One Profile
with many faces...

Few building materials present themselves in such a crisp, diversified and contemporary manner as Plasticrete's Profile Hexagon; Autoclaved, Concrete Masonry Units, Series PHX-1. Textural elegance, modular simplicity, sophisticated wall designs all go together as the architect's limitless imagination and creativeness directs. Special shapes, other than those shown, are available on order.

Brighton Regional Library — Boston, Mass.
Architects: The Architects Collaborative, Cambridge
General Contractor: M. Raccioppi & Co., Boston
Masonry Contractor: Fulvio DiRocco, Hingham.
Don't Just Design And Build It

Blakeslee It!

by choosing from Blakeslee's family of prestressed precast concrete members. Shapes can be standard or custom-built to meet any structural or architectural requirement without sacrificing esthetics. And plant-fabricated precast elements are noted for their economy, ease and speed of erection, rigidity and durability, and minimum maintenance during the life of the structure.

For more information on how we can help you with your next project, write or call:

C. W. BLAKESLEE & SONS, INC.
BOX 1844, NEW HAVEN, CONN. 06508 • (203) 772-2500
NEW YORK OFFICE
60 E. 42nd ST., N.Y., N.Y. 10017 • (212) 889-7190
There are some homes one of our Improvement Loans won't help

When a client is interested in a major improvement of his home or property, he should be advised that the First New Haven National Bank is a major source of such loans.

Twenty conveniently-located offices in south central Connecticut make us easy to find — and easy to do business with.

When it comes to Improvement Loans you can't improve on THE FIRST NEW HAVEN NATIONAL BANK

MEMBER: FEDERAL RESERVE SYSTEM • FEDERAL DEPOSIT INSURANCE CORPORATION

Main Office: One Church Street, New Haven
Other Offices in: New Haven(7), Hamden, East Haven, West Haven, Allington, Milford (2), Devon, Branford (2), Orange, Guilford, Derby, and Wallingford

The Publisher's Uneasy Chair

This month Connecticut Architect presents new Connecticut school buildings in Hartford, Stamford, West Simsbury, and Old Saybrook. There is also a commentary on a Cheshire school by a Yale architecture student and some of Bob Mutru's penetrating philosophy about school architecture.

Connecticut continues to grow, according to the census people. We might even have another congressman, as though we didn't have enough problems picking six now. More people need more housing units, more recreation units, more reflection units, more study units, and more work units. It augurs well for future construction — and creative function-oriented, environment-protective, and sense-pleasing design.

However, right now the economic pinch is hurting. Of course, we understand it was supposed to hurt as it squeezed inflation down to comfortable size. But we didn't think it meant us — and by us, we mean people in the architectural profession and its broad periphery of interested architectural participants. In fact, most people didn't think it meant them. Pinches and squeezes on the pocketbook are obviously meant for someone else.

What has happened is a cash slowdown. Each person in the construction process is taking a little longer to pay — because he has not been paid — and this builds up a pretty mucky cash situation. Being on a professional level, the architect is more polite about getting paid for his services than, for example, the plumber who gets paid or the water doesn't flow. But even the plumber has to visit the bank to fill in between his paying and getting paid.

We hope that economic casualties among architects — and plumbers — are minimal. Our counsel is to take good care of your architects, for they have key roles in making our futures more attractive and more bearable. Freewheeling developers are creating environmental atrocities which will stand to haunt us in the years to come. A little more concern for the environment and a little less expediency would help — but then all developers do not do as well as the Paparazzos, for instance.
Connecticut Architect is published every other month for The Connecticut Society of Architects, a chapter of The American Institute of Architects, and is the official publication of the Society.

OFFICERS
President
JOSEPH STEIN, FAIA
Vice President
HARVEY M. WHITE, AIA
Secretary
ROBERT H. MUTRUX, AIA
Treasurer
WALTER F. GREENE, JR., AIA
Executive Director
PETER H. BORGEMEISTER

EDITORIAL BOARD
Chairman
RALPH T. ROWLAND, AIA
LANDES GORES, AIA
ROBERT H. MUTRUX, AIA
WILLIAM H. RALLIS, AIA

PUBLISHER

Printed by The Bond Press, Inc., Hartford, Connecticut.

Controlled circulation postage paid at Hartford, Connecticut.

All rights reserved. No part of this publication may be reproduced without permission in writing from the publisher, except brief quotations in a review.

TABLE OF CONTENTS

Notes on School Buildings (Robert H. Mutrux, AIA) .. 6

The Hartford School Story (Caudill Rowlett Scott, Architects) 7

Girls Day School (SMS Partnership/Architects) .. 10

Coed Day School (Russell, Gibson & von Dohlen, Architects) 13

Community School (Davis Cochran Miller Baereman Noyes, Architects) 16

Cheshire Project (Carl Safe) .. 12

Professional Services .. 30

Index to Advertisers ... 30

PHOTO CREDITS: Cover, pages 7 and 14-19, Charles N. Pratt; pages 8-9, Edward Saxe Studio; page 11, bottom, ESTO; page 11 top and page 12, Milton Weinstock.

Circulation of Connecticut Architect includes all resident Connecticut architects; libraries; landscape architects; and selected consulting engineers, contractors, builders, and church, hospital, school, federal, state, and local officials; and others concerned with architecture in Connecticut. Appearance of products, services, names, and pictures in advertising or editorial content does not constitute endorsement by The Connecticut Society of Architects, AIA.

Seventy-five Cents a Copy
Four Dollars and Fifty Cents a Year
Stephen Vincent Benet once said: “Books are not men, yet they are alive.” The same might be said of buildings. Every building is a living thing. It is born, it lives, and it dies, just like a tree, an animal, or a human being. It does not appear out of nowhere by itself, but is the result of a special union. It is born from a seed, an idea placed in the soil of a creator’s mind. And one day it comes into the world as a child does, complete with all its parts.

