JANUARY, 1958

AMERICAN INSTITUTE OF ARCHITECTS
FEB 27 1958
LIBRARY

Indiana architect
the Rapidex equation:

\[C_s - R_{ms} + R_{bv} = \]

Better Buildings at Lower Cost

where

- \(C_s \) = cost of structure
- \(R_{ms} \) = money-saving qualities of Rapidex
- \(R_{bv} \) = bonus values of Rapidex

- Rapidex is functional concrete. It is a special formulation of Portland cement and expanded shale that produces a truly superior slab system for floors and roofs... one that gives you a textured surface of remarkable beauty, plus many other advantages that make any building a better building.

What are the money-saving qualities of Rapidex?

- No erection delays due to weather; no waiting for curing.
- Can be installed at the rate of 3,500 square feet per day.
- Eliminates shoring, forming and reinforcing-steel placement needed in solid slab construction.
- High resistance to heat loss. Can save a full inch of costly insulation.
- Lowest insurance rates. Take advantage of the Rapidex 2-hour fire rating to save your client money for the life of the building.

What are the bonus values of Rapidex?

- Balanced sound control—Rapidex's N.R.C. of .55 is the ideal compromise between noise reduction and reverberation.
- Practically ageless. Rapidex is unaffected by water, humidity or high temperatures.
- Approaches zero maintenance—textured surface stays cleaner longer... can be scrubbed without the slightest chance of damage.
- The perfect combination of function and beauty. Rapidex eliminates the need for a suspended ceiling; handsome textured surface imparts distinction to any building.

The Rapidex equation can be profitably applied in the design of your next building. Call CLifford 5-2421, or write

RAPIDEX DIVISION
Spickelmier Industries, Inc.
1100 East 52nd St., Indianapolis
CONTENTS

Life in the Atomic World, by Dr. Milton Burton 4
Why Employ an Architect? ... 5
President's Column .. 6
I.S.A. Membership Decision .. 6
Winter Meeting As Seen by Camera 8-9
School Building Program Display 10
I.S.A. Calendar of Events .. 10
A.I.A.'s Reason for Being .. 12-13

The Indiana Architect is the official publication of the Indiana Society of Architects, a chapter of the American Institute of Architects. It is published monthly in Indianapolis. Editorial and advertising offices are located at 5930 Gladden Drive, Indianapolis 20, Ind. Editorial and advertising policy for the Indiana Architect is governed by the Publications Committee, Indiana Society of Architects, whose members are Trace Christenson, Jr., 230 W. Washington St., South Bend; Ray Thompson, 2211 E. 52nd St., Indianapolis; Robert Schultz, 1015 Hudson Ave., South Bend; Henry Meier, 5636 Marilyn Rd., Indianapolis; Ray Ogle, 10024 Ruckle, Indianapolis; Herb Thompson, 3103 Ashland Ave., Indianapolis, and Herman Rall, 762 DeQuincy St., Indianapolis. The Indiana Architect is edited by Joe Ledlie, 5930 Gladden Drive, Indianapolis 20, Ind.

The opinions expressed in the Indiana Architect written by various members of the Indiana Society of Architects or persons who are not members of the I.S.A. do not necessarily reflect the opinion of the Society unless specifically stated.—The Publication Committee.
Notre Dame Scientist Paints
Grim Picture of Atomic World

World Cannot Survive Atomic War,
Architects Told at Annual Winter Meeting

(EDITOR'S NOTE: Principle speaker at the Annual Winter Meeting of the Indiana Society of Architects last month in the Marott Hotel, Indianapolis, was Dr. Milton Burton, Professor of Chemistry and Director of the Atomic Energy Program at the University of Notre Dame. Following are excerpts from Dr. Burton's address.)

I want first to tell you how much I appreciate the opportunity to address a gathering of architects. On the other hand, I am not operating under the illusion that my presence here is in any sense a personal tribute. Nor does it reflect a specific interest, at this time, of the architect in the special business of the chemist—although there are many circumstances in which the special knowledge of the chemist, on the one hand, or his special needs, on the other, may supply information or create particular problems associated with major architectural projects.

Instead, I feel that I speak to you in my general capacity as a scientist and that my presence here is symbolic of the recognition that no fields of knowledge, of technology, of intellectual discipline have sharp boundaries, that solutions to problems of one field already exist in some other domain, and that advances in any of them may create problems in another.

A world in change does not necessarily imply progress. Indeed, certain elements of change, no matter how revolutionary or dramatically indicative of the ingenuity of man, at the same time may be steps in his ultimate downfall. As witness of that fact, we have with us the overpowering realization that the ultimate destruction of man, that satellites and rockets are the products of man's inventiveness and may be the cause of his destruction.

Rapid Change

From the point of view of man, such change is not progress. Perhaps some more objective creature in outer space may think that such change is progress for the universe as a whole. However, such questions are not pertinent to our present interest. We are concerned with the imminent question of what the architect in his planning should do to guard against change so rapid that the product of his endeavor is made obsolete almost before its completion.

