PROFILE
MASSONRY
UNITS

FIRE SAFETY...  
LOW HEAT LOSS... 
MINIMUM UPKEEP

State University of New York
Location:
Stony Brook, Long Island, New York
Architect:
Damaz. Pokorny, Weigel
General Contractor:
Rosoff Bros., Inc.
Mason Contractor:
South Shore Brick Masons, Inc.

PLASTICRETE'S DEEP GROOVED... Units furnish both decoration and design, as well as serving normal structural wall functions. Ideal for veneer or through-wall construction it lends itself to both interior and exterior applications. Our Profile Masonry Units... Fluted, Grooved, Split, Scored or Splayed are autoclaved (preshrunk) to maintain crack-free walls. A brochure illustrating the complete line is available on request.

plasticrete corporation
1883 DIXWELL AVENUE, HAMDEN, CONNECTICUT 06514 • TELEPHONE 288-1641
Concerning the Energy Situation:

For As Long As Can Be Foreseen, Oil Will Be the Most Reliable, Secure and Economical Source of Heat and Power for Connecticut Buildings.

You are cordially invited to use our free consultation service to help assure the most appropriate specifications for your projects.
Publisher's Uneasy Chair

Highly stylized buildings lose architectural significance when the ratio of style to function is not well balanced. The impressive looking Knights of Columbus building, which dominates the New Haven skyline, is such a building. The extensive use of glass has inherent danger. Storm Doria's assault on the shoreline blasted out a number of panes of glass and plum­meted them like shrapnel to the street below. Fortunately no one was injured. Doria, by the way, was not even a hurricane in this area. The architect, contractor, supplier of glass and frames, or the individuals who did the physical installation — someone did something wrong. Fixing the blame is less important, it seems to us, than preventing it from happening again.

Self-styled — and uninformed — ecologists are well on the way to creating utter confusion. Ecology, like public relations and personnel, is a field full of five-minute experts. Three years ago, about ten percent of the population could have guessed a reasonable explanation of ecology. Now it's a household word. Before it all gets trampled in the mud of emotion, some professional groups must step in and give the effort direction. One of these groups should be architects.

But, to zero in on this issue of Connecticut Architect we have another original by Bob Mutrux wherein he discourses on the upgrading of clients. Mr. Mutrux also suggested that the words of an academician at a CSA meeting were worthwhile. He is right, and we share them with you. A brace of schools, one in Wethersfield and the other in Wilton, provide another timely note to this issue. Incidental fare includes a brief look at three hundred years of architecture in Connecticut and an experiment with natural gas fuel cell power-plants.

No publication at this time in our history would be complete without some reference to the economy. We'll let the big national magazines expostulate about the big national issues. We'll stick to Connecticut. Waste of manpower, time, material, and dollars has become a way of life in our state (as it has in our nation). If we can snug up on the first three, the fourth will work itself out.

There are some homes one of our Improvement Loans won't help

When a client is interested in a major improvement of his home or property, he should be advised that the First New Haven National Bank is a major source of such loans.

Twenty conveniently-located offices in south central Connecticut make us easy to find — and easy to do business with.

When it comes to Improvement Loans you can't improve on THE FIRST NEW HAVEN NATIONAL BANK

Main Office: One Church Street, New Haven
Other Offices In: New Haven(7), Hamden, East Haven,
West Haven, Allingtown, Milford (2), Devon, Branford (2),
Orange, Guilford, Derby, and Wallingford

CONNECTICUT ARCHITECT
Connecticut Architect is published every other month for The Connecticut Society of Architects, a chapter of The American Institute of Architects, and is the official publication of the Society.

OFFICERS
President
HARVEY M. WHITE, AIA
Vice President
ROBERT H. MUTRUX, AIA
Secretary
HOWARD A. PATTERSON, JR., AIA
Treasurer
WALTER F. GREENE, JR., AIA
Executive Director
PETER H. BORGEMEISTER

EDITORIAL BOARD
Chairman
RALPH T. ROWLAND, AIA
DAVID BASCH, AIA
LANDES GORES, AIA
ROBERT H. MUTRUX, AIA
WILLIAM H. RALLIS, AIA

PUBLISHER

Printed by The Bond Press, Inc., Hartford, Connecticut.

Controlled circulation postage paid at Hartford, Connecticut.

All rights reserved. No part of this publication may be reproduced without permission in writing from the publisher, except brief quotations in a review.


Circulation of Connecticut Architect includes all resident Connecticut architects; libraries; landscape architects; and selected consulting engineers, contractors, builders, and church, hospital, school, federal, state, and local officials; and others concerned with architecture in Connecticut. Appearance of products, services, names, and pictures in advertising or editorial content does not constitute endorsement by The Connecticut Society of Architects, AIA.


TABLE OF CONTENTS
How To Make a Great Client (Robert Henri Mutrux, AIA) ........................................ 6
Award Winner (Stecker and Colavecchio Architects, Inc.) ........................................ 7
Designed to Grow (Schofield & Colgan – Earl R. Flansburgh) .................................. 10
Talcott Village .................................................................................................................. 12
Three Hundred Years of Connecticut Architecture ............................................ 13
Yale Dean ......................................................................................................................... 18
New England Conference ............................................................................................... 19
Notes (Rev. William Mclnnes, S.J.) ............................................................................. 20
Professional Services ...................................................................................................... 22
Index to Advertisers ........................................................................................................ 22

Seventy-five Cents a Copy Four Dollars and Fifty Cents a Year
How To Make A Great Client

Robert Henri Mutrux, AIA

The often-quoted phrase, "It takes a great client to make a great building," is not far from the top of the list of over-worked platitudes. But, like most platitudes, it contains an element of truth. There are few structures in the pageant of the world's history that do not owe their quality, in great measure, to the influence of the person who made them possible.