As it grows, it is shaped by the world around it and the people who live close to it, and it develops a personality. If it is a dwelling, it may become a happy dwelling, full of movement and color and music. If it is a school, it may be vibrant, stimulating; if it is a library or a museum, it may be serious and thoughtful; if it is a church, it may be inspiring. It may be a sad building, like a cenotaph, or a forbidding building, like a fortress or a prison. Whatever its use, its peculiar qualities will broaden the world and widen the horizon of those who enter its doors.

Most important of all, it may become what every architect wants it to be - a beautiful building. But it will be remembered as a beautiful building only if it is loved, first by those who conceived it and then by those whom it shelters from day to day. If it is loved, it will repay the love of those inside in the way it mirrors the light in their eyes and in the way it reflects the sound of their voices. It will welcome them in the morning when it opens its doors, and it will whisper farewell when it closes them at night. Its floors will resound with their footsteps; its walls will touch and caress them; its roofs will protect them. If those inside know this, they will live with the building, and it will live with them and become an important part of their lives.

One day it will die. It may die of old age, or it may die of war or catastrophe; it may die because it stands in the way of what we call progress. It may die of neglect, and even while it is still standing, the hollow eyes of its ghost stare out accusingly. Its doors stand open, silently crying out the forgotten songs and stories buried within its walls. It may die happily and in a strange way live forever, because every building leaves an image in the hearts of those who loved it and remembered it.

A school is a living building in a very special sense. It was born several years ago and is now approaching maturity. It is not merely an arresting assemblage of modern materials or even an important contemporary institution. Every school is a distinct personality in its own right and, if your students can see it this way, you will have gained a new and wonderful friend.

As you approach it, it will reach out and embrace you, if you will allow it. Its corridors will invite you and your imagination to see what lies beyond. The rhythm of its roof line is a kind of music; the windows are formed so that you will enjoy not only the shape of the sky outside but also the light they throw on your textbooks. The colors, if you see them, will make your days brighter, and the forms, if you notice them, will tell you in how many ways a structure can fill a space. The ceiling of the auditorium is not just a protective covering nor a mere sounding board; it is a special background for all the ideas you will receive and those you will give voice to while you are there. Every room, every door, every detail is designed in the hope that it will make your lives more full and your education more complete. And the sweep of the whole building, as it rests naturally and grows into the landscape, is an expression of our faith in the value of knowledge and at the same time a symbol of our belief in the importance of beauty for its own sake.

If you look at the school building in this way, it will mean something special to you. If you love it, it will love you in return and your lives will be continually enriched. And if you learn to look at all buildings in this way, you may discover many things which are not yet written in books.
Hartford was faced with a critical school situation common to many eastern cities. Increasing enrollments, the necessity to discontinue use of outdated educational facilities, and a major backlog of needed new construction dictated action be taken without delay. At the same time, the city had to accomplish its objectives within the framework of a budget consistent with its ability to support the expense.

The Hartford story is an example of how, with proper collaboration between the public agencies and the architects, a large school and community facilities construction program can be put into effect on schedule and within a budget.

In May 1967, Caudill Rowlett Scott were retained as master architects for Phase I of the Hartford, Connecticut, school building program, with the understanding that CRS would manage the decision-making process necessary to simultaneously plan for and design six schools, with community facilities, for a total of $53,000,000. Actual design of the schools, recreation centers, and day care facilities would be carried out by CRS either alone or in association with other architectural firms. Continuous cost control — an important part of any project — was specially crucial in view of the inflationary economy.

Houston based, with an office in New York, CRS set up a satellite office in Hartford to manage the school building program. The primary purpose of establishing such an office was to ensure good client-architect communication, which is critical with a multi-headed client-user group. The group in Hartford's case included City Council, City Engineering Department, School Board, City Welfare Department, and City School Administration.

Within three months after being hired, while the Hartford office was in the process of being established, CRS had initiated or completed the following studies: construction market analysis, study and refinement of educational program and translation into a space program, budget analysis, site analysis/climate analysis, coordination with City of Hartford master plan, review of existing city and state educational plans, and code research.

In June 1967 an intensive work session ("pre-squatters") was held in Houston. Research data previously collected was discussed, alternatives presented, and basic decisions taken affecting the firm's approach to the school building program. Hartford officials were flown to Houston to take part in the session. Design and management personnel and everyone who would have responsibility for seeing the work carried out were brought in at this early stage. As a result, educational priorities were established and principal building systems selected.

Four-level Clay Hill Middle School is designed as two buildings: one academic, one physical education/industrial arts. Buildings are connected by two bridges at second level and two tunnels at basement level. Facing each other across a plaza, the buildings have a "house plan" organization. The school is designed to encourage community use. Its 225,000 square feet of space is intended for 1600 7-8 grade students.
Elementary schools were given first priority by the school administration and, following this initial session, detailed programming of the individual elementary schools was completed by the now operational Hartford office.

A Houston-based design team — which had participated in the June pre-squatters and had monitored Hartford's program development — was flown to Hartford for an intensive design session ("design squatters"). The CRS team, working in the school board room with school and city officials and with Butterfield & Associates (associate architects for Clark Elementary School), in five days completed and received approval on schematic design, budgets, and schedules for both the Waverly and Clark Elementary Schools — each containing a recreation and daycare center.

CRS then began preparation of design development and construction documents for Waverly; simultaneously, Butterfield & Associates went to work on Clark Elementary.

With the elementary schools on the drawing boards, attention turned to the School Administration's second priority — the Northwest and Clay Hill Middle Schools, each containing a recreation center. Once again, a CRS design team set up shop in the school administration building, working with city and school officials and Russell, Gibson & von Dohlen (associate architects for Clay Hill Middle School). Schematic design, budgets, and schedules were completed and approved for both schools in five days.

