fig. 63.

Generally, it is found convenient to locate these points of

support at nine to twelve feet apart. They should be suffi-

ciently close to make it certain that the rafter will not be sub-

ject to the possibility of bending.

214. Load upon Roof-Tru. In constructing the force

diagram for any truss, it is requisite to determine the points

of the truss which are to serve as points of support (see

Figs. 70, 72, etc.), and to ascertain the amount of strain, or

loading, which will occur at every such point.

The points of support along the rafters will be required

to sustain the roofing timbers, the planking, the slating, the

snow, and the force of the wind. The points along the tie-

beam will have to sustain the weight of the ceiling and the

flooring of a loft within the roof, if there be one, together

with the loading upon this floor. The weight of the truss

itself must be added to the weight of roof and ceiling.

215,-lLoacl on Roof per Superficial Foot In any im-

portant work, each of the items in Art. 214 should be care-

fully estimated, in making up the load to be carried. For

ordinary roofs, the weights may be taken per foot superficial,

as follows :

Slate, about 7-0 pounds.

Roof-plank,
Roof-beams or jack-rafters,

2 -

3

In all,
I2 pounds.
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This is for the superficial foot of the inclined roof. For the

foot horizontal, the augmentation of load due to the angle of

the roof will be in proportion to its steepness. In ordinary
cases, the twelve pounds of the inclined surface will not be

far from fifteen pounds upon the horizontal foot.

For the roof-load we may take as follows :

Roofing, about 15 pounds.
Roof-truss,

"
5

Snow, " 20 "

Wind,
" 10 .

Total on roof, 50 pounds

per square foot horizontal.

This estimate is for a roof of moderate inclination, say
one in which the height does not exceed J of the span.

Upon a steeper roof the snow would not gather so heavily,
but the wind, on the contrary, would exert a greater force.

Again, the wind acting on one side of a roof may drift the

snow from that side, and perhaps add it to that already

lodged upon the opposite side. These two, the wind and

the snow, are compensating forces. The action of the snow
is vertical : that of the wind is horizontal, or nearly so. The

power of the wind in this latitude is not more than thirty

pounds upon a superficial foot of a vertical surface
; except,

perhaps, on elevated places, as mountain-tops for example,
where it should be taken as high as fifty pounds per foot of

vertical surface.

216. Load upon Tic-Beam. The load upon the tie-

beam must of course be estimated according to the require-
ments of each case. If the timber is to be exposed to view,

the load to be carried will be that only of the tie-beam and

the timber struts resting upon it. If there is to be a ceiling
attached to the tie-beam, the weight to be added will be in

accordance with the material composing the ceiling. If of

wood, it need not weigh more than two or three pounds per
foot. If of lath and plaster, it will weigh about nine pounds ;

and if of iron, from ten to fifteen pounds, according to the
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thickness of the metal. Again, if there is to be a loft in the

roof, the requisite flooring may be taken at five pounds, and
the load upon the floor at from twenty-five to seventy
pounds, according to the purpose for which it is to be used.

217 Roof-Weights in Beta51. The load to be sustained

by a roof-truss has been referred to in the previous three
articles in general terms. It will now be treated more in

detail. But first a few words regarding fehe slope of the
roof. In a severe climate, roofs ought to be constructed

steeper than in a milder one, in order that snow may have a

tendency to slide off before it becomes of sufficient weight
to endanger the safety of the roof. In selecting the material

with which -the roof is to be covered, regard should be had
to the requirements of the inclination : slate and shingles
cannot be used safely on roofs of small rise. The smallest

inclination of the various kinds of covering is here given,

together with the weight per superficial foot of each.

MATERIAL. Least Inclination. Weight upon a

square foot.

Tin ;
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218. Load per Foot Horizontal. The weight ot the

covering as referred to in the last article is the weight per
foot on the inclined surface ; but it is desirable to know how
much per foot, measured horizontally, this is equal to. The
horizontal measure of one foot of the inclined surface is

equal to the cosine of the angle of inclination. Then, to ob-

tain the inclined measure corresponding to one foot horizon-

tal, we have

cos. : I : : p : C =
cos.

where / represents the pressure on a foot of the inclined

surface, and C the weight of so much of the inclined cover-

ing as corresponds to one foot horizontal. The cosine of an

angle is equal to the base of the right-angled triangle divided

by the hypothenuse (see Trigonometrical Terms, Art. 474),

which in this case is half the span divided by the length of

the rafter, or -.
,
where s is the span, and / the length of the

rafter. Hence, the load per foot horizontal equals

p p _2 Ip

^c^sT^T
1

~T~ (92.)

2/

or, twice the pressure per foot of inclined surface multiplied

by the length of the rafter and divided by the span, both in

feet, will give the weight per foot measured horizontally.

219. WeigBit of Tru. The weight of the framed truss

will be in proportion to the load and to the span. This, for

the weight upon a foot horizontal, will about equal

T 0-077 Cs\

which equals the weight in pounds per foot horizontal to be

allowed for a wooden truss with iron suspension-rods and a

horizontal tie-beam, near enough for the requirements of our

present purpose ;
where s- equals the length or span -of the
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truss, and C the weight per foot horizontal of the roof cover-

ing, as in equation (92.). Substituting for Cits value, as in

(92.), we have

T=
0-0077^;

or

T = 0-0154 lp\ (93.)

which equals the weight in pounds per foot horizontal to

be allowed for the truss.

220. Weight of Snow on Rooffc. The weight of snow
will be in proportion to the depth it acquires, which will be
in proportion to the rigor of the climate of the place where
the building is to be erected. Upon roofs of ordinary incli-

nation, snow, if deposited in the absence, of wind, will not

slide off
;
at least until after it has acquired some depth, and

then the tendency to slide will be in proportion to the angle
of inclination. The weight of snow may be taken, therefore,

at its weight per cubic foot (8 pounds) multiplied by the

depth it is usual for it to acquire. This, in the latitude of

New York, may be taken at about 2-J- feet. Its. weight

would, therefore, be 20 pounds per foot superficial, meas-

ured horizontally.

221. Effect of Wind on Roof*. The direction of wind

is horizontal, or nearly so, when unobstructed. Precipitous

mountains or tall buildings deflect the wind considerably

from its usual horizontal direction. Its power usually does

not exceed 30 pounds per superficial foot except on ele-

vated places, where it sometimes reaches 50 pounds or more.

This is the pressure upon a vertical surface ; roofs, however,

generally present to the wind an inclined surface. The ef-

fect of a horizontal force on an inclined surface is in pro-

portion to the sine of the angle of inclination ;
the direction

of this effect being at right angles to the inclined surface.

The force thus acting may be resolved into forces acting in

two directions the one horizontal, the other vertical ;
the

former tending, in the case of a roof, to thrust aside the walls
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on which the roof rests, and the latter acting directly on the

materials of which the roof is constructed this latter force

being in proportion to the sine of the angle of inclination

multiplied by the cosine. This will be made clear by the

following explanation. Re-

ferring to Fig. 83, let DKE
be the angle of inclination

ofthe roof,DE being equal
to one foot. Bisect DK at

A
;
draw A L parallel with

FIG. 83. EK\ make A L equal to the

horizontal pressure of the wind upon one foot superficial of

a vertical plane. Draw A C perpendicular to D K, and LF
parallel with A C from F draw FC parallel with EK\ draw
A B parallel with D E. The sides of the triangle LA F rep-
resent the three several forces in equilibrium : LA is the

force of the wind ; L F is the pressure upon the roof
;
and

A F is the force with which the wind moves on up the roof

towards D. Now, to find the relation of the force of the

wind to the strain produced by it in the direction A C, we
have

rad.

rad. : sin. \\FC\AC\
F C = LA; therefore

: sin. : : L A : A C L A sin.
;

AC = Fsin.-
t

or, the strain perpendicular to the surface of the roof equals
the force of the wind multiplied by the sine of the angle of

inclination. When A C represents this strain, then, of the

two forces referred to above, B C represents the horizontal

force, and A B the vertical force. To obtain this last force,

we have

rad. : cos. \\AC\AB.

Putting for A C its value as above, we have

rad. : cos. : : /^sin. : A B = F sin. cos.;

V = F sin. cos. ;
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or, the vertical effect is equal to the product of the force of

the wind upon a superficial foot into the sine and the cosine

of the angle of inclination. This result is that which is due
to the pressure of the wind upon so much of the inclined

surface as is covered by one square foot of a vertical sur-

face. The wind, acting horizontally through one foot super-
ficial of vertical section, acts on an area of inclined surface

equal to the reciprocal of the sine of inclination, and the

horizontal measurement of this inclined surface is equal to

the cosine of the angle of inclination divided by the sine.

This may be illustrated from Fig. 83, thus

sin. : rad. \\DE\DK.

D E equals I foot ; therefore .+.

sin. : rad. : : I : D K = ! ;

sin.

or, the surface acted upon by one square foot of sectional

area equals the reciprocal of the sine of the angle of incli-

nation. Again, the horizontal measure of this inclined sur-

face may be obtained thus

cos.
sin. : cos. : : D E : KE = ;

sin.

or, KE, the horizontal measurement, equals the cosine of the

angle of inclination divided by the sine.

In tile figure, make K G equal to one foot
;
then we

have

K E : KG : : V '. W\

in which V, as above, represents the vertical pressure due to

the wind acting upon the surface KD, and W the vertical

pressure due to the wind acting upon the surface KH, or

so much as covers KG, one foot horizontal.

Now we have, as above, K E equal to -
,
K. G = i, and
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V F sin. cos. Substituting these values, we have, instead

of the above proportion-

cos. _ .

: i : : F sin. cos. : W\
sin.

from which 'f? (94.)

sn.

or, the vertical effect of the wind upon so much of the roof

as covers each square foot horizontal, is equal to the pro-
duct of the force of the wind per square foot into the square
of the sine of the angle of inclination.

Example. When the force of the wind upon a square
foot of vertical surface is 30 pounds, what will be the verti-

cal effect per square foot horizontal upon a roof the inclina-

tion of which is 26 33', or 6 inches to the foot?

Here we have F = 30, and the sine of 26 33' is 0-44698 ;

therefore

W 30 x 0-44698
2 = 5-9937-

This is conveniently solved by logarithms ;
thus

log. 30 = 1^-4771213

0-44698 = 9-6502868

0-44698 = 9^-6502868

5-9937 = 0-7776949

or, the vertical effect is (5 -9937, or) 6 pounds.
The form of equation (94.) may be changed ; for, in a right-

angled triangle, the sine of the angle at the base is equal to

the perpendicular divided by the hypothenuse ; which, in

the case of a roof, is the height divided by the length of the

rafter; or

height h
Sme =

TaTteF
=

2
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Therefore, equation (94.) may be changed to

(950

or, the vertical effect upon each square foot of a roof is equal
to the product of the force of the wind per foot into the

square of the height of the roof at the ridge, divided by the

square of the length of the rafter (the height and length both
in feet.)

Example. When the force of the wind is 30 pounds, the

height of the roof 10 feet, and the length of the rafter 22-36
feet, what will be the vertical effect of the wind ? Here we
have F ~ 30, h = 10, and / = 22-36 ;

and

222. Total Load per Foot Horizontal. The various

items comprising the total load upon a roof are the cover-

ing, the truss, the wind, snow, the plastering or other kind

of ceiling, and the load which may be deposited upon a floor

formed in the roof
; or, the total load

M= C+T + W+S + P+L.

The value per foot horizontal for these has been found as

follows: C=^; T= 0-0154 //; W=F^. For 5 the

value must be taken according to circumstances, as in Art.

220. So, also, the value of P and L are to be assigned as

required for each particular case, as in Art. 216. The total

load, therefore, with these substitutions, will be

M =

which reduces to

M = lp (- + 0-0154) +F^t \-S + P+L; (96.)
* S / l>
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in which / is the length of the rafter
; / is the weight of the

covering per foot superficial, including the roof boards or

slats, the jack-rafters, etc.
;
s is the span of the roof

;
~h is the

vertical height above a horizontal line passing through the

feet of the rafters ; F is the force of the wind per square foot

against a vertical surface
;
5 is the weight of snow per

square foot horizontal
;
P is the weight per superficial foot

of the ceiling at the tie-beam
;
and L, the load per superficial

foot in the roof, including weight of flooring and floor-

timbers. The dimensions, s, /, and /i, are each in feet
;
the

weight of /, F, 5, P, and L are each in pounds. The value

of/ is for a square foot of the inclined surface.

223. Strain in Roof-Timbers Computed. The graphic
method of obtaining the strains, as shown in Arts. 205 to 211,

is, for its conciseness and simplicity, to be preferred to any
other method

; yet, on some accounts, the method of obtain-

ing the strains by the parallelogram of forces and by arith-

metical computations will be found useful, and will now be

referred to.

By the parallelogram of forces, the weight of the roof is

in proportion to the oblique thrust or pressure in the axis of

the rafter as twice the height of the roof is to the length of

the rafter ; or

R: F:: 2 A: /;

or, transposing

2&:i::R:Y=j; (97-)

where F equals the pressure in the axis of the rafter, and R
the weight of one truss and its load. Again, the weight of

the roof is in proportion to the horizontal thrust in the tie-

beam as twice the height of the roof is to half the span ;
or

2

or, transposing

2/i:
S
-::R:H=~', (98.)
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where H equals the horizontal thrust in the tie-beam. To
obtain R, the weight of the roof, multiply M, the load per
foot, as in equation (96.), by s, the span, and by c, the dis-

tance from centres at which the trusses are placed ;
or

R = M c s.

With this value of R substituted for it, we have

K= '

and

TT M c s* , .H = T ; (loo.)
4 It

in which F equals the strain in the axis of the rafter, and H
the strain in the tie-beam. These are the greatest strains

in the rafter and tie-beam. At certain parts of these pieces
the strains are less, as will be shown in the next article.

224. Strains in Roof-Timber Shown Geometrically.
The pressure in each timber may be obtained as shown in

Fig. 84, where A B represents the axis of the tie-beam, A C
the axis of the rafter, D E and FB the axes of the braces,

and DG, FE, and CB the axes of the suspension-rods. In

this design for a truss, the distance A B is divided into three

equal parts, and the rods located at the two points of division,

G and E. By this arrangement the rafter A 7 is supported at

equidistant points, D and F. The point D supports the rafter

for a distance extending half-way to A and half-way to F, and

the point F sustains half-way to D and half-way to C. Also,

the point C sustains half-way to F, and, on the other rafter,

half-way to the corresponding point to F. And because these

points of support are located at equal distances apart, there-

fore the load on each is the same in amount. On D G make

Da equal by any decimally divided scale to the number of

hundreds of pounds in the load on D, and draw the parallel-

ogram abDc. Then, by the same scale, Db represents

(Art. 71) the pressure in the axis of the rafter by the load at
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FIG. 84.
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D\ also, DC the pressure in the brace D E. Draw cd hori-

zontal
;
then D d is the vertical pressure exerted by the brace

D E at E. The point F sustains, besides the common load

represented by D a, also the vertical pressure exerted by the

brace DE
; therefore, make Fe equal to the sum of D a and

Dd, and draw the parallelogram Fgef. Then Fg, meas-
ured by the scale, is the pressure in the axis of the rafter

caused by the load at F, and Ff is the load in the axis of the

brace FB. Draw fh horizontal
; then Fh is the vertical

pressure exerted by the brace Ffiat B. The point C, besides

the common load represented by D a, sustains the vertical

pressure Fh caused by, the brace FB, and a like amount
from the corresponding brace on the opposite side. There-

fore, make Cj equal to the sum of Da and twice Fit, and

draw jk parallel to the opposite rafter. Then Ck is the

pressure in the axis of the rafter at C. This is not the only

pressure in the rafter, although it is the total pressure at its

head C. At the point F, besides the pressure C k, there is

F g. At the point D, besides these two pressures, there is

the pressure D b. At the foot, at A, there is still an addi-

tional pressure ;
for while the point D sustains the load half-

way to F and half-way to A, the point A sustains the load

half-way to D. This load is, in this case, just half the load

at D. Therefore draw A m vertical, and equal, by the scale,

to half of Da. Extend CA to/; draw ml horizontal.

Then A I is the pressure in the rafter at A caused by the

weight of the roof from A half-way to D. Now the total of

the pressures in the rafter is equal to the sum of A 1+ D b +

Fg added to C k. Therefore make kn equal to the sum of

A l+Db + F g, and draw no parallel with the opposite raf-

ter, and nj horizontal. Then Co, measured by the same

scale, will be found equal to the total weight of the roof on

both sides of C B. Since Da represents s, the portion of the

weight borne by the point D, therefore Co, representing the

whole weight of the roof, should equal six times Da, as it

does, because D supports just one sixth of the whole load.

Since C n is the total oblique thrust in the axis of the rafter

at its foot, therefore nj is the horizontal thrust in the tie-

beam at A.
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225. Application ofthe Geometrical System ofStrains.
The strains in a roof-truss can be ascertained geometrically,
as shown in Art. 224. To make a practical application of

the results, in any particular case, it is requisite first to as-

certain the load at the head of each brace, as represented by
the line D a, Fig. 84. The load corresponding to any part
of the roof is equal to the product of the superficial area of

that particular part (measured horizontally) multiplied by
the weight per square foot of the roof. Or, when M equals
the weight per square foot, c the distance from centres at

which the trusses are placed, and n the horizontal distance

between the heads of the braces, then the total load at the

head of a brace is represented by

NMcn. (101.)

The value of M is given in general terms in equation (96.).

To show its actual value, let it be required to find the weight

per square foot upon a root 52 feet span and 13 feet high at

middle ;
or (Fig. 84), where A B equals half the space, or 26

feet, and CB 13 feet, then ^4 C, the length of the rafter, will

be 26-069, nearly. And where the weight of covering per

square foot, on the inclination, is 12 pounds, the force of the

wind against a vertical plane is 30 pounds ; the weight of

snow per foot horizontal is 20 pounds ; the weight of the

plastering forming the ceiling at the tie-beam is 9 pounds ;

and the load in the roof is nothing ;
with these quantities

substituted, equation (96.) becomes

M 2Q'o6gx 12 (-- 4- 0-0154) 4- 30 1^ + 20 49 4-0 ;

\52 / 29-069'

M = (29-069 X 12 X 0-05386) 4 (30 x 0-2) + 20 4- 9;

M = 18-788 4-6 + 29 = 53-788;

or, say, 53-8 pounds. Then if <r, the distance from centres

between trusses, is 10 feet, and ;/, the distance between

braces, is one third of A B, Fig. 84, or 2/ = 8f , the total load

at the head of a brace will be, as per equation (101.)

N 53-8 x 10 x 8f = 4663;
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or, say, 4650 pounds. Now, by any decimally divided scale,
make D a, Fig. 84, equal to 46^ parts of the scale

; this being
the number of hundreds of pounds contained in the weight
at D, as above. Then, by the same scale, the several lines

in the figure drawn as before shown will be found to repre-
sent respectively the weights here set opposite to them, as
follows :

D d da he 23^, and represents 2325 pounds;
"

4650
"

5200
"

F e = D a + D d 69$
"

6975

Ff = 6 5| 6575

Cj 3 D a 139-1-
"

13950
CK = $ D b = \$6

"
15600

C n = C k +- Fg+ D b + A 1= 312
"

31200
"

Cn^Ck + $Db=6 Db=2 Ck
= 312

"
31200

Nj C o 6 D a 6^ 4.6% 279
"

27900
*'

It should be observed here that the equality of the lines nj
and Co is a coincidence dependent upon the relation which
in this particular case the line CB happens to bear to the

line A B
;
A B being equal to twice C B. And so of some

other lines in the figure. If the inclination of the roof were

made greater or less, the equality of the lines referred to

would disappear. It should also fye observed that the strains

above found are not quite exact
; they are, however, correct

to within a fraction of a hundred pounds, which is a suffi-

ciently near approximation for the purpose intended. From
the results obtained above, we ascertain that the strain in

the rafter, from F to C, is represented by C K, and is equal
to 15,600 pounds ;

while the strain at the foot of the rafter,

from A to D, is represented by C n, and equals 3 1,200 pounds,
or double that which is at the head of the rafter. We ascer-

tain, also, that the maximum strain in the tie-beam, repre-

sented by 11j, is 27,900 pounds; that that in the brace D E,

represented by DC, is 5200 pounds; and that that in the

brace F B, represented by Ff, is 6575 pounds. The strain
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in the vertical rod D G is theoretically nothing. There is,

however, a small strain in it, for it has to carry a part of the

tie-beam and so much of the ceiling as depends for support

upon that part. But the manner of locating the weights,

adopted in this article, does not recognize any load located

at the point G. This is an objection to this system, but it

is not material.

For a recognition of weights at the tie-beam, see Arts.

205 to 211. The load at G may be found by obtaining the

product of the surface carried into the weight per foot of

the ceiling; or, say, 10 c n = 10 x lox 8f = 867 pounds.
The load to be carried by the rod FE is shown at D d= he,

which above is found to be 2325 pounds. To this is to be

added 867 pounds for the ceiling at E, as before found for the

ceiling at G\ or, together, 3192 pounds. The central rod

CB has to carrv the two loads brought to B by the two
braces footed there

;
and also the weight of the ceiling sup-

ported by B. The vertical strain from the brace F B is rep-
resented at Fh, and equals 4650 pounds ; therefore, the

total load on CB is 4650 + 4650 -f 867 = 10,167 pounds.

226. Roof-Timber* : the Tie-Beam. The roof-timbers

comprised in the truss shown in Fig. 84 are the rafters,

tie-beam, two braces, and three rods. Of these, taking first

the tie-beam, we have a piece subject to tension and some-

times to cross-strain (see Art. 682, Transverse Strains}. In

this case the tensile strain "only need be considered. For
this a rule is given in Art. 117. In this rule, if the factor of

safety be taken at 20, the result will be sufficiently large to

allow for necessary cuttings at the joints. Therefore, if the

beam be of Georgia pine, equation (16.), Art. 117, becomes

__ 27900x20 _~~ ~

or, say, 35 inches. This is ample to resist the tensile strain
;

but, to resist the transverse strains to which such a long

piece of timber is subjected in the hands of the workman,
it would be proper to make it, say, 6x9.
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227. The Rafter. A rafter, like a post, is subject to a

compressive force, and is liable to fail in three ways, name-

ly : by flexure, by being crushed, or by crushing the material

against which it presses. To render it entirely safe, there-

fore, it is requisite to ascertain the requirements for resisting

failure in each of these three ways.
Of these it will be convenient to consider, first, that of

the liability to being crushed. The rule for this is found in

Art. 107. Let the rafter be of Georgia pine, then the vajue
of C, Table I., will be 9500. The strain in the rafter (Art.

22$) is 31,200 pounds. Now, taking the value of a, the fac-

tor of safety, at 10, we have, by Rule VI. (Art. 107.)

31200 x 10
A =

9500
= 32 ' 737:

or, 33 inches area of cross-section. This is the size of the

rafter at its smallest section
;
for example, at any one of the

joints where it is customary to reduce the area by cutting
for the struts and rods.

Again : Let the liability of the rafter to flexure be now
considered. For this we have a rule in Art. 114. The

length of the rafter between unsupported points is nearly 9$

feet, or 9! x 12 = 1 16 inches. Let the thickness of the rafter

be taken at 6 inches. Then, by Rule XI. (Art. 114), we
have

+ fyer
3
) _ 31200 x 10(14- f x -00109 x r*).

c r~ 9500 x 6

/ 116r=
7 --g-=i9i; 19*

*
: 373-8-

Then, f x -00109 x 373-8 = 0-611127

adding unity = I

1-611127

Substituting this, we have

31200 x IPX 1-611127 _. 50267 1 '624 _"

9500 x~6~ "57000"
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or, to resist flexure the breadth is required to be 8-82, or,

say, 9 inches ; or, the rafter is to be 6 xg inches at the foot.

The strain in the rafter at the upper end is only half that at

the foot
;
the area of cross-section, therefore, at the head

need not be more than half that which is required at the

foot
;
but it is usual to make it there about f of the size at the

foot. In this case it would be, therefore, 6x6 inches at the

upper end.

Lastly, the requirement to resist crushing the surfaces

against which the rafter presses is to be considered.

The fibres of timber yield much more readily when

pressed together by a force acting at right angles to the di-

rection of their length than when it acts in a line with their

length.
The value of timber subjected to pressure in these two

ways is shown in Arts. 94, 98. In Table I., the value per

square inch of the first stated resistance is expressed by P,

and the ultimate resistance of the other by . The value

of timber per square inch to safely resist crushing may be ex-

pressed by ,
in which a is the factor of safety. Timber

pressed in an oblique direction will resist a force exceeding

that expressed by P, and less than that expressed by
-

.

ct

When the angle of inclination at which the force acts is just

45, then the force will be an average between P and .

And for any angle of inclination, the force will vary inverse-

ly as the angle ; approaching P as the angle is enlarged,

but approaching
- - as the angle is diminished. It will be

equal to -- when the angle becomes zero, and equal P

when the angle becomes 90. The resistance of timber per

square inch to an oblique force is therefore expressed by

M =
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where A equals the complement of the angle of inclination.

In a roof, A is the acute angle formed by the rafter with

a vertical line. If no convenient instrument be at hand to

measure the angle, describe an arc upon the plan of the

truss thus : with C B (Fig. 84) for radius, describe the arc

B g, and get the length of this arc in feet by stepping it off

with a pair of dividers. Then

where k equals the length of the arc, and h equals B C, the

height of the roof. Therefore

M =

equals the value of timber per square inch in a tie-beam, C
and P being obtained from Table I., Art. 94. When C for

the kind of wood in the tie-beam exceeds C set opposite the

kind of wood in the rafter, then the latter is to be used in

the rules instead of the former.

The value of M, equation (103.),. is the resistance per

square inch of the surface pressed at the foot of the rafter.

The resistance of the entire surface will therefore be MA,
where A equals the area of the joint. Then, when the re-

sistance equals the strain, we will have

from which we have

in which 5 is the strain to be resisted.

Now, the end of the rafter must be of sufficient size to

afford a joint the area of which will not be less than that

expressed by A in equation (104.).

For example, the strain to which the rafter, Fig. 84, is

subject at its foot is ascertained to be (Art. 225) 31,200 pounds.

For Georgia pine, the material of the tie-beam, P = 900

(Art. 94, Table /.), and ^= 9500.
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The length of the arc Bg is about 14-4 feet; the height
B Cis 13 feet. Let a, the factor of safety, be taken at 10,

then we have (104.)

31200

900 + (o-63|
=

x 50)
-

or, the superficial area of the bearing at the joint required
to prevent crushing the tie-beam is 33^- inches.

The results of the computations show that the rafter is

required to be 6 inches thick, 9 inches wide at the foot, and
6 inches wide at the top. It is also ascertained that, in cut-

ting for the bearing for the struts and boring for the sus-

pension-rods, it is required that there shall be at least 33

inches area of cross-section left intact
; and, farther, that the

area of the surface of the joint against the tie-beam should

not be less than 33^ inches.

228. The Braces. Each brace is subject to compres-
sion, and is liable to fail if too small, in the same manner as the

rafter. Its size is to be ascertained, therefore, in the manner
described for the rafter ; which need not be here repeated,

except, perhaps, as to the liability to fail by flexure
;
for in this

case we have the breadth given, and need to find the thick-

ness. The breadth of the brace is fixed by the thickness of

the rafter, for it is usual to have the two pieces flush with

each other. Rule XI. (Art. 114) is to be used, but with this

difference, namely : instead of the thickness, use the breadth

as one of the factors in the divisor. Thus

(105.)

In working this rule, it is required, in order to get the

value of r, the ratio between the height and thickness, to

assume the thickness before it is ascertained ;
and after com-

putation, if the result shows that the assumed value was not

a near approximation, a second trial will have to be made.

Usually the first trial will be sufficient.
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For example, the brace D E is about 9$ feet or 1 16 inches

long. As the strain in it is only 5200 pounds, the thickness

will probably be not over 3 inches. Assuming it at this, we

have r = -=
-*-J-&

= 38$ ;
the square of whichxis about

Therefore, we have- 4N I VE R S I T Y
|-XO-OOI09XI495=2

add unity = i.

^444S

The equation reduces, therefore, to this

, = 5200 x 10XV4445
9500 x 6

or, the required thickness of the brace is 3^- inches, or the

brace should be, say, 3J x 6 inches. In this case the result is

so near the assumed value, a second trial. is not needed.

For the second brace, we have the length equal to about

\2\ feet or 147 inches; and the strain equal to 6575 pounds
(Art. 22$). The ratio, therefore, may be obtained by assum-

ing the thickness, say, at 4. With this, we have

i^ 36-75 ;
the square of which is 1350^'

With this value of r
2

| x 00109 x 1350^ = 2- 2081

add unity = I.

3-2081
Then

6575 x lox 3-2081 .

t=.^L2 _^ -= 3.7006.
9500x6

Comparing this result with the assumed value of / = 4
we find the difference so great as to require a second trial.

As the value of r was taken too low, the result obtained is

correspondingly low. The true value is somewhere between

3
- 7 and 4. Assume it now, say, at 3

-

9. With this value, we

have

r = -== = 37-692 ;
the square of which is 1420-7.
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With this value of r*

| x -00109 x 1420-7 = 2-32282
add unity = i

3-32282
Then

, _ 6575x10x3-32282 _
9500x6

This result is a trifle less than the assumed value, 3-9. The
true value is between these, and probably is about 3-86.
This is quite near enough for use. This brace, therefore, is

required to be 3
- 86 x 6 inches, or, say, 4x6 inches.

229. The Supension-Rods. These are usually made of

wrought iron. This metal, when of excellent quality, may
be safely trusted with 12,000 pounds per inch sectional area.

But it is usual, for good work, to compute the area at only

9000 pounds per inch, and, as ordinarily made, these rods

ought not to be loaded with more than 7000 pounds. The
strain divided by this value per inch of the metal will give
the sectional area of cross-section. For example, the strain in

the rod D G, Fig. 84, is 867 pounds (Art. 225); therefore

867

or, the sectional area required is only an eighth of an inch.

By reference to the table of areas of circles in the Appen-
dix, the diameter of a rod containing the required area, as

above, will be found to be a little less than half an inch. A
rod half an inch in diameter will therefore be of ample

strength. For appearance's sake, however, no rod in a truss

should be less than f of an inch in diameter.

The rod FE has to resist a strain of 3192 pounds. For

this, then, we have

A reference to the table of areas shows that a rod contain-
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ing this area would be a little more than J of an inch in di-

ameter
;

it would be of ample strength, say, at of an inch
in diameter.

The rod C B, at the centre, has to carry a strain of 10,167

pounds. For this, then,- we have

10167

A reference to the table of areas shows that this rod should

be i inches in diameter.

230. Roof-Beams, Jack-Rafters, and Purlins. These
timbers are subject to loads nearly uniformly distributed,

and their dimensions may be obtained by Rule XXX., equa-
tion (35.), Art. 140. In this equation, U=cfl(Art. 152).

Substituting this value for U, and r I for
tf, equation (35.) be-

comes

and putting for r the rate of deflection, .04, we have

a formula convenient for roof-timbers.

Example. In a roof where the roofing is to be supported
on white-pine roof-beams 10 feet long, placed 2\ feet from

centres, and where the load per foot superficial is to be 40

pounds, including wind and snow : what should be the di-

mensions of the roof-beams? By equation (106.)

bd =

Now if b, the breadth, be fixed, say, at 3, then

d = 5-64 nearly.
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The roof-beams, therefore, require to be 3 x 5$, or, say, 3x6.
All pieces of timber subject to cross-strains will sustain

safely much greater strains when extended in one piece over

two, three, or more distances between bearings ; therefore,

roof-beams, jack-rafters, and purlins should, if possible, be

made in as long lengths as practicable ; the roof-beams and

purlins laid on, not framed into, the principal rafters, and
extended over at least two spaces, the joints alternating on
the trusses

;
and likewise the jack-rafters laid on the purlins

in long lengths.

231. Five Examples of Rooft: are shown at Figs. 85, 86,

87, 88, and 89. In Fig. 85, a is an iron suspension-rod, b
y
b are

braces. In Fig. 86, a, a, and
b are iron rods, and d, d, c, c

are braces. In Fig. 87, a, b

are iron rods, d, d braces, and
c the straining beam. In

FIG. 85. Fig. 88, a, a, b, b are iron rods,

, e> d, d are braces, and c is a straining beam. In Fig. 89, pur-

out

S<rft. I

lins are located at PP, etc.
;
the inclined beam that lies upon

them is the jack-rafter; the post at the ridge is the king-
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rTi

?k
o a

post, the others are queen-posts. In this design the tie-beam

is increased in height along the middle by a strengthening

piece (Art. 163), for the purpose of sustaining additional

weight placed in the room form-

ed in the truss (Art. 216).

Fig. 90 shows a method of

constructing a truss having a

built-rib in the place of prin-

cipal rafters. The proper form

for the curve is that of the par-
abola (Art. 560). This curve,

when as flat as is described in

the figure, approximates so close-

ly to that of the circle that the

latter may be used in its stead.

The height, a b, is just half of

a c, the curve to pass through
the middle of the rib. The rib

is composed of two series of

abutting pieces, bolted together, oo ^
These pieces should be as long
as the dimensions of the timber

will admit, in order that there

may be but few joints. The sus-

pending pieces are in halves,

notched and bolted to the tie-

beam and rib, and a purlin is

framed upon the upper end of

each. A truss of this construc-

tion needs, for ordinary roofs,

no diagonal braces between the

suspending pieces, but if extra

strength is required the braces

may be added. The best place \~^~.\

for the suspending pieces is at

the joints of the rib. A rib of this kind will be sufficiently

strong if the area of its section contain about one fourth

more timber than is required for that of a rafter for a roof

of the same size. The proportion of the depth to the thick-

ness should be about as 10 to 7.
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232. Roof-Trus with Elevated Tic-Beam. Designs
such as are shown in Fig. 91 have the tie elevated for the ac-

commodation of an arch in the ceiling. This and all similar

designs are seriously objectionable, and should always be

avoided
;
as the smail height gained by the omission of the

tie-beam can never compensate for the powerful lateral

strains which are exerted by the oblique position of the

supports, tending to separate the walls. Where an arch is

required in the ceiling, the best plan is to carry up the

walls as hi^h as the top of the arch. Then, by using a

horizontal tie-beam, the oblique strains will be entirely re-
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moved. It is well known that many a public building has

been all but ruined by the settling of the roof, consequent

upon a defective plan in the formation of the truss in this

respect. It is very necessary, therefore, that the horizontal

FIG. 91.

tie-beam be used, except where the walls are made so strong

and firm by buttresses, or other support, as to prevent a

possibility of their separating. (See Art. 212.)

233. Hip-Roofs: Lines and Bevils. The lines a b and

be in Fig. 92, represent the walls at the angle of a building;

b e is the seat of the hip-rafter, and gfoi a jack or cnppl(

rafter. Draw e h at right angles to be, and make it equal
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to the rise of the roof
; join b and //, and h b will be the

length of the hip-rafter. Through e draw di at right angles
to b c\ upon b, with the radius b h, describe the arc hi,

cutting di in z
; join b and i, and extend gfto meet b i in/;

then gj will be the length of the jack-rafter. The length
of each jack-rafter is found in the same manner by extend-

ing its seat to cut the line b i. From / draw fk at right

angles tofg, also// at right angles to be\ make/ equal

to// by the arc Ik, or make g k equal to gj by the arc jk ;

then the angle at / will be the top-bevil of the jack-rafters,
and the one at k will be the down-bevil*

234. The Backing of the Hip-Rafter. At any con-

venient place in be (Fig. 92), as o, draw m n at right angles to

b e
;
from o, tangical to b h, describe a semicircle, cutting b e

in s
; join m and s and n and s\ then these lines will form at

s the proper angle for bevilling the top of the hip-rafter.

DOMES.f

235. Domes. The usual form for domes is that of the

sphere ;
the base circular. When the interior dome does not

FIG. 93.

rise too high, a horizontal tie may be thrown across, by
which any degree of strength required may be obtained.

* The lengths and bevils of rafters for root-valleys can also be found by the

above process.

f See also Art. 68.
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- 93 shows a section, and Fig. 94 the plan, of a dome of

this kind, a b being the tie-beam in both. Two trusses of

this kind (Fig. 93), parallel to each other, are to be placed
one on each side of the opening in the top of the dome.

Upon these the whole framework is to depend for support,

FIG. 94.

u u

and their strength must be calculated accordingly. (See

Arts. 70 to 80 and 214 to 222.) If the dome is large and of

importance, two other trusses may be introduced at right

angles to the foregoing, the tie-beams being preserved in

;

i*/ FIG. 95.

one continuous length by framing them high enough to pass

over the others.

236. Ribbed Dome. When the interior must be kept

free, then the framing may be composed of a succession of

ribs standing upon a continuous circular curb of timber, as
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seen at Figs. 95 and 96 the latter being a plan and the former

a section. This curb must be well secured, as it serves hi

the place of a tie-beam to resist the lateral thrust of the ribs.

In small domes these ribs may be easily cut from wide

plank ;
but where an extensive structure is required, they

must be built in two thicknesses so as to break joints, in the

same manner as is described for a roof at Art. 231. They
should be placed at about two feet apart at the base, and

strutted as at a in Fig. 95.

FIG. .96.

The scantling of each thickness of the rib may be as fol-

lows :

For domes of 24 feet diameter, i x 8 inches.

36
" "

i x 10 "

2 x 13
"

a

" 60
"

90
"108 3 x 13

237. Dome: Curve of Equilibrium. The surfaces of a

dome may be finished to any curve that may be desired, but

the framing should be constructed of such form that the

curve of equilibrium shall be sure to pass through the middle

of the depth of the framing. The nature of this curve is

such that, if an arch or dome be constructed in accordance

with it, no one part of the structure will be less capable than

another of resisting the strains and pressures to which the

whole fabric may be exposed. The curve of equilibrium for

an arched vault or a roof, where the load is equally diffused
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over the whole surface, is that of a. parabola (Art. 460}-, for

a dome having no lantern, tower, or cupola above it, a cubic

parabola (Fig. 97) ; and for one having a tower, etc., above it,

a curve approaching that of an hyperbola must be adopted,
as the greatest strength is required at its upper parts. If

the curve of a dome be circular (as in the vertical section,

^95)> the pressure will have a tendency to burst the dome
outwards at about one third of its height. Therefore, when
this form is used in the construction of an extensive dome,
an iron band should be placed around the framework at

that height ;
and whatever may be the form of the curve, a

band or tie of some kind is necessary around or across the

base.

o/



22O CONSTRUCTION.

of division in a b, at the points o, o, o
y
etc. Then a curve

traced through these points will be the one required.

239. Small Domes over Stairways : are frequently made

elliptical in both plan and section
;
and as no two of the ribs

in one quarter of the dome are alike in form, a method for

obtaining the curves may be useful.

FIG. 99,

To find the curves for the ribs of an elliptical dome, let

abed (Fig. 98) be the plan of a dome, and ef the seat of

one of the ribs, Then take c /for the transverse axis and

twice the rise, og> of the dome for the conjugate, and de-
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scribe (according to Arts. 548, 549, etc.) the semi-ellipse
e gf, which will be the curve required for the rib e gf. The
other ribs are found in the same manner.

240. Covering for a Spherical Dome. To find the

shape, let^4 C^T-99) be the plan, and B the section, of a given
dome. From a draw a c at right angles to a b

;
find the

stretch-out (Art. 524) of o b, and make dc equal to it; divide

the arc o b and the line d c each into a like number of equal

parts, as 5 (a large number will insure greater accuracy than

a small one) ; upon c, through the several points of division

in cd, describe the arcs o do, i e I, 2/2, etc.
;
make do equal

to half the width of one of the boards, and draw o s parallel

to a c
; join s and #, and from the points of division in the arc

<?drop perpendiculars, meeting a sinij kl\ from these

points draw z 4,/3, etc., parallel to ac ;
make do

t ei, etc., on

the lower side of a c, equal to do,e\, etc., on the upper side
;

trace a curve through the points o, 1,2, 3, 4, c, on each side

of dc
;
then o c o will be the proper shape for the board. By

dividing the circumference of the base A into equal parts,

and making the bottom, o d o, of the board of a size equal to

one of those parts, every board may be made of the same

size. In the same manner as the above, the shape of the

covering for sections of another form may be found, such as

an ogee, cove, etc.

To find the curve of the boards when laid in horizontal

courses, let A B C (Fig. 100) be the section of a given dome,
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and DB its axis. Divide B C into as many parts as there
are to be courses of boards, in the points i, 2, 3, etc.

; through
i and 2 draw a line to meet the axis extended at a\ then a

will be the centre for describing the edges of the board F.

Through 3 and 2 draw 3 b; then b will be the centre for de-

FlG. IOI.

scribing F. Through 4 and 3 draw 4^; then d will be the

centre for G. B is the centre for the arc i o. If this method
is taken to find the centres for the boards at the base of the

dome, they would occur so distant as to make it impracti-
cable

;
the following method is preferable for this purpose :

G being the last board obtained by the above method, ex-

tend the curve of its inner edge until it meets the axis, D B,

in e
;
from 3, through e, draw 3 f, meeting the arc A B in f ;

joinf and 4,f and 5 ,
and /and 6, cutting the axis, D B, in s, n,

and m
;
from 4, 5, and 6 draw lines parallel to A C and cutting

the axis in c, p, and r
;
make c 4 (Fig. 101) equal to c 4 in the pre-

vious figure, and c s equal to c s also in the previous figure ;

then describe the inner edge of the board //, according to

Art. 516; the outer edge can be obtained by gauging from
the inner edge. Tn like manner proceed to obtain the next
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board taking/ 5 for half the chord, and p n for the height
of the segment. Should the segment be too large to be de-

scribed easily, reduce it by finding intermediate points in the

curve, as at Art. 515.

241. Polygonal Dome: Form of Angle-Rib. To ob-

tain the shape of this rib, let A GH (Fig. 102) be the plan of

a given dome, and C D a vertical section taken at the line

ef. From i, 2, 3, etc., in the arc CD draw ordinates, paral-
lel to A D, to meet f-G ;

from the points of intersection on

fG draw ordinates at right angles to/ G\ make s i equal
to o i, s 2 equal to o 2, etc.

;
then GfB, obtained in this way,

will be the angle-rib required. The best position for the

sheathing-boards for a dome of this kind is horizontal, but if

they are required to be bent from the base to the vertex,

their shape may be found in a similar manner to that shown
at Fig. 99.

BRIDGES.

FIG. 103

242. Bridges. Of plans for the construction of bridges,

perhaps the following are the most useful. Fig. 103 shows a

method of constructing wooden bridges where the banks

of the river are high enough to permit the use of the tie-

beam, a b. The upright pieces, c d, are notched and bolted

on in pairs, for the support of the tie-beam. A bridge ot

this construction exerts no lateral pressure upon the abut-

ments. This method may be employed even where the banks

of the river are low, by letting the timbers for the roadway

rest immediately upon the tie-beam. In this case the irame-

work above will serve the purpose of a railing.
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Fig. 104 exhibits a wooden bridge without a tie-beam.

Where staunch buttresses can be obtained this method may
be recommended ; but if there is any doubt ot their stability,

it should not be attempted, as it is evident that such a sys-

tem of framing is capable of a tremendous lateral thrust.

FIG. 104.

243, Bridge: Built-Rib. Fig. 105 represents a bridge
with a built-rib (see Art. 231) as a chief support. The curve

of equilibrium will not differ much from that of a parabola ;

this, therefore, may be used especially if the rib is made

FIG. 105.

gradually a little stronger as it approaches the buttresses.

As it is desirable that a bridge be kept low, the following
table is given to show the least rise that may be given to the

rib.

Span in Feet.
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The rise should never be made less than this, but in all

cases greater if practicable ; as a small rise requires a greater

quantity of timber to make the bridge equally strong. The
greatest uniform weight with which a bridge is likely to be
loaded is, probably, that of a dense crowd of people. This

may be estimated at 70 pounds per square foot, and the fram-

ing and gravelled roadway at 230 pounds more
;
which

amounts to 300 pounds on a square foot. The following
rule, based upon this estimate, may be useful in determining
the area of the ribs.

Rule LXVIL Multiply the width of the bridge by the

square of half the span, both in feet, and divide this pro-
duct by the rise in feet multiplied by the number of ribs

;

the quotient multiplied by the decimal o-oon will give the

area of each rib in feet. When the roadway is only planked,
use the decimal 0-0007 instead of o-ooii,

Example. What should be the area of the ribs for a

bridge of 200 feet span, to rise 15 feet and be 30 feet wide,
with three curved ribs ? The half of the span is 100, and
its square is 10000

;
this multiplied by 30 gives 300000, and

15 multiplied by 3 gives 45; then 300000 divided by 45

gives 6666|, which multiplied by o-ooii gives 7-333 feet or

1056 inches for the area of each rib. Such a rib may be 24
inches thick by 44 inches deep, and composed of 6 pieces,
2 in width and 3 in depth.

The above rule gives the area of a rib that would be

requisite to support the greatest possible tiniform load.

But in large bridges, a variable load, such as a heavy wagon,
is capable of exerting much greater strains ; in such cases,

therefore, the rib should be made larger.*
In constructing these ribs, if the span be not over 50 feet,

each rib may be made in two or three thicknesses of timber

(three thicknesses is preferable), of convenient lengths bolted

together ;
but in larger spans, where the rib will be such as

to render it difficult to procure timber of sufficient breadth,

they may be constructed by bending the pieces to the proper
curve and bolting them together. In this case, where tim-

* See Tredgold's Carpentry by Hurst, Arts. 174 to 177.
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her of sufficient length to span the opening- cannot be ob-

tained, and scarfing is necessary, such joints must be made
as will resist both tension and compression (see Fig. 1 14).

To ascertain the greatest depth for the pieces which compose
the rib, so that the process of bending may not injure their

elasticity, multiply the radius of curvature in feet by the

decimal 0-05, and the product will be the depth in inches.

Example. Suppose the curve of the rib to be described

with a radius of 100 feet, then what should be the depth ? The
radius in feet, 100, multiplied by 0-05 gives a product of 5

inches. White pine or oak timber 5 inches thick would

freely bend to the above curve
;
and if the required depth

of such a rib be 20 inches, it would have to be composed of at

least 4 pieces. Pitch pine is not quite so elastic as white

pine or oak its thickness may be found by using the deci-

mal 0-046 instead of 0-05.

FIG. 106.

244. Bridges: Framed Rib. In spans of over 250

feet, SL framed r\b
y
as in Fig. 106, would be preferable to the

foregoing. Of this, the upper and the lower edges are

formed as just described, by bending the timber to the proper
curve. The pieces that tend to the centre of the curve,

called radials, are notched and bolted on in pairs, and the

cross-braces are halved together in the middle, and abut end

to end between the radials. The distance between the ribs

of a bridge should not exceed about 8 feet. The roadway
should be supported by vertical standards bolted to the ribs
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at about every 10 to 15 feet. At the place where they rest

on the ribs, a double, horizontal tie should be notched and
bolted on the back of the ribs, and also another on the un-
derside

;
and diagonal braces should be framed between the

standards, over the space between the ribs, to prevent lat-

eral motion. The timbers for the roadway may be as light
as their situation will admit, as all useless timber is only an

unnecessary load upon the arch.

245. Bridges: Roadway. If a roadway be 18 feet

wide, two carriages can pass without inconvenience. Its

width, therefore, should be either 9, 18, 27, or 36 feet, ac-

cording to the amount of travel. The width of the foot-

path should be two feet for every person. When a stream

of water has a rapid current, as few piers as practicable
should be allowed to obstruct its course

;
otherwise the

bridge will be liable to be swept away by freshets. When
the span is not over 300 feet, and the banks of the river are

of sufficient height to admit of it, only one arch should be

employed. The rise of the arch is limited by the form of

the roadway, and by the height of the banks of the river

(see Art. 243). The rise of the roadway should not exceed

one in 24 feet, but as the framing settles about one in 72, the

roadway should be framed to rise one in 18, that it may be

one in 24 after settling. The commencement of the arch at

the abutments the spring, as it is termed should not be

below high-water mark ;
and the bridge should be placed at

right angles with the course of the current.

246. Bridges: Abutments. The best material for the

abutments and piers of a bridge is stone
;
and no other

should be used. The following rule is to determine the ex-

tent of the abutments, they being rectangular, and built with

stone weighing 120 pounds to a cubic foot.

Rule LXVIII Multiply the square of the height of the

abutment by 160, and divide this product by the weight of a

square foot of the arch, and by the rise of the arch ;
add

unity to the quotient, and extract the square root. Dimin-

ish the square root by unity, and multiply the root so dimin-
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ished by half the span o-f the arch, and by the weight of a

square foot of the arch. Divide the last product by 120

times the height of the abutment, and the quotient will be

the thickness of the abutment.

Example. Let the height of the abutment from the base

to the springing of the arch be 20 feet, hall the span 100 feet,

the weight of a square foot of the arch, including the great-
est possible load upon it, 300 pounds, and the rise of the arch

18 feet: what should be its thickness? The square of the

height of the abutment, 400, multiplied by 160 gives 64000,

and 300 by 18 gives 5400; 64000 divided by 5400 gives a

quotient of 11-852; one added to this makes 12-852, the

square root of which is 3-6 ; this, less one is 2-6
;
this mul-

tiplied by 100 gives 260, and this again by 300 gives 78000;
this divided by 120 times the height of the abutment, 2400,

gives 32 feet 6 inches, the thickness required.
The dimensions of a pier will be found by the same rule

;

for, although the thrust of an arch may be balanced by an

adjoining arch when the bridge is finished, and while it re-

mains uninjured, yet, during the erection, and in the event

of one arch being destroyed, the pier should be capable of

sustaining the entire thrust of the other.

Piers are sometimes constructed of timber their princi-

pal strength depending on piles driven into the earth
;
but

such piers should never be adopted where it is possible to

avoid them
; for, being alternately wet and dry, they decay

much sooner than the upper parts of the bridge. Spruce
and elm are considered good for piles. Where the height
from the bottom of the river to the roadway is great, it is a

good plan to cut them off at a little below low-water mark,

cap them with a horizontal tie, and upon this erect the posts
for the support of the roadway. This method cuts off the

pan that is continually wet from that which is only occa-

sionally so, and thus affords an opportunity for replacing the

upper part. The pieces which are immersed will last a

great length of time, especially when of elm
;
for it is a

well-established fact that timber is less durable when subject
to alternate dryness and moisture than when it is either con-

tinually wet or continually dry. It has been ascertained that
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the piles under London Bridge, after having been driven
about 600 years, were not materially decayed. These piles
are chiefly of elm, and wholly immersed.

247. Centre for Stone Bridges. Fig. 107 is a design
for a centre for a stone bridge where intermediate supports,
as piles driven into the bed of the river, are practicable. Its

timbers are so distributed as to sustain the weight of the

arch-stones as they are being laid, without destroying the

original form of the centre
; and also to prevent its destruc-

tion or settlement, should any of the piles be swept away.
The most usual error in badly-constructed centres is that

the timbers are disposed so as to cause the framing to

rise at the crown during the laying of the arch-stones up

FIG. 107.

the sides. To remedy this evil, some have loaded the crown
with heavy stones

;
but a centre properly constructed will

need no such precaution.

Experiments have shown that an arch-stone does not press

upon the centring until its bed is inclined to the horizon at

an angle of from 30 to 45 degrees, according to the hardness

of the stone, and whether it is laid in mortar or not. For

general purposes, the point at which the pressure com-

mences may be considered to be at that joint which forms

an angle of 32 degrees with the horizon. At this point the

pressure is inconsiderable, but gradually increases towards

the crown. The following table gives the portion of the

weight of the arch-stones that presses upon the framing at

the various angles of inclination formed by the bed of the
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stone with the horizon. The pressure perpendicular to the

curve is equal to the weight of the arch-stone multiplied by
the decimal

o, when the angle of inclination is 32 degrees.

.04
" " "

34
08 " " "

36
"

12 " " "
38

"

17
" " "

40
"

21 " " "
42

"

-25
" -

44

29
" " "

46
"

33
"

;"
"

48
"

37
" " "

50
"

4
" " "

52
"

44
" 4t "

54
"

48
" " "

56

52
" " u

58
"

-54
" " " 60 "

From this it is seen that at the inclination of 44 degrees the

pressure equals one quarter the weight of the stone
;
at 57

degrees, half the weight ;
and when a vertical line, as a b

(Fig. 1 08), passing through the centre of

gravity of the arch-stone, does not fall

within its bed, c d, the pressure may be con-

sidered equal to the whole weight of the

stone. This will be the case at about 60

degrees, when the depth of the stone is

double its breadth. The direction of these

pressures is considered in a line with the radius of the curve.

The weight upon a centre being known, the pressure may be

estimated and the timber calculated accordingly. But it

must be remembered that the whole weight is never placed

upon the framing at once as seems to have been the idea

had in view by the designers of some centres. In building
the arch, it should be commenced at each buttress at the

same time (as is generally the case), and each side should

progress equally towards the crown. In designing the fram-
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ing, the effect produced by each successive layer of stone

should be considered. The pressure of the stones upon one

side should, by the arrangement of the struts, be counter-

poised by that of the stones upon the other side.

Over a river whose stream is rapid, or where it is neces-

sary to preserve an uninterrupted passage for the purposes
of navigation, the centre must be constructed without in-

termediate supports, and without a continued horizontal tie

at the base ; such a centre is shown at Fig. 109. In laying
the stones from the base up to a and c, the pieces bd and
bd act as ties to prevent any rising at b. After this, while

the stones are being laid from a and from c to b, they act as

struts; the piece fg is added for additional security.

Upon this plan, with some variation to suit circumstances,

FIG. 109.

centres may be constructed for any span usual in stone-

bridge building.
In bridge centres, the principal timbers should abut, and

not be intercepted by a suspension or radial piece between.

These should be in halves, notched on each side and bolted.

The timbers should intersect as little as possible, for the

more joints the greater is the settling ;
and halving them

together is a bad practice, as it destroys nearly one half the

strength of the timber. Ties should be introduced across,

especially where many timbers 'meet ;
and as the centre is

to serve but a temporary purpose, the whole should be de-

signed with a view to employ the timber afterwards for

other uses. For this reason, all unnecessary cutting should

be avoided.
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Centres should be sufficiently strong- to preserve a

staunch and steady form during the whole process of build-

ing ;
for any shaking or trembling will have a tendency to

prevent the mortar or cement from setting. For this pur-

pose, also, the centre should be lowered a trifle immedi-

ately after the key-stone is laid, in order that the stones may
take their bearing before the mortar is set

;
otherwise the

joints will open on the underside. The trusses, in centring,
are placed at the distance of from 4 to 6 feet apart, accord-

ing to their strength and the weight of the arch. Between

every two trusses diagonal braces should be introduced to

prevent lateral motion.

In order that the centre may be easily lowered, the

frames, or trusses, should be placed upon wedge-formed
sills, as is shown at d (Fig. 109). These are contrived so as

to admit of the settling of the frame by driving the wedge
d with a maul, or, in large centres, with a piece of timber

mounted as a battering-ram. The operation of lowering a

centre should be very slowly performed, in order that the

parts of the arch may take their bearing uniformly. The

wedge pieces, instead of being placed parallel with the

truss, are sometimes made sufficiently long and laid through
the arch, in a direction at right angles to that shown at Fig.

109. This method obviates the necessity of stationing men
beneath the arch during the process of lowering ;

and was

originally adopted with success soon after the occurrence of

an accident, in lowering a centre, by which nine men were

killed.

To give some idea of the manner of estimating the pres-

sures, in order to select timber of the proper scantling, cal-

culate the pressure (Art. 247) of the arch-stones from i to b

(Fig. 109), and suppose half this pressure concentrated at a,

and acting in the direction a f. Then, by the parallelogram
of forces (Art. 71), the strain in the several pieces compos-

ing the frame bda may be computed. Again, calculate

the pressure of that portion of the arch included between a

and c, and consider half of it collected at
,
and acting in a

vertical direction ; then, by the parallelogram of forces, the

pressure on the beams bd and </may be found. Add the
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pressure of that portion of the arch which is included be-

tween i and b to half the weight of the centre, and consider

this amount concentrated at d, and acting in a vertical direc-

tion
; then, by constructing the parallelogram of forces, the

pressure upon dj may be ascertained.

The strains having been obtained, the dimensions of the

several pieces in the frames #</and bed may be found by

computation, as directed in the case of roof-trusses, from

Arts. 226 to 229. The tie-beams b d, b d, if made of suffi-

cient size to resist the compressive strain acting upon them

from the load at b, will be more than large enough to resist

the tensile strain upon them during the laying of the first

part of the arch-stones below a and c.

248. Arcli-Stones : JToint. In an arch, the arch-stones

are so shaped that the joints between them are perpendicu-
lar to the curve of the arch, or to its tangent at the point at

which the joint intersects the curve. In a circular arch, the

FIG. no.

joints tend toward the centre of the circle ;
in an elliptical

arch, the joints may be found by the following process :

To find the direction of the joints for an elliptical arch
;

FIG. in.

a joint being wanted at a (Fig. no), draw lines from that

point to the foci, /and/; bisect the angle faf with the

line a b ; then a b will be the direction of the joint.
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To find the direction of the joints for a parabolic arch ;

a joint being- wanted at a (Fig. 1 1 1), draw a e at right angles
to the axis eg; make eg equal to c e, and join a and g\
draw a h at right angles to ag\ then a h will be the

direction of the joint. The direction of the joint from b is

found in the same manner. The lines a gaud b f are tan-

gents to the curve at those points respectively ;
and any

number of joints in the curve may be obtained by first

ascertaining the tangents, and then drawing lines at right

angles to them. (See Art. 462.)

JOINTS.

24-9. Timber Joints. The joint shown in Fig. 112 is

simple and strong ;
but the strength consists wholly in the

bolts, and in the friction of the parts produced by screwing
the pieces firmly together. Should the timber shrink to

FIG. ii2.

even a small degree, the strength would depend altogether

on the bolts. It would be made much stronger by indent-

ing the pieces together, as at the upper edge of the tie-beam

FIG. 113.

in Fig. 113, or by placing keys in the joints, as at the lower

edge in the same figure. This process, however, weakens

the beam in proportion to the depth of the indents.

FIG. 114

Fig. 114 shows a method of scarfing, or splicing, a tie-

beam without bolts. The keys are to be of well-seasoned,

hard wood, and, if possible, very cross-grained. The addi-
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tion of bolts would make this a very strong splice, or even
white-oak pins would add materially to its strength.

Fig. 1 1 5 shows about as strong a splice, perhaps, as can

well be made. It is to be recommended for its simplicity ;

as, on account of there being no oblique joints in it, it can

be readily and accurately executed. A complicated joint is

the worst that can be adopted ; still, some have proposed

joints that seem to have little else besides complication to

recommend them.

In proportioning the parts of these scarfs, the depths of

FIG. 115.

all the indents taken together should be equal to one third

of the depth of the beam. In oak, ash or elm, the whole

length of the scarf should be six times the depth, or thick-

ness, of the beam, when there are no bolts
; but, if bolts in-

stead of indents are used, then three times the breadth
;
and

when both methods are combined, twice the depth of the

beam. The length of the scarf in pine and similar soft

woods, depending wholly on indents, should be about 12

times the thickness, or depth, of the beam
;
when depend-

ing wholly on bolts, 6 times the breadth
;
and when both

methods are combined, 4 times the depth.

FIG. 116.

Sometimes beams have to be pieced that are required
to resist cross-strains such as a girder, or the tie-beam of a

roof when supporting the ceiling. In such beams, the

fibres of the wood in the upper part are compressed ; and

therefore a simple butt joint at that place (as in Fig. 116)

is far preferable to any other. In such case, an oblique

joint is the very worst. The under side of the beam being
in a state of tension, it must be indented or bolted, or both ;

and an iron plate under the heads of the bolts gives a great

addition of strength.
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Scarfing requires accuracy and care, as all the indents

should bear equally ; otherwise, one being strained more
than another, there would be a tendency to splinter off the

parts. Hence the simplest form that will attain the object
is by far the best. In all beams that are compressed end-

wise, abutting joints, formed at right angles to the direction

of their length, are at once the simplest and the best. For a

temporary purpose, Fig. 112 would do very well
;

it would
be improved, however, by having a piece bolted on all four

sides. Fig. 113, and indeed each of the others, since they
have no oblique joints, would resist compression well.

In framing one beam into another for bearing purposes,
such as a floor-beam into a trimmer, the best place to make
the mortise in the trimmer is in the neutral line (Arts. 120,

121), which is in the middle of its depth. Some have

thought that, as the fibres of the upper edge are compressed,

FIG. 117.

a mortise might be made there, and the tenon driven in

tight enough to make the parts as capable of resisting the

compression as they would be without it ; and they have

therefore concluded that plan to be the best. This could

not be the case, even if the tenon would not shrink
;
for a

joint between two pieces cannot possibly be made to resist

compression so well as a solid piece without joints. The

proper place, therefore, for the mortise is at the middle of

the depth of the beam ;
but the best place for the tenon, in

the floor-beam, is at its bottom edge. For the nearer this

is placed to the upper edge, the greater is the liability for it

to splinter off; if the joint is formed, therefore, as at Fig. \ 17,

it will combine all the advantages that can be obtained. Dou-
ble tenons are objectionable, because the piece framed into

is needlessly weakened, and the tenons are seldom so accu-

rately made as to bear equally. For this reason, unless the tusk
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at a in the figure fits exactly, so as to bear equally with the

tenon, it had better be omitted. And in sawing the shoulders

care should be taken not to saw into the tenon in the least,

as it would wound the beam in the place least able to bear it.

Thus it will be seen that framing weakens both pieces,
more or less. It should, therefore, be avoided as much as

possible ,
and where it is practicable one piece should rest

upon the other, rather than be framed into it. This re-

mark applies to the bearing of floor-beams on a girder, to

the purlins and jack-rafters of a roof, etc.

In a framed truss for a roof, bridge, partition, etc., the

joints should be so constructed as to direct the pressures

through the axes of the several pieces, and also to avoid

every tendency of the parts to slide. To attain this object,

FIG. 118. FIG. 119. FIG. 120.

the abutting surface on the end of a strut should be at

right angles to the direction of the pressure ;
as at the joint

shown in Fig. 1 18 for the foot of a rafter (see Art. 86), in Fig.

1 19 for the head of a rafter, and in Fig. 120 for the foot of a

strut or brace. The joint at Fig. 118 is not cut completely

across the tie-beam, but a narrow lip is left standing in the

middle, and a corresponding indent is made in the rafter, to

prevent the parts from separating sideways. The abutting
surface should be made as large as the attainment of other

necessary objects will admit. The iron strap is added to

prevent the rafter sliding out, should the end of the tie-

beam, by decay or otherwise, splinter off. In making- the

joint shown at Fig. 119, it should be left a little open at a,

so as to bring the parts to a fair bearing at the settling of

the truss, which must necessarily take place from the shrink-

ing of the king-post and other parts. If the joint is made

fair at first, when the truss settles it will cause it to open at
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the under side of the rafter, thus throwing the whole pres-

sure upon the sharp edge at a. This will cause an indenta-

tion in the king-post, by which the truss will be made to

settle further
;
and this pressure not being in the axis of the

rafter, it will be greatly increased, thereby rendering the

rafter liable to split and break.

FIG. 121. FIG. 122. FIG. 123.

If the rafters and struts were made to abut end to end,

as in Figs. 121, 122 and 123, and' the king or queen post
notched on in halves -and bolted, the ill effects of shrinking
would be avoided. This method has been practised with

success in some of the most celebrated bridges and roofs in

Europe ; and, were its use adopted in this country, the un-

seemly sight of a hogged ridge would seldom be met with.

FIG. 124. FIG. 125.

A plate of cast-iron between the abutting surfaces will

equalize the pressure.

Fig. 124 is a proper joint for a collar-beam in a small

roof : the principle shown here should characterize all tie-

joints. The dovetail joint, although extensively practised
in the above and similar cases, is the very worst that can be

employed. The shrinking of the timber, if only to a small
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degree, permits the tie to withdraw as is shown at Fig.

12$. The dotted line shows the position of the tie after it

has shrunk.

Locust and white-oak pins are great additions to the

strength of a joint. In many cases they would supply the

place of iron bolts
; and, on account of their small cost, they

should be used in preference wherever the strength ef iron

is not requisite. In small framing, good cut nails are of

great service at the joints ;
but they should not be trusted

to bear any considerable pressure, as they are apt to be

brittle. Iron straps are seldom necessary, as all the joinings

in carpentry may be made without them. They can be

used to advantage, however, at the foot of suspending-pieces,
and for the rafter at the end of the tie-beam. In roofs for

ordinary purposes, the iron straps for suspending-pieces

may be as follows : When the longest unsupported part of

the tie-beam is

10 feet, the strap may' be i inch wide by T
3
T thick.

15
" " "

i
" "

i
"

2Q 2 u JL "

In fastening a strap, its hold on the suspending-piece will be

much increased by turning its ends into the wood. Iron

straps should be protected from rust
;
for thin plates of iron

decay very soon, especially when exposed to dampness.
For this purpose, as soon as the strap is made let it be

heated to about a blue heat, and, while it is hot, pour over

its entire surface raw linseed oil, or rub it with beeswax.

Either of these will give it a coating which dampness will

not penetrate.
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250. tair : General Requirements. The STAIRS is

that commodious arrangement of steps in a building by
which access is obtained from one story to another. Their

position, form, and finish, when determined with discrimi-

nating taste, add greatly to the comfort and elegance of a

structure. As regards their position, the first object should

be to have them near the middle of the building, in order

that they may afford an equally easy access to all the rooms
and passages. Next in importance is light ;

to obtain which

they would seem to be best situated near an outer wall, in

which windows might be constructed for the purpose ; yet
a skylight, or opening in the roof, would not only provide

light, and so secure a central position for the stairs, but may
be made, also, to assist materially as an ornament to the

building, and, what is of more importance, afford an oppor-

tunity for better ventilation.

All stairs, especially those of the most important build-

ings, should be erected of stone or some equally durable and

fire-resisting material, that the means of egress from a burn-

ing building may not be too rapidly destroyed.

Winding stairs, or those in which the direction is gradu-

ally changed by means of winders, or steps which taper in

width, are interesting by reason of the greater skill required
in their construction

;
but are objectionable, for the reason

that children are exposed to accident by their liability to fall

when passing over the narrow ends of the steps. Stairs of

this kind should be tolerated only where there is not suffi-

cient space for those with flyers, or steps of parallel width.

Stairs in one long continuous flight are also objection-
able. Platforms or landings should be introduced at inter-

vals, so that any one flight may not contain more than about

twelve or fifteen steps.

The width of stairs should be in accordance with the im-



KHORSABAD. ASSYRIAN TEMPLE, RESTORED.





THE GRADE OF STAIRS. 241

portance of the building in which they are placed, varying
from 3 to 12 feet. Where two persons are expected to pass
each other conveniently the least width admissible is 3 feet.

Still, in crowded cities, where land is valuable, the space
allowed for passages is correspondingly small, and in these
stairs are sometimes made as narrow as 2\ feet.

From 3 to 4 feet is a suitable width for a good dwelling ;

while 5 feet will be found ample for stairs in buildings occu-

pied by many people ;
and from 8 to 12 feet is sufficient for

the width of stairs in halls of assembly.
To avoid tripping or stumbling, care should be exer-

cised, in the planning of a stairs, to secure an even grade.
To this end, the nosing, or outer edge, of each step should be

exactly in line with all the other nosings. In stairs com-

posed of both flyers and winders, precaution in this regard
is especially needed. In such stairs, the steps flyers and
winders alike should be of one width on the line along
which a person would naturally walk when having his hand

upon the rail. This tread-line, consequently, would be paral-
lel with the hand-rail, and is usually taken at a distance of

from 1 8 to 20 inches from the centre of it. In the plan of

the stairs this tread-line should be drawn and divided into

equal parts, each part being the tread, or width of a flyer

from the face of one riser to the face of the next.

251. The Grade of Stairs. The extra exertion required
in ascending a staircase over that for walking on level

ground is due to the weight which a person at each step is

required to lift
;
that is, the weight of his own body. Hence

the difficulty of ascent will be in proportion to the height of

each step, or to the rise, as it is termed. To facilitate the

operation of going up stairs, therefore, the -risers should be

low. The grade of a stairs, or its angle of ascent, depends
not only upon the height of the riser, but also upon the

width of the step ;
and this has a certain relation to the

riser
;
for the width of a step should be in proportion to the

smallness of the angle of ascent.

The distance from the top of one riser to the top of the

next is the distance travelled at each step taken, and this dis-
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tance should vary as the grade of the stairs
;
for a person

who in climbing a ladder, or a nearly vertical stairs, can

travel only 12 inches, or less, at a step, will be able with

equal or greater facility to travel at least twice this distance

on level ground. The distance travelled, therefore, should

be in proportion inversely to the angle of ascent ; or, the di-

mensions of riser and step should be reciprocal : a low rise

should have a wide step, and a high rise a narrow step.

252. Pitch-Board : Relation of Rise to Tread. Among
the various devices for determining the relation of the rise

to the tread, or net width of step, one is to make the sum of

the two equal to 18 inches.

For example, for a rise of 6 inches the tread should be

12, for 7 inches the tread should be n ; or

6 + 12 = 18 8 + 10 = 18

6J + iii= 18 8i + 9i = 18

7 + ii = 18 9 + 9 = 18

;+ ioi= 18 Qj + 8i= 18

This rule is simple, but the results in extreme cases are not

satisfactory. If the ascent of a stairs be gradual and easy,

the length from the top of one rise to that of another, or the

hypothenuse of the pitch-board, may be proportionally long ;

but if the stairs be steep, the length must be shorter.

There is a French method, introduced by Blondel in his

Cours d'Architecture. It is referred to in Gwilt's Encyclo-

pedia, Art. 2813.

This method is based upon the assumed distance of 24

inches as being a convenient step upon level ground, and

upon 12 inches as the most convenient height to rise when
the ascent is vertical. These are French inches, old system.
The 24 inches French equals about 25^ inches English.

With these distances as base and perpendicular, a right-

angled triangle is formed, which is used as a scale upon
which the proportions of a pitch-board are found. For

example, let a line be drawn from any point in the hypothe-
nuse of this triangle to the right angle of the triangle ;

then

this line will equal the length of the pitch-board, along the
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rake, for a stairs having a grade equal to the angle formed

by this line and the base-line of the scale.

In the absence of the triangular scale, the lengths of the

pitch-boards, as found by this rule, may be computed by this

expression

W=2$3r -2A; (107.)

in which W equals the tread, or base of the pitch-board, and
h the riser, or its perpendicular height.

For example, let // = 6
;
then

^=25^-2x6=13^.

This result is greater than would be proper in some cases.

The length of the hypothenuse of the pitch-board should

be proportional not only to the angle of ascent (Art. 251), but

also to the strength and height of the class of people who
are to use the stairs. Tall and strong persons will take

longer steps than short and feeble people. The hypothe-
nuse of the pitch-board should be made in proportion to

the distance taken at a step on level ground by the persons
who are to use the stairs.

If people are divided into two classes, one composed of

robust workmen and the other of delicate women and in-

firm men, then there may be two scales formed for the pitch-

boards of stairs one to be used for shops and factories, and

the other for dwellings. The distance on level ground trav-

elled per step, by men, varies from about 26 to 32 inches, or

on an average 28 inches. The height to which men are

accustomed to rise on ladders is from 12 to 16 inches at each

step, or on the average 14 inches.

With these dimensions, therefore, of 14 and 28 inches, a

scale may be formed for pitch-boards for stairs, in buildings

to be used exclusively by robust workmen. And with 12

and 24 inches another scale may be formed for pitch-boards
for stairs, in buildings to be used by women and feeble

people. These two scales are both shown in Fig. 126.

