The American Institute of Architects is the national organization of the architectural profession, and its initials A.I.A. following the architect's name have come to be recognized publicly as a certificate of merit. His membership in the A.I.A. attests to the architect's integrity, proven professional qualifications, and good standing in his community.

EXECUTIVE COMMITTEE
Joe T. Pursell, A.I.A.
President
John C. Skewes, A.I.A.
Vice President
Robert D. Ledner, A.I.A.
Vice President
Edward F. Neal, A.I.A.
Secretary-Treasurer
James G. Chastain, A.I.A.
James E. Mcdams, A.I.A.

BILoxi
John T. Collins, A.I.A.
Leonard Collins, A.I.A.
Henry F. Fountain, A.I.A.
Carl E. Matthes, A.I.A.

BROOKHAVEN
John Bishop Seavey, A.I.A.

BROOKDALE
B. A. England, A.I.A.

GREENVILLE
Harold Kaplan, A.I.A.
Matthew L. Virden III, A.I.A.

GREENWOOD
James E. Mcdams, A.I.A.

GULFPORT
Flynt M. Hall, A.I.A.
Kenneth W. Hayes, A.I.A.
Milton B. E. Hill, A.I.A.
Carl T. Parker, A.I.A.

HATTIESBURG
Stephen H. Blair Jr., A.I.A.
David K. Hemeter, A.I.A.
Juan E. Landry, A.I.A.

JACKSON
William R. Allen Jr., A.I.A.
Charles B. Barlow, A.I.A.
Robert B. Bassett, A.I.A.
Thomas J. Biggs, F.A.I.A.
Raymond Birkett, A.I.A.
B. A. Brody, A.I.A.
George Lee Brock, A.I.A.

JACKSONVILLE
Hugh H. Rather, A.I.A.

JOLIET
William R. Allen Jr., A.I.A.
Charles B. Barlow, A.I.A.
Donald N. Barlow, A.I.A.

JOHNSTON
William R. Allen Jr., A.I.A.
Charles B. Barlow, A.I.A.

JUDDVILLE
James T. Conitzer, A.I.A.

KANSAS CITY
James G. Chastain, A.I.A.
James G. Chastain, A.I.A.
James W. Clark, A.I.A.

KERNER
James E. McAdams, A.I.A.

KNOXVILLE
Frederick K. Kelly, A.I.A.

PINellas
Dean R. Pate, A.I.A.

PLATTSBURG
Robert J. Boggs, A.I.A.

POCAHONTAS

MEMBERS EMERITUS
John R. Moor, A.I.A.

Editorial Advisors
William R. Henly Jr., A.I.A.
Harry Haas Jr., A.I.A.
Edward Ford Neal, A.I.A.
Place, Time, Architecture

Try to imagine a street in your town lined with architectural masterpieces of the world. Side by side you might see the Parthenon, the Guggenheim Museum, the Seagram Building, Notre Dame Cathedral, and perhaps the Taj Mahal. The chances are that the total aspect would be reminiscent of a Disney extravaganza. At any rate there can be little doubt that each of these great buildings would lose a degree of greatness by being thus situated in the wrong place at the wrong time.

A few years back it was not uncommon to find streets in American towns which displayed an amazing array of architectural types. One might see a motel reflective of the architecture associated with Pueblo cliff dwellings next to a bank inspired by the Temple of Apollo. This combination could even have been viewed from the interior of an ice cream parlor designed in the shape of a chocolate nut sundae.

Fortunately, there has been considerable improvement in the relationship between buildings as our towns continue to grow and prosper, but all of us, architects and clients alike, still exhibit tendencies toward building without sufficient awareness of total environment. However, this is more a product of enthusiasm than selfishness, so there is great hope that we will enrich our towns as we build by extending our vision to encompass the big picture. Sensitivity in this respect can be far more enriching and rewarding than excessive attempts at cleverness.

The process of sharpening vision and sensitivity involves a close inspection of the relationship between buildings. The total effect can be pleasant or unpleasant or somewhere in between. The nature of their materials can clash or harmonize. The spaces in between can be attractive or repulsive. Variations in scale can be complementary or ridiculous. These and many other considerations can elevate good buildings to greatness or reduce them to the mediocre; the architect and his client will jointly share a heavy portion of the responsibility.

