Interior doors and toilet partitions

ANDERSON
WOOD PRODUCTS COMPANY LOUISVILLE, KENTUCKY
1381 BEECH STREET LOUISVILLE, KY 40217
778-6591
FORMICA laminated plastic

C. W. Melvin company
TUCK POINTING, RUBBER CALK, SAND BLASTING, STEAM CLEANING, STEEPLE JACKS, WATER PROOFING, STEEL PAINTING, BUILDING CLEANING
50 YEARS EXPERIENCE FREE ESTIMATES
778-9681
2409 W. MARKET LOUISVILLE, KY. 40212

The Gross Marble Co.
MARBLE COLD SPRING GRANITE GRANUX
GEORGE C. DIEBOLD 451-7101
1008 SPRING DRIVE LOUISVILLE S, KY.

Fire Protection Of Louisville, Inc.
CONTRACTORS
AUTOMATIC SPRINKLER EQUIPMENT
3717 DOWNING WAY, LOUISVILLE, KY. 40218 • 451-0700

The George Marr Company
Blueprinting Whiteprinting Photocopying Cloth Film and Paper Reproductions
652 SOUTH SECOND STREET LOUISVILLE, KENTUCKY

Ray Nolan Roofing Co., Inc.
roofing and waterproofing contractors
4606 ILLINOIS AVE., LOUISVILLE, KY.
RAY NOLAN, PRES. PAT MURPHY, V. P.
454-4659

HARRY S. ALBE & SON, INC.
"FINER FOOD EQUIPMENT"
220 S. 18TH LOUISVILLE, KY. 40203
TELEPHONE 585-5288
Joseph Kleine-Kracht
Elected President of CSI

New officers of the Louisville Chapter of the Construction Specifications Institute are:
- President Joseph A. Kleine-Kracht
- Vice President Raymond A. Pfister
- Secretary K. David Robertson
- Treasurer James E. Rankin

These heads of standing committees also were named:
- Ray Pfister, technical
- Henry B. Thoben, assigned projects
- Ronald A. Lipps, assigned reviews
- Paul F. Rassiner, unassigned reviews

Hummel, George, & Kleine-Kracht, Inc.
Consulting Engineers
Design—Supervision—Consultation on Structures and Foundations
3825 Bardstown Rd., Louisville

How to play it cool with costs
...using G-E built-in air conditioners

Leaving room (but only a little) for a General Electric built-in air conditioner is one of the best moves you can make for your clients. The G-E reputation for dependable performance and operational economy is your assurance of long-lasting customer satisfaction.

Twelve compact 26" through-the-wall models—for single rooms and multi-room structures—are available in cooling capacities from 6,000 to 15,000 BTU/hr. No special ductwork or plumbing is required, and units are easily installed. Consider General Electric for all your air conditioning needs—room, central or built-in.
Today, raceways under concrete floors can be readily designed for maximum versatility. One method, a pyramidal feed system, that provides adequate capacity for future utility requirements as well as changing plant or office layouts is shown at left.

Fig. 1 shows the distribution ducts and the floor inserts. All inserts for the service fittings will be flush with the finished concrete floor. One duct is for power, one for telephone wiring. Fig. 2 shows the installation in progress. The two-level system allows feeder ducts to pass under distribution ducts. Fig. 3 shows the placing of concrete after reinforcement and ducts have been carefully set. Fig. 4 shows a typical completed installation.

In addition to the basic power and telephone services, many modern buildings may require additional raceways for other uses. These include, for example, panelboard feeders with voltages up to 600V, low potential signal services, intercoms, T.V. and programming. Designers should estimate future requirements as generously as possible.

Write for additional free information. (U.S. and Canada only.)
Today, the opportunities open
to the architect transcend those
traditionally accepted as his pro-
fessional responsibility. No long-
er can he limit his professional
concern to the individual build-
ings, if his work is to respond to
the needs of society and contribute
to an optimum physical environ-
ment.

