FROM INDIANA TO MAINE TO HAWAII...
CLASSROOMS ARE COMING OUT OF "DARK AGES" BECAUSE

MORE AND MORE ARCHITECTS
are specifying Cutler "Mirac-O-Lite"

America's Most Comfortable Quality Light In Use In Many Indiana School Districts! Lamps Unconditionally Guaranteed for 3 Years, Normally Last for 10

"MIRAC-O-LITE" INITIAL AND ANNUAL BENEFITS
More and more architects throughout the nation are specifying Cutler "Mirac-O-Lite" and for the best of reasons. Cutler cold-cathode "Mirac-O-Lite" offers America's most comfortable light — glare-free and shadow-free — due to the low-brightness light of its lamps. As a result, no light-obscuring, dust-collecting shielding is required; and this, in turn, practically eliminates maintenance costs while increasing light-efficiency. Of greatest importance, too, is the significant current savings.

MEETS FORMULA; GUARANTEED 3 YEARS
Cutler "Mirac-O-Lite" easily meets educators minimum formula of 30 foot candles, using a 2 watt per square foot formula. Other advantages include instant starts and stops; even distribution; fluctuation freedom; lower per-day current costs; freedom from hum, radio interference and vibration. And . . . each lamp is unconditionally guaranteed for 3 years.

INVOLVED IN RE-LIGHTING?
SAVE 50% . . . GET FREE TRIAL
You may re-light without re-wiring when you specify "Mirac-O-Lite" . . . and we will be happy to furnish fixtures for a one-room Free Trial to back our claims with proof.

CUTLER LIGHT MANUFACTURING COMPANY
2024-28 N. 22nd St., Philadelphia 21, Pa. • POplar 5-7683

FOR IMMEDIATE INFORMATION, CALL OR WRITE: ALLIED, INC.,
339 N. CAPITOL AVE., INDIANAPOLIS 4, INDIANA • ME 4-1451
for maximum fire safety...

modern schools insist on walls of concrete masonry!

No school can afford to compromise with fire safety. The stakes are too high. That's why you find so many modern schools using concrete masonry—for both exterior and interior walls. Concrete can't burn! It stays solid and safe...never wears out.

Concrete masonry isn't expensive, either. First cost is moderate, usually less than other materials.

And concrete saves still more money on maintenance. Upkeep is always low! The experts estimate that a 10% reduction, for example, in annual maintenance costs can amount to almost as much as a 10% reduction in the cost of the building.

It will pay your community to look into concrete masonry for its next school. This modern material is offered in many new styles, sizes, types and textures—is easily painted or integrally colored.

It's the new-type living concrete you see in new homes and office buildings throughout the country. Full information sent on request.
Looking for Something DIFFERENT?

Beautiful, versatile MEXICAN GLASS MOSAICS permit the architect to design simple solid masses, geometrical patterns . . . or, by choosing from a rich range of shades and colors, he may design intricate murals and works of art.

MEXICAN GLASS MOSAICS were chosen by Victor Gruen and Associates for the exterior of L. S. Ayres in the Glendale Shopping Center,— also by Associated Indiana Architects for the new Indiana Employment Security Building.

BLAKLEY
Granite, Marble & Tile
3502 E. NEW YORK
FL.6-7205
INDIANAPOLIS, INDIANA

new direction in ACOUSTIC CONTROL

CERAMIC GLAZED ACOUSTICAL TILE

True to its name, soundBAR by Arketex is engineered to provide a structural wall against noise. Random perforation plus a Fiberglas core provides a single modular material with double the sound absorption of all competitive materials tested — and the only acoustical tile with all the qualities exclusive to ARKETEX load-bearing structural tile. For half-acoustical (wainscots up), random-acoustical, or all-acoustical applications in any area where unwanted noise once posed a problem — you can specify soundBAR with unqualified confidence!

distributed by
GLAZED TILE SALES, INC.
333 N. Pennsylvania St., Indianapolis 4, Ind.

OLD FORT SUPPLY COMPANY
2013 South Anthony, Fort Wayne, Ind.

- 99% SOUND ABSORPTION at 500 cycles (normal standard for determining reverberation time)
- 50% LOWER IN-WALL COSTS than those of competitive materials
- ONE HOUR + 10% FIRE RATING proved by Ohio State University Experiment Station pilot tests
- AVAILABLE IN 36 NEW DIRECTION COLORS developed by Raymond Loewy Associates, Inc.
No matter how big the job or what type the building, Tebco offers the perfect combination of size, texture, and color. Three popular sizes—Standard, Roman, and Norman...four striking textures—Smooth, Vertical Scored, Matt, and Velour...thirty-seven distinctive color combinations. This big selection combined with Evans' million-brick-a-week production assures prompt delivery of the sizes, styles, and colors you want. Write today for full-color Tebco literature.

Tebco Face Brick meets all ASTM and FS Standards.

THE EVANS BRICK COMPANY

General Offices: Uhrichsville, Ohio • Telephone: WALnut 2-4210
Sales Representatives: Cleveland, Ohio • Columbus, Ohio • Pittsburgh, Pa. • Detroit, Mich.
Bay City, Mich. • Fairmont, W. Va. • Toledo, Ohio • Philadelphia, Pa.

One of the nation's largest producers of Clay Pipe, Clay Flue Lining, Wall Coping, Plastic Pipe and related construction materials, with over 50 years of faster, friendlier service.
L-O-F Parallel-O-Grey® Plate Glass featured in classrooms and gymnasium.

Tailored to site, sight and separation of students at only $13.80 per sq. ft.

Here's proof that schools can be designed to do exactly what you want them to. At no premium in building costs.

The school superintendent recognized features that were desirable for a school. He gave the architect a precise statement of educational philosophy. One requirement was to separate children by age groups. Another was high visual standards:

1. Window-sill heights so children feel unconfined, sense no psychological barrier and can see outside from a sitting position.
2. Special consideration pertaining to "balanced brightness".

Tough requirements! But the architect licked them. In addition to properly orienting the school, he used large window walls of L-O-F Parallel-O-Grey, a neutral grey glass to help control sky glare and sun heat. He used liberal roof overhangs. He made the school conform to the lay of the land, saving thousands of dollars. He provided one wing for younger students, another for the older. And a multi-purpose room divides them.

The result? A school that pleases students, teachers and the whole community.