With four schools in production and programming completed, CRS turned to the final project of the Hartford Phase I building program, a combination High School/Middle School, also with a recreation center — the Bulkeley High/Martin Luther King, Jr., Middle School. The same process was applied again: design squatters, approval, and into production in five days.

All programming for Phase I of the building program was completed, and all projects were designed and in production by February 1968, nine months after CRS had been hired.

During the period when design development and construction documents were going ahead in Houston and associates' offices, the chief responsibility of the Hartford office was more detailed refinement of the educational, recreational, day care, and equipment programs. There was continuous cost control and code review and constant architect/client communication. The first school (Waverly Elementary) went out for bids in August 1968, fifteen months after CRS was hired.

At this point, the Hartford office...
was expanded to include personnel to handle construction administration. Continuous computer-aided cost control kept a close check on costs as related to the construction market and plan development. Manpower needs were continually studied, enabling the Hartford office to anticipate requirements and the need for CRS specialists, and to plug their services in and out as the progress of the projects demanded. The intensive pre-squatters session in Houston had already established the major building sub-systems to be used, but the Hartford office continued to check the validity of these systems against the requirements of a changing situation. Communications in-office with associates and with the client became the primary responsibility of the Hartford office.

CRS feels that, based on experience in Hartford and the experience of a similar satellite office in Baltimore, plus recent research by the New York and Houston offices, the firm has developed methods of working to a tighter schedule than the Hartford building program. This would involve full exploitation of firm research into (a) fast-track scheduling — a method of accelerating time on a project by overlapping the programming, design, and construction phases — and (b) systems building to enable major sub-systems (for example: structure, heating/ventilating, roofing, ceiling/lighting) to be pre-bid independently of completion of detailed and construction drawings for the whole building. A reservoir of experience acquired in nearly 25 years of planning and designing educational buildings throughout the country served as backup for the Hartford program's good progress. By structuring a local office to meet the specific needs of the Hartford situation, CRS was able to ensure maximum efficiency in identifying and solving program requirements and gaining effective cost control.

Please turn to page 20

Bulkeley High and Martin Luther King, Jr., Middle School are included in a brick and steel project composed of a six-level academic high school building and a five-level academic middle school building which face each other across a central plaza and are tied together by a shared library below the plaza. The structure contains 570,000 square feet of space for 1600 middle school students and 2600 high school students.
Low-Heywood School, which a short time ago celebrated its centennial, had its start in Stamford in 1865. It was then known as Miss Richardson's (boarding) School and was located at Willow and Atlantic Streets. In 1883, the school was acquired by Miss Louisa Low who was later assisted by her niece, Miss Edith Heywood. Several years later the name Low-Heywood was adopted as the school's name.

In 1911, the school moved to larger quarters on Shippan Point where it remained until 1944. It then moved to Courtland Avenue, an eight-acre site made available by a contribution of funds from the Nestle Corporation and many private citizens. In September 1969, Low-Heywood moved to its new seventeen-acre campus on Newfield Avenue.

The last move was spurred by necessity, and the day school found a speedy and economical way to acquire a complete new physical plant that meets its present requirements and will fill future needs, as well.

Low-Heywood enrolls about 180 girls in grades six through twelve. A decision early in 1968 to increase enrollment to 300 girls necessitated a second decision. The question to be decided was if major renovations should be made to existing facilities. On the negative side were the facts that the facilities were antiquated and inadequate, and the eight-acre campus near the Connecticut Turnpike was in an area burgeoning with multi-family development. The conclusion was to seek another site and start building from scratch.

Two factors made the decision to move inevitable. One was a most attractive offer from a real estate developer for the existing campus property. The second was the availability of a seven-acre North Stamford estate, beautifully situated, magnificently landscaped and, coincidentally, adjacent to the established King School for boys.

The developer's offer for the existing campus had one catch—he wanted the property very soon. Low-Heywood trustees spelled out
their needs to the SMS Partnership/Architects, and to building contractor Frank Mercede and Sons. The builder agreed to construct 52,000 square feet of new space from the swiftly but carefully worked out SMS designs. Both the architects and the contractor, bypassing the usual “out to bid” delay, promised to work fast.

The basic program was submitted on May 1, 1968. In September 1969, Low-Heywood occupied its new quarters which consisted of a three-level structure designed for maximum educational advantage.

The top level houses the major academic areas and the main entry. This arrangement made possible the most desirable use of the sloping site. Classrooms line the east and west walls, supplemented by science and seminar rooms at the northern and southern ends. The structural system leaves the entire central portion free for a flexible library flanked by study and carrel areas for the lower and upper schools. This center section is defined by a twelve-foot six-inch ceiling raised over the bearing structure and punctuated by a series of skylights.

The music department is on the middle level which also contains a cafeteria, faculty room, additional
seminar rooms, and toilets. Space has been provided, too, for academic expansion. This level has windows on the west side, and ground level access at both ends.

The gymnasium/auditorium on the lowest level is supplemented by separate locker rooms for the lower and upper schools. Completely below grade, it is accessible from outside through the middle level vestibule by way of two staircases.

The site itself needed relatively little work. The new building was erected on meadow land which drops sharply to the rear of the site and playfields were superimposed on level cornfields to the front of the site. An existing drive bounded by stately trees has become a one-way approach, with a new exit drive on the other side of an old stone wall.

While the school's trustees plan no immediate links with King School, its proximity offers future options in the form of coordinate classes, shared facilities, and common bussing.

The partner in charge for the architects was A. Raymond von Brock, with Howard A. Patterson, Jr. as designer. Werner-Jensen, Korst & Adams, Inc. served as both mechanical and structural engineers.