The program in Architecture at
the University of Kentucky accepts
as its responsibility the develop-
ment of those qualities of profes-
sional skill which will allow its
graduates to assume a significant
role in the creation of the city and
neighborhoods as well as in the de-
sign of individual buildings. It
recognizes the need for the archi-
tect to attain competence in design
so that his work may reflect not
only excitement of sculptural form
but also human values and techno-
logical potentialities. Further,
to equip students to meet the de-
mands of our rapidly changing
society and expanding frontiers of
knowledge, the program empha-
sizes both the method of approach
to design and its resultant design
concept.

The sequence of Architectural
Design Studios is the core of the
program and presents a series of
design projects which graduate
from fundamental exercises in
design and technology to more
comprehensive studies of the
needs of society in the central
area of cities. Each studio pro-
ject builds upon the work and ex-
perience of previous projects to
expand the capability of the stu-
dent toward a higher degree of
independent analysis and design.
The final studio in the Design
Sequence is the Architectural
Thesis Studio. Subject to faculty
approval, the student makes his
own choice of thesis topic which by
nature and scope suits his partic-
ular interests and capabilities.

Thesis topics may be chosen
from three categories of archi-
tectural projects:

The first is the "Case Study"
project which relies upon the need
of a specific client for information
which will define the architectural
problem. In this type of thesis,
the student's development of the
project closely parallels the cur-
rent work of the professional office
in client relationships, site analy-
sis, program development and
preliminary design of the building.

The second category of thesis
topic is the "Prototype" project,
one which gives the student an
opportunity to develop a hypothet-
ical design proposal in response
to the emerging needs of a dynam-
ic society. These topics may
range from possibilities of new
types of buildings resulting from
evolution in marketing practices,
education or housing to the appli-
cation of new technologies in con-
struction and materials in the so-
lution of contemporary needs for
architectural structure.

The third choice of a thesis
topic is the physical design of a
central urban area. Thesis pro-
jects of this sort may be under-
taken if a study can be made with-
in the context of a comprehensive
plan for the city, supported by
land use market studies and a
municipal capital program. These
projects resemble the work done
by architectural firms acting as
project planning consultants to a
city and take the form of a physi-
cal development proposal for pri-
ivate investment interests as well
as a proposal for action by the
city necessary to make the pro-
ject attractive to private interests.

In all three categories of thesis,
the student prepares a Thesis Re-
search Report which is followed
by a Thesis Design and Presen-
(continued on page 17)
thesis precis

I. Historical and philosophical contexts as determinants in the design criteria.

A. Historical—In the past, the underlying philosophy of penology was punishment and retribution as a deterrent to crime. This philosophy made itself manifest in the prison structures of that era. Since that time we have made important progress in penological philosophy without a corresponding revolution in the architecture.

B. Philosophical—Today's penological philosophy has substituted as its basic tenets the principles of correction and rehabilitation for the old ideas of punishment and retribution. The programming of modern prisons reflects this change. Large areas are devoted to rehabilitation facilities. We are now attempting to treat the cause of crime rather than simply reacting to its effects.

II. General Design Criteria

A. General Design Criteria—This new institution, which is to house 500 inmates, is to act as a medium security prison facility for first offenders under the age of 30. By medium security it is meant that each inmate is required to be at certain functions at a specified time. Roll is called at each of these functions to ascertain the presence of each inmate. Security, while important within the institution, is severe only along the perimeter in the form of a double chain link fence and guard towers.

B. Conceptual Organization—July, 1966
Since the function of a prison is to provide effective control of persons who have been committed and at the same time prepare them for responsible community living upon release by providing constructive activities in a constructive environment. I have created a secure prison plan, but one in which there is achieved a unique circulation system for inmates, aimed at eliminating as much as possible an oppressive sense of confinement. The prisoner circulation strata (El. +0) becomes a plane which has its visual limits extended into the surrounding countryside. Although physical freedom is restrained while on this strata, I envision spiritual freedom to be at its maximum under the confined conditions. This strata also serves as a great control zone due to the fact that a prisoner in order to move from any one function to another must move onto the circulation strata. A guard stationed on this strata has visual control over interactions between functions.

Guard and official circulation (El. -11) takes place on another level. From this strata a guard or prison official may move to any function within the prison without being in the same space with a prisoner. This strata becomes a valuable aid as a visual control system and would be extremely useful in case of riots.

In the design of this prison, I have taken a very complex planning program and reduced it to its most simple and straightforward solution. I have created five basic zones.