They are made thus : Let C A B be a right angle. Make A
B equal to 28 inches, and A C equal to 14 ;

then join B and



244 STAIRS.

C. At right angles to C B, from A, draw A F\ then with

A F for radius describe the arc F G. Then a' line, as A K
or A L, drawn from A at any angle with A B and limited by
the line G FB will give the length of the hypothenuse of

the pitch-board, for shop stairs of a grade equal to the angle
which said line makes with A B. From K, perpendicular to

A B, draw K N"; then K N will be the proper riser for a

pitch-board of which A N is the tread. So, likewise, L M
will be the appropriate riser for the tread A M. The arc F G
is introduced to limit the rake-line of pitch-boards occur-

ring between F and C, in order to avoid making them longer
than the one at F. The scale for the stairs for dwellings is

made in the same manner
;
A D 24 inches being the base,

A E = 12 inches the rise, and J H D the line limiting the

rake-lines of pitch-boards.

M N
FIG. 126.

To compute the length of risers and treads, we have for

the scale for shops, for those occurring between F and B
r = 4(28-/): (108.)

fi=28-2rj (109.)

and for those between F and G, we have

(108, A.)

(109, A.)

r= -/ 2

;

1/756^8-

For the scale for dwellings, we have, for those occurring
between H and D

r =i(24-/); (108, B.)

t = 24 2 r
; (109, B.)
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and for those between H and J, we have

t =

245

, c.)

(109, C.)

where, in each equation, r represents the riser, and t the

tread, or net step.

By these formulae, the following tables have been com-

puted :

STAIRS FOR SHOPS.

Rise.
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volving the proportion between the rise and tread of a

pitch-board.
For stairs in which the run is limited, to determine the

number of risers which would give an easy ascent : Divide

the run by the height, and find in the proper table, above,
the ratio nearest to the quotient, and in a line with this ratio,

in the second column to the left, will be found the corre-

sponding riser. With this divide the rise in inches
;
the quo-

tient, or the nearest whole number thereto, will be the required
number of risers in the stairs.

Example. For the stairs in a dwelling, let the rise be 12'

8", or I524nches. Let the run between the extreme risers

be 17' 2". To this, for the purpose of obtaining the correct

angle of ascent, by having an equal number of risers and

treads, add, for one more tread, say 10 inches, its probable

width; thus making the total run 1 8 feet, or 216 inches.

Thus we have for the run 216, and for the rise 152. Divid-

ing the former by the latter gives i -42 nearly. In the table

of stairs for dwellings, the ratio nearest to this is I -43, and in

the line to the left, in the second column, is 7, the approxi-
mate size of riser appropriate to this case. Dividing the

rise, 152 inches, by this 7, we have 2 if as the quotient.
This is nearer to 22 than to 21

; therefore, the number of

risers required is 22.

When the number of risers is determined, then the rise

divided by this number will give the height of each riser
;

thus, in the above case, the rise is 152 inches. This divided

by 22 gives 6-909 inches for the height of the riser.

When the height of the riser is known, then, if the run is

unlimited, the width of tread will be found in the proper table

above. For example, if the riser is 7 inches or nearly that,

then in the table of stairs for dwellings, in the next column
to the right, and opposite 7 in the column of risers, is found

10, the approximate width of tread. By the use of equation

(109, B.), the width may be had exactly according to the

scale. For example, equation (109, B.) with 6-91 for the

riser, becomes
t 24 2 x 6-91 = io- 18,

or about ioT
3
^ inches.
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When the run is limited and the number of risers is

known, then the width of tread is obtained by dividing the

run by the number of treads. There are always of treads

one less than there are of risers, in each flight.

253. Dimensions of the Pitch-Board. The first thing
in commencing to build a stairs is to make the //fc/j-board ;

this is done in the following manner : Obtain very accurate-

ly, in feet and inches, the rise, or perpendicular height, of the

story in which the stairs are to be placed. This must be

taken from the top of the lower floor to the top of the upper
floor. Then, to obtain the number of rises and treads and
their size, proceed as directed in Art. 252. Having obtained

these, the pitch-board may be made in the following man-
ner: Upon a piece of well-seasoned board about

-|
of an

inch thick, having one edge jointed

straight and square, lay the corner

of a steel square, as shown at Fig. 127.

Make a b equal to the riser, and b c

equal to the tread
;
mark along the

edges with a knife, and cut by the FlG< I27 '

marks, making the edges of the pitch
- board perfectly

square. The grain of the wood should run in the direction

indicated in the figure, because, in case of shrinkage, the

rise and the tread will be equally affected by it. When a

pitch-board is first made, the dimensions of the riser and

tread should be preserved in figures, in order that, in case

of shrinkage or damage otherwise, a second may be

made.

254. The String of a Stairs. The space required for

timber and plastering under the steps is about 5 inches for

ordinary stairs, or 6 inches if furred
;
set a gauge, there-

fore, at 5 or 6 inches, as the case requires, and run it on the

lower edge of the plank, as ab (Fig. 128). Commencing at

one end, lay the longest side of the pitch-board against the

gauge-mark, a b, as at c, and draw by the edges the lines for

the first rise and tread ;
then place it successively as at d, e,
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and f, until the required number of risers shall be laid down.
To insure accuracy, it is well to ascertain the theoretical

raking length of the pitch-board by computation, as in note

to Art. 536, by getting the square root of the sum of the

squares of the rise and run, and using this by which to

divide the line ab into equal parts.

f

FIG. 128.

255. Step and Riser Connection. Fig. 129 represents
a section of step and riser, joined after the most approved
method. In this, a represents the end of a block about 2

FIG. 129,

inches long, two or three of which, in the length of the

step, are glued in the corner. The cove at b is planed up
square, glued in, and stuck or moulded after the glue is

set.

PLATFORM STAIRS.

256. Platform Stair* : the Cylinder. A platform stairs

ascends from one story to another in two or more flights,

having platforms or landings between for resting and to

change their direction. This kind of stairs, being simple, is
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easily constructed, and at the same time is to be preferred

to those with winders, for the convenience it affords in use

(Art. 250). The cylinder may be of

any diameter desirable, from a few

inches to 3 or more feet, but it is

generally small, about 6 inches. It

may be worked out of one solid

piece, but a better way is to glue

together 3 pieces, as in Fig. 130 ;
in

which the pieces a, b, and c compose
the cylinder, and d and e represent

parts of the strings. The strings,

after being glued to the cylinder, are secured with screws.

The joining at o and o is the most proper for that kind of

joint.

FIG. 130.

FIG. 131.

257. Form of Lower Edge of Cylinder. Find the

stretch-out, de (Fig. 131), of the face of the cylinder, a be,
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according to Art. 524; from d and e draw df and eg at

right angles to d^; draw kg parallel to de, and make hf
and -2 each equal to one riser; from i and f draw ij and

/ parallel to hg\ place the tread of the pitch-board at these

last lines, and draw by the lower edge the lines kh and il
;

parallel to these draw m n and op, at the requisite distance

for the dimensions of the string ;
from s, the centre of the

plan, draw sq parallel to df\ divide // q and qg each into two

equal parts, as at v and w
;
from v and w draw v n and w o

parallel to fd\ join n and o, cutting qs in r
;
then the angles

unr and rot, being eased off according to Art. 521, will give
the proper curve for the bottom edge of the cylinder. A
centre may be found upon which to describe these curves,
thus : from u draw u x at right angles to m n

;
from r draw

r x at right angles to no
;
then x will be the centre for the

curve ur. The centre for the curve rt may be found in a

similar manner. Centres from which to strike these curves
are usually quite unnecessary ;

an experienced workman
will readily form the curves guided alone by his practised

eye.

FIG. 132.

258. Position of the Baluters. Place the centre of

the first baluster, b (Fig. 132), half its diameter from the face

of the riser, cd, and one third its diameter from the end of

the step, e d\ and place the centre of the other baluster, a,

half the tread from the centre of the first. A line through
the centre of the rail will occur vertically over the centres

of the balusters. The usual length of the balusters is 2 feet

5 inches and 2 feet 9 inches respectively, for the short and

long balusters. Their length may be greater than is here

indicated, but, for safety, should never be less. The differ-

ence in length between the short and long balusters is

equal to one half the height of a riser.
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259. Winding stairs: have the steps narrower atone
end than at the other. In some stairs there are steps of

parallel width incorporated with the tapering steps ;
in this

case the former are called flyers, and the latter winder:.

260. Regular Winding Stairs In Fig. 133, abed rep-
resents the inner surface of the wall enclosing the space
allotted to the stairs, a e the length of the steps, and efgk
the cylinder, or face of the front-string. The line a e is given
as the face of the first riser, and the point / for the limit of

FIG. 133

the last. Make e i equal to 18 inches, and upon o, with o i

for radius, describe the arc i j \
obtain the number of risers

and of treads required to ascend to the floor at j, according
to Art. 252, and divide the arc ij into the same number of

equal parts as there are to be treads : through the points of

division, 1,2, 3, etc., and from the wall-string to the front-

string, draw lines tending to the centre, o : then these lines

will represent the face of each riser, and determine the form

and width of the steps. Allow the necessary projection for

the nosing beyond a e, which should be equal to the thick-
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ness of the step, and then a e I k will be the dimensions for

each step. Make a pitch-board for the wall-string having a k

for the tread, and the rise as previously ascertained : with

this lay out on a thicknessed plank the several risers and

treads, as at Fig. 128, gauging from the upper edge of the

string for the line at which to set the pitch-board.

Upon the back of the string, with a ij-inch dado plane,
make a succession of grooves ij inches apart, and parallel

with the lines for the risers on the face. These grooves
must be cut along the whole length of the plank, and deep

enough to admit of the plank's bending around the curve

abed. Then construct a drum, or cylinder, of any com-
mon kind of stuff, made to fit a curve with a radius the

thickness of the string less than oa
; upon this the string must

be bent, and the grooves filled with strips of wood, called

keys, which must be very nicely fitted and glued in. After

it has dried, a board thin enough to bend around on the out-

side of the string must be glued on from one end to the

other, and nailed with clout-nails. In doing this, be careful

not to nail into any place opposite to where a riser or step is

to enter on the face.

After the string has been on the drum a sufficient time

for the glue to set, take it off, and cut the mortices for the

steps and risers on the face at the lines previously made
;

which may be done by boring with a centre-bit half through
the string, and nicely chiselling to the line. The drum need

not be made to extend over the whole space occupied by the

stairs, but merely so far as requisite to receive one piece of

the wall-string at a time ; for it is evident that more than

One will be required. The front-string may be constructed

in the same manner ; taking e I instead of a k for the tread of

the pitch-board, dadoing it with a smaller dado plane, and

bending it on a drum of the proper size.

261. Winding Stairs : Shape and Position of Timbers.

The dotted lines in Fig. 133 show the position of the timbers

as regards the plan ;
the shape of each is obtained as follows:

In Fig. 134, the line i a is equal to a riser, less the thickness

ot the floor, and the lines 2 m, 3 n, 4 <?, 5 /, and 6 q are each
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equal to one riser. The line a 2 is equal to a m in Fig. 133,
the line m 3 to m n in that figure, etc. In drawing this

figure, commence at a, and make the lines a i and a 2 of the

length above s*pecified, and draw them at right angles to

each other ;
draw 2 m at right angles to a 2, and m 3 at

right angles to ;;/ 2, and make 2 m and m 3 of the lengths
as above specified ; and so proceed to the end. Then

through the points i, 2, 3, 4, 5, and 6 trace the line \b\ upon
the points i, 2, 3, 4, etc., with the size of the timber for

radius, describe arcs as shown in the figure, and by these

the lower line may be traced parallel to the upper. This
will give the proper shape for the timber, a b, in Fig. 133 ;

and that of the others may be found in a similar manner. In

ordinary cases, the shape of one face of the timber will be

sufficient, for a good workman can easily hew it to its

proper level by that
; but where great accuracy is desirable,

a pattern for the other side may be found in the same man-

FIG. 134.

ner as for the first. In many cases, the timbers beneath cir-

cular stairs are put up after the stairs are erected, and with-

out previously giving them the required form
;
the work-

man in shaping them being guided by the form marked out

by the lower edge of the risers.

262. Winding Stairs with Flyers : Grade of Front-

String. In stairs of this kind, if the winders are confined to

the quarter circle, the transition from the winders to the

flyers is too abrupt for convenience, as well as in appear-
ance. To remove this unsightly bend in the rail and string,

it is usual to take in among the winders one or more of the

flyers, and thus graduate the width of the winders to that of

the flyers. But this is not always done so as to secure the

best results. By the method now to be shown, both rail and

strings will be gracefully graded. In Fig. 135, a b repre-

sents the line of the facia along the floor of the upper story,
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bee the face of the cylinder, and c d the face of the front-

string. Make gb equal to of the diameter of the baluster,

and parallel to a b, b e c, and c d draw the centre-line of the

rail, fg> g k z, and ij\ make gk and gl each equal to half the

width of the rail, and through k and /, parallel to the centre-

line, draw lines for the convex and the concave sides of the

rail
; tangical to the convex side of the rail, and parallel to

k m, draw ;/ o
;
obtain the stretch-out, q r, of the semicircle,

k p m, according to Art. 524; extend a b to /, and k m to s;

make c s equal to the length of the steps, and i u equal to 18

inches, and parallel to m p describe the arcs s t and u 6
;

from / draw / w, tending to the centre of the cylinder ;
from

6, and on the line 6 u x, run off the regular tread, as at 5, 4,

3, 2, i, and v\ make
'

u x equal to half the arc u 6, and make
the point of division nearest to x, as v, the limit of the par-

allel steps, or flyers ;
make r o equal to m z; from o draw o

a** at right angles to ;/ o, and equal to one riser; from a 2

draw a* s parallel to n o, and equal to one tread; from s,

through o, draw s b*.

Then from w draw w c
2 at right angles to ;/ o, and set up

on the line w c^ the same number of risers that the floor, A,

is above the first winder, B, as at i, 2, 3, 4, 5, and 6
; through

5 (on the arc 6 u) draw d* e*, tending to the centre of the

cylinder; from e*~ draw erf* at right angles to 110, and

through 5 (on the line w c*} draw g* f 2

parallel to n o\

through 6 (on the line zu c
2

) and/ 2 draw the line h* b*\

make 6 c~ equal to half a riser, and from c* and 6 draw c'
2

i'
2

and 6/
2

parallel to n o\ make h* i* equal to 7/
2 /2

;
from i-

draw i* k* at right angles to i* h-, and from f~ draw / 2 k*

at right angles to / 2
/*

2
; upon k~, with 2 / 2 for radius, de-

scribe the arc / 2
*
2

;
make b~ /

2

equal to 2/2
,
and ease oft

the angle at b* by the curve/
2
/

2
. In the figure, the curve

is described from a centre, but as this might be imprac-
ticable in a full-size plan, the curve may be obtained accord-

* In the references a 2
, />', etc., a new form is introduced for the first time.

During the time taken to refer to the figure, the memory of the form of these

may pass from the mind, while that of the sound alone remains; they may
then be mistaken for a 2, b 2, etc. This can be avoided in reading by giving

them a sound corresponding to their meaning, which is a second, b second, etc.



MOULDS FOR QUARTER-CIRCLE STAIRS. 2 55

ing to Art. 521. Then from i, 2, 3, and 4 (on the line w c~)

draw lines parallel to n o, meeting the curve in w 2
, n~, o 2

,

and /
2

;
from these points draw lines at right angles to ;/ o,

and meeting it in jr
2

,
r 2

,
s

z
,
and /

2
;
from x~ and r 2 draw

FIG. 135.

lines tending to z/
2

,
and meeting the convex side of the rail

in j/
2 and 2

;
make m ?>

2

equal to r s~, and m w* equal to

rt*-, fromj/W 2
,
and w 2

, through 4, 3, 2, and i, draw lines

meeting the line of the wall-string in a 3
,

3
, c\ and rt

78
;
from
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e
3

,
where the centre-line of the rail crosses the line of the

floor, draw e
3/ 3 at right angles to n o, and from/

3
, through

6, draw f*g~\ then the heavy lines f*g\ e* d\ y* a*, Z* b\
v*c 3

,
w 2 d 3

,
and z y will be the lines for the risers, which,

being extended to the line of the front-string, b e c d, will

give the dimensions of the winders and the grading of the

front-string, as was required.

HAND-RAILING.

263. Hand-Railing for Stairs. A piece of hand-rail-
'

ing intended for the curved part of a stairs, when properly

shaped, has a twisted form, deviating widely from plane sur-

faces. If laid upon a table it may easily be rocked to and

fro, and can be made to coincide with the surface of the

table in only three points. And yet it is usual to cut such

twisted pieces from ordinary parallel-faced plank ;
and to

cut the plank in form according to a face-mould, previously
formed from given dimensions obtained from the plan of the

stairs. The shape of the finished wreath differs so widely
from the piece when first cut from the plank as to make it

appear to a novice a matter of exceeding difficulty, if not an

impossibility, to design a face-mould which shall cover accu-

rately the form of the completed wreath. But he will find,

as he progresses in a study of the subject, that it is not only
a possibility, but that the science has been reduced to such

a system that all necessary moulds may be obtained with

great facility. To attain to this proficiency, however, re-

quires close attention and continued persistent study, yet no

more than this important science deserves. The young car-

penter may entertain a less worthy ambition than that of

desiring to be able to form from planks of black-walnut or

mahogany those pieces of hand-railing which, when secured

together with rail-screws, shall, on applying them over the

stairs for which they are intended, be found to fit their

places exactly, and to form graceful curves at the cylinders.
That railing which requires to be placed upon the stairs

before cutting the joints, or which requires the curves or

butt-joints to be refitted after leaving the shop, is discredit-
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able to the workman who makes it. No true mechanic will

be content until he shall be proved able to form the curves
and cut the joints in the shop, and so accurately that no altera-

tion shall be needed when the railing is brought to its place
on the stairs. The science of hand-railing requires some

knowledge of descriptive geometry that branch of geometry
which has for its object the solution of problems involving
three dimensions by means of intersecting planes. The
method of obtaining the lengths and bevils of hip and valley
rafters, etc., as in Art. 233, is a practical example of descrip-
tive geometry. The lines and angles to be developed in

problems of hand-railing are to be obtained by methods

dependent upon like principles.

264. Hand-Railing: Definitions; Planes and Solids.

Preliminary to an exposition of the method for drawing
the face-moulds of a hand-rail wreath, certain terms used in

descriptive geometry need to be denned. Among the tools

used by a carpenter are those well-known implements called

planes, such as the jack-plane, fore-plane, smoothing-plane,
etc. These enable the workman to straighten and smooth

the faces of boards and plank, and to dress them out of

wind, or so that their surfaces shall be true and unwinding.
The term plane, as used in descriptive geometry, however,
refers not to the implement aforesaid, but to the unwinding
surface formed by these implements. A plane in geometry
is defined to be such a surface that if any two points in it be

joined by a straight line, this line will be in contact with the

surface at every point in its length. With like results lines

may be drawn in all possible directions upon such a sur-

face. This can be done only upon an unwinding surface ;

therefore, a plane is an unwinding surface. Planes are

understood to be unlimited in their extent, and to pass freely

through other planes encountered.

The science of stair-building has to do with prisms and

cylinders, examples of which are shown in Figs. 136, 137, and

138. A right prism (Figs. 136 and 137) is a solid standing

upon a horizontal plane, and with faces each of which is a

plane. Two of these faces top and bottom are horizontal
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and are equal polygons, having their corresponding sides

parallel.

The other faces of the prism are parallelograms, each of
which -is a vertical plane. When the vertical sides of a

prism are of equal width, and in number increased indefi-

nitely, the two polygonal faces of the prism do not differ

essentially from circles, and thence the prism becomes a

cylinder. Thus a right cylinder may be defined to be a

prism, with circles for the horizontal faces (Fig. 138).

FIG. 136. FIG. 137- FIG. 138.

265. Hand - Railing : Preliminary Considerations.

If within the well-hole, or stair-opening, of a circular stairs a

solid cylinder be constructed of such diameter as shall fill the

well-hole completely, touching the hand-railing at all points,
and then if the top of this cylinder be cut off on a line with

the top of the hand-railing, the upper end of the cylinder
would present a winding surface. But if, instead of cutting
the cylinder as suggested, it be cut by several planes, each

of which shall extend so as to cover only one of the wreaths

of the railing, and be so inclined as to touch its top in three

points, then the form of each of these planes, at its intersec-

tion with the vertical sides of the cylinder, would present
the shape of the concave edge of the face-mould for that

particular piece of hand -
railing covered by the plane.

Again, if a hollow cylinder be constructed so as to be in

contact with the outer edge of the hand-railing throughout
its length, and this cylinder be also cut by the aforesaid
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planes, then each of said planes at its intersection with this

latter cylinder would present the form of the convex edge
of the said face-mould. A plank of proper thickness may
now have marked upon it the shape of this face-mould, and

the piece covered by the face-mould, when cut from the

plank, will evidently contain a wreath like that over which

the face-mould was formed, and which, by cutting away the

surplus material above and below, may be gradually wrought
into the graceful form of the required wreath.

By the considerations here presented some general idea

may be had of the method pursued, by which the form of a

face-mould for hand-railing is obtained. A little reflection

upon what has been advanced will show that the problem
to be solved is to pass a plane obliquely through a cylinder

at certain given points, and find its shape at its intersection

with the vertical surface of \he cylinder. Peter Nicholson

was the first to show how this might be done, and for the

invention was rewarded, by a scientific society of London,

with a gold medal. Other writers have suggested some

slight improvements on Nicholson's methods. The method

to which preference is now given, for its simplicity ot work-

ing and certainty of results, is that which deals with the

tangents to the curves, instead of with the curves themselves;

so we do not pass a plane through a cylinder, but through a

prism the vertical sides of which are tangent to the cylinder,

and contain the controlling tangents of the face-moulds. The

task, therefore, is confined principally to finding the tangents

upon the face-mould. This accomplished, the rest is easy, as

will be seen.

The method by which is found the form of the top of a

prism cut by an oblique plane will now be shown.

266. A Prim Cut toy an Oblique Plane A prism is

shown in perspective at Fig. 139, cut by an oblique plane.

The points abed are the angles of the horizontal base, and

abg, bcf, cdcf, and adeg are the vertical sides; while

efbg is the top, the form of which is to be shown.

267. Form of Top of Prim In Fig. 139 the form of

the top of the prism is shown as it appears in perspective..
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not in its real shape ; this is now to be developed. In Fig.

140, let the sauare a b c d represent by scale the actual form

FIG. 139.

and size of the base, a b cd, of the prism shown in Fig. 1 39.

Make c c, and ddt respectively equal to the actual heights at

FIG. 140.

cf and de, Fig. 139 ;
the lines dd

t
and c c, being set up per-

pendicular to the line dc. Extend the lines dc and d
t
c
t
until



ILLUSTRATION BY PLANES. 26 1

they meet in h
; join b and h. Now this line b h is the inter-

section of two planes : one, the base, or horizontal plane upon
which the prism stands ; the other, the cutting plane, or the

plane which, passing- obliquely through the prism, cuts it so

as to produce, by intersecting the vertical sides of the prism,
the form bfeg, Fig. 139.

To show that b k is the line of intersection of these two

planes, let the paper on which the triangle dhd
t
is drawn

(designated by the letter B) be lifted by the point d
t
and

revolved on the line dk until d
t
stands vertically over d, and

c
t
over c\ then B will be a plane standing on the line dh,

vertical to the base-plane A. The point h being in the line

cd extended, and the line cd being in the base-plane A, there-

fore h is in the base-plane A. Now the line d
t
c

t represents
the line cf of Fig. 139, and is therefore in the cutting plane ;

consequently the point //, being also in the line d
t c, ex-

tended, is also in the cutting plane. By reference to Fig.

139 it will be seen that the point b is in both the cutting and

base planes ;
we must therefore conclude that, since the two

points b and h are in both the cutting and base planes, a line

joining these two points must be the intersection of these two

planes. The determination of the line of intersection of the

base and cutting planes is very important, as it is a control-

ling line
; as will be seen in denning the lines upon which

the form of the face-mould depends. Care should therefore

be taken that the method of obtaining it be clearly under-

stood.

It will be observed that the intersecting line bh, being in

the horizontal plane A, is therefore a horizontal line. Also,

that this horizontal line b h being a line in the cutting plane,

therefore all lines upon the cutting plane which are drawn

parallel to b h must also be horizontal lines. The import-

ance of this will shortly be seen. Through a, perpendicular
to bh, draw the line bn d^ and parallel with this line draw

ddini ;
on d as centre describe the arc d

t
d

ltil ;
draw d

ltll
dv

parallel with dd
tlJ

and extend the latter to d
tll ;

on d
{l

as

centre describe the arc dv dnl ; join bn and dul . We now

have three vertical planes which are to be brought into

position around the base-plane A, 'as follows: Revolve B
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upon dh, E upon ddit , and C upon bn dtn each until it stands

perpendicular to the plane -A. Then the points dt
and d

illt

will coincide and be vertically over d\ the points d
llt

and dv

will coincide and stand vertically over dn ;
and c

t
will cover c.

These vertical planes will enclose a wedge-shaped figure,

lying with one face, b^d^dh, horizontal and coincident with

the base-plane A, and three vertical faces, b
lt
du dti/y

ddn d^ djiit ,

and hdd
t
. By drawing the figure upon a piece of stout

paper, cutting it out at the outer edges, making creases in

the lines hd, ddtl ,
du b

t/J
then folding the three planes B, E,

and C at right angles to A, the relation of the lines will be

readily seen. Now, to obtain the form of the top or cover to

the wedge-shaped figure, perpendicular to bn diti
draw b,,h,

and d
tll e\ on b

tl
as centre describe the arc hh

i ;
make d

llt
e

equal to dlt d\ join e and h
t

. Now the form of the top of the

wedge-shaped figure is shown within the bounds din b
i{
h

t
c.

By revolving this plane D on the line bn dllt
until it is at

a right angle to the plane C, and this while the latter is

supposed to be vertical to the plane A, it will be perceived
that this movement will place the plane D on top of the

wedge-shaped figure, and in such a manner as that the point
e will coincide with d

lllt
d

{
, and the point h

t
will fall upon and

be coincident with the point h, and the lines of the cover

will coincide with the corresponding lines of the top edges
of the sides of the figure; for example, the line b

li
d

lll
is

common to the top and the side C; the line d
ltl

e equals dtl d,

which equals dv dttil \ therefore, the line d
itt

e will coincide

with dv di/u of the side E\ the line eh
t
will coincide with d,h

of the side B\ and the line b
l,h l

will coincide with the line

b
tl
h. Thus the figure D bounded by b

ll
d

lll
ch

l
will exactly

fit as a cover to the wedge-shaped figure. Upon this cover

we may now develop the form of the top of the prism.

Preliminary thereto, however, it will be observed, as was
before remarked, that lines upon the cutting plane which

are parallel to the intersecting line b
tl
h

t
are horizontal

;

and each, therefore, must be of the same length as the line

in the base-plane A vertically beneath it. For example, the

line d
llt

e
{

is a line in the cutting plane D, parallel with the

line b
lt
h

t
in the same plane, and this line b

ll
li

l
will (when the
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cutting plane D is revolved into its proper position) be co-

incident with the intersecting line b
lt
h

; therefore, the line

d
til

e is a line in the cutting plane D, drawn parallel with the

intersecting line bu h. Now this line d
llt e, when in position,

will be coincident with the line d
ltll d^ which lies vertically

over the line d
t ,d-ol the base-plane A ;

its length, therefore,

is equal to that of the latter. In like manner it may be

shown that the length of any line on the plane D parallel

to b
tl
hn is equal in length to the corresponding line upon

the plane A vertically beneath it.

Therefore, to obtain the form of the top of the prism, we

proceed as follows : Perpendicular to b
tl
dv draw c clu and

aa
ttl \ perpendicular to b

tl
dni draw c

tllf and equal toc,,c;
on b

lt
as centre describe the arc b b

t
; join b

t a,n ,
b

t f, and a
l4l

e.

Now we have here in plane D the form of the top of the

prism, as shown in the figure bounded by the lines a^'fije.

This will be readily seen when the plane D is revolved into

position. Then the point a
tll

will be vertically over a
;
the

point e coincident with d
t
d

ltll
and vertically over d; the point

/ coincident with c
/
and vertically over c

;
while b

t
will coin-

cide with b of the base-plane A.

The figure ani b
tfe, therefore, represents correctly both

in form and size the top of the prism as it is shown in per-

spective at bfeg, Fig. 139. The line ef, Fig. 140, is equal to

the line d
t
c

t ,
and so of the other lines bounding the edges of

the figure.

The cutting plane bf eg, Fig. 139, may be taken to repre-

sent the surface of the plank from which the wreath of hand-

railing is to be cut ;
the wreath curving around from b to c

t

as shown in Fig. 141, the lines b g and ge being tangent to

the curve in the cutting plane; while ab and ad are tan-

gents to the curve on the base plane, or plane of the cylin-

der. The location of the cutting plane, however, is usually

not at the upper surface of the plank, but midway between

the upper and under surfaces. The tangents in the plane

are found to be more conveniently located here for deter-

mining the position of the butt-joints. For a moulded rail

two curved lines, each with a pair of tangents, are required

upon the cutting plane, one for the outer edge of the rail,



264 STAIRS.

and the other for the inner edge ;
but for a round rail only

one curve with its tangents is required, as that from b to e

in Fig. 141, which is taken to represent the curved line run-

ning through the centre of the cross-section of the rail. As
an easy application of the principles regarding the prism,

just developed, an example will now be given.

268. Face-Mould for Hand-Railing of Platform Stairs.

Let/ and / ;;/, Fig. 142, represent the central or axial lines

of the hand-rails of the two flights, one above, the other be-

low the platform ;
and let the semicircle/df/ be the central

line of the rail around the cylinder at the platform, the risers

at the platform being located atj and /. Vertically over the

platform risers draw ggt ;
make grt equal to a riser of the

lower flight, and r
t gt

and ss
t
each equal to a riser of the

upper flight. Draw gt
s and gk t

horizontal and equal
each to a tread of each flight respectively. Through r, draw

k, au ,
and through gy

draw s
t
t

t
. Vertically over d draw a

t
tr

Horizontally draw a
tl
anll and t

t
t
tl

.

It is usual to extend the wreath of the cylinder so as to

include a part of the straight rail such a part as convenience

may require. Let the straight part here to be included ex-

tend from / to b on the plan. Vertically over b draw b
t
c
tlli ,

and horizontally draw b
/
w-

tl ;
at any point on b

t
w

tt
locate wn ,

and make w
tl
w

f equal to j I, and bisect it in w; erect the

perpendiculars iv
t
a

ltil ,
w d

v/J ,
and w

/7
v

; join t
lt
and a

tlll ;
from

d
vil horizontally draw d

vil
d

v/ ; parallel with r
t
k

t
draw

dv, c
tlll

' We now have the plan and elevations of the prism,
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containing at its angles the tangents required for the wreath

extending from b to d on the plan. The elevation F is a view

of the cylinder looking in the direction dc.

FIG. 142.

Comparing Fig. 142 with Fig. 141* the line b, w/t
is the

trace, upon a vertical plane, of the horizontal plane abed
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of Fig. 141, or is the ground-line from which the heights of

the prism are to be taken.

The triangle^ b
t
au is represented in Fig. 141 at ab g, and

the inclined line b, atl
is the tangent of the rail of the lower

flight, and is represented in Fig. 141 at bg ; while anil tn is

the tangent of the railing around the cylinder, and the half

of it is represented in Fig. 141 at ge. The height b
t
c
tilJ

is

shown in Fig. 141 at cf, while the height iv dv , t ,
or a/dVl ,

is

shown in Fig. 141 at de.

The vertical planes EEC may now be constructed about

the prism as in Fig. 140, proceeding thus
:. Make c c

f equal to

b
t
ciul ,

and dd
t equal to a

t
d

v/ ; through c
t
draw d

i h\ through
b draw h b

tl ; perpendicular to h b
lt through a draw bn dv ;

from ^parallel with bn */v draw d d
jiti ;

on d as centre describe

the arc d
t
dnil \

draw d
itll

dv ,
also d d

ltl , parallel with hbn \

on d
ti

as centre describe the arc dv dtj ; join dw to b
jt

. Par-

allel with bn h draw from each important point of the plan,
as shown, an ordinate extending to the line b

tl
d

tji ,
and thence

across plane D draw ordinates perpendicular to b
lt
d

tll ,
and

make them respectively equal to the corresponding ordinates

of the plane A, measured from the line bn dv ; join e to/, a
ll{

to b^ a
ltl

to e, and b, to/; also join /, to r
t

. Then ain b, is the

tangent standing over a b, and a
lit

e is Jthe tangent standing
over ad. The line b

l
l

i
is the part of the tangent which

stands over bl
t ,
the portion of the wreath which is straight.

The curve en
lp l

l
l
is the trace upon the cutting plane of the

quarter circle dnpl, traced through the points /*,/,, and as

many more as desirable, found by ordinates as any other

point in the plane A. Thus we have complete the line

b
t I, n t e, the central line of the wreath extending from b to d

in the plan. This is the essential part of the face-mould, which

is now to be drawn as follows: At Fig. 143 repeat the par-

allelogram a
tll

b
tfe of Fig. 142, and, with a radius equal to

half the diameter of the rail, describe, from centres taken on

the central line, the several circles shown ;
and tangent to

these circles draw the outer and inner edges of the rail.

The joint at b
t
is to be drawn perpendicular to the tangent

b. ain ,
while that at e is to be perpendicular to the tangent

^a
tll

. This completes the face-mould for the wreath over
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bind of the plan. If the pitch-board of the upper flight be

the same as that of the lower flight, the face-mould at Fig.

143 will, reversed, serve also for the wreath over the other

half of the cylinder.

In using this face-mould, place it upon a plank equal in

thickness to the diameter of the rail, mark its form upon the

plank, and saw square through ;
then chamfer the wreath to

an octagonal form, after which carefully remove the angles
so as to produce the required round form. The joints, as well

as the curved edges, are to be cut square through the plank.

Many more lines have been used in obtaining this face-

mould than were really necessary for so simple a case, but no

more than was deemed advisable in order properly to eluci-

date the general principles involved. A very simple method

FIG. 143.

for face-moulds of platform stairs with small cylinders will

now be shown.

269. More Simple method for Hand-Rail to Platform

Stairs. In Fig. 144,jge represents a pitch-board of the first

flight, and d and i the pitch-board of the second flight ofa plat-

form stairs, the line ef being the top of the platform ;
and

abc is the plan of a line passing through the centre of

the rail around the cylinder. Through i and d draw i k,

and through y and e drawy k ; from k draw k I parallel to/e;
from b draw bm parallel to gd; from / draw Ir parallel to

kj ; from n draw nt at right Angles toy/6; on the line ob

make ot equal to nt ; join c and t ; on the line jc, Fig. 145,

make ec equal to en at Fig. 144; from c draw c t at right

angles to j c, and make ct equal to c t at Fig. 144; through /

draw p I parallel to j c, and make // equal to / / at Fig. 144 ;

join /and c, and complete the parallelogram eels ;
find the

points o, o, o, according to Art. 551 ; upon e, o, o, o, and /,
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successively, with a radius equal to half the width of the

rail, describe the circles shown in the figure ;
then a curve

traced on both sides of these circles, and just touching them,

FIG, 144.

Avill give the proper form for the mould,

drawn at right angles to c /.

The joint at / is

FIG. 145.

This simple method for obtaining the face-moulds for the

hand-rail of a platform stairs appeared first in the early edi-

tions of this work. It was invented by a Mr. Kells, an
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eminent stair-builder of this city. A comparison with Fig.

142 will explain the use of the few lines introduced. For a

full comprehension of it reference is made to Fig. 146, in

which the cylinder, for this purpose, is made rectangular

FIG. 146.

instead of circular. ,The figure gives a perspective view of

a part of the upper and of the lower flights, and a part of

the platform about the cylinder. The heavy lines, ////, me,

and cj, show the direction of the rail, and are supposed to

pass through the centre of it. Assuming that the rake of
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the second flight is the same as that of the first, as is gener-

ally the case, the- face-mould for the lower twist will, when
reversed, do for the upper flight ;

that part of the rail, there-

fore, which passes from e to c, and from c to /, is all that will

need explanation.

Suppose, then, that the parallelogram eaoc represent a

plane lying perpendicularly over 'eabf, being inclined in

the direction ec, and level in the direction co
; suppose this

FIG. 147.

plane eaoc be revolved on ec as an axis, in the manner indi-

cated by the arcs o n and a x, until it coincides with the

plane ertc\ the line ao will then be represented by the line

x n
; then add the parallelogram xrtn, and the triangle ctl,

deducting the triangle ers\ then the edges of the plane cslc,

inclined in the direction ec, and also in the direction c I, will

lie perpendicularly over the plane eabf. From this we

gather that the line co, being at right angles to ec, must, -in
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order to reach the point /, be lengthened the distance nt,
and the right angle ect be made obtuse by the addition to

it of the angle tc /. By reference to Fig. 144, it will be seen
that this lengthening is performed by forming the right-

angled triangle cot, corresponding to the triangle cot in

Fig. 146. The line ct is then transferred to Fig. 145, and

placed at right angles tov^r; this angle ect is then increased

by adding the angle tcl, corresponding to tcl, Fig. 146.
Thus the point / is reached, and the proper position and

length of the lines ec and ^/obtained. To obtain the face-

mould for a rail over a cylindrical well-hole, the same process
is necessary to be followed until the length and position of

these lines are found
; then, by forming the parallelogram

eels, and describing a quarter of an ellipse therein, the

proper form will be given.

FIG. 148.

270. Hand-Railling for a Larger Cylinder. Fig. 147

represents a plan and a vertical section of a line passing

through the centre of the rail as before. From b draw bk

parallel to cd\ extend the lines zWandyV until they meet kb
in k and /; from ;/ draw nl parallel to ob; through / draw
// parallel to j k; from k draw kt at right angles to/; on

the line ob make ot equal to kt. Make ec (Fig. 148) equal
to ek at Fig. 147 ;

from c draw ct at right angles to ec, and

equal to ct at Fig. 147 ;
from / draw // parallel to ce, and

make tl equal to //at Fig. 147 ; complete the parallelogram

eels, and find the points o, 0, o, as before
;
then describe the

circles and complete the mould as in Fig. 145. The difference

between this and Case I is that the line ct, instead of being
raised and thrown out, is lowered and drawn in. A method
of planning a cylinder so as to avoid the necessity of cant-

ing the plank, either up or down, will now be shown.
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271. Faee-moMld without Canting the Plank. Instead

of placing the platform-risers at the spring of the cylinder, a

more easy and graceful appearance may be given to the

rail, and the necessity of canting either of the twists entirely

obviated, by fixing the place of the above risers at a certain

distance within the cylinder, as shown in Fig. 149 the lines

indicating the face of the risers cutting the cylinder at k and

/, instead of at / and q, the spring of the cylinder. To
ascertain the position of the risers, let abc be the pitch-
board of the lower flight, and cde that of the upper flight,

these being placed so that b c and
cd shall form a right line. Extend
a c to cut de in f; draw fg parallel
*to db, and of indefinite length ;

draw go at right angles to fg, and

equal in length to the radius of the

circle formed by the centre of the

rail in passing around the cylinder ;

on o as centre describe the semi-

circle /^z'/ through o draw is par-
allel to db; make oh equal to the

radius of the cylinder, and describe

on o the face of the cylinder phq;
then extend db across the cylinder,

cutting it in / and k giving the

position of the face of the risers,

as required. To find the face-

mould for the twists is simple and

obvious : it being merely a quarter
of an ellipse, having oj for semi-

minor axis, and sf for the semi-major axis; or, at Fig. 151,

let dci"be<\. right angle ;
make c i equal to oj, Fig. 149, and dc

equal to sf, Fig. 149; then draw do parallel to ci, and com-

plete the curve as before.

272. Railing for Platform Stair* where the Rake
meets the Level. In Fig. 150, abc is the plan of a line pass-

ing through the centre of the rail around the cylinder as

before, and je is a vertical section of two steps starting

from the floor, kg. Bisect eh in d, and through d draw df

FIG. 149.
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parallel to hg\ bisect /# in /, and from / draw It parallel

to nj\ from n draw nt at right angles to jn ;
on the line ob

make ot equal to nt. Then, to obtain a mould for the twist

going up the flight, proceed as at Fig. 145 ; making ec in

that figure equal to en in Fig. 150, and the other lines of a

length and position such as is indicated by the letters of

reference in each figure. To obtain the mould for the level

FIG. 150.

rail, extend bo (Fig. 150) to i
;
make oi equal to //, and join

z'andc; vcw&e c i (Fig. 151) equal to civ&Fig. 150; thiough

FIG. 151.

c draw cd at right angles to ci\ make dc equal to df at

Fig. 150, and complete the parallelogram odd; then pro-

ceed as in the previous cases to find the mould.

273. Application of Face-lWoiilds to Plank. All the

moulds obtained by the preceding examples have been for

round rails. For these, the mould may be applied to a plank

of the same thickness as the rail is intended to be, and the
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plank sawed square through, the joints being cut square
from the face of the plank. A twist thus cut and truly
rounded will hang in a proper position over the plan, and

present a perfect and graceful wreath.

274. Face-Moulds for Moulded Rails upon Platform
Stairs. In Fig. i$2,abcis the plan of a line passing through

FIG. 152.

the centre of the rail around the cylinder, as before, and the

lines above it are a vertical section of steps, risers, and plat-

form, with the lines for the rail obtained as in Fig. 144. Set

half the width of the rail from b to / and from b to r, and

from / and r draw.fc and rd parallel to ca. At Fig. 153

the centre-lines of the rail jc and cl are obtained as in the

previous examples, making jc equal jn of Fig. 152, ct
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equal ct of Fig. 152, and tl equal si of Fig. 152. Make ci

and ck each equal to <:z at /^. 152, and draw the lines im
and /& parallel to cj ;

make /<? and /r equal to ne and ?z</ at

7%. 152, and draw dn and eq parallel to lc\ also, through j
draw <? parallel to lc; then, in the parallelograms mnro
and goe q, find the elliptic curves, d?? and *, according to

Art. 551, and they will define the curves. The line dp,

being drawn through / perpendicular to Ic, defines the

joint which is to be cut square through the plank.

275. Application of Face-Moulds to Plank. In Fig.

152 make a drawing, from d to /*, of the cross-section of the

hand-rail, and tangent to the lower corner draw the line gh.
The distance between the lines/* and^/z is the thickness of

the plank from which the rail is to be cut. Lay the face1

mould upon the plank, mark its shape upon the plank, and

FIG. 153.

saw it square through. To proceed strictly in accordance

with the requirements of the principles upon which the face-

mould is formed, the cutting ought to be made vertically

through the plank, the latter being in the position which it

would occupy when upon the stairs. Formerly it was the

custom to cut it thus, with its long raking lines. But, owing
to the great labor and inconvenience of this method, efforts

were made to secure an easier process. By investigation it

was found that it was possible, without change in the face-

mould, to cut the plank square through and still obtain the

correct figure for the railing, and this method is the one now

usually pursued. Not only is the labor of sawing much re-

duced by this change ;
but to the workman it is an entire re-

lief, as he now, after marking the form of the wreath upon the

plank, sends it to a steam saw-mill, and, at a small cost, has it
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cut out with an upright scroll-saw. When thus cut out in

the square, the upper surface of the plank is to be faced up
true and unwinding, and the outer edge jointed straight

and square from the face. Then a figure of the cross-section

of the hand-railing is to be carefully drawn on the ends of the

squared block as shown in Figs. 154 and 155, and which

are regulated so as to be correctly in position, as follows.

First, as to the end h of the straight part hj\ In Fig. 154,

let a b c d be an end view of the squared block, of which a efd
is the shape of the end of the straight part. Let the point g
be the centre of this end of the straight part ; through g
draw upon the end a efd the line jk, so that the angle bjk
shall be equal to the angle kt c, Fig. 152. This is the angle
at which the plank is required to be canted, revolving it on

FIG. 154. FIG. 155.

the axis of the straight part of the rail. Through g draw

the line ;/ h parallel with a b. Upon a thin sheet of metal

(zinc is preferable) mark carefully the exact figure of the

cross-section of the rail, drawing a vertical line through its

centre, cut away the surplus metal, then, with this template

as a pattern, mark upon the end a efd, Fig. \ 54, the figure of

the rail as shown, the vertical line upon the template being
made to coincide with the line//. From n and h draw the

vertical lines // in and /;/ parallel with j k.

Now, as to the other end of the square block : Let b cf e,

Fig. 155, represent the block, of which bcvn is the form of

the end at the curved part, and o its centre. Through o

draiv/^, so that the angle epq shall be equal to the angle

j n /7, Fig. 152. Also, through o draw d h parallel with e b\



CUTTING THE TWIST-RAIL. 277

from d and h draw the vertical lines h r and ds parallel with

pq. Place the template on bcvn, the end of the block, so
that the vertical line through its centre shall coincide with

pq\ mark its form, then from y, at mid-thickness, draw wy
parallel with p q.

In applying- the mould, let Fig. 156 represent the upper
face of the squared block,

with the face-mould lying

upon it. With the distance

a /, Fig. 154, and by the

edge a x, mark a gauge-line

upon the upper face of the FIG. 156.

squared block. Set the outer edge of the face-mould to coin-

cide with this gauge-line. Let the end of the face-mould be

set at w, e w being equal to e w, Fig. 155; then mark the

block by the edge of the face-mould.

Now turn the block over and apply the face-mould to the

underside, as in Fig. 157. With the distance d r/t
t Fig. 154,

and by the outer edge of

the block, mark a gauge-
line from m, Fig. 157. Set

the inner edge of the face-

mould to this gauge-line,
and slide it endwise till the FlG - J 57.

distance em shall equal ew, Fig. 155, then mark the block by
the edges of the face-mould. The over wood may now be re-

moved as indicated by the vertical lines at the sides of the

cross-section marked on each end of the block (see also Fig.

167) : the direction of the cutting at the curves must be verti-

cal
;
the inner curve will require a round-faced plane. A com-

parison of the several figures referred to, with the directions

given, together with a little reflection, will manifest the

reasons for the method here given for applying the face-

mould. Especially so when it is remembered that the face-

mould was obtained not for the top of the rail, but for the rail

at the mid-thickness of the block. So, therefore, in the

application to the upper surface of the block, the face-mould

is slid up the rake far enough to put the mould in position

vertically over its true positional mid-thickness ;
and on the



2/8 STAIRS.

contrary, in applying the face-mould to the underside of the

plank, it is slid down until it is vertically beneath its true

position at the mid-thickness of the block.

When the vertical faces are completed, the over wood
above and below the wreath is to be removed. In doing
this, the form at the ends, as given by the template, is a suf-

ficient guide there. Between these the upper and under
surfaces are to be warped from one end to the other, so as

to form a graceful' curve. With a little practice an intelli-

gent mechanic will be able to work these surfaces with

facility. The form of cross-section produced by this opera-
tion is that of a parallelogram, tangent to the top, bottom,
and two sides of the rail

;
and which at and near the ends

of the block is not quite full. The next operation is that of

working the moulding at the sides and on top, first by re-

bates at the sides, then chamfering, and finally moulding the

curves. Templates to fit the rail, one at the sides, another

on top, are useful as checks against cutting away too much
6f the wood. f

The joints are all to be worked square through the plank
in the line drawn perpendicular to the tangent, as shown in

153-

276. Hand-Railing for Circular Stairs. Let it be re-

quired to furnish the face-moulds for a circular stairs similar

to that shown in Fig. 133.

Preliminary to making the face-moulds it is requisite to

make a plan, or horizontal projection of the stairs, and on

this to locate the projections of the tangents and develop
their vertical projections. For this purpose let b c d efg,

Fig. 158, be the horizontal projection of the centre of the

rail, and the lines numbered from i to 19 be the risers. At

any point, a, on an extension of the line of the first riser

locate the centre of the newel. On a as a centre describe the

two circles; the larger one equal in diameter to the diame-

ter of the newel-cap, the inner one distant from the outer

one equal to half the width of the rail. Let the first joint in

the hand-rail be located at b, at the fourth riser ; through b

draw h k tangent to the circle. Select a point, h, on this
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tangent which shall be equally distant from b and from the

inner circle of the newel-cap, measured on a line tending to

a
; join h and a, and from a point, <?,

on the line b o describe

ft,

10

FIG. 158.

the curve from b to the point of the mitre of the newel-cap,

the curve being tangent, at this point, to the line a h. Select

positions for the other joints in the hand-rail as at c, d, c, and /.
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Through these draw lines tangent to the circle.* Then the

horizontal projection of the tangents will be the lines hk, kl,

/;//, m n, and np. Now, if a vertical plane stand upon each

of these lines, these planes would form a prism not quite

complete standing upon the base-plane, A. Upon these ver-

tical planes, C, D, E, F, G, and H, lines may be drawn which
at each joint shall be tangent to the central line of the rail.

These are the tangents now to be sought. Perpendicular to

the tangents at
, c, d, etc., draw the lines b b

t ,
c c^ ddjy

e e
t , ff/y

ggn and h h
tl ,
kk

t ,
k k

lt ,l l
t ,l lin etc. As b is at the fourth riser,

and the height is counted from the top of the first riser,

make b b
t equal to three risers. (To avoid extending the

drawing to inconvenient dimensions, the heights in it are

made only half their actual size. As this is done uniformly

throughout the drawing, this reduction will lead to no error

in the desired results.) As c is on the eighth riser, therefore

make c c
t equal to seven risers, and so, in like manner, make

the heights ddlt ee^ and fft
each of a height to correspond

with the number of the riser at which it is placed, deduct-

ing one riser. These heights fix the location of each tangent
at its point of contact with the central line of the rail. But
each tangent is yet free to revolve on this point of contact,

up or down, as may be required to bring the ends of each

pair of tangents in contact; or, to make equal in height the

edges of each pair of vertical planes, which coincide after

they are revolved on their base-lines into a vertical position ;

as, for example : the edges k k
t
and k k

it
of the planes C and

D must be of equal height; so, also, the edges ll
f
and ll

tl
of

the planes D and E must be of equal height. The method

of establishing these heights will now be shown.

To this end let it be observed, that of the horizontal pro-

jection of any pair of intersecting tangents, their lengths,

from the point of intersection to the points of contact with

the circle, are equal ;
for example : of the two tangents // k

and Ik, the distances from k, their point of intersection, to b

and c, their points of contact with the circle, are equal ;
and

so also cl equals <//, dm equals e m, etc. It will be observed

* A tangent is a line perpendicular to the radius, drawn from the point of

contact.
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that this equality is not dependent on b,c, d, etc., the points
of contact, being disposed at equal distances

; for, in this

example, they are placed at unequal distances, some being at

three treads apart and others at four; and yet while this un-

equal distribution of the points b, c, d, etc., has the effect of

causing the point of contact, as b, c, or e
y
to divide each whole

tangent into two unequal parts, it does not disturb the

equality of the two adjoining parts of any two adjacent tan-

gents. Now, because of this equality of the two adjoining

parts of a pair of tangents, the height to be overcome in

passing from one point of contact to the next must be

divided equally between the two
;
each tangent takes half

the distance. Therefore, for stairs of this kind, the arrange-
ment being symmetrical, we have this rule by which to fix

the height of the ends of any two adjoining tangents, namely :

To the height at the lower point of contact add half the dif-

ference between the heights at the two points of contact ;

the sum will be the required height of the two adjoining
ends of tangents. For example: the heights at b and c,

two adjacent points of contact, are respectively three and

seven risers; the difference is four risers; half this added to

three, the height of the lower rise, gives five risers as the

height of k kr kku ,
the height at the adjoining ends of the

tangents h k and / k. Again, the heights at c and d are re-

spectively seven and ten risers
;
their difference is three

;

half of which, or one and a half 'risers, added to seven, the

height at the lower point of contact, makes nine and a half

risers as the heights //,, //, at the ends of the adjoining

tangents k I and m I. In a similar manner are established

the heights of the tangents at ;;/, ;/, and /.

The rule for finding the heights of tangents as just given

is applicable to circular stairs in which the treads are di-

vided equally at the front-string, as in Fig. 158. Stairs of

irregular plan require to have drawn an elevation of the

rail, stretched out into a plane, upon which the tangents can

be located. This will be shown farther on.

The locations of the joints c, d, c, in this example, were

disposed at unequal distances merely to show the effect on

the tangents as before noticed. In practice it is proper to
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locate them at equal distances, for then one face-mould in

such a stairs will serve for each wreath.

When the tangent at G has been drawn, the level tangent
for the landing maybe obtained in this manner: As the

jointf is located at the eighteenth riser, one riser below the

landing, draw a horizontal line at s, one riser above the point

f^ and at half a riser above this draw the level line at pt
\ then

this line is the level tangent, and p its point of intersection

with the raking tangent. Draw the vertical line /,/, and

from/ draw the tangent /-, which is the horizontal projec-
tion of the tangent p t g, on plane H (which, to avoid undue

enlargement of the drawing, is reduced in height), where

////equals//,,.
To obtain the horizontal tangent / u at the newel, pro-

ceed thus : Fix the point r, in the tangent r k
t ,

at a height
above b t equal to the elevation of the centre of the newel

above the height of a short baluster for example, from 5

to 8 inches and draw a line through r parallel to b t
;
this

is a horizontal line through the middle of the height of the

newel-cap, and upon which and the rake the easement to

the newel is formed. Perpendicular to b t draw r t, and join
/ and u

;
then / u is the horizontal tangent.

277. Face-Moulds for Circular tair. At Fig. 159 the

plan of the newel and the adjacent hand-rail are repeated,
but upon an enlarged scale

;
and in which b b

t
is the reduced

height of the point &, or is equal to b b
t
less tr, Fig. 158,

and the angle b b
t /equals the angle bb

t
r of Fig. 158. In

this plan the actual heights must now be taken. Join t and

u
;
then / u is the level tangent, as also the line of intersection

of the cutting plane C and the horizontal plane A. Perpen-
dicular to / u, at a point / or anywhere above it, draw u, b/r

Parallel with / u draw b b
ltl ;

make bn b
ltl equal to b b

t ; join

b
ltl

and u^ ;
then the angle b bul u

t
is the angle which the

plank in position makes with a vertical line, or what is

usually termed the plumb-beviL Perpendicular to b
ltl

u
j

draw
,

and b
ltl

b
ltll ;

make b
tll

b
tlll equal to bb

tl ;
make u,

t
t equal to u

t t, and u
j
un to u

/
u

; join b
lltl

and t
t ;

then bini t
t
is

the tangent in the cutting plane, the horizontal projection of
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which is bt. The butt-joint at b
ltil

is drawn square to the

tangent bilu tr Parallel to the intersecting line / u, draw
ordinates across the plane A from as many points as desir-

able, and extend them to the rake-line u
t
bni ; through the

points of their intersection with this line, and perpendicular
to it, draw corresponding ordinates across the plane C. Make
du dtll equal to d, d, and so in like manner, for all other points,

FIG. 159.

obtain in the plane C for each point in the horizontal plane

A its corresponding point in the plane C: in each case

taking the distance to the point in the plane A from the line

h b
tl
and applying it in the plane C from the rake-line u, bnl .

For the curves bend a flexible strip to coincide with the

several points obtained, and draw the curve by the side of

the strip. The point of the mitre is at */,, the mitre-joint is
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shown at hd
tll

and d
tll

c
lt

. The line f c
lt

is drawn through
c
//t

the most projecting point of the mitre, and parallel to the

rake-line u
t
blir Additional wood is left attached, extending

from h to f\ this is an allowance to cover the mitre, which
has to be cut vertically ;

the butt-joint at b
ltll

and the face at

fctl
are both to be cut square through the plank. The face

/<:, because it is parallel to the rake-line u
f
b
ltl ,

is a vertical

face, as well as being perpendicular to the surface of the

plank. On it, therefore, lines drawn according to the rake,

or like the angle u
t
b
tll

b
it , will be vertical and will give the

direction of the mitre-faces. We now have at C the face-

mould for the railing over the plan from b to d in A. The
mould thus found is that made upon a cutting plane C, passed

through the plank, parallel to its face, but at the middle of

its thickness. To put it in position, let the plane C be lifted

by its upper edge c
tl
and revolved upon the line n

t
b
tll

until

it stands perpendicular to the plane B. Now revolve both
C and B (kept in this relative position during the revolution)

upon the line u
t
b

t
. until the plane B stands perpendicular to

the plane A. Then every point upon plane C will be verti-

cally over its corresponding point in the plane A. For ex-

ample, the point b
lllt

will be vertically over b, t,
over /,

and so of all other points. To show the application of the

face-mould to the plank, make b
ltl

bv equal to half the thick-

ness of the plank; parallel to u
t
b
tll

draw bv c, a line which

represents the upper surface of the plank, for the line u
t
bul

is at the middle of the thickness. Through b
itll ,

and parallel
with b

ltl
u

t ,
draw the line c

t
b
ltll

and extend it across the face-

mould
;
make b

litl
c

t equal to bv c
; through c^ and parallel with

bull t
/t
draw c

t
e. Now, ;// n o

t p is an end view of the plank,

showing the face view of the butt-joint at b
i{ll

. Through r,

the centre, draw a line parallel with the sides. Then #vl rep-
resents the point b

ltll \
make vi e

t equal to b
tlil c\ through r,

the centre, draw c, r across the face of the joint ; then e
t
r is

a vertical line (see Art. 284), parallel and perpendicular to

which the four sides of the squared-up wreath are to be

drawn as shown. In applying the face-mould to the plank at

first, for the purpose of marking by its edges the form of the

face-mould, it will be observed that the face-mould is under-

stood to have the position indicated by the line u
t
blu ,

or at
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the middle of the thickness of the plank. By this marking
the rail-piece is cut square through the plank, and this cut-

ting gives the correct form of the wreath, but only at the

middle of the thickness of the plank. After it is cut square

through the plank, then, to obtain the form at the upper and

under surfaces, the face-mould is required to be moved end-

wise, but parallel with the auxiliary plane ^,-and so far as to

bring the face-mould into a position vertically over or under

its true position at the middle of the thickness of the plank.

For example, the point b
tlll ^

if the mould were placed at the

middle of the thickness of the plank, would be at the height
of the point bnl ;

but when upon the top of the plank, the

point b
tlll

would have to be at the height of the point c
t

,

therefore the mould must be so moved that the point b
lltl

shall pass from bv to c
; consequently bv c is the distance

the mould must be moved, or, as it is technically termed,

the sliding distance; hence b
lltl c,, which is equal to bv c, is

the distance the mould is to be moved: up when on top,

and down when underneath. This is more fully explained
in Art. 284.

278. Face-Moulds for Circular Stairs. At Fig. 1 60 so

much of the horizontal projection of the hand-railing of

stairs in Fig. 158 is repeated as extends from the joint b to

that at d, but at an enlarged scale. Upon the tangent ck

set up the heights as given in Fig. 158; for example, make

kk
t equal to kni ktl

of Fig. 158, and cc, equal to c
ll

c
l
of Fig.

158. Join c
t
and k

t
and extend the line to meet ck, extended,

in a. Join a and b
;
then ab is the line of intersection of

the cutting and horizontal planes ;
it is therefore a horizon-

tal line, parallel to which the ordinates are to be drawn.

Perpendicular to ab draw b,c, til
. Parallel to ab draw ccu

and kk
lt ; join b, and c

lt ;
the angle cc

tl
b

f
is the plumb-bevil ;

perpendicular to b, c
f

. draw b, b
lt ,
k

tl
kin ,

and c
tl
c
llt ;

make b
t
bu

equal to b
t b, and so of the other two points, k

ltl
and r

///}
make

them respectively equal to their horizontal projections upon
the plane A. Join ciu and k

fl ; also, k
it
and b

tl ;
then b

tl
k

ltl

and k
tll

c
ltl

are the tangents. From t
//f

draw the line c
ltl

b
lt

parallel to b
t
c
tl ;

this is the slide-line. In this example, this
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line passes through the point b
lt ;

the slide-line does not

always pass through the ends of the two tangents ;
it is not

required to pass through both, but it is indispensable that it

be drawn parallel with the rake-line b
t
c
tl

. The lines for the

joints at each end are drawn square to the tangent lines.

Points in the curves, as many as are desirable, are now to

be found by ordinates as shown in the figure, and as before

explained for the points in the tangents. The curves are

made by drawing a line against the side of a flexible strip

bent to coincide with the points.

The face-mould may be put in position by revolving the

planes C and B, as explained in the last article, for the rail

at the newel.

The face-mould for the rail over the plan from c to d is to
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be obtained in a similar manner, taking the heights from Fig.

158. For example, make dd
/ equal to d

tl
d

t
of Fig. 15.8, and

//, equal to /,/ of Fig. 158 (taking the heights at their

actual measurement now). Join d
t
and / and extend the

line to meet the line dl extended in r
; join r and c\ then re

is the line of intersection, and parallel to which the ordinates

are to be drawn. The points in the face-mould may now be
obtained as in the previous cases, giving attention first to

the tangent and slide-line
; drawing the lines for the joints

perpendicular to the tangents.
It may be remarked here that the chord-line <:is parallel

with the measuring line b
t
cilin and that the line o k bisects

the chord-line; so, also, the line ol bisects the chord-line cd.

This coincidence is not accidental
;

it will always occur in a

regular circular stairs.

Hence in cases of this kind it is not necessary to go
through the preliminaries by which to obtain the intersect-

ing line ab, but draw it at once parallel to the line ok,

bisecting the chord be and passing through the point of

intersection of the two tangents! For the distance to slide

the mould in its after-application, the lines are given at c
tl

and d
lfj

and their use is explained in the last article, and

more fully in Art. 284.

279. Face-Mould for Circular Stairs again. At Fig.

161 so much of the plan of the hand-railing of the stairs of

Fig. 158 is repeated as is required to show the rail from f
to gy

but drawn at a larger scale. To prepare for the face-

moulds, perpendicular to // draw //., and make ppt equal

t PuiPii f F*8- ! 5^ (taking this height now at its actual

measurement) ; join pt
and /; then fpt

is the tangent of the

vertical plane C, and / is a point in the cutting plane at its

intersection with the bass-plane A. Now since rs, the tan-

gent over pg, is horizontal and is in the cutting plane,

therefore from / draw fa parallel with r s or pg\ then fa
is the line of intersection of the cutting and horizontal

planes, and gives direction to the ordinates. Draw //,

perpendicular to fa ;
make plllpjl equal to pp t ; join / and

/,; then the angle //// is the plumb-bevil ; perpendicular
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to //, draw // and // ;
make // equal to ptu g,

pit
d equal to plltp\ join d and / ;

then *// and dplin are

the tangents. Make ptl
e equal to half the thickness of the

plank ;
draw ftl

a parallel Avith ftplt ;
make ftl

a equal to e c
;

draw ac
t parallel with the tangent fn d\ through /, per-

pendicular to fti d, draw the line for the butt-joint ;
then fu c,

is the distance required to determine the vertical line on the

face of the joint at /, as shown at A. Through pltli , per-

pendicular to the tangent pull d, draw the line for the butt-

joint ;
make pnil b equal to ec\ then plltl

b is the distance

required for determining the vertical line on the face of the

joint at ///7/ , as shown at B (see Art. 284). The curved lines

are obtained by drawing a line against, the edges of a flexi-

ble rod bent to as many points as desirable, obtained by

measuring the ordinates of the plan at A and transferring
them to the face-mould by the corresponding ordinates, as

before explained.
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280. Hand -Railing for Winding Stairs. -The term

winding is applied more particularly to a stairs having steps
of parallel width compounded with those which taper in

width, as in Fig. 135, and as is here shown in Fig. 162, in

which fa be represents the central line of the rail around the

cylinder, and the quadrant de, distant from the first quadrant
20 inches, is the tread-line, upon which from d, a point taken

at pleasure, the treads are run off. Through e, perpendicu-

FIG. 162.

lar to af, draw ae (the occurrence here of one of the

points of division on the tread-line perpendicularly opposite

a, the spring of the circle, is only an accidental coincidence) ;

make a a, equal to two risers
; join a, and /. With the

diameter a c, on b as a centre, describe the arc at g, crossing

ac extended
; through b draw gb, ;

then ab, is the stretch-

out, or development of the quadrant a b.

Through // draw h i, tending toward the centre of the
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cylinder; make b
t
i
t equal to bi\ perpendicular to fb t

draw
b

t
b
it
and i

t
i
tl

. As there are four risers from e to //, make
a

t
a

ti equal to four risers, and draw a
tl

iu parallel with fa ;

through i
it
draw a

t
b
i( ; by intersecting lines, or in any con-

venient manner, ease off to any extent the angle fa t
iu .

Through j, a point in this curve (chosen so as to be perpen-

dicularly over m, a point between a and /, nearer to a),

draw kly a tangent to the curve. Perpendicularly to this

tangent, through /, draw the line for a butt-joint ; also

through //t
and perpendicularly to a, b

lt ,
draw the line for

the joint at the centre of the half circle. On the line aan
set up points of division for the riser heights, and through
these points of division draw horizontal lines to the line

From these points of contact drop perpendiculars to the

line fa b
t ,
and transfer such of them as require it to the circle

at, by drawing lines tending to g. Through these points of

intersection with the central line of the rail, and through the

points of division on the tread-line, draw the riser-lines me,
a n, etc. At half a riser above the floor-line, on top of the

upper riser draw a horizontal line, and ease off the angle as

shown
;
the intersection of the floor-line with this curve

gives the position of the top riser at the centre of the rail.

This completes the plan of the steps and the elevation of the

rail requisite preliminaries for the face-moulds. The gradu-
ation of the treads from flyers to winders obviates an abrupt

angle at their junction in the rail and front-string. The

objection to the graduation, that it interferes with the

regularity of stepping at the tread-line, is not realized in

practice.

281. Face-Moulds for Winding Stairs. At Fig. 163 so

much of the plan at Fig. 162 is repeated as is required for the

face-moulds, but for perspicuity at twice the size. The hori-

zontal projection of the tangents for the first wreath are ad
and db drawn at right angles to each other, tangent to the

circle at a and b. Let those tangents be extended beyond
d; through ;;/, the lower end of the wreath, draw mdjy

mak-

ing an angle with md equal to that in Fig. 162, between the
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line af and #,./; or let the angle dmdt equal afa, of Fig.

162. Make dd
lt equal to ddr Make bb

tl equal to b
tll

b
tl

of

Fig. 162
; join d

lt
and b

tl
and extend the line to e

4l ;
make

b
lt
bv equal to bu bllu of Fig. 162, and draw b^etl parallel with

FIG. 163.

</*. From ^
/y
draw e

tl
e parallel with b

lt b\ through e and /
draw ef tangent to the circle at /; then b e and ef are the

horizontal projections of the tangents for the upper wreath.

Then if the plane B be revolved on ad, the plane C on de,
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and the plane D on cf until they each stand vertical to the

plane A, the lines mdn d
tl
ein and enift

will constitute the

tangents of the two wreaths in position. This arrangement
locates the upper joint of the upper wreath at /, leaving fc,
a part of the circle, to be worked as a part of the long level

rail on the landing. As the tangent over ef is level, the

raking part of the rail will all be included in the wreath bf,

so that at the joint / the rail terminates on the level.

The portion fc, therefore, is a level rail requiring no

canting, and it requires no other face-mould than that afforded

by the plan from / to c.

For the face-mould for the rail over ;;/ a b, let the line e
ff
d

tl

be extended to mv ,
a point in the base-line b mv ;

then ;//v is a

point in the base-plane A, as well as in the cutting plane E;
therefore the line mv m is the intersecting line parallel to

which all the ordinates on plane A are to be drawn. Per-

pendicular to this intersecting line m v m,at any convenient

place draw m, b, ;
make b

t
bni parallel to mv m and equal to

b b
tl ;

connect b
ilt

with
;//,,

a point at the intersection of the

lines mv m and b, m t ;
then the angle b bnl m /

is the plumb-
bevil. Through d, parallel to mv m, draw^^; from the

three points /#,, d
iti ,

and b
til

draw lines perpendicular to

m
f
b

llt ; make m t
m

tl equal to m
t
m

;
make b

itl
bllu equal to b

t
b.

Since the measuring base-line m, b, passes through d, the

point of the angle formed by the two tangents, dtil
is the

point of this angle in the cutting plane E\ therefore join m tl

and </,, also d
ltl

and b
lltl ;

then b
ltll

dni and d
ltl
mn are .the

two tangents at right angles to which the joints at mn and

blin are drawn. The curves of the face-mould are now found

as usual, by transferring the distances by ordinates, as shown,
from the plane A to the plane E, making the distance from

the rake-line m
/
b

ltl
to each point in plane E equal to the dis-

tance from the corresponding point in the plane A to the

measuring base-line m, b
t
. Now, to obtain the sliding distance

and the vertical line upon the butt-joints, make b
tll

bv equal

to half the thickness of the plank ; parallel with m
t
b
tll
draw

by b^ ; also, bllu vii and m
4l
m

tll ; make b
tlll

bvYi and * m
llt

each equal to bv vi ; through ^vii and mn/ ,
and parallel to the

respective tangents, draw vil b^ and m
llt
mliu ; then b* and
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m,ni are the points from which, through the centre of the

butt-joints, a line is to be drawn which will be vertical when
the wreath is in position. (See Art. 284.)

For the face-mould for the upper quarter, through b, Fig.

163, draw b e
t parallel with du e

tl ;
make e e

lit equal to e e
t ;

draw e
lil fl parallel with e f. Now, since e

tll ft
is a horizon-

tal line and is in the cutting plane F, therefore, parallel with

e
til ft

and through b
tJ
draw b n

;
then b n is the required in-

tersecting line. Extend e f to / ;
make // equal to //, ;

join/,, and n
;
then the angleffl{

n is the plumb-bevil. Per-

pendicular to nft/
draw /"/", and n n,, and make these lines

respectively equal to e f and b n
; join ftl

and fltl ;
also /,

and n
t ; then fn ftil

and fnl n
{
are the required tangents.

The butt-joints at/) and n
t
are drawn perpendicular to their

respective tangents. To get the slide distance and vertical

lines on the butt-joints, make/), fv equal to half the thickness

of the plank ; parallel with n /),, through /v draw/v /)yy/ ; also,

through n
t
draw n

t
n

ti ;
make n, ii'u equal to /v fntl ; through

/; , parallel with n
t fltlJ

draw nu n
lt .\ then nln is the point

through which a line is to be drawn to the centre of the

butt-joint, and this line will be in the vertical plane contain-

ing the tangent. So, also, parallel with the tangent ftl fltl ,

and through ////y ,
draw flllt /vi ; then/vi is the point through

which a line is to be drawn to the centre of the butt-joint

(see Art. 284). The curve is now to be obtained by the

ordinates, as before explained.

282. Face-]Woiilci for Winding Stairs, again. In the

last article, in getting the face-moulds for a winding stairs,

the two wreaths are found to be very dissimilar in. length.

This dissimilarity may be obviated by a judicious location of

the butt-joint connecting the two wreaths, as shown in Fig.

164. Instead of locating the joint precisely at the middle of

the half circle, as was done in Fig. 163, place it farther down,

say at ;/, which is at n in Fig. 162, two risers down from the

top, or at any other point at will. Then through n in the

plan draw m
t
s tangent to the circle at n

;
and perpendicu-

lar to this tangent draw ;/ nin and ddn ;
make n n

tl equal to

n
t
n of Fig. 162; from d erect d d

t perpendicular to m d\
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make the angle d m d
t equal to that of bin j I of Fig. 162.

Make d dn equal to d d
t ; join dn and nn and extend the line

to
;;/,,

a point of intersection with the base-line n n
t ;

then n
t

is a point in the base-plane, as also in the cutting plane ;

FIG. 164.

therefore m
t
m is the intersecting line parallel to which all

the ordinates of the plan are to be drawn, and perpendicular
to which m

/{
n

t ,
the measuring base-line, is drawn. Make

n
t
n

tlil equal to n nn ;
connect m

tl
and n

/(/i ,
and then transfer
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by the ordinates to the cutting plane m d and n the three

points of the plan at the ends of the tangents, as before de-

scribed, as also such points in the curve as may be required
to mark the curve upon the face-mould, all as shown in previ-
ous examples. For the face-mould of the upper wreath, make
n

tl
nnl equal to n nn of Fig. 162. From n

tll
draw nnl s

tl par-
allel with m

t
s

;
extend the line d

lt
n

lt
to intersect n

tll
su in s

lt ;

parallel with niu n draw s
/f

s
;
from s draw s r tangent to the

circle at r (s n equals s r) ; through r, tending to the centre of

the cylinder, draw the butt-joint ;
then r s and s n are the

horizontal projections of the tangents for the upper wreath-

piece, the tangent s r being level and, consequently, parallel
to the intersecting line drawn through n. Perpendicular to

r s draw r
t p ; parallel with nu s

it
draw ns

t ;
make r

t
r

lt equal

toss,; join rn and /. From this line and the measuring base-

line r, p y
the points for the tangents are first to be obtained

and then the points in the curve, all as before described.