LIBBEY OWENS FORD TOLEDO 1, OHIO

SPECIAL BOOK OFFER

"Work Place for Learning" by Lawrence B. Perkins

A colorful, bountifully illustrated 64-page book on school architecture by a noted authority. Available to school administrators, architects and other professional people for $2 from L-O-F by special arrangement with publisher. (At bookstores, $4.) Send check to Libbey-Owens-Ford, 811 Madison Avenue, Toledo 1, Ohio.
CONCERNING THE COVER

This month's cover, featuring the Delta Zeta Sorority House at Depauw University, is provided through the courtesy of Business Furniture Company, Indianapolis. Cover photo by Professional Photography Studios, Indianapolis.

THE INDIANA ARCHITECT is edited and published monthly by Don E. Gibson & Associates, 3637 N. Meridian St., P. O. Box 55594, Indianapolis. Circulation and advertising rate information available upon request.

FLUSH TYPE CEILING
FOR PERMANENT RIGID CONSTRUCTION

- ATTRACTIVE CEILING
- FIRESAFE
- NO FORMING
- LOW COST
- GOOD ACoustics
- QUALITY CONTROLLED CONCRETE

WRITE OR PHONE A-1453 FOR DETAILS

JAGUAR 3.8 LITRE FAMILY SPORTS SEDAN

The brilliant new 5-passenger "Three-Point-Eight" sedan is the ideal Jaguar for the sports car enthusiast with a family! COMPACT, without sacrificing roominess and luxury, it incorporates such features as optional power steering, automatic transmission, 4-wheel disc brakes, polished walnut dash and glove leather upholstery. Powered by the famous 3.8 litre XK engine, the proud new Jaguar has a top cruising speed of 120 m.p.h. . . . the "fastest sedan of its class in the world." See the other 1961 Jaguars, too . . . the luxurious Mark IX sedan and the XK 150 sports models . . . at your nearest Jaguar dealer, or at

MIDWEST DISTRIBUTORS, Inc.
2330 North Meridian Street — Indianapolis, Indiana
This acoustical ceiling-roof features the precast concrete TEE-BLOK JOIST System with attractive lightweight flush filler block.

SAFE, ECONOMICAL...

TEE-BLOK FLOOR AND ROOF SYSTEM

THIS popular and superior system of constructing floors and roofs utilizes Precast Concrete TEE-BLOK Joist with lightweight flush or recessed Filler Block ... all covered with a concrete slab and steel-reinforced. It's light and strong ... cuts deadweight load without cutting strength. Saves materials, manpower and money, too. We'll gladly furnish specifications and loading tables for TEE-BLOK JOIST and acquaint you with all features and advantages of this famous system for your next building.

CINDER BLOCK & MATERIAL CO.

2200 N. Montcalm St. Phone ME 2-1432 Indianapolis
Notre Dame Meeting
November 11, 12

The Indiana Society’s annual meeting at the University of Notre Dame in South Bend, is scheduled for Friday and Saturday, November 11th and 12th. As in past years, the meeting will be held with the Notre Dame Student Chapter of the AIA.

Guest speaker for the Friday night Student Awards Banquet will be Mr. Lawrence B. Perkins, F.A.I.A. The banquet will be held in the Mahogany Room of the Morris Inn, on the Notre Dame campus.

Preceding the Friday night banquet will be committee meetings and judging of the annual student problems on Friday afternoon. This year, the problem centers on a site plan for educational facilities, and the prize-winning solution will be rewarded with a $50.00 first place check. Second and third place winners will receive awards of $35.00 and $15.00, respectively. All cash awards are made by the Indiana Society of Architects.

Judging also will be made of the entries in the Civic Planning Competition (details on Page 27) during the two-day meeting.

On Saturday morning, November 12th, a general business meeting of the Indiana Society will be held, also at the Morris Inn. This meeting will adjourn at 12:00 Noon.

George Danforth to Speak in Indianapolis

Mr. George Edson Danforth, AIA, chairman of the Department of Architecture, Illinois Institute of Technology, Chicago, will be featured speaker and discussion moderator at the October 27th meeting of the Indianapolis District, I.S.A. Mr. Danforth will discuss with Indianapolis architects, the need for, and effect of, a school of architecture in a given community.

Mr. Danforth succeeded Mies Van der Rohe at I. I. T. last year, after six years as chairman of the Department of Architecture at Western Reserve University in Cleveland, Ohio. His association with I. I. T. goes back to early World War II years, when he spent three years there (1940-43) as a graduate student and instructor.

Following a tour of duty in with the U.S. Navy, he returned to I. I. T. as an instructor in the Department of Architecture, and in 1948 became an administrative assistant to the Director of the Department of Architecture. During 1949, he served as Assistant Professor of Architecture before going to Western Reserve as Executive Secretary of the Division of Art and Architecture of Western, as well as Professor and Chairman of the Department of Architecture.

The October 27th meeting will be held at the Marrott Hotel in Indianapolis, with dinner at 6:30 P.M., CDT. Persons interested in discussing the possibilities of another school of architecture in Indiana cordially are invited to attend. Reservations can be made through the I. S. A. office in Indianapolis.

George Edson Danforth, AIA
Luminous ceiling increases production at Bowmar!

Correct lighting is most important for the skilled workers at the Bowmar Instrument Corporation, Fort Wayne, Indiana. They manufacture, test and inspect minute gears, some smaller than a fingernail. When Bowmar management decided to build an addition to their plant, the architects and engineers called in I&M lighting specialists for consultation. The lighting method selected was a luminous ceiling which provides 110 foot-candles illumination and gives an even distribution of soft, diffused light. Now, because there is no glare or harsh light, production in the new addition has increased over that of the old quarters. And this wonderful lighting system has helped raise employee morale, too. They accomplish more at work and are less fatigued when they go home.

Next time you have a lighting problem, we'll be happy to help. Just call or write. There's no obligation, of course.

Bowmar Instrument Corporation, Fort Wayne, Indiana
"A good building housing seventy-two people cannot be successfully disguised as a one-family ranch or an ante-bellum confection," stated architect Evans Woollen, III, AIA, when describing how the Delta Zeta house, on the campus...
of DePauw University in Greencastle, had been built to conform with its purpose.

Simple elegance undoubtedly is the keynote both of the architecture and the interior planning and furnishing. The house has been designed to be completely compatible with not only other contemporary buildings on campus, but also those of another era. The needs, comfort, convenience and enjoyment of those living in the house was uppermost in the minds of both architect and interior designer-decorator.