It is not necessary that advance be destructive in order to cause early obsolescence of buildings. Consider, for example, the nearly accidental corollaries of technological development. Within a few years all major long distance flights will be in jet-propelled airplanes. In such planes the sound barrier will be broken routinely. In rocket-propelled aircraft even higher velocities and more peculiar conditions of take-off will be employed. We are already confronted with the fact that both the people in New York City and its governmental authorities object to the landing in their own airports of the Russian jet planes. No mere matter of chauvinism is involved. The noise is almost unbearable. It is almost unbearable when one plane is landing and taking off at infrequent periods. In the last few months there have been repeated announcements of devices by which jet noise is to be decreased. As yet, I have seen no announcement of a technique by which the shock of breaking the sound barrier may be eliminated. That problem for high-velocity planes is presumably to remain with us.

New Airport Design

However, that is only one aspect of our large problem regarding aircraft in the jet age. How are the airports to be built? What is the environment of an airport to be like when high-velocity jet and rocket-propelled planes are landing and taking off at frequent intervals? I have seen the design of an airport structure at Idlewild in which the plane is to come under an overhanging canopy so that passengers will not be subject to the discomfort of a long trek to or from their planes. How will jet and rocket propulsion modify the ideas of the architect toward such construction. Anyone who has felt the heat from a jet plane even at a distance appreciates that the architect of airport structures will certainly have to give some consideration to the effect of that heat on the terminal buildings. Would it not at once prove more efficient to recognize the existence of such a difficulty and to have the airport waiting rooms, terminal offices, and service facilities and present surface traffic approaches all underground and to have matters so arranged that the person comes above ground only when he has to enter his plane. This problem is essentially a trivial matter. I state it first merely because a solution appears more obvious to me than the solution to some other problems I will mention.

For example, I do not know the answer to the matter of the effect of noise and sound-barrier explosions on habitations. All I can think of off-hand is to have airports at a remote distance from heavily populated areas and to get the plane so far away by the time it breaks the sound barrier that the resultant shock will be rather small in regions where it could otherwise do some harm. This problem is by no means inconsiderable. When an airport is located far from a residential area, access to it will be required. It may be by helicopter or it may be by conventional plane or it may even be by underground railroad or car. Whatever the means of access that means will require protection from the various dangers and discomforts resultant from jet and rocket propulsion. A more extensive use of underground facilities seems to be called for.

Population Rise

There is another area in which the problems of the architect become immediately more apparent. Population increase is what keeps the architect busy. Likewise, population increase may ultimately make him dizzy. I never become accustomed to the fact that one-half the people ever born are alive today. It is even more difficult to realize that three-quarters of the people who have reached maturity are still alive today. These two statements mean that world population is increasing explosively. The present population of the earth is estimated at 2.7 billion people. Estimates recently made indicate that the number of people on the earth will increase to 5 billion people during the next 100 years. The amount of arable land will not increase but the amount of land taken out of cultivation will certainly increase because man will require additional living space in precisely the regions of the world that are potentially the most fertile. Indeed, biologists suggest that by the year 2007 man will become dependent almost exclusively on the sun as his source of food supply. It will be uneconomical to put animals out to graze on the

(Continued on Page 14)
Why Employ an Architect? Here Are Eight Good Reasons

The design and construction of a building are complicated operations, requiring many technical processes. If it is a private building, it probably involves a large expenditure of your money and becomes one of the important undertakings of your life. If it is a public building, it probably involves even larger expenditure of funds, and even greater responsibilities.

The architect will not undertake personally to hire the men and construct the building; but like the doctor, he will give the right prescription, and he will also see to it that it is properly compounded. He will design the building, supervise the construction and the disbursing of money, and be on hand guarding the owner's interests until the building is completed.

After the building is designed and the drawings and instructions are prepared, the builder will go to work. He will call upon various sub-contractors, each a specialist in his particular line; the carpenter, the mason, the plasterer, the plumber, the painter, and so forth. These men will procure the material which their workmen put together from the dealers in these particular materials, who in turn will buy from the mills and manufacturers.

Architect In Charge

All of the sub-contractors will be in the employment of the building contractor who has undertaken to erect the building in compliance with the plans and specifications prepared by the architect.

When it is completed, the owner will have a better building at less cost than if he attempted to build without consulting an architect.

Here, then, are eight good reasons why one should employ an architect:

(1). In illness one needs a doctor; in legal matters a lawyer. A building with its infinite variety of modern facilities for comfort and health, and its rightful claim for beauty, needs the architect.

(2). The architect has expert knowledge of building materials and construction methods and knows how best to plan for the installation of plumbing, heating, lighting and insulation.

(3). A building is a better investment if well-planned and attractive in appearance. Only the trained architect can make it so.

(4). Both owner and builder depend on competitive bidding for fair prices. Fair competitive bidding depends on complete plans and specifications drawn by an architect.

(5). The owner needs the supervision of an expert who is unbiased by commercial considerations, to pass on the quality of the materials and workmanship going into his building.

(6). It needs no argument that the owner's interests are best served by the architect, who has devoted years to special training for his work and therefore must be more intelligently qualified than the man with other interests, obligations and training.

(7). From start to finish of a building operation, the architect is the owner's professional advisor and agent—in drawing contracts, complying with building codes and lien laws, certifying building charges and seeing throughout that the owner gets all he pays for.