The part of the circle from r to c is on the level, as before

shown, and may be worked upon the end of the long level

rail, its form being just what is shown in the plan from c to r.

283. Face-Moiild : Tet of Accuracy. The methods

which have been advanced for obtaining face-moulds are

based upon principles of such undoubted correctness that

there can be no question as to the results, when the methods

given are thoroughly followed. And yet, notwithstanding
the correctness of the system and its thorough comprehen-
sion by the stair-builder, he will fail of success unless he

exercises the greatest care in getting his dimensions, his per-

pendiculars, and his angles. The slightest deviation in a

perpendicular terminated by an oblique line will result in a

magnified error at the oblique line. To secure the greatest

possible degree of accuracy, care must be exercised in the

choice of the instruments by which the drawings are to be

made : care to know that a straight-edge is what it purports

to be
;
that a square, or right-angle, is truly a right-angle ;

that the compasses or dividers be well made, the joint per-

fect, and the ends neatly ground to a point. Then let the

drawing-board be carefully planed to a true surface ; and,
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if possible, let the drawing, full size, be made upon large,

stout roll-paper rather than upon the drawing-board itself,

as then the points for the face-mould may be pricked through

upon the board out of which the face-mould is to be cut, and

thus a correct transfer be made. For long straight lines it

is better to use a fine chalk-line than the edge of a wooden

straight-edge. The line is more trustworthy. Perpendicu-

lars, especially when long, are better obtained by measure-

ment or by calculation (Art. 503) than by a square. The

pencil used should be of fine quality rather hard, in order

that its point may be kept fine. With these precautions in

regard to the instruments used, and with due care in the

manipulations, the face-moulds may be correctly drawn,
accurate in size and form. As a test of the accuracy of the

work, it will be well to observe in regard to the tangents,
that the length of a tangent, as found upon the face-mould,

should always equal its length as shown upon the vertical

plane. For example, in Fig. 160, the tangent k
lt

c
til

on the

face-mould should be equal to k
t
c

t ,
the tangent on the vertical

plane B ; and in cases like this, where the stairs are quite

regular, with equal treads at the front-string, the two tan-

gents of a face-mould are-equal to each other, or k
lf

cin equals
k

tl
b
tl ;

and in this case, the line b
tl
c
llt

should equal the rake-

line b, *.

Again, as another example, in Fig. 161, dfin the tangent

upon the face-mould, should be equal to//,, the tangent of

the vertical plane C\ while d ///;/ ,
the other tangent on the

face-mould, should be equal to r s, the tangent of the vertical

plane D. But the more important test is in the length of the

chord-line joining the ends of the two tangents ; as, for ex-

ample, the chord m
tl

binl of Fig. 163, the horizontal projec-
tion of which is the chord ;;/ b in plane A. Perpendicular to

m b draw b g\ make bg equal to b b
lt ,
and join g and m

;
then

m^ b
lilt ,

the chord of the face-mould, should be equal to ;// g.

After fully testing the accuracy of the drawing for the face-

mould, choose a well-seasoned thin piece of white-wood, or

any other wood not liable to split, and plane it to an even

thickness throughout ;
mark upon it the curves, joints, tan-

gents, and slide-line, and cut the edges true to the curve-
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lines and joints square through the board
;
then square over

such marks as are required to draw each tangent and the

slide-line also upon the reverse side of the board. This

completes the face-mould.

284. Application of the Faee-UIoulcl. In order that a

more comprehensive idea of the lines given for applying a

face-mould may be had, let A, Fig. 165, represent one end of

a wreath-piece as it appears when first cut from a plank, and
when held up in the position it is to occupy at completion
over the stairs. Also, let B represent the corresponding
face-mould, laid upon the wreath-piece A in the position
which it should have after sliding. And, for the purpose of

a clearer illustration, let it be supposed that the two pieces,

A and B, are transparent. Then let a
t
a b d

c^
e

t represent a

solid of wedge form, having a triangular level base, a b d,

upon the three lines of which stand these three vertical

planes, namely : on the line a b the plane a
t
a b c^ upon the

line a d the plane a, a d e
t ,
and on the line d b the plane b d

e
t c, ;

the top of the solid is an inclined plane, a
i
c

t
en and the

vertical line a
t
a is the edge of the wedge. Now, it will be

observed that the point a in the base of the solid is identical

with a, the centre of the butt-joint, and the point a, (at the

intersection of two vertical planes and the inclined plane of

the solid) is vertically over a, and is identical with a,, a poim
in the upper surface of the plank. Also, the inclined plane
e

/
c

/
a

t ,
which forms the top of the solid, coincides with the

upper surface of the plank A, from which the wreath-piece
has been squared ;

and the line c,
a

t (at the angle formed by
the inclined plane e, c, a, and the vertical plane a

f
a b c,) coin-

cides with / g, the slide-line drawn upon the top of the

plank ; also, the line e, a, (at the angle formed by the in-

clined plane e, c, a t
and the vertical plane a

t
a d e^ coincides

with a
t k, the tangent line upon the underside of the face-

mould after it has been slid to its new position, vertically

over its true position at the middle of the thickness of the

plank. From a the line a c is drawn parallel with a, c
t ; so,

also, the line a e is drawn parallel with a, e, ; consequently

the line e c is parallel with e,
c

t ;
and the plane e c a is parallel
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with the plane e
{
c

f
a

t ,
and coincides with a plane passing

through the middle of the thickness of the plank, and, conse-

quently, is the cutting plane referred to in previous articles,

upon which the lines are drawn which give shape to the

FIG. 165.

face-mould. When the face-mould is first laid upon the plank,
the line i,j, coincides with i

lt j/t ,
and Hvhen in that position,

its form marked upon the plank is the form by which the

plank is sawed square through ;
but this gives the form of
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the wreath, not as it is at the surface of the plank, but as it

is at the middle of the thickness of the plank, or upon the

plane ace-, so that, for example, the line i
itjtl represents the

line ij drawn through a, the centre of the butt-joint ;
and

when the mould B is slid to the position shown in the figure,
the line i

ljl
comes into a position vertically over ij\ hence

the three lines i
f

i, a t a, and jtj are each vertical and in a

vertical plane, Hjj^j- By these considerations it will be seen

that the face-mould B, located as shown in the figure, is in its

true position for the second marking, by which the addi-

tional cutting is now to be performed vertically. This being
established, it will now be shown how to get upon the butt-

joint a line in the vertical plane containing the tangent. If

the top and bottom lines of the vertical plane a
t
a b c

t
be ex-

tended, they will meet in the point /, and will extend the

plane into a triangle Ib c
t , cutting the upper edge of the

butt-joint in/, the end of the tangent, and the point in which

the point a
t
of the underside of the face-mould was located

when the mould was first applied to the plank. The line/Vz

on the butt-joint is perpendicular to i j or i
lt ju . Again, if

the top and bottom lines of the plane a
t
a d

e,
be extended,

they will meet in /, and will extend the plane into the tri-

angle p d e
t , cutting the edge of the butt-joint in h, a point

from which, if a line be drawn upon the butt-joint to a, its

centre, this line will be in the vertical plane pdet ,
which

plane contains the tangent perpendicular to which the butt-

joint is drawn
; consequently lines upon the butt-joint par-

allel to h a will each be in a vertical plane parallel to the

vertical tangent plane, and lines drawn upon the butt-joint

perpendicular to these lines will be horizontal lines ; hence

the line h a is the required line by which to square the

wreath at the butt-joint. Now, it will be observed that the

triangle af a, is like that given in the various figures for obr

taining face-moulds, to regulate the sliding of the face-mould

and the squaring at the butt-joint. For example, in Fig.

163, the right-angled triangle bul v vi is the one referred to.

This triangle is in a vertical plane parallel to one containing

the slide-line; its longer side is a vertical line
;
one of the

sides containing the right angle is equal to half the thickness
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of the plank, while the other, drawn parallel to the face of

the plank, is the distance the face-mould is required to slide.

Precisely like this, the triangle a f a
t
of Fig. 165 is in the

vertical plane / b cn containing fg, the slide-line ; its longer
side, a, a, is a vertical line

; fa, one of the sides containing
the right angle, is equal to half the thickness of the plank,
while the other side, drawn coincident with the surface of

FIG. 166,

the plank, is the distance to slide the face-mould. Therefore

the triangle a
t f a of Fig. 165 gives the required lines by

which to regulate the application of the face-moulds. The
relative position of the more important of these lines is geo-

metrically shown in Fig. 166, in which A and B are upon the

horizontal plane of the paper, C is in a vertical plane stand-

ing on the ground-line b d, and D is a plan of the butt-joint,

revolved upon the line i
tt jn into the horizontal plane, and
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then perpendicularly removed to the distance //,. The let-

tering corresponds with that in Fig. 165. The shaded part

of D shows the end of the squared wreath. When the

blocked piece has been marked by the face-mould in its

second application, its edges are to be trimmed vertically as

shown in Fig. 167, after which the top and bottom surfaces

of the wreath are to be formed from the shape marked on

the butt-joints.

FIG. 167.

285. Face-Mould Curves are Elliptical. The curves of

the face-mould for the hand-railing of any stairs of circular

plan are elliptical, and may be drawn by a trammel, or

in anv other convenient manner. The trouble, however,

attending the process of obtaining the axes, so as to be able

to employ the trammel in describing the curves, is, in many

cases, greater than it would be to obtain the curves through

points found by ordinates, in the usual manner. But as
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this method for certain reasons may be preferred by some,
an example is here given in which the curves are drawn by
a trammel, and in which the method of obtaining the axes is

shown.

Let Fig. 168 represent the plan of a hand-rail around part

FIG. 168.

of a cylinder and with the heights set up, the intersection

line obtained, the measuring base-line drawn, the rake-line

established, and the tangents on the face-mould located all

in the usual manner as hereinbefore described. Then, to

prepare for the trammel, from o, the centre of the cylinder,
draw o b

t parallel with the intersecting line, and b
t
o

t perpen-
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dicular to ,/,, the rake-line
; make b

t
o

t equal to bo, and o
l
a

l

equal to oa; through o
t
draw o

t
h parallel with b

tfr From
o draw oe perpendicular toob,; continue the central circular

line of the rail around to e; parallel with ob
t
draw efy

and from / the point of intersection of ef with b
tft , and

perpendicular to #,/,, draw ft
e

t \ make fl
e
l equal to fe\

then 0, is the centre of the ellipse, and o
t a, the semi-conju-

gate diameter and o
t e, the semi-transverse diameter of an

ellipse drawn through the centre of the face-mould. To get
the diameters for the edges of the face-mould, make a

/ c, and
a

/
d

i
each equal to half the width of the rail, as at cad\ par-

allel to a line drawn from a
t
to e

t ,
and through cr draw the

line c
t g\ also, parallel with a line drawn from a

t
to e

t
draw

d
t
h (see Art. 559); then for the curve at the inner edge of

the face-mould, o
tg is the semi-transverse diameter, and o

l
c
l

the semi-conjugate ; while for the curve at the outer edge
o.h is the semi-transverse diameter, and o

t
d

t
the semi-conju-

gate. So much of the edges of the face-mould as are straight
are parallel with the tangent. Now, placing the trammel at

the centre, as shown in the figure, and making the distance

on the rod from the pencil to the first pin equal to the

semi-conjugate diameter, and the distance to the second pin

equal to the semi-transverse diameter, each curve may be

drawn as shown. (See Art. 549.)

286. Face-Moulds for Round Hails. The previous ex-

amples given for finding face-moulds are intended for moulded

rails. For round rails the same process is to be followed,

with this difference : that instead of finding curves on the

face-mould for the sides of the rail, find one for a centre-line

and describe circles upon it, as at Fig. 145 ;
then trace the

sides of the mould by the' points so found. The thickness of

stuff for the twists of a round rail is the same as for the

straight part. The twists are to be sawed square through.

287. Position of the Butt-Joint. When a block for

the wreath of a hand-rail is sawed square through the

plank, the joint, in all cases, is to be laid on the face-mould

square to the tangent and cut square through the plank.
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Managed in this way, the butt-joint is in a plane pierced

perpendicularly by the tangent. But if the block be not

sawed square through, but vertically from the edges of the

FIG. 169.

face-mould, then, especially, care is required in locating the

joint. The method of sawing square through is attended

with so many advantages that it is now generally followed ;

yet, as it is possible that for certain reasons some may prefer,
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in some cases, to saw vertically, it is proper that the method
of finding the position of the joint for that purpose should
be given. Therefore, let A, Fig. 169, be the plan of the rail,

and B the elevation, showing its side; in which kz is the

direction of the butt-joint. From k draw kb parallel to /<?,

and ke at right angles to kb\ from b draw b f, tending to

the centre of the plan, and from / draw fe parallel to bk;
from /, through e, draw I i, and from i draw id parallel to

ef-, join dfand b, and db will be the proper direction for the

joint on the plan. The direction of the joint on the other

side, a c, can be found by transferring the distances x b and
od to xa and oc. Then the allowance for over wood to

cover the butt-joint is shown as that which is included be-

tween the lines ox and db. The face-mould must be so

drawn as to cover the plan to the line b d for the wreath at

the left, and to the line a c for that at the right. By some
the direction of the joint is made to radiate toward the

centre of the cylinder ; indeed, even Mr. Nicholson, in his

Carpenter s Guide, so advised. That this is an error may be

shown as follows : In Fig. 170, arji is the plan of a part of the

rail about the joint, s u is the stretch-out of a i, and gp is the

helinet, or vertical projection of the plan arji. This is

found by drawing a horizontal line from the height set upon
each perpendicular standing upon the stretch-out line su.

The lines upon the plan arji are drawn radiating to the

centre of the cylinder, and therefore correspond to the

horizontal lines of the helinet drawn upon its upper and

under surfaces.

Bisect rt on the ordinate drawn from the centre of the

plan, and through the middle draw cb at right angles to gv ;

from b and c draw cd and be at right angles to su
;
from d

and e draw lines radiating toward the centre of the plan ;

then do and em will be the direction of the joint on the

plan, according to Nicholson, and cb its direction on the

falling-mould. It must be admitted that all the lines on the

upper or the lower side of the rail which radiate toward

the centre of the cylinder, as do, cm, or ij\ are level; for

instance, the level line wv, on the top of the rail in the

helinet, is a true representation of the radiating line// on
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the plan. The line bh, therefore, on the top of the rail in

the helinet, is a true representation of e m on the plan, and
kc on the bottom of the rail truly represents do. From k

draw / parallel to cb, and from h draw hf parallel to bc\

FIG. 170.

join / and b, also c and /; then cklb will be a true repre-
sentation of the end of the lower piece, B, and cfh b of the

end of the upper piece, A ;
and fk or hi will show how

much the joint is open on the inner, or concave, side of the

rail.
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To show that the process followed in Art. 287 is correct,

let do and em (Fig. 171) be the direction of the butt-joint
found as at Fig. 169. Now, to project, on the top of the rail

in the helinet, a line that does not radiate toward the centre

of the cylinder, as jk, draw vertical lines from j and k to w
and A, and join w and h

;
then it will be evident that wh is

a true representation in the helinet of jk on the plan, it

being in the same plane as j k, and also in the same winding-

surface as wv. The line /, also, is a true representation on
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the bottom of the helinet of the line jk in the plan. The
line of the joint e m, therefore, is projected in the same way,
and truly, by ib on the top of the helmet, and the line do

by ca on the bottom. Join a and i, and then it will be seen

that the lines c a, a t, and ib exactly coincide with cb, the line

of the joint on the convex side of the rail
;
thus proving the

lower end of the upper piece, A, and the upper end of the

lower piece, B, to be in one and the same plane, and that the

direction of the joint on the plan is the true one. By refer-

ence to Fig. 169 it will be seen that the line li corresponds
to xi in Fig. 171 ;

and that e k in that figure is a representa-
tion of fb, and ik of db.

288. Scrolls for Hand-Rail : General Rule for Size

and Position of the Regulating Square. The breadth

which the scroll is to occupy, the number of its revolutions,

and the relative size of the regulating square to the eye of

the scroll being given, multiply the number of revolutions

by 4, and to the product add the number of times a side of

the square is contained in the diameter of the eye, and the

sum will be the number of equal parts into which the breadth

is to be divided. Make a side of the regulating square

equal to one of these parts. To the breadth of the scroll

add one of the parts thus found, and half the sum will be the

length of the longest ordinate.

FIG. 172.

289. Centres in Regulating Square. Let a 2 I b (Fig.

T72) be the size of a regulating square, found according to

the previous rule, the required number of revolutions being
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if. Divide two adjacent sides, as a 2 and 2 i, into as many
equal parts as there are quarters in the number of revolu-

tions, as seven ;
from those points of division draw lines

across the square at right angles to the lines divided ; then

i being the first centre, 2, 3,4, 5, 6, and 7 are the centres for

the other quarters, and 8 is the centre for the eye ;
the heavy

lines that determine these centres being each one part less

in length than its preceding line.

FIG. 173-

290. Scroll for Hand-Rail Over Curtail Step. Let

a b (Fig. 173) be the given breadth, if the given number of

revolutions, and let the relative size of the regulating square

to the eye be \ of the diameter of the eye. Then, by the

rule, if multipled by 4 gives 7, and 3, the number of times a

side of the square is contained in the eye, being added, the

sum is 10. Divide a b, therefore, into 10 equal parts, and set

one from b to c ;
bisect a c in e

;
then a e will be the length

of the longest ordinate (i d or i e).
From a draw a d,

from e draw e i, and from b draw b f, all at right angles to

a b
;
make e \ equal to a, and through i draw i d parallel
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to a b
;
set b c from i to 2, and upon i 2 complete the regu

lating square; divide this square as at Fig. 172; then de-

scribe the arcs that compose the scroll, as follows : upon i

describe d e, upon 2 describe e /, upon 3 describe / g,

upon 4 describe -//, etc.; make dl equal to the width of the

rail, and upon i describe / ;//, upon 2 describe mn, etc.; de-

scribe the eye upon 8, and the scroll is completed.

291. Scroll for Curtail Step. Bisect d I (Fig. 173) in <?,

and make o v equal to of the diameter of a baluster
;
make

v w equal to the projection of the nosing, and e x equal to

wl\ upon i describe ivy, and upon 2 describe y z
; also, upon

2 describe x i, upon 3 describe ij\ and so around to z
;
and

the scroll for the step will be completed.

292. Position of Baluster* Under Scroll. Bisect dl

(Fig. 173) in 0, and upon i, with i o for radius, describe the

circle o r u
;
set the baluster at p fair with the face of the

second riser, r
2

,
and from/, with half the tread in the divi-

ders, space off as at o, q, r, s, /, u, etc., as far as f ; upon 2, 3,4,

and 5 describe the centre-line of the rail around to the eye
of the scroll

;
from the points of division in the circle o r u

draw lines to the centre-line of the rail, tending to 8, the

centre of the eye ;
then the intersection of these radiating

lines with the centre-line of the rail will determine the posi-

tion of the balusters, as shown in the figure.

293. Falling-Mould for Raking Part of Scroll. Tangi-
cal to the rail at h (Fig. 173) draw h k parallel to da

;
then

ha* will be the joint between the twist and the other part

of the scroll. Make de* equal to the stretch-out of d e, and

upon d e* find the position of the point k, as at k*
;
at Fig.

174, make e d equal to ^
2 d in Fig. 173, and d c equal to d c*

in that figure ;
from c draw c a at right angles to e c, and

equal to one rise
;
make c b equal to one tread, and from b,

through a, draw bj\ bisect a c in /, and through / draw m q

parallel to eh', m q is the height of the level part of a

scroll, which should always be about 3^ feet from the floor ;

ease off the angle mfj, according to Art. 521, and draw
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gw n parallel to' m x j, and. at a distance equal to the thick-
ness of the rail

;
at a convenient place for the joint, as *,

draw in at right angles to bj\ through n draw/// at right
angles to e h

;
make dk equal to d k~ in Fig. 173, and from k

draw ko at right angles toe A; at Fig. 173, make <//;
2

equal
to d h in ^. 174, and draw //

2 2 at right angles to

FIG. 174.

then k a* and /i
2 b* will be the position of the joints on the

plan, and, at Fig. 174, op and in their position on the falling-

mould
;
and po in (Fig. 174) will be the required falling-

mould which is to be bent upon the vertical surface from h 2

to k (Fig. 173).

FIG. 175.

294. Face-Mould for the Scroll. At Fig. 173, from k

draw kr* at right angles to r 2 d- at Fig. 172, make h r

equal to h* r* in Fig. 173, and from r draw r s at right

angles to rh ;
from the intersection of r s with the level line

m q, through /, draw s t
;
at Fig. 173, make //

2 b* equal to ^ /

in Fig. 172, and join b* and r 2
;
from rt

2
,
and from as many
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other points in the arcs, a *
I and k d, as is thought neces-

sary, draw ordinates to r 2 d at right angles to the latter;

make r b (Fig. 175) equal in its length and in its divisions to

the line r 2 d 2 in Fig. 173 ;
from r, n, o, p, q, and / draw the

lines r k, n d, o a, p e, q f, and / c at right angles to r b, and

equal to r 2

k, d* s-,f* a", etc., in Fig. 173 ; through the points
thus found trace the curves k I and a c, and complete the

face-mould, as shown in the figure. This mould is to be ap-

plied to a square-edged plank, with the edge, / b parallel to

the edge of the plank. The rake-lines upon the edge of the

plank are to be made to correspond to the angle s t h in

Fig. 174. The thickness of stuff required for this mould is

shown at Fig. 174, between the lines s t and u v u v being
drawn parallel to s t.

f 7'

295. Form of Newel-Cap from a Section of the Rail.

Draw a b (Fig. 176) through the widest part of the given

section, and parallel to c d\ bisect a b in e, and through a, e,

and b draw h i, fg, and k j at right angles to a b
;
at a con-
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venient place on the line fg, as o, with a radius equal to

half the width of the cap, describe the circle ijg\ make r I

equal to e b or e a
; join / and /, also / and i\ from the curve

/ b to the line / j draw as many ordinates as is thought

necessary parallel to fg' from the points at which these

ordinates meet the line I j, and upon the centre, 0, describe

arcs in continuation to meet op ;
from n t x, etc., draw ns,tu,

etc., parallel tofg; make n s, t u, etc., equal to ef, wv, etc.;

make x y, etc., equal to z d, etc.; make o 2, o 3, etc., equal to

o n, o t, etc.; make 2 4 equal to n s, and in this way find the

length of the lines crossing o m
; through the points thus

found describe the section of the newel-cap as shown in

the figure.

FIG. 177.

296. Boring for Balusters in a Round Rail before it

is Rounded. Make the angle oct (Fig. 177) equal to the

angle o c t at Fig. 144; upon c describe a circle with a

radius equal to half the thickness of the rail
;
draw the tan-

gent b d parallel to / c, and complete the rectangle e b d f,

having sides tangical to the circle
;
from c draw c a at right

angles to o c; then, b d being the bottom of the rail, set a

gauge from b to a, and run it the whole length of the stuff ;

in boring, place the centre of the bit in the gauge-mark at a,

and bore in the direction a c. To do this easily, make chucks

as represented in the figure, the bottom edge,^/*, being par-

allel to o c, and having a place sawed out, as e f, to receive

the rail. These being nailed to the bench, the rail will be

held steadily in its proper place for boring vertically. The

distance apart that the balusters require to be, on the under-

side of the rail, is one half the length of the rake-side of the

pitch-board.
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SPLAYED WORK.

297. The Bevels in Splayed Work. The principles

employed in finding the lines in stairs are nearly allied to

those required to find the bevels for splayed work such as

hoppers, bread-trays, etc. A method by which these may be

FIG. 178.

obtained will, therefore, here be shown. In Fig. 178, a b c is

the angle at which the work is splayed, and b d, on the

upper edge of the board, is at right angles to a b
;
make the

angle f g.j equal to a b c, and from f draw f h parallel to

e a
;
from b draw b o at right angles to a b

; through o draw
ie parallel to c b, and join e and d\ then the angle a e d will

be the proper bevil for the ends from the inside, or k d e

from the outside. If a mitre-joint is required, set fg, the

thickness of the stuff on the level, from e to ;, and join m
and d-, then kdm will be the proper bevil for a mitre-joint.

If the upper edge of the splayed work is to be bevelled,

so as to be horizontal when the work is placed in its proper

position, then fgj, the same as a b c, will be the proper
bevel for that purpose. Suppose, therefore, that a piece in-

dicated by the lines kg, g f, and f h were taken off
;
then a

line drawn upon the bevelled surface from d at right angles
to k d would show the true position of the joint, because it

would be in the direction of the board for the other side ;

but a line so drawn would pass through the point o, thus

proving the principle correct. So, if a line were drawn upon
the bevelled surface from d at an angle of 45 degrees to k d,

it would pass through the point n.
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SECTION IV. DOORS AND WINDOWS.

DOORS.

298. General Requirements. Among the architectural

arrangements of an edifice, the door is by no means the least

in importance ;
and if properly constructed, it is not only

an article of use, but also of ornament, adding materially to

the regularity and elegance of the apartments. The dimen-

sions and style of finish of a door should be in accordance

with the size and style of the building, or the apartment
for which it is designed. As regards the utility of doors,

the principal door to a public building should be of suffi-

cient width to admit of a free passage for a crowd of people ;

while that of a private apartment will be wide enough if it

permit one person to pass without being incommoded. Ex-

perience has determined that the least width allowable for

this is 2 feet 8 inches
; although doors leading to inferior

and unimportant rooms may, if circumstances require it, be

as narrow as 2 feet 6 inches
;
and doors for closets, where an

entrance is seldom required, may be but 2 feet wide. The
width of the principal door to a public building may be

from 6 to 12 feet, according to the size of the building; and

the width of doors for a dwelling may be from 2 feet 8

inches to 3 feet 6 inches. If the importance of an apart-

ment in a dwelling be such as to require a door of greater
width than 3 feet 6 inches, the opening should be closed

with two doors, or a door in two folds
; generally, in such

cases, where the opening is from 5 to 8 feet, folding or slid-

ing doors are adopted. As to*he height of a door, it should

in no case be less than about 6 feet 3 inches ; and generally

not less than 6 feet 8 inches.

299. The Proportion between Width and Height: of

single doors, for a dwelling, should be as 2 is to 5 ; and, for

entrance-doors to public buildings, as I is to 2. If the

width is given and the height required of a door for a
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dwelling, multiply the width by 5, and divide the product

by 2
;
but if the height is given and the width required,

divide by 5 and multiply by 2. Where two or more doors

of different widths show in the same room, it is well to pro-

portion the dimensions of the more important by the above

rule, and make the narrower doors of the same height as

the wider ones; as all the doors in a suit of apartments,

except the folding or sliding doors, have the best appear-
ance when of one height. The proportions for folding or

sliding doors should be such that the width may be equal
to

|-
of the height ; yet this rule needs some qualification ;

for if the width of the opening be greater than one half the

width of the room, there will not be a sufficient space left

FIG. 179.

for opening the doors
; also, the height should be about one

tenth greater than that of the adjacent single doors.

300. Panefls. Where doors have but two panels in

width, let the stiles and muntins be each
\-
of the width

; or,

whatever number of panels there may be, let the united

widths of the stiles and the muntins, or the whole width of

the solid, be equal to
-|

of tt^e width of the door. Thus : in

a door 35 inches wide, containing two panels in width, the

stiles should be 5 inches wide
;
and in a door 3 feet 6 inches

wide, the stiles should be 6 inches. If a door 3 feet 6

inches wide is to have 3 panels in width, the stiles and

muntins should be each 4^- inches wide, each panel being 8

inches. The bottom rail and the lock-rail ought to be each

equal in width to TV of the height of the door
;
and the top
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rail, and all others, of the same width as the stiles. The

moulding on the panel should be equal in width to j of the

width of the stile.

301. TTrimmings. Fig. 179 shows a method of trimming
doors : a is the door-stud ; b, the lath and plaster ; <:, the

ground ; d, the jamb ; ^, the stop ; /and g, architrave casings ;

and h, the door -stile. It is customary in ordinary work to

form the stop for the door by rebating the jamb. But when
the door is thick and heavy, a better plan is to nail on a

piece as at e in the figure. This piece can be fitted to the

door and put on after the door is hung ; so, should the door

be a trifle winding, this will correct the evil, and the door be

made to shut solid.

Fig. 1 80 is an elevation of a door and trimmings suitable

for the best rooms of a dwelling. (For trimmings generally,
see Sect. V.) The number of panels into which a door

should be divided may be fixed at pleasure ; yet the present

style of finishing requires that the number be as small as a

proper regard for strength will admit. In some of our best

dwellings, doors have been made having only two upright

panels. A few years' experience, however, has proved that

the omission of the lock-rail is at the expense of the strength
and durability of the door

;
a four-panel door, therefore, is

the best that can be made.

302. Hanging l>oor*. Doors should all be hung so as

to open into the principal rooms ; and, in general, no door

should be hung to open into the hall, or passage. As to the

proper edge of the door on which to affix the hinges, no

general rule can be assigned.

WINDOWS.

303. Requirement* for Light. A window should be

of such dimensions, and in such a position, as to admit a

sufficiency of light to that part of the apartment for which

it is designed. No definite rule for the size can well be

given that will answer in all cases ; yet, as an apprpxima-
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tion, the following has been used for general purposes.

Multiply together the length and the breadth in feet of the

apartment to be lighted, and the product by the height in

FIG. 1 80.

feet; then the square root of this product will show the

required number of square feet of glass.

304. Winclow-Frame. For the size of window-frames,
add 4-J inches to the width of the glass for their width, and
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6 inches to the height of the glass for their height. These

give the dimensions, in the clear, of ordinary frames for 12-

light windows
;
the height being taken at the inside edge of

the sill. In a brick wall, the width of the opening is 8

inches more than the width of the glass 4^ for the stiles of

the sash, and 3^ for hanging stiles and the height between
the stone sill and lintel is about io| inches more than the

height of the glass, it being varied according to the thick-

ness of the sill of the frame.

305. Inside Shuiter. Inside shutters folding into

boxes require to have the box-shutter about one inch wider

than the flap, in order that the flap may not interfere when
both are folded into the box. The usual margin shown be-

tween the face of the shutter when folded into the box and

the quirk of the stop-bead, or edge of the casing, is half an

inch
; and, in the usual method of letting the whole of the

thickness of the butt hinge into the edge of the box-shutter,

it is necessary to make allowance for the tlirow of the hinge.

This may, in general, be estimated at \ of an inch at each

hinging ;
which being added to the margin, the entire width

of the shutters will be i J inches more than the width of the

frame in the clear. Then, to ascertain the width of the box-

shutter, add i-J inches to the width of the frame in the clear,

between the pulley-stiles ;
divide this product by 4, and add

half an inch to the quotient, and the last product will be

the required width. For example, suppose the window to

have 3 lights in width, 1 1 inches each. Then, 3 times 1 1 is

33, and 4^ added for the wood of the sash gives 37^ ; 37^

and 1^ is 39, and 39 divided by 4 gives 9! ;
to which add

half an inch, and the result will be loj inches, the width

required for the box-shutter.

306. Proportion: Width and Height. In disposing

and locating windows in the walls of a building, the rules of

architectural taste require that they be of different heights

in different stories, but generally of the same width. The

windows of the upper stories should all range perpendicu-

larly over those of the first, or principal, story ;
and they
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should be disposed so as to exhibit a balance of parts

throughout the front of the building. To aid in this it is

always proper to place the front door in the middle of the

front of the building ; and, where the size of the house will

admit of it, this plan should be adopted. (See the latter

part of Art. 50.) The proportion that the height should

bear to the width may be, in accordance with general usage,
as follows :

of the width.The height
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308. Form of Soffit for Circular Window-Heads.
When the light is received in an oblique direction, let abed
(Fig. 181) be the ground-plan of a given window, and efa a

vertical section taken at right angles to the face of the jambs.

FIG. 181.

From a, through e, draw ag at righ't angles to ab\ obtain

the stretch-out of efa, and make eg equal to it; divide eg-

and efa each into a like number of equal parts, and drop

perpendiculars from the points of division in each
;
from

the points of intersection, i, 2, 3, etc., in the line ad,

FIG. 182.

draw horizontal lines to meet corresponding perpendicu-
lars from eg\ then those points of intersection will give the

curve line dg, which will be the on*3 required for the edge
of the soffit. The other edge, ch

t is found in the same

manner.
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For the form of the soffit for circular window-heads,
when the face of the wall is curved, let abed (Fig. 182) be

the ground-plan of a given window, and efa a vertical sec-

tion of the head taken at right angles to the face of the

jambs. Proceed as in the foregoing article to obtain the

line dg\ then that will be the curve required for the edge of

the soffit, the other edge being found in the same manner.

If the given vertical section be taken in a line with the

face of the wall, instead of at right angles to the face of the

jambs, place it upon the line cb (Fig. 181), and, having drawn
ordinates at right angles to cb, transfer them to efa ;

in this

way a section at right angles to the jambs can be obtained.
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MOULDINGS.

3O9, mouldings: are so called because they are of the

same determinate shape throughout their length, as though
the whole had been cast in the same mould or form. The

regular mouldings, as found in remains of classic architec-

ture, are eight in number, and are known by the following
names :

FIG 183. Annulet, band, cincture, fillet, listel or square.

FIG. 184.

^

Astragal or bead.

Torus or tore.

FIG. 185.

FIG 186 Scotia, trochilus or mouth.

Ovolo, quarter-round or echinus.
FIG. 187.

Cavetto, cove or hollow.

FIG. 188.
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Cymatium, or cyma-recta.
FIG. 189.

Ogee.

Inverted cymatium, or cyma-reversa.
FIG. 190.

Some of the terms are derived thus : Fillet, from the French

word fil, thread. Astragal, from astragalos, a bone of the

heel or the curvature of the heel. Bead, because this

moulding, when properly carved, resembles a string of beads.

Torus, or tore, the Greek for rope, which it resembles when
on the base of a column. Scotia, from skotia, darkness, be-

cause of the strong shadow which its depth produces, and

which is increased by the projection of the torus above it.

Ovolo, from ovum, an egg, which this member resembles,

when carved, as in the Ionic capital. Cavetto, from cavus,

hollow. Cymatium, from kumaton, a wave.

310. Characteristics of Mouldings. Neither of these

mouldings is peculiar to any one of the orders of architect-

ure
;
and although each has its appropriate use, yet it is by

no means confined to any certain position in an assemblage
of mouldings. The use of the fillet is to bind the parts, as

also that of- the astragal and torus, which resemble ropes.

The ovolo and cyma-reversa are strong at their upper ex-

tremities, and are therefore used to support projecting parts
above them. The cyma-recta and cavetto, being weak at

their upper extremities, are not used as supporters, but are

placed uppermost to cover and shelter the other parts. The
scotia is introduced in the base of a column to separate the

upper and lower torus, and to produce a pleasing variety
and relief. The form of the bead and that of the torus is the

same
;
the reasons for giving distinct names to them are

that the torus, in every order, is always considerably larger
than the bead, and is placed among the base mouldings,
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whereas the bead is never placed there, but on the capital or

entablature
;
the torus, also, is seldom carved, whereas the

bead is
;
and while the torus among the Greeks is frequently

elliptical in its form, the bead retains its circular shape. While
the scotia is the reverse of the torus, the cavetto is the re-

verse of the ovolo, and the cyma-recta and cyma-reversa are

combinations of the ovolo and cavetto.

FIG. 191.

The curves of mouldings, in Roman architecture, were

most generally composed of parts of circles
;
while those of

the Greeks were almost always elliptical, or of some one of

the conic sections, but rarely circular, except in the case of

the bead, which was always, among both Greeks and Ro-

mans, of the form of a semicircle. Sections of the cone af-

ford a greater variety of forms than those of the sphere ;
and

perhaps this is one reason why the Grecian architecture so
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much excels the Roman. The quick turnings of the ovolo
and cyma-reversa, in particular, when exposed to a bright
sun, cause those narrow, well-defined streaks of light which

give life and splendor to the whole.

311. A Profile: is an assemblage of essential parts and

mouldings. That profile produces the happiest effect which

FIG, 192.

is composed of but few members, varied in form and size,

and arranged so that the plane and the curved surfaces suc-

ceed each other alternately.

312. The Grecian Torus and Scotia. Join the extremi-

ties a and b (Fig. 191), and from /, the given projection of

the moulding, draw/0 at right angles to the fillets
;
from b

FJG. 194.

FIG. 195.

draw bh at right angles to a b
;
bisect a b in c

; join / and c,

and upon c, with the radius cf, describe the arc/^, cutting

bh'mh', through c draw de parallel with the fillets; make
dc and ce each equal to b //; then de and a b will be conju-

gate diameters of the required ellipse. To describe the

curve by intersection of lines, proceed as directed at Art.
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551 and note ; by a trammel, see Art. 549; and to find the

foci, in order to describe it with a string, see Art. 548.

313. The Grecian Echinus. Figs. 192 to 199 exhibit, va-

riously modified, the Grecian ovolo, or echinus. Figs. 192 to

196 are elliptical, a b and b c being given tangents to the curve
;

parallel to which the semi-conjugate diameters, ad and dc,

IMG. 196. FIG. 197.

are drawn. In Figs. 192 and 193 the lines a d and dc are semi-

axes, the tangents, ab and be, being at right angles to each

other. To draw the curve, see Art. 551. In Fig. 197 the

curve is parabolical, and is drawn according to Art. 560. In

Figs. 198 and 199 the curve is hyperbolical, being described

according to Art. 561. The length of the transverse ax's, a by

FIG. i FIG. 199.

being taken at pleasure in order to flatten the curve, a b

should be made short in proportion to ac.

314. The Grecian Cavetto. In order to describe this,

Figs. 200 and 201, having the height and projection given,
see Art. 551.

315. The Grecian Cynia-Rccta. When the projection
is more than the height, as at Fig. 202, make a b equal to the
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height, and divide abed into four equal parallelograms ;
then

proceed as directed in note to Art. 551. When the projec-
tion is less than the height, draw da (Fig. 203) at right angles

FIG. 201.

FIG. 200.

to ab\ complete the rectangle, abed; divide this into four

equal rectangles, and proceed according to Art. 551.

316. The Grecian Cyma-Reversa. When the projection

FIG. 203.

is more than the height, as at Fig. 204, proceed as directed

for the last figure ;
the curve being the same as that, the

position only being changed. When the projection is less

FIG. 204.
FIG. 205.

than the height, draw a d (Fig. 205) at right angles to the

fillet
;
make a d equal to the projection of the moulding ;

then

proceed as directed for Fig. 202.
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317. Roman Mouldings : are composedpf parts of circles,
and have, therefore, less beauty of form than the Grecian.

The bead and torus are of the form of the semicircle, and the

scotia, also, in some instances
;
but the latter is often composed

of two quadrants, having different radii, as at Figs. 206 and

207, which resemble the elliptical curve. The ovolo and ca-

FIG. 206. FIG. 207.

vetto are generally a quadrant, but often less. When they are

less, as at Fig. 210, the centre is found thus : join the extrem-

ities, a and b, and bisect a b in c
;
from c, and at right angles

to a b, draw c d, cutting a level line drawn from a in d
;
then d

will be the centre. This moulding projects less than its

height. When the projection is more than the height, as at

Fig. 212, extend the line from c until it cuts a perpendicular

FIG. 208. FIG. 209.

drawn from a, as at d\ and that will be the centre of the

curve. In a similar manner, the centres are found for the

mouldings at Figs. 2QJ, 211, 213, 216, 217, 218, and 219. The

centres for the curves at Figs. 220 and 221 are found thus:

bisect the line a b at c
; upon a, c and b successively, with a c

or cb for radius, describe arcs intersecting at d and d\ then

those intersections will be the centres.
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FIG. 210. FIG. 211.

FIG. 212. FIG. 213.

FIG. 214. FIG. 215

FIG. 216. FIG. 217.
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3(8. Modern Mouldings: are represented in Figs. 222
to 229. They have been quite extensively and successfully
used in inside finishing. Fig. 222 is appropriate for a bed-

moulding under a low projecting shelf, and is frequently
used under mantel-shelves. The tangent i h is found thus :

bisect the line ab at c, and be at d-, from d draw de at

right angles to eb\ from b draw bf parallel to ed\ upon b,

FIG. 218. FIG. 219.

with b d for radius, describe the arc df\ divide this arc

into 7 equal parts, and set one of the parts from s, the limit

of the projection, to o
;
make o h equal to o e

;
from h, through

c, draw the tangent ki\ divide b h, hc,ci, and ia each into

a like number of equal parts, and draw the intersecting lines

as directed at Art. 521. If a bolder form is desired, draw
the tangent, i h, nearer horizontal, and describe an elliptic

FIG. 220. FIG. 221.

curve as shown in Figs. 191 and 224. Fig. 223 is much used

on base, or skirting, of rooms, and in deep panelling. The

curve is found in the same manner as that of Fig. 222. In

this case, however, where the moulding has so little projec-

tion in comparison with its height, the point e being found

as in the last figure, h s may be made equal to s e, instead of

o e as in the last figure. Fig. 224 is appropriate for a crown
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FIG. 223.

FIG. 224.
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moulding of a cornice. In this figure the height and pro-
jection are given; the direction of the diameter, ab, drawn

FIG. 225. FIG. 226.

through the middle of the diagonal, ef, is taken at pleasure ;

and dc is parallel to ae. To find the length of dc, draw b h

FIG. 227. FIG. 228. FIG. 229.

at right angles toab; upon 0, with of for radius, describe

the arc, ///, cutting bh in h; then make o c and od each
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equal to bh.* To draw the curve, see note to Art. 551. Figs.

22$ to 229 are peculiarly distinct from ancient mouldings,
being composed principally of straight lines

;
the few curves

they possess are quite short and quick.

Figs. 230 and 231 are designs for antae caps. The di-

ameter of the antas is divided into 20 equal parts, and the

height and projection of the members are regulated in ac-

cordance with those parts, as denoted underH and P, height
and projection. The projection is measured from the mid-

dle of the antse. These will be found appropriate for por-

ticos, doorways, mantelpieces, door and window trimmings,

H.P. n.

15 8l'l4f!

*"*i
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FIG. 230. FIG. 231.

etc. The height of the antae for mantelpieces should be

from 5 to 6 diameters, having an entablature of from 2 to

2J- diameters. This is a good proportion, it being similar to

the Doric order. But for a portico these proportions are

* The manner of ascertaining the length of the conjugate diameter, dc, in

this figure, and also in Figs. 191, 241, and 242 is' new, and is important in this

application. It is founded upon well-known mathematical principles, viz.: All

the parallelograms that may be circumscribed about an ellipsis are equal to

one another, and consequently any one is equal to the rectangle of the two

axes. And again : The sum of the squares of every pair of conjugate diame-

ters is equal to the sum of the squares of the two axes.
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much too heavy : ah antse 1 5 diameters high and an entab-

lature of 3 diameters will have a better appearance.

CORNICES.

319. Idesigns for Cornice. Figs. 232 to 240 are designs
for eave cornices, and Figs. 241 and 242 are for stucco cor-

nices for the inside finish of rooms. In some of these the

projection of the uppermost member from the facia is

divided into twenty equal parts, and the various members

FIG. 232.

are proportioned according to those parts, as figured under

//and P.

320. Eave Cornices Proportioned to Height of Build-

ing. Draw the line ac (Fig. 243), and make be and ba each

equal to 36 inches
;
from b draw bdvk right angles to ac,

and equal in length to f of a c
;

bisect b d in ^, and from a,

through >,
draw af\ upon a, with ac for radius, describe the

arc cf, and upon e, with ef-iwc radius, describe the arc/W;
divide the curve dfc, into 7 equal parts, as at IO, 20, 30,

etc., and from these points of division draw lines to be



336 MOULDINGS AND CORNICES.

J J

FIG. 233.
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FIG. 234.
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FIG. 235.

FIG. 236.
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FIG. 237.

H. P.

10J

FIG. 238.
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H. P.

17

716

3*31

FIG. 239.

H.P.

FIG. 240.
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H. P.

FIG. 241.

H. P.

FIG. 242.
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parallel to db; then the distance b i is the projection of a

cornice for a building 10 feet high ;
b 2, the projection at 20

feet high ;
b 3, the projection at 30 feet, etc. If the projec-

tion of a cornice for a building 34 feet high is required,
divide the arc between 30 and 40 into 10 equal parts, and

V

a b i 2 3 4 c

FIG. 243.

from the fourth point from 30 draw a line to the base, b c,

parallel with bd\ then the distance o/ the point at which

that line cuts the base from b will be the projection re-

quired. So proceed for a cornice of any height within 70
feet. The above is based on the supposition that 36 inches

FIG. 244.

is the proper projection for a cornice 70 feet high. This,

for general purposes, will be found correct
; still, the length

of the line be may be varied to suit the judgment of those

who think differently.

Having obtained the projection of a cornice, divide it

into 20 equal parts, and apportion the several members
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according to its destination as is shown at Figs. 238, 239,

and 240.

32L Cornice Proportioned to a given Cornice. Let

the cornice at Fig. 244 be the given cornice. Upon any
point in the lowest line of the lowest member, as at #, with the

height of the required cornice for radius, describe an intersect-

ing arc across the uppermost line, as at b
; join a and b

;

then b \ will be the perpendicular height of the upper fillet

for the proposed cornice, I 2 the height of the crown mould-

ing and so of all the members requiring to be enlarged to

the sizes indicated on this line. For the projection of the

\

FIG. 245.

proposed cornice, draw a d at right angles to a b, and c d at

right angles to b c
; parallel with c d draw lines from each

projection of the given cornice to the line ad-, then e d \v\\\

be the required projection for the proposed cornice, and the

perpendicular lines falling upon c d will indicate the proper

projection for the members.

To proportion a cornice according to a larger given cor-

nice, let A (Fig. 245) be the given cornice. Extend a o to b,

and draw c d at right angles to a b
;
extend the horizontal

lines of the cornice, A, until they touch o d\ place the height
of the proposed cornice from o to e, and join /"and e\ upon
o, with the projection of the given cornice, o a, for radius,
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describe the quadrant ad\ from d draw db parallel tofe;
upon o

t
with o b for radius, describe the quadrant b c ; then

o c will be the proper projection for the proposed cornice.

Join a and c
;
draw lines from the projection of the different

members of the given cornice to ao parallel to od\ from
these divisions on the line ao draw lines to the line oc

parallel to a c
; from the divisions on the line of draw lines

to the line o e parallel to the line fe\ then the divisions on
the lines o e and o c will indicate the proper height and pro-

jection for the different members of the proposed cornice.

In this process, we have assumed the height, o e, of the pro-

posed cornice to be given; but if the projection, o c, alone

FIG. 247.

be given, we can obtain the same result by a different pro-
cess. Thus: upon o, with oc for radius, describe the quad-
rant c b

; upon <?, with o a for radius, describe the quadrant

ad\ join d and b
;
from /draw fe parallel to.db\ then oe

will be the proper height for the proposed cornice, and the

height and projection of the different members can be

obtained by the above directions. By this problem, a cor-

nice can be proportioned according to a smaller given one

as well as to a larger ; but the method described in the pre-

vious article is much more simple for that purpose.

322. Angle Bracket in a Built Cornice. Let A (Fig.

246) be the wall of the building, and B the given bracket,
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which, for the present purpose, is turned down horizontally.
The angle-bracket, C, is obtained thus : through the ex-

tremity, #, and parallel with the wall, fd, draw the line a b
;

make^r equal af, and through c draw cb parallel with ed\

join d and
,
and from the several angular points in B draw

ordinates to cut db in i, 2, and 3 ;
at those points erect lines

perpendicular to db', from h draw kg parallel to fa-, take

FIG. 248.

the ordinates, i 0, 2 0, etc., at B, and transfer them to C, and

the angle-bracket, C, will be denned. In the same manner,

the angle-bracket for an internal cornice, or the angle-rib of

a coved ceiling, or of groins, as at Fig. 247, can be found.

323. Raking mouldings matched with Level Returns
Let A (Fig. 248) be the given moulding, and A b the rake of
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the roof. Divide the curve of the given moulding into any
number of parts, equal or unequal, as at i, 2, and 3 ;

from

these points draw horizontal lines to a perpendicular erected

from c
;
at any convenient place on the rake, as at B, draw

a c at right angles to A b
;

also from b draw the horizontal

line b a
; place the thickness, da, of the moulding at A from

b to a, and from a draw the perpendicular line a e
;
from

the points i, 2, 3, at A, draw lines to C parallel to A b
;

make a i, a 2, and a 3, at B, and at C, equal to ^ui, etc., at A
;

through the points, i, 2, and 3, at B, trace the curve this

will be the proper form for the raking moulding, From i,

2, and 3, at C, drop perpendiculars to the corresponding
ordinates from i, 2, and 3, at A

; through the points of inter-

section, trace the curve this will be the proper form for the

return at the top.
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PART II.

SECTION VI. GEOMETRY.

324. Mathematics Essential. In this and the following

Sections, which will constitute Part II., there are treated of

certain matters which may be considered as elementary.

They are all very necessary to be understood and acquired

by the builder, and are here compactly presented in a shape
which, it is believed, will aid him in his studies, and at the

same .time prove to be a great convenience as a matter of

reference.

The many geometrical forms which enter into the

composition of a building suggest a knowledge of .Elemen-

tary Geometry as essential to an intelligent comprehension
of its plan and purpose. One of the prime requisites of a

building is stability, a quality which depends upon a proper
distribution of the material of which the building is con-

structed
;
hence a knowledge of the laws of pressure and

the strength of materials is essential ; and as these are based

upon the laws of proportion and are expressed more con-

cisely in algebraic language, a knowledge of Proportion and

of Algebra are likewise indispensable to a comprehensive

understanding of the subject. There will be found in this

work, however, only so much of these parts of mathematics

as have been deemed of the most obvious utility in the

Science of Building. For a more exhaustive treatment of

the subjects named, the reader is referred to the many able

works, readily accessible, which make these subjects their

specialties.

325. Elementary Geometry. In all reasoning defini-

tions are necessary, in order to insure in the minds of the



348 GEOMETRY.

proponent and respondent identity of ideas. A corollary is

an inference deduced from a previous course of reasoning.
An axiom is a proposition evident at first sight. In the fol-

lowing demonstrations there are many axioms taken for

granted (such as, things equal to the same thing are equal to

one another, etc.) ;
these it was thought not necessary to

introduce in form.

326. Definition. If a straight line, as A B (Fig. 249),

stand upon another straight line, as CD, so that the two

angles made at the point B are equal A B C to A BD (Art.

499, obtuse angle] then each of the two angles is called a

right angle.

327. Definition. The circumference of every circle

is supposed to be divided into 360 equal parts, called

degrees ; hence a semicircle contains 180 degrees, a quad-
rant 90, etc.

C B D
FIG. 250.

328. Definition. The measure of an angle is the num-
ber of degrees contained between its two sides, using the

angular point as a centre upon which to describe the arc.

Thus the arc C E (Fig. 250) is the measure of the angle
CB E, E A of the angle E B A, and A D of the angle A B D.

329. Corollary. As the two angles at B (Fig. 249) are

right angles, and as the semicircle, CAD, contains 180 de-

grees (Art. 327), the measure of two right angles, therefore, is
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1 80 degrees ;
of one right angle, 90 degrees ;

of half a right

angle, 4$ ; of one third of a right angle, 30, etc.

330. Definition. In measuring an angle (Art. 328), no

regard is to be had to the length of its sides, but only to the

degree of their inclination. Hence equal angles are such as

have the same degree of inclination, without regard to the

length of their sides.

331. Axiom. If two straight lines parallel to one

another, as A B and CD (Fig. 251), stand upon another

straight line, as E F, the angles A BF and CDF are equal,

and the angle A B E is equal to the angle CD E.

332. Definition. If a straight line, as A B (Fig. 250),

stand obliquely upon another straight line, as CD, then one

A C
/

B
~
D

FIG. 251.

of the angles, as A B C, is called an obtuse angle, and the

other, as A B D, an acute angle.

333. Axiom. The two anglesABDzndABC (Fig. 250)

are together equal to two right angles (Arts. 326, 329) ; also,

the three angles A B D, E B A, and CBE are together

equal to two right angles.

334.. corollary. Hence all the angles that can be

made upon one side of a line, meeting in a point in that

line, are together equal to two right angles.

335, corollary. Hence all the angles that can be made

on both sides of a line, at a point in that line, or all the

angles that can be made about a point, are together equal to

four right angles.
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336. Proposition. If to each of two equal angles a

third angle be added, their sums will be equal. Let ABC
and D E F (Fig. 252) be equal angles, and the angle I JK the

one to be added. Make the angles G B A and H E D each

equal to the given angle IJ K\ then the angle G B C will be

equal to the angle HE F; for if ABC and D E F be angles

A~ C

FIG. 252.

of 90 degrees, and IJK 30, then the angles GBC and
HEF will be each equal to 90 and 30 added, viz., 120

degrees.

337. Proportion. Triangles that have two of their

sides and the angle contained between them respectively

equal, have also their third sides and the two remaining

FIG. 253.

angles equal ;
and consequently one triangle will every way

equal the other. Let ABC (Fig. 253) and DEF be two

given triangles, having the angle at A equal to the angle at

D, the side A B equal to the side D E, and the side A C

equal to the side D F\ then the third side of one, B C, is equal
to the third side of the other, E F\ the angle at B is equal to

the angle at * and the angle at C is equal to the angle at
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F. For if one triangle be applied to the other, the three

points B, A, C, coinciding with the three points E, D, F, the
line Bf must coincide with the line EF\ the angle at B
with the angle at E; the angle at C with the angle at F\
and the triangle B A C be every way equal to the triangle
EDF.

338. Proposition. The two angles at the base of an
isosceles triangle are equal. Let ABC (Fig. 254) be an

B D C

FIG. 254.

isosceles triangle, of which the sides, A B and A C, are equal.
Bisect the angle (Art. 506) BA C by the line A D. Then, the

\ineJ5A being equal to the line A C, the line A D of the

triangle E being equal to the line A D of the triangle F
(being common to each), the angle BAD being equal to the

angle DA C, the line BD must, according to Art. 337, be

D D c

FIG. 255.

equal to the line D C, and the angle at B must be equal to

the angle at C.

339. Proportion. A diagonal crossing a parallelogram
divides it into two equal triangles. Let CD E F (Fig. 255)

be a given parallelogram, and CF a line crossing it diag-

onally. Then, as E C is equal to F D, and EF to CD, the

angle at E to the angle at D, the triangle A must, according
to Art. 337, be equal to the triangle B.
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340 Proposition. Let JKLM (Fig. 256) be a given

parallelogram, and KL a diagonal. At any distance between

JK and LM draw NP parallel to J K\ through the point

G, the intersection of the lines KL and N P, draw HI
parallel to K M. In every parallelogram thus divided, the

parallelogram A is equal to the parallelogram B. For, ac-

cording to Art. 339, the triangle JKL is equal to the tri-

angle K L M, the triangle C to the triangle D, and E to F\

M

this being the case, take D and F from the triangle KLM,
and C and from the triangle JKL, and what remains in

one must be equal to what remains in the other
; therefore,

the parallelogram A is equal to the parallelogram B.

34-1. Proposition. Parallelograms standing upon the

same base and between the same parallels are equal. Let.

A BCD and EFCD (Fig. 257) be given parallelograms

FIG. 257.

standing upon the same base, CD, and between the same

parallels, A F and CD. Then A B and E F, being equal to

CD, are equal to one another; BE being added to both

A B and E F, A E equals B F; the line A C being equal to

B D, and A E to B F, and the angle C A E being equal (Art.

331) to the angle D B F, the triangle A E C must be equal

(Art. 337) to the triangle B F D\ these two triangles being

equal, take the same amount, the triangle B E G, from each,
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and what remains in one, A B G C, must be equal to what
remains in the other, E FD G\ these two quadrangles being

equal, add the same amount, the triangle C G D, to each, and

they must still be equal ; therefore, the parallelogram
A B CD is equal to the parallelogram E F C D.

342. Corollary. Hence, if a parallelogram and triangle
stand upon the same base and between the same parallels,

H D
FIG. 258.

the parallelogram will be equal to double the triangle.

Thus, the parallelogram A D (Fig. 257) is double (Art. 339)

the triangle CE D.

343. proposition. Let FGHD (Fig. 258) be a given

quadrangle with the diagonal F D. From G draw G E

FIG. 259.

parallel toFD- extend HD to E\ join F and E ;
then the

triangle .F^^will be equal in area to the quadrangle
FGHD. For since the triangles FDG and FDE stand

upon the same base, F D, and between the same parallels,

FD and G E, they are therefore equal (Arts. 341, 342); and

since the triangle C is common to both, the remaining tri-
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angles, A and B, are therefore equal ; then, B being equal to

A, the triangle FEH is equal to the quadrangle F GH D.

344. Proposition. If two straight lines cut each other,

as FG and HJ (Fig. 259), the vertical, or opposite angles,
A and C, are equal. Thus, FE, standing upon H y, forms

the angles B and C, which together amount (Art. 333) to two

right angles ;
in the same manner, the angles A and B form

two right angles ;
since the angles A and B are equal to B

and C, take the same amount, the angle B, from each pair,

and what remains of one pair is equal to what remains of

the other
; therefore, the angle A is equal to the angle C.

The same can be proved of the opposite angles B and D.

345. Propo8ition. The three angles of any triangle are

equal to two right angles. Let ABC (Fig. 260) be a given

triangle, with its sides extended to F, E and D, and the line

C G drawn parallel to BE. As G C is parallel, to EB, the

angle at //is equal (Art. 331) to the angle at L
;
as the lines

FC and BE cut one another at A, the opposite angles at M
and TV" are equal (Art. 334) ;

as the angle at N is equal (Art.

331) to the angle at Jy
the angle at J is equal to the angle at

M] therefore, the three angles meeting at 7 are equal to the

three.angles of the triangle A B C
;
and since the three angles

at C are equal (Art. 333) to two right angles, the three angles
of the triangle ABC must likewise be equal to two right

angles. Any triangle can be subjected to the same proof.

346. Corollary. Hence, if one angle of a triangle be a

right angle, the other two angles amount to just one right

angle.
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34-7. Corollary. If one angle of a triangle be a 'right

angle and the two remaining angles are equal to one another,

these are each equal to half a right angle.

348. Corollary. If any two angles of a triangle amount
to a right angle, the remaining one is a right angle.

349. Corollary. If any two angles of a triangle are to-

gether equal to the remaining angle, that remaining angle is

a right angle.

350. Corollary. If any two angles of a triangle are each

equal to two thirds of a right angle, the remaining angle is

also equal to two thirds of a right angle.

351. Corollary. Hence, the angles of an equilateral

triangle are each equal to two thirds of a right angle.

FIG. 261.

352. Proposition. If from the extremities of the di-

ameter of a semicircle two straight lines be drawn to any
point in the circumference, the angle formed by them at that

point will be a right angle. Let ABC (Fig. 261) be a given
semicircle

;
and A B and B C lines drawn from the extrem-

ities of the diameter A C to the given point B; the angle
formed at that point by these lines is a right angle. Join
the point B and the centre D

;
the lines DA, D B, and D C,

being radii of the same circle, are equal; the angle at A is,

therefore, equal (Art. 338) to the angle at E\ also, the angle
at C is, for the same reason, equal to the angle at F\ the

angle A B C, being equal to the angles at A and C taken to-

gether, must, therefore (Art. 349), be a right angle.

353. Proportion. The square on the hypothenuse of a

right-angled triangle is equal to the squares on the two re-
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maining sides. Let ABC (Fig. 262) be a given right-angled

triangle, having a square formed on each of its sides
;
then

the square BE is equal to the squares NCand GB taken

together. This can be proved by showing- that the parallelo-

gram B L is equal to the square GB
;
and that the parallelo-

gram CL is equal to the square H C. The angle CBD is a

right angle, and the angle A B F\s a right angle ;
add to each

of these the angle ABC] then the angle FB C will evidently
be equal (Art. 336) to the angle ABD\ the triangle FB C
and the square G B, being both upon the same base, FB, and
between the same parallels, FB and G C, the square G B is

equal (A rt. 342) to twice the triangle FB C'; the triangle
A BD and the parallelogram B L, being both upon the same

FIG. 262.

base, B D, and between the same parallels, BD and A L, the

parallelogram BL is equal to twice the triangle A B D
;

the triangles, FB C and AB D, being equal to one another

(Art. 337), the square GB is equal to the parallelogram B L,

either being equal to twice the triangle FB C or A B D. The
method of proving H C equal to CL is exactly similar thus

proving the square B E equal to the squares H C and G B,

taken together.
This problem, which is the 4/th of the First Book of

Euclid, is said to have been demonstrated first by Pythago-
ras. It is stated (but the story is of doubtful authority)
that as a thank-offering for its discovery he sacrificed a hun-

dred oxen to the gods. From this circumstance it is some-

times called the Jiecatomb problem. It is of great value in
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the exact sciences, more especially in Mensuration and As-

tronomy, in which many otherwise intricate calculations are

by it made easy of solution.

354. Proposition. In an equilateral octagon the semi-

diagonal of a circumscribed square, having its sides coinci-

dent with four of the sides of the octagon, equals the dis-

tance along a side of the square from its corner to the more

remote angle of the octagon occurring on that side of the

square. Let Fig. 263 represent the square referred to
;
in

which is the centre of each
;
then A O equals A D. To

prove this, it need only be shown that the triangle A O D is

an isosceles triangle having its sides A O and A D equal. The

FIG. 263.

octagon being equilateral, it is also equiangular, therefore

the angles BCO,ECO,ADO, etc., are all equal. Of the

right-angled triangle FEC,FC and FE being equal, the

two angles FECand FCE, are equal (Art. 338), and are

therefore (Art. 347) each equal to half a right angle. In like

manner it may be shown that FA B and FR A are also each

equal to half a right angle. And since FE C and FA B are

equal angles, therefore the lines E C and A B are parallel

(Art. 331,) and hence the angles E CO and A OD are equal.

These being equal, and the angles ECO and A D O being

equal by construction, as before shown, therefore the angles

A OD and A D are equal, and consequently the lines A O

and A D are equal. (Art. 338.)
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355. Proposition. An angle at the circumference of a

circle is measured by half the arc that subtends it
;
that is,

the angle A B C (Fig. 264) is equal to half the angle A D C.

Through the centre D draw the diameter BE. The tri-

angle A BD is an isosceles triangle, A Z?and B D being ra-

dii, and therefore equal ; hence, the two angles at F and G
are equal (Art. 338), and the sum of these two angles is equal
to the angle at H (Art. 345), and therefore one of them, Gt is

equal to the half of H. The angles at H and at G (or A BE)
are both subtended by the arc A E. Now, since the angle

FIG. 264.

at H is measured by the arc A E, which subtends it, there-

fore the half of the angle at H would be measured by the

half of the arc A E
;
and since G is equal to the half of H,

therefore G or A BE is measured by the half of the arc A E.

It maybe shown in like manner that the angle EB C is

measured by half the arc E C, and hence it follows that the

angle A B C is measured by half the arc, A C, that sub-

tends it.

356. Proposition. In a circle all the inscribed angles,

A, B, and C (Fig. 265), which stand upon the same side of the
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chord DE are equal. For each angle is measured by half

the arc DFE (Art. 355). Hence the angles are all equal.

357. Corollary. Equal chords, in the same circle, sub-

tend equal angles.

FIG. 265.

358. Proposition. The angle formed by a chord and

tangent is equal to any inscribed angle in the opposite seg-

ment of the circle ;
that is, the angle D (Fig. 266) equals the

angle A. Let HF be the chord, and E 6 the tangent ;
draw

the diameter yH'; then JH G is a right angle, also JFH \$
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a right angle. (Art. 352.) The angles A and B together equal
a right angle (Art. 346) ;

also the angles B and D together
equal a right angle (equal to the angle JHG) ; therefore, the
sum of A and B equals the sum of B and D. From each of

these two equals, taking the like quantity B, the remainders
A and D are equal. Thus, it is proved for the angle at A

;

it is also true for any other angle ; for, since all other in-

scribed angles on that side of the chord line HF equal the

angle A (Art. 356), therefore the angle formed by a chord
and tangent equals any angle in the opposite segment of the

circle. This being proved for the acute angle D, it is also

true for the obtuse angle EHF-, for, from any point, K (Fig.

267) in the arcHKF, draw lines to 7, F and H
; now, if it can

be proved that the angle EHF equals the angle FK H, the

entire proposition is proved, for the angle FKH equals any
of all the inscribed angles that can be drawn on that side of

the chord. (Art. 356.) To prove, then, that EHF equals
HKF\ the angle EHF equals the sum of the angles A and
B

;
also the angle HKF equals the sum of the angles C and

D. The angles B and D, being inscribed angles on the same

chord, JF, are equal. The angles C and A, being right angles

(Art. 352), are likewise equal. Now, since A equals C and B
equals D, therefore the sum of A and B equals the sum of C
and DOY the angle EHF equals the angle HKF.

359. Propokion. The areas of parallelograms of

equal altitude are to each other as the bases of the parallelo-
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grams. In Fig. 268 the areas of the rectangles A B CD and

B E D F are to each other as the bases CD and D F. For,

putting the two bases in form of a fraction and reducing this

fraction to its lowest terms, then the numerator and denomi-

nator of the reduced fraction will be the numbers of equal

parts into which the two bases respectively may be divided.

For example, let the two given bases be 12 and 9 feet respect-

ively, then
-ijp-
= f ,

and this gives four parts for the larger
base and three parts for the smaller one. So, in Fig. 268,

divide the base CD into four equal parts, and the base D F
into three equal parts ;

then the length of any one of the

parts in CD will equal the length of any one of the parts in

D F. Now, parallel with A C, draw lines from each point of

division to the line A E. These lines will evidently divide

the whole figure into seven equal parts, four of them occupy-

FIG. 268.

ing the area A B C D, and three of them occupying the area

B E D F. Now it is evident that the areas of the two rect-

angles are in proportion as the number of parts respectively

into which the base-lines are divided, or that .

A B C D \ B E D F \ : C D \ D F.

The areas in this particular case are as 4 to 3. But in gen-

eral the proportion will be as the lengths of the bases.

Thus the proposition is proved in regard to rectangles, but

it has been shown (Art. 341) that all parallelograms of equal

base and altitude are equal. Therefore the proposition is

proved in regard to parallelograms generally, including rect-

angles.

360. Proposition. Triangles of equal altitude are to

each other as their bases. It has been shown (Art. 359) that
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parallelograms of equal altitude are in proportion as their

bases, and it has also been shown (Art. 342) that of a triangle
and parallelogram, when of equal base and altitude, the

parallelogram is equal to double the triangle. Therefore

triangles of equal altitude are to each other as their bases.

361. Proposition. Homologous triangles have their

corresponding sides in proportion. Let the line CD (Fig.

269) be drawn parallel with. A B. Then the angles E CD
and E A B are equal (Art. 331), also the angles E D C and

E B A are equal. Therefore the triangles E CD and E A B
are homologous, or have their corresponding angles equal.

FIG. 269.

For, join C to- B^ and A to A then the triangles A C D and

B C D) standing on the same base, C D, and between the

same parallels, CD and A B, are equal in area. To each

of these equals join the common area CD E, and the sums

A DE and B CE will be equal. The triangles CD E and

A D E, having the same altitude, are to each other as

their bases CE and A E (Art. 360), or

CDE : ADE : : CE : A E.

Also the triangles CDE and B C E, having the same alti-

tude, are to each other as their bases D E and BE, or

CDE ; BCE : : DE : BE.
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And, since the triangles A DE and B CE are equal, as before

shown, therefore, substituting in the last proportion A D E
for B CE, we have

CD E : AD E : : D E : BE.

The first two factors here being identical with the first two
in the first proportion above, we have, comparing the two

proportions

CE : AE : : DE : B E\

or, we have the corresponding sides of one triangle, CD E,

in proportion to the corresponding sides of the other, A BE.

FIG. 270.

362. Proposition. Two chords, EF and CD (Fig. 270),

intersecting, the parallelogram or rectangle formed by the

two parts of one is equal to the rectangle formed by the

two parts of the other. That is, the product of C G multi-

plied by G D is equal to the product of E G multiplied by
G F. The triangle A is similar to the triangle B, because it

has corresponding angles. The angle H equals the angle G
(Art. 344); the angle at J equals the angle at K, because

they stand upon the same chord, DF (Art. 356) ;
for the same
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reason the angleM equals the angle L, for each stands upon
the same chord, E C. Therefore, the triangle A having the

same angles as the triangle B, the length of the sides of one

are in like proportion as the length of the sides in the other

(Art. 361). So

CG : EG : : GF : G D.

Hence, as the product of the means equals the product of

the extremes (Art. 373), E G multiplied by GF is equal to

C G multiplied by G D.

363. Proposition. If the sides of a quadrangle are

bisected, and lines drawn joining the points of bisection in

the adjacent sides, these lines will form a parallelogram.

FIG. 271.

Draw the diagonals A B and CD (Fig. 271). It will here be

perceived that the two triangles A E O and A CD are homol-

ogous, having like angles and proportionate sides. Two of

the sides of one triangle lie coincident with the two corres-

ponding sides of the other triangle, therefore the contained

angles between these sides in each triangle are identical.

By construction, these corresponding sides are proportion-
ate

;
AC being equal to twice A E, and A D being equal to

twice A O
;
therefore the remaining sides are proportionate,

CD being equal to twice E O, hence the remaining corres-

ponding angles are equal. Since, then, the angles A E O
and A CD are equal, therefore the line E is parallel with



PARALLELOGRAM IN QUADRANGLE. 365

the diagonal CD so, likewise, the line MNis parallel to the

same diagonal, CD. If, therefore, these two lines, EO and

MN, are parallel to the same line, CD, they must be parallel

to each other. In the same manner the lines ON and EM
are proved parallel to the diagonal A B, and to each other ;

therefore the inscribed figure ME ON is a parallelogram.
It may be remarked, also, that the parallelogram so formed

will contain just one half the area of the circumscribing

quadrangle.
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364. Merchandise. A carpenter buys 9 pounds of nails

for 45 cents. He afterwards buys 87 pounds at the same
rate. How much did he pay for them ?

An answer to this question is readily found by multiply-

ing the 87 pounds by 45 cents, the price of the 9 pounds,
and dividing the product, 3915, by 9 ;

the quotient, 435 cents,

is the answer to the question.

365. The "Rule of Three." The process by which
this problem is solved is known as the Rule of Three, or

Proportion.
In cases of this kind there are three quantities given,, to

find a fourth. Previous to working the question it is usual

to make a statement, placing the three given quantities in

such order that the quantity which is of like kind with the

answer shall occupy the second place; the quantity upon
which this depends for its value is put m the first place, and

the remaining quantity, which is of like kind with that in the.

first place, is assigned to the third place.

When thus arranged, the second and third quantities are

multiplied together and the product is divided by the first

quantity ;
the quotient, the answer to the question, is a

fourth quantity. These four quantities are related to each

other in this manner, namely : the first is in proportion to

the second as the third is to the fourth ; or, taking the

quantities of the given example, and putting them in a for-

mal statement with the customary marks between them, we
have

9 : 45 : : 87 : 435,

which is read: 9 is to 45 as 87 is to 435 ; or, 9 is in propor-
tion to 45 as 87 is to 435 ; or, 9 bears the same relation to 45
as 87 does to 435.
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366. Couple*: Antecedent, Consequent. These four

quantities are termed Proportionals, and may be divided into

two couples ; the first and second quantities forming one

couple, and the third and fourth the other couple. Of each

couple the first quantity is termed the antecedent, and the
last the consequent. Thus 9 is an antecedent and 45 its con-

sequent ; so, also, 87 is an antecedent and 435 its consequent.