Rectangular in shape, 55 feet by 94 feet, three full stories above ground and one full story below, the building provides more than 20,000 square feet for a capacity of seventy-two girls. The materials which clothe the modular steel frame are new. The entire cage of the building is expressed on the exterior with white Alabama marble. Into this strong framework are inserted warm red brick, a metal curtain wall tying the two upper floors into one visual element to contrast with the lower floor which is completely ringed with glass and grey sand-finished stucco.

The appearance of the building is clear and simple with care given to proportion, character, context of materials, and a controlled expression on the facades of the functions within. The garden court is intimately related to the house, and repeats the red brick in the three-sided wall.

The high-ceilinged ground floor is introduced by a recessed entry of ceiling-to-floor glass doors and side-panels. The entrance-reception area—hub of the house—sets the tempo for the rest of the building. In keeping with the theme of the structure is the open stairway of charcoal-painted iron and polished oak, stretching from the lower level to the third floor. The absence of risers contributes to the look of spaciousness and relates all floors at a glance. The massive stone fireplaces on both lower level and ground floor can be seen immediately upon entry.

All parts of the first floor, including the long living room, dining room, housemother's suite, guest suite, coat room, lavatory, kitchen, food storage rooms and office, are easily accessible from the reception area by means of walnut...
doors. All columns throughout contrast to walls, thereby continuing emphasis on the vertical structural members.

The open styling of the building demands furniture of outstanding design, both functional and beautiful. Warmth and a feeling of femininity have been achieved ingeniously through the use of color by the interior coordinator, Sallie Wilkens Rowland, of Business Furniture Corporation. In the entrance-reception area, (pictured on this month's cover) walls are painted a soft, muted shade of gold (labeled "Hay"), area rugs are brown, and the boldly-striped Herman Miller sofa is in shades of moss green. Additional Miller chairs pick up green tones or provide white accents, and walnut tables designed by Robert John and Knoll reflect the walnut influence of the doors. Tomato red accents add spice to the scene.

The living room, with its ceiling-to-floor glass wall, overlooks the walled-in garden, (Photo 6) and has been furnished to accommodate small, conversational groupings of three to five persons (Photo 3). Receptions and formal gatherings have been kept in mind, however, in the selection and placement of furniture. Colors used in the reception hall are repeated in varying degrees, and here the furniture is predominantly Herman Miller and Lehigh. One wall is covered with an interesting grass wallpaper from Japan. Throughout the house, all paintings, sculptures and many ceramics were created by members of the DePauw art staff.

Very vibrant colors and bold prints were used in the large downstairs lounge (40 feet by 55 feet), which was geared for informality as opposed to the formality of the main floor living room (Photo 4). Tomato red accents were chosen to compliment and enhance the reddish tones in the rough stones of the large double fireplace. The lounge provides a dance area, television, grand piano, game tables, etc. Seating units are in charcoal, gold, red, black and white. Two smaller rooms are planned for meetings or date rooms, and a series of small soundproof rooms for quiet, secluded study make up the remainder of the lower level.

The dining room, (Photo 5), runs the width of the house (behind the reception hall and living room), and can be closed off from the hall by folding doors on either side of the raised fireplace of pink Tennessee stone. The west wall is glass, again capitalizing upon the beautiful view of the garden, while the north wall is papered with Spanish cork paper on red backing. The two remaining walls are a putty shade.

Here, the clean lines of Moredi Danish imported chairs of teak, with tomato red naugahyde upholstery, and teak formica-topped tables appear to be tailor-made for their setting.

Second and third floors are identical, containing twelve study rooms, two dormitories, lounge, bath and pressing room on each floor. A departure from the color theme of the lower floors has been made, with these rooms done in pastels.

And since no sorority house could be complete without sunbathers, the architect provided the fireproof back stairway with a hatchway to the roof, where duckboards provide the sunbathers with complete privacy.

Compliments to the Delta Zeta Sorority, Greencastle, Indiana and their Architect, Evans Woolen, III.

This unique building incorporates new uses of material. We feel our extra effort is small for the extreme functional use of space. Y E S — it took lots of our time and thought to bring this new type of construction into being. This unique building will be useful—economical—up-to-date—for a long, long time.

OSTROM CONSTRUCTION CO., INC.

RESPONSIBLE CONTRACTORS
SINCE 1912

335 Knights of Pythias Building
INDIANAPOLIS 4
For ladies' luncheons, group assemblies or basketball games, specify the versatile PermaCushion free-floating resilient floor system. Its Northern hard maple strips withstand the wear from luncheon crowds and the auditorium’s assembled chairs. Its built-in resiliency means basketball players enjoy fast, lively action and suffer no sore ankles or leg muscles.

Of special importance to owner and architect, too, are the PermaCushion system’s other advantages. To provide for natural expansion and contraction of the wood and assure permanent smoothness, the flooring is not anchored to structural members of the building. It actually floats on cushioning pads for uniform resiliency and prevention of moisture transmission.

The PermaCushion system is installed only by authorized flooring contractors and is guaranteed by both installer and manufacturer.

If you’re looking for a floor that must serve many purposes — and serve them all well — find out more about PermaCushion. Contact us for complete information on the PermaCushion Floor System — and other types of hardwood floors.

"U.S. Pat. No. 2862255"
WASHINGTON HIGH SCHOOL
South Bend, Indiana
Architects: Maurer and Maurer, South Bend

Capacity: 2,000 students; Area: 196,000 sq. ft.; Cost (including air-conditioning): $16.97 per sq. ft.
Every school project has its own individual problems, requiring specialized solutions. In this Day Nursery, provisions had to be planned for bathing children, washing clothes, and serving hot lunches. Each self-contained classroom has its own isolated play area outside, and inside may be divided into two separate teaching units. Six teachers will staff the three classrooms.

