The AMERICAN INSTITUTE of ARCHITECTS MISSISSIPPI CHAPTER

The American Institute of Architects is the national organization of the architectural profession, and its initials A.I.A. following the architect’s name have come to be recognized publicly as a certificate of merit. His membership in the A.I.A. attests to the architect’s integrity, proven professional qualifications, and good standing in his community.

EXECUTIVE COMMITTEE
Joe T. Pursell, A.I.A.
President
John C. Skewes, A.I.A.
Vice President
Robert D. Ladner, A.I.A.
Vice President
Edward F. Neal, A.I.A.
Secretary-Treasurer
James G. Chastain, A.I.A.
James E. McAdams, A.I.A.
BILoxI
John T. Collins, A.I.A.
Leonard Collins, A.I.A.
Henry F. Fountain, A.I.A.
Carl E. Matthes, A.I.A.
BROOKHAVEN
John Bishop Seavey, A.I.A.
COLUMBUS
Fred L. Harrison, A.I.A.
William I. Rosamond, A.I.A.
CORINTH
B. A. England, A.I.A.
GREENVILLE
Harold Kaplan, A.I.A.
Matthew L. Virden III, A.I.A.
GREENWOOD
James E. McAdams, A.I.A.
GULFPORT
Flynt H. Hall, A.I.A.
Kenneth W. Hayes, A.I.A.
Milton B. E. Hill, A.I.A.
Carl Y. Parker, A.I.A.
HATTIESBURG
Stephen H. Blair Jr., A.I.A.
David E. Hemster, A.I.A.
Juan E. Landry, A.I.A.
Juar G. Landry, A.I.A.
Carl E. Matthes Jr., A.I.A.
J. Warren McCleskey, A.I.A.
J. Warren McCleskey, Jr., A.I.A.
HOLLY SPRINGS
Hugh H. Rother, A.I.A.
JACKSON
William R. Allen Jr., A.I.A.
Charles C. Barlow, A.I.A.
Robert B. Bassett, A.I.A.
Thomas J. Biggs, F.A.I.A.
Raymond Birchett, A.I.A.
B. A. Brady, A.I.A.
George Lee Brock, A.I.A.
W. A. Browne, A.I.A.
Harold C. Brunfield, A.I.A.
William E. Campbell, A.I.A.
James T. Canizaro, A.I.A.
James G. Chastain, A.I.A.
James Watts Clark, A.I.A.
Vance D. Clemmer Jr., A.I.A.
Edgar Coleman, A.I.A.
Charles H. Dean Jr., A.I.A.
Eugene Drummond, A.I.A.
Robert E. Farr, A.I.A.
Frank P. Gates, A.I.A.
William L. Gild, A.I.A.
Earl T. Gilmore, A.I.A.
Arthur J. Godfrey, A.I.A.
Harry Hoas Jr., A.I.A.
William R. Henry Jr., A.I.A.
John F. Hester, A.I.A.
Grady L. Hicks, A.I.A.
Ransom Gary Jones, A.I.A.
James C. Lee, A.I.A.
Joy T. Liddle Jr., A.I.A.
E. L. Malvaney, A.I.A.
Emmett Malvaney, A.I.A.
John M. Mattingly, A.I.A.
Charles P. McLellan, A.I.A.
Charles C. Mitchell, A.I.A.
William D. Morrison, A.I.A.
R. W. Naef, F.A.I.A.
Edward Ford Neal, A.I.A.
E. E. Norwood, A.I.A.
N. W. Overstreet, F.A.I.A.
Joseph Russell Perkins, A.I.A.
Joe T. Pursell, A.I.A.
Frank E. Rice, A.I.A.
Jerry H. Smith, A.I.A.
John W. Staats, A.I.A.
T. N. Touchstone Jr., A.I.A.
John L. Turner, A.I.A.
John M. Ware, A.I.A.
Joseph T. Ware Jr., A.I.A.
Henry E. Weir, A.I.A.
Edward J. Welty, A.I.A.
John T. West, A.I.A.
Dudley H. White, A.I.A.
McComb
William Ragland Watkins, A.I.A.
MERIDIAN
Bill Archer, A.I.A.
Luther L. Brasfield, A.I.A.
Robert B. Clepton, A.I.A.
MISSISSIPPI CITY
Lloyd E. Grace, A.I.A.
Willis T. Guild Jr., A.I.A.
NATCHEZ
Beverly Martin, A.I.A.
PASCAGOULA
Peter J. Baricev, A.I.A.
PICAYUNE
Robert D. Ladner, A.I.A.
John C. Suffling, A.I.A.
STARVILLE
Thomas H. Johnston Jr., A.I.A.
Thomas Shelton Jones, A.I.A.
Thomas O. Wakeman, A.I.A.
TUNICA
John H. Pritchard, F.A.I.A.
TUPELO
Clarice M. Payne, A.I.A.
MEMBERS EMERITUS
John H. Harvey, A.I.A.
John T. West, A.I.A.
William R. Henry Jr., A.I.A.
Harry Hoas Jr., A.I.A.
William J. Williams.

