A panel of professionals from academia, architecture, and urban design will be featured at this month's Chicago Architecture Center (CAC) Architectural Collective and Associate meeting on JULY 25, 1978, at the University of Illinois at Chicago Circle. The panel will include a number of individuals who have made significant contributions to the field of architecture and urban design, and their insights and expertise will provide a valuable opportunity for discussion and exchange of ideas.

The panel will feature architectural design, urban planning, and construction professionals who have been involved in a wide range of projects, from small-scale residential developments to large-scale commercial and public buildings. The panelists will discuss the challenges and opportunities of designing and building in the Chicago area, as well as the broader implications of these projects for the future of architecture and urban design.

The meeting will be held at the University of Illinois at Chicago Circle, and admission is free to the public. For more information, please contact the Chicago Architecture Center at (312) 558-5100.
SCI-ARC AND CHANGE

The concept of change (and the related notion of flexibility) is fundamental to SCI-ARC. The formation of the school was a more or less direct response to a number of trends that characterized the '60s: a society with a passion against what were perceived as rigid, unresponsive social institutions; student and faculty demands for more direct input into the selection and control of university curriculum; and, architecturally, the emphasis on flexibility as an important criterion in the evaluation of the works of that time.

Where society's disenchantment with the status quo took the form of protests and demands for accountability from its public institutions, the analogous discourse in architecture was manifest in the decline of the prescriptive design solution, a solution that many felt to be an inadequate response to the issues of growth and change. In an era of growth expectations, buildings that didn't anticipate future changes in use patterns were thought to be incomplete at best, and anachronistic at worst. This architectural position was sympathetic to an emerging academic attitude: that a new infrastructure was necessary which would permit diverse input and change in response to that input. The resulting combination of positions formed the philosophical basis for SCI-ARC. This philosophy was expressed in both the curricula and the design of the physical plant.

The physical plant took the form that Reyner Banham has called "the big shed", essentially an open space - in this case, a former chemical factory. SCI-ARC's "big shed," in part a response to realistic budget constraints, was for the most part a specific application of a larger fascination with the "universal space," a space theoretically capable of accepting a number of diverse functions, since it was ambiguously defined. SCI ARC then designed an interior system that was consistent with the notion of change and growth - a scaffolded and platform system that was open-ended and capable of growing in response to future needs.

What is of interest here is the way in which the system has been used in the last five years. It may be seen that SCI-ARC's use of the space and interior system is characteristic of our time, much as the formation of the school is an accurate reflection of the pressures of that era. Although the system is demonstrable, and hence can be changed or added to with less effort than a more rigid system, in five years of operation the spaces have remained largely the same as they were initially. Those changes that have occurred are similar to ones that might have taken place in a typical conventional system: people move about every year or two, new people bring new drafting lights and new pens, different drawings are made during different studios, and so on. These are relatively minor changes which don't amount to the basic sort of change the system was designed to accommodate.

Yet the apparent incongruity between intent and use may lead to an understanding of the ways people actually use systems that emphasize the capacity for change: in actual use those mechanisms are subordinated to a relatively stable reference point in the student's environment to emerge. If this observation is valid, then our recent fascination with the universal space, reflecting a broader concern with flexibility, may need to be adjusted to align with a more subtle concept of the role of change. This is not to suggest failures, or that prescriptive spaces represent a panacea of user satisfaction. However, change may be less important to the person using a space than the stable points which offer a counterpoint to societal pressures and allow user identification with a given space. If these more subtle needs are met, then change becomes a potential force rather than an act one, allowing the user to know that growth is possible but not compulsory.

This may be the most appropriate role for change in architecture, and it represents the evolved attitude towards flexible systems at SCI-ARC. SCI-ARC's evolution from a change-oriented system is that it is not only a healthy indication, but is part of a larger shift in understanding the role of change that has taken place within architecture.

On another level, the relationship of SCI-ARC to change is more curious, at least on the surface. Where SCI-ARC institutionalized its commitment to change, its predecessor was a space of philosophy and curriculum, that built-in capacity for change has been used to arrive at an architectural approach not unlike a number of other schools.

