We would like to introduce to you our new Color System and reference box. But, this being a black and white ad, you can see we'll need your help. Actually, our new system is the most advanced in the world — and, we're proud to say, we're the first to have it. It has nearly doubled our color selection. It includes all the darker tones now in demand by architects and designers, as well as a large selection of the popular off-white colors. The handsome walnut reference box is efficiently indexed and is full of handy tear-off chips for fast keying of drawings or on-the-job specifying. You'll also be happy to know that the colorants of our new system are more compatible with modern coating materials for superior paint performance. If you'd rather not take the time to color our reference box for us, however, you can still help by sending us the coupon at the right. We'll see that you receive a reference box for your office — already color-full.

What's so "new" about your new Color system. Call me for an appointment. But you'd better bring along a new color reference box to leave with me.

my name

firm

address

city & state

IOWA PAINT
Manufacturing Co.
Architects Service Dept. 17th & Grand
Des Moines, Iowa
Freedom becomes reality . . . when you rely on first-quality lighting components and craftsmanship from ALLIED

Design flexibility is easier to achieve, when you count on performance-proved components from Allied Construction Services. You accommodate efficient lighting, for example, to just about any unusual interior. For the Collison Medical Clinic, shown above, Allied furnished and installed a special Lok Products grid, lighting fixtures from Cepco, Inc. and Polrized® lenses. We welcome the opportunity to discuss your projects.
IT'S HELPFUL TO KNOW YOUR SUBJECT!

Especially if your life depends on it. At Midwest Concrete, it's not so much a matter of lives, as livelihoods...ours! And since ours depends on pre-casting concrete, we feel it's mighty important to know all about the subject. We'd like to think we know as much as anybody. Our buildings don't fall down. It just might be true.

MIDWEST CONCRETE INDUSTRIES
WEST DES MOINES, IOWA

Iowa Agents: Swanson Gentleman, Inc. Des Moines
IOWA STATE UNIVERSITY ISSUE

July-August-September, 1966 - Volume XIII - Number 3

CONTENTS

The School That Grows .. 15
The Designed Environment 16
ISU Faculty ... 18
Undergraduate Work ... 23
Architectural Re-education 42
A Camera System For Models 45
ISU Lecture Series ... 46
Kawal Co-authors Text .. 52
Miscellany ... 53, 54

Cover: A whole faculty—see top page 18

The "Iowa Architect" is the official publication of the Iowa Chapter, The American Institute of Architects, and is published quarterly. The annual subscription rate is $5.50 per year. Appearance of names and pictures of products or services in editorial or advertising copy does not constitute endorsement by either the A.I.A. or this chapter. Information regarding advertising rates and subscriptions may be obtained from the office of the chapter, 401 Savings and Loan Building, Des Moines, Iowa, 50309. Telephone 244-7502, Area Code 515.
THERE'S A CERTAIN PRIDE IN A JOB WELL DONE!

* . . . and we enjoy it too!

SWANSON GENTLEMAN, INC.
450 N. E. 44TH AVENUE
DES MOINES, IOWA 50313
What happens when power fails?

How inconvenient or expensive is loss of heat?

How important are corridor and exit lights?

Do you need light in a stalled elevator?

How important is the PANIC Factor?

We are all aware of stand-by power needs in critical locations such as Hospitals, Nursing Homes, Communications, etc., but ALL of your clients deserve to know about the advantages of automatic stand-by power systems. Why not discuss customer requirements with your CONSULTING ENGINEER; then SPECIFY ONAN... the complete stand-by system with UNIT RESPONSIBILITY. Contact Keith Wells, 3E's Onan specialist, on specific applications.

SPECIFY ONAN ELECTRIC PLANTS

ELECTRICAL ENGINEERING & EQUIPMENT COMPANY

500 W to 400 KW
FOR ALL CAULKING
SPECIFY G-E
SILICONE SEALANT

STETSON BUILDING PRODUCTS
Des Moines, 512 S. W. 9th / Moline, 111-2nd ST. / Omaha, 33 Kiewit Plaza
312' STEEL UMBRELLA

Covering some 2½ acres, the new Dane County Memorial Coliseum at Madison, Wisconsin is a beautiful umbrella of Fenestra cellular steel folded plate. Equipped to provide “home ice” for University of Wisconsin hockey and already booked for the 1968 American Bowling Congress, the new arena will provide 7600 upholstered, theater-type seats for all kinds of shows, exhibitions and indoor sporting events. The 18” wide flange beams spanning from the compression ring at the center to the exterior columns, serve as valley support for the acoustical 'D' Panel folded plate sectors. The ridge fold line member is a 120° structural angle. For the complete engineering information on cellular steel folded plate, call your Fenestra representative or write Fenestra Incorporated, Lima, Ohio 45802.

FENESTRA

Law, Law, Potter & Nystrom, Architects
... treat your wall ideas to high fashion with

Regular Units
of Concrete Block

Walls are often used to create an image or to establish a purpose for the building. That's why astute architects try to relate wall and building much in the same manner a package designer wraps a product.

The versatility of concrete block gives modern architects all the help they need. They can use them as a single pattern, mix them for a combination pattern, or offset some units from others in the wall for added flair and dimension.

here are the friendly association members who are ready to serve you . . .

Ames Concrete Block Co.
Ames, Iowa
Iowa-Illinois Concrete Prod. Co.
Bettendorf, Iowa
Burlington Block Co.
Burlington, Iowa
Cedar Rapids Block Co.
Cedar Rapids, Iowa
Cherokee Concrete Products
Cherokee, Iowa
Zeidler Concrete Products Co.
Creston, Iowa
Creston, Iowa
Des Moines Concrete Block Co.
West Des Moines, Iowa
Concrete Products Co.
Dubuque, Iowa
Estherville Concrete Prod. Co.
Estherville, Iowa
The Johnston Corporation
Fort Dodge, Iowa
Coralville Products, Inc.
Coralville, Iowa
Concrete Products Co.
Iowa Falls, Iowa
Lake View Concrete Prod. Co.
Lake View, Iowa
Okaloosa Concrete Products Co.
Okaloosa, Iowa
Rock Valley Block and Tile
Rock Valley, Iowa
Concrete Products Co.
Sioux City, Iowa
Lakes Concrete Industries
Spencer, Iowa
Marquet Concrete Block Co.
Waterloo, Iowa

Iowa Concrete Masonry Association
an organization to promote the proper use of concrete masonry
HERE'S WHY ARCHITECTS SPECIFY ZONOLITE® MASONRY FILL

For Economy Because Zonolite Masonry Fill Insulation is poured into the block wall rather than applied to the interior surface, it allows the architect to achieve remarkable economies in construction. The interior wall surfaces may be of the same block that is exposed on the exterior. Decorate by simply painting.