William R. Henry Jr., A.I.A.
Harry Hoas Jr., A.I.A.
Edward Ford Neal, A.I.A.
Editorial Advisors
Dear Editor:

We propose to construct a small office for the permanent home of our company. We would like for our building to be distinctive enough that it will become a symbol of identification.

We have some very positive ideas about how this building should be arranged and how it should look. We definitely want a colonial building with columns at the entrance.

We have consulted with two architects of good reputation and each has declined to serve us. They say that it is their responsibility to design the building rather than to simply draw up what we tell them to.

Before we approach a third architect, we would like to have the position of architects clarified.

Should the architect design what he wants or what we want?

Sincerely,
M. L. C.

Dear M. L. C.:

Fortunately there are no rules set up to control the design aspect of architecture. Each architect is free to design according to the dictates of his convictions. However, it is a rare case if he is granted license to design what he alone wants, to the exclusion of what his client wants. After all, the client has to state the program before the architect can go to work. Ideally, the results of his efforts should be what each wants.

More directly to the point, I have no doubt that you can find someone who will simply draw up what you tell him to, but I advise against it. I suggest that you go back to the first architect you contacted and ask for a design rather than dictating one.

If he is a good designer, and he probably is or you wouldn’t have gone to him in the first place, then he will not ignore your ideas and your dedication to colonial buildings. Rather, he will use your ideas in combination with his to develop your primary program requirement: “a building distinctive enough to become a symbol of identification” for your company. Truly distinctive buildings are seldom if ever the result of design by the untrained or of copies from the past.

Sincerely,
Edward F. Neal, A.I.A.
Editorial Advisor
THE Gilfoy School of Nursing has been completed as Phase I of a current long-range expansion program by the Mississippi Baptist Hospital, Jackson, Miss. The design criteria required the use of an existing reinforced concrete frame dormitory as an integral part of the station. The entire complex was to be so situated that parking would be provided for 40 automobiles with vehicular access through the site. Efficient building area was to be reserved for future construction fronting on Fortification Street.

The building criteria called for a school to accommodate 200 nurses, providing the following facilities:

1. 100—2 occupant bedrooms with 1 bathroom serving 2 rooms or 4 girls.
2. Small clinical facilities for dormitory.
3. Study lounge each floor of dormitory.
4. Trunk storage and domestic laundry facilities.
5. Date lounge and living room which could be combined for large functions.
6. House mother and assistant house mother quarters.
7. A lecture hall to seat 120 people that could be divided into 2 rooms to seat 60 people.
8. 4 classrooms, 2 laboratories, and instructors' offices.

9. Library available to dormitory without access to academic area.

The solution consisted of converting the existing dormitory into an academic building and connecting this area to the new dormitory with an administrative wing. The configuration of the plan was developed to provide a landscaped court to be used in conjunction with the living room and date lounge area which open onto it with sliding glass walls. Future plans provide for a physical fitness building that will completely enclose the court yard area and be connected to the dormitory by a colonnade. At the present time a deck is provided over the main mechanical room with access to the second floor of the dormitory. The construction of the building is generally:

Foundation—Poured in place pile and grade beam.