(8). Architectural services are a small fraction of the total cost of a building. By careful planning and judicious choice of materials, a good architect saves the owner a sum much larger than his fee, and, in addition, the owner has a well designed building.
The President Speaks...

By FRANK MONTANA, President Indiana Society of Architects, A.I.A.

In many architectural periodicals and in a recent issue of Life magazine, the Hillsdale High School, San Matea, Calif., which received one of the American Institute of Architects honor awards, is illustrated and brought before the public in general as a prototype of what should be done. This column may not be the place to express my concern—but here it is:

Windowless buildings and rooms have been discussed as far back as I can remember. Historically, architects have worked and experimented to give light to the interiors for the benefit of users, to bring the outside in, so to speak, so that we might enjoy what God provided for us, as human beings. I can well understand rooms without windows for the storage of materials or for special uses—such as projection rooms, theaters, audio-visual rooms, etc., but I cannot quite understand windowless areas where people work and study. We must relax our minds and occasionally feel and see nature.

Following is a very interesting commentary on windowless buildings by Professor Paul J. Grillo, A.D.G.F., of the Department of Agriculture, University of Notre Dame. Read into it what you will:

"This further comment on progress was given in an exclusive interview to B.V.D. Magazine by the world known geneticist Dr. Ryjstark: 'We hope in the very near future to develop a breed of babies that will be born without eyes, as statistics have now proven that vision distracts from the concentration of the mind. The advantages of this physical conformation are already looking through a window and the distracting effect of the blue sky on the mind of youngsters will be replaced by pure concentration of the mind, and (2) an economy that may be estimated in the way of millions of dollars will be achieved by designing totally windowless buildings, the human sight, from which generations have suffered in the past, being only remembered as relic of barbarian times when man used to Walk and See.' (from an interview given in the Hague (Holland) Nov. 5, 1957 by Dr. Ryjstark)"

The score-board of Hoosier governors has been fairly evenly divided politically. Of the 38 governors, 17 have been Republicans, 16 Democrats, 3 Whigs, 1 Jeffersonian Republican and 1 non-partisan.

Charles Betts Plans Busy Speaking Tour

Charles J. Betts, I.S.A. Executive Member and Consulting Architectural Board of Church Extension of the Christian, will represent the profession at Eugene, Ore., and Detroit, Mich. in a busy travelling agenda in April.

The Indiana architect taught a one-hour credit course in Architecture to some 30 students of the University of Oregon. The assignment will be for one through 8. On February 26 the college's chapel service will be conducted by the Department of Church Extension. Then on February 18, 1958, a joint conference on Church Architecture to some 30 students of the National Council of Churches, will be held in Detroit, Mich. The conference will be held by the Department of Church Extension, the National Council of Churches and the Architectural Guild of America.

Since 1950 Indiana, Missouri and North Carolina have had the states in population, as Jan. 1, 1957 estimates.
The magnificent sense of order that dominates the design of this fine structure is expressed by the attractive grid of aluminum and stainless steel window enframements. Almost 53,000 lineal feet of these members were shop fabricated into unit frames for the International Arrival Building and Airline Wing Buildings and erected by FLOUR CITY.
A jammed Marott Hotel dining room was the scene of the last event on this year's Winter Meeting agenda. I.S.A. members and their wives relaxed after a busy day and listened to some wordly advice from Dr. Milton Burton, Notre Dame scientist, who was principle speaker.

Principle Speaker Dr. Milton Burton, center, chats informally before dinner with I.S.A. vice president Tom Dorste, Indianapolis, and President Frank Montana, South Bend, right.
Mrs. Ray Thompson (Jan), left, assists Mrs. Arthur Burns (Dottie), both of Indianapolis, with the "Perfume Tree," novel gimmick which provided favors for all distaff members present. Both young ladies are members of the Women's Architectural League, which also was in session during the day.

An important part of the evening's festivities was the official recognition of the Society's new members. A portion of the group, admitted for membership since July, are pictured above. Front row, left to right: Herman Terzino, LaPorte; William E. Davis, Rockville; Harry Hunter, Indianapolis, and Wallace Jobusch, West Lafayette. Back row, left to right: Ray Cradick, Indianapolis; David H. Watt, Indianapolis; David J. Katz, Gary; David O. Meeker, Jr., Indianapolis, and John Pecsok, Noblesville.
A portion of the impressive "Architects Services In a School Building Program" display set up by the I.S.A. Public Relations Committee is shown here as it appeared in recent Claypool Hotel exhibits. Although easily dismantled, the display is a permanent one designed for continued use by the Society as part of its public relations program. Fran Schroeder, I.S.A. Public Relations Committee chairman, supervised the project.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TYPE OF MEETING</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 9</td>
<td>Executive Board</td>
<td>Gary</td>
</tr>
<tr>
<td>February 13</td>
<td>Executive Board</td>
<td>Indianapolis</td>
</tr>
<tr>
<td>March 13</td>
<td>Executive Board</td>
<td>Evansville</td>
</tr>
<tr>
<td>April 18</td>
<td>Third General Meeting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student Meeting</td>
<td>South Bend, Morris Inn</td>
</tr>
<tr>
<td></td>
<td>Executive Board Meeting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regional Meeting</td>
<td></td>
</tr>
<tr>
<td>May 8</td>
<td>Executive Board</td>
<td>Indianapolis</td>
</tr>
<tr>
<td>June 7</td>
<td>Annual Meeting</td>
<td>Indianapolis</td>
</tr>
<tr>
<td>July 7-11</td>
<td>A.I.A. Convention</td>
<td>Cleveland, Ohio</td>
</tr>
</tbody>
</table>