1. Inmate housing units.
2. Circulation, which directly serves: a. the dining hall, b. outpatient department, c. chapel and visiting and d. school.
3. Administration and hospital admissions.
4. Recreation field.
5. Work areas.

Since the purpose of the institution is to prepare the individual
offender for re-entry into community living, I have conceived of a spatial and social sequence toward that end. The smallest spatial and social unit the prisoner experiences occurs within the housing area. A group of 36 prisoners live together, but in individual rooms, each room having an excellent view of the surrounding countryside. From the sleeping room the individual prisoner would progress to social interaction with the group of thirty-six in an adjacent dayroom. From the dayroom the individual prisoner progresses to the great open circulation strata and work strata where his interaction with other inmates multiplies, and from there onto the recreation strata where he may be in contact with almost all of the inmates. And then, upon release, to society.
The program of requirements for a new residence for the University president can be broken down into two independent but awkwardly-related functions:

The first function is to provide a private home for the president and his family. Independence and privacy must also play a part in the life of a family which is oriented to shaking hands, being courteous and receptive and, in general, representing the University of Kentucky.

The second functional requirement is that there be a group of spaces devoted to social entertainment where various guests of the university can be entertained in groups varying in size from two to 200. It should act as a welcome
mat—in contrast to the privacy required in the home.

The problem now presents itself as two separate yet integrated functions which contrast not only in their functional requirements but also in the scale of the spaces. Two solutions to the problem come to mind immediately: First, separate the two functions because of their contrasting nature and connect them with the elements which are harmonious to both functions, such as mechanical, service elements and the wife's reception. The second solution is to tightly integrate and mesh all of the elements into a single whole, while maintaining the required separation.

In attempting to choose the most fitting method of solution to the problem, the various criteria for each must be looked into carefully. From a functional standpoint, separation of the functions would allow them to operate independently of each other and insure more privacy for the home. Although this would hamper the possibilities of providing more than one means of transition between the two functions and would require slightly more time in terms of convenience, it must be kept in mind that the social function would not be used every day and possibly not every week. Aesthetically and psychologically, separation of the functions would give outsiders a general knowledge of the workings of the building and should also provide them with an instinctive feeling about the desire for privacy in the living function. Combining the functions into a single building would not provide as many possibilities for expressing the inner functions or the independence with which they operate.

Other criteria to be examined include the status of the house, which is referred to as "The University House." Whether separated or combined, it must reflect the status of the university as well as the dignity it shelters.

July, 1966
In Kentucky, tradition still plays an overpowering role in its architecture, and while this alone does not limit the design, the university has a very strong connection with tradition in its own right.

After careful study of the above-mentioned criteria, it became more and more obvious that the solution to the problem could best be resolved functionally and aesthetically by confining the activities into separate structures.

Immediate attention was given to the site which, because it is bounded by a relatively narrow, untraveled, residential street on one side, and by a boulevard type street on the opposite side which is connected to the central campus, offered immediate opportunity to provide a private entrance from the residential street and a public entrance from the boulevard.

A study was made of the space relationships of the house, keeping in mind that privacy, light and...
views are of prime consideration for the residential section, and that visual approach, access, terraces and satisfactory parking conditions were mandatory for the public section.

Service entries to the house are minimized by combining all service elements into one area and locating them in an out-of-the-way position in the house, while leaving them readily accessible and centrally located.

Parking for 100 cars presents somewhat of a problem. It must be well screened and, therefore, will occupy more than one acre of the 13-acre site. Although it should be separated from the building for screening purposes, walking distances must be minimized wherever possible.
Only Structural Glazed Tile offers all of these performance, esthetic and economical advantages for wall construction.

Only Stark offers Structural Glazed Tile in such a wide variety of types to satisfy requirements of fire safety, sanitation, economy and design versatility.

NEW FEATHEREDGE COVE BASE...
Eliminates need for recessed floor construction.
Stark Featheredge base may be installed after floor construction to accommodate resilient type floor coverings.

CLAY INGELS CO., INC.
3RD & MIDLAND, LEXINGTON, KY.
PHONES 252-2146 & 252-2147
12 Architects Receive Highest Recognition

Architects of 12 significant buildings last month received the nation's highest professional recognition for architectural excellence—Honor Awards of the American Institute of Architects.