Construction—Reinforced concrete.

Exterior Walls—Porcelain enamel panels and 10 inch cavity. Exterior, face brick; interior, exposed concrete block.

Auditorium—Reinforced concrete.

Interior Partitions—Exposed concrete block, generally.

Finished Floors—Resilient floor covering and carpet.

Ceilings—Suspended acoustical tile and exposed concrete, painted.

Roof Covering—Built-up.

Windows—Aluminum single hung.

Heating and air conditioning—Forced circulation air with multizone air handling units with ventilation cycle. Hot and chilled water to coils.

Elevators—One.

<table>
<thead>
<tr>
<th>AREA</th>
<th>sq. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dormitory</td>
<td>51,494</td>
</tr>
<tr>
<td>Lecture Hall</td>
<td>3,982</td>
</tr>
<tr>
<td>Remodeled Area</td>
<td>8,476</td>
</tr>
<tr>
<td>TOTAL</td>
<td>63,952</td>
</tr>
</tbody>
</table>
Construction Cost

<table>
<thead>
<tr>
<th>PHASE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Construction</td>
<td>$548,575.24</td>
</tr>
<tr>
<td>Mechanical Construction</td>
<td>205,416.45</td>
</tr>
<tr>
<td>Electrical Construction</td>
<td>76,952.00</td>
</tr>
<tr>
<td>Built-In Bedroom Furniture</td>
<td>45,285.00</td>
</tr>
<tr>
<td>Passenger Elevator</td>
<td>21,416.00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Cost</td>
<td>$897,644.69</td>
</tr>
<tr>
<td>Square-foot Cost</td>
<td>14.04</td>
</tr>
</tbody>
</table>
The trend to marble is growing rapidly in modern suburban banking institutions throughout the country. An example of this increasing preference for richer and more enduring materials in suburban areas is the six-story office building of Loyola Federal Savings & Loan Association, recently erected in Towson, Maryland. Marble gives the structure an air of dignified elegance formerly associated only with central city banks.

The entire first floor areas of the banking room and lobby, as well as the rear entrance and corridor, are of Vermont Marble Company's Pavanazzo. This marble was chosen also for an outdoor bench in the beautifully landscaped entrance plaza.

Vermont Marble's Verde Accelgio, selected for a floor-to-ceiling partition wall between the entrance lobby and elevator lobby, presents an accent of rich decor to one entering the building. This same marble was employed in a four-foot-high panel near the exterior left front corner of the building's ground floor.

Loyola Federal's Towson Branch occupies nearly all of the first floor of the building, while the upper five floors are devoted to rental office space. Basic construction of the 49,850 square foot structure is steel frame with pre-cast concrete plank floor. Exterior is pre-cast panels with aluminum windows.

Wilson & Christie, Associated Architects.
A new Caribbean landmark is Alcoa's huge aluminum dome bauxite storage shed at Rocky Point, Jamaica. Bauxite comes from mines in 86-ton aluminum rail cars (right). From an open storage area (dark patch, top left), ore is screened, dried, and moved to the dome to be kept dry until loaded aboard ore carriers.

String of 86-ton aluminum hopper cars stretches across front of giant skeleton of lamella dome, also of aluminum.
A new Caribbean landmark exists in one of the world’s largest aluminum-domed storage sheds in Rocky Point, Jamaica, created to hasten Alcoa shipments of aluminum ore needed to meet an expanding demand for the light metal.

Cresting 100 feet above a sea-level coral reef, the giant umbrella of aluminum alloy tubing and sheet, 300 feet in diameter, protects dried bauxite which is held for transport to Aluminum Company of America’s refining plant at Point Comfort, Texas.

Representing a unique innovation in an unceasing effort to improve mining and ore-handling efficiency, the domed design of the storage facility affords a vast unobstructed shelter from which automated conveyors can speed ore into a ship hold at the rate of 2,000 tons an hour.

