The Kentucky Architect

AUGUST, 1963

GENERAL BUTLER LODGE
"THE BUCK
STOPS HERE"

So read a sign which one President of the United States kept on his desk. That was where the final decision had to be made. Through a lifetime of experience, the President knew that in every undertaking, every project, every job, someone had to assume final responsibility.

Every businessman, every military or government official is aware of the need for a centralized authority. This need is not seriously questioned by any policy-making group in government or private enterprise.

Certainly the complex construction industry exemplifies this rule. No one seriously challenges the need for a central coordinator on a construction job. Someone must schedule and control the work. Through the years, this role has traditionally and successfully been filled by the general contractor under the American contract method of construction. With the growing complexity of construction, the need for the general contractor to provide this centralized coordination has intensified.

Responsible contract awarding authorities, representing private companies as well as all levels of government recognize the soundness and efficiency of dealing with the general contractor as the central responsible authority.

Look for the AGC Emblem

LOUISVILLE CHAPTER

The Associated
General Contractors of America Inc.

RALPH E. WEHR • president Wehr Constructors, Inc.
H. G. WHITTEMBERG, Jr. • 1st vice-president Whittenberg Construction Co.
G. TODD BRADY • 2nd vice-president Schickli Contracting Co.
CLARK J. POTTER • treasurer Ruby Construction Co.

GEORGE C. LONG
Executive Secretary

120 EAST BRANDEIS AVENUE
P. O. BOX 8125 • LOUISVILLE 8, KENTUCKY

BETTER SERVICE THROUGH RESPONSIBLE MANAGEMENT
KENTUCKY SOCIETY OF ARCHITECTS, A.I.A.
President—A. B. McCulloch, A.I.A.
Vice President—Kenneth V. L. Miller, A.I.A.
Secretary-Treasurer—A. Bailey Ryan, A.I.A.

DIRECTORS
Jean D. Farley, A.I.A. Ernest V. Johnson, A.I.A.
Arnold M. Judd, A.I.A. Charles P. Graves, A.I.A.

EAST KENTUCKY CHAPTER, A.I.A., Lexington
President—K. V. L. Miller, A.I.A.
Vice President—Douglas McLoney, A.I.A.
Secretary-Treasurer—Prof. Charles P. Graves, A.I.A.

WEST KENTUCKY CHAPTER, A.I.A., Louisville
President—Arnold M. Judd, A.I.A.
Vice President—A. Bailey Ryan, A.I.A.
Secretary—Donald Schnell, A.I.A.
Treasurer—Bergman Letzler, A.I.A.

Editorial Council:
A. Dean Huff, A.I.A.
Prof. Charles P. Graves, A.I.A.
Gerald S. Baron
Kenneth C. Zellich
Paul F. Rassinier, A.I.A.
Kenneth N. Berry

Public Relations, West Kentucky Chapter:
Chairman—Lloyd G. Schleicher, A.I.A.

The Kentucky Architect

is the monthly official magazine of the East Kentucky Chapter, Inc., and the West Kentucky Chapter, Inc., of the American Institute of Architects, Inc. Opinions expressed herein are not necessarily those of the Chapters or the Institute.

Send all manuscripts, photographs, letters and advertisements to KENTUCKY ARCHITECT, Marvin Gray, Executive Secretary. Editorial and Advertising office: Telephone 635-7327, P. O. Box 8026, Station E, Louisville 8, Kentucky. Design, layout and printing by Editorial Services Co., 445 Baxter Ave., Louisville, Kentucky.

KENTUCKY ARCHITECT is available at a subscription cost of $4.00 each year or 50¢ each issue.

THE KENTUCKY ARCHITECT ... publishes significant expressions of the enclosure, the use and the control of space.
Barkley Dam Bridge
A Kentucky First

The Barkley Dam Railroad Bridge, located near Grand River, Kentucky, is the first bridge in Kentucky to be supported by drilled caissons.