Numerous requests for previous issues of THE INDIANA ARCHITECT necessitate a policy of charging $1.00 for eight copies to cover costs of mailing and handling. Address all such requests, with money enclosed, to Indiana Architect, 5930 Gladden Dr., Indianapolis 20, Ind.—Publications Committee.

McKINLEY sun control products
"finest under the sun!"
- all-weather protection
- attractive appearance
- minimum maintenance.

Designed by sun-control engineers for architect and builder—skillfully made of lifetime aluminum. For details, contact your McKinley Representative—see Sweet's Architectural File 19/Me.

Ventsile Sun Cornices
Marquee-Canopies
SUN SHADES
... and other metal products

designed and manufactured by the o.o. McKINLEY Co., Inc. • Indianapolis 5, Ind.
The Indiana Society of Architects
Sustaining Firm Members
Raymond S. Kastendieck, Architect
Joseph L. Mathews, Architect
Thomas G. Medland, Architect
Juliet Peddle, Architect
William J. Strain, Architect
James M. Turner, Architect
Walker, Applegate, Oaks & Ritz, Architects
Edward D. James, Architect, Inc.
Burns and Burns, Architects
Garns and Moore and Associates, Inc.
Hill and Wupper, Inc.
Kenneth W. Williams, Architect
Daggett, Naegle & Daggett, Inc.
Board of Church Extension of Disciples of Christ
James J. McCarron, Architect
Dorste & Pantazi, Architects
Montana & Schultz, Architects
Fleck, Quebe & Reid Associates, Inc.
Arthur B. Henning, Architect
Max Pohlmeier & Associates, Architects
C. Wilbur Foster and Associates
Martin & Jelliffe, Architects
Bradley & Bradley, Architects
Joseph B. Martin and Associates
Vannegut, Wright & Porteous, Inc.
Pennox, Mathews, Simmons & Ford, Inc.
Yeager Architects, Inc.

Maco Corp. Offers
New Bay Window
Growing interest in the bay window arrangements in today's home design has prompted The Maco Corporation of Huntington, Ind., to add a new aluminum bay window to its line of Maco-Craft windows.

Like other window types in the Maco-Craft line, this new product is said to be unique in that it is manufactured in a completely assembled unit, ready to be nailed into the rough wall opening. The new bay window is furnished with insulating glass and is available in a wide selection of heights and cord widths, and in both 12 and 18 degree vertical angles. Light sizes range from 24" by 20" to 36" by 24".

OUR ADVERTISERS
- Anning-Johnson Co., Inc. 13
- Best Universal Lock Co., Inc. 11
- Burnet-Binford Lumber Co., Inc. 14
- Cinder Block & Material Co. 6
- Flour City Ornamental Iron Co. 7
- F. E. Gates Marble & Tile Co. 12
- General Dredging Co., Inc. 13
- Louisville Lamp Co., Inc. 5
- O. O. McKinley Co., Inc. 10
- Prescolite Mfg. Co. 12
- Rapidex Division, Spickelmier Inc. 2
- Spickelmier Industries, Inc. 12
- Structural Timbers, Inc. 5
- G. E. Weaver Co., Inc. 15

Maco Corp. Offers

New Bay Window

- New 7-K Series cylindrical locks by Best combine handsome styling and rugged construction with the incomparable security of Best’s exclusive interchangeable core. Engineered especially for heavy duty use in schools, hospitals, industrial and commercial buildings, the Imperial design in satin finish, illustrated above, features modern beauty, smooth, trouble-free action and dependable quality.

UNIFIED MASTERKEYING—Best interchangeable cores also permit extensive masterkeying of all types of Best locks—doors, gates, padlocks, etc.—into one, simplified, easy-to-manage system.

- Available in all standard functions • Choice of finishes • 100 percent reversibility • Automatic deadlocking • Meets Federal specification 161

BEST Universal Lock Company, Inc.

10 N. Senate Ave. • Indianapolis 4, Indiana

"Security At Its Best"
F. E. GATES MARBLE & TILE CO.

Dealers in—

✓ MARBLE
✓ TILES
✓ SLATE
✓ GRANITE

Featuring—

MARKWA TILE

KENNETH D. EARL, General Manager
5345 Winthrop Ave. Indianapolis 20, Ind.
CLifford 5-2434

A.I.A.'s Reason for Being, Colorful History Traced

Architects and Clients Both Benefit
From High Standards Set by Institute

In our national history an element about which very little has been written, is the formation, growth and activities of the professional societies. The doctors were the first to organize for the sake of self-improvement and the betterment of their service to the public.