INDIANAPOLIS DAY NURSERY

Indianapolis, Indiana
Architects: Burns & Burns, Indianapolis
COVINGTON COMMUNITY
CONSOLIDATED ELEMENTARY SCHOOL

Architects: Weber & Curry, Terre Haute
Covington, Indiana

PERSPECTIVE

CLASSROOM
BROAD RIPPLE HIGH SCHOOL
ADDITION

Indianapolis, Indiana
Architects: Wright, Porteous & Associates, Indianapolis

Auditorium capacity: 1,209
Cafeteria capacity: 580
CRAWFORDSVILLE JUNIOR HIGH SCHOOL

Crawfordsville, Indiana
Architects: Everett I. Brown & Co., Indianapolis

ANDERSON HIGH SCHOOL GYM

Anderson, Indiana
Capacity: 8,500
Architect: Arthur B. Henning, AIA, Anderson
WARREN TOWNSHIP
ELEMENTARY SCHOOL
Marion County, Indiana
Architects: Hill & Wupper, Indianapolis

KEKIONGA JUNIOR HIGH SCHOOL
Fort Wayne, Indiana
72,846 sq. ft.
Architects: Martindale & Dahlgren, Ft. Wayne

20 classrooms, gym, cafeteria, offices and special service areas: $12.80 per sq. ft.
SOUTHWESTERN JEFFERSON COUNTY CONSOLIDATED ELEMENTARY SCHOOL

Hanover, Indiana
Architects: Edward D. James & Associates, Indianapolis

MEADOWBROOK ELEMENTARY SCHOOL

Meadowbrook Addition, Allen County, Indiana
Architects: Bradley & Bradley, Ft. Wayne

12 self-contained classrooms, administrative offices and cafeteria-auditorium: $667,016.45.
SCIENCE BUILDING
INDIANA STATE TEACHERS' COLLEGE
Terre Haute, Indiana
Architects: Miller, Vrydaugh & Miller, Terre Haute

EDISON SENIOR HIGH SCHOOL
East Gary, Indiana
Architects: Wildermuth & Wildermuth, Gary
First stage completed 1955; second stage now under construction.
296,877 sq. ft., 70 classrooms, gym, auditorium, cafeteria, offices and special service areas. Cost: $13.80 per sq. ft.

ARLINGTON HIGH SCHOOL
Indianapolis, Indiana
Architects: McGuire, Shook, Compton, Richey & Associates
Indianapolis, Indiana

MADISON HIGH SCHOOL
Madison, Indiana
Architects: Walker, Applegate, Oakes & Ritz, New Albany
ST. PIUS X ELEMENTARY SCHOOL

Indianapolis, Indiana
Cost per sq. ft.: $9.73
Architects: Fran E. Schroeder & Associates, Indianapolis

ST. THERESA PAROCHIAL SCHOOL

Fort Wayne, Indiana
Architect: James J. McCarron, Ft. Wayne

Lift-slab construction; Area: 21,175 sq. ft.; Cost: $13.00 per sq. ft.
HOPEWELL TOWNSHIP SCHOOL, Beaver County, Pennsylvania

designed by — John H. Menges, AIA
Cost per sq. ft. — $11.89

Distinctive, beautiful new schools built quickly and economically with AmBridge Modular School components

ELWYN TRAINING SCHOOL
Elwyn, Pennsylvania
designed by — G. C. Freeman,
Reading, Pennsylvania
cost per sq. ft. — $15.26

ST. CANICE
ELEMENTARY SCHOOL
Pittsburgh, Pennsylvania
designed by — Joseph F. Bontempo
and Associates,
Rochester, Pennsylvania
cost per sq. ft. — $15.21

Making Our Schools Safe

By BERT J. WESTOVER, Director
Indiana State Administrative Building Council

Each year, the National Bureau of Fire Underwriters increases their estimate on statistical property losses and loss of life caused by fire. In 1959, their preliminary figures set the property loss from fire at $1,275,000,000, and the loss of life caused by fires at 11,300. These figures included some categories other than building fires, such as burning boats and planes, fire-works and explosives. But the largest percentage lost is in burning buildings, and it is an appalling toll.

Our interest right now is in making our schools safe. George N. Thompson, a safety authority on Building Codes formerly with the United States Department of Commerce, once made this impressive statement to a conference of Building Officials: “Many Building Code restrictions are the result of the hysteria which follows a calamity.”

In 1908, a school house burned in Collingwood, Ohio; one hundred and seventy-five people were killed. Why? An exit door failed to open, and the ensuing panic resulted in the needless, excessive death toll. The hysteria generated by this calamity resulted in a law that all school rooms must have two means of exit.

In some localities, this did not mean two doors to a common hall, but was interpreted to mean one to a hall and one to an exterior fire-escape. For more than twenty years, Ohio schools were draped with steel fire-escapes, often one for each room above the first floor.

Chicago also had a devastating fire in the recent Our Lady of the Angels’ School holocaust which took the lives of ninety school children and three nuns. The fire spread so quickly that more than 150 children were trapped at their desks.

What could cause such a holocaust? An examination of the building told much of the story. This was a school building converted from a former church, remodeled with an intermediate floor constructed between the auditorium and the roof. The exterior walls were of brick masonry, but the interior was wood frame, with wooden floors, partitions and stairs.

After the fire, most of the wooden partitions were still standing. The heat and smoke had traveled into the attic space, and was then forced into the second floor classrooms, where most of the fatalities occurred.

Hysteria may arouse the public to fast action, and we may experience a feeling of security for having done a service. We may also find a stop-gap answer to fit the particular emergency.

But hysteria-based regulations should not continue to be the yardstick by which we measure the safety of people in occupied buildings. The approach to the problems, and the answers, should be deliberate and based upon the facts, research and accurate conclusions.

Fire inspection should be a part of the educational system as well as that of the cities, townships, states or other units of government. The inspectors need to be versed in construction, the fire resistive qualities of component parts of structures, the hazards of dust and spontaneous combustion, and the reaction of people under panic conditions.

Where will one find such inspectors? They must be trained. They must be trained to recognize hazards, to identify them and to eliminate them. School authorities cooperating with civil authorities, and civil authorities cooperating with school authorities, can approach a logical solution when a problem is confronted, if well-qualified inspectors are trained and are willing to accept their responsibilities.

Safety in school house planning is a function of Building Codes. But it goes farther than just the printed words composing a volume of “Thou shalt and Thou shalt nots.” A school authority has to know his problems and his limitations. How much can he afford to put into educational, physical training and other departmental facilities, and yet make them all safe? Here is one of the duties of an architect; he must evaluate simple and inexpensive construction which will reduce housekeeping expenses without being a fire risk. And he must coordinate needs and pocketbook.

Fortunately, Indiana has not had a major fire catastrophe, perhaps because our regulations on the safety and health of students and teachers has been on a high standard for over fifteen years. But we have not sacrificed getting the most for our building dollar.