There are thirty-two 30" drilled caissons supporting the span. Depth varies from 70-108 feet, battered and vertical.

McKinney Drilling Company, sub-contractor for the drilling operation, reports they are using two LLDH 120′ drilling machines on the job and that these machines are the largest foundation drilling machines available in the industry.

Construction for the bridge was started in May, 1963. Gust K. Newberg Construction Company, Chicago, Ill. is the general contractor for the project.

Fallout Shelter Analysis Course

An independent study course in Fallout Shelter Analysis for qualified architects and engineers will be offered by the University of Wisconsin in cooperation with the Office of Civil Defense, Department of Defense, beginning in September.

The course will consist of forty lessons conducted through correspondence between the student and university. Summary and review lessons and examinations will be given and, upon satisfactory completion of the course, the student will be certified as a Fallout Shelter Analyst.

To defray the cost of registration, postage and course materials, which will be furnished by the university, a fee of $25 will be charged each person enrolled.

The course will include topics such as: Introduction to Nuclear Physics, Effects of Nuclear Weapons, Radiation Shielding Methodology, Master Field Problems, and Shelter Environmental Considerations.

Material covered in the home study course is equivalent to a two-week intensive course given by the Corps of Engineers at Ft. Belvoir, Virginia.

Architects and engineers who are interested in participating in the independent study course should request application forms from the Director of Training and Education, Office of Civil Defense, Region Two, Olney, Maryland.

Fallout Shelter Analysis courses will also be offered in a number of metropolitan areas including Louisville and Cincinnati, beginning in the Fall.

West Chapter Meeting

The regular meeting of the West Kentucky Chapter of the A.I.A. was held July 26 at Gabe’s Restaurant in Owensboro. The highlight of the meeting was a presentation of four outstanding building types and analysis of their design problems by their respective architects.
JUST BECAUSE WE'RE THE BIGGEST, DOES THAT MEAN WE'RE THE BEST?

YES — AND HERE'S WHY: When you consider that Dolt & Dew's staff has accumulated 153 years experience in the manufacture of precast concrete building units; when you consider that we are acknowledged by architects and contractors alike to be the largest producers of this important building material; when you consider that with our modern equipment we can produce 1500 sq. feet of exposed aggregate panel a day, 5,000 sq. feet of precast double-T floor and roof slabs a day, 400 sq. feet of prestressed bridge beams a day, 250 lineal feet of precast beam a day, or 250 lineal feet of precast concrete piling a day; when you consider that our yard is comprised of 15 acres and our 20,000 sq. foot building can handle even the largest of jobs, then you see that the biggest and best precast manufacturer for your project is Dolt & Dew. Call on us for assistance on your next project—you'll profit by it.

MANUFACTURERS OF PRE-CAST CONCRETE FLOORS AND ROOFS, FRAMING SYSTEMS AND WALL PANELS.

DOLT & DEW OFFER LOW MAINTENANCE, FIRE PROOF CONSTRUCTION.

DOLT and DEW, Inc.
4104 BISHOP LANE
LOUISVILLE, KENTUCKY
969-3212
RESOLUTION OF THE ENGINEER-ARCHITECT PROBLEM

ROBERT B. GEORGE
Hummel, George, & Kleine-Kracht, Inc.
Consulting Engineers

An address given before the March 1963 meeting of Kentucky Section of the American Society of Civil Engineers.

Before we can address ourselves to the solution of this problem we must define it. Just what is this Engineer-Architect problem? The chances are that if you asked ten engineers this question, you would get ten different answers. The same is true of architects. Their answers would depend on the nature of their past relations with each other.

Few, however, would deny the existence of some problem. It is rather self-evident that the problem area is basically in professional relations. The engineer and architect just don’t seem to get along well professionally. This is manifested in many ways: by attempts of Registration Boards to define the limits of the two professions; heated by controversies over who should have charge of certain projects (is it basically an architectural or an engineering project?); and by lawsuits contesting a firm’s rights or responsibilities with regard to professional practice. These are merely the outward signs, or effects, of the basic problem.