Cheshire Project
In the beginning of the 1969-1970 academic year, the Cheshire Board of Education initiated a work-study program in co-operation with the Yale School of Architecture. The original reason for my participating in this program was to conduct a series of experiments testing the relative importance of visual stimuli to children of elementary school age. I was, however, so depressed with the character of the classroom environment that I began concentrating on projects related to improving the visual and spatial quality of the classroom. The first projects were simple surface treatments:

By painting bulletin boards, I eliminated the necessity of using and periodically changing construction paper backgrounds.

By using colored tape to make a "permanent" large scale calendar, the students are now able to participate in the process of changing (learning their numbers, days of the week, etc.)

Large scale letters and numbers were used to make generally inaccessible portions of the room (areas above doors, chalkboards, etc.) part of the classroom again.

From this purely visual approach, I moved into the realm of real space definition through the use of mobiles.

The next and most important extension of the "space renovation" was the construction of a multi-space structure occupying the back one-third of the classroom. The object: to increase the spatial and visual options available to the children.

The students now have a large space, several small spaces, and intermediate spaces through which they can move, play and learn. They have small stairs, large steps, and ladder steps offering options for vertical circulation where there was none before. Several light conditions — natural, artificial and combinations of both — provide the children with a variety of visual and physical temperatures. The carpeted surfaces offer an alternate to the tiled floor and concrete block walls of the large room.

While there are additional spatial options generated by the structure, I have not touched on their more substantive psychological and developmental consequences. These far more subtle learning experiences in which the children participate require much more time to analyze and quantify, if indeed they can be quantified at all. I feel that, in any terms, the new classroom atmosphere has contributed to the quality of education by exposing the children in this classroom to an environment offering a choice of movement patterns, a choice of assembly spaces, and a useful teaching aid, and by increasing the range of their visual experience.

Carl Safe
New Haven
Westledge is a new, private, coeducational day school in West Simsbury. It was conceived and designed to accommodate 250 students in grades seven through twelve. Behind this is the Westledge educational concept which penetrated and became immersed in the architectural design concept.

The people who created Westledge believe that the involvement of students' parents, friends, and members of the community is essential to a complete education for the students. On this basis, Westledge is — and plans to continue as — a day school. Its intent is "to provide a stimulating environment full of nature and honesty, from which the child is usually reluctant to leave at the end of the day, but from which he takes enthusiasm and love and confidence in his own individual being."

Recognizing that education is a highly individual matter, Westledge dedicates its efforts to the development of the individual student. The educational philosophy of the entire school is structured around the primary objective of discovering what it is that makes each student unique and then developing the aptitude or qualities along naturally stimulated lines.

The key to achieving this goal is diversity in the faculty and student body and in the things to study and in ways to study them. The one single common denominator possessed by all faculty members is their ability to establish empathy with the adolescent. The school seeks out applicants from the metropolitan community in an attempt...
to have a heterogeneous student body. Assisted by an unusually generous scholarship program, the school can open its doors to a wide cross section of individuals. This includes white and black, physically handicapped and athletes, wealthy students and welfare cases, flower children and fighters. The curriculum is arranged to present traditionally sound subject matter in such a flexible way that each individual student's schedule is tailored to his specific needs and goals.

Architecturally, a master plan and phased construction provide the required facilities for library, humanities, science, visual and performing arts, dining, student activities, physical education, and administration. Site requirements required roads and parking, utility
distribution, athletic fields, ski slopes, nature areas, and wildlife sanctuaries.

Preservation of the natural beauty of the site was a primary consideration. The design solution appeared in the form of small-scale buildings set in wooded areas with minimal disturbance to existing contours and surroundings. Forms and textures were chosen carefully to ensure harmony between man-made elements and the natural features of the environment.

The heart of this pedestrian campus is the library and student center, the intellectual and social hub of the school. Grouped informally about the library and student center are academic buildings for humanities, sciences, and the arts. The science center and humanities center are designed with laboratories and classrooms around a large central, multi-use space which works well for the group experience and for the cross-pollination of other disciplines. Additional buildings house faculty offices, miscellaneous classrooms, and athletic lockers. Future facilities will accommodate indoor athletic activities and the theatre arts program.

The construction system consists of wood framing with laminated timbers. Exterior finishes are vertical boards, shingle roofs, and wood casement windows. Interior walls are rough-sawn red cedar and painted gypsum board. Floors are vinyl asbestos tile, carpet, and concrete, and ceilings are acoustically treated where sound control is required. Electric heat is supplied through wall radiation and air handling units. Classroom lighting is indirect fluorescent with all other illumination incandescent.

Framed in a 300-acre site, the first phase of construction involved 35,200 square feet in seven buildings at a unit cost of $25.

Louis A. Friedman is headmaster and administers the school. Robert J. von Dohlen was partner in charge for Russell, Gibson & von Dohlen, and John L. Riley was project architect.

Structural Engineers were Hallisey Associates, and mechanical engineers were Quinlan & Giannoni. Site planners were Maine & Tillaquaugh.

RUSSELL, GIBSON & von DOHLEN, Architects, West Hartford, was formed in 1954. The three partners, James F. Russell, Murray O. Gibson, and Robert J. von Dohlen, earned their architecture degrees at Cornell University, as did John L. Riley, an associate of the firm. Richard W. Quinn and Charles T. Bellinger, also associates, are graduates of Notre Dame and Princeton, respectively.
The Old Saybrook Senior High School on Route 1 at the corner of Donnelly Road, about two miles west of the center of town, was designed for a pupil capacity of one thousand. In keeping with population projections for Connecticut, the design included provisions for expansion to double the original student capacity.