367. Equal Couples : an Equation. These four quan-
tities may be put in form thus :

45. = 435

9
-

87

Each couple is here stated as a fraction : each has its ante-

cedent beneath its consequent, and the two couples are

separated by a sign, two short parallel lines, signifying

equality. This is an equation, and is read thus : 45 divided

by 9 is equal to 435 divided by 87 ; or, as ordinary fractions :

45 ninths are equal to 435 eighty-sevenths.

368. Equality of Ratios. Each couple is also termed a

Ratio, and the two the Equality of Ratios. Thus the ratio

is equal to the ratio ^-. If the division indicated in
9 87

these two ratios be actually performed, the equality between
the two will at once be apparent, for the quotient in each

case is 5. The resolution of each couple into its simplest
form by actual division is shown thus :

f-
These are read : 45 divided by 9 equals 5 ;

and 435 divided

by 87 equals 5.

369. Equali multiplied by Equal Give Equals. If two

equal quantities be each multiplied by a given quantity, the
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two products will be equal. For example, the fractions f
and f are each equal to ^, and are therefore equal to each

other. If these two equal quantities be each multiplied by

any given number, say, for example, by 4, we shall have 4

times f equals f ,
and 4 times f equals

-1
/- ;

these products, f

and \2- are each equal to 2, and therefore equal to each

other.

370. Multiplying an Equation. The quantity on each

side of the sign = is called a member of the equation. If

each member be multiplied by the same quantity, the

equality of the two members is not thereby disturbed (Art.

369); therefore, if the two members of the equation

45 -415. (Art. 367) be each multiplied by 87, or be modified
9 7

thus:

45x87^435x87
9 , 87

in which x, the sign for multiplication, indicates that the

quantities between which it is placed are to be multiplied

together ; this ddition to each member of the equation does

not destroy the equality ;
the members are still equal,

though considerably enlarged. The equality may be easily

tested by performing the operations indicated in the equa-
tion. For example : for the first member, we have 45 times

87 equals 3915, and this divided by 9 equals 435. Again, for

the second member we have 435 times 87 equals 37845, and

this divided by 87 equals 435, the same result as that for the

first member. Thus the multiplication has not interfered

with the equality of the members.

371. Multiplying and Dividing one Member of an

Equation: Cancelling. If a quantity be multiplied by a

given number, and the product be divided by the same

given number, the quotient will equal the original quantity.

For example : if 8 be multiplied by 3, the product will be 24 ;

then if this product be divided by 3, the quotient will be 8,

the original quantity. Thus the value of a quantity is not
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changed by multiplying it by a number, provided it be also

divided by the same number.

From this, also, we learn that the value of a quantity
which is required to be multiplied and divided by the same
number will not be changed if the multiplication and divis-

ion be both omitted
;
one cancels the other. Therefore the

number 87, appearing in the second member of the equation
in the last article both as a multiplier and a divisor, may be

omitted without destroying the equality of the two mem-
bers. The equation thus treated will be reduced to

45 x87

This expression is read : the product of 45 times 87 divided

by 9 equals 435. It will be observed that we have here the

four terms of the problem in Art. 365, three of them in the

first member, and the fourth, the answer to the problem, in

the second member.

372. Transferring a Factor.Each of the four quan-

tities in the aforesaid equation is termed a factor. Compar-

ing the equation of the last article with that of Art. 43, it

appears that the two are alike excepting that the factor 87

has been transferred from one member of the equation to

the other, and that, whereas it was before a divisor, it has

now become a multiplier. From this we learn that a factor

may be transferred from one member of an equation to the

other, provided that in the transfer its relative position to

the horizontal line above or below it be also changed ;
that

is, if, before the transfer, it be below the line, it must be put

above the line in the other member; or, if above the line, it

must be put below, in the other member. For example : in

the equation of the last article let the factor 9 be removed

to the second member of the equation. It stands as a divi-

sor in the first member ; therefore, by the rule, it must appear
as a multiplier after the transfer

;
or

45 x 87 = 9 x 435;
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which is read, 45 times 87 equals 9 times 435. By actually

performing the operations here indicated, we find that each

member gives the same product, 3915; thus proving that

the equality of the two members was not interfered with

by the transfer.

373. Equality of Products: Means and Extremes. In

Art. 366, the four factors are put in the usual form of four

proportionals. A comparison of these with the four factors

as they appear in the equation in the last article, shows that

the first member contains the second and third of the four

proportionals, and the second member contains the first and

the fourth
; or, the first contains what are termed the

means, and the second, the extremes. From this we learn

that in any set of four proportionals, the product of the

means equals the product of the extremes. As for example,

- = i^ ; so, also,
- = i, an equality of ratios : hence the

four factors, 2, 3, 4, 6, are four proportionals, and may be

put thus :

Extreme, /nean, mean, extreme.

2:31:4:6
and, as above stated, the product of the means (3x4=) 12,

equals the product of the extremes (2x6=) 12.

374-. Homologous Triangles Proportionate. The
discussion of the subject of Ratios has thus far been con-

fined to its relations with the mercantile problem of Art.

364. The rules of proportion or the equality of ratios

apply equally to questions other than those of a mercantile

character. They apply alike to all questions in which quan-
tities of any kind are comparable. For example, in geome-

try, lines, surfaces, and solids bear a certain fixed relation to

one another, and are, therefore, fit subjects for the rules of

proportion. It is shown, in Art. 361, that the correspond-

ing sides of homologous triangles are in proportion to one

another. Hence, when, of two similar triangles, two corres-

ponding sides and one other side are given, then by the

equality of ratios the side corresponding to this other side
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may be computed. For example : in two triangles, such as

ECD and EAB (Fig. 269), having their corresponding

angles equal, let the side E C, in the triangle ECD, equal 12

feet, and the corresponding side E A, in the triangle E A B,

equal 16 feet, and the side ED, of triangle ECD, equal 14

feet. Now, having these three sides given, how can we find

the fourth ?, Putting them in proportion, we have, as in

Art. 361

CE : AE : : DE : BE',

and, substituting for the known sides, their dimensions, we
have

12 : 16 : : 14 : B E
;

and, by Art. 373

12 x BE = 16 x 14.

Dividing each member by 12, gives

Performing the multiplication and division indicated, we

have

Thus we have the fourth side.equal to i8| feet.

375._The Steelyard. An example of lour proportion-

als may also be found in the relation existing between the

arms of a lever and the weights suspended at their ends. A
familiar example of a lever is seen in the common steelyard

used by merchants in weighing goods. This is a bar, A B,

of steel, arranged as in Fig. 272, with hooks and links, and a

suspended platform to carry R, the article to be weighed ;

and with a weight P, suspended by a link at B, from the bar

A B, along which the weight P is movable.

The entire load is sustained by links attached to the ful-

crum, or point of suspension C. The apparatus is in equi-

librium without R and P. In weighing any article, R, the
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weight P is moved along the bar B C until the weight just

balances the load, or until the bar A B will remain in a hori-

zontal position. If the weight P be too far from the fulcrum

C the end of the bar B will fall, but if it be too near it will

rise.

376. The L<ever Exemplified l>y the Steelyard. To

exemplify the principle of the lever, let the bar A B (Fig.

272) be balanced accurately with the scale platform, but

without the weights R and P. Then, placing the article R

upon the platform, move the weight P along the beam until

there is an equilibrium. Suppose the distances A C and B C
are found to be 2 and 40 inches respectively, and suppose

FIG. 272.

the weight P to equal 5 pounds, what at this point will be

the weight of R? By trial we shall find that R = 100 pounds.

Again, if a portion of R be removed, then the weight P
would have to be moved along the bar B C to produce an

equilibrium ; suppose it be moved until its distance from C
be found to be 20 inches, then the weight of R would be

found to be 50 pounds, or

R = 50 pounds.

Again, suppose a part of the weight taken from R be re-

stored, and the weight P, on being moved to a point re-

quired for equilibrium, be found to measure 30 inches from

C, then we shall find that

R = 75 pounds.
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Thus when

B C= 40, R = loo
; or,

-- = 2 5 ;

40

BC=2o, R = $o>J or, -=2-5;

showing an equality of ratios
; or, in general, B C is in pro-

portion to R) or

BC : R.

If, instead of moving P along B C, its position be permanent,
and the weight P be reduced as needed to produce equilib-

rium with the various articles, R, which in turn may be

put upon the scale
;
then we shall find that if when the

weight P equals 5 pounds the article R equals 100, and there

is an equilibrium, then when

P- x 5 =4-5, R will equal -^*x 100 =-90;

8 8P = x 5
= 4, R will equal x 100 = 80;

P=
-^

x 5 r= 3 5, R will equal x 100 = 70 ;

and so on for other proportions; and in every case we shall
r>

have the ratio -
equal 20, thus

R 90
-75-
= '^ = 20 '

P 4-5

R 80

P=T = 2 ;

^? 707 =
3^

= 2 -
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Thus we have an equality of ratios in comparing the

weights.

Again, if the weight P and the article R be permanent in

weight, and the distances A C, B C be made to vary, then if

there be an equilibrium when A C is 2 and B C is 40, we
shall find that when

o O

A C = - x 2 = I -6 ;
B C will equal x 40 = 32 ,

A C
' = x 2 = i 2

;
/? C" will equal x 40 = 24 ;

AC= ~ x2 = ' 8; BC wil1 eclual x 40 = 16
;

and so on for other proportions, and in every case we shall

BC
have the ratio -jyr

= 20
;
thus

B C 32_ - ^ - *}f\ .

- _,-,
~

-- v/

^4 T 1-6

^C~ 0-8

producing thus an equality of ratios in comparing the arms

of the lever. From these experiments we have found, in

comparing the article weighed with an arm of the lever, the

constant ratio B C : R, and when comparing the weights
we have found the constant ratio P : R. Again, in com-

paring the arms of the lever, we find the constant ratio

A C : B C. Putting two of these couples in proportion, we
have

A C : B C : : P : R.

Hence (Art. 373) we have
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Dividing both members by A C, we have

BC*P
~AC

In a steelyard the short arm, A C, and the weight, or poise,
P, are unvarying ; therefore we have

or, when ^ is constant, we have

R : B C.

377. The L,cvcr Principle Bcmontrated. The rela-

tion between the weights and their arms of leverage may be
demonstrated as follows :

*

FIG. 273. .

Let A B G H, Fig. 273, represent a beam of homogeneous
material, of equal sectional area throughout, and suspended
upon an axle or pin at C, its centre. This beam is evidently
in a state of equilibrium. Of the part of the beam A D G K,
let E be the centre of gravity ;

and of the remaining part,
DDKH, let F be the centre of gravity.

If the weight of tne material in A D G K\>t concentrated

at E, its centre of gravity, and the weight of the material in

* The principle upon which this demonstration is based may be found in an

article written by the author and published in the Mathematical Monthly, Cam-

bridge, U. S., fori8s8, p. 77.
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DBKH be concentrated in F, its centre of gravity, the

state of equilibrium will not be interfered with. Therefore

let the ball R be equal in weight to the part A D G K, and

the ball P equal to the weight of the part DBKH\ and let

these two balls be connected by the rod E F. Then these

two balls and rod, supported at C, will evidently be in a

state of equilibrium (the rod EF being supposed to be with-

out weight).

Now, it is proposed to show that R is to P as CF is to

C E. This can be proved; for, since R equals the area

ADGK and P equals the area DBKH, therefore R is in

proportion to A D, as P is to DB (Art. 359) ; or, taking the

halves of these lines, R is in proportion to A J as P is to

LB.

Also, J L equals half the length of the beam
;
for JD is

the half of A D, and D L is the half of DB; thus these two

parts (JD + DL) equal the half of the two parts (AD+ DB)\
or, yL equals the half of A B\ or, we have

Adding these two equations together, we have

Now, JD + DL = JL, and AD + DB = AB\ therefore,

Thus we have A M = JL. From each of these equals
take JM, common to both, then the remainders, A J and

ML, will be equal ; therefore, A J = C F.

We have also MB = J L. From each of these equals
take ML, common to both, and the remainders, JM and

L B, will be equal ; therefore, L B = E C. As was above

shown

RiAy'iiP-iL.9.
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Substituting for A J and LB their values, as just found,

we have
R : CF : : P : EC',

from which we have (Art. 373)

Px CF= R x E C.

Thus it is demonstrated that the product of one weight into

its arm of leverage, is equal to the product of the other

weight into its arm of leverage : a proposition which is

known <is the law of the lever.

378. Any One of Four Proportionals may be Found.

Any three of four proportionals being given, the fourth

may be found ;
for either one of the four factors may be

made to stand alone
; thus, taking the equation of the last

article, if we divide both members by CF (Art. 371), we

have
Px CF'_RxEC
C.F CF '

In the first member C F, in both numerator and denominator,

cancel each other (Art. 371), therefore

so likewise we may obtain

Px CF
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379. A Fraction Defined. As a fracture is a break or

division into parts, so a fraction is literally a piece broken off;

a part of the whole.

The figures which are generally used to express a frac-

tion show what portion of the whole, or of an integer, the

fraction is : for example, let the line A B, (Fig. 274), be divided

into five equal parts, then the line A C, containing three of

those parts, will be three fifths of the whole line A B, and

3
may be expressed by the figures 3 and 5, placed thus, ,

which is known as a fraction and is read, three fifths. The
number 5 below the line deno'tes the number of parts into

which an integer or unit, A B, is supposed to be divided
;

it

riii 1 1

A D E C B
FIG. 274.

is therefore called the denominator, and expresses th3 denom-
ination or kind, whether fifths, sixths, ninths, or any number,
into which a unit is supposed to be divided. The number

3 above the line, denoting the number of parts contained in

the fraction, is termed the numerator, and expresses the

number of parts taken, as 2, 3, 4, or any other number.

380. Graphical Repreentation of Fractions : Effect

of Multiplication. In Fig. 275, let the line A B be di-

vided into three equal parts ;
the line CD into six equal

parts; the line EF into nine equal parts; the line GH into

twelve equal parts, and the line y A' into fifteen equal parts.

The lines AB, CD, EF,GH, and J K, being all of equal

length.
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Then the parts of these lines, A L, CM, EN, etc., may

be expressed respectively by the fractions-,^,-, - and --.

369 12 15

In each case the figure below the line, as, 3, 6, 9, 12, or 15,

expresses the number of parts into which the whole is di-

vided, and the figure above the line, as 1,2, 3, 4, or 5, the

L
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381. Form of Fraction Changed by Division. By an

operation the reverse of that in the last article, we may re-

duce several equal fractions to one of equal value. Thus, if

in each we divide the numerator and denominator by the

same number, we reduce it to a fraction of equal value, but
with smaller factors.

For example, taking the fractions of the last article, f , f,

iV xV> let eacn De divided by a number which will divide

both numerator and denominator without a remainder.*

Thus, ^"^ 2== I 1~"~3
= l

6 + 2*3' 9-^3 =
3"

_4/r-4= l J_^-5 =1
12-4=3' 15-^5 =

3*

As these fractions are shown (Art. 380) to be equal, and
as the operation of dividing each factor by a common num-
ber produces quotients which in each case form the same

fraction, -J-,
we therefore conclude that the numerator and

denominator of a fraction may be divided by a common
number without changing the value of the fraction.

382. Improper Fractions. The fractions f , ^, ~, etc.,

all fractions which have the numerator larger than the de-

nominator are termed improper fractions. They are not im-

proper arithmetically, but they are so named because it is an

improper use of language to call that &part which is greater
than the whole.

As expressions of this kind, however, are sabject to the

same rules as those which are fractions proper, it is custom-

ary to include them all under the technical term of fractions.

Expressions like these all expressions in which one number
is separated by a 'horizontal line from another number below

it, or one set of numbers is thus separated from another set

below it may be called fractions, and are always to be un-

derstood as indicating division, or that the quantity above
the line is to be divided by the quantity below the line.

Division is indicated by this sign -r-, which is read "divided by."



IMPROPER FRACTIONS. 381

Q 17 2A 3x8x4 17x82
Thus, z

> > *

^
-

> etc., are all fractions, tech-

nically, although each may be greater than unity. And it is

understood in each case that the operation of division is re-

quired. Thus, - =
3,
--

8, = 4. When the divis-33 % ,

ion cannot be made without a remainder, then the fraction,

by cutting the numerator into two, may be separated into two

parts, one of which may be exactly divided, and the other

will be a fraction proper. Thus, the fraction -~ is equal to

1 (for 15 + 2 17); and since equals 3, therefore,

17 15 2 22= + - = 3 + - = 3- So, likewise, the fraction

17x82 __ 1394:= i375 + J9_. .J_9_. J_9_

125 125 125 125 125 125'

383. Reduction of Mixed Numbers to Fractions By
an operation the reverse ot that in the last article, a given
mixed number (a whole number and fraction) can be put
into the form of an improper fraction.

This is done by multiplying the whole number by the de-

nominator of the fraction, the product being the numerator

of a fraction equal in value to the whole number
;
the de-

nominator of this fraction being the same as that of the given
fraction. The numerator of this fraction being added to the

numerator of the given fraction, the sum will be the numera-

tor of the required improper fraction, the denominator of

which is the same as that of the given fraction. For example,
the required numerator for

2 J, is 2 x 3 + I 7. So
2-3-
=

-J.

2j, is 2 X 4 + I = 9. So 2\ = f.

3i is 3 x 5 +2 = 17. So3f = $.

384. Division Indicated by the Factors put as a Frac-

tion. Factors placed in the form of a fraction as
, -,

- or
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- indicate division (Art. 382) ;
the denominator (the fac-

tor below the line) being the divisor, and the numerator

(the factor above the line) the dividend, while the value of

the fraction is the quotient. Thus of the fraction, = 20,
9 41

41 is the divisor, 820 the dividend, and 20 the quotient.
From this we learn that division may always be indicated

by placing the factors in the form of a fraction, so that the

divisor shall form the denominator and the dividend the nu-

merator.

385. Addition of Fractions having Like Denomina-

tors Let it be required to add the fractions - and -. By

referring to Art. 379 we see that ^4 D (Fig. 274), is one of the

five parts into which the whole line A B is divided
;

it is,

therefore, . We also see that D C contains two of the five

2

parts ;
it is, therefore, -. We also see that AD +D C

' A C,

which contains three of the five parts, or A C = of A B.

12 3

We therefore conclude that + = . In this operation it

is seen that the denominator is not changed, and that the

resultant fraction has for a numerator a number equal to the

sum of the numerators of the fractions which were required
to be added.

By this it is shown that to add fractions we simply take

the sum of the numerators for the new numerator, making the

denominator of the resultant fraction the same as that of the

fractions to be added. For example : What is the sum of the

fractions
,

and - ? Here we have 14-3+4 8 for the

numerator, therefore

999
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386. Subtraction ofFractions Of Like Denominators.
Subtraction is the reverse of addition

; therefore, to sub-

tract fractions a reverse operation is required to that had in

the process of addition
;
or simply to subtract instead of

adding.
2 ^

For example, if - be required to be su>tracted from

we have

UNIVERSITY
5 5

"

By reference to Fig. 274 an exemplification of^tkis-wiit'

? 2 T

seen where we have A C =
,
A E =

,
and E C =

, and

we have

3 _2 =
5 5 5'

We therefore have this rule for the substraction of frac-

tions : Subtract the less from the greater numerator ; the remain-

der will be the numerator of the requiredfraction. The denom-

inator to be the same as that of the given fractions.

387. Dissimilar Denominators Equalized. The rules

just given for the addition and subtraction of fractions re-

quire that the given fractions have like denominators.

When the denominators are unlike it is required, before add-

ing or substracting, that the fractions be modified so as to

make the denominators equal. For example : Let it be re-

quired to find the sum of - and -. By reference to Fig.

2 6
275, we find that on line A B is equal to - on line E F.

These being equal, we may therefore substitute for -.

Then we have

6
2_ _

8

9
+

9
"

9
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Now, it will be seen that the fraction - may be had by mul-

tiplying both numerator and denominator of the given frac-

2
,

2X^ = 6
tion- by 3, for

3 x
-
= -;

and we have seen (Art. 380) that this operation does not

change the value of the fraction. From this we learn that

the denominators may be made equal by multiplying the smaller

denominator and Its numerator by any number which will effect

such a result.

For example :

^-+-
= + =

-^-
;

27 14 7 21

3 ,3 7 12 4 7 23 7

4
+
I7

+
T6

=:
T6

+ 7^ + 7^
=^ z

'76'

In this example the second fraction is changed by multiply-

ing by i j.

388. Reduction of Fraction to tlieir Lowest Terms.

The process resorted to in the last article to equalize the

denominators, is not always successful. What is needed for

a common denominator is to find the smallest number
which shall be divisible by each of the given denominators.

Before seeking this number, let each given fraction be

reduced to its lowest terms, by dividing each factor by a

common number. For example: may, by dividing by 5,

be reduced to
,
which is its equivalent. So, also, , by di-

3 2o

viding by 7, is reduced to
,
its lowest terms.

389. Leat Common Denominator. To find the least

common denominator^V&w the several fractions in the order

of their denominators, increasing toward the right. If the

largest denominator be not divisible by each of the others,

double it
;

if the division cannot now be performed, treble
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it, and so proceed until it is multiplied by some number
which will make it divisible by each of the other denomina-
tors. This number multiplied by the largest denominator will be

the least common denominator. To raise the denominator of

each fraction to this, divide the common denominator by the de-

nominator of one of the fractions, the quotient will be the

number by which that fraction is to be multiplied, both

numerator and denominator, and so proceed with each frac-

tion. For example : What is the sum of the fractions

-, -, ,

-g?
One of these, , may be reduced, by divid-

ing by 2, to ^. Therefore, the series is -, -, -| ~. On trial
o 2 A. \) o

we find that 8, the largest denominator, is divisible by the

first and by the second, but not by the third, therefore the

largest denominator is to be doubled: 2x8= 16. This is

not yet divisible by the third
;
therefore 3 x 8 = 24. This

now is divisible by the third as well as by the first and the

second
; 24 is therefore the least common denominator.

Now dividing 24 by 2, the first denominator, the quotient
12 is the factor by which the terms of the first fraction are

to be raised, or,
- ~

-. For the second we have

24-5-4 6, and - ^ . For the third we have 24 -*- 6 =
4x0 = 24

4, and ~ X
7 J

an<^ f r tne fourth, 24-^-8 = 3, and
o x 4 24

7 X 3 -21

^ ~_ . Thus the fractions in their reduced form are :

12 18 20 21 7i 23
I I I . ... n ^

24 24 24 24
~~

24
~~

24*

390. Leat Common Denominator Again. When the

denominators are not divisible by one another, then to ob-

tain a common denominator, it is requisite to multiply to-

gether all of the denominators which will not divide any of the

other denominators. For example : What is the sum of the

fractions -, -, -, and -?
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In this case the first denominator will divide the last, but

the others are prime to each other. Therefore, for the

common denominator, multiply, together all but the first
;

or

5x7x9 = 315 the common denominator ;

and

315 _:_
3 105, common factor for the first fraction

;

315 -=-
5
= 63, common factor for the second fraction ;

315 _i_ 7 =. 45, common factor for the third; .

315-5-9 = 35, common factor for the fourth.

And, then

i x 105 = 105
t

2 x 63 = 126 3 x 45 = 135
^
4 x 35 = 140

1 x 105 = 315
'

"5 x 63 =
3"i~5

'

7 x 45 - 3^5
'

9 x 35 =
"

105 126 135 140 _ 506+
315

"
h

3i5
*

3i5
~~

3^5

191

39(. Fraction multiplied Graphically. Let A B CD
(Fig. 276) be a rectangle of equal sides, or A B equal A C
and each equal one foot. Then A B multiplied by A C will

G
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A B C D; or % x % = J; which is a quarter of the superficial
area.

The product here obtained is less than either of the

factors producing it. It must be remembered, however,
that while the factors represent lines, the product represents

superficial area. The correctness of the result may be

recognized by an inspection of the diagram.

392. Fraction multiplied Graphically. In Fig. 277
let A B equal 8 feet and A C equal 5 feet

;
then the rect-

G
FIG. 277.

angle A B CD contains 5 x 8 = 40 feet. The interior lines

divide the space included within A B CD into 40 equal

squares of one foot each. Let A E equal 3 feet or - of A C.

Let A G equal 7 feet or ~ of A B. Then the rectangle

3 7 21
E FA G contains x

'

,
or twenty-one fortieths of the

5 04
<+

*j

whole area A B CD. Thus, while the factor fractions -- and
-^

5 o

represent lines, it is shown that the product fraction rep-
40

21 .

resents surface. Thus is a fraction, E FA G, of the whole
40

surface, CDAB.

393. Rule for Miitiplication of Fraction*, and Exam-

ple. In the example given in the last article it will be ob-
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served that the product of the denominators of the two

given fractions equals the area of the whole figure (A B CD\
while the product of the numerators equals the area of the

rectangle (E'FA G), the sides of which are equal respec-

tively to the given fractions. From this we obtain for the

product of fractions this

RULE. Multiply together the denominators for the new de-

nominator, and the numerators for a new numerator.

j ? j
For example: what is the product of and ? Here

we have 20x21420 for the new denominator, and

7 x 13 = 91 for the new numerator; therefore the product
of

il x _7 = _L.
21 2O 420

'

or, of a rectangular area divided one way into 20 parts and
the other way into 21 parts, thus containing 420 rectangles,

1 3 7
the product of the two fractions and - is equal to 91 of

these rectangles, or - of the whole.

394. Fraction Divided Graphically. Division is the

reverse of multiplication ; or, while multiplication requires

the product of two given factors, division requires one of

the factors when the other and the product are given. Or

(referring to Fig. 277) in division we have the area of the

rectangle, EFA G, and one side, E A; given, to find the

other side, A G.

Now it is required to find the number of times EA is

contained in E FA G. By inspection of the figure we per-
ceive the answer to be, A G times

;
for E A xAG EFA G,

2 I

the given area. Or, when E A F G is given as and E A

as -, we have as the given problem

ILL.!
40

'

5*
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Since division is the reverse of multiplication, instead of

multiplying we divide the factors, and have

21 -i- 3 = 7

40 -r- 5

"

8*

Thus, to divide one fraction by another, for the numerator of

the required factor, divide the numerator of t/ie product by the

numerator of the given factor, and for the denominator of the

required factor divide the denominator of the product by the

denominator of the given factor. For example :

10 . 2 5
Divide ^~ by -. Answer, .

o Q >|
/

Divide - -
by . Answer, .

395. Rule for Division of Fractions. The rule just

given does not work well when the factors are not commen-

5 2
surable. For example, if it be required to divide by we

have by the above rule

7-9
"

7
'

9.

Producing fractional numerators and denominators for the

resulting fraction, which require modification in order to

reach those composed only of whole numbers. If the nu-

merators, 5 and 7, of this compound fraction be multiplied

by 9 (the denominator of the denominator fraction), or the

compound fraction by 9, we shall have

5 ><9
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And, if these be again multiplied by 2 (the denominator of

the numerator fraction), we shall have

5 X 9
2

X 2 =
7x9 7x9x2
~9~ ~9~

Like figures above and below in each fraction cancel each
other (Art. 371), therefore, the result reduces to

5 x 9

7x2'
in which we find the factors of the two original fractions.

In one fraction we have the factors in position as given,

but in the other they are inverted. The fraction in which.

the factors are inverted is the divisor. Hence, for division

of fractions, we have this

RULE. Invert the factors of the divisor, and then, as in

multiplication, multiply the numerators together for the numera-

tor of the required fraction, and the denominators for the de-

nominator of the requiredfraction.

c 2
Thus, as before, if - is required to be divided by -, we

have

i x 9 45

7x2 14'

And, to divide by ,
we have

23 x 9 _ 207

47 x 7 329

2 8

Again, to divide by ,
we have

2$ x 9 _ 225 = _25 = _s

45 x 8
""

360 "40 "8"
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This last example has two factors, 9 and 45, one of which

measures the other
; also, the first fraction - - is not in its

45

lowest terms; when reduced it is . The question, there-

i fore, may be stated thus :

5 x 9 1 .

9 x 8
""

8
'

for the two 9*8 cancel each other.
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396. Algebra Defined. It occurs sometimes that a

student familiar only with computation by numerals is

needlessly puzzled, in approaching the subject of Algebra,
to comprehend how it is possible to multiply letters together,
or to divide them. To remove this difficulty, it may be suf-

ficient for them to learn that their perplexity arises from a

misunderstanding in supposing the letters themselves are

ever multiplied or divided. It is true that in treatises on

the subject it is usual to speak as though these operations
were actually performed upon the letters. It is always un-

derstood, however, that it is not the letters, but the quan-
tities represented by the letters, which are to be multiplied
or divided.

For example, in Art. 361 it is shown, in comparing similar

sides of homologous triangles, that the bases of the two tri-

angles are to each other as the corresponding sides, or,

referring to Fig. 269, we have CE : A E : : D E : B E.

Now, let the two bases CE and A E be represented respec-

tively by a and b, and the two corresponding sides D E and
B E by c and d respectively ; or, for

CE : AE : : DE : BE,
put

a : b : : c : d\

and, by Art. 373, we have

b x c = a x d,

which may be written

be = ad\

for x, the sign for multiplication, is not needed between let-

ters, as it is between numeral factors. The operation of
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multiplication is always understood when letters are placed
side by side.

Now, here we have an equation in which, as usually read,
we have the product of b and c equal to the product of a
and d. But the meaning is that the product of the quantities

represented by b and c is equal to the product of the quan-
tities represented by a and d, and that this equation is in-

tended to represent the relation subsisting between the four

proportionals, C ,
A E, D E, and BE, of Fig. 269. In order

to secure greater conciseness and clearness, the four small

letters are substituted for the four pair of capital letters,

which are used to indicate the lines of the figures referred to.

397. Example : Application. It was shown in the last

article that the four letters a, , c, and d represent the cor-

responding sides of the two triangles of Fig..2g, and that

b c = a d.

Now, let each member of this equation be divided by a, then

(Art. 371)-

If now the dimensions of the three sides represented by a,

b, and c are known, and it is required to ascertain from these

the length of the side represented by d, let the three given
dimensions be severally substituted for the letters repre-

senting them. For example, let a = 40 feet
;
b = 52 feet,

and c = 45 feet ;
then

be 52 x 45d = = - = -~ = 58a 40 40

The quantities being here substituted for the letters
;
we have

but to perform the arithmetical processes indicated to obtain

the arithmetical value of d. From this example it is seen

that before any practical use can be made of an algebraical

formula in computing dimensions, it is requisite to substitute

numerals for the letters and actually perform arithmetically

such operations as are only indicated by the letters.
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398. Algebra Useful in Constructing Rules. In all

problems to be solved there are certain conditions or quan-
tities given, by means of which an unknown quantity is to

be evolved. For example, in the problem in Art. 397, there

were three certain lines given to find a fourth, based upon
the condition that the four lines were four proportionals.

Now, it has been found that the relation between quantities

and the conditions of a question can better be stated by let-

ters than by numerals
;
and it is the office of algebra to

present by letters a concise statement of a question, and by
certain processes of comparison, substitution and elimina-

tion, to condense the statement to its smallest compass, and

at last to present it in a formula or rule, which exhibits the

known quantities on one side as equal to the unknown on

the other side. Here algebra ends, at the completion of the

rule. To use the rule is the office of arithmetic. For, in

using the rule, each quantity in numerals must be substi-

tuted for the letter representing it, and the arithmetical

processes indicated performed, as was done in Art. 397.

399. Algebraic Rule are General. One advantage
derived from algebra is that the rules made are general
in their application, For example, the rule of Art. 397,

= d, is applicable to all cases of homologous triangles,

however they may differ in size or shape from those given in

Fig. 269 and not only this, but it is also applicable in all

cases where four quantities are in proportion so as to con-

stitute four proportionals. For example, the case of the

four proportionals constituting the arms of a lever and the

weights attached (Arts. 375-378). For, taking the rela-

tion as expressed in Art. 377

PxCF= RxEC,

we may substitute for CF the letter n, and for E C the letter

m, then m will represent the arm of the lever E C (Fig. 262),

aid n *he arm of the lever F C. Then we have
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and from this, dividing by n
(/Irt. 372), we have

or, dividing by m, we have

(in.)
-

v 'm

which is a rule for computing the weight of R, when P and
the two arms of leverage, m and n, are known. For example,
let the weight represented by P be 1200 pounds, the length
of the arm m be 4 feet, and that of n be 8 feet, then we have

Pn 1 200 x 8R = - - =- = 2400 pounds.m 4

Pn
This rule, R =.

-, is precisely like that in Art. 397

d in which three quantities are given to find a fourth,

the four constituting a set of four proportionals.

400. Symbols hoen at Pleasure. The particular
letter assigned to represent a particular quantity is a matter

of no consequence. Any letter at will may be taken
;
but

when taken, it must be firmly adhered to to represent that par-
ticular quantity, throughout all the modifications which may
be requisite in condensing the statement into which it enters

into a formula for use. For example, the two rules named in

Art. 399 are precisely alike three quantities given to find a

fourth yet they are represented by different letters. In one,

R and P represent the two weights, and m and ft the arms of

leverage at which they act
;
while in the other the letters

a, b,c, and ^represent severally the four lines which constitute

two similar sides of two homologous triangles. The two
rules are alike in working, and they might have been con-

stituted with the same letters. And instead of the letters

chosen any others might have been taken, which con-

venience or mere caprice might have dictated. In some
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questions it is usual to put the first letters, as a, b, c, etc., to

represent known quantities, and the last letters, as x, y, z,

for the quantities sought. In works on the strength of

materials it is customary to represent weights by capital

letters, as P, R, U, W, etc., and lines or linear dimensions by
the small letters, as b, d, /, for the breadth, depth, and length,

respectively, of a beam. Any other letters may be put to

represent these quantities, although the initial letter of the

word serves to assist the memory in recognizing the partic-
ular dimensions intended.

40 1. Arithmetical Processe Indicated by Sign. In

algebra, the four processes of addition, subtraction, multi-

plication, and division, are frequently required ;
and when

the required process cannot be actually performed upon the

letters themselves, a certain method has been adopted by
which the process is indicated. For example, in additon,
when it is required to add a to b, the two letters cannot be

intermingled as numerals may be, and their sum presented ;

but the process of addition is simply indicated by placing
between the two letters this sign, +, which is called plus,

meaning added to
; therefore, to add a to b we have

which is read a plus b, or the sum of a and b. When the

quantities represented b}^ a and b are substituted for them
and not till tHen they can be condensed into one sum.

For example, let a equal 4 and b equal 3, then for

a-\-b

we have

4+3;

and we may at once write their sum 7, instead of 4 + 3.

So, likewise, in the process of subtraction, one letter can-

not be taken from another letter so as to show how much of

this other letter there will be left as a remainder
;
but the

process of subtraction can be indicated by a sign, as this, ,

which is called minus, less, meaning subtracted from. For
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example, let it be required to subtract b. from a. To do
this we have

which is read a minus b, and when the values of a and b are

substituted for them, we have, when a equals 4, and b

equals 3

a-b,
or

4-3;

and now, instead of 4 3, we may put the value of the

which is unity, or i.

The algebraic signs most frequently used are as follows :

+ ,//#.$, signifies addition, and that the two quantities be-

tween which it stands are to be added together; as

a + b, read a added to b.

, minus, signifies subtraction, or that of the two quantities

between which it occurs> the latter is to be subtracted

from the former ;
as a b, read a minus b.

X, multiplied by, or the sign of multiplication. It denotes

that the two quantities between which it occurs are to

be multiplied together ;
as a x b, read a multiplied by b,

'

or a times b. This sign is usually omitted between

symbols or letters, and is then understood, as a b. This

has the same meaning as a x b. It is never omitted

between arithmetical numbers; as 9x5, read nine

times five.

-^, divided by, or the sign of division, and denotes that of the

two quantities between which it occurs, the former is

to be divided by the latter; as a~b, read a divided by
b. Division is also represented thus :

-, in the form of a fraction. This signifies that a is to be

divided by b. When more than one symbol occurs

above or below the line, or both, as --
,

it denotes

that the product of the symbols above the line is to be

divided by the product of those below the line.
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=
,
is equal to, or sign of equality, and denotes that the

quantity or quantities on its left are equal to those on

its right ;
as a b = c, read a minus b is equal to c

y
or

equals c
; or, 9 5

= 4, read nine minus five equals
four. This sign, together with the symbols on each

side of it, when spoken of as a whole, is called an

equation.

a
1

denotes a squared, or a multiplied by a, or the second

power of a, and

a* denotes a cubed, or a multiplied by a and again multi-

plied by a, or the third power of a. The small figure,

2, 3, or 4, etc., is termed the index or exponent of the

power. It indicates how many times the symbol is to

be taken. Thus, d1 = a a, a
3 = a a a, a" a a a a.

\/ is the radical sign, and denotes that the square root of the

quantity following it is to be extracted, and

I/ denotes that the cube root of the quantity following it is

to be extracted. Thus, 4/9 = 3, and V27 3- The
extraction of roots is also denoted by a fractional in-

dex or exponent, thus

a 1
/* denotes the square root "of a,

a* denotes the cube root of a,

a* denotes the cube root of the square of a, etc.

402. Example in Addition and Subtraction : Cancel-

ling. Let there be some question which requires a state-

ment to represent it, like this

a-i-d = c b,

which indicates that if the quantity represented by a be

added to the quantity represented by d, the sum will be

equal to the quantity represented by c, after there has been

subtracted from it the quantity represented by b
; or, as it is

usually read, a plus d equals c minus b
;
or the sum of a and

d equals the difference between c and b. For illustration,

take in place of these four letters, in the order they stand,

the numerals 4, 2, 9, 3, and we shall havq by substitution -

a + d c b,

4+29 3, or adding

and subtracting 6 = 6.
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If it be required to add to each member of the equation
the quantity represented by b, this will not interfere with

the equality of the members. For a + d are equal to c d,

and if to each of these two equals a com-mon quantity be

added, the sums must be equal ;
therefore

a + d+ b = c b-^b,

or by numerals

4 + 2 + 3 = 9-3 + 3,

or

9 = 9-

It will be observed that the right hand member contains

the quantity b and + b. This shows that the quantity b is

to be subtracted and then added. Now, if 3 be subtracted

from 9, the remainder will be 6, and then if 3 be added, the

sum will be 9, the original quantity. Thus it is seen that

when in the same member of an equation a symbol appears as a

minus quantity and also as a plus quantity, the two cancel each

other, and may be omitted. Therefore, the expression

b = c b + b

becomes
a + d+ b = c.

403. Transferring a Symbol to the Opposite member.
In comparing, in the last article, the first equation with the

last, it will be seen that the same symbols are contained in

each, but differently arranged : that while in the first equa-
tion b appears in the right hand member and with a minus
or negative sign, in the last equation it appears in the left

hand member and with a plus or positive sign. Thus it is

seen that in the operation performed b has been made to

pass from one member to the other, but in its passage it has

been changed. A similar change may be made with another

of the symbols. For example, from the last equation, let d
be subtracted, or this process indicated, thus

a + d+b d = c d.
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The plus and minus d, in the left hand member cancel each

other, therefore

a + b = c d,

or, by numerals

4+3=9 2 -

Reducing
7 = 7.

By this we learn that any quantity (connected by + or )

may be passedfrom one member of the equation to the other, pro-

vided the sign be changed.

404. Signs of Symbols to be Changed when they are

to e Subtracted, As an example in subtraction, let the

quantities represented by + b a f+ c, be taken from the

quantities represented by + a+b c f. This may be

written

(+a + b c f) (+b af+c),

an expression showing that the quantities enclosed within the

second pair of parentheses are to be .subtracted from those

included within the first pair. Let the quantities represent-

ed in the first pair of parentheses for convenience be repre-

sented by A , or, a + b c f A . Now, by the terms of the

problem, we are required to subtract from A. the quantities

enclosed within the second pair of parentheses. To do this

take first the positive quantity, b, and subtract it or indicate

the subtraction, thus

A-b;

we will then subtract the positive quantity c, or indicate the

subtraction, thus

A-b-c.

We have yet to subtract a and /, two negative quanti-
ties.

The method by which this can be accomplished may be

discovered by considering the requirements of the problem.
The plus quantities b and

,
before being subtracted from A,

were required to have the two negative quantities # and /de-
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ducted from them. It is evident, therefore, that in subtract-

ing b and c, before this deduction was made, too much has

been taken from A, and that the excess taken is equal to the

sum of a and /. To correct the error, therefore, it is neces-

sary to add just the amount of the excess, or to add the sum
of a and/, or annex them by the plus sign, thus

A b c + a+f.

To test the correctness of the operation as here performed,
let numerals be substituted for the symbols ;

let a = 2, b = 3,

c =r i,/= ;
then the given quantities to be subtracted,

become

(+3 -2-i+i),
which reduces to

(4
-

24) = ij.

Thus the quantity to be substracted equals ij. Applying
the numerals to the above expression

A b+ a +f c

becomes

A 3 + 2 + -J i =A 4+2% = A i-J.

A correct result
;

it is the same as before. Restoring now
the symbols represented by A> we have for the whole ex-

pression

which, by cancelling (Art. 403) and by adding like symbols
with like signs, reduces to

2 a 2 c.

To test this result, let the quantity which was represented

by A have the proper numerals substituted, thus :

+ + b c /,

+ 2 + 3
~ i -4=5- i* = 3i-
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The sum of the given quantity required to be subtracted

was before found to amount to i^, therefore

A -1$
becomes

And the result by the symbols as above was

2 a 2 c,

which becomes
2X2 2X1,

or

4 2 2;

a result the same as before, proving the work correct. An
examination of the signs in the above expression, which de-

notes the problem performed, will show that the sign of each

symbol which was required to be subtracted has been

changed in the operation of subtraction. Before subtract-

ing they were

after subtraction they are

(-b + a+f-c).

By this result we learn, that to subtract a quantity we have

but to change its sign and annex it to the quantity from

which it was required to be subtracted.

Example : Subtract a b from c + d. Answer, c + d a + b.

If numerals be substituted, say a = 7, b = 4, c = 5, and

d=g, then

c+d becomes 5+9=14,
a-b " ;_ 4= 3,

c + d (a b) 14 3 ii,

So, also,
c + d a + b

becomes
+ + = ii.
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405. Algebraic Fraction*: Added and Subtracted.

When algebraic fractions of like denominators are to be

added or subtracted, the same rules (Arts. 385 and 386) are

to be observed as in the addition or subtraction of numeri-

cal fractions namely, add or subtract the numerators for a

new numerator, and place beneath the sum or difference the

common denominator.

For example, what is the sum of T> T T?bob
For this we have

Subtract -> from -;. For this we have
a a

b-c
d

'

What is the algebraical sum of

ben r^- - - - and - 5 ?

For these we have

b + c n r

To exemplify this, let b represent 9, c = 8, n = 2, r = 3,

and d 12.

Then, for the algebraic sum, we have

+ 8 2 3 12= = i.
12 12

Now, taking the positive and negative fractions sep-

arately, we have

.. *- = !?.
12

"h
12 12

'

and

n2 nJ^-I
12 12 12

"
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Together

12. -5 _ _^ =
12 12

~~
12

~~
'

as before.

406. The Least Common Denominator. When the

denominators of algebraic fractions differ it is necessary be-

fore addition or subtraction can be performed to harmonize

them, as in the reduction of the denominators of numerical

fractions (Arts. 388-390). For example, add together the
/7i @ y

fractions 7, -7, . In these denominators we perceiveoc o ac

that they collectively contain the letters a, b and c, and no
others. It will be requisite, therefore, that each of the frac-

tions be modified so that its denominator shall have these

three factors. To effect this it will be seen that it is neces-

sary to multiply each fraction by that one of these letters

which is lacking in its denominator. Thus, in the first, a is

lacking, therefore (Art. 380) T 7. In the second a

and c are lacking, therefore T r-, and in the third
by,ac-=-abc

r x b rb .

b is lacking, therefore , _ ^-^> Placing them now

together we have

aa + acebr a e r
t

|

a b c. be b a c

The factor a a may be represented thus # 2

,
which means

that a occurs twice, the small figure at the top indicating

the number of times the letter occurs ;
a

2
is called a squared,

a a a = a*, and is called a cubed.

In order to show that the above fraction, resulting as the

sum of the three given fractions, is correct, let a = 2, b 3,

c = 4, e = 5, and r = 6. Then the three given fractions

are

2 JU 6
=: 1:+ 1 + 1

3x4 3 2x4 6 3 4
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In equalizing these denominators we multiply the second
fraction by 2, and the third by i, which will give

5_
x 2 =

10^ 3 x ^i_4i.
3x2= 6

'

4 x i

~ '

6 '

then
1 1_ ,44 ij_4 3i _7_
6
+

6
"

6
'

6 6
"

12*

Now the sum of the fractions is

2
2 +2 X 4 X 5 + 3 X6

tJi ,

2X3X4

4 + 40+ 1 8 __ 62
_ 14 _ 7

24 24
" 2

24
~ 2

12
'

the same result as before, thus showing that the reduction

was rightly made.

407. Algebraic Fractions Subtracted. To exemplify
the subtraction of fractions, let it be required to find the

algebraic sum of - - -%
j.

These denominators all dif-

fer. The fractions, therefore, require to be modified, so

that each denominator shall contain them all. To accom-

plish this, the first fraction will need to be thus treated :

ax df= adf
7x

the second

_ b_xcf= _ bcf~
dXCf= :,. Cdf''

the third

e x c d = c d e
~

fxcd=
~

7d~f
The sum of these is

adf bcf c de

~Tdf~
'
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That this is a correct answer, let the result be proved by
figures ; thus, for a put 15 ; b, 2

; c, 3 ; d, 4; e, 5 ; /, 6. Then'
we shall have

a b e 15 25
~c~~d~J~- T "

4" 6*

It will be observed that these denominators may be equal-
ized by multiplying the first fraction by 2, and the second

by ij, therefore we have

j$o _3 _ 5.

6
"

6 6'

To make the required subtraction we are to deduct from 30

(the numerator of the positive fraction), first 3, then 5 ; or,

the sum of the numerators of the negative fractions
;
or for

the numerator of the new fraction we have 30 8 22.

The required result, therefore, is

-.~,63
To apply this test to the algebraic sum we have

a df b cf c d e I5x4x6 + 2x 3x64.3x4x5
"~
cdf 3x4x6

which by multiplication reduces to

360 36 60 _ 264 _ 22_ ri. a

~W '-

72"
: :

6
: :

3

:

a result the same as before, proving the work correct. An
other example :

a b c d . e
From ----- take -, and -

;

n m n m n

or. find the algebraic sum of

a
.
b c

d_ e_

n m n , m n
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The fractions which have the same denominator may be

grouped together thus :

a c e a c c

n n n n
and

* A ^L b ~ d
m m m

To harmonize these two denominators, m and n, the first

fraction must be multiplied by m and the last by ;/, or

m (a c e) n (b d} m (a c e) + n (b d)
m n m n mn

In the polynomial factor within the parentheses (a c e) we
have the positive quantity a, from which is to be taken the

two negatives c and e, or their sum is to be taken from #, or

(a (c + e) ).
With this modification we have for the alge-

braic sum of the five given fractions

m(a (c +c)) + n (b d)
mn

To test the accuracy of this result, let the value of the sev-

eral letters respectively be as follows : a = n, b =g, c = 3,

d = 4, e = 5, m = 10, and n 8. Then the sum is

10 (11 -(3 + 5)) + 8 (9-4) __ TO __ 7

10 x 8 "80 8*

Now, taking the fractions separately, we have

<*__. _Ii (A,l\ ii_ 8 1
n n n

~
8 V8

+
8/
"

8 8
"

8'

^^945
again- - - = = - ==

;

or, together we have, as the sum of these two results

8
+

lo'



408 ALGEBRA.

To harmonize these denominators we may multiply the first

fraction by 5, and the second by 4, thus :

8x5=4' io x 4 = 4'

and then the sum is

Jl - 35. = 1_.

40
+

40
""

40 8
'

the same result as before, thus the accuracy of the work is

established.

408. Graphical Representation of multiplication.

In Fig. 278, let A BC D, a rectangle, have its sides A B and

A B

FIG. 278.

A C divided into equal parts. Then the area of the figure
will be obtained by multiplying one side by the other, or

putting a for the side A B, and b for the side A C, then the

area will be a x b, or ab. This will be the correct area of

the figure, whatever the length of the sides may be. If, as

shown, the area be divided into 4 x 7 = 28 equal rectangles,
then a would equal 7, and b equal 4, and a b = 7 x 4 = 28, the

area. If A B equal 28 and A C equal 16, then will a 28,

and b = 16, and a b = 28 x 16 = 448, the area.

409. Graphical Multiplication : Three Factor. Let

A B CD E FG (Fig. 279) represent a rectangular solid which

may be supposed divided into numerous small cubes as

shown. Now, if a be put for the edge A B, b for the edge
A C, and c for the edge CD, then the cubical solidity of the
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whole figure will be represented by a x b x c = a b c. If the

edge A B measures 6, the edge A C 3, and the edge CD 4,

then abc = 6x3x4 = 72 = the cubic contents of the

figure, or the number of small cubes contained in it.

DL

/G

FIG. 279.

410. Graphic Representation: Two and Three Fac-

tors Figs. 278 and 279 serve to illustrate the algebraic ex-

pressions a b and a b c. In the former it is shown that the

multiplication of two lines produces a rectangular surface,

or that if a and b represent lines, then a b may represent a

rectangular surface (Fig. 278) having sides respectively

equal to a and b. And so if a, b, and c represent three sev-

eral lines, then a b c may represent a rectangular solid

279) having edges respectively equal to #, ,
and c.

A BE

FIG. 280.

4f|. Graphical Multiplication of a Binomial. Let

A B CD (Fig. 280) be a rectangular surface, and BED F an-

other rectangular surface, adjoining the first. The area of

the whole figure is evidently equal to

(A B + B E) x A C.
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The area is also equal to

ABxA C +BExBD:

or, since A C B D, the area equals

ABxAC + BExAC;

or, if symbols be put to represent the lines; say a for A B,
b for B E, and c for A C, then the two representatives of the

area, as above shown, become : The first

(a + b} x c = area
;

and the last

(a x c) + (b x c)
= area.

Hence we have

(a + b} c = a c -\- b c.

This result exemplifies the algebraic multiplication of a bi-

nomial, which is performed thus : Let a + b be multiplied

by c.

The problem is stated thus :

(a + b) c.

To perform the multiplication indicated we Droceed thus :

a + b

c

ac + be

multiplying each of the factors of the multiplicand sepa-

rately and annexing them by the sign for addition. Putting
the two together, or showing the problem and its answer in

an equation, we have

(a + b) c == a c + b c,

producing the same result, above shown, as derived from

the graphic representation.

412. Graphical Squaring of a Binomial. Let EGCJ
(Fig: 281) be a rectangle of equal sides, and within it draw
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the two lines, A H and F D, parallel with the lines of the

rectangle, and at such a distance from them that the sides,

A B and B D, of the rectangle, A B C D, shall be of equal

length. We then have in this figure the three squares,
E GCJ, AB CD, and FGBH, also the two equal rect-

angles, EFA B and BHD J.

Let E F be represented by a and F G by b, then the area

of ABCD will be axa = a*
\
the area of FGBH will be

b x b b
2

;
the area of E FA B will be a x b = a b, and that
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each factor of the multiplier with each factor of the multi-

plicand and adding the products, thus

a + b

a + b

a b

The same result as above shown by graphical representa-
tion.

413. Graphical Squaring of the Difference of Two
Factors. Let the line E C (Fig. 281) be represented by c,

and the line A E and A C as before respectively by b and

a, then

c b a.

From this, squaring both sides, we have

The area of the square A B C D may be obtained thus :

From the square E G C J take the rectangle E G x E A and

the rectangle F G x D y, minus the square F G B H, or

from c* take the rectangle cb, and the rectangle c b, minus

the square, b
a

, and the remainder will be the square, a 8

; or,

in proper form

In deducting from c* the rectangle cb twice, we have taken

away the small square twice
; therefore, to correct this

error, we have to add the small square, or b*. Then, when

reduced, the expression becomes

This result is obtained graphically. The result by algebraic
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process will now be sought. The square of a quantity may
be obtained by multiplying the quantity by itself, or

(c
-

)

2 = -
(US-)

In this process, as before, each factor of the multiplier is

combined with each factor of the multiplicand and the sev-

eral products annexed with their proper signs (Art. 415),

and thus, by algebraic process, a result is obtained precisely
like that obtained graphically. This result is the square of

the difference of c and b
;
and since c and b may represent

any quantities whatever, we have this general

RULE. The square of the difference of two quantities is

equal to the sum of the squares of the two quantities, minus twice

their product.

FIG. 282.

4(4. Graphical Product of the Sum and Difference

of Two Quantities. Let the rectangle A B C D (Fig. 282)

have its sides each equal to a. Let the line E F be parallel

with A B and at the distance b from it, also, the line F G
made parallel with B D, and at the distance b from it. Then

the line E F equals a -f /;, and the line E C equals a b.

Therefore the area of the rectangle E F C G equals n + b,
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multiplied by a b. From the figure, for the area of this

rectangle, we have

ABCD-ABEH+HFDG = RFC G\

or, by substitution of the symbols,

a 2
a b + b (a B).

Multiply the last quantity thus

a-b
b

ab-b* = b(a-b}.

Substituting this in the above we have

a* a b + a b b* =
( a T &) x (a b).

Two of these like quantities, having contrary signs, cancel

each other and disappear, reducing the expression to this

The correctness of this result is made manifest by an inspec-
tion of the figure, in which it is seen that the rectangle EFC G
is equal to the square A BCD minus the square BJHF.
For ABEH equals BJDG. Now, if from the square
A B CD we take away A BE H, and place it so as to cover

BJDG, we shall have the rectangle EFC G plus the square

BJHF-, showing that the square A BCD is equal to the

rectangle EFC
' G plus the square B JHF'; or

a*=(a + b) x (a-b) + b\

The last quantity may be transferred to the first member of

the equation by changing its sign (Art. 403). Therefore -

+ b} x (a
-

b\

as was before shown.
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The result here obtained is derived from the geometrical

figure, or graphically.
*

Precisely the same result may be
obtained algebraically ; thus

a + b

a- b

a* +ab
-ab-b*

(.114.)

Here the two like quantities, having unlike signs, cancel

each other and disappear, leaving as the result only the dif-

ference of the squares.
The result here obtained is general ;

hence we have this

RuL.E. The product of the sum and difference of two quan-
tities equals the difference of their squares.

^ G 1
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let AB = EF=a; let GB = ?F= l>; let A E = G J= c
;

and EC JH = d, and let these symbols be substituted for

the lines they represent, thus ABEF- GBJF+EFCD -
JFHD = AGCH.

ac be + ad b d= (a b) x (c + d).

An inspection of the figure shows this to be a correct

result. It will now be shown that an algebraical multiplica-

tion of. the two binomials, allotting the signs in accordance

with the rule given, will produce a like result. For example

a-b
c + d

ac be + ad b d.

416. Equality of Squares on Hj potliemise and Sides of

Right-Angled Triangle. The truth of this proposition has

been proved geometrically in Art. 353. It will now be

shown graphically and proved algebraically.

Let A BCD (Fig. 284) be a rectangle of equal sides, and

BED the right-angled triangle, the squares upon the sides

of which, it is proposed to consider. Extend the side BE
to F; parallel with BF draw DG, C K, and A L. Parallel

with ED draw A J and L G. These lines produce triangles,

AHB, AC?, ALC, CKD, and C G D, each equal to the

given triangle BED (Art. 337). Now, if from the square
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A B CD we take Afiffand place it at CD G
;
and if we take

BED and place it at A L C we will modify the square
A BCD, so as to produce the figure LGDEHAL, which
is made up of two squares, namely, the square DEFG and
the square ALFH, and these two squares are evidently

equal to the square A B CD. Now, the square DEFG is the

square upon ED, the base of the given right-angled triangle,
and the square A L FH is the square upon A H = BE, the

perpendicular of the given right-angled triangle, while the

square A B CD is the square upon B D, the hypothenuse of

the given right-angled triangle. Thus, graphically, it is shown
that the square upon the hypothenuse of a right-angled triangle
is equal to the sum of the squares upon the remaining two sides.

To show this algebraically, let B E, the perpendicular of

the given right-angled triangle, be represented by a ; E D,
the base, by b, and B D, the hypothenuse, by c. Then it is

required to show that

Now, since D K == B E = a, therefore, E K = E D -

DK = b a, and the square E K JH equals (b #)
2

,
which

(Art. 413) equals

This is the value of the square EKJH which, with the four

triangles surrounding it, make up the area of the square

A B C D. Placing the triangle A BH of this square outside

of it at CD G, and the triangle B E D at A L C, we have the

four triangles, grouped two and two, and thus forming the

two rectangles C G DK and A L C J. Each of these rect-

angles has its shorter side (A L, C G) equal to BE a, and

its longer side L C, G D, equal to E D = b
;
and the sum of

the two rectangles is ab + ab=2ab. This represents the

area of the two rectangles, which are equal to the four tri-

angles, which, together with the square EKJH, equal the

square ABCD\ or

ABCD^EKJH+CGDK+ALCJ,
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or c* (b a)* + a b + a b, or

c*= (b
-

tf)

2 + 2ab.

Then, substituting for (b #)
2

,
its equivalent as above, we

have

c* = b* 2ab + a*+ 2ab.

Remove the two like quantities with unlike signs (Art. 402),
and we have

c*=b*+a*-, (115.)

which was to be proved.

417. Division the Reverse of Multiplication. As di-

vision is the reverse of multiplication, so to divide one quan-

tity by another is but to retrace the steps taken in multipli-

cation. If we have the area ab (Fig. 278), and one of the

factors a given to find the other, we have but to remove
from a b the factor a, and write the answer b.

If we have the cubic contents of a solid abc (Fig. 279),

and one of the factors a given to find the area represented

by the other two, we have but to remove a, and write the

others, b c, as the answer.

If there be given the area represented by a (b + c) (see

Art. 41 1), and one of the factors a to find the other, we have

but to remove a and write the answer b + c. Sometimes, how-

ever, a (b
+

c) is written ab + ac. Then the given factor is

to be removed from each monomial and the answer written

b + c.

If there be given the area represented by a* + 2 ab + b*

to find the factors, then we know by Art. 412 that this area

is that of a square the sides of which measure a+ b, and that

the area is the product of a + b by a + b ; or, that a + b is

the square root of a1

+ 2 a b + b*.

If there be given the area a~ - 2 ab + b~ to find its fac-

tors, then we know by Art. 413 that this area is that of a

square whose sides measure a b, or that it is the product
of a b bv a b, or the square of a b'
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If there be given the difference, of the squares of two

quantities, or the area represented by a* b*
y
to find its fac-

tors, then we know by Art. 414 that this is the area pro-
duced by the multiplication of a b by a + b.

4-18. BH vi sion : Statement of Quotient. In any case of

division the requirement may be represented as a fraction
;

thus : To divide c + d /by a ^ we write the quotient
thus

c + d-f
a- b

For example, to illustrate by numerals, let a = 7, b = 3,

c = 4, d = 5, and/ = 6. Then the above becomes

7-3 "4*

4 1 9. Division ; Reduction. When each monomial in

either the numerator or denominator contains a common

quantity, that quantity may be removed and placed outside

of parentheses containing the monomials from which it was
taken

; thus, in

2 ab -\. ^ ac 8 ad

~T~

we have 2 and a factors common to each monomial of the

numerator. Therefore the expression may be reduced to

2 a (b + 2 c 4^)

To test this arithmetically we willl put a = 9, b = 7, c 5,

d = 4, and / = 6. Then for the first expression we have

2x9x7 + 4x9x5 8x9x4
~6~~

which equals

126 + 1 80 288
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And for the second expression

2 x 9 (7 + 2 x 5 4 x 4)

6

which equals
18 (17 & 1 6) 18

the same result as before. It will be observed that in this

process of removing all common factors algebra furnishes

the means of performing the work arithmetically with many
less figures. The reduction is greater when the common
factors are found in both numerator and denominator. For

example, in the expression

$ an + 9 fin 15 en

12 dn

we have 3 n a factor common to each monomial in the nu-

merator and denominator ;
therefore the expression reduces

to

And now, since 3 n is a
factor common to both numerator

and denominator, these cancel each other
;
therefore (Art.

371) the expression reduces to

5

To test these reductions arithmetically, let a = 9, b = 8,

c 4, d 6,/= 3, and n =
.5. Then the first expression

becomes

3x9x5 _+_9_
x 8 x 5

- 15x4x5
12x6x5 18x3x5

which equals

135 + 360-300^ *95 _ i_.

360 - 270 90 6
'
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and the second expression becomes

9 + 3x8 5x4
4x6 6x3

'

which equals

9 + 24 20 __ ^S __ 1
2418 6 6*

The same result, but with many less figures.

420. Proportionals : Analysis. In the formula of the

lever (Art. 377), P x CF = R x E C. Let n be put for the

arm of leverage 6^and m for E C. Then we have

Pn = Rm,

from which by division (Art. 372) we have (Art. 399)

and~
(in.)

Suppose there be a case in which neither R nor P severally

are known, but that their sum is known
;
and it is required

from this and the m and n to find R and P. Let

W = R + P,

then W- R = P. (See Art. 403.)

The value of P was above found to be

Since P = R and also equals W - - R, therefore-
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Transferring R to the opposite member (Art. 403) we hav<

Here R appears as a common factor and may be separated

by division (Art. 419) ;
thus

W= I

By division the factor
(

i +
J may be transferred to the

opposite member (Art. 371). Thus we have

W

by which we find the value of R developed. As an example,
let W = looo pounds, m = 3 feet and n 7 feet

;
then

1000 _ looo
~-

i+l
=

"ToT '

Multiplying the numerator and denominator by 7, we get

7 x 1000
=700 .

Since R + P 1000,

and R = 700,

then P 300.

But a process similar to the above develops an expression
for the value of P, which is

i + n

~Z ("70

Putting this to the test of figures, we have

looo looo 3000r> _ _ __ if__ inn
i + i

-

y 10
- 3 -
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4-21. Raising a Quantity to any Power. When a

quantity is required to be multiplied by its equal, the prod-
uct is called the square of the quantity. Thus a x a = a*

(Art. 412). If the square be multiplied by the original

quantity the result is a cube
; or, a

9
x a = a

3

; or, generally,
for-

a, a a, a a a, aaaa, aaaaa,

we put

in which the small number at the upper right-hand cor-

ner indicates the number of times the quantity occurs in

the expression. Thus, if a 2, then #a = 2 x 2 = 4,

a3 = 4 x 2 = 8, a* = 8 x 2 = 16, a" 16 x 2 = 32 ; any term

in the series of powers may be found by multiplying the

preceding one by a, or by dividing the succeeding one by a.

Thus a* x a = a*, and - a\
a

4-22. Quantities with Negative Exponents. The series

of powers, by division, may be extended backward. Thus,

a 6
a* 3 a* * a*

,
a 1 a

if we divide = #
;
= a

;
- = a

;
= a

',

- = a
;

- -a
;

a # # a a a

f?lW; "-=>, etc.
a a

In this series we have - = a*. But a quantity divided by

its equal gives unity for quotient, or - = i. Therefore, = i,

and a i. This result is remarkable, and holds good re-

gardless of the value of a.

From this and the preceding negative exponents we de-

rive the following :
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.
a = = -,

a a

3 a~" I I

a-3=- = -, etc.

Showing that # quantity with a negative exponent may have
substituted for it the same quantity with a positive exponent, but

used as a denominator to a fraction having unity for the

numerator.

423. Addition and Subtraction of Exponential Quan-
tities. Equal quantities raised to the same power may be
added or subtracted; as,

2 + 2
2 = 3#

2

;
but expressions in

which the powers differ cannot be reduced
; thus, a* + a a*

cannot be condensed.

4-24-. multiplication of Exponential Quantities. It

will be observed in Art. 421 that in the series of powers, the

index or exponent increases by unity ; thus, a 1

, a\ a\ a\ etc.
;

and that this increase is effected by multiplying by the root,

or original quantity. From this we learn that to multiply
two quantities having equal roots we simply add their exponents.

Thus the product of a, a'\ and a3

is a' x a* x a* a\

The product of a~
2

,
#3

,
and a b

is a~* x a* x a* = a*.

The exponents here, are : 2 + 3 + 5 8 2 = 6.

425. Division of Exponential Quantities. As division

is the reverse of multiplication, to divide equal quantities

raised to various powers, we need simply to subtract the expo-

nent of the divisor from that of the dividend. Thus, to divide

a" by a9 we have a*"* = a\ That this is correct is manifest
;

for the two factors, a* x a\ in their product, a\ produce the

dividend.

To divide a by a*, we have a^ = a~\ which is equal to -
3
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(see Art. 422). The same result may be had by stating the

question in the usual form. Thus, to divide a1

by a" we have

6 ,
a fraction which is not in the lowest terms, for it may be

put thus, -T 5
=

, by which it is seen that it has in both its
a a a

numerator and denominator the quantity a\ which cancel

each other (Art. 371). Therefore, -
6
= L

;
the same result

as before.

426. Extraction of Radicals. We have seen that the

square of a is a 1

x a
1 = a*

;
of 2 a3

is 2 a* x 2 a3 = 4 a6

;
in each

case the square is obtained by doubling the exponent.
To obtain the square root the converse follows, namely,

take half of the exponent.
Thus the square root of a* is a1

, of a? is a, of a6
is a

3

.

The same rule, when the exponent is an odd number,

gives a fractional exponent, thus : the square root of a
3

is cfr
;

or, of a
b

,
is a*. So, also, the square root of a, or a 1

, is a*.

Therefore, we have <?* = Va, equals the square root of a, and

the cube root of a 1 = cfr = Va.

427. Logarithms. We have seen in the last article the

nature of fractional exponents. Thus the square root of a"

equals eft, which may be put a**. In this way we may have

an exponent of any fraction whatever, as #**. Between the

exponents 2 and 3, we may have any number of fractional

exponents all less than 3 and more than 2. So, also, the

same between 3 and 4, or any other two consecutive num-
bers.

The consideration of fractional exponents or indices has

led to the making of a series of decimal numbers called

logarithms, which are treated in the manner in which expo-
nents are treated

; namely
To multiply numbers add their logarithms.

To divide numbers, subtract the logarithm of the divisor from
the logarithm of the dividend.
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To raise any number to a given power, multiply its logarithm

by the exponent of that po^ver.

To obtain the root of any power, divide the logarithm of the

given number by the exponent of the given power.
As an example by which to exemplify the use of loga-

rithms : What is the product of 25 by 375 ?

We first make this statement :

Log. of 25- = i-

"
375* =2.

Putting at the left of the decimal point the integer char-

acteristic, or whole number of the logarithm at one less than

the number of figures in the given number at the left of its

decimal point.
To find the decimal part of the required logarithm we

seek in a book of Logarithms (such as that of Law's, in

Weale's Series, London) in the column of numbers for the

given number 25, or 250 (which is the same as to the man-

tissa) and opposite to this and in the next column we find

7940 and a .place for two other figures, which a few lines

above are seen to be 39 ; annex these and the whole number
is 0-397940. These we place as below :

Log. of 25 = i 397940.

Now, to find the logarithm of 375, the other factor, we
turn to 375 in the column ol numbers and find the figures

opposite to it, 4031, which are to be preceded by 57, the two

figures found a few lines above, making the whole, -574031,

which are placed as below, and added together.

Log. of 25- = 1-397940
11

375- = 2-574031

The sum = 3-971971

This sum is the logarithm of the product. To find the

product, we seek in the column of logarithms, headed o-,

for -971971, the decimal part. We find first 97, the first two
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figures, and a little below seeking for 1971, the remaining
four figures, we find 1740, those which are the next less,

and opposite these, to the left, we find 7, and above 93, or

together, 937 ; these are the first three figures of the required

product.
For the fourth figure we seek in the horizontal column

opposite 7 and 1740 for 1971, the remaining four figures of

the logarithm, and find them in the column headed 5.

This figure 5 is the fourth of the product and completes
it, as there are only four figures required when the integer
number of the logarithm is 3. The completed statement

therefore is

Log. of 25-'
= 1-397940,

" "
375- = 2-574031,

9375 = 3-97I97I-

Another example in the use of logarithms. What is the

product of 3957 by 94360?
The preliminary statement, as explained in last article, is

Log- 3957 = 3-
"

94360 = 4-

In the book of logarithms seek in the column of numbers

for 3957. In the first column we find only 395, and opposite
to this, in the next column, we find a blank for two figures,

above which are found 59. Take these two figures as the

first two of the mantissa, or decimal part of the required

logarithm, thus, 0-59. Again, opposite 395 and in the col-

umn headed by 7 (the fourth figure of the given number),
we have the four figures 7366. These are to be annexed to

(o- 59) the first two obtained. The decimal part of the loga-

rithm, therefore, is 0-597366.

To obtain the logarithm for 94360, the other given num-

ber, we proceed in a similar manner, and, opposite 943, we
find 0-97; then, opposite 943 and in column headed 6, we
find 4788, or, together, the logarithm is 0-974788. The
whole is now stated thus
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Log. of 3957 = 3-597366

94360= 4-974788

" "
373382000 = 8-572154 = sum of logs.

The two logarithms are here added together, and their sum
is the logarithm of the product of the two given factors.

The number corresponding to the above resultant logarithm

may be found thus: Look in the column headed o for 57,

the first two numbers of the mantissa, then in the same

column, farther down, seek 2154, the other four figures of

the mantissa; or, the four (1709) which are the next less

than the four sought, and opposite these to the left, in the

column of numbers, will be found 373, the first three figures
of the product ; opposite these, to the right, seek the four

figures next less than 2154, the other four figures of the man-
tissa. These are found in the column headed 3 and are

2058. The 3 at the head of the column is the fourth figure
in the product. From 2154, the last four figures of the man-

tissa, deduct the above 2058, or

2154,

2058,

Remainder, 96.

At the bottom of the page, opposite the next less number

(3727) to that contained in 3733, the answer already found,

seek the number next less to the above remainder, 96. This

is 92-8, and is in the column headed 8. Then 8 is the next

number in the product. From 96 deduct 92-8, and multi-

ply it by 10, or

96

92-8

3-2 x 10= 32.

Then, in the same horizontal column, seek for 32 or its next

less number. This is 23-2, found in column 2. This 2 is the

next figure in the product. Additional figures may be ob-

tained by the table of proportional parts, but they cannot be
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depended upon for accuracy beyond two or three figures.

We therefore arrest the process here.

The product requires one more figure than the integer of

the logarithm indicates; as the integer is 8, there must be

nine figures in the product. We have already six
;
to make

the requisite number nine we annex three ciphers, giving
the completed product

3957 x 9436o = 373382000.

By actual multiplication we find that the true product in the

last article is 373382520. In a book of logarithms, carried to

seven places, the required result is found to be 373382500^
which is more nearly exact.

The utility of logarithms is more apparent when there

are more than two factors to be multiplied, as, in that case,

the operation is performed all in one statement. Thus:

What is the product of 3-75, 432-95, 1712, and 0-0327 ?

The statement is as follows :

Log. 3-75 = 0-574031

432-95 = 2-636438

1712- = 3-233504

0327 = 8-

Product = 90891. = 4-958521
16

Explanations of working are given more in detail in most of

the books of logarithms.

428. Completing the Square of a Binomial. We
have seen in Art. 412 that the square of a binomial (a + &)

equals a" + 2 ab + b* a trinomial the first and last terms

of which are each the square of one of the two quantities,

while the second term contains the second quantity multi-

plied by twice the first quantity
In analytical investigations it frequently occurs that an

expression will be obtained which may be reduced to this

form :
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a* + mab=f, (nS.)

in which m is the coefficient of the second term, and a and b

are two quantities represented by a and b or any other two

symbols.
A comparison of this expression with the square of a bi-

nomial (112.) contained in Art. 412, shows that the member
at the left comprises two out of the three terms of the square
of a binomial

;
as thus

a* + 2 a b + b*,

but with a coefficient m instead of 2. It is desirable, as will

be seen, to ascertain a proper third term for the given ex-

pression ; or, as it is termed,
" to complete the square." The

method by which this is done will now be shown.

A consideration of the above trinomial shows that the

third term is equal to the square of the quotient obtained by

dividing the second term by twice the square root of the

first
;
or

Now a third term to the above binomial, equation (i 18.), may
be obtained by this same rule. For. example

The rule for the third term then is: Divide the second term

by twice the square root of the first, and square the quotient.