For Insulation Value Zonolite Masonry Fill is an excellent insulation. The illustration above shows exterior and interior temperature contrasts on an 8" lightweight concrete block filled with the material. Note the U value of .17. Without the insulation, the U value of this same block is .33.

For Uniformity of Temperature The interior surface of the block stays at a comfortable temperature, all over. There are no hot or cold spots, because the method of thermal transmission, convection in the block cells, is baffled. Conduction through the web of block is negligible.

For Its Water Repellency Each granule of Zonolite Masonry Fill is coated with a special material so that it cannot absorb and hold moisture. Exhaustive tests at Penn State have proved the remarkable water repellency of the material. Interior walls stay dry.

For Sound Deadening A benefit of using Zonolite Masonry Fill Insulation. A common type of concrete block (3-cell, 8" x 8" x 16") reduces the loudness of sound 33 decibels all by itself. Add Zonolite Masonry Fill Insulation and the loudness is reduced another 20% to 31%.

Zonolite Masonry Fill makes it practical to insulate nearly any block or cavity wall. It’s low installed cost allows insulating many masonry buildings that didn’t warrant the expenses of other insulating methods.

For further information, write:

ZONOLITE
GRACE DIVISION
W. R. GRACE & CO.
4725 OLSON HWY. • MINNEAPOLIS, MINN. 55422
Look what's happened to the old steel door!

It used to be the ugly duckling of the construction industry. Now it poises, now swings with stately grace, proudly at the beck and call of the sophisticated architect.

What we're saying is that Ceco "Colorstyle" D'cor Doors live up to a reputation. Used by you, they take on the luster of your artistry. They are worth considering in this light.

For instance, you can shop for what you want through countless variations. The doors come smooth or embossed, and in the most appealing colors.

To keep the doors pristine, we ship them in polyethylene bags inside cartons. Your contractor erects them bagged and keeps them bagged. He puts the hardware on right through the polyethylene. The bags stay on till clean-up time.

Ask for catalog 2063-B, or better still, ask for a Ceco man to bring samples to your office. The Ceco Corporation, general offices: 5601 West 26th Street, Chicago, Illinois 60650. Sales offices and plants in principal cities from coast to coast.

CONTACT YOUR AREA
SALES OFFICE:
Des Moines, Iowa 50309 • 404 Hubbell Bldg.
Omaha, Nebr. 68101 • 1141 N. 11th St.
Chicago, Ill. 60650 • 1926 S. Laramie Ave.
FOR LIGHTWEIGHT STRUCTURAL CONCRETE

Weighs approximately 1/3 less than ordinary concrete!

Haydite is the original, time proven aggregate for producing lightweight structural concrete without sacrificing strength or durability. Other uses of Haydite include refractory concrete, insulating concrete, Guniting, insulating fills, roofing granules, filtering medium, hydroponics.

Producers of Haydite aggregate at Centerville, Iowa & New Market, Missouri

For information on specific uses of Haydite contact your local Ready Mix Plant or:

2440 PENNWAY GRAND 1-2570
The School That Grows and Grows

An annual review: the Department of Architecture, Iowa State University
Civilizations may be defined as patterns by which man gives order to his environment. Order is project-
ed by philosophy; that is, the understanding of under­
lying truths and principles, and by technology; that is,
the capability to utilize resources. Philosophies and re­
sources are interdependent and transitory. That is,
evolving philosophies are shaped by and give shape to
the environment.

The degree of well-being experienced by a civiliza­
tion is directly proportional to its success in giving
physical expression to its understanding of underlying
truths and principles. The lack of well-being within our
nation, unequal riots, unwashed student protests, and
increasingly ugly crimes in increasingly ugly cities,
can be attributed to our inability to give physical ex­
pression to the underlying truths and principles of our
society.

The importance of a designed environment for the
United States is timely and critical. The United States
currently utilizes a disproportionate share of world re­
sources to sustain an affluent and perhaps wasteful
standard of living. If living standards are to be main­
tained, the doubling of the population within the next
fifty years (some say if we are not talented we are at
least promie) will require a doubling of the nation's
capacity to provide food, fibre and shelter. The addi­
tional pressures of a burgeoning world population and
the real and politically forceful demands of "have not"
nations for more equitable distribution of the fruits of world resources will increasingly stress the
importance of producing more with less.

As a "have" nation exporting foods and fibres, the
United States is relatively well equipped to meet in­
creased demands. As a "have not" nation importing
environmental design and shelter concepts from others
more capable of integrating industrially-produced arti­ acts into environmental systems, the United States
faces its most critical challenge.

Should the United States do little to provide a de­
signed environment, the demands of increased millions
will eventually lower living standards below levels of
acceptable human dignity. Life sentences in the slums
will discourage patriotism. Environmental discontent
will find political expression as the frustrated "have
not" slum dweller identifies with the revolutionary
"have not" nations. Environmental pressures might
force a hard revolution in which blood is shed, but will
more likely encourage a soft revolution in which free
enterprise and free will is shed for omnipotent social­
ism. As government per se cannot legislate an enriched
environment, the design professions will be obligated
to shape the environment in accordance with political
decree.

The alternative to political revolution is a revolution
within the environmental design industries. Should it
be possible to provide the "have nots" with the equi­
table amenities of life through a more efficient, de­
signed utilization and integration of human and na­
tural resources, social and political differences will les­
sen under the pressure of common self-interest.

When plotting revolutionary actions, it is well to be
capable: Once upon a time in far away India, a mon­
key in a tree overlooked a fish in a pool. Many fair
days were spent in philosophic discussions as they
became fast friends. Then came the monsoons. The
shivering monkey, hunched under the dripping leaves
looked down upon the poor fish swimming for his very
life. Out of friendship and compassion the monkey
swung from his soggy perch and plucked his friend
from the raging torrents.

Compassionate capability without understanding may
kill. Frank Lloyd Wright once said: "A genius under­
stands what others only know about." Yet understand­
ing alone may not solve problems. A falling man who
understands gravity continues to fall.