The American Medical Association was formed in 1847—just a few years more than a century ago. The civil engineers were next, in 1852, and their first organization included the architects; it was known as the American Society of Civil Engineers and Architects. Five years later the architects formed the nucleus of what soon became their national professional body. The American Institute of Architects. Curiously enough, the lawyers, so plentiful in the early days of the republic and so active in its government, did not organize the American Bar Association until 1878.

During the first 50 years of our life as a nation, the building needs were fairly simple—dwellings, town halls, courthouses, churches, for the most part, and the master builders of those days improvised very well indeed, relying on their memories of old-world forms and leaning heavily on books of details that were sent over from England and later, written and published by a few of our own highly skilled carpenters and woodcarvers.

Dark Ages Era

But from about 1850 to 1870, with the rapidly increasing scope of our needs aided by our infatuation with the machine, particularly the scroll saw, our architecture fell to what now seems an all-time low—the Dark Age of architecture in the United States. Yet it was in this period of dim thinking, when public regard for technical knowledge and orderliness was at such a low ebb, that architects met in New York City to consider how they might improve their individual competence by sharing knowledge and experience, and thus become better able to serve society as it unknowingly deserved to be served. So barren was the field, even in the country's largest metropolis, that the founders were hard put to it to find 18 others of sufficient competence to share their responsibility in organizing the new technical body. Today, in 1958, there are over 19,000 persons who have been examined and found worthy to be registered by the various states as competent to practice architecture.

It is interesting to examine the aims of this little group. One might expect emphasis on how the architects might benefit themselves in a society that seemed rather unsympathetic with, if not actually contemptuous of this small member of the professions. But no, the emphasis is placed upon how the architect could better serve society. Here are the objects of The Institute as set forth in the forefront of its by-laws:

Objects Listed

The objects of The American Institute of Architects shall be to organize and unite the fellowship of the architects of the United States of America; to combine their efforts so as to promote the aesthetic, scientific, and practical efficiency of the profession; to advance the science and art of planning and building by advancing the standards of architecture; education, training, and practice; to coordinate the building industry and the profession of architecture to insure the advancement of the living standards of our people through

Manufacturers and Distributors
Building Materials

- CONCRETE and SUPERWALL Block
- PER-FIT Aluminum Windows
- Plaster, Lime, Rocklath and Metal Accessories
- Sand and Gravel
- Fireplace and Flue Accessories
- Face Brick and Building Stone
- Maintenance Specialties
- Waterproofing Materials
- Cement and Mortar
- Refractories
- Sliding Glass Doors
- Structural and Reinforcing Steel
- Steel Doors and Frames
- Steel Sash and Steel Specialties

FOR EXIT LIGHTING

PRESCOLITE IS PREFERRED

HERE'S WHY...

"Dielux" Diecast Frames precision made for greater strength; lasting beauty.

Die cast metal letter stencils.

Unbreakable Fiberglas lens Panels—6 color combinations.

Diecast frame inner section, with concealed hinge, swings out for easy access to interior.

WRITE FOR YOUR COPY OF OUR CATALOG.

PRESCOLITE MANUFACTURING CORP.
2229 4th St., Berkeley 10, Calif.
Easton Road, Neshaminy, Penna.

MAIN YARD—1100 E. 52nd St., CL. 5-2421
EAST YARD—105 S. Denny, FL. 7-1192
GRAVEL PLANT—73rd & Keystone, CL. 5-2164
Indianapolis, Indiana

THE INDIANA ARCHITECT
their improved environment; and to make the profession of ever-increasing service to society.

The War between the States soon followed the founding of The Institute, and, while preventing meetings, was not able to quench the smoldering spark. By 1869 Philadelphia and Illinois had chapters, then Boston, Cincinnati and Baltimore. A San Francisco chapter, one in Washington, D. C., one in Michigan and one in central New York State were organized by 1887, and The Institute had begun the publication of its proceedings—technical papers and discussions sharing the growing knowledge.

Meanwhile another group had come into existence in and about Chicago—the Western Association of Architects. But in 1889, at a Cincinnati convention, the two bodies were merged, retaining the name of the earlier organization, The American Institute of Architects, in which there were now 814 members. New chapters were added—Buffalo, St. Louis, Kansas City, Cleveland, Pittsburgh, Central Ohio, Worcester, Minnesota, Colorado, Southern California, Washington State, Brooklyn—all by 1894, and The Institute was doing a growing force toward better relationships with private client and government bureaus, and an architecture now worthy of the name.

New Laws Enacted

An important result of The Institute's activities were the new laws being enacted by the states, based on the police power to protect public safety, health and welfare, requiring evidence of competence before issuing a license to use the title architect. Illinois, California and New Jersey were the pioneers in this movement, which now has been incorporated in the laws of all of the 8 states.

It is unlikely that we shall ever have a federal license law—the states jealously guard their constitutional rights to regulate activities within their borders as they individually see fit. Nevertheless, the state registration boards have set up, with The Institute's aid, a National Council of Architectural Registration Boards with the aim of achieving some uniformity of requirements among themselves and also facilitating admission to interstate practice.

