As the view of the Forest Lawn, or rather the vantage point from which it can be seen, is one of the many other Los Angeles subjects: may those plans be allowed to Rest In Peace.

John Chase
Architectural historian John Chase is on the faculty of the architecture of Western Hollywood.

A. QUINCY JONES
The Art Gallery at California State University Dominguez Hills was an appropriate setting for an exhibition of the work of the late A. Quincy Jones, FASLA, who had planned and designed several of the buildings, "A. Quincy Jones: A Tribute," January 14 - February 8, featured a dozen projects from Jones' office, from 1946 to the present.

In many cases, one was able to follow the development from the preliminary development sketches from the architect's hand (one of an handful, as Jones was a magnificent draftsman) to the finished product, displayed in photographs. In the accompanying catalog, Esther McCoy explains, as only she can, the history of each project, and this has, of course, led to the recognition of functional innovations that Jones was able to effectuate in each project.

One points out, the architect whose philosophy had the greatest influence on Jones was Frank Lloyd Wright. Shortly after the turn of the century, Wright had mixed his vision of a "democratic" architecture. Jones, who admired Wright, and who called himself a "machine-age" architect, the "styles" would be overthrown. The latter architect would be able to realize his own potential to the greatest extent.

Village Voice, January 14, 1979

This is a document from the Village Voice, which provides a detailed account of A. Quincy Jones's work at the Cal State Dominguez Hills exhibition.
Now that we have passed beyond modernism, the modern movement has become an historical period in which architects and designers forage for wit and affluence. To designers as well as the general population, the first half of the 20th century seems remote enough to warrant discovery. In furniture, the current fondness for things past has led to the introduction of many early modern designs that were never seriously intended for mass production, such as the work of C.R. Macintosh and Eileen Gray currently on display in the showrooms of the Pacific Design Center. In addition, early design meant for production but never realized are appearing now, for example Knoll’s recent introduction of scene hitherto unproduced chairs and tables designed by Mies van der Rohe in the 1930s.

Yet there is less to plunder from the history of modern furniture than there is from modern architecture, partly because, in general, furniture has more strictly circumscribed functional requirements than buildings. Besides, there aren’t as many furniture classics ready for revival because many are still with us, sometimes weathering changes of fashion over more than 50 years. Why are these designs so special? The following is a personal and somewhat arbitrary list.

The Wassily Chair
Marcel Breuer’s “Wassily” chair, which takes its name from Breuer’s Bauhaus colleague Wassily Kandinsky, was the first fully realized furniture design using tubular steel. Since the fabrication of the first six chairs in 1926, it has been produced, used, and admired without interruption. Its staying power is due to a clarity of design astonishing in this first specimen of an entirely new technique.

The Wassily chair is exactly what it appears to be: steel tubing provides a strong, lightweight and resilient armature for the seat, back and arms which are covered with leather straps whose generous spans give them a comfortable buoyancy. The polished chrome, cool in appearance and temperature, is played off against the warm leather that touches the body of the sitter. The chair is light in appearance and in fact, weighing only 36 pounds. From all angles, the strong horizontal and verticals of the legs and arms give the chair an unassailable face-forward quality, yet the thinness and wide separation of the supports allows a sense of open space flowing freely through and around the chair. Much is often made of Breuer’s inspiration from the handlebars of his bicycle, but the Wassily’s formal arrangement with the back as the only oblique planes in a rest of orthogonals, owes an additional debt to Gerrit Rietveld’s “Red-Blue” chair of 1917. To my eyes, the Wassily still carries something of the flavor of a manifesto.

Mies Cantilever Chair
The advantages of tubular steel in furniture design were fully realized in combination with the cantilever principle.

Another Dutchman, Mies van der Rohe, was apparently the first to use a single length of steel tubing to form the feet, legs, seat and back supports for an all-steel chair. This may have been as early as 1924, but Stanford’s first models, put together without steel-bending machinery, used straight pieces of tubing and standard elbow joints. He gained access to the necessary equipment through Ludwig Mies van der Rohe, who had his own cantilever design in mind, and in 1926 both designs were executed. Judging from old photographs, Stanford’s somewhat tentative design was never mass-produced in its original form, so Mies’ version was the first cantilever design manufactured in quantity.