As an example, let it; be required to find the third term

required to complete the square in the expression

6 n x -f- 4** =/,

in which n and / are known quantities and x unknown.

Putting it in this form

4_r
2

+ 6 nx = /,

and dividing by 4, we have
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4 4
which reduces to

Now applying the above rule for finding the third term, we
have

which is the required third term. To complete the square
we add this third term to both members of the above re-

duced expression, and have

The member of this expression at the left is the completed

square of a binomial, the two quantities constituting which

are the square roots of the first and third terms respectively ;

or x and f n, and we therefore have

-
2 n*+\-H,-

and now taking the square root of both sides of the expres-

sion, we have

and, by transferring the second quantity to the right mem-

ber, we have

an expression in which x, the unknown quantity, is made to

stand alone and equal to known quantities.

The process of completing the square is useful, as has

been shown, in developing the value of an unknown quan-
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tity where it enters into an expression in two forms, one as

the square of the other.

As an example to test the above result, let/ 256 and

n = 8. Then we have by the last expression for the value

of*

__
4

= 1/64+36 - 6,

= y ioo 6,

x = 10 6 = 4.

Now this value of x may be tested in the original expres-
sion

6 nx + 4** = /,

for which we have

6x8x4 + 4x42 = /,

192 + 64 = /,

the correct value as above.

PROGRESSION.

429. Arithmetical Progreion. In a series of num-

bers, as i, 3, 5, 7, 9, etc., proceeding in regular order, in-

creasing by a common difference, the series is called an

arithmetical progression ;
the quantity by which one num-

ber is increased beyond the preceding one is termed the

difference. If d represent the difference and a the first term,

then the progression may be stated thus

Terms i, 2, 3, 4, 5,

a, a + d, a + 2 d, a + 3 d, a + 4 d, etc.

The coefficient of d is equal to the number of terms preced-

ing the one in which it occupies a place. Thus the fifth

term is a + ^d, in which the coefficient 4 equals the number
of the preceding terms.

From this we learn the rule by which at once to desig-
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nate any term without finding all the preceding terms. For
the one hundredth term we should have a + 99 d, or, if the

number of terms be represented by n> then the last term

would be represented by

/ = a + (n i) d. (H9-)

For example, in a progression where a, the first term, equals

i, d the difference, 2, and n, the number of terms, 90, the last

term will be

/ = a + (n --
i) d = i + (.90 i) 2 = 179.

Therefore, to find the last term :

To the first term add the product of the common difference

into the number of terms less one.

By a transposition of the terms in the above expression,

so as to give it this form

a = / - (n
-

i)</, (120.)

we have a rule by which to find the first term, which, in

words, is

Multiply the number of terms less one by the common differ-

ence, and deduct the product from the last term ; the remainder

will be the first term.

By a transposition of the terms of the former expression

to this form
/ - a = ( n

-
i) d,

and dividing both members by (n
-

i),
we have

rf=^-=^. (121.)n - i
'

which is a rule for the common difference, and which, in

words, is

Subtract the first term from the last, and divide the remain-

der by the number of terms less one ; the quotient will be the com-

mon difference.

Multiplying both members of the equation (121.) by

(n i) and dividing by d, we obtain
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l-a
n - 1 =

-J-'

Transferring i to the second member, we have

l-a
n = , + i

; (122.)

which is a rule for finding the number of terms, and which,
in words, is

Divide the difference between the first and last terms by the

common difference ; to the quotient add unity, and the sum will

be the number of terms.

Thus it has been shown, in equations (119,) (120), (121),

and (122), that when, of the four quantities in arithmetical

progression, any three are given, the fourth may be found.

The sum of the terms of an arithmetical progression may
be ascertained by adding them

;
but it may also be had by a

shorter process. If the terms are written in order in a hori-

zontal line, and then repeated in another horizontal line be-

neath the first, but in reversed order, as follows :

i, 3, 5, 7, 9, 11, 13, 15,

15, 13, 11, 9, 7, 5, 3, i,

16, 16, 16, 16, 16, 16, 16, 16,

and the vertical columns added, the sums will be equal. In

this case the sum of each vertical couple is 16, and there are

8 couples ;
hence the sum of these 8 couples is 8 x 16 = 128.

And in general the sum will be the product of one of the

couples into the number of couples. It will be observed

that the first couple contains the first and last terms, I and

15 ; therefore the sum of the double series is equal to the

product of the sum of the first and last terms into the

number of terms. Or if 5 be put to represent the sum of

the series, we shall have

2 S = (a + I) n,

and, dividing both sides by 2

-S = ( + /); (I23 .)
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Or, in words : The sum of an arithmetical series equals the prod-
uct of the sum of the first and last terms, into half the number

of terms.

430. Geometrical Progression. A series of numbers,
such as i, 2, 4, 8, 16, 32, 64, 128, 256, etc., in which any one

of the terms is obtained by multiplying the preceding one

by a constant quantity, is termed a Geometrical Progression.

The constant quantity is termed the common Ratio, and is

equal to any term divided by the preceding one. Thus in

the above example
-- or Or 2, equals the common ra-
o 42

tio of the above series. In the series, i, 3, 9, 27, etc., we
have for the ratio

27 _ 9 _ 3

~9 "3^1
:

which is the common ratio of this series.

A geometrical series may be put thus :

Terms: I, 2, 3, 4;

Progress. : i, i x 3, i x 3 x 3, i x 3 x 3 x 3 ;

or thus

Terms: I, 2, 3, 4:

Progress. : i, i x 3, i x 3
2
,

i x 3
8

;

in which the common ratio, in this case 3, appears in each

term and with an exponent which is equal to the number of

terms preceding that in which it occupies a place.

If the first term be represented by a and the common ra-

tio by r, then the following will represent any geometrical

progression

a, ar, ar z
,
ar 3

,
#r 4

,
etc. (124.)

For example, let a = 2 and r = 4 ;
then the progression

will be

2, 8, 32, 128, 512, etc.
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If r = unity, then when a = 2 the progression becomes

2, 2, 2, 2, 2, etc.

If r be less than unity, then the progression will be a de-

creasing one.

For example, let a =. 2 and r = -J. Then we have for

the progression

1 1 L JL
2j Iy

2' 4' 8' 16'
e

If the number of terms be represented by n, and the last by
/, then the last term will be

For example, let n equal 6, then the progression will be

Terms: i, 2, 3, 4, 5, 6;

Progress.: a, ar, ar*
y

ar 3
, ar\ ar*\

in which the .exponent of the last term equals n i =
6 _ i = 5.

If 5 be put for the sum of a geometrical progression, we
will have

S = a + ar + ar z + ..... + a r n ~* + a r ll ~ l

.

Multiply each member by r
y
then

Sr = ar + ar 2 + ..... + a r n ~ 2
+ a r*~ l

+ ar n
.

Subtract the upper line from the lower; then

S r = ar + ar 2 + ..... + ar n ~ 2 + a r 11 ' 1 + a r*,

S =g + ar+ar 2 + ..... + ar n ~ 2 + ar*~ l_
Sr - s = - a *"* * ~* + ar",

Sr s = a + ar n
,

S (r i)
= a + a r n = ar n

a,

ar " ~~ a
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The last term (equation (125.)) equals I ar n ~ l

, and since

ar n = r x ar n ~ * = r /, therefore

Thus, to find the sum of a geometrical progression : Multi-

ply the last term by the ratio ; from tJie product deduct the first

term, and divide the remainder by the ratio less unity.

For example, the sum of the geometrical progression

S = i + 3 + 9 + 27 + 81 + 243 +729 = 1093

by actual addition.

To obtain it by the above rule

rl a 3 x 729 I

s== : TfST II093 '

the correct result.

If there be a decreasing geometrical progression, as i, -J,

J, T̂ , etc., in which the ratio equals ^, the sum will be

S=i T + " + ^ +
-g7>

etc -> to infinity.

Multiply this by 3, and subtract the first from the last

35=3+1+- + - + + + to infinity.

S= i + i + i + ^ +
g

I

f + to infinity.

2 5 = 3 or 5 = if

In a decreasing progression let r, the common ratio, be

represented by (b less than c), and the first term by a, then

ihe sum will be

b b2 b
3

S=a + a- + a- + a-3 +, etc., to infinity.
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Multiply this by -, and subtract the product from the

above

^b b d* b*
S- = a- + a- + a-^ + etc., to infinity.c c c c

b b* l>
3

=z a + a + a
2 + a-j + to infinity.

b b* b
3

S a \- a + <2 -j + to infinity.cere *

Or s(i --)*,

For example, let the first term of a geometrical progression

equal 2, and the ratio equal ,
then the sum will be

From this, therefore, we have this rule for the sum of an in-

finite geometrical progression, namely : Divide the first term

by unity less the ratio.
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431. Relation of Sum and Difference of Two Lines.

Let AB and CD (Fig. 285) be two given lines; make EH
-B

D

E-
] |-

H J

FIG. 285.

equal to A B, and HG equal to CD-, then E G equals the

sum of the two lines.

Make FG equal to A B, which is equal to EH.
Bisect E G in J ; then, also, J bisects HF\ for

and
EH=FG.

Subtract the latter from the former ;
then

EJ-
but

E
and

therefore

Now, E J is half the sum of the two lines, and HJ is half

the difference ;
and

Ey-Hy=EH=AB.
Or : Half the sum of two quantities, minus half their dif-

ference, equals the smaller of the two quantities.
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Let the shorter line be designated by a, and the longer

by b
;
then the proposition is expressed by

_a+b b a

2 2
(128.)

We also have EJ+JFEF CD\ or, half the mm
of two quantities, plus half their difference, equals the larger

quantity.

432. Perpendicular, in Triangle of Known Side.

Let ABC (Fig. 286) be the given triangle, and CE a perpen-
dicular let fall upon A B, the base. Let the several lines of

the figure be represented by the symbols a, b, c, d, g, and f,

as shown. Then, since A EC and BEC are right-angled

triangles, we have (Art. 416) the following two equations,

and, by subtracting one fr.om the other, the third

Then (Art. 414), by substitution, we have

(f + f)(f-e) =
(

+ *)(-*)

By division we obtain

_ a- 6)

f+g
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According to Art. 431, equation (128.), we have

In this expression let the value of / g, as above, be

substituted, then we will have

~ =f+* (<*
+

*) (a
-

b)

Multiply the first fraction by (f + g), then join the two
fractions, when we will have

The lines f and g, in the figure, together equal the line

c
; therefore, by substitution

f - (a + b) (a
-

b]g = -^- -i. (129.)

This is the value of the line g.

It may be expressed in words, thus: The shorter of the

two parts into which the base of a triangle is divided by a

perpendicular let fall from the apex upon the base, equals the

quotient arising from a division by twice the base, of the differ-

ence between the square of the base and the product of the sum
and difference of the two inclined lines.

As an example to show the application of this rule, let

a 9, b = 6, and c = 12
;
then equation (129.) becomes

12' - (9 + 6) (9
-

6)

2 X 12

. .144
-

iT><"3-

99-
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Now, to obtain the length of d, the perpendicular, by the

figure, we have

-and, extracting the square root

or, in words : The altitude of a triangle equals the square root

of the difference of the squares of one of the inclined sides and
its base.

As an example, take the same dimensions as before, then

equation (130.) becomes

The square of 6 = 36-
"

4i = 17-015625

6 2 -4i2= 18^984375,

the square root of which is 4-44234; therefore

d= t-- 4^ = 4. 44234.

This may be tested by applying the rule to the other in

clined side and its base

c = 12

* = 4*

/= 71-

Then, ^-
9' = 81-

?%*= 62-015625

9'
- 7F = ^8-984375.
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The same result as before, producing for its square root
the same, 4-44234, the value of d\ therefore

433. Trigon : Radiu of ircumcribed and Incribed
Circles: Area. Let A B C (Fig. 287) be a given trigon or

triangle with its circumscribed and inscribed circles. Draw
the lines A D F, DB and D C.

The three triangles, A B D, A CD, and B D C, have their

apexes converging at D, and form there the three angles,
A DB, ADC, and BD C. These three angles together form

four right angles (Art. 335), and each of them, therefore,

equals f of a right angle.
The angles of the triangle BDC together equal two

right angles (Art. 345). As above, the angle BDC equals |

of a right angle, hence 2
-J
= ^^ | of a right angle,

equals the sum of the two remaining angles at B and C.

The triangle BDC is isoceles (Art. 338); for the two sides

BD and D C, being radii, are equal ;
therefore the two angles

at the base B and C are equal, and as their sum, as above,

equals f of a right angle, therefore each angle equals -J of a

right angle. Draw the two lines FC and F B. Now, be-
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cause Z> C and DF are radii, they are equal, hence DFC is

an isoceles triangle.

It was before shown that the angle B D C equals | of a

right angle; now, since the diameter A F bisects the chord

B C, the angles BDE ^nd ED C are equal, and each equals
the half of the angle BD C\ or, \ of f of a right angle equals

of a right angle. Deducting this from two right angles

(the sum of the three angles of the triangle), or 2 f =
\\ | of a right angle equals the sum of the angles at F and

C', hence each equals the half of f, or f of a right angle;
therefore the triangle DFC is equilateral. The triangles
DBF and DFC are equal. The angles BD C and BF C are

equal; the line BC is perpendicular to DF and bisects it,

making DE and EF equal; hence DE equals half D F, or

DB, radii of the circumscribing circle. Therefore, putting
R to represent B D, the radius of the circumscribing circle,

and b = B C, a side of the triangle A B C, by Art. 416, we
have

+ DE

Transferring and reducing

4
"

4'

4/ 4

Ijpt^i^
4 ~4
4 x I^ == i3 == ^34 ~3 ~3

'

Or, The Radius of the circumscribing circle of a regular trigon

or equilateral triangle, equals a side of the triangle divided by

the square root of 3.
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By reference to Fig. 287 it will be observed, as was

above shown, that D E = E F=- =-
; or, D E, the ra-

dius of the inscribed circle, equals half the radius of the

circumscribed circle; or, again, dividing equation (131.) by
2, we have

R _ b

2
"

2 t/y-

and, putting r for the radius of the inscribed circle, we
have

Or: The radius of the inscribed circle of a regular trigon equals

the half of a side of the trigon divided by the square root of 3.

To obtain the area of a trigon or equilateral triangle ;
we

have (Art. 408) the area of a parallelogram by multiplying
its base into its height ;

and (Arts. 341 and 342) the area of a

triangle is equal to half that of a parallelogram of equal base

and height, therefore, the area of the triangle BD &(Fig. 287)

is obtained by multiplying B C, the base, into the half of

ED, its height. Or, when A^ is put for the area

or_ ,:;/;' *=>*.,

substituting for R its value (131.)"

jr= *x-4=4 1/3

4^3

This is the area of the triangle BD C.

The triangle A B C is compounded of three equal tri-

angles, one of which is the triangle BD C
;
therefore the

area of the triangle ABC equals three times the area of the

triangle B DC\ or, when A represents the area
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4 1/3
(1330

Or: The area of a regular /rz^wz or equilateral triangle

equals three fourths of the square of a side of the triangle di-

vided by the square root of 3.

Tetragon ; Radius of Circumscribed and In-

scribed Circles: Area. Let A B CD (Fig. 288) be a given

tetragon or square, with its circumscribed and inscribed

FIG. 288.

circles, of which A E is the radius of the former and EF that

of the latter. The point F bisects A B, the side of the

square. A F equals EF and equals half A B, a side of the

square. Putting R for the radius of the circumscribed

circle and b for A B, we have (Art. 416)

:

7T: <'34-)

Or: The radius of the circumscribed circle of a regular tetra-

gon equals a side of the square divided by the square root of 2.
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By referring to the figure it will be seen that the radius

of the inscribed circle equals half a side of the square

b
r (135.)

The. area of the square equals the square of a side

A = b*. (136.)

435. Hexagon: Radius of Circumscribed and In-

scribed Circles: Area. LetA B CD EF(Fig. 289) be an equi-
lateral hexagon with its circumscribed and inscribed circles,

of which EG is the radius of the former, and GH that of

the latter. The three lines, A D, BE, and CF, divide the

FIG. 289.

hexagon into six equal triangles with their apexes converg-

ing at G. The six angles thus formed at G are equal, and

since their sum about the point G amounts to four right

angles (Art. 335), therefore each angle equals or f of a

right angle. The sides of the six triangles radiating from G
are the radii of the circle, hence they are equal ; therefore,

each of the triangles is isosceles (Art. 338), having equal angles
at the base. In the triangle EGD, the sum of the three

angles being equal to two right angles (Art. 345), and the

angle at G being, as above shown, equal to f of a right angle,
therefore the sum of the two angles at E and D equals
2 = J of a right angle ; and, since they equal each other,
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therefore each equals f of a right angle and equals the angle
at G

;
therefore E G D is an equilateral triangle. Hence

ED, a side of a hexagon, equals E G, the radius of the circum-

scribing circle

R=b.
(137.)

As to the radius of the inscribed circle, represented by G H,
a perpendicular from the centre upon ED, the base; the

point H bisects E D. Therefore, EH equals half of a side

of the hexagon, equals half the radius of the circumscribing
circle. Let R = this radius, and r the radius of the inscribed

circle, while b = a side of the hexagon ;
then we have (Arts.

353 and 416)

i

r

Now, R =1 b, therefore

r =^-- '

(138.)

Or : The radius of the inscribed circle of a regular hexagon

equals the half of a side of the hexagon, multiplied by the

square root of 3.

As to the area of the hexagon, it will be observed that the

six triangles, A B G, B G C, etc., converging at G, the centre,

are together equal to the area of the hexagon. The area of

E G D, one of these triangles, is equal to the product of D,
the base, into the half of G H, the perpendicular ; or, when
N is put to equal the area

GH
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and, since r
t as above, equals

* 3
,

2

This is the area of one of the six equal triangles ; therefore,
when A is put to represent the area of the hexagon, we have

A =
(139.)

Or : The area of a regular hexagon equals three lialves of the

square of a side multiplied by the square root of $.

FIG. 290.

4-36- Octagon: Radius of Circumscribed and In-

icribed Circles: Area. Let CEDBF (Fig. 290) represent a

quarter of a regular octagon, in which ^is the centre, ED
a side, and CE and DB each half a side, while CF and

Fare radii of the inscribed circle, and BF and DF are

radii of the circumscribed circle.



450 POLYGONS.

Let R represent the latter, and r the former
;
also let b

represent ED, one of the sides, and n be put for A D, and

for A E. Then we have

b_
2~

T*

b
or- n = r-->

Since A D Eis a right-angled triangle (Art. 416), we have

T = ED\

n* = b\

b*

Placing the value of n, equal to the value before found,

we have

b b f i i\
-=f - + -

)
2 V 1/2 2/

This coefficient may be reduced by multiplying the first

fraction by ^2, thus

JL x t5 = .^i
V2

X
2

X>
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therefore

r =

Or : The radius of the inscribed circle of a regular octagon

equals half a side of the octagon multiplied by the sum of unity

plus the square root of 2. In regard to the radius of the cir-

cumscribed circle, by Art. 416 we have

In this expression substituting for r
a
, its value as above, we

have

The square of the coefficient ( t/2 + i
) by Art. 412 equals

21/2+1 =21/2 + 3, then

Or : The radius of the circumscribed circle of a regular octagon

equals half a side of the octagon multiplied by the square root of
the sum of twice the square root of 2 plus 4.

In regard to the area of the octagon, the figure shows

that one eighth of it is contained in the triangle D E F.
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The area of D E F, putting it equal to N, is

BFN = EDx -,

N = b x ,

AT = ( 1/2" + i)
.

4

This is the area of one eighth of the octagon ; the whole

area, therefore, is

.

4

A = (V~2+i)2b\ (142.)

Or : The area of a regular octagon equals twice the square of a

side, multiplied by the sum of the square root of 2 added to unity.
When a side of the enclosing square, or diameter of the

inscribed circle, is given, a side of the octagon may be found ;

for from equation (140.), multiplying by two, we have

2 r -
( V~2 + i) b.

Dividing by V.2 + i, gives

The numerator, 2 r, equals the diameter of the inscribed

circle, or a side of the enclosing square ; therefore :

The side of a regular octagon, equals a side of the enclosing

square divided by the sum of the square root of 2 added to unity.

437. Dodecagon : Radius of Circumscribed and In-

scribed Circles: Area. Let A B C (Fig. 291) be an equilat-
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era! triangle. Bisect A B in F\ draw CFD
;
with radius A C

describe the arc A D B. Join A and D, also D and B
;
bisect

A D in E
;
with the radius E C describe the arc E G. Then

A D and D B are sides of a regular dodecagon, or twelve-

sided polygon ;
of which A C, D C, and B C are radii of the

circumscribing circle, while E C is a radius of the inscribed

circle.

The line A B is the side of a regular hexagon (Art. 435).

Putting R equal to A C the radius of the circumscribing cir-

cle
; r, = E C, the radius of the inscribed circle

; ,
= A D, a

side of the dodecagon, and n D F. Then comparing the

FIG. 291.

homologous triangles, ADF and A EC (the angle ADF
equals the angle EA C, and the angles DFA and A E C are

right angles); therefore, the two remaining angles DAF
and A CE must be equal, and the two triangles homologous
(Art. 345). Thus we have

DF : DA : : AE : A C,

n : b : : : R,

**&
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In Art. 435 it was shown that FC (Fig. 291), or GH oi

Fig. 289, the radius of the inscribed hexagon, equals V~l ~,

n
and in which its b = R

;
Fc VJ .

Now
( Fig. 291)

= DC - FC,
or

n = R-^~

Substituting this value of n, in the above expression, we
have

R-~

Multiplying by R and reducing, we have

R = |_ ^_ b. (144.)

Or : The radius of the circumscribed circle of a regular dodec-

agon, equals . a side of the dodecagon multiplied by the square
root of a fraction, having unity for its numerator and for its

denominator 2 minus the square root of 3.

Comparing the same triangles, as above, we have

FD \ FA : : EA ; EC,
or

R
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Or : The radius of the inscribed circle of a regular dodecagon

equals a side of the dodecagon divided by the difference between

4 and the square root of 3.

The area of a dodecagon is equal to twelve times the area

of the triangle ADC (Fig. 291). The area of this triangle is

equal to half the base by its perpendicular ; or, A E x E C
;

or

b

or, where N equals the area

Or, for the area of the whole dodecagon

12 N 6 br,

A =6br.

Substituting for r its value as above, we have

Or : The area of a regular dodecagon equals the square of a

side of the dodecagon, multiplied by a fraction having 6 for its

numerator, and for its denominator, 4 minus twice the square
root of 3.

438. Hecadecagon : Radius of Circumscribed and Iii-

cribed Circle : Area. Let A B CD (Fig. 292) be a square

enclosing a quarter of a regular octagon CEFB, EF being
one of its sides, and CE and FB each half a side, while FD
is the radius of the circumscribed circle, and JD the radius

of the inscribed circle of the octagon. Draw the diagonal
A D

;
with DFior radius, describe the circumscribed circle

EGF\ join G with F and with E
;
then EG and GFvfill

each be a side of a regular hecadecagon, or polygon of six-

teen sides.

An expression for FD, the radius of the circumscribed
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circle, may be obtained thus: Putting FD = R] HD = r;

GF = b\ GJ n\ and JF -
(Art. 416), we have

GT = GF* JF\

= -
(9-

C D
FIG. 292.

Comparing the two homologous (Art. 361) triangles, GJF
and FHD (Art. 374), we have

Gy : GF : : HF : FD,

n, b :: I
: *,

Putting this value of n' in an equation against the former

value, we have

In Art. 436, the value of F D, as the radius of the cir-

cumscribed circle of a regular octagon, is given in equation

(141.) as

bR V2
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in which b represents a side of the octagon, or EFt
for

which we have put s. Substituting s for b and putting the

numerical coefficient under the radical, equal to B, we
have

Squaring each member gives

From which, by transposition, we have

2

Substituting in the above expression for
( ) ,

this value
\2 /

of it, gives

^- = t>>-*\
4^ 2

~
B

.

Transposing, we have

-*1 + *'=*-.
4R* B

Multiplying the first term by B, and the second by
we have

*

Bb* + 4^ 4

_ ^

Transposing, we have

2 = -Bb\
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To complete the square (Art. 428) we proceed thus

Taking the square root, we have

Restoring B to its value, 2 I/I + 4 as above, we have

B I = 2^2

multiply these

2 + 2 i/J,

3 +

= 4/2"+ 2.

Therefore

2. (147.)
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Or: The radius of the circumscribed circle of a regular
hecadecagon equals a side of the hecadecagon multiplied by the

square root of the sum of two quantities, one of which is the

square root of 2 added to 2, and the other is the square root of
the sum of seven halves of the square root of 2 added to 5.

To obtain the radius of the inscribed circle we have (Fig.

292)

H D* = FD* HF\

Substituting for R a
its value as above, we have

r
a = &*

( B(B} + * B) - ,

The coefficient of b is the same as in the case above, ex-

cept the i; therefore its numericaK value will be i less,

or

r = b \/ ^S + I V2 + V2 + if. (148).

Or: The radius of the inscribed circle of a regular hecadeca-

gon equals a side of the hecadecagon multiplied by the square root

of two quantities, one of which is the square root of 2 added to

if, and the other is the square root of the sum of seven halves of
the square root of 2 added to 5.

To obtain the area of the hecadecagon it will be observed

that the area of the triangle GFD (Fig. 292) equals HD x

H F, and that this is the TV part of the polygon ;
we there-

fore have

A = \6HDxHF,

A = i6r- = Sr&.
2
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The value of r is shown in (148.); therefore we have

A = 8 b + 1
.

+ if. (H9-)

Or : The area of a regular hecadecagon equals eight times

the square of its side, multiplied by the square root of two qtian-

tities, one of which is the square root of 2 added to if, and the

other is the square root of the sum of seven halves of the square
root of 2 added to 5.

439. Polygon* : Radius ofCircumscribed and I uscribed

Circles : Area. In Arts. 433 to 438 the relation of the radii

to a side in a trigon, tetragon, hexagon, octagon, dodeca-

gon and hecadecagon have been shown by methods based

upon geometrical proportions. This relation in polygons
of seven, nine, ten, eleven, thirteen, fourteen and fifteen

sides, cannot be so readily shown by geometry, but can be

easily obtained by trigonometry as also said relation of the

parts in a regular polygon of any number of sides. The na-

ture of trigonometrical tables is discussed in Arts. 473 and

474. So much as is required for the present purpose will

here be stated.

Let ABC (Fig. 293) represent one of the triangles into

which any polygon may be divided, in which B C = b = a

side of the polygon ;
A C R = the radius of the circum-

scribed circle
;
and A D = r = the radius of the inscribed

circle.
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Make E C equal unity ;
on C as a centre describe the arc

E F\ draw FH and E G perpendicular to B C, or parallel to

A D
; then for the uses of trigonometry E G is called the

tangent of c, or of the angle A CB, and FHis the sine, and

H C the cosine of the same angle.

These trigonometrical quantities for angles varying from

zero up to ninety degrees have been computed and are to be

found in trigonometrical tables.

Referring now to Fig. 293 we have

HC : FC : : DC : AC,

b
cos. c : I : : : R,

(150.)

Again

E C : E G : : D C : A D,

b
I : tan. c : :

-
: r,

r = - tan. c. (151.)

These two equations give the required radii of the cir-

cumscribed and inscribed circles. They may be stated thus :

The radius of the circumscribed circle of any regular poly-

gon equals a side of the polygon divided by twice the cosine of
the angle formed by a side of the polygon and a radius from one

end of the side.

The radius of the inscribed circle of any regular polygon

equals half of a side of the polygon imiltiplied by the tangent of

the angle formed by a side of thepolygon and a radius from one

end of the side.

The area of a polygon equals the area of the triangle

ABC (Fig. 293), (of which B C is one side of the polygon
and A is the centre), multiplied by the number of sides in

the polygon ; or, if n be put to represent the number of the

sides and A the area, then we have
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A = Bn,

in which B equals the area of the triangle. The area of A
B C (Fig. 293) is equal to AD x B D, or

For r substituting its value, as in equation (151.), we have

b b i
7B = - tan. c- = b" tan. c.

2 24
Therefore, by substitution

A =-b*n tan.*. (152.)

Or : The area of a regular polygon equals the square of a

side of the polygon, multiplied by one fourth of the number of
its sides, and by the tangent of the angle formed by a side of the

polygon, and a radius from one end of the sides.

440. Polygons : Their Angles. Let a line be drawn
from each angle of a regular polygon to its centre, then

these lines form with each other angles at the centre, which
taken together amount to four right angles, or to 360 de-

grees (Arts. 327, 335).

If this 360 degrees be divided by the number of the sides

of the polygon, the quotient will equal the angle at the cen-

tre of the polygon, of each triangle formed by a side and two

radii drawn from the ends of the side. For example: if

ABC (Fig. 293) be one of the triangles referred to, having
B C one of the sides of the polygon and the point A the cen-

tre of the polygon, then the angle B A (Twill be equal to 360

degrees divided by the number of the sides of the polygon.
If the polygon has six sides, then the angle BA C will contain

= 60 degrees ;
or if there be 10 sides, then the angle at

A, the centre, will contain ----- = 36 degrees. The angle
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BAD equals half the angle BA C, or, when n equals the

number of sides, the angle BAG equals

360
n

BA C
and the triangle B A D = , equals

360
2 n

Now the angles B A D + D B A equal one right angle
(Art. 346), or 90 degrees. Hence the angle DBA =90 -

BAD,or the angle c equals

(1530
2 n

For example, if n equal 6, or the polygon have six sides,

then

Therefore, the angle c, contained in equations (150.), (151.)*

and (152.), equals 90 degrees, less the quotient derivedfrom a di-

vision of 360 by twice the number of sides to the polygon.

441. Pentagon: Radius of the Circumscribed and In-

scribed Circles: Area. The rules for polygons developed
in the two former articles will here be exemplified in their

application to the case of a regular pentagon, or polygon of

five sides.

To obtain the angle c (153.), we have n = 5, and

,>= 90- 3g
= go- 36 = 54.

For the radius of the circumscribed circle, we have

(150.)-

2 COS. C
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b

2 cos. 54
C

i

2 cos. 54

Using a table of logarithmic sines and tangents (Art. 427),

we have

Log. 2 =0-3010300
Cos. 54 = 9-7692187

Their sum = 0-0702487 subtracted from

Log. i = o-ooooooo

0-85065 =9-9297513
Therefore

, = 0-85065 .

Or : The radius of the circumscribed circle of a regular/^ta-
gon- equals a side of thepentagon multiplied by the decimal o 8 5065 .

For the radius of the inscribed circle, we have (151.)

= - tan. c
t

.tan. 54
r = o

For this we have

Log. tan. 54 = 0-1387390

Log. 2 = 0-3010300

0-68819 = 9-8377090.
Therefore

r = 0-68819 b.

Or: The ra&usofthe inscribed circle of a regular pentagon

equals a side of the pentagon multiplied by the decimal 0-68819.

For the area we have (152.)

A =%fr*n tan. c,

A = J x 5 tan. 54 b\

A =ftan. 54 b\
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For this we have

Log. 5.
= 0-6989700

Log. tan. 54 =_- o- 1387390

0-8377090

Log. 4 = 0-6020600

1-72048 0-2356490
Therefore

A = i- 72048 b \

Or: The area of a regular pentagon equals the square of its

side multiplied by I 72048.

1-42. Polygons Table of ontant multipliers. To
obtain expressions for the radii of the circumscribed and in-

scribed circles, and for the area for polygons of 7, 9, 10, n,
13, 14, and 15 sides/a process would be needed such pre-

cisely as that just shown in the last article for a pentagon,

except in the value of n and c, which are the only factors

which require change for each individual case.

No useful purpose, therefore, can be subserved by ex-

hibiting the details of the process required for these several

polygons. The values of the constants required for the

radii and for the areas of these polygons have been com-

puted, and the results, together with those for the polygons
treated in former articles, gathered in the annexed Table of

Regular Polygons.

REGULAR POLYGONS.

SIDES.
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In this table R represents the radius of the circumscribed

circle
;

r the radius of the inscribed circle
;
b one of the

sides, and A the area of the polygon. By the aid of the

constants of this table, R, the radius of the circumscribed

circle of any of the polygons named, may be found when a

side of the polygon is given. For this purpose, putting m
for any constant of the table, we have

R = bm. ( 1 S4-)

As an example : let it be required to find R, for a penta-

gon having each side equal to 5 feet
;
then the above expres-

sion becomes

R 5 x 0-85065,
R = 4-25325-

The radius will be 4 feet 3 inches and a small fraction.

In like manner the radius of the inscribed circle will be

r = bm; (1550

and for a pentagon with sides of 5 feet, we have

r = 5 x 0-68819,
r 3-44095-

Or, the radius of the inscribed circle will be 3 ft. -j^ and a

small fraction. Or, multiplying the decimal by 12, 3 ft. 5 in.

-f^Q and a small fraction.

The area of any polygon of the table may be obtained

by this expression

A^b*m; (156.)

and, applying this to the pentagon as before, we have

A 5
2
x i 72048,

A 43-012.
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Or, the area of a pentagon having its sides equal to 5 feet,

is 43 feet and T-^f7 of a foot.

By the constants of the table a side of any of its poly-

gons may be found, when either of the radii, or the area,

are known.

When R is known, we have

When r is known, we have-

When the area is known, we have
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443. Circles: Diameter and Perpendicular: mean
Proportional. Let ABC (Fig. 294) be a semicircle. From
C, any point in the curve, draw a line to A and another to

B\ then ABC will be a right-angled triangle (Art. 352).

Draw the line CD perpendicular to the diameter AB\
then CD w\\\ divide the triangle A B C into two triangles,

A CD and C B D, which are homologous. For, let the

triangle CB D be revolved on D as a centre until its line

CD shall come to the position E D, and the line DB oc-

cupy the position D F, each in a position at right angles

to its former position, the point B describing the curve

B F, and the point C the curve C E, and each forming a

quadrant or angle of ninety degrees. Since these points
have revolved ninety degrees, therefore the three lines of

the triangle CBDhave revolved into a position at right

angles to that which they before occupied ;
hence the line

EFis at right angles to CB
}
and (from the fact that A CB is

a right angle) parallel with A C, Since the triangle EFD
equals the triangle CB D. and since the lines of E FD are

parallel respectively to the corresponding lines of A CD,
therefore the triangles^ CD and CB D are homologous.

Comparing the lines of these triangles and putting a =
A B, y = CD, and x D B, we have
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DB : D C : : D C : A D,

x : y : : y : a x,

y* = x (a x], (160.)

Or, in a semicircle, a perpendicular to the diameter terminated

by the diameter and the curve is a geometric mean, or mean

proportional, between the two parts into which the perpendicular
divides the diameter.

444. Circle : Radius from Given Chord and Versed
Sine. Let A B (Fig. 295) be a given chord line and CD a

versed sine. Extend CD to the opposite side of the circle
;

it will pass through F, the centre. Join A and C, also E and

B

B. The line A D, perpendicular to the diameter C E, is

a mean proportional between the two parts CD and DE
(Art. 443) ; or, putting a = A D, b = C D, and r equal the

radius FE, we have

C D \ AD \\ AD \ DE\
b : a : : a : 2 r b,

-2 rb-b*,

+ l>* = 2rb,

r - (161.)
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Or : The radius of a circle equals the sum of the squares of half
the chord and the versed sine, divided by twice the 'versed sine.

Another expression for the radius may be obtained ; for

the two triangles CB D and CE B (Fig. 295) are homologous
(Art. 443) and their corresponding lines in proportion. Put-

ting/for CB, we have

or

or

and

CD : CB : : CB : C E,

v :/::/: 2 r,

f ' 2 rv,

r =
2V (162.)

Or : The radius of a circle equals the square of the chord of half
the arc divided by twice the versed sine.

4-45. Circle: Segment from Ordinate. When the curve

of a segment of a circle is required for which the radius can-

not be used, either by reason of its extreme length, or be-

FIG. 296.

cause the centre of the circle is inaccessible, it is desirable

to obtain the curve without the use of the radius. This may
be done by calculating ordinates, a rule for which will now
be developed.

Let DCB (Fig. 296) be a right angle, and A DB a cir-

cular arc described from C as a centre, with the radius

B C= CD = CP. Draw PM parallel with DC, and A G

parallel with C B. Now, in the segment A D G, we have

given A G, its chord, and D E, its versed sine, and it is re-
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quired to find an expression by which its ordinates, as P F,

may be computed. From Art. 416, we have

PM*=CP*-CJf*<,

or, putting for these lines their usual symbols

now we have

EC= FM,

FM=DCDE,
FM =r-b.

Then we have

or, putting t for PF and substituting for PM and FM their

values as above, we have

t = y-(r-b\

and for y, substituting its value as above, we have

/r* -x* -(r-b). (163.)

Or: The ordinate in the segment equals the square root of the

difference of the squares of the radius and the abscissa minus

the difference of the radius and the versed sine.

For example : let the chord A G (Fig. 296) in a given case

equal 20 feet, and the versed sine, b, or the rise D E, equal 4
feet ; and let the ordinates be located at every 2 feet along
the chord line, A G.

In solving this problem we require 'first to find the radius.

This is obtained by means of equation

2b
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For a, half the chord, we have 10 feet
;
for b, the versed

sine, we have 4 feet
; and, substituting these values, we

have

The radius equals H'5
The versed sine equals 4-0

(r-b}= 10-5

The square of 14-5, the radius, equals 210-25. Now we
have, substituting these values in equation (163.)

-~-
1210-25 x^ 10-5.

The respective values of x, as above required, are o, 2,

4, 6, 8 and 10 Substituting successively for x one of these

values, we shall have, when

x o; t
-- y 210-25 o 2

10-5 = 4.

x - 2
;
/-= |/ 210-25 2 2

10- 5 = 3-8614

4; '=- V 210-2$ 4*-- 10-5 = 3-4374

# = 6; / = |/ 210-25 6 2
10-5 =: 2-7004

* = 8
;

/ = 4/ 210-25 8
2

10- 5
= i 5934

r I0 ' * - :

1/210-25 io 2 -- 10-5 = o-o

Values for / may be taken at points as numerous as desira-

ble for accuracy.
In ordinary cases, however, they need not be nearer than

in this example.
After the points are secured, let a flexible piece of wood

be bent so as to coincide with at least four of the points at a

time, and then draw the curve against the strip.

446. Circle : Relation of Diameter to Circumference.

In Art. 439 it is* shown that the area of a polygon equals
the radius of the inscribed circle multiplied by half of a

side of the polygon and by the number of the sides
; or,
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A = r x n = b n
; or, the area equals half the radius by a

2 2

side into the number of sides
; or, half the radius into the

periphery of the polygon. Now, if a polygon have very
small sides and many of them, its periphery will approxi-
mate the circumference of the circle inscribed within it

;
in-

deed when the number of sides becomes infinite, and conse-

quently infinitely small, the periphery and circumference

become equal. Consequently, for the area of the circle, we
have

A = r
--c, (164.)

where c represents the circumference.

By computing the area of a polygon inscribed within a

given circle, and that of one circumscribed about the circle,

the area of one will approximate the area of the other in

proportion as the number of the sides of the polygon are

increased.

For example : if polygons of 4 sides be inscribed within

and circumscribed about a circle, the radius of which is I,

the areas will be respectively 2 and 4. If the polygons have

16 sides, the areas are each 3 and a fraction, the fractions

being unlike; when they have 128 sides the areas are each

3 14 and with unlike fractions ;
when the sides are increased

to 2048, the areas each equal 3-1415 and unlike fractions,

and when the sides reach 32768 in number the areas are

equal each to 3-1415926, having like decimals to seven

places. The computations have been continued to 127

places (Gregory's
" Math, for Practical Men "), but for all

possible uses in building operations seven places will be found

to be sufficient. From this result we have the diameter in

proportion to the circumference as i : 3- 1415926, or as

I : 3

i : 3

1:3- 1416.

Of these proportions, that one may be used which will give
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a result most nearly approximating the degree of accuracy
required. For many purposes the last proportion will be

sufficiently near the truth.

For ordinary purposes the proportion 7 : 22 is very use-

ful, and is correct for two places of decimals; it fails in the

third place.
The proportion 113 : 355 is correct to six places of deci-

mals.

For the quantity 3-1415926 putting the Greek letter n

(called py\ and 2 r = d for the diameter, we have

c n d. (165.)

To apply this : in a circle of 50 feet diameter, what is

the circumference ?

c = 3-1416 x 50
c = 1 57-08 ft.

If the more accurate value of n be used, we have

c = 3-1415926 x 50,

c = i 57- 07963.

The difference between the two results is 0-00037, which
for all ordinary purposes, would be inappreciable.

By the rule of 7 : 22, we have

c = 5ox-3T2-
_

157.1428571,

an excess over the more accurate result above, of 0-0632271,
which is about of an inch.

Bv the rule of 113 : 355, we have

c = 50 x fff = 157-079646.

This result gives an excess of only 0-000016; it is sufficiently

near for any use required in building.
From these results we have these rules, namely : To

obtain the circumference of a circle, multiply its diameter by
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22, and divide the product by 7 ; or, more accurately, multiply
the diameter ^355 and divide the product by 113; or, by mul-

tiplication only, multiply the diameter by 3-1416; or, by

3-14159^; or, by 3-1415926; according to the degree of

accuracy required.
And conversely: To obtain the diameter from the cir-

cumference, multiply the circumference by 7 and divide the

product by 22
; or, multiply by 113 and divide by 355 ; or, di-

vide the circumference by 3-1416; or, by 3-14159^; or, by
3-1415926.

4-47. Circle : Length of an Arc. Considering the cir-

cle divided into 360, the length of an arc of one degree in

a circle the diameter of which is unity may be thus found.

The circumference for 360 is 3- 14159265 ;

3. 14159265 = . oo8726fi4625;
.

which equals an arc of one degree in a circle having unity
as its diameter; or, for ordinary use the decimal 0-008727
or 0-0087^ may be taken

;
or putting a for the arc and g for

the number of degrees, we have

a = 0-00872665 dg. (166.)

Wherefore : To obtain the length of an arc of a circle,

multiply the diameter of the circle by the number of degrees in

the arc, and by the decimal 0-0087^, or, instead thereof, by

0-008727.

4.43. Circle: Area. The area of a circle may be ob-

tained in a manner similar to that for the area of polygons

(Art. 439), in which ABn\ B r
,
or

A = % b n r,

where b equals a side of the polygon and n the number of

sides ;
so that b n equals the perimeter of the polygon.

Now, if for the perimeter of the polygon there be sub-
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stituted the circumference of the circle, we shall have, put-

ting for the circumference 3- 1416 dy or, n d (Art. 446)

A = \n dr,

in which r is the radius. Since 2 r d, the diameter, and

r = -, we have

d

And since
^ = 3.14159265,

\7t = 0-78539816,
or

\ n = 0-7854, nearly.
Therefore

(167.)

Or: The area of a circle equals the square of the diameter mul-

tiplied by 0-7854.

B

As an example, the area of a circle 10 feet in diameter is

found thus

IOX IO = IOO.

100x0-7854 = 78 -54 feet.

449. Circle: Area of a Sector. The area of A B CD
(Fig. 297), a sector of a circle, is proportionate to that of the

whole circle. For, as the circumference of the whole circle

is to its area, so is the arc A B C to the area of A B C D.
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The circumference of a circle is (165.) C= ir d. The area

of a circle is (167.) A = -7854 d*. For the arc ABC put a,

and for the area of A B CD put s. Then we have from the

above-named proportion

7t d :

_
J - *

Tt d

The coefficient 0-7854 is J- (^4rA 448).
4

Therefore, multiplying the fraction by 4, we have

5- * d\O - 7 ft

4 TTdf

or S = \da = \ra. (168.)

Wherefore : To obtain the #raz of a sector of a circle,

multiply a quarter of the diameter by the length of the arc.

Thus: let A D equal 10; also let A B C = a, equal 12.

Then the area of A CD is

S =%x lox 12,

S = 6o.

The length of the arc may be had by the rule in Art. 447.

450. Circle: Area of a Segment. In the last article,

A BCD (Fig. 297) is called the sector of a circle. Of this

the portion included within A E CB is a segment of a circle.

The area of this equals the area of the sector minus the area

of the triangle A D C ; or, putting M for the area of the seg-

ment, S for the area of the sector, and T for the area of the

triangle, then

M=S- T.

Putting c for A C (Fig. 297) and h for D E, then T = ~ h.

In the last article, s ra, in which a = the length of the
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arc ABC.
have

Substituting this value of s in the above, we

ar

Or : When the length of the arc is known, also that of the

chord and the perpendicular from the centre of the circle,

then the area of the segment equals the difference between the

product of half the arc into the radius, aud half the chord into

its perpendicular to the centre of the circle.

But ordinarily the length of the arc and of the chord are

unknown. If in this case the number of degrees contained

between the two radii, DA,DC>wz known, then the area of

the segment may be found by a rule which will now be de-

veloped.
In Fig. 298 (a repetition of Fig. 297) upon D as a centre,

and with D F = unity for a radius, describe the arc HF.

Then GFis the sine of the angle CD B, and D G is the co-

sine ; and we have

or

Again

or

DF : GF : : DC : EC,

I : sin : : r :
- = r sin.

DF : DG : : DC : D E
y

i : cos : : r : // = r cos.
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By equation (166.) we have

a = 0-00872665 dg,

in which a is the length of the arc
; g the number of degrees

contained in the arc
;
and d is the diameter of the circle.

Since d = 2 r, therefore

a = 0-0174533 rg.

Putting B for the decimal coefficient, we have

a = Br g.

The expression (169.), by substitution of values as above,
becomes

a cM = -r h.
2 2

B rgM = r r sin. x r cos.

M \ B gr* sin. cos. r
2

M = r* (%*Bg sin. cos.)

M r
*

(o 00872665 g sin. cos.) (
1 70.)

Or : The area of a segment of a circle equals the square of the

radius into the difference between 0-00872665 times the number

of degrees contained in the arc of the circle, and the product of
the sine and cosine of half the arc.

When the number of degrees subtended by the arc is

unknown, or tables of sines and cosines are not accessible,

then the area may be obtained by equation (169.), provided
the chord and versed sine are known ; but before this equa-
tion can be used, for this purpose, expressions giving their

values in terms of the chord and versed sine must be ob-

tained, for a, the arc, r, the radius, and h, the perpendicular
to the chord from the centre of the circle.

For the value of the arc we have (from
"
Penny Cycl.,"

Art. Segment] as a close approximation
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By equation (162.) we have

=
2^'

Then

h = r v,

or

h = f--v.
2 V

Substituting these values in equation (169.) we have

This rule is the rule (169.) expanded.
The written rule for equation (169.) may be used, substi-

tuting for "
half the arc" one sixth of the difference between

eight times the chord of half the arc and the chord (or \ of 8

times A >, Fig. 298, minus A C, the chord). Also substitute

for " the radius" the square of the chord of half the arc divided

by twice the versed sine. Also, tor. "its perpendicular to the

centre of the circle" substitute, the quotient of the square of the

chord of half the arc divided by twice the versed sine, minus

the versed sine.

When the arc is small the curve approximates that of a

parabola. In this case the equation for the area of the par-

abola, which is quite simple, may be used. It is this

Or, in segments of circles where the versed sine is small in

comparison with the chord, the area equals approximately two

thirds of the chord into the versed sine.
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451. Ellipse : Definitions. Let two lines, PF, PF' (Fig.

299), be drawn from any point P to any two fixed points

FF'y and let the point P move in such a manner that the sum
of the two lines, PF, PF', shall remain a constant quantity ;

then the curve PMKO G A DB P, traced by P, will be an

Ellipse ;
the two fixed points F, F'

,
the Foci

;
the point C at

FIG. 299.

the middle of FF', the centre ; the line AM drawn through
FF' and terminated by the curve, the Major or Transverse

Axis
;
the line B O, drawn through C and at right angles to

A M, the Minor or Conjugate Axis; the line G P, drawn

through Pand C and terminated by the curve, the Diameter

to the point P; the line DK drawn through C, parallel with

the tangent P T, and terminated by the curve, the diameter

Conjugate to P G\ the line EHR drawn parallel with DK
is a double ordinate to the abscissas G H"and H Poi the di-

ameter GP(EH= HR) ;
the line JL drawn through Fat a
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right angle to AM and terminated by the curve, the Param-

eter, or Latus Rectum.
When the point P reaches and coincides with B, the two

lines PFand PF' become equal.

The proportion between the major and minor axes de-

pends upon the relative position of F,F
f

,
the foci

;
the nearer

these are placed to the extremities of the major axis the

smaller will the minor axis be in comparison with the major
axis. The nearer F, F' approach C, the centre, the nearer

will the minor axis approach the length of the major axis.

When F, F' reach and coincide with the centre, the minor
axis will equal the major axis, and the ellipse will become a

circle. Then we have PF = PF' = B C= A C. From this

we \earnPF+PF'=2A C=AM-t also, when PF= PF',
thenPF=F=AC.

From this we may, with given major and minor axes,

find the position of F and F f

. To do this, on B, as a centre,

with A C for radius, mark the major axis at F and F' .

452. Ellipe : Equations to the Curve. An equation to

a curve is an expression containing factors two of which,

called co-ordinates, measure the distance to any point in the

curve. For example : in a circle it has been shown (Art.

443) that PN is a mean proportional to A A^and NB. Or,

putting x A N, y = PN, and a A B, we have

AN : PN : : PN : NB
y

or

or

x : y : : y : a x,

y
a X (a X}.
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This is the equation to the circle having the origin of x
and y, the co-ordinates at A, the vertex of the curve. It will

be observed that the factors are of such nature in this equa-

tion, that it may be employed to measure the distance, rect-

angularly, to (*, wherever in the curve the point P may be

located. By this equation the rectangular distance to any
and every point in the curve may be measured ; or, having
the curve and one of the lines ;ror y, the other may be com-

puted.
From this example, the nature and utility of an equation

to any curve may be understood. The equation to the

ellipse having the origin of co-ordinates at the vertex, is

similar to that for the circle. In the form usually given by
writers on Conic Sections, it is

in which a 'A C (Fig. 299) ;
b = B C\ x equals A N, and y =

PN.
If, as before suggested, the loci be drawn towards the cen-

tre and finally made to coincide with it, the minor axis would
then become equal to the major axis, changing the ellipse into

a circle. In this case, the factors a and b in the equation would

become equal; and the fraction 5- would equal ,
= i,anda a

hence the equation would become

or y
a = x (2 a x) ;

precisely the same as in the equation to the circle above

shown. The 2 a of this equation is equivalent to a of the

circle
;
for a in the ellipse represents only half the major

axis
;
while in the equation to the circle a represents the

diameter. The relation between the ellipse and the circle

is thus shown ; indeed, the circle has been said to be an

ellipse in its extreme conditions.
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453. Ellipse : Relation of Axi to Abscissas of Axe
Multiplying equation (173.) by a* we have

a* y* = b* (2 ax-x*\
or # 2

j/
2 = b*x(2 a x). ^

These four factors may be put in a proportion, thus

rf
a

: b* : : x (2 a x) : y\
representing

A~C* 7TC NX NM : PN\

Or : The rectangle of the two parts into which the ordinate

divides the axis major is in proportion to the square of the

ordtnate, as the square of the semi-axis major is to the square
of the semi-axis minor.

It is shown by writers on Conic Sections that this rela-

tion is found to subsist, not only with the axes and ordinate,
but also between an ordinate to any diameter and the ab-

scissas of that diameter
; for example, referring to Fig. 299

If A B' P'M (Fig. 301) be a semi-circle, then (Art. 443)
* = A

Substituting this value of A NXNMin

TC* : ~B~C* - v^W
a

: ~PN*>

we have

A C i BC : : P'N : PN\
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Or : The ordinate in the circle is in proportion to its correspond-

ing ordinate in the ellipse, as the semi-axis major is to the semi-

axis minor, or as the axis major is to the axis minor.

454. Ellipse : Relation of Parameter and Axe. The
equation to the ellipse when the origin of the co-ordinates

is at the centre is, as shown by writers on Conic Sections,
thus

a* y* = a *b*-b* x'\ (174.)

or a* y"
1

b* (a* x'
2

).

If x' equal C-F (Fig. 299) then the ordinate will be located

^- '^^01 THE ^f

.'UNIVERSITY
Then-

This is shown also by the figure.

Substituting in the above this value of a* x'*, we have

a*y* = &*&* = b\

From which, taking the square root

ay = b\

or a : b : : b : y.

Now y, located at FJ, is the semi-parameter; hence we
have the semi-minor axis a third proportional to the semi-

major axis and the semi-parameter. Or : Theparameter is a

thirdproportional to the two axes of an ellipse.

455. Cllipe: Relation of Tangent to the Axes. Let

T T' (Fig. 301) be a tangent to P, a point in the ellipse ; then,

as has been shown by writers on Conic Sections

or CM : CT :: CN : CM.
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Or : The semi-major axis is a mean proportional between the ab-

scissa CN and C T, the part of the axis intercepted between tJie

centre and the tangent.

This relation is found also to subsist between the similar

parts of the minor axis
;
for

This relation affords an easy rule for finding the point T,

or T'
; for from the above we have

-
CN'

or, putting / for C T, we have

:

?y ;y
/ = 75.)

or

t' = --. (176.)y

Since the value of t is not dependent upon y nor upon b,

therefore / is constant for all ellipses which may be de-

scribed upon the same major axis A M\ and since the circle

is an ellipse (Art. 452) with equal major and minor axes,

therefore rule (175.) is applicable also to a circle, as shown
in Fig. 301.

The equation (175.) gives the value of / = C T. From
this deducting CN = x'

,
we have N T, the subtangent, or

CT- CN = NT,
t - X > = S

;

or, substituting for t its value in (175.), we have

Or: The subtangent to an ellipse equals the difference between

the quotient of the square of the semi-major axis divided by tlie

abscissa, and the abscissa ; the origin of the co-ordinates being
at C, the centre.
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456. Ellipse : Relation ofTangent witli the Foci. Let
the two lines from the foci to P (Fig. 302), any point in the

ellipse, be extended beyond P. With the radius P F' de-

FIG. 302.

scribe from P the arc F' G, and bisect it in H. Then the

line P T, drawn through H, will be a tangent to the ellipse

Sit P.

This has been shown by writers on Conic Sections. The
construction here shown affords a ready method of drawing
a tangent. And from the principle here given we learn

that a tangent makes equal angles with the lines from the

tangential point to the two foci.

For, because GH= HF', we have the angle F' PH =
HPG. The angles H PG and KPF are opposite, and

hence (Art. 344) are equal ; and since the two triangles

F'PffandKPFare each equal to HPG, therefore F' PH
and KPF are equal to each other. Or: A tangent to an

ellipse makes equal angles with the tivo lines drawn from the

point of tangency to the two foci.

Experience shows that light shining from one focus is

reflected from the ellipse into the other focus. It is for this

reason that the two points F and F' are called foci, the plu-

ral oifoczts, a fireplace.

457. Ellipse : Relation of Axes to Conjugate Diame-

terParallel with K T (Fig. 302) let D E be drawn through
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C, the centre, and L Q through y, one end of the diameter
from the point P. Parallel with this diameter PJ draw L K
and QR through the extremities of the diameter D E. Then
DE is a diameter conjugate to the diameter PJ, and K R,
R Q, QL, and L K are tangents at the extremities of these

conjugate diameters.

Now it is shown by writers on Conic Sections (Fig. 302)
that

PC*,
or

Or : The sum of the squares of the two axes equals the sum
of the squares of any two conjugate diameters.

From this it is also shown that the area of the parallelo-

gram K C equals the rectangle A C x B C', or, that a paral-

lelogram formed by tangents at the extremities of any two

conjugate diameters is equal to the rectangle of the axes.

458. Ellipse ; Area. Let E equal the area of an ellipse ;

A the area of a circle, of which the radius a equals the semi-

major axis of the ellipse, and let b equal the semi-minor axis.

Then it has been shown that

E : A : : b : a,

E=A b
-.
a

The area of a circle (Art. 448) is

A \ n dr = TT r*,

and when the radius equals a

A = n a 2
,

This value of A, substituted in the above equation, gives

E = TTtf
2 -,
a

E = n ab. (178.)



PRACTICAL SUGGESTIONS. 489

Or: The area of an ellipse equals 3- 141 59^ times the product

of the semi-axes ; or 0-7854 times the product of the axes.

459. Ellipse : Practical Suggestion*. In order to de-

scribe the curve of an ellipse, it is essential to have the two
axes

; or, the major axis and the parameter ; or, the major
axis and the focal distance.

If the two axes are given, then with the semi-major axis

for radius, from B (Fig. 299) as centre an arc may be made
at F and F'

t
the foci

;
and then the curve may be described

by any of the various methods given at Arts. 548 to 552.

If the major axis only and the parameter are given, then

(Art. 454) since

* = ay,
we have

=
Vay. (I79-)

Or : The semi-minor axis of an ellipse equals the square root

of the product of the semi-major axis into the semi-parameter.

Then, having both of the axes, proceed as before.

If the major axis and the focal distance are given, or the

location of the foci
;
then with the semi-major axis for ra-

N N

FIG. 303.

dius and from the focal points as centres, describe arcs cut-

ting each other at B and O (Fig. 299). The intersection of

the arcs gives the limit to B O, the minor axis. With the

two axes proceed as before. Points in the curve may be

found by computing the length of the ordinates, and then

the curve drawn by the side of a flexible rod bent to coin-

cide with the several points..

For example, let it be required to find points in the

curve of an ellipse, the axes of which are 12 and 20 feet
;
or
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the semi-axes 6 and 10 feet, or 6 x 12 = 72 inches, and 10 x

12 = 1 20 inches.

Fix the positions of the points N N', etc., along the semi-

major axis C
'M (Fig. 303) at any distances apart desirable.

It is better to so place them that the ordinates when drawn
shall divide the curve B PM'mto parts approximately equal.

If CM be divided into eight parts as shown, these parts
measured from C will be well graded if made equal severally
to the following decimals multiplied by CM. In this case

CM= 120; therefore

CN 1 20 x 0-3 = 36- = x'

CN' 120 x 0-475 = 57- = x'

CN ff = 120 x 0-625 = 75 - = x'

Etc., = 120x0-75 = 90- xf

120 X 0-85 = 102- = Xf

120 x 0-925 = in - = x'

120x0-975 = 117- = _x'

1 2O X I-O = 1 2O- X' .

The equation of the ellipse having the origin of co-ordi-

nates at the centre (Art. 454) is

or, dividing by a*-

a

or

or- y=-\/ a*~xr
*; (i go.)

in which a and b represent the semi-axes. Substituting for

these their values in this case, we have
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Now, substituting in this equation the several values of

x* successively, the values of the corresponding ordinates

will be obtained. For example, taking 36, the first value of

x', as above, we have

y = 0-6 ^74400 36*

y = 68-684;

y =. 0-6 V 14400 57
2

y = 63-359;

and so in like manner compute the others.

The ordinates for this case are as follows, viz. :

When x' o, y 72-0
" x' 36, y 68-684
" n= 57,^ = 63.359
" x ' = 75, y = 56-205
" * = 90, y = 47-624
" X' = 102, J/

= 37-928
" x' = ill, 7 = 27-358
" /=; 117, y = 15-999
" *' = 120, J/ 0-0.

The computation of these ordinates is accomplished easv

ly by the help of a table of square roots and of logarithms.
For example, the work for one ordinate is all comprised

within the following, viz. :

y 0-6 1/14400 36
2 = 68-684.

I2O 2 = I44OO

36
2 = I2Q6

I3I04 = 4-JI74Q39

Half = 2-0587020

0-6 = 9-7781513

68-684 1-8368533.

The logarithm of 13104 = 4-1 174039. The half of this is

the logarithm of the square root of 13104. To the half log-
arithm add the logarithm of c-6; the sum is the logarithm
of 68-684 found in the table (see Art. 427).
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460. Parabola : Definitions. The parabola is one of

the most interesting of the curves derived from the sections

of a cone. The several curves thus produced are as fol-

lows : When cut parallel with its base the outline is a circle ;

when the plane passes obliquely through the cone, it is an

ellipse ; when the plane is parallel with the axis, but not in

the axis, it is a hyperbola ; while that which is produced by

FIG. 304.

a plane cutting it parallel with one side of the cone is a

parabola.

Let the lines LM and L N (Fig. 304) be at right angles ;

draw CFB parallel with L M\ make LQ LF\ draw QB
parallel with LF\ then FB = B Q. Now let the line A L
move from F L, but remain parallel with it, and as it moves
let it gradually increase in length in such manner that the

point A shall constantly be equally distant from the line LM
and from the point F. Then A BP, the curve described by
the point A, will be a semi-parabola. For example, the

lines FB and B Q are equal ;
the lines PPand PJ/are equal,

and so of lines similarly drawn from any point in the curve

A B P. Let PNbe drawn parallel with LM ;
then for the



EQUATION TO THE CURVE. 493

point P, A Nis the abscissa and NP its ordinate (see Art.

452).

The double ordinate CB drawn through F, the focus, is

the parameter. A F is the focal distance. A is the vertex of

the curve. The line LM is the directrix.

4-6 1. Parabola : Equation to the Curve. In Fig. 304
FPN is a right-angled triangle, therefore

= FP* -

but- FP =.MP=LN=AN+AL\
and FN= A N A F.

Therefore

NP* = A N+AL*- A N- A F*
;

or- ' = *

/ being put for the distance LF= FB (see Art. 452). As
in Arts. 412 and 413, we have

y* = 2px (181.)

by subtraction. This is the usual equation to the parabola,
in which we have the rule : The square of the ordinate equals
the rectangle of the corresponding abscissa with the param-
eter.

From (181.) we have

x : y : : y : 2p,

or: 1\\e parameter is a third proportional \.o the abscissa and its

corresponding ordinate.

462. Parabola : Tangent. From M, any point in the

directrix, draw a line to F
t
the focus (Fig. 305) ;

bisect MF
in R, and through R draw U T perpendicular to MF, then

the line T U will be a tangent to the curve. For, draw MD
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perpendicular to L V, and from P, the point of its intersection

with the line TU, draw a line to F, the focus
; then, because

fiPis a perpendicular from the middle of MF, MPFis an
isosceles triangle, and therefore the lines MPand FP are

equal, or the point P is equidistant from the focus and from
the directrix, and therefore is a point in the curve.

To show that the line TU touches the curve but does not

pass through it, take 7, any point in the line T U, other than

FIG. 305.

the point P; join [7 to Mand to F. Then, since U is a point
in the line T U, M U F, for reasons above given, is an isosce-

les triangle ;
from [/draw U F perpendicular to L V. Now,

if the point /be also in the curve, the lines Wand U F,

by the law of the curve, must be equal ;
but UF, as before

shown, is equal to UM, a line evidently longer than UV\
therefore, it is evident that the point U is riot in the curve.

A similar absurd result will be reached if any other point

than the point U in the line U T be assigned, excepting the
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point P. Therefore the line TP touches the curve in only
one point, P ;

hence it is a tangent.
Parallel with L V, from A

,
draw A S, the vertical tangent.

Now A S bisects MF or intersects it in the point R. For
the two right-angled triangles FL J/and FA R are homolo-

gous ;
and because FA = A Z, by construction, therefore

FR = RM.
Or : The vertical tangent bisects all lines which can be drawn

from the focus to the directrix.

The lines PFand FT are equal ;
for the lines MPand

N T being parallel, therefore the alternate angles MPT
and N TPare equal (Art. 345) ;

and because the line P T bi-

sects M F, the base of an isosceles triangle, therefore the

angles MP T and FPTafe equal. We thus have the two

angles N TP and FP T each equal to the angle MPT-,
therefore the two angles N TP and FP T are equal to each

other
;
hence the triangle PF T is an isosceles triangle, hav-

ing the points T and P equidistant from F, the focus.

Also because the line MFis perpendicular to P T, there-

fore the line MF bisects the tangent PT in the point R.

And because TR = R P, therefore, comparing triangles
TRFund TPO, TF= F O.

The opposite angles MPT and UPD made by the two in-

tersecting lines U T and MD (Art. 344) are equal, and since

the angles MP T and FP T are equal, as before shown,
therefore the angles FP T and UPD are equal.

It is because these two angles are equal, that, in reflectors,

rays of light and heat proceeding from /% the focus, are re-

flected from the parabolic surface in lines parallel with the

axis.

For an equation expressing the value of the tangent, we
have

Or : The tangent to a parabola equals the square root of tJie

sum offour times the square of the abscissa added to the square

of the ordinate.
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463. Parabola: Subtangeiit. The line TN (Fig. 305),

the portion of the axis intercepted between T, the point of

intersection of the tangent, and N, the foot of a perpendicu-
lar to the axis from P, the point of contact, is the subtangent.
The subtangent is bisected by the vertex, or TA = A N.

For, the two triangles TRA and TPNare homologous;
and, as shown in the last article, the line MF bisects PTin
R-, or TR = R P.

Therefore, we have

TR : TA : : TP

TR x TN = TA x TP,

but TR=TP;
therefore- J- TP x TN= TA x TP,

| TN = TA.

Or : The subtangent of z. parabola is bisected by the vertex ; or

is equal to twice the abscissa.

And because of the similarity of the two triangles TRA
and TP N, as above shown, we have

NP= 2AR,

y = 2 A R.

Or : The ordinate equals twice the vertical tangent.

464. Parabola: Normal and Subnormal. The line

PO (Fig. 305) perpendicular to P T, is the normal and NO,
the part of the axis intercepted between the normal and the

ordinate, is the subnormal. For the normal, from similar

triangles, we have

TN : NP :
:.
TP : P O,

TP

2X
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Or : The normal equals the rectangle of the ordinate and tan-

gent, divided by twice the abscissa.

The subnormal equals half the parameter. For (181.)

or NP* = 2 FB A N.

Dividing by 2 A N gives

I
FB =

ttf (A ' }

In the similar triangles (Art. 443) OPNand PT N, we
have

NO : NP : : NP : NT,

NO = N~P\
NT

As shown in the previous article, N T 2 A N; therefore

(B.)2AN

Comparing equations (A.) and (B.), we have

NO = FB.

Or : The subnormal of a parabola equals half the parameter,
a constant quantity for the subnormal to all points of the

curve.

465. Parabola: Diameters. In the parabola BAC
(Fig. 306), P D, a diameter (a line parallel with the axis) to

the point P, is in proportion to BD x D C, the rectangle of

the two parts into which the base of the parabola is divided

by the diameter.

This may be shown in the following manner :

DP=EN=EA-NA. (A.)
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For EA we have, taking the co-ordinates, for the point

C, (i8i.)~

or- = X

or
EC = EA.

C

For NA we have, taking the co-ordinates to the point

/>, (181.)-

or = X,

NP'-
or- (C.)

Using these values (B.) and (C.j in (A.), we have

=A -NA,

' NP* EC*-NP*

If / be put for B C and n for D C, then
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and-

then (Art. 413)

ft
or (Art. 415)

2 P

= n(l- n)

2 P

Dp_DCxBD~

Now, since 2 /, the parameter, is constant, we have D P,

the diameter, in proportion to D C x B D, the two parts of

the base.

Putting d for the diameter, we have

(183.)
2p

Or : The diameter of a parabola equals the quotient obtained

by dividing \\\Q rectangle formed by the two parts into which
the diameter divides the base by the parameter.

It has been shown by writers on Conic Sections that a

diameter, P J (Fig. 307), to any point Pin a parabola bisects

all chord lines, SG,D, etc., drawn parallel with the tan-

gent to the point/*; the diameter being parallel with the axis

of the parabola.

466. Parabola : Elements. From any given parabola,
to find the axis, tangent, directrix, parameter and focus,

draw any two parallel lines or chords, SG and DE (Fig.

307), and bisect them in H and J\ through these points
draw JP\ then JP will be a diameter of the parabola a
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line parallel with the axis. Perpendicular to P J draw the

double ordinate PQ and bisect it in N\ through N and par-
allel with PJ draw TO, cutting the curve in A\ then TO
will be the axis. Make AT- AN, join T and P\ then TP
will be the tangent to the point P\ from P draw PO per-

pendicular to P T\ then PO will be the normal, and NO the

subnormal.

With NO for radius, from N as a centre, describe the

quadrant OR ;
draw R C parallel with A O, cutting the curve

FIG. 307.

in C\ from C draw CB perpendicular to A O, cutting A O in

F; then ^will be the focus and CB the parameter. Make
A L A F; draw LM perpendicular to TO\ then LM will

be the directrix. Extend PJ to meet LM at M\ join P and
,

F\ then, if the work has been properly performed, FP will

equal MP.

4-67. Parabola : Described mechanically. With NP
(Fig. 308) a given base, and NA a given height, set perpen-
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dicularly to the base, extend NA beyond A, and make A T
equal to NA

; join T and/*; from P perpendicularly to TP
drawP(9; bisect ON in R; make AL and A F each equal
to NR

; through L, perpendicular to L O, draw D E, the di-

rectrix.

Let the ruler CDESbe laid to the line DE, then with

J G H, a set-square, the curve may be described in the fol-

lowing manner :

Placing the square against the ruler and with its edge

FIG. 308.

JH coincident with the line MP
y
fasten to it a fine cord on

the edge PE, and extend it from P to F
y
the focus, and se-

cure it to a pin fixed in F. The cord FP will equal the

edge M P. To describe the curve set the triangle J GH at

MPE, slide it gently along the ruler towards D, keeping the

edge J G in contact with the ruler, and, as the square is

moved, keep the cord stretched tight, holding for this pur-

pose a pencil, as at K, against the cord. Thus held, as the

square is moved the pencil will describe the curve. That

this operation will produce the true curve we have but to
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consider that at all points the line FK will equal KJt which

is the law of the curve (Art. 460).

468. Parabola : Decribed from Point. With given

base, NP (Fig. 309), and given height, A N, to find the points

D, F, M, etc., and describe the curve. Make A T equal to

A N (Art. 462); join T and P', perpendicular to TP draw

FIG. 309.

PO
;
make A B equal to twice NO

;
take G, any point in the

axis A O, and bisect B G in J ;
on y as a centre describe the

semi-circle B CG cutting A L, a perpendicular to BO in C ;

on A C and A G complete the rectangle A CDG. Then D is

a point in the curve. Take H, another point in the axis ;

bisect BH in. K\ on A" as a centre describe the semi-circle

BEH cutting A L in E
; this by E F and HF, gives F, an-
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other point in the curve
;
in like manner procure M, and as

many other points as may be desired. This simple and

accurate method of obtaining points in the curve depends
upon two well-established equations ; one, the equation to

the parabola, and the other, the equation to the circle. The
line G D

y
an ordinate in the parabola, is equal to A C, an

ordinate in the circle B CG; A G, the abscissa of the para-
bola, is also the abscissa of the circle

;
in which we have

(Art. 443)-

AG : AC :: AC : A B,

x : y : : y : a x,

For the parabola, we have (181.)

y*=2px.

Comparing" these two equations, we have

x(a x] = 2px,

a x = 2p,

or

EG A G= 2 p.

By construction A B equals 2 NO, or twice the subnor-

mal
;
the subnormal (Art. 464) equals half the parameter.

Hence, twice the subnormal equals the parameter equals

2 p. Therefore, the method shown in Fig. 309 is correct.

469. Parabola: Described from Arcg. Let NP (Fig.

310) be the given base and A TV the given height of the par-

abola. Make A T(Art. 462) equal A N. Join TtoP; draw

PO perpendicular to PT\ bisect N O in R ; make A L and

A F each equal to NR
;
then L M, drawn perpendicular to

TO, will be the directrix. Parallel to LM draw the lines

B D, C E, etc., at discretion. Then with the distance B L for
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radius, and on F as a centre, mark the line B D with an arc
;

the intersection of the arc and the line will be a point in the

curve (Art. 460). Again, with C L for radius and on .Fas a

centre, mark the line CE with an arc
;

this gives another

point in the curve. In like manner, mark each horizontal

FIG. 310.

line from F as a centre by a radius equal to the perpendicu-
lar distance between that line and L M, the directrix. Then
a curve traced through the points of intersection thus ob-

tained will be the required parabola.