Someone in authority, usually a king, a bishop, or a robber-baron, with a sense of design as well as his personal delusions of grandeur, gave the architect his head and eventually picked up the tab — or at least convinced the royal exchequer that the tab was worth absorbing.

Today the kings, the bishops, and the robber barons are not much in evidence and have all but disappeared as clients. But as architecture prospers and grows at an ever-increasing rate, their demise leaves a noticeable esthetic void.

Suddenly the old chestnut about great clients becomes a damning indictment of our age.

Where are the great clients who should be making today's great buildings? Fine edifices arise here and there from time to time, to be sure, but judging from the overall conditions of the world's architecture, some great clients had better appear, if we ever expect our brief sojourn on earth to leave its mark. There simply isn't time to wait until great clients are born. We'd better start making some, and soon.

Fortunately, some recently discovered documents reveal a few of the ground rules for making clients, and we present them herewith.

The first thing to do is to run — or at least do a fast jog — to the nearest public school. It is here, and not in the proverbial gleam in the father's eye, that great clients are conceived. No great client ever existed who did not, at an early age, come under the direct influence of a teacher dedicated to the beauty of art and architecture.

It is in the classroom that tomorrow's client first learns to sense the rarefied air that once blew over the topless towers of Ilium, the spires of the cathedrals, and the palaces of the Renaissance.

The gym instructor can explain the play of force against force as illustrated in the opposing lines of the football team and the impact of bat against baseball. The science teacher will translate these forces into formulas and graphs, and give them names. And the inspired art teacher will show the application of these same forces to the construction of the pyramids, the Parthenon, the colonnade in front of St. Peter's, and the World Trade Center.

The science teacher will also
AWARD WINNER

Highcrest Elementary School
Wethersfield, Connecticut

STECKER and COLAVECCHIO ARCHITECTS, Inc.

Conyers Construction Company, General Contractor

A school, like the proverbial chain, is no stronger than its weakest link. Thus, many a modern, multi-million dollar structure is weakened by a lack of full understanding and utilization of facilities.

In the award winning Highcrest Elementary School, however, all activity and learning is linked to the design concept. Administration and teachers have concentrated on attaining maximum mileage from the open space, cluster classroom plan to give Wethersfield taxpayers full value for their $1,668,868 investment.

Designed by Stecker and Colavecchio of Bloomfield, the school was recently given a special citation by the American Association of School Administrators jury for the 1971 Exhibition of School Architecture. The citation states that Highcrest has a “warm, inviting exterior, well suited to its suburban setting and providing both interior and exterior learning areas. Basic and continuing skill clusters provide for continuous progress of each pupil. Well scaled to the young children it serves and thoughtfully planned for future expansion.”

The school bears out the increasingly popular open space concept where learning areas can be shaped at will to give students freedom of movement and teachers flexibility in programming. It is evident that the school administration, headed by Principal John J. Ferguson, is attuned to this design philosophy for, before the school was opened, he worked extensively with eight teachers to tailor a program in total harmony with this concept.

On entering the school, a visitor is made aware of the activities through a profusion of displays in the entrance hall. The architects decided against muraling the expansive front interior wall. Instead, it is used to show off students’ handiwork which spills over onto pedestaled exhibits, making the area reminiscent of a craft museum.

To the left are the administrative offices, protected from hallway traffic by glass paneling. Yellow carpeting over concrete slab leads farther down the corridors, the concrete block walls of which glis-
ten with epoxy paint—mostly white with bright blue and yellow accents. Doors are dark-stained wood. A sprinkler system studs the acoustical ceilings throughout the building, reducing fire insurance premiums.

In the classrooms, some walls are alternated panels of chalkboard and linen-textured, white vinyl bulletin board. They are hinged so that the size and shape of the room may be altered as the need arises.

A special feature of the early-childhood cluster is the use of observation booths with one-way glass, permitting training of system staff and allowing progress of the child to be observed without the risk of his becoming self-conscious.

The basic skills and continuing skills areas are designed in clusters of four teaching stations, divisible by folding partitions. These four zones are centered around a common-use area, easily accessible to all. The two clusters are situated on both sides of the cafetorium with easy circulation to the resource center, gym, and administrative quarters.

In the cafetorium, the white formica tables and benches are folded down at lunchtime to reveal bright orange wall recesses which add interest to the serene, white-walled room. At one end, generously proportioned stairs, that double as seating space, lead up to the stage that is designed for dual purpose as a music room. Flexibility of the cafetorium lighting permits the atmosphere to change, depending on whether the space is being used for dining or dramatics.

The independent study group is situated on either side of the resource center to encourage the processes of inquiry and discovery which are being developed in the nine to twelve-year age group. Two groups of six teaching stations are centered around two common areas. A teacher planning area and workroom is included as part of the resource area, which is stocked with up-to-date electronic hardware.

At the opposite end of the faceted ceiling resource center, separated by a glass wall, is a long, narrow room which looks out on a wooded area centered by a wildlife pond. Children may sit and study at the work tables or use the room as it is equipped, for a kind of indoor-outdoor biology laboratory or workroom.

In the classroom clusters, each shaped like a four-leaf clover, two grade levels occupy one cluster so that children may work at their own pace in different subjects. Only four teachers are needed for each cluster, which contains 110 students. Class size is relieved, however, by the central area where a teacher's aide and possibly children from an upper class remain to give special attention to students.