Louis Sullivan said: "The answer to a problem lies
within the problem." It is not for us to deny problems,
but to understand them. If we wish to solve our prob­
lems we must accept the issues we face. What are these
issues?

The central issue remains that the United States is
incapable of giving physical expression to the under­
lying truths and principles of our society. This disabil­
ity may be traced to unrealistic cultural values and to
inefficient production technology.

The designed environment is a consumer product. If
production of consumer goods lags behind demand,
the nation is a "have not" nation. The basic problems,
of "have nots" are the stimulation of production, the
social justification of distribution of inadequate pro­
duction and the repression of need. Large population
to low production ratios encourage heavyweight, low­
efficiency, indigenous material, handicrafted artifacts.
The needs of "have not" nations encourage revolution­
ary policies designed to rapidly change the insuffer­
able present.

This is our current status. It is not in our best in­
terests to encourage a handicrafted environment. The
designed slums of bricks and two-by-four whittled
sticks must go.

If production of consumer goods increases more rap­
dily than the demand for basic necessities, the nation
is classified as a "have" nation. The basic problems of
the "haves" is the distribution of excessive industrial
production and the artificial stimulation of need. Dis­
tribution efficiency encourages sophisticated de­
sign, lightweight, high-efficiency, miniaturized where
possible, mass-produced artifacts. The successes of the
"have" nations necessitate evolutionary national poli­
cies designed to maintain or enhance the desirable
status quo. If the United States is to enjoy the bene­
fits of a designed environment it will be in her best inter­
ests to encourage high-efficiency production and dis­
tribution of more, for and with less.

Present inefficiencies can be directly traced to a
cumbersome, disjointed, handicrafted construction in­
dustry. The architect, and to some degree the engineer,
initially waste precious time in haphazardly determin­
ing client need. Additional time is lost in translating
with legal exactitude the methods by which a third
and unknown party might properly link a complex
of materials into a unique series of systems that might

Continued on page 47
"There is, or at least there is said to be, a certain faculty of mind, whereby the mind or the faculty, as you choose, is on the one hand enabled to dissolve a thing into its elements, and on the other hand, to build up these or similar elements into the same or a similar thing. This process is, I believe, called Logic; the first operation going by the name analysis, and the second, synthesis. Some men possess the half-faculty of separating; others the half-faculty of upbuilding. When the whole faculty exists in one man, in a moderate degree, he is said to be gifted. When he has it in a high degree, he is said to be highly gifted; and when in the highest degree he is called a genius or a mastermind. When a man has neither the one half-faculty nor the other half-faculty he is mentally sterile."

—LOUIS SULLIVAN

"The Young Man In Architecture"

"Our Department has a whole faculty".

RAYMOND D. REED

RAYMOND D. REED
Professor and Head of Department
B. Arch., Tulane University
M. Arch., Harvard University
Registered Architect
All photographs by James E. Brewer except those otherwise credited.

JAMES E. BREWER
Instructor; Design
B. Arch., University of Minnesota
Registered Architect

HOWARD C. HEEMSTRA
Assistant Professor; Design
B. Arch., Iowa State University
M. Arch., Cranbook Academy
Registered Architect
ERNEST A. IBS
Instructor; Design
B. Arch., University of Minnesota
M. Arch., M.I.T
Registered Architect

DONALD E. KAWAL
Instructor; Construction
B.S., M. S., Building Construction
Michigan State University

ROBERT A. LORR
Assistant Professor; 3-D Design
B.A., Saint Ambrose College
M. S., University of Wisconsin
WILLIAM P. STAMM
Instructor; Design
B. Arch., University of Michigan
M. Arch., University of Minnesota

D. ERIC WHEELER
Instructor; Design
B. Arch., Iowa State University
M. Arch., University of Pennsylvania

WALTER J. TOPOREK
Assistant Professor; Design
B. Arch., University of Manitoba
M. Arch., University of Pennsylvania
Student Work

Research Objectives and Design Course Determinants:

1st Year
The investigation of natural and human determinants of a balanced ecology.

2nd Year

3rd Year
The analysis and investigation of building systems and programming techniques. Development of intermediate design solutions in the contemporary urban environment.

4th Year
The analysis and synthesis of prototype systems in a balanced human environment. Direct application of component and system approaches.

5th Year
The design of continuous environments related to high-density contemporary socio-economic parameters. Individual development and expositions of a selected research topic.
PHOTOGRAPHY
STUDIO
HOME

URBAN
HOUSING
PROJECT

RETIREMENT
VILLAGE
ELECTRO-MAGNETIC TRANSPORTATION MODULE

HABITATION SYSTEMS IN URBAN DESIGN
STUDIES IN FORM AND MOTION
RAIN SCULPTURE
STUART M. BAIRD
“A Theatre for the Cobblestone Players”

STEVEN Y. BARNETT
“A Residential Community for the Multiply Handi­
caped Who Have Been Termed ‘Unemployable on a
Competitive Basis’ by the State Board of Vocational
Rehabilitation”

ROBERT R. BEUTZ
“Design of a Catholic Church to meet the Liturgical
Changes of Vatican II”

JAMES A. BRYGGER
“A Fine Arts Building for Briar Cliff College”

JAMES S. COOK
“A Farm Analysis and Design”

JOHN P. DIEKEN
“A School of Music for Iowa State University”

LAWRENCE L. ERICSSON
“A Veterinary Medicine School for Iowa State Uni­
versity”

WILLIAM R. FREDREGILL
“A General Hospital for Franklin County”

DOUGLAS A. FREY
“A Cultural and Recreational Facility for the Young
People of Ames”

WILLIAM R. GARRETT
“A Municipal Airport for Des Moines”

JERRY W. GUERTS
“A Classroom Building for Iowa State University”

STEPHEN J. HALLAUER
“A Computerized Post Office Facility”

MICHAEL P. HARTUNG
“A Resort for Manhattan Beach, Minnesota”

RICHARD J. HERRICK
“A Basketball Gym for Iowa State University”

JOHN R. HILLMAN
“An Atomic Energy Laboratory and Plant”

JAMES L. Klapste
“A Die-casting Plant”

WALLACE KUBEC
“A Pea and Bean Cannery”

TERRY D. LEWIS
“A Center for the Culturally Deprived”

WILLIAM M. LIEB
“A Decentralized University Community”

DAVID A. LIPP
“A Public Aquarium for Des Moines”

LAWRENCE A. LUICK
“An Aerospace and Civil Engineering Laboratory
Classroom for Iowa State University”

REYNOLD W. MATZ, JR.
“A Corn Processing Center”

MICHAEL F. McPHERSON
“An Academic and Research Library for Iowa State
University.