— Edward F. Neal, A.I.A.
This is a 150-bed general hospital with all service facilities designed to accommodate future addition of another floor containing 8 beds. Constructed principally of reinforced concrete and masonry, this hospital has an exterior of light buff brick and aluminum window wall units. Wide concrete canopies protect the main entrance and the emergency ambulance entrance.

The various services that are the heart of the hospital, including surgery, labor and delivery rooms, laboratory, X-ray, emergency department and an intensive care section, are grouped conveniently on the first floor.

Patients' rooms are on the second, third and fourth floors; the second and fourth each containing 48 beds (24 private rooms and 12 two-bed rooms). The third floor contains 40 beds and 4 nurseries to provide care for 34 babies.

A nurses training section, general store-rooms, laundry, cafeteria, kitchen, drug stock rooms, physical therapy, morgue, autopsy room, maintenance shop, boiler room and mechanical equipment all occupy the ground floor.
The world's largest apartment house, Outer Drive East Apartments, will be completed in early June 1964, on Chicago's lakefront. Under development by The Jupiter Corporation, the real estate, oil and natural gas company, this unusual T-shape building will cost $27,000,000.

Three blocks from Chicago's leading department store, Marshall Field, and two blocks from famed Michigan Avenue on the lakefront, the two-acre site building, erected on the Illinois Central RR track air-rights, offers an unparalleled view of the city's entire lakefront span, Grant Park, the Chicago skyline and the Loop.

Cost of the air-rights alone is $2,750,000.

Chicago's well-known Edison-Dick Restaurant Chain will have three restaurants in the building. A luxurious cocktail lounge and restaurant, Cafe La Tour, will occupy all of the forty-story rooftop, a sea food restaurant will be on the main level and the third will be on the seventh floor.

An Olympic-sized, kidney-shaped pool, covered by a huge glass dome allowing year-round swimming and the first of its kind in any apartment house, will be located on the seventh floor, surrounded by cabanas, lockers, showers, saunas, The Rivera Health Club and a deck for sun-bathing.

Architects: Hirshfeld, Pawlan and Reinheimer of Chicago.

Outer Drive East Apartments
MODERN ARCHITECTURE is breaking out of its old forms. Nowhere is this more in evidence than at the World's Fair which will open in New York.

The buildings rising on Flushing Meadow are a dramatic and joyful testament to America's architectural talent. And to fulfill their plans, architects are drawing heavily on new technological advances in structural design and new building materials.

The freedom of form which architects are seeking is clearly demonstrated in the Eastman Kodak pavilion. Here the architectural firm of Kahn and Jacobs developed an undulating concrete shell supported on interior pylons. From a design conceived by Will Burtin, the complex and irregular curves of the shell's "skirt" are accented by two spherical domes, several conical pylons, and a cylindrical tower. The resulting design, with its arbitrary but harmonious use of various curvatures is one of the most eye-catching of the Fair's pavilions.

Lev Zetlin & Associates, who solved the engineering problems of this unusual design, used prestressed concrete cantilevered on the interior columns to form the arbitrary shapes of the skirt. The concrete varied in thickness from 6" to 14" so that it could bear its own load between columns. The domes, however, were covered with cement plaster troweled on metal lath over wood framing; the lightweight design made central support of the dome vaults unnecessary. But the cement plaster, of course, was not waterproof.

The Neolon roofing on the Eastman Kodak pavilion was applied in five coats, of which the last was a finish coat which supplied the color. Here again, the flexibility of on-site application permitted a departure in design: the architect wanted the domes to be medium-green at the base, shading up to the cream white which, because it is a standard of the Fair, has become known as World's Fair White. In spraying on the finish coat (the earlier coats were rolled on), Desco Vitro-Glaze simply sprayed around an around the domes, decreasing the pigmentation each time. The result is a smoothly blended exterior color that is both protective and decorative.