Alcoa Minerals of Jamaica, Inc., the subsidiary which specified the dome as a key element in a recently-completed $16.5 million open pit mining complex, said the circular structure greatly minimized the ground area a conventional rectangular building would have required. Dredging of coral fill, piling and related site preparation requirement costs were thus reduced considerably.

The dome’s convex framework employs 158 tons of structural aluminum tubing. Equivalent to $4\frac{1}{2}$ pounds per square foot of floor area, the tube is joined into a latticework of triangles supporting a 20-ton roof covering of aluminum alloy sheet. A rectangular steel storage structure, affording but half the dome’s unobstructed width and height, would have required a 900-ton steel frame equivalent to 25 pounds per square foot of ground area.

Alcoa’s Lafayette (Ind.) and Cressona (Pa.) operations fabricated the 10-inch diameter alloy 6062-T6 tubing for the intricate framing of the dome. The roof panels of Alclad 6061-T6 sheet were oiled at the company’s Davenport (Iowa) Works. Workmen operating from pipe scaffolding, mounted in a rotating truss within the building itself, bolted the sub-assembled frame sections into place prior to the sheeting operation.

As novel as the dome itself is, a bauxite handling and reclaiming system makes possible the complete recovery of all stored ore without the use of scrapers, bulldozers, or other supplementary equipment.
Establishment of the construction industry’s first "hall of fame" was announced by Harnischfeger Corporation.

Created to honor the nation’s leading contractors, the hall will display the portraits of America’s most successful construction executives. It will be located in the company’s recently opened research center in Milwaukee.

In honor of the hall and the men named to it, the company has named the building “Progress Hall.” Announcement of the creation of the hall of fame was made by president Henry Harnischfeger at the annual Construction and Mining Division meeting in Chicago.

Corporation president Henry Harnischfeger also announced the appointment of seven contractors as initial honorees into Progress Hall.

“I am confident,” said president Harnischfeger, “that these seven men and those who follow will serve as an inspiration to the industry, our engineers and everyone who visits Progress Hall. By establishing this display we honor our partners in this industry, the contractor. Without these partners our equipment could do little to achieve the progress that marks this nation’s dynamic growth.

“Through sound management practices and imaginative utilization of materials, they have demonstrated their true leadership in the heavy construction industry. Our role of developing and building better equipment is just one step in providing this nation with the dams, buildings, roads and structures it needs. In the hands of men like these an engineer’s fondest dreams have become reality.”

The portraits of the seven men, along with appropriate legends, will be permanently displayed in Progress Hall. Harnischfeger Corporation plans to name additional leading contractors annually to the hall of fame.

Progress Hall—Construction Industry’s “Hall Of Fame”
CONSTRUCTION of the Wells Fargo Building is in full swing and will continue to be until ready for tenants in the summer of 1966. See photo at right.

The official announcement of the $20,000,000 building took place on May 27, 1963, when it became known that the owner and developer would be Dillingham Corporation of San Francisco, a subsidiary of Dillingham Corporation, Honolulu, Hawaii. Haas and Haynie Corp., was named general contractor at the same time.

The Wells Fargo Bank holds title to the land and has awarded a long term lease on the site to Dillingham. The Nevada Bank Building, now occupied by the bank at the corner of Montgomery and Market, will be removed in 1965 and in its place will be built a three-story, glass-walled banking hall, integrated architecturally with the 43-story office tower rising from the Montgomery-Sutter corner. This lower element will house part of the Market-Montgomery street office of the Wells Fargo Bank, continuing almost 60 years of banking service at this location. See photo below.

The present construction phase consists of further site preparation to allow for excavation for the subbasement, about 20 feet below the Montgomery street level. Then driving of foundation piles will take place, followed by the erection of the steel frame. By the end of the year all structural steel should be in place, and a start made on pouring the concrete columns and floors.