One of the clusters is designed to
ABOVE: Resource center is hub of activity for entire school. BELOW: The facility expands easily along its axis with resource center as the core of each expansion.

Wood-shake roof overhangs paved walk around building.

The school building committee had called for "a building designed to permit the most advanced trends in education and allowing expansion to take place without disturbance in the future." The occupancy initially allows for 810 children, a capacity which is expected to grow to an ultimate 1,270 pupils. A linear solution was adopted for the plan with core facilities, including the gym, cafetorium, teacher planning, and resource center, situated along the spine, and clusters of teaching space surrounding it.

The school also uses "Project Plan," a computer-managed instructional program by Westinghouse, which diagnoses and prescribes instruction to suit each individual student's requirements.

Cost per square foot for the school, which was completed in September 1969, was $20.16.

The architects were assisted by Joseph Hallisey & Associates of Hartford on structural matters, with Giunta-Helenski, Inc., of Wethersfield handling mechanical details. The West Hartford firm of Maine & Tillapaugh served as site planners.

STECKER AND COLAVECCHIO ARCHITECTS, INC. of Bloomfield was founded as a partnership in 1964 by Russell L. Stecker, FAIA (Cornell 1949) and Louis J. Colavecchio, AIA (Notre Dame 1954). The firm is primarily involved in the design of schools but is also planning commercial and religious projects, as well as facilities for higher education.

The school also uses "Project Plan," a computer-managed instructional program by Westinghouse, which diagnoses and prescribes instruction to suit each individual student's requirements.

Cost per square foot for the school, which was completed in September 1969, was $20.16.

The architects were assisted by Joseph Hallisey & Associates of Hartford on structural matters, with Giunta-Helenski, Inc., of Wethersfield handling mechanical details. The West Hartford firm of Maine & Tillapaugh served as site planners.

STECKER AND COLAVECCHIO ARCHITECTS, INC. of Bloomfield was founded as a partnership in 1964 by Russell L. Stecker, FAIA (Cornell 1949) and Louis J. Colavecchio, AIA (Notre Dame 1954). The firm is primarily involved in the design of schools but is also planning commercial and religious projects, as well as facilities for higher education.

STECKER AND COLAVECCHIO ARCHITECTS, INC. of Bloomfield was founded as a partnership in 1964 by Russell L. Stecker, FAIA (Cornell 1949) and Louis J. Colavecchio, AIA (Notre Dame 1954). The firm is primarily involved in the design of schools but is also planning commercial and religious projects, as well as facilities for higher education.

SEPTEMBER-OCTOBER 1971
DESIGNED TO GROW

Wilton High School
Wilton, Connecticut

SCHOFIELD & COLGAN and EARL R. FLANSBURGH & ASSOCIATES
ASSOCIATED ARCHITECTS

Morganti, Inc., General Contractor

In their concept for the new Wilton High School, associated architects Schofield & Colgan and Earl R. Flansburgh & Associates filled the needs of a community having advanced ideas in education — without sacrificing economy.

To serve town students in grades nine through twelve, they designed an ultra-modern, $10-million facility capable of handling two thousand pupils. When the need arises, the basic classroom structure can be expanded to accommodate an additional three hundred students. Also, interior class spaces are subdivisable for groups that can vary from seven to eighty in size.

The school consists of three basic units connected by second floor bridges. Besides the classroom building, there are a field house and a resource center or modern library. Concrete, in both its cast-in-place and precast, pre-stressed types, was chosen as the main building material. The designers felt that it would satisfy esthetic and fireproofing requirements, and the need to provide — in an economical fashion — the large interior spaces necessary for the implementation of the design concept.

The architects insisted that the classroom unit be modular in design. And, taking advantage of savings offered by speed of construction, they used precast, pre-stressed concrete columns, girders, and Span-Deck flooring fabricated and erected by New Haven’s C. W. Blakeslee & Sons, Inc.

Measuring 506 by 140 feet in plan, with twenty-three by thirty-two-foot bays, the classroom unit is three stories high. Its second floor is the main circulation area, linked directly by bridges to separate field house and resource center. The first floor houses laboratories, shops, and an art studio. This level has committed spaces in which the partitioning is permanent. It will experience heavy floor loads and has relatively high ceilings — fifteen feet from floor to floor.

The second floor has an eleven foot eight inch floor-to-ceiling
height and includes the cafeteria, administration offices, and class­rooms. The third floor has the same vertical clearance and consists mainly of general purpose classrooms with provision for movable partitions. At this level, the architects made provision for future classroom additions, at diagonally opposite corners of the structure.

Throughout the interior, the architects required full exposure of all precast elements. As an esthetic feature, they requested consulting engineer, Zorab Vosganian & Associates, to design a concealed column-beam connection.

According to Vosganian, "The architects performed an excellent, structurally oriented design in which modular construction worked well in both directions. The consulting engineers developed their own computer program to help with the design. The program included loading patterns, frame geometry, and the special requirement for hidden end connections. This information was given to the Blakeslee firm which used it on computer to develop precast sections that fit design requirements.

In a typical hidden bracket, a steel wide-flange section embedded in the end of each rectangular girder helps carry connection loads. Within the hidden column haunch are as many as three one-inch knife plates. These protrude eight inches from the face of each column and carry the end of the abutting girder by means of an intermediate neoprene bearing pad, one-quarter inch thick. Additional joint restraint is provided by welded connections between steel plates and straps that are cast into both the precast columns and girders.