HOWARD G. PALS
“A Treatment Center for Emotionally Disturbed Chil­
dren”

NOEL J. RAUFASTE
“Architecture for Various Approaches of Construction
for Flying Bases on the Lunar Surface”

JOHN M. SHAW
“An Educational Building System”

EWARD L. SOENKE
“An Eastern Iowa Community College”

JERRY W. SWITZER
“A Special Education Center for the Physically Handi­
capped”

BARBARA T. WELANDER
“A Veterinary Clinic for Iowa State University”

LARRY J. WINKER
“Architecture for the Blind”

DAVID R. WOOD
“A Redevelopment of Arnolds Amusement Park”

THOMAS A. WORNSON
“A Prototype Community College”

HAROLD M. YOUNGMAN
“A College Union”

WALLACE KUBEC
DAVID J. BERINGER
Bellwood, Nebraska
B. Arch, Notre Dame University
Thesis topic: “The Economic and Aesthetic Determinants of Speculative Housing”

PREE BURANASIRI
Bangkok, Thailand
B. Arch., Chulalongkorn University
Thesis topic: ‘An Electronic Bank for Des Moines, Iowa”

WILLIAM I. DIKIS
Des Moines, Iowa
B. Science, University of Kansas

NOBUO KAWASAKI
Tokyo, Japan
B. Science, Kobe University
Thesis topic: “Construction Scheduling”

ROMAN R. NAYAR
Madras, India
B. Arch., Madras University
Thesis topic: “State Bank of India”

ANDREW SEAGER
Bronx, New York
Cornell University
Thesis topic: “The Sociological Variables of Architectural Forms”

Upper left: House designed by William Dikis for Charles Herbert and Associates, Des Moines.

Lower left: Japan National Theatre Competition; collaborative design and drawing by Nobuo Kawasaki.
Architectural Re-education
BY TORE BJORNSTAD, A. I. A.

Mr. Bjornstad, senior architect for the Canadian Broadcasting Corporation, is teaching at ISU and doing research on the use of computers in architecture.

There is nothing more comforting to the practicing architect than seeing the architectural world through the tinted glasses of his own professional magazines. The realities seen by the outside world are quite different.

The architects today are not responsible for more than 10 to 15 percent of the total building volume of the world. They are doing very few of the industrial buildings; these are basically being designed by industrial engineers, structural engineers or package dealers.

We have arranged for the computer to be a main tool. The responsibility for purely creative architecture will be strictly vested in the architects for quite some time.

The basic problem inherent in these changes is that we are not educating enough architects. Neither are the architects attuned to the real needs of society.

Most of the architects are not willing to accept the novel role of custom-making a very limited number of our buildings, and that they therefore wish to hold down a leading position among those forces responsible for future construction in this country.

If we take a really analytical look at the circumstances of the practicing architect, we recognize that maybe 80 percent of his time is spent on routine, non-creative matters which really do not warrant his specific attention. The architect's efforts should be concentrated on the more creative aspects of his work—the ones that require individual attention and thought.

Lest there be at this point some question about it, let me state that electronic data processing is only a tool. The responsibility for purely creative architecture will be strictly vested in the architects for quite some time.

We have arranged for the computer to be a main topic at the Iowa Chapter A.I.A. convention in January. What computer technology will mean to us will be discussed by presentations of specialists from I.B.M. as well as by Dick Muther from Kansas City and C. Thompson from Houston.

Let me emphasize in closing that the most demanding requirement we face is to introduce these new concepts into our architectural schools. We must recognize that architects cannot afford to subscribe solely to a policy of self-admiration or to spend our time pouring out superlatives about what we are doing for the world. We will have to recognize and adjust to the world of exploding realities. Right now this world seems to be slipping away from us.
A Camera System For Models

An architect's idea and an engineer's design and photographic genius combine to create an unique new device.

Architectural model photography has reached such a high state of development that it is now possible to create an accurate eye-level graphic impression of a proposed building before it is built.

A camera system which will enable architects and students to achieve remarkable photographs of their models has been developed and constructed at Iowa State University. The apparatus will be put into operation following the completion of an enclosure for it in the Department of Architecture.

The need for such a system was made clear by Professor Leonard Wolf late in September of 1960. As Head of the Department of Architecture at that time, he presented the challenge of its design and construction to Ken. L. Henderson, Assistant Professor, (Mechanical Technology, Technical Institute) newly arrived on campus but by a few weeks. Professor Lawton M. Patten of the Department of Architecture was designated architectural consultant for the project.

Professor Wolf's feeling was that it seemed to be common practice at the time to make photographs of models for the model's sake, and that most of the photographs were "bird's-eye" views which he felt were of no interest to an architect's clients. He described the kind of model photograph which he felt would be of interest: one which would closely resemble the completed structure from, say, a corner of the grounds or from the middle of an adjacent street. Wolf asked Henderson if such photographs could be made. Henderson's reply was that he had already made some, and would present Wolf with some examples.

One of the examples, a typical one though not architectural in character, is shown on the facing page. In a contest of "table-top" photography, this print did not get a single vote, and the jury took Henderson to task for entering a picture not appropriate to the assigned subject matter of the exhibit. On learning that the subject of Henderson's photograph was a 13-inch model, they apologetically admitted that they thought it was a picture of a real boat. This, then, was the kind of illusion sought by Professor Wolf.

Subsequently, Dr. George R. Town, Dean of Engineering, asked Henderson if he could in his spare time design and construct a suitable camera for Professor Wolf, at the same time warning there were no funds currently available for such a project. With but a few weeks on campus as mentioned, Henderson was blissfully ignorant of the potential magnitude of his involvement. Probably out of habit engendered during more than forty-eight years in industry, Henderson accepted the assignment. Thus began the production of Professor Wolf's camera system, which has since its completion been dignified by the designation Photo-Heliogon.

The "spare time," usually evening hours at home, got stretched out to six years—September 1960 to September 1966, and Henderson's work became involved even to the point of making many of the small fittings for the Photo-Heliogon on his watchmaker's lathe. With limited help from few other sources, Henderson designed, fabricated, and erected the device as it now stands in the Department of Architecture.