The real basis for the problem is the culmination of the historical development of the two professions. It is a matter of evolution. It did not suddenly present itself to us last month, last year, or ten years ago. But it has evolved over many years, and as a result of our changing technologies.

With all of man’s knowledge, each generation takes what has been accomplished in the past and builds upon it. So it has been in the development of Architecture.

Our Architectural heritage has come down to us from the Greek and Roman civilizations, who were the first western cultures to utilize construction materials with some understanding of their capacities. This architecture established standards of artistic expression and technical achievement which remained relatively unchanged for centuries. The most significant single factor after the early Roman Architecture, so far as its influence on succeeding generations, was the emergence of the “master builder” of the Italian Renaissance. Best personified by Leonardo da Vinci and Michaelangelo, the “master builder” was truly accomplished as artist, architect, and engineer. Most important to us, these men had a profound effect on succeeding generations of architects.

With this beginning of Greek and Roman construction, and the impetus given by the succeeding periods, the Architect came upon the threshold of the twentieth century with this heritage of the “master builder”. The technology of building had changed relatively little in these few centuries.

Meanwhile sociological changes were creating greater demands on the designers of bridges, roads and public works. The designers of these facilities began using new engineering principles. It was about 1750 in England that John Smeaton first referred to himself as a “Civil Engineer”. From that time, the distinction between Architect and Engineer was rapidly established in the Western world. So while the Architect concentrated on achieving new artistic effects in his building designs, the science of engineering was developing quite rapidly, and generally apart from the building construction field.

With the introduction of steel and Portland cement in the latter half of the nineteenth century, the scene began to change. These new materials caused the first significant change in the technique of building construction in centuries: The ability to erect a frame or skeleton to carry the loads and stabilize the structure. The walls could then function as a curtain, or weather barrier.

(Continued on page 8)
A.D. ROE
COMPANY, INC.
GENERAL CONTRACTORS
GENERAL CONTRACTORS FOR ROUGH RIVER LODGE
403 ROBERTS AVE.
P.O. BOX 14101 - IROQUOIS STATION
LOUISVILLE 14, KY.
361-2369

SOUTHERN DRY-WALL COMPANY
4401 LOUISVILLE AVENUE
FOUNDED ON THE PRINCIPAL THAT CONTINUING PROGRESS IS ESSENTIAL TO MEET THE INCREASING DEMANDS OF ARCHITECTS
COMMERCIAL - INDUSTRIAL INSTITUTIONAL
MEMBER OF GYPSUM DRYWALL CONTRACTORS INTERNATIONAL
DRYWALL CONTRACTORS FOR ROUGH RIVER LODGE

ELECTRICAL CONTRACTOR FOR ROUGH RIVER LODGE
HATFIELD ELECTRIC CO., INC.
FIRST AND FOREMOST WITH CONSTRUCTION AND ENGINEERING SINCE 1885
2434 CRITTENDEN DRIVE PHONE ME 5-7401
LOUISVILLE, KY.

BROWN SPRINKLER CORPORATION
AUTOMATIC FIRE PROTECTION SYSTEMS
ENGINEERS - CONTRACTORS INSTALLERS - INSPECTORS 24 HOUR REPAIR SERVICE GLOBE SPRINKLER DEVICES
CONTRACTORS SPRINKLER SYSTEM ROUGH RIVER LODGE
914 S. 12TH JU 3-0315
With this innovation in construction until the present time, technological demands of our buildings have accelerated without pause. Our society's progress has demanded newer and better services within today's buildings. These demands have brought into the modern building a staggering array of engineered systems for temperature and humidity control, power, light, communications, vertical transportation, and the structure required to support the building.

The architect has had to adapt his buildings to these changing requirements. Considering the time span in which all this came about, the results have been rewarding. But, obviously, the architect could not do all this alone. He can conceive the basic ideas, or recognize the need, for a system within his building. But he doesn't have the technical background to design the system in detail. He must rely on engineering specialists for this.