The floor deck consists of twenty-three-feet-long, four-foot-wide, acoustical grade, Span-Deck. These structural elements eliminated any need for hung ceilings. Because of the quality of the Span-Deck finish, the designers chose not to
TALCOTT VILLAGE

Fuel Cell Experiment

"Talcott Village, a unique residential and commercial development in the heart of New England's fertile tobacco country, is the site of the world's first program to evaluate natural gas, single utility service." This word comes from a spokesman for the Connecticut Natural Gas Corporation.

An experimental natural gas fuel cell powerplant is transforming natural gas directly into electricity for the full range of electric loads in a modern condominium built for this utility company.

Talcott Village is on Route 4, approximately one mile from Farmington Center. The 130-acre rolling, wooded complex emphasizes conservation, environmental quality, and total community planning. It was selected for the natural gas fuel cell powerplant test in an effort to help meet today's burgeoning energy demands while conserving natural resources and reducing pollution, according to its sponsors.

Residential buildings are arranged in small village-like clusters, and an abundance of facilities for recreation, social, and cultural functions brings the residents together without sacrificing individual privacy.

When completed, the commercial section of the complex will include shops, offices, a community center, a non-denominational church, theater, and an inn and restaurant. They will be blended esthetically with the residential structures to complete the total community environment.

These facilities are ideal applications for fuel cell service, according to Robert H. Willis, president of Connecticut Natural Gas Corporation.

The first installation is in a modern three-thousand-square-foot, four-bedroom condominium unit, one of a two-family dwelling. This structure, with rough-sawn wood exterior, varied roof lines, and interestingly developed interior, is part of a three-building cluster. Cathedral ceilings, wood-burning fireplaces, and spacious window and skylight areas are features of the design.

The fuel cell's operation is quiet, small, and has modular build-up capability. This permits the powerplants to be used in multiples to meet specific electrical needs and allows them to generate for either single units or for a full cluster.

The TARGET (Team to Advance Research for Gas Energy Transformation, Inc.) program, of which the Connecticut application is a part, calls for some sixty fuel cell power plants to be installed by TARGET member companies at thirty-seven locations in nineteen states and the District of Columbia.

Most of the plants will be used to generate on-site electricity in commercial and apartment buildings and in single family homes such as at Talcott Village. Six fuel cell powerplants will operate at electric substations.

The aim of the demonstration is to obtain real-life experience in the installation, operation, and acceptance of the service under a variety of conditions.

The Connecticut Natural Gas fuel cell powerplant is an experimental unit developed by Pratt & Whitney Aircraft Division of United Aircraft Corporation. Known as Powercel, it provides twelve-and-one-half kilowatts using natural gas and air. Its emission products are carbon dioxide and water vapor, which create minimal pollution.

The residence powered by one of these units at Talcott Village, as well as the entire project, was designed and planned by a team of architects, landscape architects, planners, sociologists, research analysts, engineers, and art consultants. The planner is Charles Warren Callister of Callister and Paine, Tiburon, California. The architect is August Rath of the same firm, and the developer is James S. Minges & Associates of Farmington.
Three Hundred Years of Connecticut Architecture

Photography, history, and architectural design are the complementary elements of a new exhibition, "300 Years of Connecticut Architecture," currently at the Wadsworth Atheneum.

Produced by the Connecticut Commission on the Arts and the University of Connecticut Museum of Art, the exhibition consists of 228 photographs of distinguished buildings throughout the state from the 17th century to today.

The social and architectural history of Connecticut is revealed through photographic reproductions of private homes, factories, churches, railroad stations, and municipal buildings. The photographs are mounted and arranged in a modular concept designed especially for the exhibition by Museum Planning, Inc., of New York City. The design allows for easy installation, enabling the display to be mounted by small museums, schools, and other institutions after its stay at the Atheneum.

Connecticut has had an enviable share of attention from noted architects during its history. Some of those whose work is included in "300 Years of Connecticut Architecture" are Ithiel Town, whose buildings began to grace New Haven in the early 1800's; McKim, Mead and White, an architectural firm of the Edwardian period; and modern architects Eero Saarinen, Marcel Breuer, and Philip Johnson. While some of the buildings have been torn down, many remain in use, and others have been preserved as monuments to the past.

Major research for the exhibition was done by the Connecticut Commission on the Arts, while the installation design was jointly produced by Paul Rovetti, director of The University of Connecticut Museum of Art, with Museum Planning, Inc. The first showing of "300 Years of Connecticut Architecture" will remain on view in the museum's Austin Gallery through October 10. Museum hours are Tuesdays - Thursdays and Saturdays from 11 a.m. until 4 p.m., Fridays from 11 a.m. until 9 p.m., and Sundays from 1 until 5 p.m. There is no charge for admission.

Following its showing at the Wadsworth Atheneum, the exhibit will be on display at the University of Connecticut at Storrs during November. Later, the University of Connecticut Museum and the Connecticut Commission on the Arts plan to lend the display to other Connecticut institutions.


Samuel Russell house, Middletown, Town and Davis, 1828-30.
In the class in creative writing, the pupil will learn that the novels, poems, plays, paintings, sculpture, buildings, and even space-ships are all results of the desire for expression to which man in the free world has full access for the mere taking.

And last, the history teacher will show him that architecture is a permanent "instant replay" of everything that man has done and believed in since the beginning of time, and that in today's democratic hierarchy, the kings, bishops, and robber-barons are — as Pogo says — us.

If this atmosphere is made an intrinsic part of the learning day, some of it is bound to rub off on those special students who are gifted with receptivity and the desire to build. And they will learn the importance of the first ingredient of great architecture — taste.

The second element is money. No great building was ever erected without it; if it were not for money we would still be living in caves, catacombs, or in those huge drain pipes that the refugees in East Pakistan call home today.