It has been a source of profound regret with Henderson and many others that Professor Wolf was never able to see the product of his creative idea. Professor Wolf died even before it was possible to complete the camera unit, the first of the several Photo-Heliogon components to be constructed.

The technology of the Photo-Heliogon, as stated previously, evolved from Professor Wolf's idea that the usual photograph of an architectural model fails to convey a realistic impression of the architect's design, causing possible client misunderstanding and dissatisfaction. Even the direct viewing of the model itself could, Wolf felt, produce client dissatisfaction because of the difficulty in getting appropriate lighting and in getting the client placed at scale eye-level and distance. Even if the latter conditions were prepared, so to speak, for the client, Wolf still felt that the architect could not be in complete control of the situation, and that the client might still be able to draw inaccurate impressions from a direct viewing of the model.

One approach to correcting these difficulties, Wolf thought, was to present to the client photographs of a model built from the sketches of the building-to-be. The photographs would be properly executed with regard to the optics involved, as it is the optics which provide the key to the problem.

To produce a photograph for presentation to the client, then, called for the invention of a camera system which would be able to impart a very considerable realism to its photographs of models. The Photo-Heliogon was the resultant invention, and its design was based on the optic conditions which must be satisfied for the production of a proper model photograph.

The conditions to be satisfied are that the angles subtended by the several pairs of the model's features (with the lens of a camera as their apex, and also with the lens being placed at a suitable scale distance) must be reproduced in a photograph (with the viewer's eyes as their apex, and with the photograph being held at normal reading distance). To have the proper effect, the photograph must be made open-book size (about 8" x 10") and must be mounted to keep it completely flat (curled photographs distort the effect).

The model is the archetype of the finished structure; thus it follows that the client standing at a point on his property which corresponds to the scale location of the lens before the model should view what he has seen in the photograph, and vice-versa.

The construction of the Photo-Heliogon is, in simplest terms, that of a solidly-based table which is surmounted by a tubular arc. Attached to the arc is a special lamp (representing the sun), and attached to the table edge is a special camera (representing the viewer's eyes).

The "sun" and "eyes" are very accurately adjustable, and the table will accept models of from 1/32 inch to 1/2 inch scales. Since the angle and sharpness of shadows in a model photograph are as important as the subtended angle relationship mentioned earlier, the lamp has a concentrated filament, and is mounted in a way that allows the creation in a model photograph of any condition of sun at latitude 42 degrees (Ames, Iowa) from high summer to low winter sun, any hour of the day.

The Photo-Heliogon represents an invaluable aid-to-study for the students and faculty of the Department of Architecture, Iowa State University. To develop its potential even further, however, Professor Raymond D. Reed, A.I.A., plans to make it available to Iowa architects—a program which will undoubtedly find eager acceptance.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 13</td>
<td>R. Buckminster Fuller, Visiting Professor of Design Science in residence 10-14 October</td>
</tr>
<tr>
<td>October 10</td>
<td>L. Ralph Scott, C.E. Tudor Engineering Co., San Francisco</td>
</tr>
<tr>
<td>October 20</td>
<td>Henry L. Kamphoefner, Dean, School of Design, North Carolina State University</td>
</tr>
<tr>
<td>November 3</td>
<td>William Mouton, Professor of Architecture Tulane University</td>
</tr>
<tr>
<td>December 1</td>
<td>George Shane, Art Editor Des Moines Register & Tribune</td>
</tr>
<tr>
<td>December 12</td>
<td>R. Buckminster Fuller</td>
</tr>
<tr>
<td>December 15</td>
<td>Jan Rowan, Editor "Progressive Architecture"</td>
</tr>
<tr>
<td>January 5</td>
<td>Bruno Leon, Dean, School of Architecture University of Detroit</td>
</tr>
<tr>
<td>January 19</td>
<td>Charles Colbert, Architect, Planner and Educator, New Orleans, Louisiana</td>
</tr>
<tr>
<td>January 26</td>
<td>James Marston Fitch, Architectural Historian, Columbia University</td>
</tr>
<tr>
<td>February 2</td>
<td>Herbert H. Swinburne, Architect Nolen, Swinburne & Associates, Philadelphia</td>
</tr>
<tr>
<td>February 6</td>
<td>R. Buckminster Fuller</td>
</tr>
<tr>
<td>February 16</td>
<td>Randall Harrison, Assoc. Professor of Communication, Michigan State University</td>
</tr>
<tr>
<td>March 9</td>
<td>William Caudill, FAIA, Dean, School of Architecture, Rice University</td>
</tr>
<tr>
<td>March 16</td>
<td>John M. Johansen, Architect New Canaan, Connecticut</td>
</tr>
<tr>
<td>March 20-24</td>
<td>R. Buckminster Fuller</td>
</tr>
<tr>
<td>March 30</td>
<td>Charles Kahn, Professor of Architecture, School of Design, North Carolina State Univ.</td>
</tr>
<tr>
<td>April 3-7</td>
<td>Raymond Crites, Architect Cedar Rapids, Iowa</td>
</tr>
<tr>
<td>April 6</td>
<td>Tadeusz Barucki Architect and photographer</td>
</tr>
<tr>
<td>April 13</td>
<td>Roger Montgomery, Director, School of Urban Planning, Washington University, St. Louis</td>
</tr>
<tr>
<td>April 26</td>
<td>Student Awards Banquet Speaker to be announced</td>
</tr>
<tr>
<td>May 11</td>
<td>Albert Szabo, Chairman, Department of Architectural Science, Harvard Graduate School of Design</td>
</tr>
</tbody>
</table>

The Department of Architecture, Iowa State University, welcomes the public and friends of the Department to attend the 7:30 p.m. lectures in Kildee Auditorium.
satisfy the owners’ stated needs. Additional time is required for the third party constructor to evaluate the architects’ communications and to estimate the cost, risk and profit. Additional time is lost as the prospective owner evaluates, accepts or rejects the offer to build. If accepted, the handcrafted construction proceeds at an agonizingly slow pace.

Social need for a designed environment increases more rapidly than the ability to satisfy that need. Excessive elapsed time from stated need to finished product, disproportionate increases in construction costs, social acceptance of prefabricated buildings and increasing costs for customized design services to a shrinking segment of society are symptoms of a profession and society in trouble.