All state registration laws require that a person seeking to perform architectural service and to have the privilege of using the title of architect shall qualify and fully demonstrate his competence—just as young doctors must submit to examination by their local medical boards. And, just as the young doctor must serve a specified term as intern, the prospective architect must show not only education fitness but also a term of years, usually three, of practical experience in an architect's office. If the candidate lacks a degree from an approved architectural school (which now means successfully completing a five-year course in college or university), most states will accept a much longer period of practical experience, usually 12 years. All such safeguards against inexperienced or otherwise incompetent practitioners have come about through the continued efforts of The Institute to maintain the practice of architecture upon the highest professional plane. Almost all the states recognize the vital fact that architectural practice is a personal matter. Thus, a corporation cannot practice, and, in the case of a firm, all members must be individually licensed if their names are to appear on letterhead or drawings.

Architect's Duties

What are this profession's functions? What does this man, the architect do? You might answer: "He makes the drawings by which a building is built," but that is only a small part of his service. When you consult an architect he might, after study of the problem, advise you against building at all. His first task, when you consult him, is to study the case from many angles—its purpose, its economy, its functioning in detail. If a building is required, what of its location, character, community fitness? If it should do what is intended of it, is it a sound financial venture, is it in line with the latest knowledge of what should be a good hospital, school, hotel, factory, church, or other building? Not a thought as yet, you will see, of drawings or specifications, or contracts, or building laws, or soil-bearing figures, or the comparative capabilities of contractors, or heating systems, or the thousand-and-one matters that must have eventual study and decision.

Indiana has five cities of over 100,000 population, 14 between 25,000 and 100,000, and 22 between 10,000 and 25,000.

ECONOMICAL PRECAST CONCRETE

- No Forming
- Flush or Beam Ceilings
- 60% Noise Reduction

ARCHITECT’S DUTIES

- Rigid
- Fireproof
- Long Span
- Unbelievable Economy

MASOLITE DIVISION

GENERAL DREDGING COMPANY, INC.

FORT WAYNE, INDIANA

2200 La Fontain Street

PHONE A-1453
Atomic World

(Continued from Page 4)

land. More efficient use of photosynthesis will have to be devised and according to the present prognosis, man will become dependent almost exclusively on vegetable matter for his living. How will such changes affect his housing?

The population rate is increasing so rapidly that the effects on our valuable mineral resources have been observed in our own generation. We have seen within a few years the exhaustion of the "inexhaustable" Mesabi range. Fortunately, other sources of high-value ore have been discovered. Although they are accessible to our industry, they are not in our country and they also will be exhausted.

Our self-created perils are all around us. Our water table is dropping and there seems to be little that we can do about it except to convert sea water into fresh water by more and more expensive techniques and to avoid draining the water table at all. By now, much damage has already been done. The water table is falling rapidly and our areas of fertile land have been depleted. I don't know whether the dust bowl is an architect's problem but the extension of the dust bowl will certainly create problems for architects and will create them not in a hundred years from now but in the next few years in many sections of the country.

Buildings Taller

Of course, one of the ways to decrease the encroachment of people on arable land is to build higher. Not only business establishments but also residences will grow up instead of out. In manufacturing plants the problem will be to convert relatively inexpensive horizontal flow into vertical flow and it is possible to foresee the day when whole families will leave a single structure only rarely, perhaps to visit a friend in some remote structure—by helicopter. It would seem that the architect could have plenty of fun dreaming up possibilities for that remote day. However, is it sensible, is it worthwhile to think of such a type of future construction at all?

May I point out that if an atomic bomb is used in a center of population the immediate consequences would be that transportation would be disrupted, that water supply will be interrupted perhaps for a long time and that electric power might resume only at such a remote date and on so small a level as to be economically useless. Of course, many of the tall buildings will be destroyed or damaged beyond repair in a single explosion. I am talking about the tall buildings now existent not the ones to be constructed in some remote and fairytale future. What happens to the inhabitants of the twentieth floor of a building without elevator service, electric light, water or sanitary facilities.

Cannot Survive

Tall buildings will be useless after a bomb drop. The architect is giving himself an impossible problem to solve if he seeks to create a type of construction which can survive an atomic bomb war. The simple fact of the matter is that the world cannot survive a war of that kind. We are already so highly developed technically and are so dependent on highly involved techniques for manufacturing our goods, for cultivating our land and gathering its products, for distribution of power and water that one can say almost didactically that an atomic bomb war will mean the end of civilization as we know it. Following the immediate destruction there would be a steady regression to a very primitive agrarian life resembling that of certain areas of India. The danger will be that with the present depletion of our natural sources the human being will not be able ever to make a comeback to the world we know. These facts are so obvious to think that we may anticipate that maximum effort will be made to see to it that no trivial difficulty is permitted to expand into a holocaust that means the end for all of us.

No Protection

It is because of my complete confidence that an atomic war will be averted at all costs that I am convinced of the futility of any effort on the part of the architect to build structures which can protect humanity against atomic war. I have looked at a very extensive study published this year by the Atomic Energy Commission on the Effects of Nuclear Weapons. It is full of pictures which show what can be done by the weapon and which show also some interesting examples where destruction can be diminished by suitable construction. Of course, it would be wonderful to build structures which would be resistant to an atomic explosion. However, in my opinion, the effort of architects can be more profitorably expended.