Mies van der Rohe’s side chair of 1926 reveals in the springiness attainable with cantilevered steel. The great sweeping arc of the leg emphasizes the continuity of a single piece of tubing that runs from the floor up to the handle back of the chair. In the earliest versions, seat and back pieces of thick leather are wrapped around the tubing and bonded together below the seat and behind the back; in a slightly later version, seat and back are a continuous piece of hand-woven canvas.

Mies was a big man, and all of his chairs have generous proportions. The deep seat and slightly reclining back of Mies’ cantilever chair carries the sitter’s weight well back from the legs to take advantage of the metal’s elastic strength. The result is a comfortable and rather chawing place to sit, almost like a rocker. As a formal object in space, the chair points emphatically forward, but viewed from head on, the form disappears and becomes hard to read. This strong directionality means that groupings require careful and rather formal arrangement. It is also difficult to raise from the chair when it is used at a table since the forward arcs of steel catch the sitter’s legs, but then practical compromises often occur in the interest of great form.

The Coca Chair
Marcel Breuer’s cantilevered “Coca” chair of 1928 is perhaps the classic of 30th-century classics. Not a month passes in the interior design monthlies without a Coca in the featured interiors, and there are countless knock-off versions on the market in addition to the authorized Breuer design sold by Thonet, Knoll and Stendig. As on Mies’ chair, the structural support is a single length of chrome-plated steel, but the leg and back support sections rise vertically, as in Stanford’s design. Unlike the latter, however, Breuer’s design clearly articulates the separate elements to both practical and aesthetic advantage. The caned seat and back rest are separated from the metal tubing by a wooden frame which keeps the sitter’s weight from pushing the two sides together. Finesse a larger area for the seat and expresses the different functions of the parts. Even the wooden armrests serve both clarity and comfort, although the armless side chair looks cleaner and more precise.

The right-angled cantilever and the flat, planar shaping give Breuer’s chair a nice balance between firmness and buoyancy, while the vertical uprights and compact overall form make it highly adaptable to casual surroundings.

The Barcelona Chair
Mies van der Rohe’s most enduring work in furniture is the Barcelona chair, designed to furnish his German Pavilion at the International Exposition of 1929 in Barcelona. This chair is a rectangular leather cushion reposed on leather straps stretched across the transverse bars of a double H-shaped frame. At once dramatic and understated, the long, sweeping curves of the chrome-plated steal frame have a serene grace that has made the chair a favorite in corporate headquarters around the world. Mies knew better than anyone that one has to work hard at simplicity. The “universal look” of the Barcelona chair involves 40 hand-sewn walls, 72 hand-tucked corners, and a great deal of hand polishing on the chrome, which brings the list price close to two thousand dollars. Not a chair for casual relaxation, the Barcelona is a chair for business: wider than any easy chair but without the protection of containing armrests, it offers maximum comfort with minimum security.

The Eames Molded Plywood Chair
Charles Eames’ molded plywood chair, first exhibited in 1946, introduced the technique of making plywood in compound curves and of combining wood with tubular steel. This combination of techniques, a significant advance over Alvar Aalto’s important designs of the 1930s using plywood sheets bent in one direction, had been proposed in Eames’ and Eero Saarinen’s winning entries in the Museum of Modern Art’s “Organic Furniture” competition of 1940. The 1946 Chair grew out of both this earlier work and the plywood molding techniques developed by Eames and his wife, Ray, in making leg splints on a wartime contract for the U.S. Navy. The Eames plywood chair articulates the functions of its different parts in a more straightforwardly than Breuer’s early designs. The front and back legs rise to different heights and incline at different angles, and the seat and back have radically different curves and outlines; yet each part is so carefully worked out in terms of its own requirements that the whole design comes together in a related, seemingly obvious unity.

The steel frame, comprising five separate rods whose connections are neither obscured nor dramatized, attaches to the wooden seat and frame through rubber shock mounts that enhance the chair’s natural resilience. The compound curve of the seat and back accommodate the sitter’s movement without attempting to hold the body in a fixed position. There are few true verticals and horizontals amid thesis-varied shapes and all surfaces are worked with equal attention. The result is a form easily accommodated to its surroundings and equally interesting from almost any viewpoint.

James Hoekema
James Hoekema is a designer and writer, and a consultant in videodisc and computer graphics. For the past three years he worked for Charles and Ray Eames.