The architect is the prime designer of human space. The professional services of the architect must be reshaped if we are to shape a meaningful human environment. Architecture reflects, or should reflect, social values.

Yet the conventional architect is too busy handcrafting construction details to coordinate the growth of urban humanity. It should be recognized that handcrafts are the products of underdeveloped societies. The United States is a “have” nation in electronics, communications, agricultural production, medical and health sciences, transportation and per capita power availability. Architecturally the United States is a “have not” nation.

If the architect is to be broadly effective he must develop increased productive capabilities, the freedom of operation and the vision necessary to portray the best that exists within us.

The position of the architect of today parallels that of the portrait painter of yesteryear. While the camera and computerized industrialization fail to express our souls they better serve more basic needs. The essence of art is perceptive understanding of humanity. Time will illustrate that industry, like the camera in the hands of an artist, is capable of poignant expression.

If significant change is to occur, the definition of architecture should be so liberalized as to group the widest spread of concepts and methods under the largest common denominator. Should a monopoly of inadequate professional services be condoned through existing licensing laws, widespread and open violation of statutes designed to protect the public and the public service professions will result in a fragmented, emasculated profession and an unprotected and disadvantaged public.

To encourage progressive architecture and to minimize potential strife, I would submit that Architecture be defined as: The utilization of available resources for the shaping of an environment expressive of and conducive to the growth of meaningful human values.

With the acceptance of more broadly-defined responsibilities, the architect must then accept tools to meet expanded responsibilities. The pressures of population demand that he be freed from the unnecessary slavery of custom design for all clients. The person who said that architects are brilliantly solving exactly the wrong problems was right. If architecture reflects society, perceptive architects can anticipate environmental needs.

Most of the mass-produced artifacts of our society except our buildings and cities are designed in anticipation of need. Regionally acceptable prototype solutions to repetitive functions such as schools, homes, service stations, etc., can be designed in advance of stated need for rapid industrial production and assembly upon demand.

Repetitive units plugged into a universal distribution system (containing power, air conditioning, fluid supply and disposal, and structural support) have progressive merit. The raised columns of Le Corbusier and the pediments of ancient Greece are but two more conservative architecturally acceptable devices that permit sensitive bonding of universal prototypes to unique site situations.

The potential advantages of widespread anticipatory design are obvious: excessive lead time would be reduced; increased opportunities to anticipate, interpret, determine and shape human functional needs and relationships would stimulate architectural research and development. Research and development would yield increased understanding and efficient sophisticated expression of the designed human environment.

What is the designed environment? It is one in which the belief exists that it is in the best interests of humanity to most efficiently express human and natural resources.

It is one in which the function of education is to stimulate and give expressive capabilities to the natural talents and abilities of the individual. These best find expression and meaning when used to enrich social values. In essence, the education process is a social contract between the individual and his society. Society agrees to train and reward the individual for service beneficial to society. It is evident that education must change to meet the needs of a changing society. It is the function of the architect, the engineer and the design scientist to stimulate, optimize and best utilize the physical substance of our environment: to best exploit the nature of the material.

As the demand for equitable distribution of resources increases, ways must be found to accomplish more with less. It will be necessary to inventory and best utilize total resources. Lands and seas best suited for food production will be reserved for crops of plants, not people. Lands best suited for mineral production will be reserved for that use. Each productive resource will be optimized. Land incapable of significant production will be reserved for consumption: housing, recreation, intellectual stimulation, and care of humanity. The basic concern of the designed environment will be to achieve the most efficient use from all resources so as to encourage the highest potential development of humanity . . . and its meaning.

The physical accomplishment of the designed environment will be difficult. All productive resources must be surveyed and shifted where necessary into more useful production. Farm lands must be returned to production to meet world needs. Haphazard population groupings (the residue of wars between cities and transportation systems) should be regrouped and optimally spaced along efficient transportation and communication routes. Excessive population centers that choke their feeder lines will die. With the ruling of equal value for all votes, the reapportionment of urban America will in effect form a government of city-states. Efficient production will be matched with efficient consumption. Art is the efficient expression of value. Cassatts is an efficient musician: the best of all the artists and philosophers, those who can extract more from less, will be encouraged. With efficient transportation, no longer do cities for people require factories. Consumption units, normally called cities, will be constructed by single companies building the designed city, into which is designed change and in-
individual expression. A civilization will come to be that is composed of modular components, which like letters in the alphabet will express an environmental syllable, and which may be grouped to express all but the worst of profanity.

As a more meaningful method of living within the designed cities becomes available, the concentrations of disadvantaged humanity living in all but a few of our cities will move to the new towns.

The pressure for conservation of natural resources, however, will prevent the aging cities from oxidizing into obscurity. As rich concentrations of mineral resources, they will be mined. All but certain strategically located sections of the majority of existing cities will be mined for cast iron sewers, copper tubing, limestone and concrete, steel wires and rails, concentrated accretions of ceramic materials... all will be more efficiently used, and the land returned to its best potential use.

While the merits of such an environment appear obvious and perhaps odious, the American public is psychologically not ready for such a future. It is not for us to deny but to understand this unwillingness of our collective client of four hundred million to be pulled from the contemporary raging torrents. Four factors that significantly contribute to this phenomena are:

The identity, territory, Matt Dillon and Rene Descartes factors:
Illustrating each, in chronological order:

The Descartian Syndrome: In the 17th century, Rene Descartes, individually faced with the schizophrenic dilemma between the dictums of theology and logical reality, classified the whole of human understanding into the sciences (the objective logical investigation and classification of the actions of the material

Why International Hotel in L. A. chose VISE WALL GLAZE SYSTEMS

Architects of the International Hotel in Los Angeles chose Vise Wall Glaze Systems to cover the exterior of the building. Why?

- Because Vise Wall Glaze Systems do not crack, chip, peel or craze.
- Because Vise Wall Glaze Systems will not yellow or fade.
- Because Vise Wall Glaze Systems are versatile... specific coatings for specific jobs.
- Because Vise Wall Glaze Systems offer unlimited choice of colors, textures and decor patterns.

Specify Vise Wall Glaze Systems on your next job. Complete details in Sweet's Catalog, Book #6, Section #13a under "Wall Coverings". Or write manufacturer for detailed specifications.

Manufactured by COTA INDUSTRIES, INC.
5512 S.E. 14TH ST. • DES MOINES, IOWA
universe), and the arts (the subjective human reaction to that environment). Whole man was split asunder.