4-70. Parabola : Dccribed from Ordinates. With a

given base, NP(Fig. 311), and height, A N, a parabola may
be drawn through points J, H, G, etc., which are the extrem-

ities of the ordinates B J, C H, D G, etc.
;
the lengths of the

ordinates being computed from the equation to the curve,

(181.)-

For any given parabola, in base and height, the value of
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/ may be had by dividing both members of the equation by
2 4;; by which we have

y NP*
2AN' (A.)

from which, NPand A N being known,/ may be computed.
With the value of/, a constant quantity, determined, the

equation is rendered practicable. For, taking the square
root of each member of equation (181.), we have

y = V 2p x. (B -)

which by computation will produce the value of y, for every

assigned value of x, as A JS, A C, A D, etc.

FIG. 311.

As an example : let it be required to compute the ordi-

nates in a parabola in which the base, N
'

P, equals 8 feet, and

the height, A N, equals 10 feet. With these values equation

(A.) as above becomes

NP*
2AN

8" _64
2 X 10

~
2O

" ^' *
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Then, with this value in (B.) as above, we have, for each or-

dinate

y
' z ' V 6.4*.

In order to assign values to x, let A N be divided into

any number of parts at B, C, D, etc., say, for convenience in

this example, in ten equal parts ;
then each part will equal

one foot, and we shall have the consecutive values of x = i
,

2, 3, 4, etc., to 10, and the corresponding values of y will be

as follows. When

x = I, y= 4/6. 4 x i
=

3=
x = 4, y = V6-4X "4

=
1/ 25-6

=
5 -0596 =

~32~ = 5 -6569 = (etc.),

38-4
= 6- J 968 =

"^8 = 6>6933 =

= 7-5^95 =

With these values of y, respectively, set on the correspond-

ing horizontal lines By, C H, DG, E S, etc., points in the

curve y, //, G, S, etc., are obtained, through which the curve

may be drawn. The decimals above shown are the decimals

of a foot
; they may be changed to inches and decimals of an

inch by multiplying each by 12. For example: 12x0-5297
= 6-3564 equals 6 inches and the decimal 0-3564 of an inch,

which equals nearly | of an inch.

Near the top of the curve, owing to its rapid change in

direction and to the approximation of the direction of the

curve to a parallel with the direction of the ordinates, it is
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desirable to obtain points in the curve more frequent than

those obtained by dividing the axis into equal parts.

Instead, therefore, of dividing the axis into equal parts,

it is better to divide it into parts made gradually smaller

toward the apex of the curve or, to obtain points for this

part of the curve as shown in the following article.

471. Parabola: Described from Diameters. Let EC
(Fig. 312) be the given base and A E the given height, placed

perpendicularly to E C. Divide E C in several parts at

pleasure, and from the points of division erect perpendicu-
lars to E C. The problem is to compute the length of these

diameters, as DP, and thereby obtain points in the curve, as

at P. For this purpose we have equation (183.), which gives

B

\
FIG. 312.

the length of the diameters, and in which n equals D C (Fig.

312), / equals twice E C, and / equals half the parameter of

the curve. The value of p is given in equation (A.), (Art,

470), in which y equals EC (Fig. 312), and ^equals A E.

Substituting these symbols in equation (A.), we have

y> EC' _^
p ~~''

2x
~ 2xAE~ 2 /T'

where b EC, the base, and hAE, the height. For

substituting this, its value, in equation (183.), we have

hn.(2b n)
(184.)



508 THE PARABOLA.

As an example : let it be required in a parabola in which
the base equals 12 feet and the height 8 feet, to compute the

length of several diameters, and through their extremities

describe the curve. Then h will equal 8, and b 12.

If the base be divided into 6 equal parts, as in Fig. 312,

each part will equal 2 feet. Then we have

h 8 8 i

b*~ I2*~~ i44~ 18
'

and

_ h .
Nd -i n (2b-n),

In this equation, substituting the consecutive values of #,

we have, when

0x24n= O, d--
-jg-

=0

2 X 22
ti z,
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472. Parabola: Area. From (181.), the equation to

the parabola, and by the aid of the calculus, it has been

shown that the area of a parabola is equal to two thirds of

the circumscribing rectangle. For example : if the height,
A E (Fig. 312), equals 8 feet, and EC, the base, equals 12

feet, then the area of the part included within the figure

APCE A equals f of 8x 12 = 1x96 = 64 feet; or, it is equal
to f of the rectangle A B CE.
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473. Right-Angled Triangle: The Sides. In right-

angled triangles, when two sides are given, the third side

may be found by the relation of equality which exists of

the squares of the sides (Arts. 353 and 416). For example,

if the sides a and b (Fig. 313) are given, c
y
the third side,

may be computed from equation (115.)

Extracting the square root, we have

When the hypothenuse and one side are given, by transposi

tion of the factors in (115.), we have

(A.)

or
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Owing to the factors being involved to the second power in

this expression, the labor of computation is greater than
that in a more simple method, which will now be shown.

In equation (A.) or (B.) the factors under the radical may
be simplified. By equation (i 14.) we have

Therefore, equation (A.) becomes

a = \(c +
) (V

_
fy

a form easy of solution.

For example : let c equal 29-732 and b equal 13-216, then

we have

29-732

13-216

The sum = 42-948

The difference = 16-516

By the use of a table of logarithms (Art. 427) the problem

may be easily solved ; thus

Log. 42-948 = 1-6329429

16-516 = i -2179049

To get the square root 2)2- 8508478

a 26-6332 = i -4254239

This method is applicable to the sides of a triangle, only ;

for the hypothenuse it will not serve. The length of the

hypothenuse as well as that of either side may, however, be

obtained by proportion ; provided a triangle of known di-

mensions and with like angles be also given.

For example: in Fig. 314, in which the two sides a and

b are known, let it be required to find c, the hypothenuse.
Draw the line DE parallel with A C, then the two trian-

gles BDE and BAG are homologous; consequently their



512 TRIGONOMETRY.

corresponding sides are in proportion (Art. 361). Hence, if

d equals unity, we have

d : f : : a : c,

= */,'

from which, when a and / are known, c is obtained by sim-

ple multiplication.

474. Right- Angled Triangle: Trigonometrical Ta-

bles To render the simple method last named available,

the lengths of d, e and f (Fig. 314) have been computed for

triangles of all possible angles, and the results arranged in

FIG. 314.

tables, termed Trigonometrical Tables. The lines d, e, and

/, are known as sines, cosine, tangents, cotangents, etc., as

shown in Fig. 315 wheVe A B is the radius of the circle

B CH. Draw a line A F, from A, through any point, C, of the

arc B G. From C draw CD perpendicular to A B
;
from B

draw BE perpendicular to A B
;
and from G draw G F per-

pendicular to A G.

Then, lor the angle FA B, when the radius A C equals

unity, CD is the sine; AD the cosine; DB the versed sine ;

BE the tangent; GF the cotangent ; AE the secant; and

A Fihe cosecant.

But if the angle be larger than one right angle, yet less

than two right angles, as BAH, extend HA to K and E B
to K, and from H draw H J perpendicular to A J.
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Then, for the angle BAH, when the radius A H equals

unity, HJ is the sine ; A J the cosine; BJ the versed sine ;

BK the tangent ; and A K the secant.

When the number of degrees contained in a given angle
is known, the value of the sine, cosine, etc., corresponding to

that angle, may be found in a table of Natural Sines, CO-

FIG. 315.

sines, etc. Or, the logarithms of the sines, cosines, etc., may
be found in logarithmic tables.

In the absence of such a table, and when the degrees
contained in the given angle are unknown, the values of

the sine, cosine, etc., may be found by computation, as fol-

lows: Let ABC (Fig. 316) be the given angle. At any
distance from B draw b perpendicular to B C. By any scale

of equal parts obtain the length of each of the three lines a,

b, c. Then for the angle at B we have, by proportion
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c : b : : i -o : sin. B = .

c

c : a : : I o : cos. B = .

c

a : b : : i -o : tan. B = .

a

b : a : : I -o : cot. B -.

a i c : : i -o : sec. B = -.

a

b : c : : i o : cosec. B --.

Or, in any right-angled triangle, for the angle contained

between the base and hypothenuse

When perp. divided by hyp., the quotient equals the sine.

base " "
hyp.,

" " "
cosine.

"
perp.

" "
base,

" "
tangent.

" base " "
perp.,

" "
cotangent.

"
hyp.

" "
base,

" " "
secant.

"
hyp.

" "
perp.,

" "
cosecant.

To designate the angle to which a trigonometrical term

applies, the letter at the intended angle is annexed to the

c

FIG. 316.

name of the trigonometrical term
; thus, in the above exam-

ple, for the sine of A B C we write sin. B
;

for the cosine,

cos. B, etc.
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By these proportions the two acute angles of a right-

angled triangle may be computed, provided two of the

sides are known. For when the perpendicular and hypoth-
enuse are known, the sine and cosecant may be obtained.

When the base and hypothenuse are known, the cosine and
secant may be computed. And when the base and perpen-
dicular are known, the tangent and cotangent may be com-

puted.
Either one of these, thus obtained, shows by the trigo-

nometrical tables the number of degrees in the angle ; and,

deducting the angle thus found from 90, the remainder will

be the angle of the other acute angle of the triangle. For

M D
FIG. 317.

example : in a right-angled triangle, of which the base is 8

feet and the perpendicular 6 feet, how many degrees are

contained in each of the acute angles ?

Having, in this case, the base and perpendicular known,

by referring to the above proportions we find that with

these two sides we may obtain the tangent ; therefore

Referring to the trigonometrical tables, we find that 0-75 is

the tangent of 36 52' 12", nearly ;
therefore

The quadrant equals 90- o- o

The angle B equals 36-52-12

The angle A equals 53-07-48
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475. Right-Angled Triangle : Trigonometrical Value
of Side. In the triangle A B C (Fig. 317), with BP = i for

radius, and on B as a centre, describe the arc P D, and from
its intersection with the lines A B and B C, draw PM and
TD perpendicular to the line B C. Then from homologous
triangles we have these proportions for the perpendicular

BD : DT : : BC : CA,

r : tan. B : : base : perp.,

I : tan. B : : a : b = a tan. B. ( 1 %S-)

Also *

- BP : PM \\BA\AC,

r : sin. B : : hyp. : perp.,

I : sin. B : : c : b = c sin. B. (186.)

For the base, we have

BP : BM : : BA : B C,

r : cos. B : : hyp. : base,

I : cos. B : : c : a = c cos. B. ( l %7-)

Again
TD : BD :: AC : B C,

tan. B : r : : perp. : base,

tan.*:!::*:,^L_. (.88.)

For the hypothenuse, we have

PM : PB : : A C : : A B,

sin. B : r : : perp. : hyp.,
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sin. B : i : : b : c = -, . (180.)
sm. B

Again

BD \BT\\BC\ BA,

r : sec. B : : base : hyp.,

I : sec. B : : a : c = a sec. B -
. (IQO.)

cos. B

This substitution of the cos. for the sec. is needed because
tables of secants are not always accessible. That it is an

equivalent is clear
;
for we have

BM \ BP :-. BD : BT,

cos. \r\\r\ sec. =
cos.

By these equations either side of a right-angled triangle

may be computed, provided there are certain parts of the

triangle given. As, for example : of the six parts of a tri-

angle (the three sides and the three angles), three must be

given, and at least one of these must be a side.

As an example : let it be required to find two sides of a

right-angled triangle of which the base is 100 feet, and the

acute angle at the base is 35 degrees. Here we have given
one side and two angles (the base, acute angle, and the right

angle) to find the other two sides, the perpendicular and the

hypothenuse.

Among the above rules we have, in equation (185.), for

the perpendicular

b a tan. B.

Or : The perpendicular equals the product of the base into the

tangent of the acute angle at the base.
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Then (Art. 427)
The logarithmic tangent of B ( 35) is 9-8452268

Log. of a ( 100) is 2-0000000

Perpendicular, b (= 70-02075) = I -8452268

And for the hypothenuse, taking equation (190.), we
have

cos. B

Or : The hypothenuse equals the quotient of the base divided

by the cosine of the acute angle at the base.

For this we have-

Log, of a (= 100) is 2-0000000
"

cos. B (= 35) is 9-9133645

Hypothenuse c(~ 122-0775) = 2-0866355

We thus find that a right-angled triangle, having an angle
of 35 degrees at the base, has its three sides, the perpendic-

ular, baseband hypothenuse, respectively equal to 70-02075,

loo, and 122-0775.

N.B. The angle at A (Fig^ij) is obtained by deducting
the angle at B from 90 (Art. 346). Thus, 90 35 = 55 ;

this is the angle at A, in the above case.

If the perpendicular be given, then for the base use

equation (188.), and for the hypothenuse use equation (189.).

If the hypothenuse be given, then for the base use equation

(187.) and for the perpendicular use equation (186.).
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476. Oblique-Angled Triangle* : Sine* and Side*. In

the oblique-angled triangle A BC (Fig. 318) from C and per-

pendicular to A B draw CD. This line divides the oblique-

angled triangle into two right-angled triangles, the lines and

angles of which may be treated by the rules already given ;

but there is a still more simple method, as will now be

shown.

As shown in Art. ^4:
" When the perpendicular is di-

vided by the hypothenuse the quotient equals the sine."

Applying this to Fig. 318, we have

jNIVERSITY

Let the former be divided by the latter
;
then

d
sin. A __ b_

~sm7
~

d '

a

or, reducing, we have

sin. A

or, putting the equation in the form of a proportion-

sin. B : sin. A : : b : a
;

or
;
the sines are in proportion as the sides, respectively op-

posite. Or, as commonly stated, the sines are in proportion

as the sides which subtend them.

This is a rule of great utility ; by it we obtain the follow-

ing :

Referring to Fig. 318, we have-

sin. B : sin. A : : b : a = b *-.
-

. (191.)
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~ sin. A
sin. C : sin. A : : c : a = c- ~

. (192.)
sin. C

, sin. B
sin. A : sin. B : : a : b a . . (ICH.)

sin. A

~ . , sin. B
sin. C : sin. B : : c : b = - -. (iQ4.)

sin. (7

, . ^ sin. 6" , N
sin. A : sin. c : : a : c = a-^ -~

. (iQ5.)
sin. A

n ' r L 7 Sm - C
sin. B : sin. C \ \ b \ c b .

sin. B

These expressions give the values of the three sides respec-

tively ;
two expressions for each, one for each of the two

remaining sides; that is to be used which contains the given
side.

From these expressions we derive the values of the

sines
\
thus

sin. A = sin. B a
-. ( 1 97-)
b

sin. A = sin. C . ( 1 9%-)

sin. B = sin. A . ( I99)
ci

sin. B = sin. C'-. (200.)

sin. C sin. A -. (201.)

sin. C sin. B C
-. (202.)

477. Oblique - Angled Triangles : First Class. The

problems arising in the treatment of oblique-angled trian-

gles have been divided into four classes, one of which, the
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first, will here be referred to. The problems of the first

class are those in which a side and two angles are given, to

find the remaining angle and sides.

As to the required angle, since the three angles of every
triangle amount to just two right angles (Art. 345), or 180,
the third angle may be found simply by deducting the sum
of the two given angles from 180.

For example : referring to Fig. 318, if angle A = 18 and

angle B = 42, then their sum is 18 + 42 = 60, and 180 -

60 = 120 = the angle AC B.

To find the two sides : if a be the given side, then to find

the side b we have, equation (193.)

sin. B
b a ~

;

sin. A

or, the side b equals the product of the side a into the quo-
tient obtained by a division of the sine of the angle opposite
b by the sine of the angle opposite a.

For example: in a triangle (Fig. 318) in which the angle
A = 1 8, the angle B 42 (and, consequently (Art. 345) the

angle C= 120), and the given side a equals 43 feet; what

are the lengths of the sides b and cl Equation (193.) gives-

sin.' Bb~a- --.
sin. A

Performing the problem by logarithms (Art. 427), we

have

Log. a(= 43)= I -6334685

Sin. B (- 42) = 9-8255109

-4589794
Sin. A (= 18) = 9-4899824

Log. b O 93 1 102) = i -9689970.

Thus the side b equals 93-1102 feet, or 93 feet I inch and

nearly one third of ah inch.
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For the side c, we have, equation (195.)

sin. C
c = a . ;

sin. A
or

Log. *(= 43) =1-6334685
Sin. C(= 120) = 9-9375306

1' 5 70999 1

Sin. A
(

1 8) = 9-4899824

Log. c(= 120-508) 2-0810167

or, the base c equals 120 feet 6 inches and one tenth of an

inch, nearly. But if instead of a the side b be given, then

for a use equation (191.), and for c use equation (196.).

And, lastly, if c be the given side, then for a use equation

(192.), and for b use equation (194.). t

478. Oblique-Angled Triangles: Second Clas. The

problems which comprise the second class are those in which
.two sides^ax\& an angle opposite to one of them are given, to

find the two remaining angles and the third side.

The only requirement really needed here is to find a

second angle ; for, with this second angle found, the problem
is reduced to one of the firt class

;
and the third side may

then be found under rules given in Art. 477.

To find a second angle, use one of the equations (197.) to

(202.).

For example : in the triangle ABC (Fig. 318), let a (= 43)
and b (= 93 1 1) be the two given sides, and A, the angle op-

posite a, be the given angle (= 18). Then to find the angle
B, we have equation (199.) (selecting that which in the

right hand member contains the given angle and sides)

sin. B = sin. A

43
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By logarithms (Art. 427), we have

Log. sin. A (= 1 8) = 9-4899824
"

93-n = 1.9689970

1-4589794

43 = 1-6334685
"

sin. 5 (=42) = 9-8255109

By reference to the log. tables, the last line of figures, as

above, is found to be the sine of 42 ; therefore, the required
angle B is 42. Then 180 -

(18 + 42) = 120 = the angle C.

With these angles, or with any two of them, the third

side c may be found by rules given in Art. 477.

FIG. 319.

479. Oblique-Angled Triangles : Sum and Difference

of Two Angles. Preliminary to a consideration of prob-
lems in the third class of triangles, it is requisite to show the

relation between the sum and difference of two angles.

In Fig. 319, let the angle A JM and the angle A JN be

the two given angles ;
and let A JM be called angle A, and

AJN, angle B. Now the sum and difference of the angles

may be ascertained by the use of the sum and difference of

the sines of the angles, and by the sum and difference of the

tangents. In the diagram, in which the radius A J equals
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unity, we have MP, the sine of angle A (= A y M), and

NQ = RP, the sine of angle B(= A y N). Then

MP- RP= MR

equals the difference of the sines of the angles ;
and since

PM' = PM
PM'+RP = RM',

equals the sum of the sines of the angles.

With the radius JC describe the arc JD E, and tangent
to this arc draw FH parallel with MM', or perpendicular
to AB.

Then FD is the tangent of the angle MCN, and DH is

the tangent of the angle NCM'.
Now since an angle at the circumference is equal to half

the angle at the centre standing on the same arc (Art. 355),

therefore the measure of the angleM CN is the half ofMN,

equals

-B).

Similarly, we have

for the angle NCM'.
Therefore we have for the tangent of the angle M CN

-B\

and, for the tangent of the angle NCM'-

DH = tan. \(A + B).

And, because FCD and M CR are homologous triangles, as,

also, DCH and R'CM', therefore

M' R : MR : : DH : D F,
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sin. A 4- sin. B : sin. A sin. B : : tan. %(A + B) : tan. (A B),

from which we have

sin. A sin. B __ tan. % (A B) ,~ .

sin. ^4 + sin. ./? . tan. % (A + B)'

To obtain a proper substitute for the first member of this

expression we have, equation (195.)

sin. C
/ 7 >
C- * LI ;

~
.

sin. A
or

c sin. A a sin. C. (M.)

We also have, equation (196.)

,sin. C
c = b -. ,

sin. B
or

c sin. B b sin. C. (N.)

These two equations, (M.) and (N.), added, give

c sin. A -t- c sin. B a sin. (7 + b sin. C
or

c (sin. ^ + sin. B) = sin. C( + b). (P.)

But, if equation (N.) be subtracted from equation (M.), we

have

c sin. A c sin. B a sin. C b sin. C,

or

f(sin. A sin. B) = A sin. C (a ).' (R.)

If equation (R.) be divided by equation (P.), we have

<r(sin. A sin. B) __ sin. C(a b)

<r(sin. A -f sin. B)
~

sin. C (a + b)
'
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which reduces to

sin. A sin. B _ a b

sin. A + sin. B
~

a + b'

The first member of this equation is identical with the first

member of the above equation (D.), and therefore its equal,
the second member, may be substituted for it

;
thus

a b _ tan, j- (A - B)
a +~b~ tan. ^(A~+^)"

From which we have
t

tan. $(A) = tan. J (A + B)~ . (203.)

We have (Art. 431) the proposition, that if half the differ-

ence of two quantities be subtracted from half their sum, the

remainder will equal the smaller quantity. For example :

if A represent the larger quantity and B the smaller, then

)> Jfj (204.)

and, again, we also have (Art. 431)

B)=A. (205.)

480. Oblique-Angled Triangles; : Third < In**. The
third class of problems comprises all those cases in which two
sides of a triangle and their included angle are given, to

find the other side and angles.

In this case, as in the problems of the second class, the

only requirement here is to find a second angle ;
for then

the problem becomes one belonging to the first class. But
the finding of the second angle, in problems of the third

class, is attended with more computation than it is in prob-
lems of the second class. The process is as follows : Hav-

ing one angle of a triangle, the sum of the two remaining
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angles is obtained by subtracting the given angle from

1 80 the sum of the three angles.

Then with equation (203.) the difference of the two angles
is obtained. And then, having the sum and difference of the

two angles, either may be found by one of the equations

(204.) and (205.).

For example : let Fig. 320 represent the triangle in

which a (= 36 feet) and b(= 27 feet) are the given sides
;
and

C (= 105) the angle included between the given sides, a and

b. The sum of the two angles A and B, therefore, will be

(A + )
= 180- 105 ^75,

and the half of the sum of A and B is -V - 37 30'.

The sum of the given sides is 36 + 27 = 63, and their dif-

ference is 36 27 = 9.

Then from equation (203.) we have

. tan. (A-B) = tan. 37

Solving this by logs. (Art. 427), we have-

Log. tan. 37 30' = 9-8849805

9 =0-9542425

0-8392230

63 = I-79934Q5

tan. $(A- B)(= 6 15' 20-5") = 9-0398825

Thus half the difference of A and B is 6 15' 20- 5", nearly,
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By equation (204.)

37 30'

6 15' 20- 5"

The difference, 31 14' 39'$"

and by equation (205.)

37-30

6.15.20-5

The sum, 43.45.20-5 A
From above, 31.14.39-5 ^

The given angle, 105. o. o C

The three angles, 180. o. o

Thus, by adding together the three angles, the work is

tested and proved.

Having the three angles, the third side may now be

found by the rule for problems of the first class.

Oblique-Angled Triangles: Fourth Class. The
fourth class comprises those problems in which the three

sides of the triangle are given, to find the three angles.

The method by which the problems of the fourth class

are solved is to divide the triangle into two right-angled

triangles; then, by the use of equation (129.), to find one

side of one of these triangles, and then with this side to find

one of the angles, then by rules for the second class prob-

lems, obtain the second and third angles.

Thus, from equation (129.), we have

By the relation of sines to sides (Art. 476), we have (Fig.

b : g : : sin. E : sin. F.
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But the angle E is a right angle, of which the sine is unity,

therefore^

b : g : : I : sin. F = -.

Substituting for g its value as above, we have

*sin. F = q- b)

2bc
(206.)

To illustrate: let a, b, c (Fig. 321) be the three given sides

of the triangle ABC, respectively equal to 12,' 8 and 16 feet.

With these, equation (206.) becomes

I 6
2

-(i2 + 8)(i2-8)
sin. F = *-*-< ^ ,

2 x 8 x 16

sin. /* =

sin. F 176

Solving this by logarithms (Art. 427), we have-

Log. 176 = 2-2455127
"

256 = 2-4082400

Log. sin. 43 26' = 9*8372727

or, the angle at F equals 43 26', nearly. Of the triangle
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A CE (Fig. 321), E is a right angle, therefore the sum of F
and A, the two remaining angles, equals 90 (Art. 346).

Hence, for the angle at A, we have

=90 -43 26' = 46 34'-

We now have two sides a and b and A, an angle opposite
to one of them, to find B, a second angle. For this, equa-
tion (199.) is appropriate. Thus

sin. B = sin. A .

a

This may be solved as shown in Art. 478.

And, when the second angle is obtained, the third angle
is found by subtracting the sum of the first and second an-

gles from 1 80.

But to test the accuracy of the work, it is well to com-

pute the angle 'C from the angle A, and the sides a and c.

For this, equation (201.) will be appropriate.

482. Trigonometric Formulae: Right-Angled Trian-

gles. For facility of reference the formulas of previous

articles are here presented in tabular form. The symbols
referred to are those of Fig. 322.
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RIGHT-ANGLED TRIANGLES.

GIVEN.
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OBLIQUE-ANGLED TRIANGLES: FIRST CLASS.

GIVEN, i REQUIRED.
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OBLIQUE-ANGLED TRIANGLES: SECOND CLASS.

1

GIVEN.
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485. Trigonometrical Formulae : Third Class, Oblique.
The symbols in the formulae of the following table refer

to quantities shown by like symbols in Fig. 323.

OBLIQUE-ANGLED TRIANGLES: THIRD CLASS.

GIVEN.
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OBLIQUE-ANGLED TRIANGLES: FOURTH CLASS.

Given
, #, c, to find A, B, C.

A = 90
- F.

sin. ^ = sin. A .

^ /i
c

sin. c = sin. ^4 -.

= 180 (A + B}.



SECTION XV. DRAWING.

487. General Remark. A knowledge of the proper-
ties and principles of lines can best be acquired by practice.

Although the various diagrams throughout this work may
be understood by inspection, yet they will be impressed

upon the mind with much greater force, if they are actually
drawn out with pencil and paper by the student. Science

is acquired by study art by practice ; he, therefore, who
would have anything more than a theoretical (which must
of necessity be a superficial) knowledge of carpentry and

geometry, will provide himself with the articles here speci-

fied, and perform all the operations described in the fore-

going and following pages. Many of the problems may
appear, at the first reading, somewhat confused and intricate

;

but by making one line at a time, according to the explana-

tions, the student will not only succeed in copying the fig-

ures correctly, but by ordinary attention will learn the

principles upon which they are based, and thus be able to

make them available in any unexpected case to which they

may apply.

488. Articles Required. The following articles are

necessary for drawing, viz. : a drawing-board, paper, draw-

ing-pins or mouth-glue, a sponge, a T-square, a set-square,

two straight-edges, or flat rulers, a lead pencil, a piece of

india-rubber, a cake of india-ink, a set of drawing-instru-

ments, and a scale of equal parts.

489. The Drawing-Board. The size of the drawing-

board must be regulated according to the size of the draw-

ings which are to be made upon it. Yet for ordinary prac-

tice, in learning to draw, a board about fifteen by twenty

inches, and one inch thick, will be found large enough, and
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more convenient than a larger one. This board should be
well seasoned, perfectly square at the corners, and without

clamps on the ends. A board is better without clamps,
because the little service they are supposed to render by
preventing the board from warping is overbalanced by the

consideration that the shrinking of the panel leaves the

ends of the clamps projecting beyond the edge of the board,
and thus interfering with the proper working of the stock

of the T-square. When the stuff is well-seasoned, the warp-
ing of the board will be but trifling ;

and by exposing the

rounding side to the fire, or to the sun, it may be brought
back to its proper shape.

490. Drawing-Paper. For mere line drawings, it is

unnecessary to use the best drawing-paper ;
and since, where

much is used, the expense will be considerable, it is desirable

for economy to procure a paper of as low a price as will be

suitable for the purpose. The best paper is made in Eng-
land and water-marked " Whatman." This is a hand-made

paper. There is also a machine-made paper at about half-

price, and the manilla paper, of various tints of russet color,

is still less in price. These papers are of the various sAzes

needed, and are quite sufficient for ordinary drawings.

49 1. To Secure the Paper to the Board. A drawing-

pin is a small brass button, having a steel pin projecting from

the underside. By having one of these at each corner, the

paper can be fixed to the board
;
but this can be done in a

better manner with moutJi-glue. The pins will prevent the

paper from changing its position on the board
; but, more

than this,, the glue keeps the paper perfectly tight and

smooth, thus making it so much the more pleasant to work
on.

To attach the paper with mouth-glue, lay it with the

bottom side up, on the board ;
and with a straight-edge and

penknife cut off the rough and uneven edge. With a

sponge moderately wet rub all the surface* of the paper,

except a strip around the edge about half an inch wide. As
soon as the glistening of the water disappears turn the sheet
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over and place it upon the board just where you wish it

glued. Commence upon one of the longest sides, and pro-
ceed thus : lay a flat ruler upon the paper, parallel to the

edge, and within a quarter of an inch of it. With a knife,

or anything similar, turn up. the edge of the paper against
the edge of the ruler, and put one end of the cake of mouth-

glue between your lips to dampen it. Then holding it up-

right, rub it against and along the entire edge of the paper
that is turned up against the ruler, bearing moderately
against the edge of the ruler, which must be held firmly
with the left hand. Moisten the glue as often as it becomes

dry, until a sufficiency of it is rubbed on the edge of the

paper. -Take away the ruler, restore the turned-up edge to

the level of the board, and lay upon it a strip of pretty stiff

paper. By rubbing upon this, not very hard but pretty

rapidly, with the thumb-nail of the right hand, so as to cause

a gentle friction and heat to be imparted to the glue that is

on the edge of the paper, you will make it adhere to the

board. The other edges in succession must be treated in

the same manner.

Some short distances along one or more of the edges

may afterward be found loose
;

if so, the glue must again
be applied, and the paper rubbed until it adheres. The
board must then be laid away in a warm or dry place ;

and
in a short, time the surface of the paper will be drawn out,

perfectly tight and smooth, and ready for use. The paper
dries best when the board is laid level. When the drawing
is finished lay a straight-edge upon the paper and cut it

from the board, leaving the glued strip still attached. This

may afterward be taken off by wetting it freely with the

sponge, which will soak the glue and loosen the paper. Do
this as soon as the drawing is taken off, in order that the

board may be dry when it is wanted for use again. Care

must be taken that, in applying the glue, the edge of the

paper does not become damper than the rest
;

if it should,

the paper must be laid aside to dry (to use at another time)
and another sheet be used in its place.

Sometimes, especially when the draAving-board is new,
the paper will not stick very readily ;

but by persevering
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this difficulty may be overcome. In the place of the mouth-

glue a strong solution of gum-arabic may be used, and on
some accounts is to be preferred ;

for the edges of the paper
need not be kept dry, and it adheres more readily. Dissolve

the gum in a sufficiency of warm water to make it of the

consistency of linseed-oil. It must be applied to the paper
with a brush, when the edge is turned up against the ruler,

as was described for the mouth-glue. If two drawing-boards
are used, one may be in use while the other is laid away to

dry; and as' they may be cheaply made, it is advisable to

have two. The drawing-board having a frame around it,

commonly called a panel board, may afford rather more

facility in attaching the paper when this is of the size to

FIG. 324.

suit
; yet it has objections which overbalance that consid-

eration.

492. The T-Square. A T-square of mahogany, at once

simple in its construction and affording all necessary service,

may be thus made : let the stock or handle be seven inches

long, two and a quarter inches wide, and three eighths of an

inch thick ; the blade, twenty inches long (exclusive of the

stock), two inches wide, and one eighth of an inch thick. In

joining the blade to the stock, a very firm and simple joint

may be made by dovetailing it as shown at Fig. 324.

493. Tlie Set-Square. The set-square is in the form of

a right-angled triangle ;
and is commonly made of mahogany,
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one eighth of an inch in thickness. The size that is most

convenient for general use is six inches and three inches

respectively for the sides which contain the right angle,

although a particular length for the sides is by no means

necessary. Care should be taken to have the square corner

exactly true. This, as also the T-square and rulers, should

have a hole bored through them, by which to hang them

upon a nail when not in use.

494. The Rulers. One of the rulers may be about

twenty inches long, and the other six inches. The pencil

ought to be hard enough to retain a fine point, and yet not

so hard as to leave ineffaceable marks. It should be used

lightly, so that the extra marks that are not needed when
the drawing is inked, may be easily rubbed off with the

rubber. The best kind of india-ink is that which will easily

rub off upon the plate ; and, when the cake is rubbed against
the teeth, will be free from grit.

495. The Instruments. The drawing-instruments may
be purchased of mathematical instrument makers at various

prices ;
from one to one hundred dollars a set. In choosing

a set, remember that the lowest price articles are not always
the cheapest. A set, comprising a. sufficient number of

instruments for ordinary use, well made and fitted in a ma-

hogany box, may be purchased of the mathematical instru-

ment makers in New York for four or five dollars. But for

permanent use those which come at ten or twelve dollars

will be found to be better.

496. The Scale of Equal Parts. The best scale of

equal parts for carpenters' use, is one that has one eighth,

three sixteenths, one fourth, three eighths, one half, five

eighths, three fourths, and seven eighths of an inch, arid one

inch, severally divided into twelfths, instead of being divided,

as they usually are, into tenths. By this, if it be required

to proportion a drawing so that every foot of the object

represented will upon the paper measure one fourth of an

inch*, use that part of the scale which is divided into one
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fourths of an inch, taking for every foot one of those divis-

ions, and for every inch one of the subdivisions into twelfths
;

and proceed in like manner in proportioning a drawing to

any of the other divisions of the scale. An instrument in

the form of a semi-circle, called a protractor, and used for

laying down and measuring angles, is of much service to

surveyors, and occasionally to carpenters.

497. The Ue of the Set-Square. In drawing parallel

lines, when they are to be parallel to either side of the

board, use the T-square ;
but when it is required to draw

lines parallel to a line which is drawn in a direction oblique

FIG. 325.

to either side of the board, the set-square must be used.

Let ab (Fig. 325) be a line, parallel to which it is desired to

draw one or more lines. Place any edge, as c d, of the set-

square even with said line
;
then place the ruler gh against

one of the other sides, as ce, and hold it firmly ; slide the

set-square along the edge of the ruler as far as it is desired,

as at /; and a line drawn by the edge *'/ will be parallel

to a b.

To draw a line, as kl (Fig. 326), perpendicular to another,

as a b, set the shortest edge of the set-square at the line a b ;

place the ruler against the longest side (the hypothenuse of

the right-angled triangle); hold the ruler firmly, and slide

the set-square along until the side ed touches the point k\

then the line Ik, drawn by it, will be perpendicular to ab.
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In like manner, the drawing of other problems may be facil-

itated, as will be discovered in using the instruments.

498. Directions for Drawing. In drawing a problem,

proceed, with the pencil sharpened to a point, to lay down
the several lines until the whole figure is completed, ob-

serving to let the lines cross each other at the several angles,
instead of merely meeting. By this, the length of every
line will be clearly defined. With a drop or two of water,

rub one end of the cake of ink upon a plate or saucer, until

a sufficiency adheres to it. Be careful to dry the cake of

FIG 326.

ink
;
because if it is left wet it will crack and crumble in

pieces. With an inferior camel's-hair pencil add a little

water to the ink that was rubbed on the plate, and mix it

well. It should be diluted sufficiently to flow freely from
the pen, and yet be thick enough to make a black line. With
the hair pencil place a little of the ink between the nibs of

the drawing-pen, and screw the nibs together until the pen
makes a fine line. Beginning with the curved lines, proceed
to ink all the lines of the figure, being careful now to make

every line of its requisite length. If tl.ey are a trifle too

short or too long the drawing will have a ragged appear-
ance

;
and this is opposed to that neatness and accuracy

which is indispensable -to a good drawing. When the ink

is dry efface the pencil-marks with the india-rubber. If the
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pencil is used lightly they will all rub off, leaving those lines

only that were inked.

In problems all auxiliary lines are drawn light ;
while the

lines given and those sought, in order to be distinguished at

a glance, are made much heavier. The heavy lines are

made so by passing over them a second time, having the

nibs of the pen separated far enough to make the lines as

heavy as desired. If the heavy lines are made before the

drawing is cleaned with the rubber they will not appear so

black and neat, because the india-rubber takes away part
of the ink. If the drawing is a ground-plan or elevation of

a house, the shade-lines, as they are termed, should not be

put in until the drawing is shaded
;
as there is danger of the

heavy lines spreading when the brush, in shading or color-

ing, passes over them. If the lines are inked with common

writing-ink they will, however fine they may be made, be

subject to the same evil
; for which reason india-ink is the

only kind to be used.
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499. Definitions. Geometry treats of the properties of

magnitudes.
A point has neither length, breadth, nor thickness.

A line has length only.

Superficies has length and breadth only.
A plane is a surface, perfectly straight and even in every

direction
;

as the face of a panel when not warped nor

winding.
A solid has length, breadth, and thickness.

A right, or straight, line is the shortest that can be drawn
between two points.

Parallel lines are equidistant throughout their length.

FIG. 327. FIG. 328. FIG. 329.

An angle is the inclination of two lines towards one an-

other (Fig. 327).

A right angle has one line perpendicular to the other

(Fig. 328).

An oblique angle is either greater or less than a right

angle (Figs. 327 and 329).

An acute angle is less than a right angle (Fig. 327).

An obtuse angle is greater than a right angle (Fig. 329).

When an angle is denoted by three letters, the middle

one, in the order they stand, denotes the angular point, and

the other two the sides containing the angle ; thus, let a, b, c

(Fig. 327) be the angle, then b will be the angular point, and

ab and be will be the two sides containing that angle.
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A triangle -is a superficies having three sides and angles

(Figs. 330, 331, 332, and 333).

An equilateral triangle has its three sides equal (Fig. 330).

An isosceles triangle has only two sides equal (Fig. 331).

FIG. 330. FIG 331.

A scalene triangle has all its sides unequal (Fig. 332).

A right-angled triangle has one right angle (Fig. 333).

An acute-angled triangle has all its angles acute (Figs. 330
and 331).

FIG. 332. FIG. 333.

An obtuse-angled triangle has one obtuse angle (Fig. 332).

A quadrangle has four sides and four angles (Figs. 334 to

339).

A parallelogram is a quadrangle having its opposite sides

parallel (Figs. 334 to 337).

FIG. 334- FIG. 335.

A rectangle is a parallelogram, its angles being right

angles (Figs. 334 and 335).

A square is a rectangle having equal sides (Fig. 334).

A rhombus is an equilateral parallelogram having oblique

angles (Fig. 336).
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A rhomboid is a parallelogram having oblique angles

(Fig- 337).

A trapezoid is a quadrangle having only two of its sides

parallel (Fig. 338).

FIG. 336. FIG. 337.

A trapezium is a quadrangle which has no two of its sides

parallel (Fig. 339).

A polygon is a figure bounded by right lines.

A regular polygon has its sides and angles equal.
An irregular polygon has its sides and angles unequal.

FIG. 338. FIG. 339.

A trigon is a polygon of three sides (Figs. 330 to 333) ;
a

tetragon has four sides (Figs. 334 to 339) ;
a pentagon has five

(Fig. 340) ;
a hexagon six (Fig. 341) ;

a heptagon seven (/%-.

342) ;
an octagon eight (/

r/~. 343) ;
a nonagon nine

;
a decagon

ten
;
an undecagon eleven

;
and a dodecagon twelve sides.

FIG. 340. FIG. 341. FIG. 342. FIG. 343.

A circle is a figure bounded by a curved line, called the

circumference, which is everywhere equidistant from a cer-

tain point within, called its centre.

The circumference is also called the periphery, and some-

times the circle.
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The radius of a circle is a right line drawn from the

centre to any point in the circumference (ab, Fig. 334).

All the radii of a circle are equal.
The diameter is a right line passing through the centre,

and terminating at two opposite points in the circumference.

Hence it is twice the length of the radius (cd. Fig. 344.)

FIG. 344.

An arc of a circle is a part of the circumference (cb, or

bed, Fig. 344).

A chord is a right line joining the extremities of an arc

(b d, Fig. 344).

A segment is any part of a circle bounded by an arc and

its chord (A, Fig. 344).

FIG. 345.

A sector is any part of a circle bounded by an arc and

two radii, drawn to its extremities (B, Fig. 344).

A quadrant, or quarter of a circle, is a sector having a

quarter of the circumference for its arc (C, Fig. 344).

A tangent is a right line which, in passing a curve,

touches, withont cutting it (fg, Fig. 344).



PRACTICAL GEOMETRY.

A cone is a solid figure standing upon a circular base di-

minishing in straight lines to a point at the top, called its

vertex (Fig: 345).

The axis of a cone is a right line passing through It,

from the vertex to the centre of the circle at the base.

An ellipsis is described if a cone be cut by a plane, not

parallel to its base, passing quite through the curved surface

(a b, Fig. 346).

A parabola is described if a cone be cut by a plane, par-
allel to a plane touching the curved surface (c d, Fig. 346
cd being parallel to fg\

An hyperbola is described if a cone be cut by a plane,

FIG. 347.
t

parallel to any plane within the cone that passes through its

vertex (e/t, Fig. 346).

Foci are the points at which the pins are placed in de-

scribing an ellipse (see Art. 548, and /,/, Fig. 347).

The transverse axis is the longest diameter of the ellipsis

(a b, Fig. 347).

The conjugate axis is the shortest diameter of the ellipsis ;

and is, therefore, at right angles to the transverse axis (cd,

Fig. 347).

The parameter is a right line passing through the focus

of an ellipsis, at right angles to the transverse axis, and ter-

minated by the curve (gk and gt, Fig. 347).
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A diameter of an ellipsis is any right line passing through
the centre, and terminated by the curve (kl, or ;;/ n, Fig. 347).
A diameter is conjugate to another when it is parallel to a

tangent drawn at the extremity of that other thus, the di-

ameter mn (Fig. 347) being parallel to the tangent op, is

therefore conjugate to the diameter kl.

A double ordinate is any right line, crossing a diameter of

an ellipsis, and drawn parallel to a tangent at the extremity
of that diameter (it, Fig. 347).

A cylinder is a solid generated by the
%

revolution of a

right-angled parallelogram, or rectangle, about one of its

FIG. 348. FIG. 349.

sides
;
and consequently the ends of the cylinder are equal

circles (Fig. 348).

The axis of a cylinder is a right line passing through it

from the centres of the two circles which form the ends.

A segment of a cylinder is comprehended under three

planes, and the curved surface of the cylinder. Two of

these are segments of circles ;
the other plane is a parallelo-

gram, called by way of distinction, the plane of tJie segment.

The circular segments are called the ends of the cylinder

(Fig. 349)-

PROBLEMS.

RIGHT LINES AND ANGLES.

500. To Biect a Line. Upon the ends of the line ab

(Fig. 350) as centres, with any distance for radius greater

than half ab, describe arcs cutting each other in



550 PRACTICAL GEOMETRY.

draw the line cd, and the point e, where it cuts ab} will be

the middle of the line ab.

In practice, a line is generally divided with the com-

passes, or dividers
;
but this problem is useful where it is

desired to draw, at the middle of another line, one at right

angles to it. (See Art. 514.)

501. To Erect a Perpendicular. From the point a

(Fig. 351) set off any distance, as ab, and the same distance

from a to c
; upon c, as a centre, with any distance for radius

greater than ca, describe an arc at d\ upon b, with the same

FIG. 351.

radius, describe another at d\ join d and a, and the line da
will be the perpendicular required.

This, and the three following problems, are more easily

performed by the use of the set-square (see Art. 493). Yet

they are useful when the operation is so large that a set-

square cannot be used.
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502. To let Fall a Perpendicular. Let a (Fig. 352) be

the point above the line be from which the perpendicular is

required to fall. Upon a, with any radius greater than ad,

describe an arc, cutting be at ^and /; upon the points e and

/, with any radius greater than ed, describe arcs, cutting

FIG. 352.

each other at g\ join a and g, and the line ad will be the

perpendicular required.

503. To Erect a Perpendicular at the End of a Line.

Let a (Fig. 353), at the end of the line c a, be the point at

which the perpendicular is to be erected. Take any point,

as by above the line ca, and with the radius ba describe the

arc dae; through d and b draw the line de\ join e and a,

then e a will be the perpendicular required.

FIG. 353-

The principle here made use of is a very important one,

and is applied in many other cases (see Art. 510, 3d, and Art.

513. For proof of its correctness, see Art. 352).

A second method. Let b (Fig. 354), at the end of the line

a b, be the point at which it is required to erect a perpendic-

ular. Upon b, with any radius less than b a, describe the arc

ced\ upon c
t
with the same radius, describe the small arc at*/
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and upon c, another at d
; upon e and d, with the same or any

other radius greater than half e d, describe arcs intersecting
at f' join /and b, and the line fb will be the perpendicular
required. This method of erecting a perpendicular, and
that of the following article, depend for accuracy upon the

c b

FIG. 354.

fact that the side of a hexagon is equal to the radius of the

circumscribing circle.

A third method. Let b (Fig. 355) be the given point at

which it is required to erect a perpendicular. Upon b, with

any radius less than ba, describe the quadrant def\ upon d,

with the same radius, describe an arc at e, and upon e an-

other at c
; through d and e draw dc, cutting the arc in c

;

join c and 3, then cb will be the perpendicular required.

d b

FIG. 355.

This problem can be solved by the six, eight and ten rule,

as it is called, which is founded upon the same principle as

the problems at Arts. 536, 537, and is applied as follows:

let ad (Fig. 353) equal eight, and ae, six ; then, if de equals

ten, the angle cad is a right angle. Because the square of

six and that of eight, added together, equal the square of
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ten, thus : 6 x 6 = 36, and S x 8 64; 36 + 64 = 100, and
10 x 10 = 100. Any sizes, taken in the same proportion, as

six, eight and ten, will produce the same effect
;
as 3, 4 and

5, or 12, 1 6 and 20. (See Art. 536.)

By the process shown at Fig. 353, the end of a board may
be squared without a carpenters'-square. All that is neces-

sary is a pair of compasses and a ruler. Let ca be the edge
of the board, and a the point at which it is required to be

squared. Take the point b as near as possible at an angle
of forty-five degrees, or on a mitre-line from a, and at about
the middle of the board. This is not necessary to the work-

ing of the problem, nor does it affect its accuracy, but the

result is more easily obtained. Stretch the compasses from
b to a, and then bring the leg at a around to d\ draw a line

from d, through b, out indefinitely ;
take the distance db and

place it from b to c
; join e and a

;
then ca will be at right

angles to c a. In squaring the foundation of a building, or

laying out a garden, a rod and chalk-line may be used in-

stead of compasses and ruler.

504. To let Fall a Perpendicular near the End of a

Line. Let e (Fig. 353) be the point above the line c a, from

which the perpendicular is required to fall. From e draw

any line, as e d, obliquely to the line ca; bisect edai b\ upon
b, with the radius be, describe the arc ead\ join e and #;

then ea will be the perpendicular required.

505. To Make an Angle (a edf, Fig. 356*) Equal to a

Given Angle (as b a c). From the angular point a, with any

FIG. 356.

radius, describe the arc b c
;
and with the same radius, on

the line dc, and from the point d, describe the arc/^-; take

the distance be, and upon gt
describe the small arc at/;
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join f and d\ and the angle edf will be equal to the angle
bac.

If the given line upon which the angle is to be made is

situated parallel to the. similar line of the given angle, this

may be performed more readily with the set-square. (See
Art. 497.)

506. To Bisect an Angle. Let a be (Fig. 357) be the

angle to be bisected. Upon b, with any radius, describe the

FIG. 357-

arc a c ; upon a and c, with a radius greater than half a c,

describe arcs cutting each other at d; join b and d\ and bd
will bisect the angle a be, as was required.

This problem is frequently made use of in solving other

problems ;
it should therefore be well impressed upon the

memory.

507 To Trisect a Right Angle. Upon a (Fig. 358),

with any radius, describe the arc b c
; upon b and c, with the

FIG. 358.

same radius, describe arcs cutting the arc be at d and e\

from d and e draw lines to a, and they will trisect the angle,

as was required.
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The truth of this is made evident by the following oper-
ation : divide a circle into quadrants ; also, take the radius

in the dividers, and space off the circumference. This will

divide the circumference into just six parts. A semi-circum-

ference, therefore, is equal to three, and a quadrant to one

and a half of those parts. The radius, therefore, is equal to

two thirds of a quadrant ;
and this is equal to a right angle.

508. Through a Given Point, to Draw a Line Parallel

to a Given Line. Let a (Fig. 359) be the given point, and

FIG. 359.

be the given line. Upon any point, as d, in the line be, with

the radius da, describe the arc ac\ upon a, with the same

radius, describe the arc de\ make de equal to ac\ through
e and a draw the line ea, which will be the line required.

This is upon the same principle as Art. 505.

509. To Divide a Given Line into any Number of

Equal Part. Let a b (Fig. 360) be the given line, and 5 the

number of parts. Draw ac at any angle to a b
; on ac, from

J A'

FIG. 360.

a, set off five equal parts of any length, as at i, 2, 3, 4 and c
;

join c and b\ through the points I, 2, 3, and 4, draw I e
, 2/,

3^ and 4//, parallel to cb\ which will divide the line ab, as

was required.
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The lines ab and ac are divided in the same proportion.

(See Art. 542.)

THE CIRCLE.

510. To Find the Centre of a Circle. Draw any chord,
as ab (Fig. 361), and bisect it with the perpendicular cd\ bi-

sect cd with the line ef, as at g\ then g is the centre, as was

required.
A second method. Upon any two points in the circumfer-

ence nearly opposite, as a and b (Fig. 362), describe arcs cut-

ting each other at c and d; take aay other two points, as e

and fy
and describe arcs intersecting, as at g and h

; join g
and h and c and d\ the intersection o is the centre.

This is upon the same principle as Art. 514.

A third method. Draw any chord, as ab (Fig. 363), and

from the point a draw ac at right angles to ab ; join c and

b\ bisect c b at d which will be the centre of the circle.
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If a circle be not too large for the purpose, its centre

may very readily be ascertained by the help of a carpenters'-

square, thus : apply the corner of the square to any point in

the circumference, as at a
; by the edges of the square

(which the lines ab and ac represent) draw lines cutting the

FIG. 363.

circle, as at b and c
; join b and c

;
then if be is bisected, as at

d, the point d will be the centre. (See Art. 352.)

5 II At a Given Point in a Circle to Draw a Tangent
thereto. Let a (Fig. 364) be the given point, and b the cen-

FIG. 364.

tre of the circle. Join a and b
; through the point a, and at

right angles to a b, draw cd
;
then c d is the tangent required.

512. The Same, without making use of the Centre of

the Circle. Let a (Fig. 365) be the given point. From a set

off any distance to b, and the same from b to c
; join a and

c
; upon a, with ab for radius, describe the arc dbc-, make

db equal to bc\ through a and d draw a line; this will be

the tangent required.
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The correctness of this method depends upon the fact

that the angle formed by a chord and tangent is equal to any
inscribed angle in the opposite segment of the circle (Art.

358); ab being the chord, and bca the angle in the opposite

segment of the circle. Now, the angles dab and bca are

equal, because the angles dab and bac are, by construction,

FIG. 365.

equal; and the angles bac and bca are equal, because the

triangle abc is an isosceles triangle, having its two sides, ab
and be, by construction equal ;

therefore the angles dab and

bca are equal.

513. A Circle and a Tangent Given, to Find Hie Point

of Contact. From any point, as a (Fig. 366), in the tangent

FIG. 366.

be, draw a line to the centre d\ bisect ad at r; upon e, with

the radius ea, describe the arc afd\ f is the point of con-

tact required.

If/ and// were joined, the line would form right angles

with the tangent be. (See Art. 352.)
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514. Through any Three Points not in a Straight Line,
to Draw a Circle. Let a, b and c (Fig. 367) be the three

given points. Upon a and b, with any radius greater than
half a b, describe arcs intersecting at d and e

; upon b and c,

with any radius greater than half be, describe arcs intersect-

ing at / and g\ through d and e draw a right line, also

.. FIG. 367.

another through / and g\ upon the intersection //, with the

radius ha, describe the circle a be, and it will be the one re-

quired.

515. Three Points not in a Straight Line being Given,
to Find a Fourth that shall, with the Three, Lie in the
Circumference of a Circle. Let a b c (Fig. 368) be the given

points. Connect them with right lines, forming the triangle

FIG. 368.

acb', bisect the angle cba (Art. 506) with the line bd\ also

bisect c a in e, and erect ed perpendicular to ac, cutting bd
in d; then d is the fourth point required.
A fifth point may be found, as at /, by assuming a, d and

b, as the three given points, and proceeding as before. So,
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also, any number of points may be found simply by using

any three already found. This problem will be serviceable

in obtaining short pieces of very flat sweeps. (See Art. 240.)
The proof of the correctness of this method is found in

the fact that equal chords subtend equal angles (Art. 357).

Join d and c; then since ae and ec are, by construction,

equal, therefore the chords a d and dc are equal ;
hence the

angles they subtend, dba and d b c, are equal. So, like-

wise, chords drawn from a to /, and from / to d, are equal,
and subtend the equal angles dbf and fba. Additional

points beyond a or b may be obtained on the same principle.
To obtain a point beyond a, on b, as a centre, describe with

any radius the arc ion
;
make on equal to o i

; through b and
n draw b g\ on a as centre and with af for radius, describe

the arc, cutting gb at gt
then g. is the point sought.

516. To Describe a Segment of a Circle toy a Set-Tri-

angle. Let a b (Fig. 369) be the chord, and c d the height

FIG. 369.

of the segment. Secure two straight-edges, or rulers, in the

position ce and cf, by nailing them together at c, and affixing

a brace from c to /; put in pins at a and b
;
move the angu-

lar point c in the direction acb\ keeping the edges of the

triangle hard against the pins a and b
;
a pencil held at c

will describe the arc acb.

A curve described by this process is accurately circular,

and is not a mere approximation to a circular arc, as some

may suppose. This method produces a circular curve, be-

cause all inscribed angles on one side of a chord-line are

equal (Art. 356). To obtain the radius from a chord and its

versed sine, see Art. 444.

If the angle formed by the rulers at c be a right angle,
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the segment described will be a semi-circle. This problem
is useful in describing centres for brick arches, when they
are required to be rather flat. Also, for the head hang-

ing-stile of a window-frame, where a brick arch, instead of a

stone lintel, is to be placed over it.

517. To Find the Radiu of an Arc of a Circle when
the Chord and Vered Sine are Given. The radius is equal
to the sum of the squares of half the chord and of the versed

sine, divided by twice the versed sine. This is expressed,
(-}* a

algebraically, thus : r =
,
where r is the radius, c the

chord, and v the versed sine (Art. 444).

Example. In a given arc of a circle a chord of 12 feet

has the rise at the middle, or the versed sine, equal to 2 feet,

what is the radius ?

Half the chord equals 6, the square of 6 is, 6 x 6 = 36
The square of the versed sine is, 2x2=4
Their sum equals, 40

Twice the versed sine equals 4, and 40 divided by 4 equals
10. Therefore the radius, in this case, is 10 feet. This

result is shown in less space and more neatly by using the

above algebraical formula. For the letters substituting

their value, the formula r = i- becomes r = sj
2V 2X2

and performing the arithmetical operations here indicated

equals
6 a

-f 2
2

_ 36 -t- 4 _ 40 _
4 44"

518. To Find the Vered Sine of an Arc of a Circle

when the Radius and Chord are Given. The versed sine

is equal to the radius, less the square root of the difference

of the squares of the radius and half chord
; expressed alge-

braically thus : v = r Vr 3 -
(l)

a

,
where r is the radius, v

the versed sine, and c the chord. (Equation (161.) reduced.)
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Example. In an arc of a circle whose radius is 75 feet,

what is the versed sine to a chord of 120 feet? By the table

in the Appendix it will be seen that

The square of the radius, 75, equals . . 5625
The square of half the chord, 60, equals . 5600

The .difference is ..... 2025

The square root of this is . . . -45
This deducted from the radius... 75

The remainder is the versed sine, = 30

This is expressed by the formula, thus

v = 75
- ^75

" - FF? = 75 - ^5625-3600 = 75
-

45 = 30.

519. To Describe the Segment of a Circle by Intersec-

tion of Lines. Let ab (Fig. 370) be the chord, and cd the

height of the segment. Through c draw ef parallel to a b
;

draw bf at right angles to cb; make ce equal to cf; draw

ag and bh at right angles to a b
;
divide ce, cft da, db, a g,

and bh, each into a like number of equal parts, as four;

draw the lines i 1,22, etc., and from the points o, o, and o,

draw lines to c\ at the intersection of these lines trace the

curve, acb, which will be the segment required.
In very large work, or in laying out ornamental gar-

dens, etc., this will be found useful
;
and where the centre

of the proposed arc of a circle is inaccessible it will be inval-

uable. (To trace the curve, see note at Art. 550.)

The lines e a, c d, and fb, would, were they extended,

meet in a point, and that point would be in the opposite
side of the circumference of the circle of which acb is a
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segment. The lines i i, 2 2, 3 3, would likewise, if extended,
meet in the same point. The line cd, if extended to the op-

posite side of the circle, would become a diameter. The line

fb forms, by construction, a right angle with be, and hence

the extension of fb would also form a right angle with be,

on the opposite side of bc\ and this right angle would be

the inscribed angle in the semi-circle
;
and since this is re-

quired to be a right angle (Art. 352), therefore the construc-

tion thus far is correct, and it will be found likewise that at

each point in the curve formed by the intersection of the

radiating lines, these intersecting lines are at right angles.

520. Ordinate. Points in the circumference of a

circle may be obtained arithmetically, and positively accu-

rate, by the calculation of ordinates, or the parallel lines o i,

-f J 2 / (1725
FIG. 371.

02, 03, 04 (Fig. 3/i). These ordinates are drawn at right

angles to the chord-line a b, and they may be drawn at any
distance apart, either equally distant or unequally, and there

may be as many of them as is desirable
;
the more there are

the more points in the curve will be obtained. If they are

located in pairs, equally distant from the versed sine c d,

calculation need be made only for those on one side of cd,

as those on the opposite side will be of equal lengths, re-

spectively ;
for example: o i, on the left-hand side of cd, is

equal to o i on the right-hand side, o 2 on the right equals

o 2 on the left, and in like manner for the others.

The length of any ordinate is equal to the square root

of the difference of the squares of the radius and abscissa,

less the difference between the radius and versed sine (Art.

445). The abscissa being the distance from the foot of

the versed sine to the foot of the ordinate. Algebraically,
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t = Vr * - x* (r b\ where t is put to represent the ordi-

nate ; x, the abscissa
; b, the versed sine

;
and r, the radius.

Example. An arc of a circle has its chord ab (Fig. 371)
100 feet long, and its versed sine cd, 5 feet. It is required
to ascertain the length of ordinates for a sufficient number
of points through which to describe the curve. To this end

it is requisite, first, to ascertain the radius. This is readily
/\2 2

done in accordance with Art. 517. For - becomes

- = 252-5 = radius. Having the radius, the curve
2x5

might at once be described without the ordinate points, but

for the impracticability that usually occurs, in large, flat

segments of the circle, of getting a location for the centre,

the centre usually being inaccessible. The ordinates are,

therefore, to be calculated. In Fig. 371 the ordinates are

located equidistant, and are 10 feet apart. It will only
be requisite, therefore, to calculate those on one side of

the versed sine cd. For the first ordinate 01, the formula

/ = Vr^ x* (r &) becomes

2 - io
2

-(252-5 -5).

= 1/63756-25 100 247.5.

252.3019-247.5.

4.8019 = the first ordinate, o i.

For the second

t ^252- 5
2 20 2

(252-5 5).

= 251-7066 247.5.

4-2066 = the second ordinate, 02.

For the third

/ = 1/^52-5
a -

3o
2 - 247. 5.

= 250-7115-247.5.

3-2115 = the third ordinate, 03.
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For the fourth

/ = 1/252. 5
2

-40
2 -

247- 5.

= 249-3115 -
247.5.

1-8115 = the fourth ordinate, o 4.

The results here obtained are in feet and decimals of a

foot. To reduce these to feet, inches, and eighths of an

inch, proceed as at Reduction of Decimals in the Appendix.
If the two-feet rule, used by carpenters and others, were

decimally divided, there would be no necessity of this re-

duction, and it is to be hoped that the rule will yet be thus

divided, as such a reform would much lessen the labor of

computations, and insure more accurate measurements.

Versed sine c d = ft. 5 o = ft. 5 -o inches.

Ordinates o I = 4-8019= 4-9! inches, nearly.
" 02= 4-2066 = 4. 2\ inches, nearly.
" 03= 3-2115 3 -2j inches, nearly.
" 04= 1-8115 = I- 9f inches, nearly.

521. In a Given Angle, to Describe a Tanged Curve.

Let a b c (Fig. 372) be the given angle, and I in the line a b,

FIG. 372.

and 5 in the line be, the termination of the curve. Divide

i b and b 5 into a like number of equal parts, as at i, 2, 3, 4,

and 5 ; join i and i, 2 and 2, 3 and 3, etc.
;
and a regular

curve wiU be formed that will be tangical to the line ab, at

the point i, and to be at 5.

This is of much use in stair-building, in easing the angles
formed between the wall-string and the base of the hall,

also between the front string and level facia, and in many
other instances. The curve is not circular, but of the form

of the parabola (Fig. 418) ; yet in large angles the difference
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is not perceptible. This problem can be applied to describ-

ing- the curve for door-heads, window-heads, etc., to rather

better advantage .than Art. 516. For instance, let ab (Fig.

373) be the width of the opening, and c d the height of the

c b

FIG. 373.

arc. Extend c d, and make de equal to cd\ join a and e,

also e and b
;
and proceed as directed above.

522. To Deeribe a Circle within any Given Triangle,
so that the Sides of the Triangle shall be Tangical.
Let a be (Fig. 374) be the given triangle. Bisect the angles

FIG. 374.

a and b according to Art. 506; upon d, the point of intersec-

tion of the bisecting lines, with the radius d e, describe the

required circle.

523. About a Given Circle, to Describe an Equilateral

Triangle. Let adb c (Fig. 375) be the given circle. Draw
the diameter c d; upon'af, with the radius of the given circle,

describe the arc aeb\ join a and b
;
draw fg at right angles

to dc
;
make fc and eg each equal to ab

;
from ft through

a, draw //*, also from g, through b, draw gh\ then fgh
will be the triangle required.

524. To Find a Right L.ine nearly Equal to the Cir-

cumference of a Circle. Let abed (Fig. 376) be the given
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circle. Draw the diameter ac\ on this erect an equilateral

triangle aec according to Art. 525 ;
draw gf parallel to ac\

extend ec to /, also ea to g\ then gf will be nearly the

*
^

FIG. 375.

length of the semi-circle adc\ and twice gf will nearly

equal the circumference of the circle a b c d, as was required.
Lines drawn from *, through any points in the circle, as

o, o and o, to /,/ and /, will divide gf in the same way as

the semi-circle adc is divided. So, any portion of a circle

may be transferred to a straight line. This is a very useful

ff P P d p f
FIG. 376.

problem, and should be well studied, as it is frequently

used to solve problems on stairs, domes, etc.

Another method. Let a bfc (Fig. 377) be the given circle.

Draw the diameter ac\ from d, the centre, and at right an-
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gles to ac, draw db\ join b and c\ bisect be at e\ from d,

through e, draw df\ then ef added to three times the di-

ameter, will equal the circumference of the circle sufficiently
near for many uses. The result is a trifle too large. If the

FIG. 377.

circumference found by this rule be divided by 648-22 the

quotient will be the excess. Deduct this excess, and the

remainder will be the true circumference. This problem is

rather more curious than useful, as it is less labor to perform
the operation arithmetically, simply multiplying the given
diameter by 3- 1416, or, where a greater degree of accuracy
is needed, by 3-1415926. (See Art. 446.)

POLYGONS, ETC.

525. Upon a Given Line to Construct an Equilateral

Triangle. Let a b (Fig. 378) be the given line. Upon a and

FIG. 378.

b, with a b for radius, describe arcs, intersecting at c
; join a

and c, also c and b
;
then acb will be the triangle required.

526. To Decribe an Equilateral Rectangle, or Square.

Let a b (Fig. 379) be the length of a side of the proposed
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square. Upon a and b, with a b for radius, describe the arcs

a d and b c
;
bisect the arc ae in f.\ upon e, with ef for ra-

dius, describe the arc cfd\ join a and <:, c and </, </and ;

then acdb will be the square required.

FIG. 379.

527. Within a Given Circle, to Inscribe an Equilateral

Triangle, Hexagon or Dodecagon. Let abed (Fig. 380) be

the given circle. Draw the diameter bd\ upon b, with the

radius of the given circle, describe the arc ae c
; join a and c,

also a and </, and c and </ and the triangle is completed.
For the hexagon: from a, also from c, through e, draw the

lines af and cg\ join # and b, b and <:, c and /, etc., and the

hexagon is completed. The dodecagon may be formed by

bisecting the sides of the hexagon.
Each side of a regular hexagon is exactly equal to the

radius of the circle that circumscribes the figure. For the

radius is equal to a chord of an arc of 60 degrees ; and, as

every circle is supposed to be divided into 360 degrees, there

is just 6 times 60, or 6 arcs of 60 degrees, in the whole cir-

cumference. A line drawn from each angle of the hexagon
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to the centre (as in the figure) divides it into six equal, equi-
lateral triangles.

528. Within a Square to Inscribe an Octagon. Let

abed (Fig. 381) be the given square. Draw the diagonals

a d and b c
; upon a, b, c, and d, with a e for radius, describe

arcs cutting the sides of the square at 1,2, 3, 4, 5, 6, 7, and 8
;

join i and 2, 3 and 4, 5 and 6, etc., and the figure is com-

pleted.
In order to eight-square a hand-rail, or any piece that is

FIG. 382.

to be afterwards rounded, draw the diagonals a d and b c

upon the end of it, after it has been squared-up. Set a

gauge to the distance ae and run it upon the whole length

of the stuff, from each corner both ways. This will show
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how much is to be chamfered off, in order to make the piece

octagonal (Art. 354).

529. To Find the Side of a Buttressed Octagon. Let

ABCDE (Fig. 382) represent one quarter of an octagon
structure, having a buttress HFGJ at each angle. The
distance M H, between the buttresses, being given, as also

F G, the width of a buttress
;
to find H C or C J, in order to

obtain B C, the side of the octagon. Let B C, a side of the

octagon, be represented by b
;
or D C by b. Let MH = a

;

or JD = a\ and

Then we have

JD+ JC = CD,

. i a + x = i b,

a + 2 x = b.

For FG put p\ ^r LG K J \p.

Now D is the radius of an inscribed circle and, as per

equation (140.), equals r ( 1/2 + i) -.

Also, (7 is the radius of a circumscribed circle, and, as

per equation (141.)* equals R ^2^2 + 4-.

The two triangles, CJK and CED, are homologous;
for the angles at C are common and the angles at AT and D
are right angles. Having thus two angles of one equal

respectively to the two angles of the other, therefore (Art.

345) the remaining angles must be equal. Hence, the sides

of the triangles are proportionate, or

ED : EC :: JK : CJ

r R '.'. \}

The value of the side, as above, is

R
I = a + 2 x = a + p

- -
,
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And taking the value of R and r, as above, we have

(1/2 +1

r>

Substituting this for
,
we have

V2 + I

The numerical coefficient of / reduces to 1-0823923 or

i -0824, nearly.
Therefore we have

b = a + i -o824/. (207.)

Or: The side of a buttressed octagon equals the distance be-

tween the buttresses plus \ -0824 times the width of the faced
the buttress.

For example : let there be an octagon building, which

measures between the buttresses, as at MH, 18 feet, and the

face of the buttresses, as FG, equals 3 feet
; what, in such a

building, is the length of a side B Cl For this, using equa-
tion (207.), we have

b = 1 8 + I -0824 x 3

= 18 + 3-2472

= 21-2472.

Or : The side of the octagon B C equals 21 feet and nearly 3

inches.

530. Within a Given Circle to Incribe any Regular
Polygon. Let abc 2 (Figs. 383* 384, and 385) be given circles.

Draw the diameter a c ; upon this erect an equilateral trian-

gle aec, according to A rt. 525 ;
divide ac into as many equal

parts as the polygon is to have sides, as at i, 2, 3, 4, etc.;

from e, through each even number, as 2, 4, 6, etc., draw lines
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cutting the circle in the points 2, 4, etc.; from these points
and at right angles to a c draw lines to the opposite part
of the circle

;
this will give the remaining points for the

polygon, as b, /, etc.

In forming a hexagon, the sides of the triangle erected

FIG. 383.

upon ac (as at Fig. 384) mark the points b and f. This

method of locating the angles of a polygon is an approxima-
tion sufficiently near for many purposes ;

it is based upon
the like principle with the method of obtaining a right line

nearly equal to a circle (Art. 524). The method shown at

Art. 531 is accurate.

FIG. 386. FIG. 387.- FIG. 388

531. Upon a Given Line to Decrifoe any Regular

Polygon. Let a b (Figs. 386, 387, and 388) be (riven lines,

equal to a side of the required figure. From b draw be at

right angles to a b
; upon a and &, with a b for radius, describe

the arcs acd and feb\ divide ac into as many equal parts
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as the polygon is to have sides, and extend those divisions

from c towards d\ from the second point of division, count-

ing from c towards a, as 3 (Fig. 386), 4 (Fig. 387), and 5 (Fig.

388), draw a line to b
;
take the distance from said point of

division to a, and set it from b to e
; join e and a

; upon the

intersection o with the 'radius oa, describe the circle afdb;
then radiating lines, drawn from b through the even numbers
on the arc a d, will cut the circle at the several angles of the

required figure.

In the hexagon (Fig. 387), the divisions on the arc ad are

not necessary ;
for the point o is at the intersection of the

arcs ad and fb, the points f and d are determined by the

intersection of those arcs with the circle, and the points
above g and h can be found by drawing lines from a and b

through the centre o. In polygons of a greater number of

sides than the hexagon the intersection o comes above the

arcs
;
in such case, therefore, the lines a e and b 5 (Fig. 388)

have to be extended before they will intersect. This method
of describing polygons is founded on correct principles, and

is therefore accurate. In the circle equal arcs subtend

equal angles (Arts. 357 and 515). Although this method is

accurate, yet polygons may be described as accurately and

more simply in the following manner. It will be observed

that much of the process in this method is for the purpose
of ascertaining the centre of a circle that will circumscribe

the proposed polygon. By reference to the Table of Poly-

gons in Art. 442 it will be seen ho-w this centre may be ob-

tained arithmetically. This is the rule : multiply the given
side by the tabular radius for polygons of a like number of

sides with the proposed figure, and the product will be the

radius of the required circumscribing circle. Divide this

circle into as many equal parts as the polygon is to have

sides, connect the points of division by straight lines, and

the figure is complete. For example : It is desired to de-

scribe a polygon of 7 sides, and 20 inches a side. The tabu-

lar radius is 1-15238. This multiplied by 20, the product,

23-0476 is Ihe required radius in inches. The Rules for

the Reduction of Decimals, in the Appendix, show how to

change decimals to the fractions of a foot or an inch. From
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this, 23 -0476 is equal to 23TV inches, nearly. It is not needed
to take all the decimals in the table, three or four of them
will give a result sufficiently near for all ordinary practice.

532. To ontruct a Triangle whose Side shall be

everally Equal to Three Given Lines. Let a, b and c (Fig.

389) be the given lines. Draw the line de and make it equal

FIG. 389.

c\ upon e, with b for radius, describe an arc at /; upon d,

with a for radius, describe an arc intersecting the other at/;

join d and /, also f and e ; then dfe will be the triangle

required.

533 To Construct a Figure Equal to a Given, Right-
lined Figure. Let abed (Fig. 390) be the given figure.

Make ef (Fig. 391) equal to cd-, upon /, with da for radius,

FIG. 390. FIG. 391.

describe an arc at^; upon r, with ca for radius, describe an

arc intersecting the other at^; join ^and e,\ upon f and g,

with db and ab for radius, describe arcs intersecting at //
;

join g and /*, also h and /; then Fig. 391 will every way
equal Fig. 390.