So the architect and engineer have been drawn together in the building design process by necessity. The necessity to provide within the architect's building the engineered systems which will serve this variety of needs. But the nature of the two professions is not compatible.

The architect's education is based on this heritage of the "master builder". It is strongly influenced by the artistic expres-
The Lake Cumberland Lodge is actually a complex of three separate buildings connected by covered walkways. It is located on a peninsula overlooking the huge lake in Cumberland National Forest.

The main lodge contains a lobby, lounge, offices, main dining room, private dining rooms and kitchen. One guest unit has 16 bedrooms while the other contains eight. Total cost for the lodge project was $480,000.

Exterior walls are of stone and wood siding with wood windows. Reinforced concrete was used as the structural material with partial steel frame, precast concrete floor slabs and frame walls. The interior uses wood with drywall or wood panel.
Built on a gently sloping hill which affords an unlimited view, the design of the Kentucky Dam Village central lodge building made maximum use of the land by using a U-shape. With the central lodge as the base, arms of bedrooms extend on each side.

The lodge appears only single-story from the front, but extends down another story at the rear elevation. The upper level contains the entrance, office, lounge and recreational areas, while the dining area, kitchen and two terraces comprise the lower level. The terraces provide lounging off the dining room and swimming pool. The bedrooms follow the curve of terrain avoiding dull, linear arrangement, and giving individuality.
The site for Rough River Dam Lodge is located on a hillside overlooking Rough River, with an uninterrupted view. It was built at a single level, dropping to another level as viewed from the rear. Wood and stone were selected as the materials for maintenance freedom. Each bedroom features a private balcony or enclosed terrace.
Situated on the top of the most prominent bluff in General Butler State Park, overlooking the lake, the new lodge building was designed to be a part of the bluff and to reflect the rustic image of the park atmosphere.

To carry out the theme rough sawn Western Red Cedar siding was used on the exterior and exposed wood beams, native stone and wood paneling were used on the interior.

Including the pool, the lodge was built at a square-foot cost of $22.60. It features a dining room for 200, lounge and gift shop, and 25 bedrooms.
ENGINEER-ARCHITECT
(Continued from page 8)

sion of past architecture. So he feels the need to be creative and achieve artistic expression in his buildings.

The education of the engineer, however, stresses the purely technical. His schooling is founded on the physical sciences and mathematics. Regardless of his specialty, or major, in the broad field of engineering, he is taught to rely only on engineering principles and scientific deduction in reaching a decision.

There are many examples in modern architecture where the architect has been able to integrate an engineering solution into the esthetic qualities of his work. Frank Lloyd Wright is generally credited with being the modern counterpart of the "master builder", revealing an intuitive feeling for the structural behavior of his buildings, and able to express it in an esthetically pleasing manner. But by and large, the architect must rely on the engineer to devise a compatible solution to his problems.

When the engineer is called upon to aid the architect, he approaches the problem with the aim of achieving the soundest and most economical engineering solution. This if fine, and necessary if the engineer is to do the best job. But all too often the engineer fails to consider the integration of his system with the other building functions, and the esthetic requirements of the Architect. If each of these engineering systems is designed separately, disregarding other aspects of the building, there is no magic by which they all can be put together to work properly and look pleasing. Every element of the building is interdependent, so the finished building will reflect whether the many design decisions were carefully analyzed or came about as a conglomeration of parts.

When the Engineer is unwilling to make adaptations for the Architect whose approach may seem arbitrary, a conflict arises. Out of this clash of interests, or principles may evolve a lack of mutual respect for the other's work. This leads directly to these problems in professional relations.

That these conflicting principles (Continued on page 16)
BUTLER BUILDINGS

make the best BUSINESS BUILDINGS

MOST advanced pre-engineered system. MORE component standardization. MANY unique advantages including an optional 20-year aluminum roof guarantee! Even financing is available. See us soon for facts and figures.