The awards were presented at a special ceremony as part of the AIA's 98th annual convention in Denver last month. The award-winning projects were selected from among 380 entries by a jury of five prominent architects.

They include an international airport, an office building, a complex of quality shops and restaurants, a sanctuary for display of rare manuscripts, an urban renewal residential project, a utility's central service facility and an industrial warehousing-distribution headquarters. There are also churches and three college buildings.

Three of the awards are First Honor Awards, the remainder Awards of Merit. Winners of First Honors are Keyes, Lethbridge & Condon of Washington, D.C., for Tiber Island, a residential redevelopment project in the nation's capital, and Eero Saarinen and Associates of Hamden, Conn., for two projects: Dulles International Airport Terminal Building in Chantilly, Va., and the Columbia Broadcasting System Inc. headquarters building in New York.

The Dual honors won by the firm of the late Eero Saarinen, an Institute Gold Medalist, bring to nine the number of First Honor Awards the office has received since the Honor Awards program was inaugurated in 1949. Keyes, Lethbridge & Condon, the other 1966 First Honors winner, also received an Award of Merit for the River Road Unitarian Church in Bethesda, Md.

The Saarinen office came in for a third share of commendation at the convention when the St. Louis...
Gateway Arch was presented the Institute's first Henry Bacon Award for Memorial Architecture. The New York structural engineering firm of Severud Associates participated in the citation of the riverfront landmark.

Aline Saarinen, widow of the Finnish-born architect, was present for the award ceremony honoring her husband's work.

One of the Award of Merit winners is the San Francisco firm of Wurster, Berndt & Emmons for design of Chiradelli Square, a collection of shops and dining places created from century-old chocolate factory buildings overlooking the San Francisco Bay. The project was also honored with the Institute's Medal for Collaborative Achievement in Architecture, an award that has been presented only once before.

Another Award of Merit winner which was cited for additional national honors is the Countway Library of Medicine at the Harvard University Medical School.
ARCHITECTURAL THESIS
(continued from page 5)

Connection. The Thesis Research Report states the historic development of the specific project activity and the general building type, the circumstantial and technological limitations within which the design may develop, a statement of objectives to be achieved in the design and a program of space requirements necessary to achieve the objectives. The Thesis Design is a statement of architectural form and space conceptualized as a creative work satisfying the functional and aesthetic objectives of the program. The design is presented graphically so as to illustrate the workability of the scheme, the technology of construction and the visual aspects of architectural form and space. Upon completion, the student presents his thesis at a formal hearing to the faculty of the School of Architecture for its review and evaluation.

The architectural thesis is looked upon as an opportunity for the student to exhibit the highest quality work of which he is capable. In as much as it follows the completion of all professional course work, the thesis is a vehicle by which the student may demonstrate, after five years of professional study, the extent to which he has developed towards being a professional architect.

Two examples of theses which have been reviewed and evaluated are presented on these pages.

ARCHITECTS, AWARE!