1. Chair by C.R. Mackintosh photos courtesy Atelier International, Ltd.
2. Adjustable table by Eileen Gray photos courtesy Stanford Inc.
3. Wassily lounge chair by Marcel Breuer, photo courtesy Stanford Inc.
4. Piano stool by Mies van der Rohe, photo courtesy Stendig Inc.
5. Mies side chair photo courtesy Stanford Inc.
7. The Barcelona chair by Mies Van der Rohe photos courtesy Knoll International.
8. Eames molded plywood chair, front-view photos courtesy Stanford Inc.
9. Eames molded plywood chair, detail photos courtesy Stanford Inc.
Energy conservation design methods are having a major impact on the design and construction of new buildings throughout the world today. Initially impeded by the criticism of the concept and its proposed regulations, today’s concern is escalating today due to the potential cost savings and energy conservation. We are entering a new era. Our present energy resources are being consumed as we currently orient and this is affecting the form and aesthetics of buildings, enhancing the efficiency and meeting the climatic changing the morphing of cities. High energy costs are reducing urban sprawl, the advent of solar energy potentially new efficient architectural forms will be an integral part of our changing lifestyles.

A new building ethic has arrived. Research into energy conservation and alternative energy supplies is being undertaken at all levels of government. Cost and public relations are being adopted at an alarming rate. The California Building Code and Architecture Examiners is considering mandatory energy code for new buildings. The professional and academic levels. The Los Angeles City Planning Department has adopted an ordinance requiring active solar hot water systems. Los Angeles Mayor Tom Bradley has established his own research department to encourage energy conscious design and obtain energy efficient building. The California Office of Western Sun is funded by the Department of Energy to initiate programs, disseminate information, and increase public awareness.

At present, we have long been aware of energy conscious design. Architects must conserve resources and materials in construction and reduce the consumption of energy in building the new development and the maintenance. Energy conservation requirements need the energy conserving efforts of society by clearly understanding that selection of the appropriate solar technology is the key to a responsive architectural practice. The most important solar issue is orientation to climatic conditions. This is particularly true for solar envelopes, which are sometimes adaptations to climate and resource constraints. This raise the crucial issue of solar access right which Ralph Knowles and Richard Berry have researched for several years. With artificial lighting using 40% to 60% of the energy in office buildings, natural lighting has also become a key design concern. The State of California’s Architectural Office, initiated an awareness of the importance of energy conservation at both the state and federal level. John Calvin Hamilton, at the state level, examined the state’s historical progress in solar building design and competition focused on energy conservation, and presently through a strict set of energy conservation criteria and performance standards for all new office buildings.

Passive and active solar systems as a design have become increasingly important to all family residences, housing tract and many multifamily commercial and commercial projects, especially where building performance costs are carried by the owner.

Both natural systems that take advantage of the normal changes in atmosphere temperature throughout the day-night cycle by using the cooler night temperatures when needed during the day, and heat recovery systems that take advantage of the heat emitted by mechanical equipment, lights and people by circulating the heat to cooler locations in the building and are rodent's that are cost effective and easy to implement.

Wind energy conversion systems, through advances in aerodynamic engineering and electronics, are complying the 'windmills' to develop the energy.

Co-generation, the link-up of a private energy generating system to the public utilities system for storage of excess energy, is still experimental, but is receiving serious study through grants from the Energy Research and Development Administration. The Energy Committee of the L.A. Architect has assembled this energy issue of L.A. ARCHITECT to demonstrate the more recent energy conservation concerns of local professionals.

An initial decision was made to illustrate the local solutions that were applicable to the temperate climate of southern California and to prove that an integral design of conservation measures are appropriate and cost effective here. Active space heating systems and building underground were omitted since they are not cost effective.

The response to the Energy Committee’s interest was overwhelmingly positive and the benefit of appropriate energy conservation technologies. Glullwin and Dwellnet (1) utilize Buckminster Fullen’s domed design principles, which is a method for identifying the building’s performance to yield the greatest possible efficiency in terms of available technology, in 450 foot diameter dwelling in Ojai. Solar Resources (2) employed computer simulations to study and evaluate energy-conserving solar options for the Miller residence on the Palos Verdes Peninsula.

Ralph Knowles (3) used a roofed and natural systems to cool the Deep Valley Commercial building. Neil Gordon (4) designed an internal Hot recovery and solar energy powered absorption water cooling system for an office building in Berkeley.

With a combination of climatically responsive architectural forms, the available solar responsiveness and energy efficient materials, appliances and equipment, architects can decrease the energy costs and can contribute to providing non-polluting, renewable sources of energy.