The third factor is less tangible but no less vital. It is decision. It may also be defined as courage — the courage to build a church spire higher than Bridgeport's UI smokestack; the courage to build a skyscraper in the shape of a lozenge like the one in Hartford or a hockey rink like a warrior's helmet like the one in New Haven. Or the courage to fire one architect and engage another.

And the fourth ingredient is grandeur, which might be translated into just plain pride. PRIDE is the strength to resist the temptation to build the cheapest instead of the best. PRIDE is the force that drives man to create something that people will enjoy looking at without ever using it. PRIDE inspires man to offer something, free of charge, so that not only the owner and his architect but the whole world can boast of it as though it were a reflection of themselves.

Because that is what great architecture really is — a gift of a work of art to the world by the world's great clients. It is also a reminder to future generations that we all believe we can make our environment a little more beautiful — and hence a little better — than it was when we arrived.

If we persist in taking Orwell and Nostradamus and the Apocalypses seriously, we may get the feeling that there isn't time for this sort of improvement. This may be true, but in any case there's certainly plenty of room for it, even in tiny Connecticut. We can accommodate all the great clients we can get.

---

**Great Client**

Continued from page 6

explain how the tension in the school swing, in the tennis racket, and in a string of love-beads is reflected in the suspension of the George Washington and the Whitestone bridges, and point out the close relation between the spider's web and the Geodesic dome.

A staff member with a sense of humor and a sense of perspective (which, philosophically, are about the same thing) will point out how the principle of the cantilever in Frank Lloyd Wright's "Fallingwater" is clearly reproduced in the construction of Tiny Tim's and Jimmy Durante's noses.

The math professor will share with his students the mysteries of rhythm, scale, proportion, and progression — and perhaps even explain why the German poet Goethe was inspired to say that architecture is frozen music.
You plan the building.

We'll spread the word.

Just show us your plans. That's all. At the Phone Store, we can design communication systems long before the first brick is laid. We're experts at it. We'll talk to your architects; talk to our engineers. So you can talk to whomever you want just as soon as the ribbon is cut. And we don't stop there. At no extra cost to you we maintain the equipment and train your personnel to keep you talking for a long time. Creating communications systems from the ground up is our business. We've built our reputation on it. Let us build something for you.

Southern New England Telephone
caulk the clean underside of the flooring.

In erecting the precast frame, crews first placed center columns and followed with the girders and Span-Deck. They worked northward and southward, completing the entire frame in less than six months.

Architect Robert Schofield pointed out a major benefit of this type of construction: "Once the frame had been raised, the classroom unit was essentially complete — and ahead of schedule. There is very little follow-up work for the general contractor after the mechanical and electrical trades are through."

Construction resulted in interior classroom surfaces which have clean finishes — conforming to esthetic considerations imposed by the architects. In addition, cast-in-place portions of the structure had a perfect color match with the precast concrete.

The structure has a feeling of permanence and permits easy maintenance. Also, the inherent characteristics of the structural material prevent the transmission of sound between classroom floors. Acoustical control within closed spaces is maintained by carpeting on every floor of the building.

The bridge structures connecting the classroom unit to the field house are a combination of long-span, cast-in-place girders and structural steel U-hangers. One bridge extends to the second floor level of the resource center. Here, a student can go down a half-flight of stairs to the main reading level, or up a half-flight to the mezzanine level, which provides additional reading area.

Precast prestressed concrete columns are used in the center, with special cast-in-place waffle-type decking, as desired by the architects. The designers purposely separated the resource center from the classroom building and the field house to permit community usage during off-hours, without having to open additional buildings.

The resource center has been designed with a strong emphasis on the use of modern electronic information retrieval systems. Every teaching space within the classroom unit has controls and a closed-circuit television monitor which link with the resource center's electronic system.

There are similar monitors and speakers for individual students. These are set in study area carrels for personal student convenience.

Boiler and mechanical areas for the school are located at the bottom level of the center, which provides sufficient space, a central location, and the easy access necessary for such facilities.

The field house is an example of the trend away from the old "gym" concept. Here, the architects utilized precast prestressed concrete columns and a steel-joist roof system to frame a spacious 32,000 square-foot area. Within the structure, any number of sport events can be played simultaneously. This follows the designers' notion that the building approximates an outdoor playing field — but sheltered.

Including site development, the Wilton High School has taken approximately two years to complete.

Fletcher-Thompson

Richard H. Whiteside has been elected a vice president, and S. Terry Philcox and David Del. Coffin have been named associates of Fletcher-Thompson, Inc., Bridgeport firm of architects and engineers.

Mr. Whiteside is responsible for long range planning, new business development, and communications. Mr. Philcox will head the firm's new contract administration services department, and Mr. Coffin is assigned to Fletcher-Thompson's Danbury office.

Federal Programs

Architects and engineers will meet November 29-30 at the Chase-Park Plaza Hotel, St. Louis, to learn about new federal programs. Spokesmen will be from the federal agencies which administer government construction contracts.

The program is sponsored jointly by The American Institute of Architects, Consulting Engineers Council, and the National Society of Professional Engineers. Military, environmental, HUD, minority contracting requirements, and affirmative active programs will be presented.
The Architectural Aluminum Manufacturers Association — A.A.M.A. — Northeast Region invites A.I.A. members to an Architectural Aluminum Specifications and Finishing Workshop to be held in the Boston area on Wednesday, November 10:

3-5:00 P.M. — Meeting
6-7:00 P.M. — Refreshments
7-8:00 P.M. — Dinner

If you are interested, please make your reservation now by writing to Regional Chairman John F. Mueller, 164 Van Rensselaer Avenue, Shippan Point, Stamford, Ct. 06902

SPECIFY

Jennite J-16®
BLACKTOP SEALER
FOR PARKING AREAS AND DRIVeways

latexite
COLOR-FAST ACRYLIC RESIN COLORED SEALERS
FOR PLAY AREAS

For low-budget jobs where pavement is not subject to oil and fuel drippings, specify low-cost COLOR-SEAL

FREE Parking Lot Templates save you time in preparing plans. Call or write for yours today.