Another Kahn & Jacobs design protected by Neolon is the Travelers Insurance Company pavilion. This building is reminiscent of Travelers' umbrella trademark: a 20 foot high central column, set in a reflecting pool, supports a giant flattened spheroid about 90 ft. in diameter. The upper and lower hemisphere are scalloped around the equator of the spheroid.
The "Dynamic Clear Span" dome was originally designed to cover an underground chapel. In its use over the chapel the dome performs aesthetically as well as functionally.

Initially, by nature, a dome has the capabilities of spanning large distances without the use of intermediate columns. This dome is constructed of identical rings making it less costly to produce and simplifying the construction. Within these rings the plastic or translucent plastic discs allow a large amount of natural light into the interior, enhancing the aesthetic value, while limiting the use of artificial light to evening. Finally, the use of circular members instead of the conventional linear members achieves a smoother and less harsh appearance.

This dome was designed using only that part of a hemisphere which is completely in compression. This permits the dome to be constructed with use of a minimum number of members, while giving the dome a shell-like appearance.

The hexagonal plan stems from the geometrical arrangement of the identical rings. Six equilateral triangles composed of these ring elements form the dome, which is part of a sphere, resulting in six points of support. The compression force originating at the center ring, transmitted through the intermediate rings to the rings around the perimeter of the dome, are transmitted by a beam around the perimeter to these six supports.

Theoretically no connecting fastener would be needed, since the dome is entirely in compression. For means of construction a single bolt is used where rings are tangent.

A triangular shaped piece is used to cover the opening where three circles meet. Along with the structural ring, this piece is the only other form used. It, like the ring, remains the same throughout the dome.

The potential of this dome lies in its use to span large areas without shutting out natural light and still retaining a simple external expression.
Four 50-horsepower, two-stage, oilless compressors, each with a three-ton air conditioning unit, supply air under pressure to three chambers at the John A. Hartford Hyperbaric Oxygen Research Center.

These three horizontal steel cylinders — designed and built by Borg-Warner Corporation — are actually room-sized chambers that will accommodate up to 30 medical staff members and patients.

Andrew P. Boehner (left, chief engineer at Borg-Warner Corporation's hyperbaric research department, adjusts air pressure in one of the three steel chambers. Looking on is Wayne Brandon, superintendent of buildings and grounds for the hospital.

JOHN A. HARTFORD
Research Center
Hyperbaric Oxygen

LUTHERAN GENERAL HOSPITAL
PARK RIDGE, ILLINOIS
A million-dollar hyperbaric (high-pressure) oxygen research facility opened at Lutheran General Hospital in suburban Chicago. It is the largest and most advanced hyperbaric oxygen center in the world.

The facility consists principally of three room-size, horizontal steel chambers for medical and surgical procedures at two to three times normal pressure (or more). Pure oxygen administered to patients through masks in the high-pressure environment will raise the oxygen tension of the blood to as much as 15 times normal . . . opening the way to new methods of treating circulatory ailments, heart disease, strokes and other types of illness and injury.

The Lutheran General Hospital center, Park Ridge, III., may well be the prototype for future hyperbaric systems, according to Ray Snyder, manager of the hyperbaric research department of Borg-Warner Corporation, where the facility was designed.

The longest chamber is 41½ feet long, 10 feet in diameter, weighs 57,200 pounds and is ASME pressure-rated at 50 pounds per square inch gauge (psig). It serves as a research unit for internal medical application and will accommodate six bed patients.

The middle and largest unit, 34 feet 7 inches long, 12 feet in diameter, weighing 70,400 pounds, serves as an operating chamber. It also is pressure-rated at 50-psig. It is large enough to permit two simultaneous operations, as might be done in the future for work in transplanting organs.

The third chamber, 23 feet, 4 inches long, 10 feet in diameter, weighing 50,400 pounds, is a recompression and research room. It is rated at 125 psig.

Each chamber is partitioned into a main room and an entrance lock. The locks are interconnected by corridors. This arrangement permits the occupants to leave the system, and enables them also to move from one chamber to another without undergoing decompression. The system is designed to accommodate up to 30 persons. The locks are approximately 10 feet long and are large enough to accommodate a surgical stretcher and allow it to be turned a full 90 degrees in moving from one chamber to the next.