In this period of design evolution, architects have the unique opportunity to incorporate current energy research into the built environment. Since energy consciousness as an integral part of the design process is here to stay, architects must accept their position as forerunners in this era of energy conscious design.

John V. Mutlow, AIA, is a practicing architect in the Mutual Design Group in Beverly Hills. The author is an assistant professor at the University of Southern California School of Architecture.

(Photol Raymond Schmokel)

SPECIAL ENERGY INSERT

Solar Access / Solar Envelope

Access to the sun’s rays is a prerequisite to solar energy applications in buildings. Over the past several years, Ralph Knowles and Richard Berry of USC, has been working with third and fourth year design students to develop an innovative approach that would guarantee energy conservation in the design of solar stores for buildings. This study utilizes Knowles’ "solar envelope" concept which is developed in zoning terms the largest building volume that can be placed on a parcel of land so that it does not shadow surrounding properties. In technical terms, it’s the process of finding the building envelope form. Designer: Marc Parter.

The illustrations shown here suggest just the opposite. The envelopes are generated in a way that makes them sites, use and specific and sensitive to the surrounding site context. The illustrations shown here indicate how radically different and complex the envelopes can be, from site to form to one another. Moreover, some designers tend to connect to the site and some do not. It seems that if the designer is less in exploiting the envelope form, the building strongly reflects the envelope, and if not, the building simply reflects other design values.

Some city planners, zoning administrators and building departments perceive problems in the implementation of the solar envelope concept. Such reactions are inevitable and reflect the technical difficulties and initial resistance that new planning concepts must always overcome. But because the envelope approach automatically regulates building densities on a parcel by parcel basis, it also tends to mold and scale new buildings according to the immediate urban context. Such an advantage will probably not be ignored by city planners and urban designers.

Events, and the solar envelope approach could replace much of the sixty-year encroachment of zoning height and greatly simplify the ways in which development density and building codes are regulated. As L.A. Planning Director Calvin Hamilton said, “It could change the whole approach to zoning in Los Angeles.”

Ralph Knowles and Richard Berry Ralph Knowles and Richard Berry are professors at USC School of Architecture.

Illustrations:

1. Solar zoning envelope showing form complexity that results when solar access to existing buildings is provided to rooftops having different orientations.

3. Model of condominium project for an R-3 site of 100 ft frontage, located on west side of a north-south street near Wilshire Boulevard. The building's sun-oriented vertical walls assures deep penetration of winter sun into at 27 units while protecting them from mid-day and afternoon summer sun. Solar envelope allows building shadows to be cast across streets while casting significant impact on other buildings. Designer: Dave Wallace.
CAL STATE OFFICE BUILDING

Architects: Hugh Gibbs and Donald Gibbs, FAIA and Kenneth S. Wing and Associates

The primary concern in this design was to minimize energy consumption. Of the schemes tested, the chosen atrium plan with a saw-toothed perimeter provided the best natural lighting, since up to 70% of the floor area can be lit by daylight. Additionally, the plan shape itself offers partial protection from direct sunlight, thereby reducing solar heat gain.

Although most of the perimeter is glazed, temperature gains and losses through conduction are relatively small due to the temperate coastal climate. Some loss of internal heat loads to cooler outside air may even be beneficial. Since so much of the interior is reached by natural light, less electricity is needed to light it or to remove heat given off by interior lights. All H.I.D. lighting units are on dimmable ballasts controlled by photo cells which monitor natural light levels in order to adjust supplemental artificial lighting.

When compared to other large office buildings in similar climates, this building will use as much as 50% less energy for lighting. While natural light is good, compensating for direct solar heat gains may consume up to 20% of annual energy use. It is, therefore, desirable to design first for good daylighting and then, upon computation of solar heat gain, to design shading and glazing systems that will reduce glare while allowing maximum natural light. The shading devices shown here were designed to function efficiently while enhancing the views from the building.

The lighting and solar shading systems are not the only energy conserving elements in the building. The structural system of heavy timber uses a material produced by renewable resources and requiring a minimum of energy use in its fabrication.

While the building will be unusually energy efficient, some of its greatest benefits will be to the people who will use this warm, responsive and efficient place, enjoying a rich series of spaces and materials as well as increased visual contact with the outside.
EL SOL
SOLAR BREWERY

Architects: John Newcomb, Ralph Stanislaw, David Voorhees

El Sol is a conceptual brewery design integrating major energy conserving strategies. Design objectives also include a response to its public frontage and the inclusion of a public tour, as well as a possible three-fold expansion to 10 million bbl/year capacity.