The structure is arranged symmetrically around a spacious entrance court which faces the highway to the south and is framed by the high one-story masses of the gymnasium to the east and the auditorium on the west. Bus loading canopies with brick piers and concrete roof slabs form lower elements, extending forward from the building, and partially enclose the courtyard on its south side. These structures reflect the materials and form of the principal elements of the main building which rises behind them.

Beyond the gymnasium and auditorium are two lower one-story wings containing locker rooms and industrial arts shops on the east and music room and cafeteria on the west. In the center, north of the entrance court, is the two-story portion of the structure. This contains laboratory, art, and business rooms on the lower level, and academic classrooms and library above. Extensive athletic fields, with a running track and tennis courts behind them, are situated east of the building.

The school has modern lines and achieves crisp definition through its brown brick wall masses complemented by the concrete of the floor and roof structure and the dark finish of its recessed, metal window openings. The result is a
Mr. Miller said that the noisier elements of the school are separated effectively in one-story side wings remote from the central classrooms and study areas which require a quiet atmosphere. Use of a reinforced concrete frame and floor structure for the two-story block minimizes the transmission of noise between the upper and lower classrooms.

A U-shaped arrangement of the central classroom block permits future construction of a two-story classroom addition by closing off the northerly courtyard and extending the present north-south classroom legs to the east and west. This means that any department can be expanded by the addition of classrooms adjacent to its present facilities. There is sufficient room
Auditorium has contemporary illumination and acoustical concept in its excellent design.

Gymnasium is spacious, accessible, and designed for hard use.

to double the initial number of classrooms and still retain a compact arrangement of student circulation.

The basic layout of the school looks ahead in other ways. Provision is made for future expansion of the cafeteria to the west without detriment to the balance of the initial design. Shops can be expanded to the east and north in a similar manner. Future installation of a centrally located closed-circuit television facility is provided for by the future relocation of rooms now used for business course instruction. Expansion of the library is also anticipated with the ultimate possibility of encompassing the entire south leg of the second floor of the present classroom block.

The functional breakdown of space shows forty instructional rooms including the divided gymnasium and the auditorium. Of these, fifteen are standard classrooms for English, mathematics, and languages; four are designed specially as social study centers with adjacent, jointly used, offices and group work rooms. Other specialized classrooms are two homemaking rooms, two rooms for arts and crafts, two industrial arts shops with adjacent drafting room, three rooms for typing and business courses, and five fully equipped science laboratories.

Next to the two biology labs is a spacious greenhouse, and in the arts and crafts complex there is provision for a photographic darkroom. Music department facilities, just to the rear of the auditorium stage, consist of a large practice room with terraced floor, four individual practice rooms, and a combined music office and library.

The paved parking area between the road and the school is depressed below street level and landscaped with trees. The building and entrance drive are on a slightly raised terrace which makes them completely visible above the tops of any parked vehicles.

Extensive landscaping and paving features are carried into the entrance court of the building which is arranged to serve as a fair weather, outdoor student lounge. Raised concrete tree planters in this area also serve as benches. Rectilinear areas of lawn, concrete, and bituminous paving provide a varied pattern underfoot and are interspersed with occasional rectangular clumps of hardy evergreen shrubbery. The brick piers and concrete superstructure of the two free-standing canopied entrance walkways frame the court and contribute interesting shadow patterns throughout the day.

In keeping with the recent trend, window areas in classrooms are large enough to give a feeling of openness to the rooms while posing no major problems of glare, overheating, sun control, and blackout difficulties.

Lighting levels are high through-
out the building, and interiors have an open and airy appearance with glass openings accenting the corners and ends of corridors. Woodwork and doors in general are of dark finished oak. Other surfaces are finished in relatively light neutral colors with occasional bright color accents.

The large 900-capacity, sloping floor auditorium is designed to serve a range of community activities, in addition to its planned school functions. Stage facilities are roomy and connect with adjoining instructional areas to provide dressing space for a variety of theatrical productions and choral and band performances.

The school administrative offices face south on the entrance court and straddle between the gym and auditorium lobbies. In addition to offices, provision is made for conference rooms, guidance facilities, a health suite, and a special instruction classroom.

The school project was initiated only after the lengthy and careful work of the Old Saybrook Board of Education in preparing the building requirement program. The educational staff, represented by Superintendent of Schools Douglas Dopp and Senior High School Principal William Belanich, gave definition to the needs. These men acted as ex-officio members of the building committee whose chairman was Norman Sivin. Others on the committee included Mrs. John G. Escher, Harold W. White, William F. Clynys, Frank F. Morris, John P. Wollack, Mrs. Thomas J. Naughton, J. Whittier Anderson, and James Bombaci.

The building has an area of 105,555 square feet and was constructed at a cost of $16.88 per square foot or $1828 per student.

Henry F. Miller and Herbert M. Noyes of Davis Cochran Miller Baerman Noyes, Architects were responsible for the design. Structural engineering design was done by Rudolph Besler & Associates, Old Saybrook, and mechanical engineering design by Peter Flack & Associates, New York. Landscape design and site engineering was handled by Currier, Andersen & Geda of West Hartford.

DAVIS COCHRAN MILLER BAERMAN NOYES, ARCHITECTS, New Haven, has as its principals Walter H. Cochran, AIA, graduate of Yale and past president of the Connecticut Society of Architects; Henry F. Miller, AIA, graduate of Yale and past president of the Connecticut Building Congress; Herbert M. Noyes, graduate of Yale; and Donald J. Baerman, AIA, graduate of Yale and a director of the Construction Specifications Institute. Harold H. Davis, FAIA, died in 1969.
Immediate and direct communication between client and architect has continued through all phases of project development and has been one of the strong points of the Hartford program. Every effort was made to coordinate educational objectives with other local city planning objectives and to work within realistic financial and educational parameters. In the process of this productive client-architect association, each element of the project architect-client team has come to a closer understanding of the aims, needs, and problems of the other members.