The roof scuttle you can open and close easily with one hand.

Only Bilco Roof Scuttles are equipped with an exclusive operating mechanism that lets you open and close the cover easily with one hand... giving you the safety of the other hand on the ladder. Performance like this is evidence of Bilco's superiority in over-all design and construction that insures long, trouble-free service. Bilco Scuttles are produced in a full range of standard sizes for ladder, ship's stair, and normal stair access. Special sizes on order. Proved best by years of dependable performance. See us in Sweets' or write for catalog.

The Architectural Aluminum Manufacturers Association — A.A.M.A. — Northeast Region invites A.I.A. members to an Architectural Aluminum Specifications and Finishing Workshop to be held in the Boston area on Wednesday, November 10:

3-5:00 P.M. — Meeting
6-7:00 P.M. — Refreshments
7-8:00 P.M. — Dinner

If you are interested, please make your reservation now by writing to Regional Chairman John F. Mueller, 164 Van Rensselaer Avenue, Shippan Point, Stamford, Ct. 06902

SPECIFY

Jennite J-16®
BLACKTOP SEALER
FOR PARKING AREAS AND DRIVeways

latexite
COLOR-FAST ACRYLIC RESIN COLORED SEALERS
FOR PLAY AREAS

For low-budget jobs where pavement is not subject to oil and fuel drippings, specify low-cost COLOR-SEAL

FREE Parking Lot Templates save you time in preparing plans. Call or write for yours today.

The roof scuttle you can open and close easily with one hand.

Only Bilco Roof Scuttles are equipped with an exclusive operating mechanism that lets you open and close the cover easily with one hand... giving you the safety of the other hand on the ladder. Performance like this is evidence of Bilco's superiority in over-all design and construction that insures long, trouble-free service. Bilco Scuttles are produced in a full range of standard sizes for ladder, ship's stair, and normal stair access. Special sizes on order. Proved best by years of dependable performance. See us in Sweets' or write for catalog.

The Architectural Aluminum Manufacturers Association — A.A.M.A. — Northeast Region invites A.I.A. members to an Architectural Aluminum Specifications and Finishing Workshop to be held in the Boston area on Wednesday, November 10:

3-5:00 P.M. — Meeting
6-7:00 P.M. — Refreshments
7-8:00 P.M. — Dinner

If you are interested, please make your reservation now by writing to Regional Chairman John F. Mueller, 164 Van Rensselaer Avenue, Shippan Point, Stamford, Ct. 06902

SPECIFY

Jennite J-16®
BLACKTOP SEALER
FOR PARKING AREAS AND DRIVeways

latexite
COLOR-FAST ACRYLIC RESIN COLORED SEALERS
FOR PLAY AREAS

For low-budget jobs where pavement is not subject to oil and fuel drippings, specify low-cost COLOR-SEAL

FREE Parking Lot Templates save you time in preparing plans. Call or write for yours today.

The roof scuttle you can open and close easily with one hand.

Only Bilco Roof Scuttles are equipped with an exclusive operating mechanism that lets you open and close the cover easily with one hand... giving you the safety of the other hand on the ladder. Performance like this is evidence of Bilco's superiority in over-all design and construction that insures long, trouble-free service. Bilco Scuttles are produced in a full range of standard sizes for ladder, ship's stair, and normal stair access. Special sizes on order. Proved best by years of dependable performance. See us in Sweets' or write for catalog.

The Architectural Aluminum Manufacturers Association — A.A.M.A. — Northeast Region invites A.I.A. members to an Architectural Aluminum Specifications and Finishing Workshop to be held in the Boston area on Wednesday, November 10:

3-5:00 P.M. — Meeting
6-7:00 P.M. — Refreshments
7-8:00 P.M. — Dinner

If you are interested, please make your reservation now by writing to Regional Chairman John F. Mueller, 164 Van Rensselaer Avenue, Shippan Point, Stamford, Ct. 06902

SPECIFY

Jennite J-16®
BLACKTOP SEALER
FOR PARKING AREAS AND DRIVeways

latexite
COLOR-FAST ACRYLIC RESIN COLORED SEALERS
FOR PLAY AREAS

For low-budget jobs where pavement is not subject to oil and fuel drippings, specify low-cost COLOR-SEAL

FREE Parking Lot Templates save you time in preparing plans. Call or write for yours today.

The roof scuttle you can open and close easily with one hand.

Only Bilco Roof Scuttles are equipped with an exclusive operating mechanism that lets you open and close the cover easily with one hand... giving you the safety of the other hand on the ladder. Performance like this is evidence of Bilco's superiority in over-all design and construction that insures long, trouble-free service. Bilco Scuttles are produced in a full range of standard sizes for ladder, ship's stair, and normal stair access. Special sizes on order. Proved best by years of dependable performance. See us in Sweets' or write for catalog.
Federal Buildings

Government designers and private architect and engineer firms under contract to the General Services Administration have been given wider latitude in designing federal office buildings under new guidelines provided by the agency.

The new guidelines are contained in a series of eight GSA publications available from the agency's Office of Information, Room 6128, 18th and F Streets, NW, Washington, D.C. 20405.