On a flat site adjacent to I5E in San Bernardino, the radial scheme organizes the layout of industrial processes and spaces, accommodates volume shipping and receiving, and provides for orderly expansion. Major functions are reflected in the assemblage of articulated parts: entry (water! tower, energy plant, maintenance shops and employee facilities at the core; brew house wrapped around the corner of the concrete block fermentation cellars; stepped bottling lines highlighted on the facade and hugging the warehouse box and corporate offices shot out on a spoke.

The project's differing materials are held distinct to exploit their symbolic qualities. The lightweight panel/glass skin system and shiny solar collectors appropriate to a modern technology are set off by the unit masonry, a material with links to the past. The extended block walls along the freeway suggest the ruins of an older brewery but, in fact, indicate expansion plans.

The brewery energy system incorporates sufficient boiler capacity to efficiently generate electricity before delivering steam heat to the brewing processes which includes steam driven absorption chillers. A large solar energy system interfaces with both return bottle washing and beer pasteurization. A combination open loop/closed loop system with storage tanks and heat exchanges accommodates each system's requirements.

To cut energy loads, the brewery space heating is achieved through the co-ordination of direct heat recovery skylights and the HVAC system. Finally, the cooling ponds serve as fountains in the visitor's courtyard and grey water is delivered to the golf course located downstream from the brewery.

CERRITOS CITY HALL

Architect: Maurice H. Rafaelman, A.I.A.
Mechanical Engineer: Hellman & Lober

The Cerritos City Hall has the distinction of being the nation's first solar heated city hall. The 3.7 million, three story building is Type I with reinforced concrete frame and reinforced concrete split-faced block shear walls. The use of masonry contributes to the building's energy conservation. Other energy saving features include an open central core and clerestory windows which reduce the use of artificial lighting in the lobby and interior office areas. All windows are operable, allowing for natural ventilation when outside conditions permit. Glass is tilted or recessed to reduce solar radiation penetration. Fluorescent tights are switched to allow for reduced lighting when not needed.

There are 1,400 sq. feet of solar collection panels have been installed on the roof as an integral part of the architectural design. These panels collect 320,500,000 B.T.U. per year of the sun's thermal energy and carry it to two 1,500 gallon transfer tanks. There, the heat is transferred to stored water. Heat from this liquid is transferred as needed to heat-pump air conditioning units throughout the building.

The solar system is responsible for providing approximately 60% of the space heating needs of the building. In addition, stored solar energy is used to heat the potable water utilized throughout the building.

An electronic control system measures the temperature of air inside the building and compares it with that of the air outside the building. For cooling, heat removed from the building is also transferred to the solar energy storage tanks for use in heating and for providing evening and early morning heating. The new Cerritos City Hall utilizes energy which, in conventional systems, would normally be rejected. Excessive heat from the system is rejected through the decorated spray ponds at the north of the building, which creates a pleasant architectural feature in the civic center. Therefore, energy consumption is always at a minimum, which reduced the need for any supplemental energy from external sources.

LA ARCHITECT June 1980
GELBER HOUSE
Architects: Martin B. Gelber AIA & Associates
This passive-solar single-family residence is set upon a steep, west-facing site in the Brentwood Hills area of Los Angeles. The extreme sun and warm micro-climate made passive solar cooling the major design criterion. The fins catch prevailing sea breezes and direct them through the house with the help of ventilating skylights and windows. A roof-pond pond option is employed during critical times to further assist cooling.

MALIBU CONDOMINIUM
Architects: Murray Milne, in association with Kaminizer, Marks, Cotton and Vreeland
The program consists of eight residential condominium units for eight owner/camts, each containing 2,000 sq. ft. living space plus 1,000 sq. ft. deck overlooking the Pacific Ocean with maximum visual privacy. The steep site is located in Malibu. The architectural implications for direct gain passive solar buildings are fairly straightforward: south glazing, shaded in summer, and interior thermal mass. 64% of the south facing wall area is glazed, an overheating protects the glass from March 21 to September 21, and the interior contains about 25 tons of thermal mass in the form of gypsum board and lightweight concrete floor slabs. Theoretically, this direct gain system supplies over 64,000 BTUs, which is at least 82.2% of the calculated heating needs. Additional heat supplied by internal equipment, lights and people further reduces auxiliary heating needs. However, six years of experience has shown that some owners simply have never turned on their furnaces.