As a result of coordinated objectives, the schools were programmed and designed as "community" schools. Each project has a recreation center administered by the Hartford Parks and Recreation Department. Each elementary project also has a daycare facility administered by the Welfare Department. The Education Department, in turn, uses city park land, abutting three of the sites, for physical education. School gymnasiums, auditoriums, and swimming pools will also be available for community use.

When construction of the last school in the Phase I building program is completed in the fall of 1972, the city will have built: two elementary schools, three middle schools, a high school, five recreation centers and two daycare facilities — increasing the school system's student capacity by more than 9,400 student stations, while expanding the city's community services.

While many individuals were involved in the planning and execution of Phase I and much credit is due them, key leadership was provided by City Manager Elisha C. Freedman, City Architect Daniel J. Tasillo, AIA, Superintendent of Schools Medill Bair, PhD, and

Please turn to page 22
New wing of The New Britain General Hospital.
Site preparation and paving, Angelo Tomasso, Inc.
Concrete, Sherman-Tomasso Concrete, Inc.
Architects: York & Sawyer

From a series of original sketches by John Wedda, commissioned by Angelo Tomasso, Inc. and Sherman-Tomasso Concrete, Inc.

This outstanding example of contemporary Connecticut architecture makes substantial, effective use of Angelo Tomasso, Inc. paving materials and Sherman-Tomasso Concrete, Inc. central mix concrete. Architects know they can depend on the strength, durability and attractiveness of these versatile products for a wide variety of construction purposes.

Angelo Tomasso, Inc. Sherman-Tomasso Concrete, Inc.
New Britain, Connecticut 06050 223-3651

SEPTEMBER-OCTOBER 1970
Deputy Superintendent of Schools
Robert M. Kelly.

Assisting the architects with Waverly Elementary School were consultants Dr. C. P. Boner, acoustics; Loomis and Loomis, soils; and James F. Cauley, food service. The Associated Construction Company, Hartford, is general contractor. Clark Elementary School: Butterfield and Associates, associate architect; Giunta and Helenski, mechanical and electrical engineering; Fraioli-Blum-Yeaselman, structural engineering; and Loomis and Loomis, soils. General contractor is The Southern New England Contracting Company, Hartford. Northwest Middle School associate architect is Jeter and Cook, and the same consultants were used as for Waverly Elementary School. General contractor is Horn Construction, Incorporated, Hartford.

Visit our
ARCHITECTS' SAMPLE ROOM
Just off Routes 91 and 5 on Old Depot Hill Road, Warehouse Point.

"BRICK CENTER"
Clay Products
INeORPORATED
HTFD. 527-8851

CNC
CLAUDE NEON
OF
CONN.
INC.
signs | ILLUMINATED PLASTIC NEON
letters | STAINLESS STEEL ALUMINUM-BRONZE PORCELAIN ENAMEL
specialties | FLAG POLES CROSSES AREA LIGHTING

125 FRONT STREET
Bridgeport, Conn. 06606
335-2177
If you don't do it, it won't get done.

GIVE THE UNITED WAY

SPECIFY

Jennite J-16
BLACKTOP SEALER FOR PARKING AREAS AND DRIVEWAYS

latexite
COLOR-FAST ACRYLIC RESIN COLORED SEALERS FOR PLAY AREAS

For low-budget jobs where pavement is not subject to oil and fuel drippings, specify low-cost COLOR-SEAL

FREE Parking Lot Templates save you time in preparing plans. Call or write for yours today.

COPELAND COMPANY, INC.
WILLLOW STREET
CHESHIRE, CONNECTICUT

Up
Down
Under
Thru

Easy does it with a BILCO Door

When you're about to provide the best in access through a horizontal surface — think BILCO — leader in design and quality of special purpose doors.

There's a BILCO Door for every need — for convenient personnel access through roofs, floors, ceilings — for access to pumps, valves, meters. All are ruggedly built for long service. All operate with the ease and safety for which BILCO Doors have earned a universal reputation.

And when you need an extra-large special size in any type, specify BILCO for a product designed and built to insure your client's lasting satisfaction.

Where in the world do you go for the best in horizontal access doors?

The BILCO Company, Dept. CA, New Haven, Conn. 06505
Entries Displayed

Insight into the difficult decisions that are made by an architectural jury which had to choose the “best” of five excellent designs was a recent feature at a special exhibition at the Yale Art Gallery.

Displayed were models, drawings, and renderings of the semi-finalists in the Yale Mathematics Building competition which attracted 450 entries. The semi-finalists, who won a $10,000 prize each last February, were the firms of Venturi and Rauch, and Vernon, Lepere, Petit, both of Philadelphia; John Fowler, John Paul McGowan, of New Haven; and Van Slyck, Callison, Nelson, of Seattle. Venturi and Rauch won the competition.

The purpose of the exhibition was to present the successful programs and show what the jurors called, “a very successful competition,” according to Arthur Ballman who, in association with Charles W. Moore, was professional advisor to the competition.
The Southern Connecticut Gas Company's headquarters building in Bridgeport features a total gas energy system which is completely independent of any outside source of electric energy!

Total gas energy means GAS and only GAS supplies all the energy. In this new 32,000 square foot sales and executive office center, four GAS internal combustion engines generate and supply all the electricity for the entire structure. While the engines drive a generator to produce electricity, exhaust heat from the engines is recovered to heat and cool the building and provide domestic hot water — a real bonus when it comes to operating costs.

Installations like this provide proof that total gas energy systems are likely to be the mass energy packages of the future. Nationwide, there are already over four hundred such installations in shopping centers, motels, schools, post offices, apartment and office buildings, factories, hospitals and universities.