JAMES N. GRAY CONSTRUCTION COMPANY
Phone OL 1-2175
Glasgow, Kentucky

HARPRING SALES & ERECTORS, INC.
Phone ME 6-3766
Louisville, Kentucky

HARTZ-KIRKPATRICK CONSTRUCTION COMPANY
Phone 4-3205
Owensboro, Kentucky

SETZERS
Phone 6-4115
Lexington, Kentucky

CHARLES E. STORY CONSTRUCTION COMPANY
Phone LA 7-7773
Benton, Kentucky

ELEVATORS
THE MURPHY ELEVATOR
COMPANY INCORPORATED
128 E. MAIN ST.
LOUISVILLE 2, KY.
JU 7-1225

PASSENGER FREIGHT RESIDENCE DUMBWAITERS
Electric and Oil Hydraulic Type
For New Installations and Renovating Jobs
Consult Our Sales Engineers
Industrial Handling Equipment
GLOBE Oilifts
Industrial Representative — Sales and Service

Hubbuch Bros & Wellendorff HOM-E-OWNED
Decorators for more than 20 Years

COMMERCIAL INSTALLATIONS
Our interior decorators are at your service for any Commercial or Residential decorating job

642 SOUTH 4TH STREET JUniper 2-2695

DO Manufacturers of Epoxy Coatings

EPI-TILE EPI-COAT
CERAMIC GLAZE

For Information please write or call
DeHart PAINT & VARNISH CO., INC.
906 EAST MAIN STREET
LOUISVILLE 6, KENTUCKY

584-6997
AREA CODE 502

Best for restaurants . . apartment buildings . . factories . . . schools . . . swimming pools!

The RUUD Copper Sanimaster Commercial water heater features a tank of copper, reinforced with steel . . . copper for long life, steel for strength. Backed by a 5-YEAR WARRANTY.

Immediate delivery!

RUUD SANIMASTER COMMERCIAL GAS WATER HEATERS
We maintain a complete stock of RUUD Commercial Water Heaters to meet every commercial, industrial and institutional requirement.

RUUD Water Heater Sales Company
840 E. Chestnut St.
Louisville 4, Kentucky 583-7629
Adamson Welded Pressure Tanks

Manufacturers of Epoxy Coatings

EPI-TILE EPI-COAT
CERAMIC GLAZE

For Information please write or call
DeHart PAINT & VARNISH CO., INC.
906 EAST MAIN STREET
LOUISVILLE 6, KENTUCKY

584-6997
AREA CODE 502

Best for restaurants . . apartment buildings . . factories . . . schools . . . swimming pools!

The RUUD Copper Sanimaster Commercial water heater features a tank of copper, reinforced with steel . . . copper for long life, steel for strength. Backed by a 5-YEAR WARRANTY.

Immediate delivery!

RUUD SANIMASTER COMMERCIAL GAS WATER HEATERS
We maintain a complete stock of RUUD Commercial Water Heaters to meet every commercial, industrial and institutional requirement.

RUUD Water Heater Sales Company
840 E. Chestnut St.
Louisville 4, Kentucky 583-7629
Adamson Welded Pressure Tanks
East Central and Indiana Convention Oct. 18-20

Reservations for the East Central Region and Indiana Society of Architects Convention must be made by the end of August. The convention will be held at the French Lick-Sheraton Hotel in French Lick, Indiana on October 18-20.

Individual invitations will be sent to all members of the East Central Region, as well as all lay guests recommended by each chapter, and all chapters in Illinois, Ohio and Michigan.

Following is a tentative schedule of activities which will take place during the three-day event:

Friday, 18th - 1-6 p.m. registration desk open; $5 registration fee for each person attending convention; 1 p.m. product exhibits open; 1 p.m. East Central Regional Council meeting, Director James Clark presiding; 2:30-5 p.m. Indiana Society annual business meeting; 6:30 p.m. reception and cocktail party; 8 p.m. banquet with A.I.A. Director James Clark presiding, speaker Jim Lucas of Herman Miller, Inc., "A Commentary on Environment". Note: Women's Architectural league meeting will be scheduled at time desired by WAL.