During cooling, the fins catch prevailing sea breezes and direct them through the house with the help of ventilating skylights and windows. A roof-pond option is employed during critical times to further assist cooling.

The living spaces are zoned and heavily insulated from each other (up to R-24 in some places). Two inside air and heat circulating wood burning fireplaces provide additional space heating. The gas-fired forced-air furnace is rarely used. Gas-fired forced-air furnace is rarely used.

GELBER HOUSE
Architects: Martin B. Gelber AIA & Associates
This passive-solar single-family residence is set upon a steep, west-facing site in the Brentwood Hills area of Los Angeles. The extreme sun and warm micro-climate made passive solar cooling the major design criterion. Solar fins and overhangs face south and permit only winter sun to enter the solar-glassing panels to the main living spaces. Light-colored walls reflect the prevailing sea breezes and direct them through the house with the help of ventilating skylights and windows. A roof-pond pond option is employed during critical times to further assist cooling.

The living spaces are zoned and heavily insulated from each other (up to R-24 in some places). Two inside air and heat circulating wood burning fireplaces provide additional space heating. The gas-fired forced-air furnace is rarely used.

L.A. ARCHITECT SPECIAL ENERGY INSERT
BEVERLY GLEN ARBORS
Architects: Raymond Kappe FAIA, Rex Lotery FAIA, Cielo Boccato AIA
Beverly Glen Arbors will be an attempt by Kappe Lotery Boccato to integrate construction techniques, systems, and energy-oriented projects, will be used in Beverly Glen Arbors.

KAPPE LOTERY BOCCATO
Architects: Raymond Kappe FAIA, Rex Lotery FAIA, Cielo Boccato AIA
Beverly Glen Arbors will be an attempt by Kappe Lotery Boccato to integrate construction techniques, systems, and energy-oriented projects, will be used in Beverly Glen Arbors.

The evaporative cooler back-up system requires only one-fifth of the energy of conventional air conditioning and provides the additional benefit of raising the humidity inside the house.

The intent in such a tight site planning scheme was to make it possible to tune each house relative to its special orientation, view, and privacy factors.

Average, roll-down blinds, trellises, sun shades, ventilating panels, and balconies make up the component package. Solar panels are used for water heating and water mass fireplaces are used for passive heating. Heat gain and recovery techniques, which Kappe Lotery Boccato have incorporated in other energy-oriented projects, will be used in Beverly Glen Arbors.

PASSIVE SOLAR HOUSE
Architects: Maxwell Starkman AIA and Associates
The 2,300 sq. ft. of this Las Vegas house uses its quarry tile covered concrete floor slab, concrete block walls and water filled tubes as thermal storage mass. When these elements are exposed to sunlight, they absorb and store the solar heat for release during the night.

Other elements of the passive system include rainwater collection, south-facing glazed windows, a minimum of openings on the east, west and north walls to reduce heat loss, opening fans to prevent air stratification, gravity roof vents, properly sized overhangs and a greenhouse. The greenhouse consists of double-glazed windows/energy conserving air-to-air heat exchangers that may be filled or emptied with polystyrene beads via two small vacuum motors. When open, the sun's energy supplies heat and when filled, the beadwall acts as insulation with a U-value of about 0.7.

In winter, the beadwall is opened during the day to allow sunlight to strike the tile/concrete floor and the water filled tubes. In summer the solar energy systems work in reverse.

The evaporative cooler back-up system requires only one-fifth of the energy of conventional air conditioning and provides the additional benefit of raising the humidity inside the house.
QUINCY JONES continued from front pageoxed {boxes, the Jones house was disciplined in plan but articulated and informal in the best sense of the word. He managed to make this approach work in his educational buildings. Many of them were planned around atriums, open or sealed. Included in the exhibit was the Annenberg School of Communication at USC (1975-77). It is surprising to see the plan of this structure after experiencing it as a building. The plan is disciplined, whereas the actual building seems relaxed and informal. One enters as a beautifully lighted "great hall," not indicated on the exterior. The Annenberg Center is the antithesis of Edward Durrell Stone's nearby Klein Smidt Center, a collection of cramped classrooms and offices disguised as a monument in the Neo-Classical vein.