The architect must face, for example, the fact that technological advances and improvements in our way of life are also a part of our life and everyone wants them. This of course, is the pleasant face of the medal. In many respects, life becomes happier as we make such advances. Everyone now has or wants, television but some day people are going to want one-inch thick television screens submerged in their walls. Are we to destroy the houses which have been built without such installations or are we going to tear the walls out or are we just going to desert the old houses and create some magnificent new slums. Air conditioners, home freezers, new methods of distribution of liquid foods, the extensive use of plastics and the greater hours of leisure are going to change very radically the demands on our homes as well as on our business establishments. Manufacturers have already faced the fact that automation means rapid obsolescence of plants. What do we do with these plants? Do we destroy them, do we just ignore them or is it possible to build plants with the fact well in mind that, what ever we do they will be obsolete very shortly after their initial use.

Changing World

A rather daring question that the architect must put to himself is this: What is functional in a changing world? The functional of today is not the functional of tomorrow. With new devices, people have new opportunity and discover new needs. In the past, architects built for permanence and in some countries of the world they still do. Anyone who compares the architect of Europe with the architects of the U.S. is struck by the fact that we build much more lightly. I formed the thought that we build extravagantly but perhaps we are building wisely. The impact of technological development on housing and on buildings raises the question for the architect, in all areas of his activity, whether he should build deliberately for permanence or, on the other hand, for endless flexibility. There may be other alternatives but I don't see them. These are up to the architect to determine.
The flooring of this new PermaCushion gymnasium installation is 33\(\frac{3}{8}\)" thick, 2\(\frac{1}{2}\)" wide, strips of Dri-Vac treated, first grade Northern Hard Maple.

The architect who designed the gymnasium says the installation is "proving very satisfactory. Coaches and players as well as visiting coaches, players and officials have commented quite favorably on the resiliency of the floor... it is a first-class installation. As architects, we will be pleased to recommend this floor to clients." Similar comments on the nearly one-half million feet of PermaCushion floors now in use attest to its acceptance.

The only truly resilient free-floating floor with dimensional stability.

Here's the floor that has permanent resiliency and dimensional stability built right into it. It's the new PermaCushion system, the floor that actually floats on GRS resilient pads and is entirely separated from slab and other structural members. The unique construction of the specially engineered and compounded pads cushions the floor to assure uniform, permanent resiliency. And since no part of the floor is anchored to slab, the entire system can expand and contract without warping, "buckling," or "cupping." This ability to relieve stress results in dimensional stability unmatched by virtually any other floor.

Besides its resiliency, stability and the natural beauty and warmth of wood, PermaCushion offers such benefits as elimination of moisture transmission from slab, a warm, dry subfloor assured by cross ventilation under the floor, unusual long-wearing qualities and great structural strength. And compared to substitute floors, it's remarkably economical in the long run.

For your next gymnasium or auditorium job, look into the advantages of PermaCushion. For full details, including tailored specifications and estimated costs, call or write us.

Developed especially for the PermaCushion floor system, Dri-Vac vacuum preservative treatment is available on all our hardwood floors for economical protection against moisture absorption, shrinking, swelling, grain raising and checking plus complete protection against termites and fungi attack.

*F.M. Reg. U.S. Off. †Patent Pending

G. E. WEAVER CO., INC.
1147 Mishawaka Ave. Ph. Atlantic 8-1458 South Bend 15, Ind.
The Indiana Society of Architects
A Chapter of the American Institute of Architects

Corporate Members

INDIANAPOLIS

J. Lloyd Allen
Charles J. Betts
Richard E. Bishop
August L. Bohlen
Robert L. Bohlen
Arthur E. Broecker
Charles M. Brown
Everett L. Brown
Evelyn Louis Brown
Arthur Lee Burns
David V. Burns
Joseph O. Cezar
Edward J. Clark
Donald E. Compton
Henry E. Coolor Jr.
Marvin Lucius Craymer
Robert Frost Daggett, Jr.
Donald David Dick
Thomas Charles Dorate
Oscar Walter Eriksson
John C. Fleck
Wilson L. Ford
C. William Foster
Howard Scott Garns
Lot Green
Merritt Harrison
Norman Haden Hill
Donald H. Hinshaw
Harry E. Hunter
Edward D. James
John Horje Jelliffe
John R. Kelley
Robert R. Lakin
Richard C. Lennox
Richard P. Madigan
Wesley Porter Martin
Paul Van Deren Matkin
William C. McGuire
Henry McKinley
David O. Meeker, Jr.
C. Alden Meranda
Rolf Von Meshor
Clarence T. Myers
Frederick Harold Neace
Sprios George Pantazi
John P. Parrish
Charles L. Palmer
Louis Edward Pennington
Edward D. Pierre
Oscar J. Pool
Alfred John Porous
Gilbert T. Richey
Lloyd W. Scholl
Fran E. Schroeder
William Carl Schubert
Wilbur B. Shoak
Edward E. Simmons
Robert C. Smith
David Frank Snyder
John G. C. Sohn
Theodore L. Steed
Raymond R. Thompson
Osvald A. Tischow
Phillip A. Weisenburgh
George Russell West
Howard Lee White
Marvin Alvin Williams
Orvel E. Williamson
George Caleb Wright
William C. Wright
Arthur Wupper
Richard K. Zimmerly
D. Daniel J. Zimmerman

TERRE HAUTE

John A. Curry
Evine R. Miller II
Warren D. Miller
Miss Juliet A. Peddle
Allison L. Vrydag
Wayne M. Weber
Mark Philip Yeager
Ralph O. Yeager Sr.
Ralph O. Yeager Jr.