To my knowledge, no school building constructed under our present standards has caused a loss of life or property damage from fire. We have regulations very close to those recommended by the National Fire Protective Association. They recommend more fire-resistive buildings, and the Indiana code encourages fire-resistance by permitting advantages of greater heights and greater areas. We know how to design and protect a school so that the occupants will be safe.

There is nothing mysterious about fire protection. The N. F. P. A. Quarterly states: “Practical methods of assuring safety from fire have stood the test of time and are based on sound fire protection engineering principles and have been available for years. These principals, which form the bases for the Building Exits Code, include (1) at least two safe ways out of each building; (2) automatic means for prompt discovery and control of fire; and (3) restricting to a necessary minimum the amount of material that can burn.”
TO THE POINT

WANTED: MORE PEOPLE WHO CARE ABOUT FIRE SAFETY IN SCHOOLS

In Spite of the tragic fire at Our Lady Of Angels School several years ago, and the rash of safety measures that followed, the ugly truth is that 36,500 schools, housing 9,700,000 children, are still below minimum safety standards. Another 30,000 schools, accommodating about the same number of students, have had absolutely no fire safety improvements. The National Fire Protection Association notes that one of the most important factors in fire safety for schools is provision for adequate evacuation time.

Officers of the National Steel Door and Frame Association recently left us with some urgent thoughts on safe evacuation of schools in fire emergencies. They point out: "No school is adequately protected against fire emergency without appropriate stairwell enclosures to confine fire to its point of origin. It is the rapid spread of fire that takes lives, when evacuation routes are cut off." If you are interested in fire safety for schools, write for the Overly Fire Doorater—a complete reference on fire doors and Fire Barriers for school protection.

To Get Your Money's Worth in preparing your specifications, it pays the architect to use modern, accurate terms. When special products such as spires or fleches are to be fabricated, specifying the product by its real name, rather than calling it built-up roofing or sheet metal, can frequently save the architect the mark-up of another middleman.

One architect's discovery is passed on here as a word to the wise: When an architect accepts a "stock package" as equal to a custom product specification, chances are he is losing on quality. If the stock product was acceptable to architects and owners, it should have been specified that way from the beginning. When the substitution is made at some later time, the building owner rarely receives full credit for the substitution.

Manufacturers of hollow metal products, stainless steel entrances, architectural metal work and church spires.

"To The Point" is published by the Overly Manufacturing Company for the express interest of the architectural and building professions. Your comments are welcome and will be discussed anonymously in this column. Write: H. W. Wehe, Jr., Executive Vice President, Overly Manufacturing Company, Greensburg, Pa. Other Overly plants at St. Louis, Mo., and Los Angeles, Calif.
More than 55,000 sq. ft.

of **CUPPLES**

Window Wall for the
New Arlington High School
Supplied by

Stackhouse
BUILDING SPECIALTIES

Arlington High School, Indianapolis

Archt.: McGuire, Shook, Compton, Richey & Assoc., Indianapolis
Gen. Cont.: Tousley Construction Co., Inc., Indianapolis

The new Arlington High School, now under construction in Indianapolis, will be sheathed with more than 55,000 square feet of Cupples Window Wall.

Stackhouse Building Specialties is proud to have provided the materials and labor required to furnish and erect all curtain walls on this outstanding high school.

Stackhouse
BUILDING SPECIALTIES

1314 West Washington St., ME 2-8503
Indianapolis, Indiana

ELECTRIC
HEAT
by
CHROMALOX

is everywhere
in Indiana Schools

Exact Locations of
Electrically Heated Schools
On Request—See One Soon—

COUCHMAN – CONANT INC.
Indianapolis
ME 5-5313
Do Schools Cost Too Much?

The problem of getting and paying for public education affects the average taxpayer more than almost anything else in civil life. It affects both his pocketbook and the welfare of his children. On a broader scale, it affects the welfare of both his community and his nation.

Yet, insofar as the planning of school buildings is concerned, almost nothing is surrounded by so much misunderstanding and confusion—to the detriment of both pocketbook and child.

Each year, the community establishes a budget to pay for all of its public services. Each year, some one-half to two-thirds of the budget is earmarked for education. When local taxes are raised, as they have been steadily over the past decade, the property owners who bear the load understandably cast about for some means of relief.

A convenient target for this unrest is often the school building, and this unrest expresses itself in a demand for elimination of frills. If this word is equated with waste, the community is indeed on solid ground. But often it is not, and the community suffers from a wave of misplaced and costly "economy."

Are we spending too much on our new school buildings? To put the answer in perspective, consider what this money will buy—and what we spend it on. If the average homeowner pays an annual community tax bill of $200 and education takes half of the budget, he pays $100 for the total school program. Assuming that construction takes 15 per cent of the budget, he pays $15 for new school buildings during the year. The same man is apt to spend that much taking his wife to a good restaurant for dinner. Or, to establish another analogy, the cost of a modest television set would pay for a 10-year school construction program, or five years at double that building volume.

In all honesty, we must conclude that school buildings are not too expensive so long as they are not inadequately built. These are not mere opinions; national figures show that the cost of all building has tripled during the past 20 years. The cost of school buildings has only doubled during that period. The fact is that the school building is still the best bargain, dollar for dollar, on the building market.

There is, however, a hidden but very real cost in school building and every citizen should be aware of it. It is the cost of operating and maintaining the school plant each year. This is why a number of authorities state that only the wealthy community can afford a cheap school.

The annual cost of operating and maintaining school buildings in many communities is as much as the community pays each year to build its schools. This means that the better the materials, and the sounder the construction, the more money will be saved in the long run.

How, then, can money be saved in a school building? There are a number of ways, but significant savings are seldom the result of any one person’s action. They depend upon a combination of factors; in the last analysis, they depend upon the community and its understanding of the over-all problem.

Here are a few ways in which money can be saved without reducing schoolhouse quality:

1. Acquire school sites—large enough for long-term building expansion—long in advance of the need, perhaps as many as 10 years ahead. Population increases and shifts don’t happen overnight; a comprehensive community land-use and projected population study may be a very good investment. Acquiring land now would be advisable in view of rising real estate costs.

2. Practice sound financing. The difference between economical financing and expensive financing can amount to as much as 15 per cent of the total construction cost. Often as much as one-third of the community’s school debt service cost is in interest charges.