David Gebhard and Robert Winter have noted that the plans and buildings of our state colleges and universities since World War II have been disappointing. "Organic" plans, even of William Wurster at Berkeley, just seemed to matter worse. Jones managed to impose a sense of order at Dominguez Hills, and, in spite of budget limitations, to create buildings that have interest. He realized that one of the only bargains left in the building process is earth moving, and he took advantage of this fact to create a series of buildings which are partly grade below grade. One has the feeling that when this building process is completed, campus will be one of the few to have an integrated group of low college campuses in California.

In the factory and offices for Herman Miller Inc. at Zeeland, Michigan, the list of the projects exhibited, Jones unified the new and existing buildings with a 40-foot-wide "spine." From the criteria which the clients laid down for this project, Esther McCoy has accepted a phrase which seems to sum up Quincy Jones' architectural philosophy "kind to the user...non-precious and non-monumental." (The exhibition catalog, by Esther McCoy, is available for $2.50 postage included, from the Fine Arts Depart­ment, Cal State Dominguez Hills, Carson, CA 90745.)

ARCHITECTURAL ROW
Prime suites 675 sq. ft. $285.

BUILDING DESIGNER
For building including energy conserving design & solar applications. Minimum requirements: BA in Architecture. Good study must have included 18 in more courses in energy conservation & application to architecture. Must have experience in solar applications for one or more buildings. 40/hr. min. 150/hr. max. David, Samuel R. Schoen, 1000 N. Ocean Ave. Costa Mesa, CA 92626.

Use less gas by using more of the Gas Company.

They may be your employees. You may be their customer. And they're worth taking advantage of. They've helped some of the finest architects -- both government agencies, hospitals, schools, restaurants and office buildings from coast to coast on gas by more than 50%.

For example, we have technicians who analyze fuel gases and make boiler adjustments. We also have energy management specialists who can show you how to monitor the amount of gas you save during your day-to-day operations.

When it's time to replace or add something, we have experts who know all about the most efficient gas equipment.

And we've got people to help your business get started. Our energy managers will help you wade through the Titian rules and requirements for large new buildings. And our engineers will work with architects, designers and mechanical engineers to figure out the most efficient ways to use natural gas in new buildings.

If you need more help, we can even put our computer experts to work for you. For a fee, they'll do a computer analysis of your building equipment and alternate energy systems. That way you'll find out what's best for your business before you build or make changes.

Your Gas Company rep will put you in touch with these experts and many others.

Call him at 1-800-252-9090.

From area code 209 call collect (213) 689-3334.

And put some of our employees to work for your company.
The Architecture and Design Support Group is temporarily housed in the Schindler House, 885 N. Kings Rd., Los Angeles, 90065, thanks to the generosity of the Friends of the Schindler House. The support group welcomes new members and information about the symposium and future meetings can be obtained by phoning the Schindler House (213) 651-5151.

Koen Wachtman is the first recipient of Cal Poly Pomona's Richard Neutra Medal. This medal will be presented annually to an outstanding design professional and a corresponding Neutra Award will be given to the student who submits the outstanding thesis project in architecture.

The fifth exhibition of oil paintings by Ulysses Floyd Hibe, FAIA, recently took place at the Fauna Valley Community Center.

The 1924 cultural landmark of the Ennis-Brown House, designed by Frank Lloyd Wright, will be the location for the May 22, at 7 p.m. Dick Schoen, AIA, of Solar Resources, the developer of the solar application, will give the tour and talk about the home.

Dinner will follow at the Pancho Villa Restaurant. For reservations, contact Peggy Cochrane (213) 788-1722.

The Los Angeles Chapter/Architectural Societies Association is going towards the sun with a visit to a solar energy operated condominium complex in Santa Monica, 201 Ocean Avenue on Saturday, September 27. Arthur Drexler, Director of the Architecture and Design Department at the Museum of Modern Art, New York, Mildred Friedman, Director of the Architecture and Design Department of the Walker Art Institute, Minneapolis, and Lisa Taylor, Director of the Des Moines Art Center, New York, have all agreed to address the symposium. John Fairier will be moderator.

The Association of Women in Architecture is sponsoring an 18 day tour of China to start November 22, 1980. The trip will include travel to a number of Chinese cities including Peking and Shanghai and meetings with Chinese architects. The cost of the tour is $1,898. For further information contact Peggy Cochran (213) 786-1722.