The main air supply for all three chambers is a bank of four compressor units that provide a continuous flow of air at 32.5 psig. Each chamber has a separate control console for regulating the pressure and ventilation rate in each chamber and lock independently. There is also a 200-psig reserve air supply that can pressurize the small recompression and research chamber to 90 psig and supply the medical and surgical chambers in case of a power failure.

A 75-seat auditorium and four seminar rooms are on the ground floor of the three-story wing. The hyperbaric chambers are on the second floor, beside an intensive care ward and a biochemical laboratory. The third floor has nine guest rooms for visiting medical people.

The three hyperbaric chambers, together, weigh 89 tons. But their weight is spread over a sizeable floor area; the floor is designed for a live load of 150 pounds per square foot. The chambers rest on a 6-inch reinforced concrete platform.

Burnham & Hammond, Inc., Chicago, is architect of both the main building and the hyperbaric oxygen wing.

An operating room large enough to permit two simultaneous operations (as might some day be done in transplanting organs) is part of the high-pressure oxygen center. The operating room has double doors so that its lock can be at a higher pressure if necessary. A pivoted ramp in the doorway allows stretchers to be wheeled over the raised sill.
A NEW DOME has been added to the Washington scene—but this one is of modern acrylic plastic. The transparent structure can also be transformed into a translucent arch, a new landmark. Push-button controlled, the convertible dome encloses an outdoor swimming pool, offering year 'round aquatics.

The dome is in six sections, two stationary and four movable. Thirty-eight feet high, it has a diameter of 102 feet at its base and has the form of a sphere which has been cut off 10 feet above the equator.

Each section or segment of the dome has six horizontal rows of framed acrylic plastic panels. In all, there are 334 flat, trapezoidal Plexiglas acrylic panels in 227 different sizes. Each panel was pre-assembled into an insulating unit consisting of two 1/4-in. sheets of Plexiglas separated by a 1/2-in. dehydrated air space. A metal separator sealed between the two sheets at the rim holds a desiccant. Several panel

An exterior view of the transparent Plexiglas dome, from a terrace of the International Inn. Notice that the partially opened section of the dome has a cut-out portion. Closed, this fits over the entranceway leading from the hotel, permitting protected access to the pool in inclement weather. Also, note the neoprane weather flaps where the segments join when closed.
Colorless, transparent sheets make up the panel units for the mobile segments of the dome. The inner sheet of every unit in the two fixed segments is white, translucent acrylic plastic. This arrangement provides sufficient “see-through” in the dome area and gives adequate pool-side brightness. When retracted, the overlapped section panels provide an interesting “solid,” translucent effect for the arch.

When the dome is fully retracted, each stationary segment is “leafed” by two mobile sections, one over and one under, coinciding to form the translucent arch. Under the arch, most of the pool-side area is available for sunbathing. Or, the dome may be opened to any desired degree for air and sunshine.

The dome structure is supported by a steel beam framework. After the curved longitudinal beams were installed, the steel cross-beams were welded into place to complete the framework.

Architect for the dome was Morris Lapidus—Liebman & Associates, New York, N. Y.
Small metal clips screwed into siding or sheathing fit in grooves on top and bottom edges of each stone. Clips secure stone to wall and provide proper spacing between stones. Special nails may be used in place of screws. Notice corner stones are mitered at 45-degree angle.

ONE OF THE OLDEST of building materials is showing a new face to architects and construction men.

Stone, once considered entirely as a massive, heavy material requiring a foundation, is now being used as veneering, paneling, facing—in a variety of new decorating ideas.

Since stone comes in many colors and hundreds of different shadings, decorators are using it to harmonize with wood, brick, metal, glass and fabrics.

Six categories of natural stone are quarried in the U.S.—sandstone, quartzite, granite, marble, limestone and slate.

New cutting techniques now produce thinner slices of stone for greater economy, and improved quarrying and manufacturing methods also keep costs down.