We don’t have to tell you natural gas is more dependable because it’s piped safe and sound from underground. We probably don’t even have to tell you that natural gas is a non-pollutant, clean burning fuel. But what you may not know is that a total gas energy system is a very real practicality today. We'll be happy to give you more information.
Specify...

OIL

HEATING • HOT WATER • AIR CONDITIONING
and TOTAL ENERGY

THE PROVEN FUEL
FOR
8 OUT OF 10 BUILDINGS

OIL FUEL INSTITUTE OF CONNECTICUT
119 ANN STREET • HARTFORD, CONNECTICUT

Chief Engineer
S. Terry Philcox, PE, has been named chief field engineer for Fletcher-Thompson, Inc., Bridgeport-based architects and engineers.

A native of Norwalk, Mr. Philcox is a graduate of University of Miami where he studied architectural engineering. Starting with Fletcher-Thompson in 1956, he left a year later for a tour of duty with the U.S. Army Corps of Engineers until 1958, when he returned to his company.

Current F-T projects in which he is involved include the Bridgeport Mental Health Hospital, a plant and office building for Scovill Manufacturing Company in Watertown, a laboratory and plant for Philips Medical Systems in Shelton, and the Ridgefield High School.

Dialogue in Development
Dialogue in Development is the theme of the Second World Congress of Engineers and Architects to be held in Tel Aviv, Israel, December 14-23. Papers, queries, and registrations may be addressed to Congress Secretariat, 200 Dizengoff Street, Tel Aviv, Israel.

Name Change
Eggers & Higgins of New York, one of the nation’s largest architectural and planning firms, has changed its name to The Eggers Partnership. Among current projects is the new office building for Uniroyal Corporation in Oxford, Connecticut.

Architect ’70
The first joint regional conference of architects from New York and the New England states will be at The Laurels, Monticello, New York, October 19-22. CSA office, 152 Temple Street, New Haven, has information.

Completely NEW!
PIPE MARKERS
GUARANTEED TO STAY ON!

** ** FREE SAMPLE - REQUEST FORM 840CA ** **
Exclusively from Seton
SETON NAME PLATE CORP.
592 Boulevard, New Haven, Conn., 06505 • (203) 772-2520
Research Conference
A major conference of architectural research will be held in Cincinnati, Ohio, November 1-3. Among the papers to be presented is "My House: Scattered Site Equity Housing," by Joel P. Zingesser, CRS, of Hartford.

Information and registration material may be obtained from Professor John M. Peterson, AIA, Department of Architecture, University of Cincinnati, Cincinnati, Ohio 45221.

New Appointments
Walter D. Shapiro, PE has been named a partner and William S. Kaminski, PE a senior associate in the consulting engineering firm of Pfisterer, Tor and Associates, New Haven and New York.

Joins Firm
Jonathan King, Hon. AIA, has joined Caudill Rowlett Scott, Architects Planners Engineers, of Houston, New York, and Hartford, to direct the firm's expansion in the field of systems building.

LABORATORY FURNITURE
HOSPITAL CASEWORK

- ENGINEERING
- MANUFACTURING
- INSTALLATION
- WOOD & STEEL
- COMPONENTS STOCKED

CONCO INDUSTRIES, INC.
31 Water Street
P. O. Box 150
West Haven, Conn. 06516

Schools and colleges today face enrollments in unprecedented numbers. Meeting the challenge of providing quality education demands creative use of communications technology.

Communications systems bring the world into the classroom, making the best teachers, libraries and information banks available to greater numbers of students than ever before. A well coordinated communications system for a school or any other large building demands careful preplanning.

That's where our BUILDING INDUSTRY CONSULTANT comes in. Call him while your plans are still on the drawing board. He knows communications and he knows how to work with people who build.

You add him to your team without cost or obligation. Just dial 1-800-922-2953, toll free from anywhere in Connecticut.

Southern New England Telephone
Connecticut River Ramble
The eleventh annual Connecticut River Ramble, a boat trip from Middletown to Long Island Sound, will be on Saturday, October 3. The event is sponsored by the Natural Area Council of Connecticut in cooperation with the Connecticut Conservation Commission.

According to the announcement by Mrs. Gay Ewing, chairman of the event, the "Block Island" will leave the Middletown Municipal Dock at 9:30 a.m. and return at 5 p.m. Tickets may be obtained by sending checks ($10 per person includes lunch) to River Ramble, Box 72, Georgetown, Connecticut 06829.

New Firm
Stein Sapack Ames architects p.c. has been formed as the successor firm of Joseph Stein & Associates, Architects. Principals of the new firm are Joseph Stein, Robert Andrew Sapack, and T. Gregory Ames, Jr. The architects have their office at 16 Cherry Avenue, Waterbury.

Communications in Connecticut
TEL-RAD REPRESENTS THESE MANUFACTURERS:
WEBSTER-ELECTRIC
ALTEC LANSING
3M MUSIC
SOUNDSCRIBER

PROVIDING SYSTEMS FOR:
Hospital Nurse Call Signal
Automatic Dial Telephone
Telephone Monitor
Church, Auditorium and Stadium
Telephone Monitors
Write or call Tel-Rad today for full information.

TEL-RAD INC.
Est. 1946
Sales, installation and service throughout Connecticut.

TEL-RAD, INCORPORATED, 592 New Park Avenue, Hartford, Conn. 06110, Phone 236-2388

Stainless Steel Accessories by Parker

ANOTHER 1st BY PARKER
Two complete lines are available with either rectangular or round flanges. Manufactured completely of type 302 bright lustre or satin finish stainless steel (including concealed fastening device).

Write for brochure on complete information and specifications!