Saturday, 19th - 8:30 a.m. registration desk opens; 9 a.m. product exhibits open; 9:15 a.m. nomination for director and secretary from East Central Region for three year term beginning June, 1964; 9:30-noon first session of design seminar "Aesthetic Responsibility"; 12:30 p.m. awards luncheon with awards being presented to person who has contributed most toward creating an atmosphere in which good design is possible; 2:30-5 p.m. second session of design seminar "Aesthetic Responsibility"; 6:30 cocktail party; 8 p.m. banquet honoring East Central Region fellows and wives, introduction of speaker - James A. Clark, speaker - A.I.A. president J. Roy Carroll.

Sunday, 20th - Informal breakfast, golf, hiking, skeet shooting, baths, conversation, etc. 2 p.m. buses leave for Indianapolis via Brown County.

F.H.A. Honor Awards

All architects, landscape architects, designers and builders are invited to enter the Federal Housing Administration 1963 Honor awards program for residential design.

Deadline for mailing registrations is August 10.
ENGINEER-ARCHITECT

(Continued from page 13)

do exist between Engineer and Architect is illustrated by a statement from an article by a New York Architect: "I have always wanted to find a coat of arms with a motto for an engineering society. It could perhaps be a lion and a unicorn and the inscription might read... 'It Cannot Be Done'". This was undoubtedly written with tongue-in-cheek, but it indicates a general tendency on the part of some architects to regard the engineer as too inflexible.

The only practical solution for this problem on the part of those in practice is to strive for greater understanding and cooperation. They must regard the process of building design as a group effort; as a matter requiring teamwork. The Architect must recognize the contribution of the engineer in this process, and create for him a place on the design team. Thus it would become the Architect's role to satisfy the functional and esthetic requirements of the building and coordinate the integration of the many technical aspects.

The engineer must cease being purely a technician in the design process. He must be an advisor, during early design phases, on the selection of the proper system. He must be sympathetic with the architect's aims, and be willing to adapt a good engineering solution to meet these aims. And he must know when to discourage a whim of the architect's from disrupting a good engineering solution. The two must approach problems with a spirit of cooperation and mutual respect.

We have dealt, so far, with the individuals in working our solution to this problem. But a great deal can be done to produce a better climate, a better general atmosphere, for the relations of engineer and architect. This can only be done thru cooperation of organized bodies of engineers and architects working together on matters of mutual interest. An excellent example of results which can be achieved through this type of cooperation was seen recently in Kentucky. The Kentucky Association of Consulting Engineers and the Kentucky chapters of the American Institute of Architects collaborated with the State's Engineering Staff in the preparation of a new Architect-Engineer contract covering their services on state building projects. The results were very encouraging, and in the best interest of both groups. This feeling of cooperation will undoubtedly make future relations between these two bodies, both on an individual and group basis, much easier.

We have discussed a means of alleviating the friction between architects and engineers now in practice. But a proper solution requires that we go back farther; back to the education of those who are responsible for building design. It appears to me that present-day architectural school must be doing a good job of training their students to accept the role of the engineer in modern building design. Recent architectural graduates and students of my acquaintance, even though they receive a pretty thorough general engineering grounding, recognize the need for engineering consultants in the design process. They seem to feel that their major contribution (Continued on page 18)
NEW
PRODUCTS

ENRICHED BEAUTY AND PROTECTION FOR WOOD

For many centuries natural wood has been our most widely used material for construction, and in recent years has proved its durability once again, but for an entirely new reason. Discriminating Americans have rediscovered that wood is beautiful!