3. Design for ultimate use. This means planning for long-range needs so that additional units may be added and such items as utility connections can be made without costly tearing down and re-building.

4. Plan school projects more than the usual year ahead of the need. Haste in building makes a great deal of waste. Give your architects time to study the design problem and weigh comparative techniques and materials. Not only will this save a good deal of money in itself, it will allow more precise preparation of architectural specifications and insure closer bidding by contractors. It will also allow contracts to be awarded on an intelligent basis; prices are often driven up sharply because too many building projects are dumped on a saturated market at one time, when competition is absent.

5. Ask your school board and their architects to insist on use of first-class materials to cut maintenance and operating costs. Poor insulation, for instance, can result in heating costs that are as much as 75 per cent higher than if high-quality insulation were used.

6. Keep an open mind on design. It is the practicing architect’s professional responsibility to keep abreast of new techniques, studies, materials, and changing conditions in the building industry. The “gingerbread” facade of a half century ago is both expensive and a poor way to build. The form of the truly contemporary school is designed from the...

(Continued on Page 36)
Since 1883, Enterprise has been producing attractive, substantial Miscellaneous Iron Products and Ornamental Iron Work to the designs and specifications of Indiana architects. We are at your service. Write or call for further information and estimates.

ENTERPRISE IRON & FENCE CO.
1198 E. 24th St., INDIANAPOLIS

Phone WALnut 3-3328
In Business Continuously Since 1883

A Few Lighting Fixtures from the PRESCOLITE NEW PRODUCT PARADE

Round and Square Drum fixtures with hinged "DieLux" diecast canopy. Handblown "Thermopal" glass.

write for further information

PRESCOLITE MFG. CORP.
2229 Fourth St., Berkeley, Calif.
FACTORIES: Berkeley, Calif. • Nesbitt, Pa. • El Dorado, Ark.

QUALITY FLUORESCENT LIGHTING FIXTURES FOR
SCHOOLS OFFICES STORES FACTORIES

LOUISVILLE LAMP CO., INC.
LOUISVILLE 3, KENTUCKY
FOR QUICK SERVICE CALL JU 7-6094

INDIANA REPRESENTATIVE
JOHN G. LEWE
H. H. (SANDY) HOMAN
MARIEMONT CENTER BLDG.
ROOM 102
CINCINNATI, 27, OHIO

Which is it—when you open your office door?

F. E. GATES MARBLE & TILE CO.
&
Desco Vitro Glaze of Indiana

Contractors In Marble, Ceramic Tile, Slate and Desco Vitro Glaze Wall and Floor Finishes

KENNETH D. EARL., General Manager
CLifford 5-2434
5345 Wintrop Ave.
Indianapolis 20, Indiana

BUSINESS FURNITURE CORPORATION
101 SOUTH PENNSYLVANIA STREET, INDIANAPOLIS 4, INDIANA
TELEPHONE • MELROSE 2-1474
A Civic Planning Competition
On Community Improvement

PURPOSE:
To stimulate an ardent awareness of the need for Community Improvement through the participation of Architects, Designers, City Planners, Landscape Architects, Architectural Draftsmen, and Students in Architectural, Landscape and City Planning Schools. It is believed that a competition of this type can and will encourage communities across the nation toward bettering their communities by way of the limitless possibilities resulting from such an endeavor.

DATES:
Programs on the competition will be available September 15, 1960. Competition ends October 28, 1960.

ELIGIBILITY:
This competition is open to any Architect, City Planner, Landscape Architect, Designer, Architectural Draftsman or Draftsman employed in any of the above offices, students of Architecture, City Planning, or Landscape Architecture in any school of collegiate rank who are bona-fide residents of Indiana, or students attending an Indiana Architectural School.

Members of the Jury are ineligible.

PRIZES:
First Prize and Certificate $50.00
Second Prize and Certificate $25.00
Third Prize and Certificate $15.00
Two Honorable Mentions and Certificates $5.00 each

BASIS OF AWARDS:
Awards will be made on the basis of:
1. Excellence of design and skill in planning.
2. Practicality and esthetic appearance.
3. Presentation, neatness and clarity.

PROGRAM:
An expressway runs along a stretch of lakeshore and river which provides an excellent beach. The auto traffic moves at such high speeds and is so heavy that for a pedestrian to attempt to cross this superhighway is to risk injury. It has been necessary, therefore, to plan an overhead pedestrian walkway connecting a ten foot wide walk on the beach side with another ten foot wide walk contained within a park paralleling the highway.

The expressway is 90 feet wide from curb to curb overall, and contained within this dimension is a ten foot wide island of grass and landscaping (which shall be indicated on the plan) separating the two lanes of traffic. A clear height of fourteen feet should be allowed over the roadbed. The overpass should be no more than twelve feet wide and should have a railing as well as means of being lighted at night.

The materials used in the construction of this overpass is left entirely to the discretion of the competitor, and it is particularly desirable that the design express these materials of construction.

The competitor should bear in mind that provisions should be made for wheeling baby buggies to the opposite side.

DRAWINGS:
Present each submission on one sheet of illustration board 20 inches by 30 inches, and laid out for horizontal hanging. A title shall not be made a part of the composition, and drawings are to be presented in any medium the entrant may choose to best express his ideas.

ANONYMITY:
Drawings shall contain no identifying marks. To the back of each drawing shall be firmly attached a plain, opaque, sealed envelope containing the name and address of the competitor, which must coincide with the name and address on the application form. Envelopes will be opened by the professional advisor, in the presence of the Jury, only after all selections have been made.

REQUIRED DRAWINGS:
1. Plan of overpass with roadway, at 1/16" to the foot.
2. Elevation at 1/16" to the foot.
3. Section or Sections at 1/16" to the foot.
4. A Perspective at as large a scale as possible.

(Text Continues on Next Page)

OFFICIAL ENTRY FORM
1960 CIVIC PLANNING COMPETITION
ON COMMUNITY IMPROVEMENT
(Please Print or Type)

Name Age Sex —
Mailing Address Zone State —
City Permanent Address (if different from Mailing Address
Status (Architect, City Planner, Landscape Architect, etc.): —
Firm or School Present Position —
Location —
Marital Status Number of Children —
Name of Spouse —
Signature —

MAIL TO:
The Indiana Society of Architects, AIA
3637 North Meridian Street
Indianapolis 8, Indiana
DELIVERY OF SUBMISSIONS:
Send submissions pre-paid and securely wrapped, protected against damage in transit, addressed to: The Indiana Society of Architects, 3637 North Meridian Street, Indianapolis 8, Indiana. Entries must be postmarked not later than Midnight, Friday, October 28, 1960, to be eligible. Post Office or date stamp, or Express Company dated receipt indicating delivery of the drawings to the Post Office or Express Office on or before the above date will be accepted as evidence of compliance with this provision. No drawings received after the Jury has commenced its deliberation will be considered. Note: Most postoffices will not accept a package exceeding 72" in length and girth combined.