The CHARLES PARKER CO.
51 HANOVER ST. MERIDEN, CONN.
PPG Performance Glass has made these 37 recent contributions to America the beautiful.
(And America the comfortable.)

Architects all over the country are putting up more buildings that use beautiful PPG Performance Glass. The architects of the 37 projects shown below used a PPG Reflective Insulating Glass, for one or more of several reasons: openness, reflectivity, color, drama, visual comfort, or to keep out the heat and the cold. The list is my up of Solarban installations only, and while it is by no means complete, it does offer a guide to a number of interesting projects in widely scattered locations. For further details, write or call Mr. D. C. Hegnes, Manager, Architectural Construction Service, PPG INDUSTRIES, One Gateway Center, Pittsburgh, Pa. 15222.

ALASKA: Anchorage International Airport Architect: Manley and Mayer
PPG Glass: Solarban (2)

PPG Glass: Solarban (3)

COLORADO: Denver Denver Center Architect: W. C. Muchow Assoc.
PPG Glass: Solarban (2)

FLORIDA: Clearwater Pinellas County Courthouse Architect: Anderson, Johnson, Henry and Parrish
PPG Glass: Solarban (2)

FLORIDA: Cocoa Beach Cape Canaveral Hospital Architect: Stevens & Walton
PPG Glass: Solarban (3)

PPG Glass: Solarban Bronze (3)

PPG Glass: Solarban (3)

GEORGIA: Atlanta Cities Service Building Architect: Toombs, Amisano and Wells
PPG Glass: Solarban (2)

GEORGIA: Carrollton West Georgia College Architect: John W. Cherry
PPG Glass: Solarban (3)

ILLINOIS: Chicago Hyatt O'Hare Hotel Architect: John Portman & Assoc.
PPG Glass: Solarban (2)

ILLINOIS: Rockford Downing Box Company Architect: Isem & Darby
PPG Glass: Solarban Bronze (3)

ILLINOIS: South Chicago Arco Corporation Architect: McCarthy-Hundrieser & Assoc., Inc.
PPG Glass: Solarban (2)

PPG Glass: Solarban Bronze (3)

PPG Glass: Solarban (2)

PPG Glass: Solarban (23)

PPG Glass: Solarban (2)

Pennsylvania: Allentown YMCA Architect: James Marshall
PPG Glass: Solarban (2)

oklahoma: Tulsa Tradewinds Motel Architect: Russell Magee
PPG Glass: Solarban (3)

PPG Glass: Solarban (3)

PPG Glass: Solarban (3)

PPG Glass: Solarban Bronze (3)

PPG Glass: Solarban (2)

Wisconsin: Milwaukee South Milwaukee Public Library Architect: Losch & Haeuser Inc.
PPG Glass: Solarban (3)

Wisconsin: Racine St. Luke's Hospital Architect: Hams M. Geyer
PPG Glass: Solarban (3)

PPG is Chemicals, Minerals, Fiber Glass, Paints and Glass. So far.
Danbury Office

Fletcher-Thompson, Inc. will open a branch office at 68 West Street, Danbury, this fall. The new architectural design office will be under the direction of Chido S. Liciardi, AIA, an associate of Fletcher-Thompson since 1956.

The architect-engineering firm is now engaged in several projects in the Danbury area, including the Danbury Police Station, Ridgefield High School, Redding Elementary School, and the Union Savings Bank. In announcing addition of the new office, President John G. Phelan, PE, of Fletcher-Thompson, said that "as an active participant in Danbury business and professional life, we will better understand local needs and concerns and will be better able to serve the community.

Mr. Liciardi is a native of Danbury.

Visiting Professor

R. Buckminster Fuller, inventor of the geodesic dome, will be a visiting professor at the University of Detroit beginning this fall. A poet, builder, scientist, mathematician, architect, cartographer, and conversationalist, he will conduct architectural design seminars on undergraduate and graduate levels.

CLASSIFIED

Beautifully weathered 50-year-old tobacco barn, 3800 sq. ft. of 1"x12"x18" pine, $2000. Call 317-8155 or 342-2433.

INDEX TO ADVERTISERS

Architectural Brick Company 28
Associated Sheet Metal, Roofing & Insulating Contractors 30
Bidwell Hardware Company 27
Bilco Company 23
C. W. Blakeslee & Sons, Inc. 3
Claude Neon of Conn., Inc. 22
Clay Products, Inc. 22
Conco Industries, Inc. 27
Connecticut Air Conditioning Company 22
Copeland Company, Inc. 23
Domore Office Furniture 30
Electric Companies of Connecticut Back Cover
First New Haven National Bank 4
Frankson Fence Company 20
Edwin Moss and Son, Inc. 24
Gas Utilities of Connecticut 25
Harold R. Mull and Associates 24
Oil Fuel Institute of Connecticut 26
Overhead Door Company, Inc. 24
The Charles Parker Co. 29
Plasticrete Corporation 2
PPG Industries 29
Roncari Industries, Inc. 29
Seton Name Plate Corporation 26
Sherman-Tomasso Concrete, Inc. 21
Earl B. Smith, Inc. 20
Southern New England Telephone Company 27
Jack Stock Studios 20
Tel-Rad Incorporated 28
Thompson & Peck, Inc. 20
Tibbals Flooring Company 24
Angelo Tomasso, Inc. 21
Wyatt, Inc. 31
We Have
TIMELY FACTS
To Help You
Specify Better Buildings

Better for Owners
Better for Tenants
Better for You, Too

We are at your service. Kindly phone.

NEW ENGLAND'S FOREMOST
INDEPENDENT FUEL COMPANY
900 Chapel Street, New Haven, Conn. 06510
Phone: 787-2175
Architects often need specific information about electric company rates or policies.

The Answer Man has it.