An example: Jones spends his working day in a steel, glass and concrete office. No doubt attractive and efficient, but he wants his home to be something different. He needs a restful atmosphere that encourages relaxation, and that is the reason for the steadily increasing specification of natural wood for residential interiors.

Now the architect can’t stop at walnut paneling or redwood beams in his specifications. Wood requires finishing and architects should be acquainted with a development in wood finishing that can help solve some of their problems.

For years the standard wood finishes have required three, four or even five operations. Drying time between coats was slow and odors were very objectionable. Shellac and lacquers turned white under humid conditions and sanding was a problem. In short, finishing wood was expensive and impractical.

What’s new? A wood-finishing system that consists of two coats, a wiping type stain and sealer and a finish in choice of glosses. It is ideal for any bare wood surface including cabinets, doors, paneling, trim and floors. The first coat (available in clear or twelve colors) seals the wood while enhancing the beauty of the grain. It may be wiped to the desired depth of color a few minutes after application. The finish coat may be applied after about six hours.

That’s all there is to it. First introduced to contractors, the new system met with immediate and favorable response. They found they could save time and money and obtain very attractive finishes with this new product.

If you are interested and would like to know more about this, address inquiries to: The Kentucky Architect, Box 8026, Station E, Louisville 8, Ky.

Three generations of experience . . .

KITCHEN EQUIPMENT
MANUFACTURERS & DISTRIBUTORS

LEWIS METAL EQUIPMENT CO.

116 S. TENTH ST. 584-3155 LOUISVILLE 2, KY.

Clay Ingels Co., Inc.
BUILDERS’ SUPPLIES
Brick For Any Type Of Buildings
And Materials For All Masonry Needs
Glazed Tile By Natco Corporation

ACME BRICK CO. • BIG RUN COAL & CLAY • BIGGERSTAFF CLAY PRODUCTS
BROAD RIVER BRICK CO. • CHEROKEE BRICK & TILE CO.
GENERAL SHALE PRODUCTS • CORAL RIDGE BRICK CO. • LAIRD BRICK CO.
OLD VIRGINIA BRICK CO. • SIPPLE BRICK CO. • ST. JOE BRICK CO.

THIRD & MIDLAND
BOX 1089 LEXINGTON, KENTUCKY
Phones 252-2146 252-2147

Kentucky LUMBER CO.
WHERE YOUR DOLLARS GO FURTHER!
WHOLESALE and RETAIL
The Best from the WEST and the SOUTH
WE CARRY ALL BUILDING MATERIALS
FOR HOME OWNERS—INDUSTRY—CONTRACTORS
(Except Plumbing & Electrical)
"THERE ARE NO LOWER PRICES"

MElrose 5-5261

1540 S. 9th St. Louisville 8, Ky.
to architecture lies in other areas; planning of space relationships; esthetics; and coordination of the project. There has been some concern expressed, however about the need for a proper educational program for engineers engaged in building design. It would seem to me that there is a need for instilling in the engineer who enters building design an awareness of the nature of the architect’s problems. An attempt to alleviate this problem has been made in many universities which have Architectural Engineering curricula. This does not seem to be solving the problem satisfactorily, possibly due to the fact that their engineering courses are too generalized. An answer to this might lie in sub-courses within the Architectural Engineering curriculum for specializing in heating and air-conditioning, electrical and power systems, structures, etc. A thorough engineering education could be gotten in the proper department of the engineering school, while general architectural subjects could be attended in the architectural department. I feel that educators in universities should work toward helping their students recognize the close cooperation necessary between all designers in the building construction field.

This spirit of cooperation and proper educational background is imperative if our building designers are to keep pace with our accelerating technological development. With the pace which has been established thus far in the twentieth century, it is impossible to foretell what changes there will be in the next few decades.

There are already some proposals which sound rather drastic. Consider this statement from a recent publication: "In America we find ourselves technologically capable of building rockets which can go to the moon, but we design and manufacture these rockets in buildings which leak; buildings which cost too much; buildings which take too long to construct; and buildings which, for most part, are ugly." These are pretty strong words, and they were spoken by an architect; a pretty progressive one to be sure. He proposes a totally new process of building, one oriented to computerized operation.