JUDGING AND JURY:
The Jury will consist of one member chosen from each of the five following standing committees of the Indiana Society of Architects: Civic Planning, Honor Awards and Exhibits, Education and Registration, Preservation of Historic Buildings, and Public Relations and Publicity.

This Jury will meet approximately one week following the contest closing date to determine the successful entries. The Jury will select its own chairman.

The decision of the majority of the members of the Jury will be final and binding in respect to any matter involved in the judgement of the competition.

Drawings will be judged at the next general meeting of the Indiana Society of Architects (on November 11th and 12th in South Bend). All competitors are cordially invited to attend this meeting.

PRESENTATION OF AWARDS:
Names of the successful competitors will be announced immediately after the judging of the submissions has been concluded, and those not present will be notified by mail.

SPONSORSHIP:
This competition is sponsored by the Indiana Society of Architects, a chapter of The American Institute of Architects.

A. I. A. APPROVAL:
This competition has been approved by the Committee on Architectural Competitions of The American Institute of Architects. Institute members are therefore permitted to participate.

USE OF SUBMISSIONS AND OWNERSHIP OF DRAWINGS:
The Indiana Society of Architects reserves the right to publicize, display, or authorize the reproduction of any and all designs submitted in this competition, giving full credit to the designer in each instance. The original drawings will be returned C. O. D. to those submitting them, at the expense and request of the participant, after the sponsors have utilized them for the above purposes.

CORRESPONDENCE:
As this is an open competition, no information other than that presented in the program will be furnished. Communications or inquiries cannot be answered.

EXECUTONE

Intercom & Sound System

for

- SCHOOLS
- HOSPITALS
- CHURCHES
- BUSINESS
- INDUSTRY

Complete planning and layout service available to architects and engineers.

EXECUTONE
COMMUNICATION SYSTEMS
229 N. PENN. ST. — INDIANAPOLIS
MElrose 4-8695

Only the Airson System has all these advantages
- Completely Uniform Air Distribution — Even in Large Areas.
- A Clean Unobscured Beautiful Ceiling.
- Will Say Clean.

Another Proven Product of

ANNING-JOHNSON Company
1720 ALVORD STREET
INDIANAPOLIS 2, INDIANA

32
FOR Quality BUILDING MATERIALS

Schuster's
824 E. TROY AVE.

State 6-4351
INDIANAPOLIS, INDIANA

Design Gold Medallion Homes

Modern families prefer Gold Medallion Homes... homes that have the latest in electrical comforts and conveniences specified and installed. The Gold Medallion Home program—spearheaded by Public Service Company in the area it serves—is backed by a multi-million dollar national advertising program which is creating an even greater desire among American families for better homes featuring better living, electrically!

Come in or give us a call. We'll bring you complete Gold Medallion Home information.
“Why does every school building have to be different? Couldn’t we just standardize on one good plan for schools and save the taxpayers a lot of money in architects’ fees? And wouldn’t it save money, too, through stockpiling of materials? It’s time we did away with the expense of individually-designed school buildings. Nobody in his right mind would ask for a custom-built car; we should emulate the example of the automobile industry and mass-produce our schools.”

So runs a recurring refrain across the land whenever we become pinched financially and the taxpayer’s ire focuses on the cost of public education. Yet a national survey disclosed that not one state school system recommended the use of stock plans to another state. Fifteen states reported having tried stock plans and abandoned them. The few states which did use stock plans, did so only for one and two classroom rural schools.

Now, according to a new survey, only two states report use of stock plans. Each stated clearly that such use is limited to small schools in rural counties. Why is this? Are our states systems stubbornly insistant upon waste in school construction? The obvious answer is that they are not; there are excellent reasons why stock plans can’t and don’t produce either good or economical schools.

First, however, the situation warrants a close look at what school buildings really cost. The surprising truth is that, if we get our school buildings for nothing, it would still make little difference on our local tax bills. True, each year some one-half to two-thirds of our community budgets are earmarked for public education. But the average new school-building program takes only between 10 and 20 cents from the local tax dollar. This is not to say, of course, that any public money, regardless of the amount, should be spent recklessly.

The citizens of every American community have a right to an accounting for the expenditure of every penny of public funds. They also have a right to expect to be informed about technical matters such as school design and construction, so that they will not actually waste money under the guise of saving it. This is the situation with respect to stock-plan schemes. One state, in one of the previously-mentioned surveys, disclosed that it had wasted $40,000 on just the use of two stock plans which could not be used.

The reasons why stock plans won’t work can be enumerated, literally, from the ground up. First, the soil conditions, land contours and grades, drainage characteristics, and utility connections of sites vary greatly. You can’t stock-plan school sites, so no stock plan can be drawn up for foundation work.

Second, site exposure obviously differ. The way a building is oriented on a site can make a great deal of a difference in operating costs. Generally speaking, unshielded glass areas facing north mean extra heating bills; special consideration must be given, too, to the excessive heat load directed at a building from the west. However, accidents of terrain and prevailing winds circulating about a given site, together with other peculiarities of the local weather, can save major effects upon design which cannot be stated in generalizations. Every site is different; so is every design problem.

Separate plans must be prepared for engineering work. The number of rooms and their electrical needs affect the total load, metering, and circuit distribution within a building. As touched on above, plans for heating equipment and their installation will vary considerably with building orientation and weather.

Separate plumbing plans are required for differing connections and elevations. A similar situation exists with drainage plans. All of these planning problems are individual, and all are subject to individual community building codes and ordinances which specify methods of installation, sometimes in great detail. These codes often differ from one community to another within the same county or area.

So we wind up with nothing but the building shell as a possibility for our stock plan. The walls of a building seldom cost more than 15 per cent of the building budget. But, even with this, can’t we make some saving there? Let’s examine the possibilities.