First year is a structured general design studio with emphasis on freeing the student of architectural preconceptions through abstract design exercises. Second year exposes the student to simple architectural design problems that nonetheless are structured to include climatic, humanistic, structural, and programmatic demands. Third year serves as the point at which the student attempts to solve complex building problems and integrate formal, structural, and programmatic issues in an elaborated manner as possible. At this stage the use of space is to express or offer the most brilliant translation of the architectural concept into a resolved design. Fourth year then attempts to build on this base by applying these skills to the urban scale, usually a university or urban environment. It is at this point that the student may begin to reconsider the point in the curriculum, varying from year to year, depending on the teacher's perception of the skill level of the class. One year it may function as a sort of undergraduate terminal; the next, the next may it be another urban design problem.

What should be clear from an outline of the curriculum is that it is a significant departure from the early organization of SCI-ARC, where the student worked alongside different faculty members on projects of mutual interest. That SCI-ARC's current emphasis on change has been used to evolve a more conventional curriculum is undeniable. But perhaps more importantly, we are coming to realize that whole-scale changes are not always necessary and that responses to needs can take many forms.

When large-scale changes are indeed necessary, as they may have been in the '60s, once the changes are accomplished, change paradoxically plays a less important role in the ongoing activities of that organization or that institution. This is analogous to the ways in which physical space is changed and then kept constant is evident in SCI-ARC's evolution. This composition of the potential for change has been noted. But the active role of change has been subordinated to the stability that is a necessary part of a program and a space. SCI ARC reflects that realization and, in doing so, reflects larger societal attitudes, much as SCI-ARC's genesis was a reflection of a different set of societal needs. (From: David Woodard, 1970)

The Project was to design a church that responded to a philosophy of our own choosing. I chose to deal with a traditional religious perspective because one of the strong aspects of an organized religion is the feeling of being part of a time honored institution with great intellectual and cultural traditions. My concept was to try to convey a contemporary attitude towards a building rooted in the traditions of the Catholic Church.

An examination of historical Western churches led me to use a Gothic church as a metaphor of tradition for two reasons. The first was because a Gothic church best embodies two traditional design concepts: 1) Latin crossform plan, 2) the entrance of the church as representational of the gate of heaven. The second reason was that to marry, a Gothic church is one of the most illustrative examples of religious architecture.

Having started with a simplified and scaled-down version of a Gothic Cathedral, I began through steps to shift and rearrange parts of the building. The first shift I made was to bend the building along the main axis of the altar. It was symbolic of a journey, then the bend was meant to represent a change. I felt this journey is not so direct these days as a straight line, and the Church no longer plays as direct a role in our lives as in the past. The second shift was to further bend the original axis by shifting the entrance in a different direction. By eliminating the part of the building between the two shifts, the entrance of the church was no longer symbolic of a gate. The third shift was to detach one of the transepts so that it could serve as a kind of set going over the screen of the old church while it could serve as a door. The remaining form a baldachin over the altar.

<UNSORTED>

While reading Policies for Major New Development for San Francisco, I found the concept of architectural preconceptions is one that SCI ARC reflects. I chose to deal with a church that was meant to represent a change. I felt this journey is not so direct these days as a straight line, and the Church no longer plays as direct a role in our lives as in the past. In the second shift I made, the entrance of the church was no longer symbolic of a gate. The third shift was to detach one of the transepts so that it could serve as a kind of set going over the screen of the old church while it could serve as a door. The remaining form a baldachin over the altar.

"Reduce massiveness... soften building bulk."

"...Unusual shapes (should be) reserved for structures of broad public significance..."
As a spiritual symbol and image, the building becomes an emotive carrier, drawn by the experience of spatial relationships, both void and solid in time and space. As a symbol and set of orders, the building points out the inherent logic present in the physical structure of the universe. As a combination of these two concepts, physical and metaphysical, the building attempts to fuse two realities into one complete vision.