BOOKS ON ARCHITECTURE • DESIGN • PLANNING
NEW • out-of-print • imported / hardcover & paperback
extensive stock • special values at reduced prices

WE ALSO BUY BOOKS
Hennessey & Ingalls, Inc.
Art & Architecture Bookstore
— NEW ADDRESS —
10814 Pico Boulevard
Los Angeles 90064
473-0830

EDUCATION

The AIA of Los Angeles is a member of the International Architecture Association, AIA, located at 4209 Lankershim Blvd, North Hollywood, Ca. 91602 Phone (213) 985-4637

— Contemporary and Traditional Stained Glass Design —
— Residential and Commercial —
— Art Glass Sandblast Etching —

COMPUTER AIDED FOR ARCHITECTS AND ENGINEERS

118 SOUTH CATALINA • REDONDO BEACH, CA 90277 (213) 374-8599

— ENERGY ANALYSIS — TOTAL STANDARD DESIGN — RESIDENTIAL — COMMERCIAL — JOB COST CONTROL — TYPE V

FUTURA

This new "Reproduction Machine" is loaded with features normally found in more expensive units. It will handle all manner of material in excess of 12" (12cm) at up to 80 feet per minute (24m per minute).

Universal Reproductions is your one-stop center for reproduction machines, supplies and service. Buy, lease or rent service. Buy, lease or rent with your "FUTURA" with complete confidence.

Call today — 569-8460.

MUTSCHLER

More than simply the best in cabinetry.
8738 West Third Street, Los Angeles 213-272-0731

L.A. ARCHITECT June 1980

SUMMARY: 2168 Meeting of the LA/ AIA Board of Directors, May 12, 1980.

Lomas reported that the total cost of the new office building will be approximately $3.5 million, and that the new building will be ready for occupancy by the end of the year. The building will be designed by Architect Richard Wurman as the executive director.

Plans for a Los Angeles Museum of Modern Art on Bunker Hill are proceeding rapidly as part of the Community Re-development Agency's proposed development of the area. At the inauguration of architect Gary Gibber, member of the Mayer's former Museum Advisory Committee, an Architecture and Design Support Group has been formed. Joseph Giovannini, architecture critic for the Herald Examiner committee is chairman.

The purpose of the support group will be to influence the formation of an architecture and design department in the proposed museum and to produce a position paper on the topic to present to the museum's Board of Trustees. A design symposium which will explore existing local resources and models of similar museum departments in other cities has been planned for Saturday, September 27. Arthur Drexler, Director of the Architecture and Design Department at the Museum of Modern Art, New York, Mildred Friedman, Director of the Architecture and Design Department of the Walker Art Institute, Minneapolis, and Lisa Taylor, Director of the Des Moines Art Center, New York, have all agreed to address the symposium. John Fairier will be moderator.

The fifth exhibition of oil paintings by Ulysses Floyd Hibe, FAIA, recently took place at the Fauna Valley Community Center.

The Los Angeles Chapter/Architectural Societies Association is going towards the sun with a visit to a solar energy operated condominium complex in Santa Monica, 201 Ocean Avenue on Saturday, September 27. Arthur Drexler, Director of the Architecture and Design Department at the Museum of Modern Art, New York, Mildred Friedman, Director of the Architecture and Design Department of the Walker Art Institute, Minneapolis, and Lisa Taylor, Director of the Des Moines Art Center, New York, have all agreed to address the symposium. John Fairier will be moderator.

The Association of Women in Architecture is sponsoring an 18 day tour of China to start November 22, 1980. The trip will include travel to a number of Chinese cities including Peking and Shanghai and meetings with Chinese architects. The cost of the tour is $1,898. For further information contact Peggy Cochran (213) 786-1722.

The AIA of Los Angeles is a member of the International Architecture Association, AIA, located at 4209 Lankershim Blvd, North Hollywood, Ca. 91602 Phone (213) 985-4637

— ENERGY ANALYSIS — TOTAL STANDARD DESIGN — RESIDENTIAL — COMMERCIAL — JOB COST CONTROL — TYPE V

FUTURA

This new "Reproduction Machine" is loaded with features normally found in more expensive units. It will handle all manner of material in excess of 12" (12cm) at up to 80 feet per minute (24m per minute).

Universal Reproductions is your one-stop center for reproduction machines, supplies and service. Buy, lease or rent service. Buy, lease or rent with your "FUTURA" with complete confidence.

Call today — 569-8460.