Here are a few decorating ideas in building stone as suggested by the Building Stone Institute:

1. Lightweight curtain wall panels are available in all six categories of natural stone for covering and insulating thin curtain walls. The effect is that of a thick stone wall—yet it is constructed as a lightweight stone sheath set over a core such as foamed polyurethane.

2. Mosaic stone panel walls also come in a variety of colors and textures—useful either as a background for furniture or as a focus of interest all by itself.

3. Free-standing display panels designed with patterns or murals provide a permanent room divider for home or office, and can be made to contrast with a stone wall or stone flooring.

4. Stone veneer is quarried stone about one inch thick. It is mechanically tied over frame, masonry or other surfaces with a clip and either a screw or nail. No foundations are required, since the supporting feature is the wall itself.

Curtain wall panels of stone, insulated or veneering, are lightweight, highly-efficient, and low-cost. Suitable for interior or exterior use, all stone panels are permanent-bonded and moisture-sealed.
building better businesses

ELECTRICALLY

Going Total Electric for all the services your clients need in their merchandising operations insures the efficiency and effectiveness so essential for profits in today's highly competitive field. Electricity can bring down operating costs; make the building you design more comfortable; eliminate breakdowns and costly repairs. From every point of view, electricity makes sense to ... and dollars for ... all modern business men today. Let us give you more details. We'll be happy to discuss this with you at your convenience.

Mississippi Power & Light Company
... owned by investors "Helping Build Mississippi"

McLEMORE ROOFING & SHEET METAL CO.
Builders Specialty Items
Dealer For Expand-O-Flash
Applicators For
Solarflex Roof Systems
Fiberglas — Form — Board

TSC *
EVERYTHING IN STEEL
Fabricated Structural Steel
Longspan Joists & O. T. Joists
Steel Deck — Standard & Heavy Duty
Miscellaneous Iron — Erection

TUCKER STEEL CO., INC.
P.O. Box 231
Meridian, Miss.
Phone 482-3168

COAST MATERIALS CO.
— Ready Mixed Concrete —

THERE'S nothing in the world like wood... and there's no construction wood like
SOUTHERN PINE
ALWAYS ASK FOR QUALITY
GRADE-MARKED SOUTHERN PINE
PRODUCED AND SOLD BY MEMBER MILLS OF
MISSISSIPPI PINE
MANUFACTURERS ASSN.
535 COLLEGE STREET/JACKSON, MISS.
GENERAL COMPONENTS, INC.
ROOF TRUSSES
Quality Truss Builders

4171 NORTHVIEW DR.
JACKSON, MISS.
366-3116

2130 - 23rd AVENUE
GULFPORT, MISS.
863-5712

GAS Heating / Cooling
ASSURES PERFECT
all-year comfort

GAS Heats/Cools Better
because GAS is:
• DEPENDABLE • CLEAN
• ECONOMICAL • QUIET

MISSISSIPPI Valley
Gas COMPANY
A Good Citizen Serving Mississippi

JACKSON STEEL COMPANY, INC.
REINFORCING STEEL AND ALLIED ACCESSORIES
DIAL FL 5-7457 969 SOUTH ROACH ST.
P.O. BOX 2671
JACKSON, MISSISSIPPI

JOHN B. HOWARD COMPANY, INC.
Materials for Construction
P.O. Box 2838
104 North Lemon Street FLeetwood 4-2346
Jackson, Mississippi
Now You Can Design "Clear-Span" for Less Than You Ever Thought Possible

The revolutionary principle of stressed-skin construction lets you span wide-open spaces with amazing simplicity and savings. Steel panels form both finished roof and ceiling in a complete, light-weight system... quickly assembled with less materials. Maintenance is next to nothing.

Flat Roof Spans From 80' to 300'... flexibility of design will meet almost any architectural requirements. Combines beautifully with conventional building materials or Behlen structural curtain wall.

Arched Spans From 250' to 1000'... lets you design huge structures at a surprisingly low cost. Clean, clear exteriors and interiors with no exposed trussing or supports of any kind. Complete engineering details available to architects through...