First, we have to go back to the site. If it is level, this would seem to present no problem in standardization. If the site is rolling, however, it will often cost a great deal more to bull-doze it flat than to design the structure to follow the land contours. It may be economically advantageous to build several individual units to avoid blasting away at a rocky hill or by-pass a patch of soft sub-soil.

Second, what is the ultimate plan of construction? That is, is the school being planned (as it should be, given a sufficiently large site) with expansion needs in mind? Long-range planning, which saves the taxpayers many thousands of dollars in bond repayments, often requires units of varying size and facilities to be built at different times according to a master schedule.

Third, to what use will the school building be put? This is not as obvious a question as it may seem, and it goes to the heart of architectural planning—the satisfaction of function. Nearly every school system in the nation differs in one degree or another in teaching methods and curriculum. Even seemingly small differences in teaching practices will affect design decisions.

Take a science classroom, for example. Whether students will be taught mainly at their seats or do most of their work standing at chalk-boards will affect the planning of wall units, the total amount of space needed, storage facilities, seating arrangements, and many other items which will affect the design of just that single space.
INTERESTED IN SCHOOL CONSTRUCTION?
THE ECONOMY OF
HOLLOW STEEL STUD CHALKBOARD PARTITION WALL
OF GENUINE
Lath and plaster

COMPLETELY CONSTRUCTED BY ONE CONTRACTOR,
WILL RESULT IN AN INTEGRAL, ECONOMICAL UNIT
INVESTIGATE — SPECIFY — DEMAND
VERSATILE • ECONOMICAL • LATH and PLASTER

Lathing & Plastering Bureau of Indianapolis, Inc.
SECRETARY-TREASURER: WILLIAM F. BOYCE, P.O. BOX 572, INDIANAPOLIS 6, INDIANA

K&E DEALER
Exclusive K&E DEALER
Blue Prints • White Prints • Photo Copies
Pick-Up and Delivery Service
FOR BETTER SERVICE . . .
2 — CONVENIENT LOCATIONS — 2
MARBAUGH Engineering Supply Co.
140 E. Wabash St., Indianapolis MElrose 7-3468
5226 N. Keystone Ave., Indianapolis CLifford 1-7070

Styrofoam® insulation
superior for commercial and residential construction

ARCHITECTS — Specifications, data and application instructions available in portfolio form. Information on the new Scorbord perimeter insulation also included. Write today, no obligation.

SEWARD SALES CORPORATION
ELKHART, INDIANA
INDIANAPOLIS, IND.
CINCINNATI & OHIO
740 SOUTH MAIN STREET
1101 EAST 46TH STREET
3650 MICHIGAN STREET

PERIMETER INSULATION
For vertical, horizontal, crawl space or perimeter heating insulation, Styrofoam retains its low K factor indefinitely. It is impervious to moisture.

PLASTER BASE INSULATION
Styrofoam insulation — plaster base construction eliminates framing and lathing, reduces handling and installation costs. Plaster keys directly to Styrofoam.

CAVITY WALL INSULATION
Styrofoam used in cavity wall construction provides comfort and heating economy in schools, churches and commercial buildings. Easy to install and serves as its own vapor barrier.
Do Schools Cost Too Much?
(from Page 29)

inside out, both to plan properly for the educational process and to produce economies. Today's school buildings are attractive workshop, rather than the grim monuments of fifty years ago.

You may be startled by some innovations. For example, a number of schools in various parts of the country have recently been planned for central air-conditioning to save money. Comparative bids on several design schemes in one case showed that the cost of the air-cooling system was more than balanced by a reduction in window area. Considerable design changes are also taking place in localities where closed-circuit television is being used to solve the problem of large-class teaching and add a new visual dimension to education.

7. Avoid fast-buck and universal-solution schemes. There is simply no one design, proprietary school plan, package scheme, or prefabricated building product available today which can compete—either in quality or price—with a school building designed and built according to local needs.

Nor does the government design provide economies. Authoritative studies, involving public works structures on the federal and state levels, throughout the nation, show clearly that the best results in terms of economy and end product have been produced by private practicing architects rather than by municipal architectural bureaus. In this respect, the fees paid to private practitioners have been found to be a very small investment in the best possible planning by professionals who compete on the basis of talent—as do physicians, lawyers, and other professional persons.

The planning and building of good schools is a professional job whose excellence depends on close teamwork by architect and educator. Yet even this, without effective community understanding and support, will produce less than the best result.

It is the community's job to understand the need, insist upon the best means of satisfying it, and produce the means to finance it. Of more than $50 billion to be spent on new construction this year, only about $3 billion is earmarked for schools. When we consider that $10.5 billion is spent annually on the consumption of alcohol, the comparative cost of something we need as much as good education does not loom quite as large.

The Myth of Stock School Plans
(from Page 34)

Fourth, can any school system afford to freeze its plans according to present needs, materials, equipment, and building technology, in light of the rapid improvements which are being made, year by year, in all these things? Architects, engineers, competent builders, and informed educators agree that they cannot.

Logically, then, any advantage accruing to a community from the use of stock plans must be branded as illusory. This is not a theoretical decision; over the past several decades, stock-plan design has been tried many times in many areas. The result has inevitably been a constant, expensive, and unsatisfactory series of modifications and compromises which have wasted taxpayer money and produced substandard educational facilities.

In all fairness, it should be added that the responsibility for such wasteful experiments cannot always be laid at the door of an uninformed citizenry. Some of it must be blamed on the building industry itself. There have been many, and still are a few, "package" contractors who beguile unwary school boards with offers of a "complete building service," often at an alleged "guaranteed price."

They are, essentially, stock plan dealers. Unhindered by the professional ethics of the architect, which forbid him to design and build and thus serve two masters, they sell pre-planned structural systems, materials from which they receive profits, and cut-rate technical services. These dealers, unfortunately, are sometimes abetted by unprofessional "captive" architects who become employees and produce drawings upon demand. The "guaranteed" price which these corporations offer is a myth, and often an expensive one. No one can look into the future and accurately guess at the exact cost of materials and services. Thus, the only way in which such a contract can be offered is either to pad the price or leave the specifications purposely vague to allow later skimping. This practice destroys the advantages of competitive bidding. It also eliminates professional supervision of the work; the packager supervises himself.

Well-designed, well-built and economical schools, suited to the community's education needs, are provided on an individual basis by a team—professional architect, educator, the builder hired through competitive bidding, and informed citizens. Nothing else will do the job.