The hemisphere of objective understanding of the material universe exploded with the discovery that more can be learned by narrowing the search arc. (I have been told that if one is sufficiently selective in his choice of topic, he can become the world's authority on that topic with four days of intensive study.) As man scientifically inspected and classified the exploding universe, the artistic introspection of meaning imploded his soul into the depths of individualistic subjectivity. Thus modern man became unbalanced. His well-being as a capable scientist occupationally seems to demand that he not widen his search arc into the hemisphere of subjective values.

Until quite recently, any widening or grouping of individual disciplines so as to study similar patterns and symbiotic systems was looked upon as superficial generalization. The astronauts and the society that encourages the astronauts to orbit the earth in a beautifully designed environment and then return to home: a jerrybuilt handicrafted imitation cape cod colonial whose concrete slab rests on the crab grass and shifting sands of Cape Kennedy, must be considered unbalanced. (When such men have the power to permanently leave earth, I wonder what will be their choice?) This disease of separating soul and substance is particularly virulent among the newly rational and is usually evidenced in fear statements. Perhaps cybernetics, the history and philosophy of science, and the concept that art is science undefined might provide a cure to the Descartian syndrome.

The Matt Dillon Disease: Nations possessing undeveloped and unconquered natural resources encourage strong individualism. The strong individualists who won our West were given free land and the assurance that every man's home was his castle. In this state of domestic extraterritoriality, all law, including man and
COLOR-BALANCED . . . Color-balanced Sun-tile ranges from warm and bright colors to cool and darker hues. These colors make it possible to achieve visual effects suited to personalities, regional and geographical localities and general or specific purposes of the installation.

Territorial Security is based upon the need and the capability to defend sufficient territory to sustain meaningful life. Great amounts of landed territory and great amounts of intellectual territory must be reserved for those incapable of efficiently sustaining life by physical or intellectual activities. Fear and hostility are evoked by the Aborigine or the bigot if physical or intellectual territory is penetrated by those capable of inflicting loss of security. The amount of territory required is inversely proportional to the capability to defend life. The wise and the strong require little if any buffer zones. They travel light and far. Land is but a launching pad. Urban man depends upon intelligence, not land, to sustain life, yet the concept of land is retained as a requisite to security. To feel secure, man must either live by and within the products of his mind, or be assigned natural buffer lands as necessary to compensate for his deficiency in humanity. Humanity is the relationship of man to men, not man to earth.

The last factor making progress difficult is Identity.
Identity is of two types. One is that in which the observer identifies by noting differences in what he views, and the other is that in which the observer possesses identity from within. One is the identity of the cover of the book, the other is what the book contains. Those incapable of harboring discerning inner convictions or of reading human values demand that all books have different covers. The homes of the illiterate must OUTWARDLY be different; only the philosopher and the bum are impervious to appearances. The capability to satisfy this need has pathetically degenerated to the only potted plant, the only sports car or the only red-painted door in a sea of dull gray suburbia.

Successful treatment can be achieved through accepting modules of physical expression that interlink all values into a comprehensive whole...a modular world...a designed environment!

To achieve a designed environment in which all will be capable of meaningful expression:

1. The whole man Descartes split asunder should be reassembled, tuned to the present, and balanced.

2. Pablo Cassals, Albert Schweitzer and other similar men should be capable of developing bigger fan clubs than should the Matt Dillons.

3. Sufficient humanity should be encouraged to dispense with animalistic and intellectually antagonistic buffer zones.

4. Inner identity should outshine surface features.

Professionally, the architect must develop the intellectual honesty and technical capability to express the designed environment...that environment which encourages the growth and is conducive to the free expression of meaningful human values. It is not for us to deny, but to understand.

This is architecture, the designed environment.
Humpty-Dumpty sits on a 'wall . . .

and, man, it is no ordinary wall! It boasts the distinctive styling of Vincent Clay Products Company. And what sold Humpty on the wall is Vincent's ability to supply high quality materials WHEN the contractor needs them.

Vincent Clay offers a complete line of face brick, glazed tile and building tile, plus exclusive distribution of nationally known specialty brick.

Humpty NEVER wants to get down. Now do you see why?

VINCENT CLAY PRODUCTS COMPANY
2930 Fifth Avenue South, Fort Dodge, Iowa
Factory: 2 1/2 Miles South of Fort Dodge

KAWAL CO-AUTHORS TEXT ON CRITICAL PATH METHOD

Presently, along with two other authors, Professor Byron Radcliffe, University of Nebraska, and Ralph Stephenson, P.E., a consulting engineer in Detroit, Donald E. Kawal is completing the manuscript for a textbook concerned with the Critical Path Method (CPM). Kawal is an instructor teaching construction at Iowa State University.

His contribution covers computer applications of the tool, including basic CPM calculations, cost optimized schedules and resource optimized schedules, as well as the mathematical development of some extensions of the technique. The textbook (to be published early next year by Cahners Publishing Co., Chicago) encompasses many aspects of project management from basic principles to actual implementation of CPM in the field. Emphasis directed to the use of CPM as experience has shown this to be the bottleneck in the acceptance of the technique.

Early next year, research will commence on the development of a geometric-mathematical model of a hypothesized building contractor in his environment. Flows like income and resources and their associated propensities like services and production units will be modeled as they relate to the constructor in his system. The system components include the architect, the engineer, material vendors, sub-contractors, and labor sectors. External influences such as the general economy will be tied to the system.

The procedure will involve the utilization of systems theory as developed by electrical engineers, i.e., an analog will be developed between physical systems and socioeconomic systems. Stabilization and optimization of the system over time will be considered. Inherent in the study will be input-output analysis as defined by an economist.

At present the research is exploratory and highly conceptualized, with little on paper. In order to be able to mathematically model components of the system, a comprehensive collection and analysis of relevant data must be undertaken.

The general objectives of the effort include the development of a realistic model to be used in construction management "games" and a recommendation as to optimized feedback and inputs to the system.
AIA SENDS FEE STUDY TO GAO

The requirements of modern design and building construction have made the 27-year-old federal limitation of 6 percent on architectural and engineering fees for government work obsolete and detrimental to the economic interests of both the government and the design professions.

This is a conclusion reached by the American Institute of Architects and contained in a study of statutory architect-engineer fee limitations delivered on October 28, 1966 to the General Accounting Office.