From the drawing board to completion, we can help plan color-coordination, fixtures, and features that preserve the architectural integrity of your structure, accent its beauty, and add to the pleasure of its occupants. Our expert decorators are at your beck and call —with no obligation.
<table>
<thead>
<tr>
<th>Category</th>
<th>Company Name</th>
<th>Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>KENLITE DIV. OF OHIO RIVER SAND CO.</td>
<td>129 River Rd.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Appliances, Kitchen</td>
<td>GENERAL ELECTRIC, 4421 Bishop Lane</td>
<td>(451-9611)</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Appliances, Kitchens</td>
<td>WESTINGHOUSE Dist. by TAFEL ELECTRIC CO.</td>
<td>330 E. Brandeis St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Architectural Metal Specialties</td>
<td>AMERICAN BUILDERS SUPPLY CO.</td>
<td>1044 E. Chestnut St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Blueprints</td>
<td>ATLAS PLASTER & SUPPLY COMPANY</td>
<td>2932 Greenwood</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Building Materials</td>
<td>GEORGE MARR CO.</td>
<td>625 S. 2nd St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Caisson Foundation</td>
<td>AMERICAN BUILDERS SUPPLY CO.</td>
<td>1044 E. Chestnut St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Concrete, Ready-Mixed</td>
<td>KENTUCKY LUMBER CO.</td>
<td>1540 S. 9th St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Concrete, Technical Data</td>
<td>McKinney DRILLING CO.</td>
<td>8011 Ashbottom Rd.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Contract Interiors</td>
<td>AMERICAN BUILDERS SUPPLY CO.</td>
<td>1044 E. Chestnut St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Doors</td>
<td>PORTLAND CEMENT ASSN.</td>
<td>Commonwealth Bldg.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Electrical Contractors</td>
<td>BOONE-GUNDERSON, INC.</td>
<td>550 S. Fifth Street</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Elevators</td>
<td>ANDERSON WOOD PRODUCTS CO.</td>
<td>1381 Beech St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>General Contractors</td>
<td>BORNSTEIN ELECTRIC CO., INC.</td>
<td>327 E. Caldwell St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Insulation</td>
<td>MARTIN A. CEDER, INC.</td>
<td>2520 W. Market</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Interior Decorators</td>
<td>MURPHY ELEVATOR CO., INC.</td>
<td>128 E. Main St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Iron, Ornamental</td>
<td>LAURENCE E. BLOOM</td>
<td>3908 Bishop Lane</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Lighting Fixtures</td>
<td>T. J. GILLESPIE CO.</td>
<td>935 Franklin Street</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Masonry Restoration</td>
<td>ZONOLITE DIV., W. R. GRACE</td>
<td>3302 Norwood Dr.</td>
<td>NEW ALBANY</td>
</tr>
<tr>
<td>Paint</td>
<td>HUBBUCH BROS. & WELLENDORF</td>
<td>642 S. 4th St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Plywood</td>
<td>HUBBUCH IN KENTUCKY</td>
<td>324 W. Main</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Precast Concrete</td>
<td>THE STRASSEL CO.</td>
<td>1000 Hamilton Ave.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Restaurant Equipment</td>
<td>LOGAN CO.</td>
<td>200 Cabel St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Roofers</td>
<td>BENJAMIN DIV. THOMAS INDUSTRIES, INC.</td>
<td>207 E. Broadway</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Sculpture & Paintings</td>
<td>LOUISVILLE LAMP CO., INC.</td>
<td>724 W. Breckinridge</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Sound & Communication</td>
<td>C. W. MELVIN CO.</td>
<td>2409 W. Market</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Steel Windows</td>
<td>DeHART PAINT & VARNISH CO.</td>
<td>906 E. Main St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Stone</td>
<td>U. S. PLYWOOD CORP.</td>
<td>358 Farmington</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Steering Equipment</td>
<td>DOLT & DEW, INC.</td>
<td>4104 Bishop Lane</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Telephone Planning</td>
<td>HARRY S. ALBE & SON</td>
<td>220 S. 18th St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Tile</td>
<td>RAY NOLAN ROOFING CO.</td>
<td>4606 Illinois Ave.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Unit Ventilators</td>
<td>THOR GALLERY</td>
<td>734 S. 1st St.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>TECHNICAL SERVICE CORP.</td>
<td>2618 South Fourth Street</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>THE CECO CORP.</td>
<td>119 E. Barbee Avenue</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>VICTOR OOLITIC STONE CO., P. O. Box 668</td>
<td>821 E. Market</td>
<td>BLOOMINGTON</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>THE GROSS MARBLE CO.</td>
<td>1905 Spring Dr.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>SOUTHERN BELL</td>
<td>521 W. Chestnut</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>STARK CERAMICS, INC.</td>
<td>3rd & Midland</td>
<td>LEXINGTON</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>AMERICAN AIR FILTER CO., INC.</td>
<td>215 Central Ave.</td>
<td>LOUISVILLE</td>
</tr>
<tr>
<td>Water Heaters</td>
<td>RUUD WATER HEATER SALES CO.</td>
<td>840 E. Chestnut St.</td>
<td>LOUISVILLE</td>
</tr>
</tbody>
</table>

The Kentucky Architect
Men's Dormitory No. 8, Eastern Kentucky State College

Architect: Brock, Johnson & Romanowitz A.I.A.
General Contractor: White & Congleton

July, 1966