WHOLESALE MATERIALS COMPANY
Box 1605 — Hattiesburg, Miss.
Mississippi Representatives for BEHLEN STRUCTURAL SYSTEMS

ALEXANDER MATERIALS
P.O. Box 245 — Hattiesburg, Mississippi
TEXLITE MASONRY — CERTIFIED BY UNDERWRITERS
Paints • Cement • Dur-o-Wal • Mortar Mix • Zonolite

M A I K R U S S E L L
PAINTING CONTRACTOR
COMMERCIAL • INDUSTRIAL
SANDBLASTING • WATERPROOF
5073 GERTRUDE DR.
JACKSON 4, MISSISSIPPI

FAULKNER CONCRETE PIPE COMPANY
Established 1915
• Manufacturers of Concrete Pipe •
Tel. 584-6226 • P.O. Box 992
Hattiesburg, Mississippi
PLANTS: Gulfport, Miss., Hattiesburg, Miss. Jackson, Miss., Meridian, Miss., Mobile, Ala.
This publication comes to you through the courtesy of the Sponsor, whose name appears on the front cover, and the responsible group of firms listed on these pages.

JACKSON Blue Print & Supply Co.
Frank S. Arnold, Owner

ARCHITECTS AND ENGINEERS SUPPLIES
FLEETWOOD 3-5803
416 E. AMITE STREET

Mississippi’s First Blue Print Shop - - - Established 1923

JACKSON Stone Company
INcORPORATED
MANUFACTURERS • ARCHITECTURAL STONE
VIBRAPAC MASONRY UNITS • EXPOSED AGGREGATE PANELS
330 W. MAYES ST. JACKSON, MISSISSIPPI EMerson 6-8441
Wetmore & Parman, Inc.

Contractors and Builders

649 N. Mill St. 355-7443
Jackson, Mississippi

L. Parman, President W. A. Schmid, Vice-President

ELLIS SUPPLY COMPANY

"Since 1927 - - Serving Mississippi with Steel"

JOISTS :::: STRUCTURAL STEEL

O. BOX 1016 PHONE 939-4584
JACKSON 5, MISSISSIPPI
BRANCH OFFICE & PLANT AT WEST POINT, MISS.
P.O. BOX 383 — PHONE 2081

THE BUSINESSMAN'S DEPARTMENT STORE

Office Furniture • Printing
Office Supplies • Rubber Stamps
Office Machines • Library

GREETING CARDS & GIFTS
STAFF DESIGNER • STAFF ARTIST

L.F. 4-3801 Jackson, Mississippi P.O. Box 1292
"A HOME OWNED INDUSTRY"

LAUREL BRICK & TILE COMPANY, Inc.

Manufacturers

— Office and Plant —
N. MERIDIAN AVENUE
P.O. Box 583
Phone 428-7467
LAUREL, MISSISSIPPI

IN MISSISSIPPI
it's . . .

SOUTHERN GLASS

for . . .
• GLASS and GLAZING
• BUILDING MATERIALS
• BUILDING SPECIALTIES
• The BEST in SERVICE

315 E. Pine • Hattiesburg, Miss. • JU 2-1574

C O N C R E T E B L O C K S

Allied Building Supplies
Masonry Insulation
Steam Cured • Burned Clay
for
Strength • Accuracy • Beauty
A.S.T.M. Underwriters' Label

"BETTER BLOCKS
FOR BETTER BUILDING"

L Y L E S
CONCRETE BLOCK PLANT
102 11th Ave. South Ph. 483-2803
Meridian, Mississippi

The OFFICE SUPPLY COMPANY

"Complete Office Designers, Outfitters and Printers"

99 East Capitol Street Jackson, Miss. Dial 948-2521
MISSISSIPPI ARCHITECT—A.I.A.

Quality Building Products

RUSSWIN
BUILDERS HARDWARE

MITCHELL
METAL BUILDINGS

Blue Bond
FOR CONCRETE AND CEMENT COATINGS

MIRAWAL
Veneer Insulated PORCELAIN PANELS

modernfold
FOLDING DOORS

by THRASHER CO.
2689 LIVINGSTON ROAD • JACKSON, MISSISSIPPI

METAL WINDOWS—GLAZED STRUCTURAL TILE—MOVABLE PARTITIONS—ROOF DECK