The A.I.A. position paper, prepared to assist the GAO in its government-wide study of interpretations and applications of fee limitations, urges repeal of the 6 percent limitation originally established by Congress in 1939.

The Institute points out that for nearly three decades, the fee limitation has been written into law for other agencies without any recorded Congressional examination of the rationale for the limitation or of changed conditions.

Among other findings, the study maintains that:

The cost of architectural services has risen faster than the cost of construction, due primarily to the complexity of today's buildings and component systems;

The limitation, while considered fair in 1939 for relatively simple structures, is now completely unrealistic for laboratories, electronic facilities, remodeling and rehabilitation services and specialized structures, such as nuclear facilities;

Because of the limitation, an architect frequently cannot allow as much time for research and design as the project needs, thus preventing possible cost-cutting design solutions.

A long time-lapse between conception of a project and completion of the structure, with the architect's fee based on an estimated construction cost, which does not take into consideration changing economic factors during the design and building process, discourages many professionals from accepting federal work, the study asserts.

The A.I.A. report to GAO calls for repeal of the statutory limitation and suggests instead that an architect's fee should be negotiated on the basis of the size, nature and complexity of specific projects, the usual procedure with private clients.
FIRE CHIEFS DISCUSS SKYSCRAPER HAZARDS

Skyscrapers, today's vertical cities-within-a-city, are creating grim fire control problems, two veteran fire chiefs agreed today.

New ideas for increased fire control protection in high-rise buildings come from Edward P. McAniff, former chief of the New York City Fire Department, and Chief Fire Marshal Curtis W. Volkamer of Chicago. They made their recommendations in addresses prepared for the 70th annual meeting of the National Fire Protection Association (NFPA) in Chicago, with some 2,000 U.S. and Canadian fire experts in attendance.

"Serious, unusual and spectacular fires occur in these high-rise structures," declared McAniff. "More people and more hazards are being placed 16 stories high, or more, above the ground—whereas firefighting equipment is still geared for six-story buildings.

"Architects are not designing these buildings with a full realization of the fire problems that have occurred and will continue to occur."

McAniff proposed that, with the spread of high-rise buildings in communities across the continent, the NFPA originate a High Rise Study Committee to work both for improved fire protection and fire fighting.

The number of persons housed, or working, in individual high-rise buildings can exceed the population of many towns and cities—one New York building alone housed 60,000 workers, McAniff pointed out.

In such a vertical city, the main transportation system—elevators—can go into a state of paralysis or confusion during a fire, both Volkamer and McAniff said. And both emphasized that fire companies moving to fight fire on upper floors have had the experience of losing communication with supporting ground crews as telephone lines failed.

The New York expert dismissed suggestions from some quarters that fires in fireproof buildings cannot be large or spread from floor to floor, or that steel supporting girders need less fire protection. He called for more, not less, protection in tall buildings.

What are some of the fire perils in a lofty building? Chief Marshal Volkamer cited firemen perishing when they opened an elevator door to reach a fire—only to be blasted with live flames and 1,000 degree gases. He told of complicated problems of water-supply, of water-soaked automatic elevator controls failing, and of firemen vainly trying to find a building's key that would provide manual control of elevators.

Among critical problems facing fire fighters, outlined McAniff, was the peril of possible mutilation of great numbers of people on the ground if firemen—seeking ventilation—should break quarter-inch glass on the exterior of modern buildings.

He told of telephone line failures within a burning building, Chicago's fire department, he said, is developing a new "Power Phone" which can be lowered to connect high-floor fire fighters with the ground.

An airplane hitting a skyscraper seems improbable, but McAniff pointed out that it happened in 1945 when a bomber slammed into the 78th and 79th floors of the Empire State Building. It released 800 gallons of burning gasoline. The impact ruptured a standpipe riser designed to provide water for fire fighting. Knocked out were elevators above Floor 65, and telephone service linked with the standpipe system.

Yet, he said, the fire was extinguished within 35 minutes of the first alarm—because the building was of Class 1 construction, without major deficiencies.

Among his recommendations for an NFPA study committee are:

Refuges where building occupants may safely congregate without attempting to use elevators or descending many stairways.

Arrangement for elevators and stairways to discharge into public halls free of burnable materials, and vented to outer air by large openings.

Shafts designed to prevent spread of fire, smoke and gases over great distances.

Communications built in for emergency conditions.

Elevator systems with standby power, fully controllable by the fire department in emergencies.

Adequate sprinkler systems to supplement a standpipe system in all danger areas above the sixth floor.

And, particularly for upper floor restaurants and ballrooms, special alarm and smoke removal facilities.
Warehouses to skyscrapers, bridges to water tanks...

TODAY, IT'S

PRESTRESSED CONCRETE

More and more architects and builders are choosing **prestressed concrete for structures of every size and type**. Prestressed concrete makes efficient use of two quality materials—high strength concrete and high tensile strength steel. This combination provides new opportunity for bold and imaginative design as well as money savings.

Prestressing makes possible long spans with beams and girders of shallow depth. Precasting of prestressed elements and site work can proceed together to shorten building schedules. Erection of the prestressed members is rapid. Prestressed designs give important weight reduction in large structures.

Upkeep costs are low. Concrete need not be painted. And in many cases, concrete's durability and fire resistance earn lower insurance rates.

The many advantages of versatile prestressed concrete provide structures that combine architectural appeal and construction efficiency.

PORTLAND CEMENT ASSOCIATION

408 Hubbell Bldg., Des Moines, Iowa 50309

A national organization to improve and extend the uses of concrete

TYPICAL PRESTRESSED CONCRETE PRODUCTS

...AND HOW THEY ARE USED

- Warehouses
- Industrial plants
- Bridges and overpasses
- Schools
- Gymnasiums
- Auditoriums
- Public buildings
- Shopping centers
- Office buildings
- Terminals
- Storage tanks
- Stadiums
- Railroad ties
- Apartments
- Transmission poles
A new brick has been developed by Fort Dodge Brick and Tile Company that we think you'll like. It is called EBONY and, as the name implies, is a rich color of very dark reddish browns and blacks. You can specify the black range or blended with deep browns or the deep browns alone.

They are available in regular or norman sizes; in the ever popular Wirecut as well as in the rough Nubark or lightly brushed Stippletex textures.

Please ask us for sample panels. We think you'll understand why we're so proud of this new unit once you see it for yourself.