GARY

Frederic Wilder Collins
Charles E. Magatin
George Naylor Hall
Douglas F. Haley
Raymond S. Kastendiek
David J. Katz
Joseph R. Martin
Richard Lee Wildermuth
Joe H. Wildermuth
Robert Premlt

SOUTH BEND

Trace Christenson Jr.
Vita Anthony Gine
Evine A. Jewell
William Lloyd Mas
Joseph L. Matthews
Frank Montagne
Anthony Joseph Panica
Robert Joseph Schultz
Alfred Sacket
Andrew A. Tuth
Patrick Joseph Weisphal
Forrest R. West
Roy A. Worden

HAMMOND

Leslie C. Bernard, Jr.
Joseph K. Bertram
Harry J. Timcomb
James McClure Turner

MUNCIE

Frederick H. Graham
C. Eugene Hamilton

EVANSVILLE

Edwin C. Berendes
Robert Robert Knapp
Charles A. Salotta
Morris C. Tarrance
Earl O. Warweg
E. Jack Wesley
William J. Zimmerman

FT. WAYNE

Jackson R. Bickford
LeRoy Bradley
Ivan Raymond Dahlgren
Albert Heeter
Joseph J. Hufford
Harry J. Hurbrecht
Charles J. Malott
John Davis Martinlade
James M. McCarron
Martin William Pohlmann
William Gregory Rammell
Courtney Eugene Robinson
James L. Sosenheimer
Alvin M. Strauss

LAFAYETTE

George Phillip Rohli
Wallace E. Johnson
Warren D. Marshall
Lloyd V. Moser
Ernest L. Scholte Jr.

Walter Scholer Sr.
Walter Scholer Jr.

MISHAWAKA—Paul F. Jerseigan
VINCENTIN—Lesser W. Reutt.
BLOOMINGTON—Wm. J. Stain.
HUNTINGTON—Robert W.

NEW ALBANY—James L. Walk-
er Jr.
KOKOMO—Kenneth W. Williams.

LA PORTE—Herman J. Terzino.
ANDERSON—Arthur B. Henning
LEBANON—Robert F. Hutchinson.
CONNICKVILLE—William Eri
HANSON
GARY—Leno L. Lassen.

ROCKVILLE—Wm. Eugene Davis

Associate Members

INDIANAPOLIS

Robert H. Breen
Wm. C. Beard Jr.
Rosemary Iero
James W. Burkhart
Lionel E. Byfield
Raymond V. Cogswell
Kenneth R. Curtis
Julius F. Eldred
Arthur W. Fleck
Glen W. Foster
Edwin W. Garber
Calvin Sargent Hamilton
Donald G. Hawke
Oholo R. Hill
Clifford Charles Lowe Jr.
Henry G. Meier
Raymond Wm. Ogles
Richard George Purcell
Herman G. Rall
Clyde G. Rice
Thomas S. Shimer Jr.
M. Carlton Smith
Bernard A. Snyder
Norman T.
Herbert Henry Thompson
Charles Frederick Wamsley
David H. Watt
James D. Woods
David C. Sheets
James E. Rennard

SOUTH BEND

David Louis Frey
N. Roy Shambele

NEW ALBANY—John G. Johnson

EVANSTON—H. C. Hembright

ROCKVILLE—Wm. Eugene Davis

Honorary Associate Members

Farmers & Merchants of Indianapolis: F. W. Iervick of South Bend and C.
Julian Oberworth of Frankfort, Ky.

Junior Associate Members

INDIANAPOLIS

Boy P. Andrews
John Harvey Bogen
Wilton W. Butts
Charles H. Byfield
Robert Gene Campbell
Joseph C. Cooper
James A. Dunn
Maurice Robert Gellendoff
Gilbert Komon Jacobs
Norman H. Jeffries
Harold G. Kelley
Robert N. Kennedy
Don B. Perry
Richard Louis Plunkett
David L. Richardson
Clyde C. Shreis
Paul Marshall Wilson
Ronald M. Strangford

Also: Ogden Walter McElroy of Lafayette; Edward Joseph Malo of South Bend; John Walter Car-
and Harry Roll McLaughlin of Carmel; James F. Chapman Jr. of New Haven; David Brewer Hill of
Whiteland; Albert E. Van Neame of Britol and Angelo Gus

Members Emeriti

Samuel P. Bonsanto, Michigan City.
Noble W. Miller, Hudson.
A. Frank Wills, Indianapolis.
Ernest W. Young, South Bend.