The basic symbol cube is broken down into smaller sets of orders, squares, bands and planes. Six identical canvases with a five-foot grid on each are set up as a representation of each side of the complete cube. Each elevation of the building becomes an ordering using a common set of symbols derived from cube.

These symbols take form as stairs, windows, doors, elevators, etc. As these symbols and ideas relate to each other they form larger ideas and symbols of cube. These relationships of ideas can be found on the surface plane of each elevation and on receding planes as the grid moves towards its center.

The structural system acts as a counterpart to the grid following its own module of 2' 6". Color acts further to articulate symbols and ideas. Hue and intensity respond to level and plane within the three-dimensional grid.

The total complex is divided into four buildings. A horizontal band within the grid connects the four pieces together. This band leads to the only free-standing plane within the structure (wall with graphic). This graphic becomes the conceptual, not physical, center of the complex. The building turns inward on itself and focuses on the graphic, which acts as a containing devise. In this way the building has similar properties to an Eastern mandala.

Through the juxtaposition and interplay of ordering devices and symbols, a building free in physical composition and spirit was sought.

CHURCH

The Culver City Air Rights project spans forty feet over a freeway which in turn rises thirty feet off the ground. The site is a compendium of converging thoroughfares, parking lots, and shopping centers, all of which merge to create a general level of chaos. The need for simplicity is obvious. The building had to function as a clear symbol that could stand apart from an otherwise unclear environment.

To support the structure from the sides would make the building appear to be rooted among the existing freeway pillars, thereby losing its sense of clarity and purpose. For this reason the structural system acts as a free ground plane, allowing functions to slide in and out of the frame.

The diversity of spaces, i.e. courts, gallery, etc., required that the structural system act as a free ground plane, allowing functions to slide in and out of the frame.

The extreme length of the project suggested that the frame visually segregate functions in some way. The desire for one autonomous structural unit suggested that the main support system be a gigantic truss. This truss, thirty feet wide and two hundred feet between each tower, offered the graphic symbolism necessary. It also provided a stable system of support through which vertical movement systems could run, and it implied the possibility of expansion.

AIR RIGHTS

The Culver City Air Rights project spans forty feet over a freeway which in turn rises thirty feet off the ground. The site is a compendium of converging thoroughfares, parking lots, and shopping centers, all of which merge to create a general level of chaos. The need for simplicity is obvious. The building had to function as a clear symbol that could stand apart from an otherwise unclear environment.

To support the structure from the sides would make the building appear to be rooted among the existing freeway pillars, thereby losing its sense of clarity and purpose. For this reason the structural system acts as a free ground plane, allowing functions to slide in and out of the frame.

The diversity of spaces, i.e. courts, gallery, etc., required that the structural system act as a free ground plane, allowing functions to slide in and out of the frame.

The extreme length of the project suggested that the frame visually segregate functions in some way. The desire for one autonomous structural unit suggested that the main support system be a gigantic truss. This truss, thirty feet wide and two hundred feet between each tower, offered the graphic symbolism necessary. It also provided a stable system of support through which vertical movement systems could run, and it implied the possibility of expansion.

FACULTY

Raymond Rappo, Director
Stephen Alles
Thomas Anderson
Joseph Kane
Alberto Sessa
Michael Black
Richard Brown
Randy Capo
Terence Gleason
Tony Gaudion
Daron Hansen
Shelley Kaplan
Aubrey Kies

WAREHOUSE

A small warehouse for the garment district investigates the ambiguities and contradictions inherent in the metaphors of an urban environment. The stepped masonry facade is pierced by its antithesis, a modern machined building. The two pieces of the project are set in contrast to each other, creating a third and greater entity.
DESIGN AWARDS
(continued from front page)

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.

For the record: We wish to acknowl-
edge that Elliott Willemsen, AIA, who
took and provided the photograph of
the Statue of General Grant for the
article "Bridge on the River James" by
Elliot Willensky, AIA, who
was sued in the Los Angeles
County Superior Court for
the design of a building.