H. D. J. Spiegel

When you're America's number one track surface there's got to be a good reason.

RESLITE®

As a matter of fact, there are three good reasons.

The first reason is economy. Reslite®, the best track surface system ever invented, happens to be one of the least expensive to install. It's also the least expensive to maintain. In fact, there's almost no maintenance at all.

Next good reason is long life. We can show you Reslite tracks ten years old that are still in good to excellent condition. No other track surface has that record.

Third good reason is proven performance. Reslite is a special asphalt formulation containing patented vermiculite rubber particles which keep Reslite resilient for years to come. (We're not making any promises, but every time we put in a Reslite track, running times improve.)

If economy, longevity, and performance aren't enough we've got several more reasons why Reslite is America's number one track. Write for your free brochure today, and get all of them.

Yale Dean

Herman D. J. Spiegel, acting dean since January, has been named dean of the faculties of design and planning and director of studies in architecture at Yale's School of Art and Architecture.

He succeeds Charles W. Moore, FAIA, who served as dean for a five-year term.

Dean Spiegel has taught architecture and engineering at Yale since 1955, and has been full professor of architectural engineering for the past three years. He received his master of engineering degree from Yale in 1955 and started engineering practice the same year. In 1964, he co-founded the firm now known as Spiegel and Zamecnik, Inc., which practices structural engineering in Connecticut.

While in college, he won the American Institute of Architects' medal of excellence in design for his work with fellow student Walter Pasicka, and in 1963 his firm was cited for its participation in the Paul Rudolph-designed Milam house in Jacksonville.

He was a member of the national five-man team, selected by the Association of Collegiate Schools of Architecture and the AIA, which formulated a new curriculum for teaching of structures in schools of architecture. In 1968, he was chairman of the architectural design committee of the alumni committee on design at the Rhode Island School of Design and is currently a member of the school's architectural visiting committee.

Dean Spiegel is a member of the American Society of Civil Engineers, the Association of Collegiate Schools of Architecture and the AIA, which formulated a new curriculum for teaching of structures in schools of architecture. In 1968, he was chairman of the architectural design committee of the alumni committee on design at the Rhode Island School of Design and is currently a member of the school's architectural visiting committee.
New England Conference

"Cities Are For People" is the theme of the New England Regional Conference, AIA, October 15-17, at Colonial Hilton Inn, Northampton, Massachusetts.

The host chapter reception will be at Springfield's new multi-million-dollar inner city complex, Bay State West, which is scheduled for opening that weekend. A feature will be a tour of the building with its architect, Eduardo Catalano.

Senator Edward M. Kennedy and Robert Nash, AIA vice president and chairman of the Human Resources Council, will be featured speakers on the conference program.

Hugh McK. Jones, Jr., FAIA, Guilford architect, is president of the New England Regional Council, AIA, and A. Peggy Hall, is executive secretary. Information about the conference is available at the Connecticut Society of Architects, AIA, 152 Temple Street, New Haven, 06510.

Minges Appointment

Donald S. Wild, PE, has been named president of James S. Minges and Associates, Inc., Farmington-based consulting engineers and land planners. A member of the firm since 1950 when it was Marchant and Minges, Mr. Wild started as a structural engineer. He is a graduate of Rensselaer Polytechnic Institute and is a member of the Connecticut Society of Professional Engineers, American Society of Civil Engineers, the American Concrete Institute, and the American Institute of Steel Construction.

James S. Minges, PE, LA, founder of the firm will assume the new position of board chairman.

College Library

Connecticut College, New London, has retained the New York City architectural firm of Kilham Beder & Chu to recommend the best way of doubling the size of the school's Palmer Library.

New Book

Architecture by Team: A New Concept for the Practice of Architecture, by William Wayne Caudill, principal, Caudill Rowlett Scott, Inc., architects, is a new book published by Van Nostrand Reinhold ($17.95). Well illustrated, the book is written to assist people who serve on building committees, school board members, government officials, corporate officers, professors, students, and others interested in designing and constructing new facilities.
Ever since Adam and Eve, men and women have engaged themselves in the human activities of building and naming. Ideally, the efforts go hand in hand, but sometimes there is a division of labor or love. In our modern fragmented society, the “builders” and the “labellers” are, in fact, often separate.

Perhaps it is true today, as someone has said, that “the politician is the architect of the future.” There is even some suspicion that the architect might need to be the politician of the future. In either case, the individuals both label and build. But being gifted neither as architect nor politician, what can the academician, whose stock in trade is labelling, say to the architect whose profession is building? Perhaps the space between can provide a bridge for unity as well as a horizon for reflection. Perhaps those outside the walls can call within.

Throughout the ages, society has asked the architect to build monuments as settings for its activities and as records of its history. Especially has it challenged the designer to express man’s freedom through novel experiments and soaring walls. But, just as the pop-art symbol of 1971 is not the movie Breakthrough with its implications of new freedom, but rather Vanishing Point with its suggestion of exhaustion, so the task of the architect today might well be to build to preserve man as subject rather than express freedom as his object.

People are no longer concerned with reading The Longest Day; rather, they are trembling over the portents of Future Shock. Today’s society faces a basic change in its patterns of living. In the past, man sought freedom from rigidity; today he needs stability amidst chaos.

To the architectural profession, then, comes the challenge from outside the walls: Can you express for man in his monuments his aspirations as well as his history? Can you provide an enduring symbol of his stability as well as of his freedom?

Lord Clark, in his electronic magic lantern tour through history entitled “Civilization,” has summed up his reflections on man’s progress in the western world by suggesting that “civilized man must feel that he belongs somewhere in space and time . . . and for this he needs a minimum of stability which was, in Western Europe, first achieved in France under
Charlemagne." Stability in an affluent age is not a luxury; it is a necessity.