So, right-lined figures of any number of sides may be

copied, by first dividing them into triangles, and then pro-
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ceeding as above. The shape of the floor of any room, or

of any piece of land, etc., may be accurately laid out by this

problem, at a scale upon paper ; and the contents in square
feet be ascertained by the next.

534. To Make a Parallelogram equal to a Given

Triangle. Let a be (Fig. 392) be the given triangle. From
a draw a d at right angles to b c

;
bisect a d in e

; through e

f

FIG. 392.

draw fg parallel to be-, from b and c draw b f and eg^par-
allel to de\ then bfgc will be a parallelogram containing a

surface exactly equal to that of the triangle a be.

Unless the parallelogram is required to be a rectangle,
the lines bf and eg need not be drawn parallel to d e. If a

rhomboid is desired they may be drawn at an oblique angle,

provided they be parallel to one another. To ascertain the

area of a triangle, multiply the base be by half the perpen-

d

FIG. 393.

dicular height da.

is taken for base.

In doing this it matters not which side

535. A Parallelogram being Given, to Construct An-

other Equal to it, and Having a Side Equal to a Given Line.

Let A (Fig. 393) be the given parallelogram, and B the

given line. Produce the sides of the parallelogram, as at
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a, b, c, and d'\ make ed equal to B
; through d draw cf par-

allel to gb-, through e draw the diagonal ca\ from a draw

af parallel to ed; then C will be equal to A. (See Art. 340.)

536. To Make a Square Equal to two or more Given

Squares. Let A and B (Fig. 394) be two given squares.

FIG. 394.

Place them so as to form a right angle, as at a
; Join b ai<d c

;

then the square C, formed upon the line be, wi'J
1 be equal in

extent to the squares A and B added together. Again : if

a b (Fig. 395) be equal to the side of a given square, c a, placed
at right angles to a b, be the side of another given square,

and cd, placed at right angles to cb, be the side of a third

given square, then the square A, formed upon the line db>

will be equal to the three given squares. (See Art. 353.)

The usefulness and importance of this problem are pro-

verbial. To ascertain the length of braces and of rafters in
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framing, the length of stair-strings, etc., are some of the pur-

poses to which it may be applied in carpentry. (See note

to Art. 503.) If the lengths of any two sides of a right-

angled triangle are known, that of the third can be ascer-

tained. Because the square of the hypothenuse is equal to

the united squares of the two sides that contain the right

angle.

(i.) The two sides containing the right angle being

known, to find the hypothenuse.

Rule. Square each given side, add the squares together,
and from the product extract the square root

;
this will be

the answer.

For instance, suppose it were required to find the length
of a rafter for a house, 34 feet wide the ridge of the roof

to be 9 feet high, above the level of the wall-plates. Then

17 feet, half of the span, is one, and 9 feet, the height, is the

other of the sides that contain the right angle. Proceed as

directed by the rule :

17 9

17 _9
119 8 1 = square of 9.

17 289 = square of 17.

289 square of 17. 370 Product.

i
) 370 ( 19-235 + = square root of 370 ; equal 19 feet 2-J in.,

i i nearly ;
which would be the required

20 )~270
length of the rafter.

9 261

382). -900

_2 ^1
3843) 13600

38465)- 207 100

192325
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(By reference to the table of square roots in the Appen-
dix, the root of almost any number may be found ready
calculated

; also, to change the decimals of a foot to inches

and parts, see Rules for the Reduction of Decimals in the

Appendix.)

Again : suppose it be required, in a frame building, to

find the length of a brace having a run of three feet each

way from the point of the right angle. The length of the

sides containing the right angle will be each 3 feet
; then, as

before

3

_3

9 = square of one side.

3 times 3 = 9 = square of the other side.

1 8 Product : the square root of which is 4 2426-}- ft.,

or 4 feet 2 inches and
-J

full.

(2.) The hypothenuse and one side being known, to find

the other side.

Rule. Subtract the square of the given side from the

square of the hypothenuse, and the square root of the prod-
uct will be the answer.

Suppose it were required to ascertain the greatest per-

pendicular height a roof of a given span may have, when

pieces of timber of a given length are to be used as rafters.

Let the span be 20 feet, and the rafters of 3 x 4 hemlock

joist. These come about 13 feet long. The known hy-

pothenuse, then, is 13 feet, and the known side, 10 feet

that being half the span of the building.

13

13

39

13

169 = square of hypothenuse.
10 times 10 = 100 square of the given side.

69 Product : the square root of which is
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8 3066+ feet, or 8 feet 3 inches and | full. This will be the

greatest perpendicular height, as required. Again : suppose
that in a story of 8 feet, from floor to floor, a step-ladder is

required, the strings of which are to be of plank 12 feet

long, and it is desirable to know the greatest run such a

length of string will afford. In this case, the two given
sides are hypothenuse 12, perpendicular 8 feet.

12 times 12 144 square of hypothenuse,
8 times 8 = 64 = square of perpendicular.

80 Product : the square root of which is

8-9442+ feet, or 8 feet n inches and ^ the answer, as re-

quired.

Many other cases might be adduced to show the utility

of this problem. A practical and ready method of ascer-

taining the length of braces, rafters, etc., when not of a great

length, is to apply a rule across the carpenters' -square.

Suppose, for the length of a rafter, the base be 12 feet and

the height 7. Apply the rule diagonally on the square, so

that it touches 12 inches from the corner on one side, and 7

inches from the corner on the other. The number of inches

on the rule which are intercepted by the sides of the square,

13!-, nearly, wilt be the length of the rafter in feet
; viz., 13

feet and.
-J-

of a foot. If the dimensions are large, as 30 feet

and 20, take the half of each on the sides of the square, viz.,

15 and 10 inches; then the length in inches across will be

one half the number of feet the rafter is long. This method
is just as accurate as the preceding ;

but when the length of

a very long rafter is sought, it requires great care and pre-
cision to ascertain the fractions. For the least variation on

the square, or in the length taken on the rule, would make

perhaps several inches difference in the length of the rafter.

For shorter dimensions, however, the result will be true

enough.

537. To Make a Circle Equal to two Given Circles.

Let A and B (Fig- 396) be the given circles. In the right-

angled triangle abc make ab equal to the diameter of the
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circle B, and cb equal to the diameter of the cin

the hypothenuse a c will be the diameter of a circle C, which

will be equal in area to the two circles A and B, added

together.

FIG. 396.

Any polygonal figure, as A (Fig. 397), formed on the hy-
pothenuse of a right-angled triangle, will be equal to two
similar figures,* as B and C, formed on the two legs of the

triangle.

FIG. 397.

538. To ontruct a Square Equal to a Given Rect-

angle. Let A (Fig. 398) be the given rectangle. Extend

the side ab and make be equal to be\ bisect a c in /, and

upon /, with the radius fa, describe the semi-circle agc\
extend eb till it cuts the curve in g\ then a square bghd,
formed on the line bg, will be equal in area to the rectan-

glcA.

* Similar figures are such as have their several angles respectively equal,

and their sides respectively proportionate.
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Another method. Let A (Fig. 399) be the given rectangle.
Extend the side a b and make a d equal to a c

;
bisect a d in

e\ upon e, with the radius ea, describe the semi-circle afd\
extend gb till it cuts the curve in /; join a and f\ then

FIG. 398.

the square B, formed on the line af, will be equal in area to

the rectangle A. (See Arts. 352 and 353.)

539. To Form a Square Equal to a Given Triangle-
Let ab (Fig. 398) equal the base of the given triangle, and be

equal half its perpendicular height (see Fig. 392) ;
then pro-

ceed as directed at Art. 538.

540. Two Right Lines being Given, to Find a Third

Proportional Thereto. Let A and B (Fig. 400) be the given
lines. Make a b equal to A

;
from a draw a c at any angle
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with ab-, make ac and ad each equal to B; join c and
;

from d draw de parallel to c b
;
then # e will be the third

proportional required. That is, ae bears the same propor-
tion to B as B does to A.

FIG. 400.

541. Three Right Lines being Given, to Find a Fourth
Proportional Thereto. Let A, B, and C (Fig. 401) be the

given lines. Make ab equal to A
;
from a draw ac at any

angle with a b
;
make # c equal to j9 and a e equal to (7

; join
c and

;
from e draw */ parallel to cb\ then 0/ will be the

fourth proportional required. That is, af bears the same

proportion to C as B does to A.

To apply this problem, suppose the two axes of a given

ellipsis and the longer axis of a proposed ellipsis are given.

Then, by this problem, the length of the shorter axis to the

proposed ellipsis can be found
;
so that it will bear the same

proportion to the longer axis as the shorter of the given

ellipsis does to its longer. (See also Art. 559.)

542. A Line with Certain Divisions being Given, to

Divide Another, Longer or Shorter, Given Line in the

Same Proportion. Let A (Fig. 402) be the line to be di-

vided, and B the line with its divisions. Make a b equal to

B with all its divisions, as at i, 2, 3', etc.; from a draw ac at

any angle with a b
;
make a c equal to A

; join c and b
;
from
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the points i, 2, 3, etc., draw lines parallel to cb', then these

will divide the line ac in the same proportion as B is divided

as was required.
This problem will be found useful in proportioning the

members of a proposed cornice, in the same proportion as

those of a given cornice of another size. (See Art. 321.) So
of a pilaster, architrave, etc.

543. Between Two Given Right Lines, to Find a

Mean Proportional. Let A and B (Fig. 403) be the given
lines. On the line ac make ab equal to A and be equal to

B
;
bisect ac in e\ upon e, with ea for radius, describe the

semi-circle adc\ at b erect b d at right angles to a c
;
then

bd will be the mean proportional between A and B. That

is, ab is to bd as bd is to be. This is usually stated thus:

ab : bd : : bd : be, and since the product of the means

equals the product of the extremes, therefore, abxbe = bd*-

This is shown geometrically at Art. 538.

CONIC SECTIONS.

544. Definitions. If a cone, standing upon a base

that is at right angles with its axis, be cut by a plane, per-
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pendicular to its base and passing through its axis, the sec-

tion will be an isosceles triangle (as a be, Fig. 404) ; and the

base will be a semi-circle. If a cone be cut by a plane in the

direction ef the section will be an ellipsis ; if in the direction

ml, the section will be a parabola; and if in the direction

ro, an hyperbola. (See Art. 499.) If the cutting planes be

at right angles with the plane a be, then

545. To Find the Axe of the Ellipsi: bisect ef (Fig.

404) in g\ through g draw h i parallel to ab\ bisect h i in/;

FIG. 404.

upon j, with jh for radius, describe the semi-circle hki\
from ^-draw gk.at right angles to hi\ then twice gk will

be the conjugate axis and ef the transverse.

546. To Find the Axis and Bae of the Parabola.

Let ;;/ / (Fig. 404), parallel to ac, be the direction of the cut-

ting plane. From ;;/ draw m d at right angles to a b
; then

l-m will be the axis and height, and md an ordinate and half

the base, as at Figs. 417, 418.

547. To Find the Height, Bae, and Transverse Axis

of an Hyperbola. Let o r (Fig. 404) be the direction of the
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cutting plane. Extend or and ac till they meet at w; from
o draw op at right angles to a b

;
then r o will be the height,

n r the transverse axis, and op half the base
;
as at Fig. 419.

54-8. The Axes being Given, to Find the Foci, and to

Describe an Ellipsis with a String. Let ab (Fig. 405) and

cd be the given axes. Upon c, with a e or be for radius, de-

scribe the arc //; then / and /, the points at which the

arc cuts the transverse axis, will be the foci. At f and f
place two pins, and another at c\ tie a string about the three

pins, so as to form the triangle ffc ;
remove the pin from c

and place a pencil in its stead
; keeping the string taut,

move the pencil in the direction cga\ it will then describe

the required ellipsis. The lines fg and gf show the posi-

tion of the string when the pencil arrives at g.

This method, when performed correctly, is perfectly ac-

curate
;
but the string is liable to stretch, and is, therefore,

not so good to use as the trammel. In making an ellipse by
a string or twine, that kind should be used which has the

least tendency to elasticity. For this reason, a cotton cord,

such as chalk-lines are commonly made of, is not proper for

the purpose ;
a linen or flaxen cord is much better.

549. The Axes being Given, to Describe an Ellipsis

with a Trammel. Let ab and cd (Fig. 406) be the given
axes. Place the trammel so that a line passing through the

centre ol the grooves would coincide with the axes
;
make
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the distance from the pencil e to the nut/ equal to half c d\

also, from the pencil e to the nut g equal to half a b
; letting

the pins under the nuts slide in the grooves, move the tram-

mel eg in the direction cbd\ then the pencil at e will de-

scribe the required ellipse.

A trammel may be constructed thus : take two straight

strips of board, and make a groove on their face, in the cen-

tre of their width
; join them together, in the middle of their

length, at right angles to one another
;
as is seen at Fig. 406.

A rod is then to be prepared, having two movable nuts

made of wood, with a mortise through them of the size of

the rod, and pins under them large enough to fill the

grooves. Make a hole at one end of the rod, in which to

FIG. 406.

place a pencil. In the absence of a regular trammel a tem-

porary one may be made, which, for any short job, will an-

swer every purpose. Fasten two straight-edges at right

angles to one another. Lay them so as to coincide with the

axes of the proposed ellipse, having the angular point at the

centre. Then, in a rod having a hole for the pencil at one

end, place two brad-awls at the distances described at Art,

549. While the pencil is moved in the direction of the

curve, keep the brad-awls hard against the straight-edges,

as directed for using the trammel-rod, and one quarter of

the ellipse will be drawn. Then, by shifting the straight-

edges, the other three quarters in succession may be drawn.

If the required ellipse be not too large, a carpenters'-square

may be made use of, in place of the straight-edges.

An improved method of constructing the trammel is as
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follows: make the sides of the grooves bevelling from the

face of the stuff, or dove-tailing instead of square. Prepare
two slips of wood, each about two inches long, which shall

be of a shape to just fill the groove when slipped in at the

end. These, instead of pins, are to be attached one to each

of the movable nuts with a screw, loose enough for the nut

to move freely about the screw as an axis. The advantage
of this contrivance is, in preventing the nuts from slipping
out oftheir places during the operation of describing the

curve.

550. To Describe an Ellipsis by Ordiiiute*. Let ab

and cd (Fig. 407) be given axes. With c e or'

e d for radius

describe the quadrant fgh ;
divide f/i, ac, and eb, each into

a like number of equal parts, as at I, 2, and 3 ; through
these points draw ordinates parallel to cd and -fg\ take the

distance I i and place it at i /, transfer 27 to 2 /#, and 3 k to

3 n ; through the points #
, n, m, /, and c, trace a curve, and

the ellipsis will be completed.
The greater the number of divisions on a, e, etc., in this

and the following problem, the more points in the curve can

be found, and the more accurate the curve can be traced.

If pins are placed in the points n, m, /, etc., and a thin slip

of wood bent around by them, the curve can be made quite
correct. This method is mostly used in tracing face-moulds

for stair hand -railing.

551. To Describe an Ellipsis by Intersection of Lines.

Let ab and cd (Fig. 408) be given axes. Through c, draw
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fg parallel to.ab', from a and b draw af and bg at right

angles to a b
;
divide fa, gb, ae, and eb, each into a like

number of equal parts, as at i, 2, 3, and 0, <?,<?; from I, 2,

and 3, draw lines to c; through 0, 0, and 0, draw lines from d,

intersecting those drawn to c
;
then a curve, traced through

the points i, i, i, will be that of an ellipsis.

Where neither trammel nor string is at hand, this, per-

haps, is the most ready method of drawing an ellipsis. The
divisions should be small, where accuracy is desirable. By
this method an ellipsis may be traced without the axes, pro-
vided that a diameter and its conjugate be given. Thus, ab

and cd (Fig. 409) are conjugate diameters: fg\s drawn par-

allel to ab, instead of being at right angles to cd\ also, fa
and g b are drawn parallel to c d, instead of being at right

angles to a b.
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552. To Describe an Ellipsis by Intersecting Arcs.

Let a b and cd (Fig. 410) be given axes. Between one of the

foci, f and f, and the centre e, mark any number of points,
at random, as I, 2, and 3 ; upon f and /, with b i for radius,

describe arcs at gt g, g, and g ; upon f and /, with a I for

radius, describe arcs intersecting the others at g>g,g, and g;
then these points of intersection will be in the curve of the

ellipsis. The other points, h and i, are found in like manner,
viz.: h is found by taking b2 for one radius, and 0,2 for the

other
;

i is found by taking b 3 for one radius, and a 3 for the

other, always using the foci for centres. Then by tracing a

curve through the points c, g, //, i, b, etc., the ellipse will be

completed.
This problem is founded upon the same principle as that

of the string. This is obvious, when we reflect that the

length of the string is equal to the transverse axis, added to
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the distance between the foci. See Fig. 405, in which cf
equals ae, the half of the transverse axis.

553. To Describe a Figure Nearly in the Shape of an

Ellipsis, by a Pair of Compasses. Let ab and c d (Fig. 41 1)

be given axes. From c draw c e parallel to a b
; from a draw

ae parallel to cd\ join e and d\ bisect ea in /; join / and c,

intersecting edvn. i\ bisect ic in,*?; from o draw og at right,

angles to ic, meeting cd extended to g\ join i and g, cutting
the transverse axis in r

;
make hj equal to Jig, and h k equal

to//r; from j, through r and k, draw//;z and/#; also, from

g, through /, draw gl; upon g and/, with gc for radius,
describe the arcs il and mn\ upon r and

, with ?-# for

radius, describe the arcs ;;/*and /;/
;
this will complete the

figure.

When the axes are proportioned to one another, as at 2

to 3, the extremities, c and d, of the shortest axis, will be

the centres for describing the arcs il and m n
;
and the inter-

section of ed with the transverse axis will be the centre for

describing the arc m, i, etc. As the elliptic curve is contin-

ually changing its course from that of a circle, a true ellipsis

cannot be described with a pair of compasses. The above,

therefore, is only an approximation.

554. To Draw an Oval in the Proportion Seven by
Nine. Let cd (Fig. 412) be the given conjugate axis. Bisect
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cdin o, and through o draw ab at right angles to cd\ bisect

co in e
; upon o, with 0^ for radius, describe the circle efgh ;

from e, through h and ft
draw <?/ and ei\ also, from ^,

through h and /, draw ^ and gl\ upon ,
with gc for

radius, describe the arc kl] upon *, with e d for radius, de-

scribe the arc ji ; upon h and /, with h k for radius, describe

the arcs jk and /*'; this will complete the figure.

This is an approximation to an ellipsis ;
and perhaps no

method can be found by which* a well-shaped oval can be

drawn with greater facility. By a little variation in the

process, ovals of different proportions may be obtained. If

quarter of the transverse axis is taken for the radius of the

circle efgh, one will be drawn in the proportion five by
seven.

FIG. 414.

555. To Draw a Tangent to an Ellipsis. Let abed

(Fig. 413) be the given ellipsis, and d the point of contact.

Find the foci (Art. 548) / and ft
and from them, through d,

draw fe and fd\ bisect the angle (Art. 506) edo with the

line sr
;
then sr will be the tangent required.
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556. An Ellipsis with a Tangent Given, to Detect the

Point of Contact. Let agbf (Fig. 414) be the given ellip-

sis and tangent. Through the centre e draw a b parallel to

the tangent; anywhere between e and / draw cd parallel to

a b
;
bisect cd in o

; through o and e draw fg] then g will

be the point of contact required.

557. A Diameter of an Ellipsi Given, to Find its

Conjugate. Let a b (Fig. 414) be the given diameter. Find

the line fg by the last problem ; then fg will be the diam-

eter required.

558. Any Diameter and its Conjugate being Given, to

Ascertain the Two Axes, and thence to Describe the Ellipsis.

Let a b and cd(Fig. 415) be the given diameters, conjugate

FIG. 415.

to one another. Through c draw cf parallel to a b
;
from c

draw eg at right angles to ef\ make eg equal to ah or Jib\

join g and h
; upon g, with gc for radius, describe the arc

ikcj\ upon h, with the same radius, describe the arc In

through the intersections / and n draw n o, cutting the tan-

gent ef in o
; upon o, with ogfor radius, describe the semi-

circle e igf\ join e and g, also g and f, cutting the arc icj

in k and /
;
from r, through //, draw e m, also from /, through

h, draw // ;
from k and t draw kr and ts parallel to gk
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cutting em in r, and // in s
;
make h m equal to hr, and hp

equal to hs\ then r;;/ and s p will be the axes required, by
which the ellipsis may be drawn in the usual way.

559. To Describe an Ellipsis, whose Axes shall toe

Proportionate to the Axes of a Larger or SmalDer Given
One. Let a cbd(Fig. 416) be the given ellipsis and axes, and

FIG. 416.

ij the transverse axis of a proposed smaller one. Join a and

c\ from i draw ie parallel to ac
;
make of equal to oe

;
then

ef will be the conjugate axis required, and will bear the

same proportion to ij as cd does to ab. (See Art. 541.)

560. To Describe a Parabola by Intersection of Lines.

Let ml (Fig. 417) be the axis and height (see Fig. 404) and

i 2 / 3 2 1

1 2 3 in 3 2

FIG. 417.

dd a double ordinate and base of the proposed parabola.

Through / draw a a parallel to dd\ through d and d draw
da and da parallel to ml\ divide ad and dm, each into a

like number of equal parts ;
from each point of division in
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dm draw the lines i i, 22, etc., parallel to ;;//; from each

point of division in da draw lines to/; then a curve traced

through the points of intersection o, o, and o, will be that of

a parabola.
Another method. Let m I (Fig. 418) be the axis and height,

and dd the base. Extend m I and make la equal to m I
;

join a and d, and a and d\ divide ad and ad, each into a

like number of equal parts, as at i, 2, 3, etc.
; join i and i, 2

and 2, etc., and the parabola will be completed. (See Arts.

460 to 472.)

561. To Describe an Hyperbola by Intergection of

Lines. Let ro (Fig. 419) be the height,// the base, and nr
the transverse axis. (See Fig. 404.) Through r draw a a

m
FIG. 418.

1 2 3 o 3 2 \ p

FIG. 419.

parallel to pp\ from / draw ap parallel to ro\ divide ap
and po, each into a like number of equal parts ;

from each

of the points of division in the base, draw lines to ;/ ; from

each of the points of division in ap, draw lines to r\ then

a curve traced through the points of intersection o, o, etc.,

will be that of an hyperbola.
The parabola and hyperbola afford handsome curves for

various mouldings. (See Figs. 191 to 205 ;
222 to 224; 241

and 242 ;
also note to Art. 318.)
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562. The Art of Drawing consists in representing
solids Upon a plane surface, so that a curious and nice ad-

justment of lines is made to present the same appearance to

the eye as does the human figure, a tree, or a house. It is

by the effects of light, in its reflection, shade, and shadow,
that the presence of an object is made known to us; so

upon paper it is necessary, in order that the delineation

may appear real, to represent fully all the shades and shad-

ows that would be seen upon the object itself. In this sec-

tion I propose to illustrate, by a few plain examples, the

simple elementary principles upon which shading, in archi-

tectural subjects, is based. The necessary knowledge of

drawing, preliminary to this subject, is treated of in Section

XV., from Arts. 487 to 498.

563. The Inclination of the JLlne of Shadow. This

is always, in architectural drawing, 45 degrees, both on the

elevation and on the plan ;
and the sun is supposed to be

behind the spectator, and over his left shoulder. This can

be illustrated by reference to Fig. 420, in which A repre-
sents a horizontal plane, and B and C two vertical planes

placed at right angles to each other. A represents the plan,

C the elevation, and B a vertical projection from the eleva-

tion. In finding the shadow of the plane B, the line a b is

drawn at an angle of 45 degrees with the horizon, and the

liner^ at the same angle with the vertical planed. The

plane B being a rectangle, this makes the true direction of

the sun's rays to be in a course parallel to db, which direc-

tion has been proved to be at an angle of 35 degrees and

16 minutes with the horizon. It is convenient, in shading,
to have a set-square with the two sides that contain the
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right angle of equal length; this will make the two acute

angles each 45 degrees, and will give the requisite bevel

when worked upon the edge of the T-square. One reason

why this angle is chosen in preference to another is that

when shadows are properly made upon the drawing by it,

the depth of every recess is more readily known, since the

breadth of shadow and the depth of the recess will be equal.
To distinguish between the terms shade and shadow, it will

be understood that all such parts of a body as are not e5c-

posed to the direct action of the sun's rays are in shade ;

while those parts which are deprived of light by the inter-

position of other bodies are in shadow.

564. To Find the Line of Shadow 011 Mouldings and
other Horizontally Straight Projections. Figs. 421, 422,

423, and 424 represent various mouldings in elevation, re-

turned at the left, in the usual manner of mitering around a

projection. A mere inspection of the figures is sufficient to

see how the line of shadow is obtained, bearing in mind that

the ray a b is drawn from the projections at an angle of 45
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degrees. When there is no return at the end, it is neces-

sary to draw a section, at any place in the length of the

mouldings, and find the line of shadow from that.

565. To Find tlie Line of Shadow Cast by a Shelf. In

Fig. 425, A is the plan and B is the elevation of a shelf

attached to a wall. From a and c draw a b and c d, accord-

ing to the angle previously directed
;
from b erect a per-

pendicular intersecting c d <& d\ from d draw de parallel to

FIG. 421, FIG. 422.

FIG. 423. FIG. 424.

the shelf; then the lines cd and de will define the shadow

cast by the shelf. There is another method of finding the

shadow, without the plan A. Extend the lower line of the

shelf to //and make cf equal to the projection of the shelf

from the wall ; from/ draw fg at the customary angle, and

from c drop the vertical line eg intersecting fg^g\ from

g draw ge parallel to the shelf, and from c draw c d at the

usual angle; then the lines cd and de will determine the

extent of the shadow as before.
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.566. To Find the Shadow Cast by a Shelf which i*

Wider at one End than at the Other. In Fig. 426, A is the

plan, and B the elevation. Find the point d, as in the pre-

B

FIG. 425.

vious example, and from any other point in the front of the

shelf, as a, erect the perpendicular a e
;
from a and e draw a b

and e c, at the proper angle, and from b erect the perpendicu-

FIG. 426.

lar be, intersecting ec in c\ from d, through c, dra\v do\

then the lines id and do will give the limit of the shadow

cast by the shelf.
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567. To Find tlie Shadow of a Shelf having one End
Aeute or Obtuse Angled. Fig. 427 shows the plan and ele-

vation of an acute-angled shelf. Find the line eg as before ;

FIG. 427.

from a erect the perpendicular ab\ join b and e\ then be

and eg will define the boundary of shadow.

568. To Find the shadow Cast by an Inclined Shelf.

In Fig. 428 the plan and elevation of such a shelf are shown,

having also one end wider than the other. Proceed as di-

FIG 428.

rected for finding the shadows of Fig. 426, and find the points
^/and c ; then ad and dc will be the shadow required. If

the shelf had been parallel in width on the plan, then the

line dc would have been parallel with the shelf a b.
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569. To Find the Shadow Cast by a Shelf Inclined in

its Vertical Section either Upward or Downward. From
a (Figs. 429 and 430) draw a b at the usual angle, and from b

draw be parallel with the shelf; obtain the point e by draw-

FIG. 429. FIG. 430.

ing -a line from d at the usual angle. In Fig. 429 join e and

i ;. then ic and cc will define the shadow. In Fig. 430, from

o draw oi parallel with the shelf
; join i and e ; then ie and

cc will be the shadow required.

The projections in these several examples are bounded

FIG. 431- FIG. 432.

by straight lines
;
but the shadows of curved lines may be

found in the same manner, by projecting shadows from sev-

eral points in the curved line, and tracing the curve .of

shadow through these points. (Figs. 431 and 432.)
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570. To Find the Shallow of a Shelf having its Front

Edge, or End, Curved on the Plan, In Figs. 431 and 432
A and A show an example of each kind. From several

points, as a, a, in the plan, and from the corresponding- points

0, o in the elevation, draw rays and perpendiculars intersect-

FIG. 433.

ing at e, <:,
etc.

; through these points of intersection trace

the curve, and it will define the shadow.

57L To Find the Shadow of a Shelf Curved in the Ele-

vation. In Fig. 433 find the points of intersection, e, c and

FIG. 434

e, as in the last examples, and a curve traced through them

will define the shadow.

The preceding examples show how to find shadows when

cast upon a verticalplane ; shadows thrown upon curved sur-

faces are ascertained in a similar manner. (Fig. 434.)
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572. To Find the Shadow Cast upon a Cylindrical
Wall by a Projection of any Kind. By an inspection of

Fig. 434, it will be seen that the only difference between this

and the last examples is that the rays in the plan die against
the circle ab, instead of a straight line.

573. To Find the Shadow Cat by a Shelf upon an In-

clined Wall. Cast the ray ab (Fig. 435) from the end of the

shelf to the face of the wall, and from b draw be parallel to

the shelf; cast the ray de from the end of the shelf; then

the lines de and ec will define the shadow.

FIG. 436.

These examples might be multiplied, but enough has

been given to illustrate the general principle by which shad-

ows in all instances are found. Let us attend now to the

application of this principle to such familiar objects as are

likely to occur in practice.
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574. To Find the Shadow of a Projecting Horizontal
Ream. From the points a, a, etc. (Fig. 436), cast rays upon
the wall

;
the intersections e, e, e of those rays with the per-

pendiculars drawn from the plan will define the shadow. If

the beam be inclined, either on the plan or elevation, at any
angle other than a right angle, the difference in the manner

FIG. 437.

of proceeding can be seen by reference to the preceding
examples of inclined shelves, etc.

575. To Find the Shadow in a Recess. From the point
a (Fig. 437) in the plan, and b in the elevation, draw the rays
acand be; from c erect the perpendicular ce, and from e

FIG. 438.

draw the horizontal line ed; then the lines r^.and ed will

show the extent of the shadow. This applies only where
the back of the recess is parallel with the face of the wall.

576. To Find the Shadow in a Rece, when the Face
of the Wall Is Inclined, and the Baek of the Recess i

Vertical. In Fig. 438, A shows the section and B the eleva-
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tion of a recess of this kind. From b, and from any other

point in the line ba, as a, draw the rays be and ae ; from c,

a, and e draw the horizontal lines eg, af, and eh; from d

FIG. 439.

and /cast the rays di and ///; from i, through h, draw is;

then s i and ig will define the shadow.

577. TO Find the Shadow in a Fireplace. From a and

b (Fig. 439) cast the rays a c and b e, and from c erect the

FIG. 440.

perpendicular cc\ from c draw the horizontal line eo, and

join o and </; then c c, eo, and <?</ will give the extent of the

shadow.
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578. To Find I lie Shadow of a moulded Window-Lin-
tel. Cast rays from the projections a, o, etc., in the plan

(Fig. 440), and d, e, etc., in the elevation, and draw the usual

perpendiculars intersecting the rays at z, i, and i
;
these in-

tersections connected, and horizontal lines drawn from them,
will define the shadow. The shadow on the face of the lin-

tel is found by casting a ray back from i to s, and drawing
the horizontal line s n.

579. To Find the Shadow Cast by the Noing of a Step.

From a (Fig. 441) and its corresponding point c, cast the

FIG. 441.

rays a b and cd, and from b erect the perpendicular b d; tan-

gical to the curve at e cast the ray ef, and from c drop the

perpendicular e o, meeting the mitre-line ag in o ; cast a ray
from o to

/', and from /erect the perpendicular if\ from /t

draw the ray // k
;
from /to d and from d to k trace the

curve as shown in the figure ;
from k and h draw the hori-

zontal lines kn and hs\ then the limit of the shadow will be

completed.

580. To Find the Shadow Thrown by a Pedetal upon
Step. From a (Fig. 442) in the plan, and from c in the ele-

vation, draw the rays ab and c e
;
then ao will show the ex-
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tent of the shadow on the first riser, as at A
; fg will deter-

mine the shadow on the second riser, as at B\ cd gives the

amount of shadow on the first tread, as at 7, and // i that on

the second tread, as at D
;
which completes the shadow of

FIG. 442.

the left-hand pedestal, both on the plan and elevation. A
mere inspection of the figure will be sufficient to show how
the shadow of the right-hand pedestal is obtained.

FIG. 443. FIG. 444.

681. To Find the Shadow Thrown on a Column by a

Square Abacus. From a and b (Fig. 443) draw the rays ac

and b e, and from c erect the perpendicular c e
; tangical to

the curve at d draw the ray df, and from //, corresponding
to /in the plan, draw the ray ho; take any point between a

and fy
as i, and from this, as also from a corresponding point
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n, draw the rays ir and ns ;
from r and from d erect the

perpendiculars rs and do-, through the points e, s, and o

trace the curve as shown in the figure ; then the extent of

the shadow will be defined.

m
X.
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583. To Find the Shadows on the Capital of a Columii.
This may be done according- to the principles explained

in the examples already given ;
a quicker way of doing it,

however, is as follows : if we take into consideration one

ray of light in connection with all those perpendicularly
under and over it, it is evident that these several rays would
form a vertical plane, standing at an angle of 45 degrees
with the face of the elevation. Now we may suppose the

column to be sliced, so to speak, with planes of this nature

cutting it in the lines a b, c d, etc. (Fig. 445), and, in the ele-

FIG. 446.

vation, find by squaring up from the plan, the lines of section

which these planes would make thereupon. For instance :

in finding upon the elevation the line-of section a I), the plane

cuts the ovolo at e, and therefore / will be the correspond-

ing point upon the elevation
;
h corresponds with g, i withy,

o with s, and / with b. Now, to find the shadows upon tfcis

line of section, cast from m the ray m , from // the ray h o,

etc. ;
then that part of the section indicated by the letters

m f i n, and that part also between // and o will be under
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shadow. By an inspection of the figure, it will be seen that

the same process is applied to each line of section, and in

that way the points /, r, t, u, v, ?v, x, as also i, 2, 3, etc., are

FIG. 447.

successively found, and the lines of shadow traced through
them.

Fig. 446 is an example of the same capital with all the

shadows finished in accordance with the lines obtained on

Fig. 445.
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584. To Find the Shadow Thrown on a Vertical Wall
l>y a Column and Entablature Standing in Advance of aid

Wall. Cast rays from a and b (Fig. 447), and find the point
c as in the previous examples ;

from d draw the ray de, and

from e the horizontal line ef\ tangical to the curve at g and

h draw the rays gj and h i, and from i and j erect the per-

pendiculars il and/; from m and n draw the rays mf and

nk, and trace the curve between and/; cast a ray from o to

/, a vertical line from/ to s, and through s draw the horizon-

tal line s t
;
the shadow as required will then be completed.

FIG. 448.

Fig. >| /|
K is an example of the same kind as the last, with

all the shadows filled in, according to the lines obtained in

the preceding figure.

585. Shadows on a Cornice. Figs. 449 and 450 are

examples of the Tuscan cornice. The manner of obtaining

the shadows is evident.

586. Reflected Light. In shading, the finish and life of

an object depend much on reflected light. This is seen to

advantage in Fig. 446, and on the column in Fig. 448. Re-



6l2 SHADOWS.

fleeted rays are thrown in a direction exactly the reverse

of direct rays ; therefore, on that part of an object which is

subject to reflected light, the shadows are reversed. The

FIG. 449.

fillet of the ovolo in Fig. 446 is an example of this. On the

right hand side of the column, the^ace of the fillet is much
darker than the cove directly under it. The reason of this

FIG. 450,

is, the face of the fillet is deprived both of direct and re-

flected light, whereas the cove is subject to the latter. Other

instances of the effect of reflected light will be seen in the

other examples.
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GLOSSARY.

Terms notfound here can befound in the lists of definitions in otherparts ofthis book, or in
common dictionaries.

Abacus. The uppermost member of a capital.

Abattoir. A slaughter-house.

Abbey. The residence of an abbot or abbess.

Abutment. That part of a pier from which the arch springs.
Acanthus. A plant called in English bear's-breech. Its leaves are employed

for decorating the Corinthian and the Composite capitals.

Acropolis. The highest part of a city ; generally the citadel.

Acroteria. The small pedestals placed on the extremities and apex of a

pediment, originally intended as a base for sculpture.

Aisle. Passage to and from the pews of a church. In Gothic architecture,

the lean-to wings on the sides of the nave.

Alcove. Part of a chamber separated by an estrade, or partition of columns.

Recess with seats, etc., in gardens.

Altar. A pedestal whereon sacrifice was offered. In modern churches, the

area within the railing in front of the pulpit.

Alto-relievo. High relief
; sculpture projecting from a surface so as to appear

nearly isolated.

Amphitheatre. A double theatre, employed by the ancients for the exhibi-

tion of gladiatorial fights and other shows.

Ancones. Trusses employed as an apparent support to a cornice upon the

flanks of the architrave.

Annulet. A small square moulding used to separate others ;
the fillets in

the Doric capital under the ovolo, and those which separate the flutings of col-

umns, are known by this term.

Antce. A pilaster attached to a wall.

Apiary. A place for keeping beehives.

Arabesque. A building after the Arabian style.

Areostyle. An intercolumniation of from four to five diameters.

Arcade. A series of arches.

Arch. An arrangement of stones or other material in a curvilinear form, so

as to perform the office of a lintel and carry superincumbent weights.

Architrave. That part of the entablature which rests upon the capital of a

column, and is beneath the frieze. The casing and mouldings about a door or

window.

Archivolt.The ceiling of a vault
;
the under surface of an arch.

Area. Superficial measurement. An open space, below the level of the

ground, in front of basement windows.
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Arsenal. A public establishment for the deposition of arms and warlike

stores.

Astragal. A small moulding consisting of a half-round with a fillet on each

side.

Attic. A. low story erected over an order of architecture. A low additional

story immediately under the roof of a building.

Aviary. A place for keeping and breeding birds.

Balcony. An open gallery projecting from the front of a building.

Baluster. A small pillar or pilaster supporting a rail.

Balustrade. A series of balusters connected by a rail.

Barge-course. That part of the covering which projects over the gable of a

building.

Base. The lowest part of a wall, column, etc.

Basement-story. That which is immediately under the principal story, and

included within the foundation of the building.

Basso-relievo. Low relief
; sculptured figures projecting from a surface one

half their thickness or less. See Alto-relievo.

Battering. See Talus.

Battlement. Indentations on the top of a wall or parapet.

Bay-window. A window projecting in two or more planes, and not form-

ing the segment of a circle.

Bazaar. A species of mart or exchange for the sale of various articles of

merchandise.

Bead. A circular moulding.

Bed-mouldings. Those mouldings which are between the corona and the

frieze.

Belfry. That part of the steeple in which the bells are hung ; anciently
called campanile.

Belvedere. An ornamental turret or observatory commanding a pleasant

prospect.

Bow-window. A window projecting in curved lines.

Bressummer. A beam or iron tie supporting a wall over a gateway or other

opening.

Brick-nogging. The brickwork between studs of partitions.

Buttress. A projection from a wall to give additional strength.

Cable. A cylindrical moulding placed in flutes at the lower part of the col-

umn.
Camber. To give a convexity to the upper surface of a beam.

Campanile. A tower for the reception of bells, usually, in Italy, separated
from the church.

Canopy. An ornamental covering over a seat of state.

Cantalivers. The ends of rafters under a projecting roof. Pieces of wood
or stone supporting the eaves.

Capital. The uppermost part of a column included between the shaft and
the architrave.

Caravansera. In the East, a large public building for the reception of trav-

ellers by caravans in the desert.
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Carpentry. (From the Latin carpentum, carved wood.) That department
of science and art which treats of the disposition, the construction, and the

relative strength of timber. The first is called descriptive, the second con-

structive, and the last mechanical carpentry.

Caryatides. Figures of women used instead of columns to support an
entablature.

Casino. A small country-house.
Castellated. Built with battlements and turrets in imitation of ancient

castles.

Castle. A building fortified for military defence. A house with towers,

usually encompassed with walls and moats, and having a donjon, or keep, in

the centre.

Catacombs. Subterraneous places for burying the dead.

Cathedral. The principal church of a province or diocese, wherein* the

throne of the archbishop or bishop is placed.

Cavetto. A concave moulding comprising the quadrant of a circle.

Cemetery. An edifice or area where the dead are interred.

Cenotaph. A monument erected to the memory of a person buried in

another place.

Centring. The temporary woodwork, or framing, whereon any vaulted

work is constructed.

Cesspool. A well under a drain or pavement to receive the waste water and

sediment.

Chamfer. The bevelled edge of anything originally right angled.

Chancel. That part of a Gothic church in which the altar is placed.

Chantry. A little chapel in ancient churches, with an endowment for one

or more priests to say mass for the relief of souls out of purgatory.

Chapel. A building for religious worship, erected separately from a church,

and served by a chaplain.

Chaplet. A moulding carved into beads, olives, etc.

Cincture. The ring, listel, or fillet, at the top and bottom of a column,
which divides the shaft of the column from its capital and base.

Circus. A straight, long, narrow building used by the Romans for the ex-

hibition of public spectacles and chariot races. At the present day, a building

enclosing an arena for the exhibition of feats of horsemanship.

Clere-story. The upper part of the nave of a church above the roofs of the

aisles.

Cloister. The square space attached to a regular monastery or large church,

having a peristyle or ambulatory around it, covered with a range of buildings.

Coffer-dam. A case of piling, water-tight, fixed in the bed of a river, for the

purpose of excluding the water while any work, such as a wharf, wall, or the

pier of a bridge, is carried up.

Collar-beam. A horizontal beam framed between two principal rafters above

the tie-beam.

Colonnade. A range of columns.

Columbarium. A pigeon-house.

Column. A vertical cylindrical support under the entablature of an order.

Common-rafters. The same as jack-rafters, which see.
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Conduit. A long, narrow, walled passage underground, for secret com-

munication between different apartments. A canal or pipe for the conveyance
of water.

Conservatory. A building for preserving curious and rare exotic plants.

Consoles. The same as ancones, which see.

Contour. The external lines which bound and terminate a figure.

Convent. A building for the reception of a society of religious persons.

Coping. Stones laid on the top of a wall to defend it from the weather.

Corbels. Stones or timbers fixed in a wall to sustain the timbers of a floor

or roof.

Cornice. Any moulded projection which crowns or finishes the part to

which it is affixed.

Corona. That part of a cornice which is between the crown-moulding and

the bed-mouldings.

Cornucopia. The horn of plenty.

Corridor. An open gallery or communication to the different apartments of

a house.

Cove. A concave moulding.

Cripple-rafters. The short rafters which are spiked to the hip-rafter of a

roof.

Crockets. In Gothic architecture, the ornaments placed along the angles of

pediments, pinnacles, etc.

Crosettes. The same as ancones, which see.

Crypt. The under or hidden part of a building.

Culvert. An arched channel of masonry or brickwork, built beneath the

bed of a canal for the purpose of conducting water under it. Any arched

channel for water underground.

Cupola. A small building on the top of a dome.

Curtail-step. A step with a spiral end, usually the first of the flight.

Cusps. The pendants of a pointed arch.

Cyma. An ogee. There are two kinds
; the cyma-recta, having the upper

part concave and the lower convex, and the cyma-reversa, with the upper part

convex and the lower concave.

Dado. The die, or part between the base and cornice of a pedestal.

Dairy. An apartment or building for the preservation of milk, and the

manufacture of it into butter, cheese, etc.

Dead-shoar. A piece of timber or stone stood vertically in brickwork, to

support a superincumbent weight until the brickwork which is to carry it

has set or become hard.

Decastyle. A building having ten columns in front.

Dentils. (From the Latin, dentes, teeth.) Small rectangular blocks used in

the bed-mouldings of some of the orders.

Diastyle. An intercolumniation of three, or, as some say, four diameters.

Die. That part of a pedestal included between the base and the cornice
;

it

is also called a dado.

Dodecastyle. A building having twelve columns in front.

Donjon. A massive tower within ancient castles, to which the garrison

might retreat in case of necessity.
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Dcoks. A Scotch name given to wooden brick*.

Dormer. A window placed on the roof of a house, the frame being placed

vertically on the rafters.

Dormitory. A sleeping-room.

Dovecote. A building for keeping tarrje pigeons. A columbarium.

Echinus. The Grecian ovolo.

Elevation. A geometrical projection drawn on a plane at right angles to

the horizon.

Entablature. That part of an order which is supported by the columns ;

consisting of the architrave,lrieze, and cornice.

Etistyle.An intercolumniation of two and a quarter diameters.

Exchange. A building in which merchants and brokers meet to transact

business.

Extrados. The exterior curve of an arch.

Facade. The principal front of any building.

Face-mould. The pattern for marking the plank out of which hand-railing

is to be cut for stairs, etc.

Facia, or Fascia. A flat member, like a band or broad fillet.

Falling-mould. The mould applied to the convex, vertical surface of the

rail-piece, in order to form the back and under surface of the rail, and finish

the squaring.

Festoon. An ornament representing a wreath of flowers and leaves.

Fillet. A narrow flat band, listel, or annulet, used for the separation of

one moulding from another, and to give breadth and firmness to the edges of

mouldings.
Flutes . Upright channels on the shafts of columns.

Flyers. Steps in a flight ot stairs that are parallel to each other.

Forum. In ancient architecture a public market ; also, a place where the

common courts were held and law pleadings carried on.

Foundry. A building in which various metals are cast into moulds or

shapes.

Fneze. That part of an entablature included between the architrave and

the corn.ice.

Gable. The vertical, triangular piece of wall at the end of a roof, from the

level of the eaves to the summit.

Gain. A recess made to receive a tenon or tusk.

Gallery. A common passage to several rooms in an upper story. A long

room for the reception of pictures. A platform raised on columns, pilasters,

or piers.

Girder.-rite principal beam in a floor, for supporting the binding and

other joists, whereby the bearing or length is lessened.

Glyph A vertical, sunken channel. From their number, those in the

Doric order are called triglyphs.

Granary. A building for storing grain, especially that intended to be

kept for a considerable time.
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Groin. The line formed by the intersection of two arches, which cross each

other at any angle.

Gutta. The small cylindrical pendent ornaments, otherwise called drops,

used in the Doric order under the triglyphs, and also pendent from the mutult

of the cornice.

Gymnasium. Originally, a place measured out and covered with sand for

the exercise of athletic games ; afterward, spacious buildings devoted to the

mental as well as corporeal instruction of youth.

Hall. The first large apartment on entering a house. The public room of

a corporate body. A manor-house.

Ham. A. house or dwelling-place. A street or village : hence Notting-

ham, Buckingham, etc. Hamlet, the diminutive of ham, is a small street or

village.

Helix. The small volute, or twist, under the abacus in the Corinthian

capital.

Hem. The projecting spiral fillet of the Ionic capital.

Hexastyle. A building having six columns in front.

Hip-rafter. A piece of timber placed at the angle made by two adjacent
inclined roofs.

Homestall. A mansion-house, or seat in the country.

Hotel, or Hostel. A large inn or place of public entertainment. A large

house or palace.

Hot-house. A glass building used in gardening.

Hovel. An open shed.

Hut. A small cottage or hovel, generally constructed of earthy materials,

as strong loamy clay, etc.

Impost. The capital of a pier or pilaster which supports an arch.

Intaglio. Sculpture in which the subject is hollowed out, so that the im-

pression from it presents the appearance of a bas-relief.

Intercolumniation. The distance between two columns.

Intrados. The interior and lower curve of an arch.

Jack-rafters. Rafters that fill in between the principal rafters of a roof;

called also common-rafters.

Jail. A place of legal confinement.

Jambs. The vertical sides of an aperture.

Joggle-piece. A post to receive struts.

Joists. The timbers to which the boards of a floor or the laths of a ceiling
are nailed.

Keep. The same as donjon, which see.

Key-stone. The highest central stone of an arch.

Kiln. A building for the accumulation and retention of heat, in order to

dry or burn certain materials deposited within it.

King-post. The centre-post in a trussed roof.

Knee. A convex bend in the back of a hand-rail. See Ramp.
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Lactarium. The same as dairy, which see.

Lantern. A cupola having windows in the sides for lighting an apartment
beneath.

Larmier. The same as corona, which see.

Lattice. A reticulated window for the admission of air, rather than light,

as in dairies and cellars.

Lever-boards. Blind-slats; a set of boards so fastened that they maybe
turned at any angle to admit more or less light, or to lap upon each other so

as to exclude all air or light through apertures.

Lintel. A piece of timber or stone placed horizontally over a door, win-

dow, or other opening.
Listel. The same asyf//<?/, which see.

Lobby. An enclosed space, or passage, communicating with the principal

room or rooms of a house.

Lodge. A small house near and subordinate to the mansion. A cottage

placed at the gate of the road leading to a mansion.

Loof. A. small narrow window. Loophole is a term applied to the vertical

series of doors in a warehouse, through which goods are delivered by means

of a crane.

Luffer-boarding. The same as lever-boards, which see.

Luthetn. The same as dormer, which see.

Mausoleum. A sepulchral building so called from a very celebrated one

erected to the memory of Mausolus, king of Caria, by his wife Artemisia.

Melopa. The square space in the frieze between the triglyphs of the Doric

order.

Mezzanine. A story of small height introduced between two of greater

height.

Minaret. A slender, lofty turret having projecting balconies, common in

Mohammedan countries.

Minster. A church to which an ecclesiastical fraternity has been or is

attached.

Moat. An excavated reservoir of water, surrounding a house, castle, or

town.

Modillion. A projection under the corona of the richer orders, resembling

a bracket.

Module. The semi-diameter of a column, used by the architect as a meas-

ure by which to proportion the parts of an order.

Monastery. A building or buildings appropriated to the reception of

monks.

Monopteron. A circular colonnade supporting a dome without an enclos-

ing wall.

Mosaic. A mode of representing objects by the inlaying of small cubes of

glass, stone, marble, shells, etc.

Mosque. A Mohammedan temple or place of worship.

Midlions.Thz upright posts or bars which divide the lights in a Gothic

window.

Mtiniment-house.k strong, fire-proof apartment for the keeping and pres-

ervation of evidences, charters, seals, etc., called muniments.



634 APPENDIX.

Museum. A repository of natural, scientific, and literary curiosities or of

works of art.

Mutule. A projecting ornament of the Doric cornice supposed to repre-

sent the ends of rafters.

Nave. The main body of a Gothic church.

Newel. A post at the starting or landing of a flight of stairs.

Niche. A cavity or hollow place in a wall for the reception of a statue,

vase, etc.

Nogs. Wooden bricks.

Nosing. The rounded and projecting edge of a step in stairs.

Nunnery. A building or buildings appropriated for the reception of nuns.

Obelisk. A lofty pillar of a rectangular form.

Octastyle. A building with eight columns in front.

Odeum. Among the Greeks, a species of theatre wherein the poets and

musicians rehearsed their compositions previous to the public production of

them.

Ogee. See cyma.

Orangery. A gallery or building in a garden or parterre fronting the

south.

Oriel-window. A large bay or recessed window in a hall, chapel, or other

apartment.

Ovolo. A convex projecting moulding whose profile is the quadrant of a

circle.

Pagoda. A temple or place of worship in India.

Palisade. A fence of pales or stakes driven into the ground.

Parapet. A small wall of any material for protection on the sides of

bridges, quays, or high buildings.
Pavilion. A turret or small building generally insulated and comprised

under a single roof.

Pedestal. A square foundation used to elevate and sustain a column,

statue, etc.

Pediment. The triangular crowning part of a portico or aperture which

terminates vertically the sloping parts of the roof; this, in Gothic architecture,

is called a gable.

Penitentiary. A prison for the confinement of criminals whose crimes are

not of a very heinous nature.

Piazza. A square, open space surrounded by buildings. This term is

often improperly used to denote a portico.

Pier. A rectangular pillar without any regular base or capital. The up-

right, narrow portions of walls between doors and windows are known by this

term.

Pilaster. A square pillar, sometimes insulated, but more commonly en-

gaged in a wall, and projecting only a part of its thickness.

Piles. Large timbers driven into the ground to make a secure foundation

in marshy places, or in the bed of a river.
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Pitta*. A column of irregular form, always disengaged, and always deviat-

ing from the proportions of the orders; whence the distinction between a

pillar and a column.

Pinnacle. A small spire used to ornament Gothic buildings.
Planceer. The same as soffit, which see.

Plinth. The lower square member of the base of a column, pedestal or
wall.

Porch. An exterior appendage to a building, forming a covered approach
to one of its principal doorways.

Portal. The arch over a door or gate ;
the framework of the gate ;

the

lesser gate, when there are two of different dimensions at one entrance.
Portcullis. A strong timber gate to old castles, made to slide up and

down vertically.

Portico. A colonnade supporting a shelter over a walk, or ambulatory.
Priory. A building similar in its constitution to a monastery or abbey,

the head whereof was called a prior or prioress.

Prism. A solid bounded on the sides by parallelograms, and on the ends

by polygonal figures in parallel planes.

Prostyle. A building with columns in front only.
Purlines. Those pieces of timber which lie under and at right angles to

the rafters to prevent them from sinking.

Pycnostyle. An intercolumniation of one and a half diameters.

Pyramid. A solid body standing on a square, triangle, or potygonal basis

and terminating in a point at the top.

Quarry. A place whence stones and slates are procured.

Quay. (Pronounced key.) A bank formed towards the sea or on the side

of a river for free passage, or for the purpose of unloading merchandise.

Quoin. An external angle. See Rustic quoins.

Rabbet, or Rebate. A groove or channel in the edge of a board.

Ramp. A concave bend in the back of a hand-rail.

Rampant arch. One having abutments of different heights. .

Regula. The band below the taenia in the Doric order.

Riser. In stairs, the vertical board forming the front of a step.

Rostrum. An elevated platform from which a speaker addresses an audi-

ence.

Rotunda. A circular building.

Rubble-wall. A wall built of unhewn stone.

Rudenture. The same as cable, which see.

Rustic quoins. The stones placed on the external angle of a building, pro-

jecting beyond the face of the wall, and having their edges bevelled.

Rustic-work. A mode of building masonry wherein the faces of the stones

are left rough, the sides only being wrought smooth where the union of the

stones takes place.

Salon, or Saloon. A lofty and spacious apartment comprehending the

height of two stories with two tiers of windows.
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Sarcophagus. A tomb or coffin made of one stone.

Scantling. The measure to which a piece of timber is to be or has been

cut.

Scarfing. The joining of two pieces of timber by bolting or nailing trans-

versely together, so that the two appear but one.

Scotia. The hollow moulding in the base of a column, between the fillets

of the tori.

Scroll. A carved curvilinear ornament, somewhat resembling in profile

the turnings of a ram's horn.

Sepulchre. A grave, tomb, or place of interment.

Sewer. A drain or conduit for carrying off soil or water from any place.

Shaft. The cylindrical part between the base and the capital of a column.

Shoar. A piece of timber placed in an oblique direction to support a

building or wall.

Sill. The horizontal piece of timber at the bottom of framing ;
the timber

or stone at the bottom of doors and windows.

Soffit. The underside of an architrave, corona, etc. The underside of

the heads of doors, windows, etc.

Summer. The lintel of a door of window
;
a beam tenoned into a girder

to support the ends of joists on both sides of it.

Systyle.- An intercolumniation of two diameters.

Tania. The fillet which separates the Doric frieze from the architrave.

Talus. The slope or inclination of a wall, among workmen called bat-

tering.

Terrace. An area raised before a building, above the level of the ground,
to serve as a walk.

Tesselated pavement. A curious pavement of mosaic work, composed of

small square stones.

Tetrastyle. A building having four columns in front.

Thatch. A covering of straw or reeds used on the roofs of cottages,

barns, etc.

Theatre. A building appropriated to the representation of dramatic

spectacles.

Tile. A thin piece or plate of baked clay or other material used for the

external covering of a roof.

Tomb. A grave, or place for the interment of a human body, including
also any commemorative monument raised over such a place.

Torus. A moulding of semi-circular profile used in the bases of col-

umns.

Tower. A lofty building of several stories, round or polygonal.

Transept. The transverse portion of a cruciform church.

Transom. The b^am across a double-lighted window
;

if the window
have no transom, it is called a clere-story window.

Thread. That part of a step which is included between the face of its riser

and that of the riser above.

Trellis. A reticulated framing made of thin bars of wood for screens, win-

dows, etc.
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Tiiglyph.i:\\e. vertical tablets in the Doric frieze, chamfered on the two

vertical edges, and having two channels in the middle.

Tripod. A table or seat with three legs.

Trochilus. The same as scotia, which see.

Truss. An arrangement of timbers for increasing the resistance to cross-

strains, consisting of a tie, two struts, and a suspending-piece.

Turret. A small tower, often crowning the angle of a wall, etc.

Tusk. A short projection under a tenon to increase its strength.

Tympanum. The naked face of a pediment, included between the level and

the raking mouldings.

Underpinning. The wall under the ground-sills of a building.

University. An assemblage of colleges under the supervision of a senate, etc.

Vault. A concave arched ceiling resting upon two opposite parallel walls.

Venetian-door. A door having side-lights.

Venetian-window. A window having three separate apertures.

Veranda. An awning. An open portico under the extended roof of a

building.

Vestibule. An apartment which serves as a medium of communication to

another room or series of rooms.

Vestry. An apartment in a church, or attached to it, for the preservation

of the sacred vestments and utensils.

Villa. A country-house for the residence of an opulent person.

Vinery. A house for the cultivation of vines.

Volute. A spiral scroll, which forms the principal feature of the Ionic and

the Composite capitals.

Vottssoirs. Arch-stones.

Wainscoting. Wooden lining of walls, generally in panels.

Water-table. The stone covering to the projecting foundation or other walls

of a building.

Well. The space occupied by a flight of stairs. The space left beyond the

ends of the steps is called the well-hole.

Wicket. A small door made in a gate.

Winders. In stairs, steps not parallel to each other.

Zophorus. The same as frieze, which see.

Zystos. Among the ancients, a portico of unusual length, commonly appro-

priated to gymnastic exercises.
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TABLE OF SQUARES, CUBES. AND ROOTS.
(From Button's Mathematics.)

No.
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tfo.
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No. Square.
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No.
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No,
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No.
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No.

939
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it without a remainder
;
then the cube of the quotient, multiplied by the cube

of the number found in the table, will give the answer.

Example. What is the cube of 2700? 2700, being divided by 900, the quo-
tient is 3, the cube of which is 27 and the cube of 900 is 729,000,000, there-

fore :

27 x 729,000,000 = 19,683,000,000 : the Ans.

To find the square or cztbe root of numbers higher than is found in the table.

Rule. Select, in the column of squares or cubes, as the case may require, that

number which is nearest the given number
;
then the answer, when decimals

are not of importance, will be found directly opposite, in the column of num-
bers.

Example. What is the square root of 87,620? In the column of squares,

87,616 is nearest to the given number
; therefore, 296, immediately opposite

in the column of numbers, is the answer, nearly.

Another example. What is the cube root of 110,591? In the column of

cubes, 110,592 is found to be nearest to the given number
; therefore, 48, the

number opposite, is the answer, nearly.

To find the cube root more accurately. Rule. Select from the column of

cubes that number which is nearest the given number, and add twice the

number so selected to the given number ; also, add twice the given number
to the number selected from the table. Then, as the former product is to the

latter, so is the root of the number selected to the root of the number given.

Example. What is the cube root of 9200? The nearest number in the col-

umn of cubes is 9261, the root of which is 21, therefore :

9261 9200
2 2

18522 18400

9200 9261

As 27,722 is to '27,661, so is 21 to 20-953 + , the Ans.

Thus, 27,661 x 21 = 580,881, and this divided by 27,722 = 20-953 -f .

To find the square or cube root ofa whole number with decimals. Rule. Sub-

tract the root of the whole number from the root of the next higher number,
and multiply the remainder by the given decimal

;
then the product, added to

the root of the given whole number, will give the answer correctly to three

places of decimals in the square root, and to seven in the cube root.

Example. What is the square root of 11-14? The square root of n is

3-3166, and the square root of the next higher number, 12, is 3-4641 ; the for-

mer from the latter, the remainder is 0-1475, and this by 0-14 equals 0-02065.

This added to 3-3166, the sum, 3-33725, is the square root of 11-14.

To find the roots of decimals by the use of the table. Rule. Seek for the

given decimal in the column of numbers, and opposite in the columns of roots

will be found the answer, correct as to the figures, but requiring the decimal

point to be shifted. The transposition of the decimal point is to be performed

thus : For every place the decimal point is removed in the root, remove it in

the number t^vo places for the square root and three places for the cube root.
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Examples. By the table, the square root of 86-0 is 9-2736, consequently by
the rule the square root of 0-86 is 0-92736. The square root of 9- is 3-, hence
the square root of 0-09 is 0-3. For the square root of 0-0657 we have

0*25632, found opposite No. 657. So, also, the square root of 0-000927 is

0-030446, found opposite No. 927. And the square root of 8-73 (whole num-
ber with decimals) is 2-9546, found opposite No 873. The cube root of 0-8

is 0-928, found at No. 800
; the cube root of 0-08 is 0-4308, found opposite

No. 80, and the cube root of 0-008 is 0-2, as 2-0 is the cube root of 8-0. So
also the cube root of 0-047 ' s 0-36088, found opposite No. 47.

RULES FOR THE REDUCTION OF DECIMALS.
,

To reduce a fraction to its equivalent decimal. Rule. Divide the numerator

by the denominator, annexing cyphers as required.

Example. What is the decimal of a foot equivalent to three inches ?

3 inches is j\ of a foot, therefore :

& . . . 12)3-00

25 Ans.

Another example. What is the equivalent decimal of $ of an inch?

1 ... 8)7-000

875 Ans.

To reduce a compoundfraction to its equivalent decimal. Rule. In accordance

with the preceding rule, reduce each fraction, commencing at the lowest, to

the decimal of the next higher denomination, to which add the numerator of

the next higher fraction, and reduce the sum to the decimal of the next higher

denomination, and so proceed to the last
;
and the final product will be the

answer.

Example. What is the decimal of a foot equivalent to five inches, f and TV

of an inch ?

The fractions in this case are, i of an eighth, | of an inch, and T
r
v of a foot,

therefore :

eighths.

inches.

rV 12)5-437500

-453125 Ans.

The process may be condensed, thus : write the numerators of the given
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fractions, from the least to the greatest, under each other, and place each de

nominator to the left of its numerator, thus :

8



TABLE OF CIRCLES.

(From Gregory's Mathematics.)

FROM this table may be found by inspection the area or circumference of a

circle of any diameter, and the side of a square equal to the area of any given
circle from i to 100 inches, feet, yards, miles, etc. If the given diameter is in

inches, the area, circumference, etc., set opposite, will be inches ; if in feet,

then feet, etc.

Diam.
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)iam.
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Diam.



CAPACITY OF WELLS, CISTERNS, ETC. 653

Example. What is the circumference of a circle whose diameter is 6J, or

6-125 inches? 6-125, multiplied by 2, gives 12-25, one of the diameters of the

table, whose circumference is 38-484, therefore :

2)38-484

19-242 inches. Ans.

Another example. Wh?t is the area of a circle, the diameter of which is 3-2
feet? 3-2, multiplied by 5, gives 16, and the area of 16 is 201-0619, therefore :

5 x 5 = 25)201-0619(8-0424 + feet. Ans.

200

106
100

61

50

Note. The diameter of a circle, multiplied by 3-14159, will give its cir-

cumference
;
the square of the diameter, multiplied by -78539, will give its

area; and the diameter, multiplied by -88622, will give the side of a square

equal to the area of the circle.

TABLE SHOWING THE CAPACITY OF WELLS, CISTERNS, ETC.

The gallon of the State of New York, by an act passed April n, 1851, is required to conform to

the standard gallon of the United States government. This standard gallon contains 231 cubic

inches. In conformity with this standard the following table has been computed.

One foot in depth of a cistern of

3 feet diameter will contain ........................ 52 872 gallons.

3*
" " ....................... 7I-965

4
" ........................ 93-995

"

4i
" ........................ 118-963

5
" " ........................ 146-868

5i
" " ........................ 177-710

6 " " ..................... 211-490
"

6 " " ....................... 2*8-207

7
" " ....................... 287-861

"

8 " " ....................... 375-982

9 ....................... 475-852

10 " "
............ :............ 587-472

12 " " ....................... 845-959

Note. To reduce cubic feet to gallons, multiply by 7-48. The weight of a

gallon of water is 8-355 Ibs. To find the contents of a round cistern, multi-

ply the square of the diameter by the height, both in feet, and this product by

5-875-
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TABLE OF WEIGHTS.

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF

BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per Barloiv, Gallier, Jlaswell, Jfurst, Rankine, Tredgold, Wood
and tJie AutJwr.

MATERIAL.



WEIGHT OF MATERIALS. 655

TABLE OF WEIGHTS. (Continued.)

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF
BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per Barlow, Gallier, Jfaswell, Hurst, Rankine, Tredgold, Wood
and the Author.

MATERIAL.



656 APPENDIX.

TABLE OF WEIGHTS. (Continued^

MATERIALS USED IN THE CONSTRUCTION OR LOADING OF
BUILDINGS.

WEIGHTS PER CUBIC FOOT.

As per BarloTV, Gallier, Haswell, Hurst, Rankine> Tredgold, Wood
and the Author.