If we are to have people qualified to take advantage of the facilities at our command and those which lie in the future, their education must be more unified and advanced, and Engineers and Architects in practice must act now, along these lines, to resolve their differences.

(1) "An Architect’s Impression of the Design Professions" by Robert A. Jacobs Consulting Engineer May, 1961

Architects' Directory of Quality Products and Services

Remove and retain this page for quick reference

Blueprints
- **George Marr Co.**, 652 S. 2nd St. (583-0657) - Louisville
- **Clay Inge's, Inc.**, Third & Midland (252-2146) - Lexington
- **Kentucky Lumber Co.**, 1540 S. 9th St. (635-5261) - Louisville
- **Dolt & Dew, Inc.**, 4104 Bishop Lane (969-3212) - Louisville
- **Lite Cast Products**, 8512 Grade Lane (363-2667) - Louisville
- **Colonial Supply Co.**, 1350 S. 13th St. (636-1321) - Louisville
- **Bornstein Electric Co., Inc.**, 327 So. Caldwell (585-2391) - Louisville
- **Martin A. Ceder, Inc.**, 2520 W. Market (778-1671) - Louisville
- **Murphy Elevator Co., Inc.**, 128 E. Main St. (587-1225) - Louisville
- **Louisville Chapter, A.G.C. of America, Inc.**, 120 E. Brandeis (637-2521) - Louisville
- **Central Glass Co.**, 30th & Broadway (776-2431) - Louisville
- **Garrett Insurance Agency**, 310 W. Liberty (584-8347) - Louisville
- **Hubbuch Bros. & Wellendorf**, 642 S. 4th St. (582-2695) - Louisville
- **Hubbuch in KY.**, 324 W. Main (583-2716) - Louisville
- **Lewis Metal Equipment Co., Inc.**, 116 S. 10th St. (584-3155) - Louisville
- **Louisville Lamp Co., Inc.**, 724 W. Breckinridge (587-6094) - Louisville
- **Gross Marble Co.**, 1905 Spring Dr. (451-7101) - Louisville
- **Geo. G. Fetter Co.**, 410-412 W. Main St. (584-7131) - Louisville
- **De Hart Paint & Varnish Co.**, 906 E. Main St. (584-6397) - Louisville
- **William E. Doll Co., Inc.**, 730 Swan (584-4326) - Louisville
- **U. S. Plywood Corp.**, 358 Farmington (635-2675) - Louisville
- **Editorial Services Co.**, 445 Baxter Ave. (583-0201) - Louisville
- **Ray Nolan Roofing Co., Inc.**, 4606 Illinois Ave. (454-4659) - Louisville
- **Technical Service Corp.**, 917-19 S. 3rd St. (587-8476) - Louisville
- **Brown Sprinkling Corp.**, 914 S. 12th St. (583-0315) - Louisville
- **Koehler Stamp & Stationery Co.**, 402-406 W. Main St. (584-2101) - Louisville
- **E. F. Winebrenner & Sons, Inc.**, 1411 Algonquin Pkwy. (635-7433) - Louisville
- **Rosa Mosaic & Tile Co.**, 4023 S. Brook St. (368-5893) - Louisville
- **Ruud Water Heater Sales Co.**, 840 E. Chestnut St. (583-7629) - Louisville
It’s one thing to talk a good story and something else again to be able to produce the goods. Produce them within the budget, on time, with the high quality that is necessary in today’s buildings. That’s why we suggest you don’t take our word when we say what we can do. Ask someone we’ve done business with. We’ll be glad to furnish names on request. Then judge for yourself. Do we talk a good story—or can we really produce the goods?

"QUALITY PRODUCTS THAT FIT THE ARCHITECT’S IMAGINATION"

8512 GRADE LANE - LOUISVILLE 19, KY. 363-2667