Today, man needs a new sense of space and time expressed in his works and in his life. In a world of stretched hypocrisy of language, of weariness of leadership, of sentimentality in human relations, of malnutrition touching the marrow of man's soul as well as his body, of cruelty even between brothers, of sensuality that stifles and mediocrity that bores, man needs a new center. Man needs new efforts to help him find a sense of place. It is his spirit that is lost, not his body.

We, the lost labelers, therefore turn to you, the builders, and ask: Will you build for us a house that will also be a home?

Will you find for us a dwelling that is built not only at a lower cost but also with a higher aspiration?

Will you build for us a park that is a place not only where we may stand but also where our spirits may breathe?

Will you build us a city that is beautiful not only because it is practical but is practical because it is beautiful?

Will you build us a prison where we may cry for our sinfulness and yet hope for our repentance?

Will you build us a church where we may be near to God but also stand close to our brothers?

Will you build for us a world which we can proudly call our own?

Where the world has no bounds, draw me a line.

When I see only darkness, shower me with color.

When I am lost in chaos, wrap me in texture.

When my universe looks empty, create for me a mass on which I may stand.

Build for me a place that I may somewhere belong.

Keep America Clean.
Keep America Beautiful.
Registration Board

Carl R. Blanchard, Jr., FAIA, has been elected president of the Connecticut Architectural Registration Board. Mr. Blanchard, whose office is in New Haven, is a past president of the Connecticut Chapter, AIA, and played an important role in formation of the Connecticut Society of Architects, AIA. He succeeds Howard J. Sullivan, AIA.

Woodbury Village

The development of a major, executive-class condominium in Woodbury is being undertaken by Plasticrete Corporation, real estate developers Joseph Pepe and Harold Miller, and Connecticut Contemporaries, Inc., of which Roger Small, AIA, is president.

Plans call for a four-hundred-unit condominium to be known as Woodbury Village, and the cost is estimated at $12 million. The hundred acre site overlooks a lake, and buildings will be clusters of modular-type units. Individual prices will range from $25,000 to $39,000.

Philip Paolella, Plasticrete's president, said that the project will be completed over a period of four years in stages of approximately one hundred units a year.

Bridgeport Architects

David G. Crego was reelected president of the Bridgeport Association of Architects. Other officers are William J. Kimball, vice president; John W. Handy, secretary; and Jack H. Scheeter, treasurer.

Elected as directors for the 1971-72 year are Flavian F. Arsenault, David E. Austin, Frank J. Clark, Michael J. Girardi, Stanley M. Hunts, George C. Holm, Robert H. Mutro, Robert W. Ostee, August J. Palmieri, Ralph T. Rowland, Carlton S. Young, and Zane Yost.

Rural Society

Dr. Peter Goldmark, president of CBS Laboratories, discussed the report on technological approaches to Connecticut's urban problems at the September 15 meeting of the Connecticut Society of Architects at Gengras Campus Center, University of Hartford.

Dr. Goldmark gave the results of a joint Connecticut Research Commission and National Academy of Engineering study which proposed the adoption of a multiple urban center plan to channel new population growth into a large number of urban centers and expansion of present communities. This allows the greatest number of Connecticut's future population to live in small communities in rural settings.

"We must provide the generations which follow us with a greatly improved quality of life. This will only come about if the majority of the people will live and work on the major portion of the land," he said.

Joins Westcott and Mapes

George H. Dexter, AIA, of Guilford, has joined the staff of Westcott and Mapes, Inc., New Haven architects and engineers. He is president of the Guilford Art League and has practiced architecture for twenty-two years following his graduation from Princeton as a master of fine arts.
Contemporary on the outside... 
downright futuristic on the inside...

Architects: The Partnership of Lyons-Mather-Lechner.

The Southern Connecticut Gas Company's headquarters building in Bridgeport features a total gas energy system which is completely independent of any outside source of electric energy!

Total gas energy means GAS and only GAS supplies all the energy. In this new 32,000 square foot sales and executive office center, four GAS internal combustion engines generate and supply all the electricity for the entire structure. While the engines drive a generator to produce electricity, exhaust heat from the engines is recovered to heat and cool the building and provide domestic hot water — a real bonus when it comes to operating costs.

Installations like this provide proof that total gas energy systems are likely to be the mass energy packages of the future. Nationwide, there are already over four hundred such installations in shopping centers, motels, schools, post offices, apartment and office buildings, factories, hospitals and universities.

We don't have to tell you natural gas is more dependable because it's piped safe and sound from underground. We probably don't even have to tell you that natural gas is a non-pollutant, clean burning fuel. But what you may not know is that a total gas energy system is a very real practicality today. We'll be happy to give you more information.
WANT HEAT LOSS CALCULATIONS for a new building ... quickly?

GIVE THE ANSWER MAN YOUR FIGURES AND HE'LL FEED THEM TO OUR COMPUTER

At no cost or obligation, the Answer Man will feed our computer the input it needs to provide you with heat loss calculations for any new building you're planning. Just telephone him (he's your electric company representative) and ask him to pick up the data from you. He'll take it from there, obtaining a detailed computer printout of heat loss information on your new building and arranging to review it with you. Don't hesitate to take advantage of this proven decision aid. Call your Answer Man. He wants to help.

THE ELECTRIC COMPANIES OF CONNECTICUT

UNITED ILLUMINATING | THE CONNECTICUT LIGHT AND POWER CO. | THE HARTFORD ELECTRIC LIGHT CO.