MATERIAL.
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Acute or Lancet Arch 51

Algebra, Addition 398

Algebra, Application of 393

Algebra, Binomial, Multiplica-

tion of , 409

Algebra, Binomial, Square of a... 429

Algebra, Binomial, Squaring a. . . 410

Algebra Defined 392

Algebra, Denominator, Least

Common 404

Algebra, Division, the Quotient.. 419

Algebra, Division, Reduction.... 419

Algebra, Division, Reverse of

Multiplication 418

Algebra, Factors, Multiplication

of Two and Three 409

Algebra, Factors, Multiplication

of Three . 408

Algebra, Factors, Squaring Differ-

ence of Two 412

Algebra, Fractions Added and

Subtracted 403

Algebra, Fractions, Denominators 407

Algebra, Fractions Subtracted... 405

Algebra, Hypothenuse, Equality
of Squares on 416

Algebra, Letters, Customary Uses

of 396

Algebra, Logarithms Explained.. 425

Algebra, Logarithms, Examples in 426

Algebra, Multiplication, Graphical 408

Algebra, Progression, Arithmeti-

cal... 432

Algebra, Progression, Geometrical 435

Algebra, Proportion Essential 347

Algebra, Proportionals, Lever

Formula 421

Algebra, Quantities, Addition and

Subtraction 424

Algebra, Quantities, Division of. 424

Algebra, Quantities, Multiplica-
tion of 424

Algebra, Quantities with Negative

Exponents 423

Algebra, Quantity, Raising to any
Power 423

Algebra, Radicals, Extraction of.. 425

Algebra, Rules are General 394

Algebra, Rules, Useful Construc-

ting 394

Algebra, Signs 397

Algebra, Signs, Arithmetical Pro-

cess by 396

Algebra, 'Signs, Changed when
Subtracted .... 400

Algebra, Signs, Multiplication of

Plus and Minus. .. 415

Algebra, Squares on Right-Angled

Triangle 417

Algebra, Subtraction 398

Algebra, Sum and Difference, Pro-

duct of 413

Algebra, Symbols Chosen at Pleas-

ure 395

Algebra, Symbol, Transferring a.. 399

Algebra, Triangle, Squares on

Right-angled 417



658 INDEX.

Alhambra, or Red House, Ancient

Palace of the n
Ancient Cities, Historical Ac-

counts of 6

Ancient Monuments, their Archi-

tects 6

Angle at Circumference of Circle. 358

Angle Defined 544

Angle to Bracket of Cornice, To
Obtain 343

Angle, To Measure a, Geometry.. 348

Angle rib to Polygonal Dome. . . . 223

Angle-rib, Shape of Polygonal
Domes 223

Amulet or Fillet, Classic Mould-

ing 323
Antae Cap, Modern Moulding. ... 334

Antique Columns, Forms of 48

Antiquity of Building 5

Arabian and Moorish Styles, An-

tiquities of ii

Araeostyle, Intercolumniations. . . 20

Arc of Circle Defined 547

Arc of Circle, Length, Rule for. . 475

Arc, Radius of, To Find 561

Arc, Versed Sine, To Find (Geom-

etry) 561

Arcade 52

Arcade of Arches, Resistance in. . 52

Arcade in Bridges, Strength of

Piers 52

Arch 50

Arch, Acute or Lancet 51

Arch, Archivolt in 52

Arch, Bridge, Pressure on 51

Arch, Building, Manner of 50

Arch, Catenary 51

Arch, Construction of 50

Arch, Definitions and Principles of 52

Arch, Extrados of 52

Arch, Form of 50

Arch, Formation in Bridges 51

Arch, Hooke's Theory of an 50

Arch, Horseshoe or Moorish 51

Arch, Impost in 52

Arch, Intrados of 52

Arch, Keystone, Position of 50

Arch, Lateral Thrust in . 52

Arch, Ogee 51

Arch, Rampant 51

Arch, Span of an 52

Arch, Spring in an 52

Arch, Stone Bridges 230

Arch-stones, Bridges, Jointing. .. 233

Arch, Strength of 50
Arch of Titus, Composite Order. . 28

Arch, Uses of 50

Arch, Voussoir in 52

Architect and Builder, Construc-

tion Necessary to 56

Architect, Derivation of the Word 5

Architects of Italy, I4th Century. 12

Architecture, Classic Mouldings
in 323

Architecture, Ecclesiastical, Origin
of 14

Architecture, Egyptian, Character

of 33

Architecture, Egyptian, Features

of 30
Architecture, English, Ccttage

Style 35

Architecture, English, Early n
Architecture, Grecian and Roman 8

Architecture, Grecian, History of. 6

Architecture, Hindoo, Character

of . 30

Architecture, Order, Three Princi-

pal parts of 14

Architecture, Principles of 44

Architecture, Roman, Ruins of... II

Architecture in Rome Defined. .. 7

Architecture, Result of Necessity. 13

Architrave Defined 15

Area of Circle, To Find 475

Area of Post, Rule for Finding. . . 90
Area of Round Post, Rule 90
Area of Surface, Sliding Rupture,

Rule 88

Arithmetical Progression (Alge-

bra) 432

Astragal, or Bead, Classic Mould-

ing 323

Athens, Parthenon, Columns of. . 48

Attic, a Small Order, Top of

Building 15
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Attic Story, Upper Story 15

Axes of Ellipse (Geometry) . . 585
Axiom Defined (Geometry) 348
Axis Defined 548

Balusters, Handrailing, Winding
Stairs

, 310

Baluster, Platform Stairs, Position

of 250
Baluster in Round Rail, Winding

Stairs 313

Base, Shaft, and Capital Defined . 14

Bathing, Necessary Arrangements
for 45

Baths of Diocletian, Splendor of.. 27

Bead, or Astragal, Classic Mould-

ings 323

Beams, Bearings of, Rules for

Pressure 75

Beams, Breaking Weight on 74

Beams, Framed, Rules for Thick-

ness 130

Beams, Framed, Position of Mor-

tise 236

Beams, Headers Defined 130

Beams, Horizontal Thrust, Rule.s

for 72

Beams, Inclined, Effect of Weight
on 72

Beams, Load on, Effect of 74

Beams, Splicing 235

Beams, Tail, Defined 130

Beams, Trimmers or Carriage, De-

fined 130

Beams, Weight on, Proportion of. 130

Beams, White Pine, Table of

Weights 177

Beams, Wooden, Use of Limited. 154

Bearings for Girders 141

Binomials, Multiplication of (Al-

gebra) 409

Binomials, Square of (Algebra). . . 429

Binomials, Squaring (Algebra)... 410

Bisect an Angle (Geometry) 554

Bis'ect a Line (Geometry) 549

Blocking out Rail, Winding Stairs 301

Blondel's Method, Rise and Tread

in Stairs 242

Bottom Rail for Doors, Rule for

Width 316

Bow, Mr., On Economics and

Construction 166

Bowstring Girder, Cast -Iron,

Should not be Used 163

Brace, Length of, To Find (Geom-

etry) 579

Braces, Rafters, etc., To Find

Length 580

Braces in Roof, Rule for, Same as

Rafter 208

Breaking Weight Defined 84

Brick or Stone Buildings 37

Brick Walls, Modern 49

Bridge Abutments, Strength of.. . 227

Bridge Arches, Formation of 51

Bridge Arch-stones, Joints of .... 233

Bridges, Construction of Various. 223

Bridge, London, Age of Piles

under 229

Bridge Piers, Construction and

Sizes 228*

Bridge, Rib-built 224

Bridge, Rib, Construction of. . . . 225

Bridge, Rib, Framed, Construction

and Distance 226

Bridge, Rib, Radials of 226

Bridge, Rib, Table of Least Rise

in 224

Bridge, Rib, Rule for Area of 225

Bridge, Rib, Rule for Depth of. . . 226

Bridge, Roadway, Width of 227

Bridge, Stone, Arch Construction 230

Bridge, Stone, Arch-stones, Table

of Pressures on 230

Bridge, Stone, Arch, Centres for,

Bad Construction 229

Bridge, Arch, Spring of 247

Bridge, Stone, Strength of Truss-

ing 232

Bridge, Weight, Greatest on! 225

Bridge, without Tie-Beam 224

Bridging, Cross-, Additional

Strength by 137

Bridging, Cross-, Defined 137

Bridging, Cross-, Resistance by

Adjoining Beams 139
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Building, Antiquity of 5

Building, Elementary Parts of a.. 46

Building, Expression in a 35

Building by the Greeks 35

Building, Modes of, Defined 9

Building by the Romans 26

Building, Style of, Selected to Suit

Destination 35

Butt-joint on Handrail to Stairs. . 303

Butt-joint, Handrail, Stairs, Posi-

tion of 307

Byzantine Style, Lombard 10

Campanile, or Leaning Tower,
Twelfth Century 12

Capital, Uppermost Part of a

Column 15

Carriage Beam, Well-Hole in Mid-

dle, Find Breadth 136

Carriage Beam, One Header, Rule

for Breadth 133

Carriage Beam or Trimmer De-

fined rso

Carriage Beam, Rule for Breadth. 132

Carriage Beam, Two Sets of Tail

Beams, Rule for Breadth 134

Caryatides, Description and Ori-

. gin of 26

Cast-Iron Bowstring Girder,

Should not be Used 163

Cast-Iron Girder, Load at Middle,

Size of Flanges. 162

Cast-Iron Girder, Load Uniform,

Size of Flanges 163

Cast-iron Girder, Manner of Mak-

ing a 161

Cast-Iron Girder, Proper Form... 161

Cast-iron, Tensile Strength of. ... 161

Cast-Iron Untrustworthy 161

Catenary Arch, Hooke's Theory of. 51

Cathedral of Cologne n
Cathedrals, Domes of 53

Cathedrals of Pisa, Erection in

1016 12

Cavern, The Original Place of

Shelter 13

Cavetto or Cove, Classic Moulding 323

Cavetto, Grecian Moulding 327

Cavetto, Roman Moulding 329

Ceiling, Cracking, How to Pre-

vent 125

Centre of Circles, To Find (Ge-

ometry).... 556

Centre of Gravity, Position of 71

Centre of Gravity, Rule for Find-

ing, Examp^es 71

Chimneys, How Arranged, 42

Chinese Structure, The Tent the

Model of . . *. 14

Chord of Circle Defined 547

Chords Giving Equal Rectangles. 363

Circle, Arc, Rule for Length of. . . 475

Circle, Area, Circumference, etc.,

Examples 652

Circle, Area, Rule for, Length of

Arc Given 478

Circle, Area, To Find 475

Circle
> Circumference, To Find . . 473

Circle Defined 546

Circle, Describe within Triangle.. 566

Circle, Diameter and Circumfer-

ence 472

Circle, Diameter and Perpendicu-
lar 468

Circle Equal Given Circles, To
Make 580

Circle, Ordinates, Rule for 471

Circle, Radius from Chord and

Versed Sine 469

Circle, Sector, Area of 476

Circle, Segment, Area of 477

Circle, Segment from Ordinates. . 470

Circle, Segment, Rule for Area of. 479

Circles, Table of 649-652

Circle through Given Points 559

Circular Headed Doors 320

Circular Headed Doors, To Form

Soffit 321

Circular Headed Windows 320

Circular Headed Windows, To
Form Soffit 321

Circular Stairs, Face Mould for (i). 282

Circular Stairs, Face Mould for (2). 285

Circular Stairs, Face Mould for (3). -287

Circular Stairs, Face Mould, First

Section 283
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Circular Stairs, Falling Mould for

Rail 281

Circular Stairs, Handrailing for . . 278

Circular Stairs, Plan of 279
Circular Stairs, Plumb Bevel De-

fined 282

Circular Stairs, Timbers Put in

after Erection *. . . 253

Cisterns, Wells, etc., Table of

Capacity of 653

City Houses, General Idea of.. ... 42

City Houses, Arrangements for.. . 37
Civil Architecture Defined 5

Classic Architecture, Mouldings
in 323

Classic Moulding, Annulet or Fil-

let 323
Classic Moulding, Astragal or

Bead 323

Classic Moulding, Cavetto or

Cove 323

Classic Moulding, Cyma-Recta. . . 324

Classic Moulding, Cyma-Reversa. 324

Classic Moulding, Ogee 324

Classic Moulding, Ovolo 323

Classic Moulding, Scotia 323

Classic Moulding, Torus 323

Coffer Walls 49

Cohesive Strength of Materials. . . 76

Collar Beam in Truss 238

Cologne, Cathedral of u
Columns, Antique, Form of 48

Column, Base, Shaft and Capital. 14

Columns, Egyptian, Dimensions,

etc 33

Column, Gothic Pillar, Form of.. 48

Column, Outline of. 47

Columns, Parthenon at Athens,

Forms of 48

Column or Pillar 47

Column, Resistance of 47

Column, Shaft, Form of. 47

Column, Shaft, Swell of, Called

Entasis 48

Complex, or Ground Vault 52

Composite Arch of Titus 28

Composite, Corinthian or Roman
Order.. 28

Compression, Resistance to 77

Compression, Resistance to Crush-

ing and Bending.*. 85

Compression, Resistance to, Pres-

sures Classified 83

Compression, Resistance to, Table

of 79

Compression, Resistance to, in

Proportion to Depth 101

Compression at Right Angles and
Parallel to Length 206

Compression of Stout Posts 89

Compression and Tension,
Framed Girders 174

Compression Transversely to Fi-

bres 86

Cone Defined 548
Conic Sections 584

Conjugate Axis Defined 548

Conjugate Diameters to Axes of

Ellipse 487
Construction Essential 56
Construction of Floors, 'Roof,

etc., Economy Important 123

Construction, Framing, Heavy
Weight 56

Construction, Joints, Effect of

Many 123

Construction, Object of Defined. . 123

Construction, Simplest Form Best. 123

Construction, Superfluous Mate-

rial 56

ontents, Table of, General. . .613-624

orinthian Capital, Fanciful Ori-

gin of. 24

orinthian Order Appropriate in

Buildings.. . . . 24

orinthian Order, Character of.... 16

orinthian Order, Description of. 23

orinthian Order, Elegance of. ... 23

orinthian Order, The Favorite

at Rome 27

orinthian Order, Grecian Origin

of 16

orinthian Order, Modification of. 27

Cornice, Angle Bracket, To Ob-

tain the 343

Cornice, Eaves, To Find Depth of. 335
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Cornice, Mouldings, Depth of. . . . 342

Cornice, Projection, To Find .... 342

Cornice, Projecting Part of En-

tablature 15

Cornice, Rake and Level Mould-

ings, To Match 344

Cornice, Shading, Rule for . 6n
Cornice, Stucco, for Interior, De-

signs 340

Corollary Defined (Geometry) 348

Corollary of Triangle and Right

Angle 355

Cottage Style, English 35

Country-Seat, Style of a 37

Cross-Bridging, Additional
Strength by 137

Cross-Bridging, Furring Impor-
tant. .;.. 137

Cross-Bridging, Resistance of Ad-

joining Beams ... 139
Cross- or Herring-Bone Bridging

Defined 137

Cross-Furring Denned 125

Cross-Strains, Resistance to. . . .77, 99

Crushing and Bending Pressure.. 85

Crushing, Liability of Rafter to. . . 205

Crushing Strength of Stout Posts. 89
Cube Root, Examples in 645

Cubes, Squares and Roots, Table

of 638-645
Cubic Feet to Gallons, To Reduce. 653

Cupola or Dome 53
Curb or Mansard Roof 54
Curve Ellipse, Equations to 482
Curve Equilibrium of Dome 218

Cylinder, Defined 549

Cylinder, Platform Stairs 248

Cylinder, Platform Stairs, Lower

Edge of 249

Cylinders and Prisms, Stair-Build-

ing 257

Cyma-Recta, Classic Moulding... 324

Cyma-Reversa, Classic Moulding. 324

Cyma-Recta, Grecian Moulding . . 327

Cyma-Reversa, Grecian Moulding. 328

Deafening, Weight per Foot 177

Decagon, Defined 546

Decimals, Reduction of, Examples 647
Decorated Style, i4th Century. ... u
Decoration, Attention to be given

to.. .: 46

Decoration, Roman 27

Deflection, Defined 112

Deflection, Differs in Different Ma-
terials 113

Deflection, Elasticity not Dimin-

ished by 112

Deflection, Floor-beams, Dwell-

ings, Dimensions 127

Deflection, Floor-beams, First-

class Stores, Dimensions 128

Deflection, Floor-beams, Ordinary

Stores, Dimensions 127

Deflection, Lever, Principle of. . . 119

Deflection, Lever and Beam, Rela-

tion Between 119

Deflection, Lever, To Find, Load
at End 120

Deflection, Lever, Breadth or

Depth, Load at End 121

Deflection, Lever, Load Uniform. 121

Deflection, Lever, Breadth or

Depth, Load Uniform 122

Deflection, Lever, for Certain,

Load Uniform 122

Deflection, Load Uniform or at

Middle, Proportion of 116

Deflection, Load Uniform, Breadth

and Depth 117

Deflection, Load Uniform or at

Middle, Proportion of 119

Deflection, in Proportion to

Weight '. . 112

Deflection, Resistance to, Rule

for 113

Deflection, Safe Weight for Pre-

vention.. no
Deflection, Weight at Middle,

Breadth and Depth 114

Deflection, Weight at Middle, for

Certain 114

Deflection, Weight at Middle, Cer-

tain, for 116

Deflection, Weight Uniform, for

Certain , 117
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Deflection, Weight Uniform, Cer-

tain, for

Denominator, Least Common (Al-

gebra) '.

Denominator, Least Common
(Fractions)

Dentils, Teeth-like Mouldings in

Cornice

Diagonal Crossing Parallelogram

(Geometry)

Diagonal of Square Forming Oc-

tagon

Diagram of Forces, Example....

Diameter, Circle, Denned

Diameter, Ellipse, Denned

Diastyle, Explanation of the Word

Diastyle, Intercolumniation

Diocletian, Baths, Splendor of. ...

Division, Fractions. Rule for

Division, by Factors (Fractions)..

Division, Quotient (Algebra)

Division, Reduction (Algebra)...

Dodecagon, Denned

Dodecagon, To Inscribe

Dodecagon, Radius of Circles

(Polygons)

Dodecagon, Side and Area (Poly-

gons)

Dome, Abutments, Strength of. . .

Domes of Cathedrals

Dome, Character of '.

Dome, Construction and Form

118

404

384

357
166

547

549

19

20

27

389

381

419

Dome, Small, over Stairways, Form
of 220

Dome, Spherical, To Form 221

Dome, St. Paul's, London 54

Dome, Strains on, Tendencies of. 219

Domes, Wooden 54

Doors, Circular Head 320

Doors, Circular Head, to Form
Soffit 321

Doors, Construction of 317

Doors, Folding and Sliding, Pro-

portions 316

Doors, Front, Location of 320

Doors, Height, Rule for, Width
Given 315

Door Hanging, Manner of 317

Doors, Panel, Bottom and Lock

Rail, Width 316

Doors, Panel, Four Necessary. . . 317

Doors, Panel, Mouldings, Width. 317

Doors, Panel, Styles and Muntins,

419 Width 316

546 Doors, Panel, Top Rail, Width. .. 317

569 Doors, Stop for. How to Form... 317

Doors, Single and Double, height

452 of 316

Doors, Trimmings Explained. ... 317

453 I Doors, Uses and Requirements of 315

Doors, Width of 315

of. 216

Dome, Construction and Strength
of

Dome, Cubic Parabola computed
Dome or Cupola, the

Dome, Curve of Equilibrium, rule

for

Dome, Halle du Bled, Paris

Dome, Pantheon at Rome

Dome, Pendentives of

Dome, Polygonal, Shape of An-

gle Rib

Dome, Ribbed, Form and Con-

struction

Dome, Scantling for, Table of

Thickness

53

219

53

218

54

53

53

223

217

218

Doors, Should not be Winding. .. 317

Doors, Width and Height, Propor-
tion of 315

Doors, Width, Rule for, Height
Given 316

Doric Order, Character of 16

Doric Order, Grecian Origin of. . 16

Doric Order, Modified by the Ro-

mans 27

Doric Order, Used by Greeks only
at First 19

Doric Order. Peculiarities of 17

Doric Order, Rudeness of 30
Doric Order, Specimen Buildings

in 19

Doric Temples, Fanciful Origin
of 17

Doric Temples 19

Drawing, Articles Required 536
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Drawing-board Better without

Clamps 537

Drawing-board Liable to Warp,
How Remedied 537

Drawing-board, Difficulty in

Stretching Paper 539

Drawing-board, Ordinary Size 536

Drawing, Diagrams aid Under-

standing 536

Drawing, Inking in 542

Drawing, Laying Out the 541

Drawing, the Paper 537

Drawing in Pencil, To Make Lines 542

Drawing, Secure Paper to Board. 537

Drawing, Shade Lining 543

Drawing, Stretching Paper 537

Durability in a Building 37

Dwelling, Arrangement of Rooms 38

Dwellings, Floor-beams, To Find

Dimensions 127

Dwellings, Floor-beams, Safe

Weight for 126

Dwelling-houses, Dimensions and

Style . 37

Eaves Cornice, Designs for 335

Eaves Cornice, Rule for Depth... 335

Ecclesiastical Architecture, Point-

ed Style ii

Ecclesiastical Style, Origin of. ... 14

Echinus, Grecian Moulding 327

Economy, Construction Floors,

Roofs, Bridges 123

Eddystone and Bell Rock Light
House 48

Egyptian Architecture 30

Egyptian Architecture, Appropri-
ate Buildings for 33

Egyptian Architecture, Character

of. 33

Egyptian Architecture, Origin in

Caverns 14

Egyptian Architecture. Principal

Features of 30

Egyptian Columns, Dimensions

and Proportions 33

Egyptian Walls, Massiveness of. . 33

Egyptian Works of Art 30

Elasticity of Materials 84

Elasticity not Diminished by De-

flection 112

Elasticity, Result of Exceeding
Limit 120

Elevation, a Front View 37

Elevated Tie-beam Roof Truss

Objectionable 214

Ellipse, Area 488

Ellipse, Axes, Two, To Find, Di-

ameter and Conjugate Given. .. 593

Ellipse Defined 481

Ellipse, Equations to the Curve. . 482

Ellipse, Major and Minor Axes
Defined : .. 481

Ellipse, Ordinates, Length of ... 491

Ellipse, Parameter and Axis, Re-

lation of 485

Ellipse, Practical Suggestions.... 489

Ellipse, Semi-major, Axis Defined 486

Ellipse, Subtangent Defined 486

"Ellipse, Tangent to Axes, Rela-

tion of 485

Ellipse, Tangent with Foci, Rela-

tion of 487

Ellipsis, Axes of, To Find (Geom-

etry) 585

Ellipsis,Conjugate Diameters (Ge-

ometry) 593

Ellipsis Defined 548, 585

Ellipsis, Diameter Defined 549

Ellipsis, Foci, To Find 586

Ellipsis, by Intersecting Arcs. . . . 590

Ellipsis, by Intersecting Lines... 588

Ellipsis, by Ordinates 588

Ellipsis, Point of Contact with

Tangent, To Find 593

Ellipsis, Proportionate Axes, to

Describe with 594

Ellipsis, Trammel, to Find, Axes

Given 586

Elliptical Arch, Joints, Direction

of 233

English Architecture, Early n
English Cottage Style Extensive-

ly Used 35

j

England and France, Fourteenth

Century 12
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Entablature, above Columns and

Horizontal 14

Entasis, Swell of Shaft of Column 48

Equal Angles Defined 349

Equal Angles, Example in 350

Equal Angles, in Circle 358

Equal Angles (Geometry) 553

Equilateral Rectangle, to De-

scribe 568

Equilateral Triangle Defined (Ge

ometry) 545

Equilateral Triangle, to Construct

(Geometry) 568

Equilateral Triangle, to Describe

(Geometry) 566

Eqilateral Triangle, to Inscribe

(Geometry) 569

Equilateral Triangle (Polygons).. 445

Eustyle Defined 20

Exponents, Quantities with Nega-
tive (Algebra) 423

Extrados of an Arch 52

Face Mould, Accuracy of, Wind-

ing Stairs 295

Face Mould, Curves Elliptical,

Winding Stairs 301

Face Mould, Drawing of, Winding
Stairs 296

Face Mould, Sliding of, Winding
Stairs 299

Face Mould, Application of, Plat-

form Stairs 275

Face Mould, a Simple, Kell's

Method for 268

Factors, Multiplication (Algebra) 409

Factors, Two, Squaring Difference

of (Algebra) 412

Fibrous Structure of Materials.. . 76

Figure Equal, Given Figure (Ge-

ometry) 575

Figure, Nearly Elliptical, To Make

(Geometry) 59 1

Fillet or Amulet, Classic Mould-

ing 323

Fire-proof Floors, Action of Fire

on JJ3

Flanges, Cast-iron Girder 163

Flanges, Area of, Tubular Iron

Girder 155

Flanges, Area of Bottom, Tubular
Iron Girder 159

Flanges, Load at Middle of Cast-

iron Girder, Sizes 162

Flanges, Load Uniform on Tubu-
lar Iron Girder, Sizes 156

Flanges, Proportion of, Tubular

Iron Girder 157

Flexure, Compared with Rup-
ture 84

Flexureof Rafter 205

Flexure, Resistance to, Defined. . 145

Floor-arches, How Constructed. . 153

Floor-arches, Tie-rods, Dwellings,
Sizes 153

Floor-arches, Tie-rods, First-class

Stores, Sizes 153

Floor-beams, Distance from Cen-

tres, Sizes Fixed 129

Floor-beams, Dwellings, Safe

Weight for 126

Floor-beams, Dwellings, Deflec-

tion Given, Sizes 127

Floor-beams, First-class Stores,

Deflection Given, Sizes 128

Floor-beams, Ordinary Stores, De-

flection Given, Sizes 127

Floor-beams, Stores, Safe Weight
for 126

Floor-beams, Reference to Rules

for Sizes 125

Floor-beams, Reference to Trans-

verse Strains 126

Floor-beams, Proportion of

Weight on All 130

Floors Constructed, Single or

Double 124.

Floors, Fire-proof Iron, Action of

Fire on 143

Floors, Framed, Seldom Used. .. 124

Floors, Framed, Openings in 130

Floors, Headers, Defined 130

Floofs, Ordinary, Effect of Fire

on 143

Floors, Solid Timber, Dwellings
and Assembly, Depth 143
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Floors, Solid Timber, First-class

Stores, Depth 144

Floors, Solid Timber, to Make

Fire-proof 143

Floors, Tail-beams Defined 130

Floors, Trimmers or Carriage-

beams Defined 130

Floors, Wooden, More Fire-proof

than Iron, Some* Cases 143

Flyers and Winders, Winding
Stairs 251

Foci Defined 548

Foci of Ellipsis To Find 586

Foci of Ellipse, Tangent 487

Force Diagram, Load on Each

Support 179

Force Diagram, Truss, Figs. 59,

68 and 69 179

Force Diagram, Truss, Figs. 60, 70

and 71 180

Force Diagram, Truss, Figs. 61,

72 and 73 181

Force Diagram Truss, Figs. 63

74 and 75 183

Force Diagram, Truss, Figs. 64,

77 and 78 184

Force Diagram, Truss, Figs. 65,

78 and 79 185

Force Diagram, Truss, Figs. 66,

8oand8i 186

Forces, Parallelogram of 59

Forces, Composition of 66

Forces, Composition, Reverse of

Resolution 67

Forces, Resolution of 59

Forces, Resolution of, Oblique
Pressure 59

Foundations, Description of 47
. Foundations in Marshes, Timbers

Used 47

Fractions, Addition, Like Denom-
inators 382

Fractions Added and Subtracted

(Algebra) 403

Fractions Changed by Division!. 380

Fractions Defined 378

Fractions, Division, Rule for 389

Fractions, Division by Factors... 381

Fractions Divided Graphically. . . 388

Fractions Graphically Expressed. 378

Fractions, Improper, Defined.... 380

Fractions, Least Common Denom-
inator , 384

Fractions, Multiplication, Rule. . . 387

Fractions Multiplied Graphically. 386

Fractions, Numeratorand Denom-
inator 378

Fractions, Reduce Mixed Num-
bers 381

Fractions, Reduction to Lowest

Terms 384

Fractions Subtracted (Algebra). . . 405

Fractions, Subtraction Like De-

nominators 383

Fractions, Unlike Denominators

Equalized 383

Framed Beams, Thickness of,

Rules 130

Framed Girder, Bays Defined 167

Framed Girders, Compression and

Tension, Dimensions 174

Framed Girders, Construction

and Uses 166

Framed Girders, Height and

Depth 167

Framed Girders, Kinds of Pres-

sure 173

Framed Girders, Long, Construc-

tion of '. 174

Framed Girders, Panels on Under

Chord, Table of 167

Framed Girders, Ties and Struts,

Effect of 174

Framed Girders, Triangular Pres-

sure, Upper Chord 168

Framed Girders, Triangular Pres-

sure, Both Chords 171

Framed Openings in Floors 130

Framing Beams, Effect of Splic-

ing 235

Framing Roof Truss 237

Framing Roof Truss, Iron Straps,

Size of 239

France and England, Fourteenth

Century 12

Friction, Effect of 82
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Frieze between Architrave and
Cornice 15

Furring Denned 125

Gable, a Pediment in Gothic Ar-

chitecture 15

Gaining a Beam Denned 100

General Contents, Table of 613-624
Geometrical Progression (Alge-

bra)- 435

Geometry, Angles of Triangle,

Three, Equal Right Angle 354

Geometry Chords Giving Equal

Rectangles 363

Geometry Denned 544

Geometry, Divide a Given Line. . 555

Geometry, Divisions in Line Pro-

portionate 583

Geometry, Elementary 347

Geometry, Equal Angles 553

Geometry, Equal Angles, Ex-

ample 350

Geometry, Figure Equal to Given

Figure, Construct 575

Geometry, Figure Nearly Ellipti-

cal by Compasses 591

Geometry, Measure an Angle. . . . 348

Geometry Necessary in Handrail-

ing, Stairs 257

Geometry, Opposite Angles Equal. 354

Geometry, Parallel Lines 555

Geometry, a Perpendicular, To
Erect 550

Geometry.Perpendicular.let Fall a. 551

Geometry, Perpendicular, Erect at

End of Line 551

Geometry, Perpendicular, Let Fall

Near End of Line 553

Geometry, Plane Denned (Stairs). 257

Geometry, Point of Contact 558

Geometry, Points, Three Given,

Find Fourth 559

Geometry, Right Line Equal Cir-

cumference 566

Geometry, Right Lines, Propor-

tion Between 584

Geometry, Right Lines, Two
Given, Find Third 582

Geometry, Square Equal Rec-

tangle, To Make 581

Geometry, Square Equal Given

Squares, To make 577

Geometry, Square Equal Triangle,
To Make .. 582

German or Romantic Style, Thir-

teenth and Fourteenth Centuries, n
Girder, Bearings, Space Allowed

for 141

Girder, Bow-String, Cast-Iron,
Should not be Used 163

Girder, Bow-String, Substitute for. 163

Girder, Construction with Long
Bearings 140

Girder, Cast-Iron, Load Uniform,

Flanges 163

Girder, Cast-Iron, Load at Middle,

Flanges 162

Girder, Cast-Iron, Proper Form
of 161

Girder Denned, Position and Use
of 140

Girder, Different Supports for. . . . 140

Girder, Dwellings, Sizes for 141

Girder, Framed, Bays Denned 167

Girders, Framed, Compression
and Tension, Dimensions 174

Girder, Framed, Construction of.. 140

Girder, Framed, Construction and
Uses 166

Girder, Framed, Construction of

Long 174

Girder, Framed, Kinds of Pres-

sure 173

Girders, Framed, Height and

Depth 167

Girders, Framed, Panels on Under

Chord, Table of. 167

Girders, Framed, Triangular Pres-

sure Upper Chord 108

Girders, Framed, Triangular Pres-

sure Both Chords 171

Girders, Framed, and Tubular
Iron 140

Girders, First-Class Stores, Sizes

for 141

Girders, Sizes, To Obtain 141
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Girders, Strengthening, Manner
of. 140

Girders, Supports, Length of, Rule. 157

Girders, Tubular Iron, Construc-

tion of 154

Girders, Tubular Iron, Area of

Flange. Load at Middle 154

Girders, Tubular Iron, Area of

Flange, Load at any Point 155

Girders, Tubular Iron, Area of

Flange, Load Uniform 156

Girders, Tubular Iron, Dwellings,

Area of Bottom Flange 159

Girders, Tubular Iron, First-Class

Stores, Area of Bottom Flange.. 160

Girders, Tubular Iron, Rivets, Al-

lowance for 157

Girders, Tubular Iron, Flanges,

Proportion of 157

Girders, Tubular Iron, Shearing

Strain 15?

Girders, Tubular Iron.Web, Thick-

ness of i5 8

Girders, Weakening, Manner of. . 140

Girders, Wooden, Objectionable. 154

Girders, Wooden, Supporting,

Manner of 154

Glossary of Terms 627-637

Gothic Arches 51

Gothic Buildings, Roofs of 55

Gothic and Norman Roofs, Con-

struction of 178

Gothic Pillar, Form of 48

Gothic Style, Characteristics of. . . 12

Goths, Ruins Caused by 12

Granular Structure of Materials. . 76

Gravity, Centre of, Position 71

Gravity, Centre of, Examples, and

Rule for 71

Grecian Architecture, History of. 6

Grecian Art, Elegance of 27

Grecian Moulding, Cyma-Recta.. 327

Grecian Moulding, Cyma-Re-
versa. . . -. 328

Grecian Moulding, Echinus and

Cavetto 327

Grecian Moulding, Scotia 326

Grecian Moulding, Torus 326

Grecian Orders Modified by the

Romans 27
Grecian Origin of the Doric Or

der 16

Grecian Origin of Ionic Order ... 16

Grecian Style in America 13

Grecian Styles, their Different

Orders 16

Greek Architecture, Doric Order
Used 19

Greek Building 35
Greek Moulding, Form of 325

Greek, Persian, and Caryatides
Orders 24

Greek Style Originally in Wood.. 14
Greek Styles Only Known by
Them 16

Groined or Complex Vault 52

Halle du Bled, Paris, Dome of. . . 54
Halls of Justice, N. Y. C., Speci-
men of Egyptian Architecture. . 8

Handrailing, Circular Stairs 278

Handrailing, Platform Stairs. ... 269

Handrailing, Platform Stairs, Face

Mould 264

Handrailing, Platform Stairs,

Large Cylinder 271

Handrailing Stairs, Geometry

Necessary 257

Handrailing Stairs," Out ofWind"
Defined. 257

Handrailing Stairs, Tools Used. . 257

Handrailing, Winding Stairs. .256, 289

Handrailing Winding Stairs, Bal-

usters Under Scroll 310

Handrailing, Winding Stairs,

Centres in Square 308

Handrailing, Winding Stairs, Face

for Scroll 311

Handrailing, Winding Stairs, Fall-

ing Mould 310

Handrailing, Winding Stairs, Gen-

eral Considerations 258

Handrailing, Winding Stairs,

Scroll for 308

Handrailing, Winding Stairs,

Scroll at Newel 309
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Handrailing, Winding Stairs,

Scroll Over Curtail Step 309

Handrailing, Winding Stairs,

Scroll for Curtail Step 310

Headers, Breadth of. 130

Headers Defined 130

Headers, Mortises, Allowance for

Weakening by 131

Headers, Stores and Dwellings,
Same for Both 132

Hecadecagon, Complete Square

(Polygons) 458

Hecadecagon, Radius of Circles

(Polygons) 455

Hecadecagon, Rules (Polygons). . 459

Hecadecagon, Side and Area

(Polygons) 457

Height and Projection, Numbers
of an Order 16

Hemlock, Weight per Foot Super-

ficial 177

Heptagon Defined 546

Herring-bone Bridging Defined... 137

Hexagon Defined 546

Hexagon, To Inscribe 569

Hexagons, Radius of Circles 447

Hexastyle, Intercolumniation. . . . 20

Hindoo Architecture, Ancient,

Character of 30

Hip-Rafter, Backing of 216

Hip-Roofs, Diagram and Expla-
nation 215

History of Architecture 44

Hogged Ridge in Roof Truss 238

Homologous Triangles (Geom-

etry) 362

Homologous Triangles (Ratio

and Proportion) 370

Hooke's Theory of an Arch 50

Hooke's Theory, Bridge Arch,

Pressure on. ... 51

Hooke's Theory, Catenary Arch. . 51

Horizontal and Inclined Roofing,

Weight 190

Horizontal Pressure on Roof, To
Remove 74

Horizontal Thrust in Beams 72 i

Horizontal Thrust, Tendency of. . 88 i

Hut, Original Habitation 13

Hydraulic Method, Testing
Woods 80

Hyperbola Defined 548, 585

Hyperbola, Height, To Find, Base

and Axis Given 585

Hyperbola by Intersecting Lines. 595

Hypothenuse, Equality of Squares

(Algebra) 416

Hypothenuse, Formula for (Trig-

onometry) 516

Hypothenuse, Side, To Find (Ge-

ometry) 579

Hypothenuse, Right Angled Tri-

angle (Geometry) 355

Hypothenuse, Triangle (Trigo-

nometry) 518

Ichnographic Projection, Ground
Plan 37

Improper Fractions Defined 380
India Ink in Drawing 540

Inertia, Moment of, Defined 145

Inking-in Drawing . . 542
Inside Shutters for Windows, Re-

quirements 319
Instruments in Drawing 540
Intercolumniation Defined 17

Intercolumniation of Orders 20

Intrados of Arch 52
Ionic Order, Character of. 16

Ionic Order, Grecian Origin of. . . 16

Ionic Order Modified by the Ro-

mans. ...i 27
Ionic Order, Origin of 20

Ionic Order, Suitable for What

Buildings 20

Ionic Volute, To Describe an. ... 20

Iron Beams, Breaking Weight at

Middle 148

Irpn Beams, Deflection, To Find,

Weight at Middle 147

Iron Beams, Deflection, To Find,

Weight Uniform 150
Iron Beams, Dimensions, To Find,

Weight any Point 149
Iron Beams, Dimensions, To Find,

Weight Uniform 149
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Iron Beams, Dwellings, Distance

from Centres 151

Iron Beams, First-Class Stores,

Distance from Centres 152

Iron Beams, Rectangular Cross-

Section 145

Iron Beams, Rolled, Sizes 145

Iron Beams, Safe Weight, Load

any Point 148

Iron Beams, Safe Weight, Load

Uniform 151

Iron Beams, Table IV 146

Iron Beams, Weight at Middle,
Deflection Given 146

Iron Fire-Proof Floors, Action of

Fire On 143

Iron Straps, Framing, to Prevent

Rusting 239

Irregular Polygon, Trigon (Geom-

etry) 546

Isosceles Triangle Denned 545, 584

Italian Architecture, Thirteenth,

Fourteenth, and Fifteenth Cen-

turies 12

Italian Use of Roman Styles 13

Italy, Tuscan Order the Principal

Style 30

Jack-Rafters, Location of 212

jack-Rafters and Purlins in Roof. 211

Jack-Rafters, Weight per Superfi-

cial Foot 189

Joists and Studs Defined 174

Jupiter, Temple of, at Thebes, Ex-

tent of 33

Kell's Method, Simple Face

Mould, Stairs 268

Keystone for Arch, Position of. ... 50

King-Post, Bad Framing, Effect

of ... 237

King-Post, Location of 213

King-Post in Roof 54

Lamina in Girders Defined 174

Lancet Arch 51

Lateral Thrust in Arch 52

Laws of Pressure 57

Laws of Pressure, Inclined, Ex-

amples 57

Laws of Pressure, Vertical, Exam-

ples 57

Leaning Tower or Campanile,
Twelfth Century 12

Length, Breadth, or Thickness,
Relation to Pressure 78

Lever, Breadth or Depth, To
Find in

Lever, Deflection as Relating to

Beam 1 19

Lever, Deflection, Load at End.. 120

Lever, Deflection, Load Uniform. 121

Lever, Deflection, Breadth or

Depth, Load at End 121

Lever, Deflection, Breadth or

Depth, Load Uniform 122

Lever, Deflection, Load Required. 122

Lever Formula, Proportionals in

(Algebra) 421

Lever Load Uniformly Distrib-

uted in
Lever, Load at One End no
Lever Principle Demonstrated

(Ratio) 375

Lever, Support, Relative Strength
of One no

Light-Houses, Eddystone and Bell

Rock 48

Line Defined (Geometry) 544

Lines, Divisions in, Proportionate

(Geometry) 583

Lintel, Position of 49

Lintel, Strength of 49

Load, per foot, Horizontal 192

Load on Roof Truss, per Superfi-

cial Foot 189

Load on Tie-Beam, Ceiling, etc. . 190

Lock Rail for Doors, Width 316

Logarithms Explained (Algebra).. 425

Logarithms, Examples 426

Logarithms, Sine and Tangents

(Polygons) 464

Lombard, Byzantine Style 10

Lombard Style, Seventh Century. 10

London Bridge, Piles, Age of 229
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Materials, Cohesive Strength of. . 76

Materials, Compression, Resist-

ance to. 77

Materials, Cross-strain, Resistance

to 77

Materials, Structure of 76

Materials, Tension, Resistance to. 77

Materials Tested, General De-

scription 80

Materials, Weights, Table of. . . . 654

Major and Minor Axes of Ellipse

Denned 481

Marshes, Foundation for Timbers

in 47

Mathematics Essential 347

Maxwell, Prof. I. Clerk, Diagrams
of Forces, etc 165

Memphis, Pyramids of, Estimate

of Stone in 33

Minster, Tower of Strassburg n
Minutes, Sixty Equal Parts, to

Proportion an Order 15

Mixed Numbers in Fractions, To

Reduce 381

Modern Architecture, First Ap-

pearance of 9

Modern Tuscan, Appropriate for

Buildings 30

Moment of Inertia Defined 145

Mono-triglyph, Explanation of the

Word 19

Monuments, Ancient, Their Archi-

tects 6

Moorish and Arabian Styles, An-

tiquities of ii

Mortises, Proper Location of . 100

Mortising, Beam, Effect on

Strength of 100

Mortising Beam at Top, Injurious

Effect of 100

Mortising Beam, Effect of 231

Mortising, Beam, Position of 236

Mortising Headers, Allowance for

Weakening 131

Moulding, Classic, Astragal or

Bead 323

Moulding, Classic, Annulet or

Fillet 323

Mouldings, Classic Architecture. 323

Moulding, Classic, Cavctto or

Cove 323

Moulding, Classic, Cyma-Recta. . 324

Moulding, Classic, Cyma-Reversa. 324

Moulding, Classic, Ogee 324

Moulding, Classic, Ovolo 323

Moulding, Classic, Scotia 323

Moulding, Classic, Torus 323

Mouldings, Common to all Or-

ders 324

Mouldings Defined 323

Mouldings, Diagrams of 330

Mouldings, Doors, Rule for Width. 317

Moulding, Grecian, Cyma-Recta. 327

Moulding, Grecian, Cyma-Rc-
versa 328

Moulding, Grecian Echinus and

Cavetto 327

Mouldings, Greek, Form of. 325

Mouldings, Grecian Torus and

Scotia 326

Mouldings, Modern 331

Moulding, Modern, Antae Cap... 334

Mouldings, Mbdern Interior, Dia-

grams 332

Mouldings, Modern, Plain 333

Mouldings,Names, Derivations of. 324

Mouldings, Profile Defined 326

Mouldings, Roman, Forms of. .. . 325

Mouldings, Roman, Comments on. 329

Mouldings, Roman, Ovolo and

Cavetto 329

Mouldings,Uses and Positions of. 324

Multiplication (Algebra) 408

Multiplication, Plus and Minus

(Algebra) 415

Multiplication, Three Factors (Al-

gebra) 408

Multiplication, Fractions 387

Newel Cap, Form of, Winding
Stairs 312

Nicholson's Method, Plane

Through Cylinder (Stairs) 259

Nicholson's Method, Twists in

Stairs 259

Nonagon Defined 546
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Normal and Subnormal in Para-

bola 496
Norman and Gothic Construction

of Roofs 178

Norman Style, Peculiarities of. . . n
Nosing and Tread, Position in

Stairs 241

Oblique Angle Defined 544

Oblique Pressure, Resolution of

Forces . . . . 59

Oblique Triangle, Difference Two

Angles (Trigonometry) 523

Oblique Triangle, First Class

(Trigonometry) , 520

Oblique Triangles, First Class,

Formulae (Trigonometry) 531

Oblique Triangles, Second Class

(Trigonometry) 522

Oblique Triangles, Second Class,

Formulae (Trigonometry) 532

Oblique Triangles, Third Class

(Trigonometry) 526

Oblique Triangles, Third Class,

Formula; (Trigonometry) 534

Oblique Triangles, Fourth Class

(Trigonometry) 528

Oblique Triangles, Fourth Class,

Formulae (Trigonometry) 534

Oblique Triangles, Two Sides

(Trigonometry) 521

Oblique Triangles, Sines and

Sides (Trigonometry) 519

Obtuse Angle Denned 349, 544

Obtuse Angled Triangle Denned. 545

Octagon, Buttressed, Find Side

(Geometry) 571

Octagon Defined 546

Octagon, Diagonal of Square

Forming 357

Octagon, Inscribe a (Geometry). . 570

Octagon, Rules (Polygons) 451

Octagon, Radius of Circles (Poly-

gons) 449

Octastyle, Intercolumniation 20

Ogee Mouldings, Classic 324

Opposite Angles Equal (Geome-

try) 354

Order of Architecture, Three

Principal Parts 14

Orders of Architecture, Persians

and Caryatides 24

Ordinates to an Arc (Geometry). . 563

Ordinates, Circle, Rule for 471

Ordinates of Ellipse 491

Ostrogoths, Style of the 9

Oval, To Describe a (Geometry). . 591

Ovolo, Classic Moulding 323

Ovolo, Roman Moulding 329

Paper, The, in Drawing, Secure to

Board , . . 537

Pantheon at Rome, Dome of, and

Walls 53

Pantheon and Roman Buildings,
Walls of 49

Parabola, Arcs Described from... 503

Parabola, Area, Rule for 509

Parabola, Axis and Base, to find

(Geometry) 585

Parabola, Curve, Equations to... . 493
Parabola Defined 492
Parabola Defined (Geometry).. 548, 585

Parabola, Diameters 497

Parabola Described from Ordi-

nates 504

Parabola Described from Diame-

ters 507

Parabola Described from Points.. 502

Parabola of Dome Computed 219

Parabola, General Rules 499
Parabola by Intersecting Lines. . . 594

Parabola Mechanically Described. 500

Parabola, Normal and Subnor-

mal 496

Parabola, Ordinate Defined 496

Parabola, Subtangent 496

Parabola, Tangent 493

Parabola, Vertical Tangent De-

fined 495

Parabolic Arch, Direction of

Joints 234

Parallel Lines Defined 544

Parallel Lines (Geometry) 555

Parallelogram, Construct a 576

Parallelogram Defined 545
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Parallelogram Equal to Triangles,

To Make.. 576

Parallelogram of Forces, Strains

by 165

Parallelograms Proportioned to

Bases (Geometry) 360

Parallelogram in Quadrangle

(Geometry) 364

Parallelogram, Same Base (Geom-

etry) 352

Parameter Defined 548

Parameter, Axes (Ellipse) 485

Parthenon at Athens, Columns of. 48

Partitions, Bracing and Trussing. 176

Partitions, How Constructed 174

Partition, Door in Middle, Con-

struction 175

Partition, Doors at End, Construc-

tion of 176

Partition, Great Strength, Con-

struction 176

Partitions, Location and Connec-

tion . 175

Partitions, Materials, Quality of. . 175

Partitions, Plastered, Proper Sup-

ports for. 175

Partitions, Pressure on. Rules 177

Partitions, Principal, of what Com-

posed 175

Partitions, Trussing in, Effects of. 175

Pedestal, a Separate Substruc-

ture 14

Pediment, Triangular End of

Building 15

Pencil and Rulers, Drawing 540

Pentagon Defined 546

Pentagon, Circumscribed Circles

(Polygons) 463

Perpendicular Height of Roof, To
find 579

Perpendicular, Erect a 550

Perpendicular, Erect a, at End of

Line 551

Perpendicular, Let Fall a 551

Perpendicular, Let Fall a, at End
of Line 553

Perpendicular Style, Fifteenth

Century 12

Perpendicular in Triangle (Poly-

gons) 440

Persians, Origin and Description
of 24

Persians and Caryatides, Orders

Used by Greeks 24

Piers, Arrangement, in City Front

of House 44

Piers, Bridges, Construction and

Sizes 228

Piles, London Bridge, Age of. ... 229

Pine, White, Beams, Table of

Weights for. 177

Pisa, Cathedral of, Eleventh Cen-

tury 12

Pisa, Cathedral of, Erection in

1016 12

Pise Wall of France 49
Pitch Board, To Make, for Stairs. 247

Pitch Board, Winding Stairs 252

Plane Defined 257

Plane Defined (Geometry) 544

Plank.Weightof.on Roof, per foot. 189

Plastering, Defective, To what

Due 174

Plastering, Strength of 174

Plastering, Weight per foot 177

Platform Stairs, Baluster, Posi-

tion of 250
Platform Stairs Beneficial 240

Platform Stairs, Cylinder of. 248

Platform Stairs, Cylinder, Lower

Edge 249
Platform Stairs, Face Mould, Ap-

plication of Plank 273

Platform Stairs, Face Mould,

Handrailing in 264
Platform Stairs, Face Mould, Sim-

ple Method 267
Platform Stairs, Face Mould,
Moulded Rails 274

Platform Stairs, Face Mould, Ap-
plication of 275

Platform Stairs, Face Mould With-

out Canting Plank 272

Platform Stairs, Handrail to 269
Platform Stairs, Handrailing Large

Cylinder 271
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PAGE I

Platform Stairs, Railing Where
Rake Meets Level 272

Platform Stairs, Twist-Rail, Cut-

ting of 277
Platform Stairs, Wreath of Round

Rail 267
Point of Contact (Geometry) 558
Point Denned (Geometry) 544
Pointed Style, Ecclesiastical Arch-

itecture ii

Polygons, Angles of 462

Polygons, Circumscribed and In-

scribed Circles, Radius of 460

Polygons Defined (Geometry). . . . 546

Polygons, Equilateral Triangle. .. 445

Polygons, General Rules 461

Polygons, Irregular, Trigon (Ge-

ometry) 546

Polygons, Perpendicular in Tri-

angle 440

Polygon, Regular, Defined (Geom-

etry) 546

Polygons, Regular, To Describe

(Geometry) 573

Polygons, Regular, To Inscribe in

Circle (Geometry) 572

Polygons, Sum and Difference,

Two Lines 439

Polygons, Table Explained 466

Polygons, Table of Multipliers. .. 465

Polygons, Triangle, Altitude of.. 442

Polygonal Dome, Shape of Angle-
Rib 223

Posts, Area, To Find 86

Posts, Diameter, To Find 92

Posts, Rectangular, Safe Weight.. 92

Posts, Rectangular.To Find Thick-

ness 94

Posts, Rectangular, Breadth Less

than Thickness 96

Posts, Rectangular, To Find

Breadth 95

Posts, To Find Side 93

Posts, Slender, Safe Weight for. . 91

Posts, Stout. Crushing Strength of. 89

Pressures Classified 85

Pressure, Oblique, Resolution of

Forces 59

Pressure, Triangular, Framed
Girders 171

Pressure, Upper Chord, Triangu-
lar Girder 168

Prisms Cut by Oblique Plane 259
Prisms and Cylinders, Stair-Build-

ing 257
Prisms Defined (Stairs) 257, 259

Prism, Top, Form of, in Perspec-
tive 259

Profile of Mouldings Defined. . . . 326

Progression, Arithmetical (Alge-

bra) 432

Progression.Geometrical (Algebra) 435

Projection and Height, Members
of Orders of Architecture 16

Protractor, Useful in Drawing. .. 541

Purlins and Jack-Rafters in Roof. 211

Purlins, Location of 212

Pyramids of Memphis, Amount of

Stone in 33

Pycnostyle, Explanation of 20

Quadrangle Defined 545

Quadrangle Equal Triangle 353

Quadrant Defined 547

Quantities, Addition and Sub-

traction (Algebra) 424

Quantities, Division of (Algebra). 424

Quantities, Multiplication of (Al-

gebra) 424

Queen-Post, Location of 213

Queen-Post in Roof 54

Radials of Rib in Bridge 226

Radials of Rib for Wedges 226

Radicals, Extraction of (Algebra). 425

Radius of Arc, To Find 561

Radius of Circle Defined 547

Rafters, Braces, etc., Length, To
Find 580

Rafters, Least Thrust, Rule for. . . 62

Rafters, Length of, To Find 578

Rafters, Liability to Crush Other

Materials 205

Rafters, Liability to Being Crushed 205

Rafters, Liability to Flexure 205

Rafters, Minimum Thrust of 62
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PAGE

Rafters in Roof, Effect of Weight
on 179

Rafters in Roof, Strains Subjected
to , 205

Rafters and Tie-Beams, Safe

Weight 87

Rafters, Uses in Roof 54

Rake in Cornice Matched with

Level Mouldings 344

Railing, Platform Stairs Rake
Meets Level 272

Ratio or Proportion, Equals Mul-

tiplied 367

Ratio or Proportion, Equality of

Products 370

Ratio or Proportion, Equality of

Ratios 367

Ratio or Proportion Equation,
Form of 367

Ratio or Proportion, Examples.. . 366

Ratio or Proportion, Four Propor-

tionals, to Find 377

Ratio or Proportion, Homologous
Triangles 370

Ratio or Proportion, Lever Prin-

ciple in 372

Ratio or Proportion, Lever Prin-

ciple Demonstrated 375

Ratio or Proportion, Multiply an

Equation 368

Ratio or Proportion, Multiply and

Divide One Number 368

Ratio or Proportion, Rule of

Three 366

Ratio or Proportion, Steelyard as

Example in 371

Ratio or Proportion, Terms of

Quantities 367

Ratio or Proportion, Transfer a

Factor 369

Rectangle Defined 545

Rectangle, Equilateral, To De-

scribe 58
Rectangular Cross-Section, Iron

Beams 145

Reduction Cubic Feet to Gallons,

Rule 653

Reduction Decimals, Examples.. 647

Reflected Light, Opposite of

Shade 611

Regular Polygon in Circle, To In-

scribe (Geometry) 572

Regular Polygon Defined (Geom-

etry) 546

Regular Polygons, To Describe

(Geometry) 573

Resistance, Capability of 86

Resistance to Compression, Ap-

plication of Pressure 85

Resistance to Compression,

Crushing and Bending 85

Resistance to Compression, Mate-

rials 77

Resistance to Compression, Pres-

sure Classified 85

Resistance to Compression in

Proportion to Depth 101

Resistance to Compression, Stout

Posts, Rule 89
Resistance to Compression, Table

of Woods 79

Resistance to Cross-Strains 77

Resistance to Cross-Strains De-

fined 99

Resistance to Deflection, Rule... . 113

Resistance Depending on Com-

pactness and Cohesion 78

Resistance Depending on Loca-

tion, Soil, etc 79

Resistance to Flexure Defined. . . 145

Resistance Inversely in Propor-
tion to Length 102

Resistance to Oblique Force 206

Resistance, Power of, Hew Ob-

tained 78

Resistance, Proportion to Area. . . 86

Resistance, Strains, To What Due. 78

Resistance to Tension Greatest

in Direction of Length 81

Resistance to Tension, Proportion

in Materials 81

Resistance to Tension, Table of

Materials 82

Resistance to Tension, Materials. 77

Resistance to Tension, Results

from Transverse Strains . . 82
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PAGE

Resistance to Transverse Strains, Roman Architecture, Ruins of. . . n
Table of. 83 Roman Architecture, Excess of

Resistance to Transverse Strains, I Emichment 46

Description of Table 84 Roman Building 26

Resistance Variable in One Ma- Roman Composite and Corinthian

terial.... 79 Orders.. . 28

Reticulated Walls . < 49
j

Roman Decoration 27
Rhomboid Defined 546 Roman Empire, Overthrow of. ... 13

Romans, Ionic Order Modified by 27
Roman Moulding, Cavetto 329
Roman Mouldings, Comments on. 329
Roman Moulding, Ovolo 329

Rhombus Defined '

. . . . 545

Ribbed Bridge, Area of Rule 225

Ribbed Bridge, Built 224
Ribbed Bridge, Least Rise, Table

of 224

Right Angle Defined 348, 544

Right Angle in Semicircle (Ge-

ometry) 355

Right Angle, To Trisect a 554

Right Angled Triangle Defined . . 545

Right Angled Triangle, Squares
on (Algebra) 417

Right Angled Triangles (Trigo-

nometry) 510

Right Angled Triangles, Formula
for (Trigonometry) 530

Right Lines (Geometry) 584

Right Line Equal Circumference. 566

Right Lines, Mean Proportionals
Between 584

Right Lines, Two Given, Find

Third 582

Right Lines, Three Given, Find

Fourth 583

Right or Straight Line Defined. . . 544

Right Prism Defined (Stairs) 257

Risers, Number of, Rule to Ob-

tain (Stairs) 246
Rise and Tread (Stairs) 241

Rise and Tread, Connection of

(Stairs) 248
Rise and Tread, Blondel's Method

of Finding (Stairs) 242
Rise and Tread, Table of, for

Shops and Dwellings (Stairs). . . 245

Rise and Tread, To Obtain (Wind-

ing Stairs) 251

Rolled Iron Beams, Extensive Use

Roman Mouldings, Forms of.. ... 325

49
26

13

of. 161

Roman Architecture Defined. .... 7

Roman Pantheon, etc., Walls of. .

Roman Styles of Architecture. . . .

Roman Styles Spread by the Ital-

ians

Romantic or German Style, Thir-

teenth and Fourteenth Centu-

ries ii

Rome, Ancient Buildings of. 12

Rome and Greece, Architecture

of 8

Roof, The 54

Roofs, Ancient Norman and

Gothic, Construction 178

Roof Beams, Weight per Super-
ficial Foot 189

Roof, Brace in, Rule Same as for

Rafter 208

Roofs, Construction of. 55

Roof Covering, Mode of 188

Roof Covering, Weights, Table of. 191

Roof, Curb or Mansard 54

Roofs, Diagrams and Description

of 212

Roof, Gothic Buildings 55

Roofs, Gothic and Norman Puild-

ings, Construction 178

Roofs, Hip, Diagram and Exj
nation 215

Roof, Hip 54

Roof, Horizontal Pressure, To Re-

move from 74

Roof, Jack-Rafters and Purlins.. . 211

Roof, King-Post in 54

Roof, Load per Foot Horizontal,

Rule, IQ2
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Roof, Load, Total per Foot Hori-

zontal, Rule 197

Roofs, Modern, Trussing Neces-

sary 178

Roofs, Norman and Gothic Build-

ings, 178

Roof, Pent, To Find 54

Roof, Perpendicular Height, To
Find 579

Roof Plank, Weight per Super-
ficial Foot 189

Roof, Planning a 188

Roof, Pressure on 55

Roof, Queen-Post in 54

Roof, Rafters in 54

Roof, Sagging, To Prevent. ...... 54

Roof, Slope Should Vary Accord-

ing to Climate 191

Roof Supports. Distance between. 189

Roof, Suspension Rods, Safe

Weight for 210

Roof, Tie-Beam in 54

Roof, Tie-Beam, Tensile Strain,

Rule ,. 204

Roof Timbers, Mortising 55

Roof Timbers, Scarfing of 55

Roof Timbers, Splicing of 55

Roof Timbers, Strains by Parallel-

ogram of forces 198

Roof Timbers, Strain Shown Ge-

ometrically 199, 202

Roof Truss, Arched Ceiling 214

Roof Truss, Elevated Tie-Beam

Objectionable 214

Roof Truss, Elevating Tie-Beam,

Effect of 187

Roof Truss, Force Diagram, Figs.

59, 68, and 69 179

Roof Truss, Force Diagram, Figs.

60, 70, and 7 r 180

Roof Truss, Force Diagram, Figs.

61, 72, and 73 181

Roof Truss, Force Diagram, Figs.

63,74, and 75 183

Roof Truss, Force Diagram, Figs.

64, 77, and 78 184

Roof Truss, Force Diagram, Figs.

66, 80, and 81 186

Roof Truss, Load on 189

Roof Trusses, Strains, Effect of, on

Different 179

Roof Truss, Weights, Table of, per

Superficial Foot 189

Roof Truss, Weight per Superfi-

cial Foot 190

Roof, Trussing in 54

Roof Trussing, Designs for 178

Roof Trussing, Framing for 237

Roof Trussing, Hogged Ridge.... 238
Roof Trussing, King-Post, Effect

of Bad Framing on 237

Roofs, United States 55

Roof, Vertical Pressure of Wind
on, Effect of. 194

Roof, Snow, Weight per Horizon-

tal Foot 193
Roof Weight on Rafter, Effect of.. 179

Roof, Wind, Horizontal and Verti-

cal Pressure of 193

Roofing, Weight of Horizontal and

Inclined 190

Roofing, Weight per Superficial

Foot 190

Roots, Cubes, and Squares, Table

of 638-645
Round Post, Area of 90
Rubble Walls 48
Rulers and Pencil in Drawing.... 540

Rupture Compared with Flexure. 84

Rupture, Crushing, Safe Weight.. 89

Rupture, Sliding, Safe Weight. ... 87

Rupture, Transverse, Safe Weight. 86

Rusting Iron Framing Straps, To
Prevent 239

Safe Load for Material 81

Safe Weight, Allowance for 84

Safe Weight at Any Point, Rule. . 106

Safe Weight, Beam at Middle 103

Safe Weight, Bending 91

Safe Weight, Beam, Breadth of,

To Find 104

Safe Weight, Beam, Depth, To
Find 104

Safe Weight, Breadth or Depth, To

Find, Load at Middle 106
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PAGE

247

240

247

Stairs, Space for Timber and Plas-

ter

Stairs, Stone, Public Building

Stairs, String of, To Make
Stairs, Tread, To Find, Rise Given

242, 246

Stairs, Tread and Riser Connec-

tion 248

Stairs, Width, Rule for 241

Stairs, Winding, Balusters in

Round Rail 313

Stairs, Winding, Bevels in Splayed
Work ... 314

Stairs, Winding, Blocking Out
Rail.. 301

Stairs, Winding, Butt-joint on

Handrail 303

Stairs, Winding, Butt-joint, Cor-

rect Lines for 307

Stairs, Winding, Diagrams Ex-

plained .. 263

Stairs, Winding, Face Mould, Ac-

curacy of 295

Stairs, Winding, Face Mould,

Application 297

Stairs, Winding, Face Mould,
Care in Drawing 295

Stairs, Winding, Face Mould,
Curves Elliptical 301

Stairs, Winding, Face Mould
for 290, 293

Stairs, Winding, Face Mould,
Round Rail 303

Stairs, Winding, Face Mould for

Twist \ . . 291

Stairs, Winding, Flyers and

Winders 251

Stairs, Winding, Front String,

Grade of 253

Stairs, Winding, Handrailing. 256, 289

Stairs, Winding, Handrailing, Bal-

usters Under Scroll 310

Stairs, Winding, Handrailing,

Centres for Square 368

Stairs, Winding, Handrailing,

Face Mould for Scroll 311

Stairs, Winding, Handrailing, Fall-

ing Mould for Raking Scroll. . . 310

Stairs, Winding, Handrailing, Gen-

eral Considerations 258

Stairs, Winding, Handrailing,
Scrolls for 308

Stairs, Winding, Handrailing,
Scroll Over Curtail Step 309

Stairs, Winding,, Handrailing,
Scroll for Curtail Step 310

Stairs, Winding, Scroll at Newel. 309

Stairs, Winding, Illustrations by
Planes 261

Stairs, Winding, Moulds for

Quarter Circle 255

Stairs, Winding, Newel Cap, Form
of 312

Stairs, Winding, Objectionable. . 240
Stairs, Winding, Pitch Board, To
Obtain 252

Stairs, Winding, Rise and Tread,
To Obtain 251

Stairs, Winding, Sliding of Face

Mould. 299

Stairs, Winding, String, To Ob-
tain 252

Stairs, Winding, Timbers, Posi-

tion of 252
Stairs and Windows, How. Ar-

ranged 42
Stiles of Windows, Allowance for. 319
St. Mark, Tenth or Eleventh Cen-

tury 12

Stone Bridge Building, Truss

Work 232

Stone Bridge, Building Arch.... 230

Stone Bridge, Centres for, Con-

struction 229

Stone Bridge, Pressure on Arch

Stones 230

Stop for Doors 317

Stores, Floor Beams, Safe Weight. 126

Stores, Ordinary, Floor-Beams,

Sizes, To Find 127

Stores, First-Class, Floor-Beams,

Sizes, To Find 128

St. Paul's, London, Dome of 54

St. Peter's, Rome, Fourteenth and

Fifteenth Centuries 12

Straight or Right Line Defined. . . 544
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Strains, Cross, Resistance to 77

Strains on Domes, Tendency of. . 219
Strains Exceed Weights 61

Strains, Graphic Representation.. 165

Strain Greatest at Middle of Beam. 105

Strains by Parallelogram of

Forces 165

Strains, Practical Method cf De-

termining 62

Strains of Rafter in Roof 205

Strains, Resistance, To What Due. 78
|

Strain on Roof Timbers Shown

Geometrically 190

Strains on Roof Timbers Geomet-

rically Applied 202
j

Strains on Roof Timbers, Parallel-

ogram of Forces 198 ;

Strain, Shearing, Tubular Iron

Girder 157

Strain Unequal, Cause of 83

Straps, Iron, Roof Truss 239
j

Strassburg, Cathedral of 12
j

Strassburg, Towers of the Min-

ster II I

Strength and Stiffness of Mate-

rials..- ."... 78 j

Structure of Materials 76
|

Struts Denned 173
j

Struts and Ties 68 i

Struts and Ties, Difference Be-

tween 69 :

St. Sophia, Sixth Century 12 i

Stucco Cornice for Interior 340 ;

Studs and Joists Defined 174
'

Styles, Grecian, Only Known by
Them 16 !

Stylobate, Substructure 'for Col-

umns 14

Subnormal and Normal (in Para-

bola) 496 I

Subtangent, Parabola 496

Subtangent of Ellipse Defined... 486

Subtraction and Addition (Alge-

bra) 398

Superficies Defined (Geometry)... 544

Supports, Girders, Length, Rule.. 157

Supports, Position of 65

Supports, Inclination of, Unequal. 60

Suspension Rods, Location in

Roof 212

Suspension Rods in Roof, Safe

Weight 210

Symbols Chosen at Pleasure (Al-

gebra) 395

Symbols, Transferring (Algebra). 399

Systyle, Explanation of 20

Table of Circles 649-652
Table of Contents 6^3-624
Table of Capacity of Wells, Cis-

terns, etc 653

Table of Squares, Cubes, and

Roots 638-645
Table of Woods, Description of. . 80

Tail-Beams Defined 130

Tanged Curve, To Describe (Ge-

ometry) 565

Tangent to Axes, Ellipse . . . . 485

Tangent Defined 547

Tangent with Foci, Ellipse 487

Tangent to Ellipse. To Draw 592

Tangent at Given Point in Cir-

cle 557

Tangent at Given Point, Without

Centre 557

Tangent of Parabola 493

Tangents and Sines, Logarithms

(Polygons) 464

Temples Built in the Doric Style. 19

Temple, Doric, Origin of the 17

Temple of Jupiter at Thebes 33
Tenons and Splices, Knowledge

Important 88

Tensile Strain, Area of Piece, To
Find 99

Tensile Strain, Compressed Ma-
terial ioo

Tensile Strain, Condition of Sus-

pended Piece 98
Tensile Strain, Safe Weight 96
Tensile Strain, Safe Weight, To

Compute 97
Tensile Strain, Sectional Area, To

Obtain 97
Tensile Strain, Suspended, Mte-

terial Extended ioo
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PAGE

Tensile Strain on Tie-Beam in Roof

Truss 204
Tensile Strain, Weight of Suspend-

ed Piece 98

Tensile Strength of Cast Iron 161

Tension and Compression, Framed
Girders 174

Tension, Resistance to 77

Tension, Resistance to, Table of

Materials 82

Tension, Resistance to, Results

Obtained 82

Tension, Resistance to, Proportion
in Materials 81

Tent, Habitation of the Shepherd. 13

Testing Machine, Description in

Transverse Strains 80

Testing Materials, Hydraulic
Method 80

Testing Materials, Dates of 80

Testing Materials, Manner of. ... 80

Tetragon Defined 546

Tetragon, Radius of Circles

(Polygons) 446

Tetrastyle, Intercolumniation 20

Thebes, Thickness of Walls at. . . 33

Thrust, Horizontal 63

Thrust, Horizontal, Examples. ... 64

Thrust, Horizontal, Tendency of.. 88

Tie-Beam in Ceiling, Load on... 190

Tie-Beam and Rafter, Safe Weight. 87

Tie-Beam in Roof 54

Tie-Beam in Roof, Tensile Strain. 204

Tie-Rods, Diameter, To Find 164

Tie-Rods, Floor Arches, Dwell-

ings 153

Tie-Reds, Floor Arches, First-

Class Stores 153

Tie-Rods, Wrought Iron 164

Ties Defined 173

Ties and Struts, To Distinguish.. 69

Ties and Struts, Framed Girders.. 174

Ties and Struts, Principles of. ... 68

Ties, Timbers in a State of Ten-

sion 68

Titus, Composite Arch of 28

Trimme/, Breadth, To Find, Two
Sets Tail-Beams 134

Top Rail, Doors, Width, Rule 317

Torus, Classic Moulding 323

Torus, Grecian Moulding. 326
Tower of Babel, History of 5

Towers of the Minster, Strassburg. n
Transverse Axis Defined 548

Transverse Strains, Compressed
and Extended, Material 100

Transverse Strains, Defined 99
Transverse Strains, Explanation

of Table III 101

Transverse Strains, Greater

Strength of One Piece 101

Transverse Strains, Neutral Line

Defined 100

Transverse Strains, Proportion to

Breadth 101

Transverse Strains, Hatfield's,

Reference to. .80, 121, 133, 138,

143, 144, 145, 146, 148

Transverse Strains, Resistance to,

Table of 83

Transverse Strains, Description of

Table 84

Transverse Strains, Strength Di-

minished by Division 101

Trapezoid Defined 546

Trapezium Defined 546

Tread, To Find, Rise Given

(Stairs) 242,246

Tread and Nosing, Position of

(Stairs) 241

Tread and Rise, To Find, Winding
Stairs 251

Tread and Rise, To Find, Blon-

del's Method 242

Tread and Rfcse, Table for Shops \

and Dwellings 245

Tread and Riser, Connection of

(Stairs) 248

Triangle, Altitude of (Polygons). 442

Triangles, Base, Formula for (Trig-

onometry) 516

Triangle, Construct a (Geometry). 587

Triangle, Construct Equal-Sided

(Geometry) 575

Triangle Defined 545

Triangle, Examples (Geometry).. . 350
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PAGE

Triangles, Equal Altitude 361

Triangle Equal Quadrangle 353

Triangles, Equation of (Trigo-

nometry) 515

Triangles, Homologous (Geom-

etry) 362

Triangles, Hypothenuse, Formula

for 516

Triangles, Hypothenuse, To Find

(Trigonometry) 518

Triangles, Perpendicular, To Find

(Trigonometry) 517

Triangle or Set-Square in Draw-

ing 539

Triangle or Set-Square, Use of. . . 541

Triangles, Terms Denned (Trigo-

nometry) 512

Triangles, Three Angles Equal

Right Angle 354

Triangles, Value of Sides (Trigo-

nometry) 516

Trigon, Irregular Polygons (Ge-

ometry) 546

Trigon, Radius of Circle (Poly-

gons) 443

Trigon, Rule (Polygons) 441

Trigonometry, Oblique Triangles,

Two Angles 523

Trigonometry, Oblique Triangles,

Two Sides 521

Trigonometry, Oblique Triangles,

First Class 520

Trigonometry, Oblique Triangles,

Second Class 522

Trigonometry, Oblique Triangles,

Third Class 526

Trigonometry, Oblique Triangles,

Fourth Class

Trigonometry, Oblique Triangles,

Sines and Sides

Trigonometry, Oblique Triangles,

Formula, First Class 531

Trigonometry, Oblique Triangles,

Formula, Second Class 532

Trigonometry, Oblique Triangles,

Formula, Third Class 534

Trigonometry, Oblique Triangles,

Formula, Fourth Class 534

S*\

519

Trigonometry, Right Angled Tri-

angles 510

Trigonometry, Right Angled Tri-

angles, Third Side, To Find... 511

Trigonometry, Right Angled Tri-

angle, Formula 530

Trigonometry, Tables 513

Trigonometry, Triangles, Base,

Formula for 516

Trigonometry, Triangles, Equa-
tions of 515

Trigonometry, Triangles, Hypoth-
enuse, Formula 516

Trigonometry, Triangles, Hypoth-
enuse, To Find 518

Trigonometry, Triangles, Perpen-

dicular, To Find 517

Trigonometry, Triangles, Terms
Denned 512

Trigonometry, Triangles, Value of

Sides 516
Trimmer or Carriage Beam,

Breadth, To Find 132

Trimmer or Carriage Beams De-

nned 130

Trimmer, One Header, Breadth,
To Find, Dwellings and Stores. 133

Trimmer, Well-Hole in Middle,

Breadth, To Find 136
Trisect a Right Angle 5^4

Truss, Diagram of. 200

Truss, Force Diagrams, Figs. 59,

68 and 69 179

Figs. 60, 70 and 71 iSo

Figs. 61, 72 and 73 181

Figs. 63, 74 and 75 183

Figs. 64, 77 and 78 184

Figs. 65, 78 and 79 185

Figs. 66, 80 and 81 186

Truss, Roof, Framing for 237

Truss, Roof, Iron Straps 239

Truss, Weight, per Horizontal

Foot, To Find 192

Truss Work, Stone Bridge Build-

ing 232

Trussing and Framing, Gravity
and Resistance 76

Trussing Partitions, Effect of 175
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Trussing Roofs, Effect of 178

T-Square, How to Make 539
Tubular Iron Girder, Area of Bot-

tom Flange, Dwellings 159
Tubular Iron Girder, Area of Bot-

tom Flange, First-Class Stores. 160

Tubular Iron Girder, Arc of

Flange, Load at Middle 154
Tubular Iron Girder, Area of

Flange, Load Any Point 155
Tubular Iron Girder, Area of

Flange, Load Uniform 156
Tubular Iron Girder, Flanges,

Proportion of. 157
Tubular Iron Girder, Construction

of 154
Tubular Iron Girder, Rivets, Al-

lowance for 157
Tubular Iron Girder, Shearing

Strain 157
Tubular Iron Girders, Web of. . . 158

Tuscan, Modern, Appropriate for

Buildings 30
Tuscan Order, Introduction of the. 30
Tuscan Order, Principal Style in

Italy 30
Twelfth Century, Buildings in the. n
Twist Rail, Platform Stairs 277

Twists, Stairs, Nicholson's Method
for 259

Undecagon Defined

United States, Roofs in.

Vault, Simple, Groined or Com-

plex

Ventilation, Proper Arrangement
for...!.

Versed Sine of Arc, To Find

Vertical Pressure of Wind on

Roof.

Vertical Tangent of Parabola De-

fined

Volutes, To Describe the

Voussoir of an Arch. . ,

Wall, The...

Walls, Coffer.

546

55

52

45

56i

194

495
!

20 *

52 I

|

48 I

49!

PAGE

Walls, Construction and Forma-
tion 48

Walls, Eddystone and Bell Rock

Lighthouses 48

Walls, Egyptian, Massiveness of.. 33

Walls, Modern Brick 49
Walls of Pantheon and Roman

Buildings 49
Walls of Pantheon at Rome 53

Walls, Pise, of France 49
Walls, Reticulated 49
Walls, Rubble -. ... 48

Walls, Strength of. 48

Walls, Various Kinds 49
Walls, Wooden 49

Weakening Girder, Manner of. . . 140
Web of Tubular Iron Girder,

Thickness of 158

Weight of Materials for Building
Table of 654-656

Wells, Cisteins, etc., Table of

Capacity 653
White Pine, Weights of Beams
Table of 177

Wind, Greatest Pressure, per Su-

perficial Foot 90
Wind on Roof, Effect of Vertical

Pressure 194
Wind on Roof, Horizontal and

Vertical Pressure 193
Winders in Stairs, How to Place

the 42
Winders and Flyers, Stairs 251

Windows, Arrangement of 44

Windows, Circular Headed 320

Windows, Circular Headed, To
Form Soffit 321

Windows, Dimensions, To Find. 318

Window-Frame, Size of 318

Windows, Front of Building, Ef-

fect of 320

Windows, Heights, Table of,

Width Given 320

Windows, Height from Floor. . . . 320

Windows, Inside Shutters, Re-

quirement 319

Windows, Position and Light
from.. 317
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Windows and Stairs, How Ar-

ranged 42

Windows, Stiles, Allowance lor.. 319

Windows, Width Uniform, Height

Varying . . . : 319

Winding Stairs, Balusters in

Round Rail 313

Winding Stairs, Bevels in Splayed
Work 314

Winding Stairs, Blocking Out

Rail.. 301

Winding Stairs, Butt Joint, Posi-

tion of. 303

Winding Stairs, Butt Joint 307

Winding Stairs, |Diagram of, Ex-

plained 263

Winding Stairs, Face Mould for

290,293

Winding Stairs, Face Mould, Ac-

curacy of. 295

Winding Stairs, Face Mould, Ap-
plication of 297

Winding Stairs, Face Mould,
Curves Elliptical 301

Winding Stairs, Face Mould,

Drawing 296

Winding Stairs, Face Mould,
Round Rail 303

Winding Stairs, Face Mould, Slid-

ing of. 299

Winding Stairs, Face Mould for

Twist 291

Winding Stairs, Flyers and Wind-
ers 251

Winding Stairs, Front String,

Grade of. 253

Winding Stairs, Handrailing
. ; 256, 289

Winding Stairs, Handrailing, nal-

usters Under Scroll 310

Winding Stairs, Handrailing, Cen-

tres in Square 308

Winding Stairs, Handrailing, Face

Mould for Scroll. .., 311

Winding Stairs, Handrailing, Fall-

ing Mould. . . 310

Winding Stairs, Handrailing,
General Considerations 258

Winding Stairs, Handrailing,
Scrolls for 308

Winding Stairs, Handrailing,
Scroll Over Curtail Step 309

Winding Stairs, Handrailing,
Scroll for Curtail Step 310

Winding Stairs, Handrailing,
Scrolls at Newel 309

Winding Stairs, Illustrations by
Planes 261

Winding Stairs, Moulds for Quar-
ter Circle 255

Winding Stairs, Newel Cap, Form
of 312

Winding Stairs Objectionable. . . . 240

Winding Stairs, Pitch Board, To
Obtain 252

Winding Stairs, Rise and Tread,

To Obtain 251

Winding Stairs, String, To Obtain. 252

Winding Stairs, Timbers, Posi-

tion of. 252

Wood, Destruction by Fire 37

Wooden Beams, Use Limited 154

Woods, Hydraulic Method of

Testing 80

Wreath for Round Rail, Platform

Stairs 267

THE END.
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