Construction and long-term financing is being furnished by the Equitable Life Assurance Society of the United States, and her long-time San Francisco real estate firm of Walter H. Sullivan & Sons has been named leasing agents.

Dillingham Corporation's other interests in California are the Plaza Hotel on Union Square along with adjacent property on Stockton Street.
INDUSTRIAL ACOUSTICS COMPANY, INC. has opened a new 6,000-sq. ft. laboratory in New York City for research in noise control problems and acoustically controlled environments.

"It is probably the largest aero-acoustic facility in the sound control field," said IAC President Martin Hirschorn, "and is unique in bringing together under one roof coordinated airflow and acoustic facilities for research, design and product development. It is also the only laboratory with facilities for airflow noise regeneration studies," he added.

The laboratory is equipped to study acoustic noise and environmental control problems in many areas including:

- Architectural structures such as doors, panels, windows and complete rooms or houses for indoor and outdoor applications.
- Air conditioning and air handling systems in general.
- Industrial power plant mufflers.
- Jet engine noise suppressors.
- Silencing of diesel engines, generator sets, gas turbines, electric motors, machinery and personal enclosures.
- Hearing conservation programs.
- Anechoic and reverberant rooms.
• Medical research and examination chambers.
• Production control stations.
• Also electro-acoustic instrumentation including sound level meters and analyzers, sonic control devices and engine power indicators.

This laboratory is the off-shoot of a smaller one which was operated by IAC for over 12 years. In the latter, IAC applied and refined its research knowledge in the development of architectural acoustic panels, industrial and air conditioning silencers, jet engine noise suppressors, soundproof machinery enclosures and completely equipped modular soundproof rooms for medical and other applications.

IAC's new laboratory includes the following facilities:

1. Two inter-connecting reverberant rooms with a volume of 3,000 cu. ft. and 3,600 cu. ft. respectively and a 4' x 8' opening to test the sound transmission loss of architectural panels up to that size.

2. Semi-anechoic room with a volume of 8,000 cu. ft.

3. A 100-ft.-long airflow tunnel discharging with reverberant or anechoic termination. Test sections up to 24" x 24" can be accommodated. This tunnel can also be used for static tests. Tunnel is designed to study the regeneration of noise due to air flow.
Headquarters For Rocketdyne

ROCKETDYNE, a division of North American Aviation, Inc., has activated its new headquarters building, a four-story structure designed to match the performance record of the company's space engines.

"Streamlined functionalism has been the architectural guideline from concept to completion of this building," declared Kenneth Neptune, A.I.A.

Under construction for the last year at the southwest corner of Canoga Avenue and Victory Boulevard in Canoga Park on a 10-acre portion of the old Warner Ranch, the new building overlooks the Division's adjacent plants.

It houses the management team which has division-wide responsibility for support and policy direction of Rocketdyne's development and production of rocket engines. More than 90 per cent of all United States space vehicles, including the astronaut-manned Mercury missiles, have used Rocketdyne engines.

The building has made possible the geographical unification of overall management functions, and the separation of such activities from those directed at specific product targets.

Neptune designed the building to sit atop a four-foot high pedestal with sheer curtain walls of cathedral glass rising skyward at the front and rear of the building. The east and west ends of the building are masonry, built of oversized brick set in a precise pattern and painted slate gray.

The building has a dimension of 91½ feet by 125 feet, not including a one-story extrusion, and produces 60,000 gross square feet of space.

It features an entrance portico and 30-foot wide terraces at the front, west side and rear. Terraces are topped with white cement and finished with metal grid pattern.

Seen from a short distance, the building's glass curtain walls appear to be broken only by five support columns and the anodized bright aluminum vertical mullions which set a rhythmic pattern.

This optical illusion, Neptune said, results from the fact that the horizontal mullions are anodized black and fade into the opaque of the glass.
Flameless Comfort Conditioning

What do we mean by “comfort conditioning”? Just that. Lighting that meets the scientifically-planned IES standards... heating and cooling that assures your clients of just-right temperatures economically achieved... all the quality features that come with Total Electric design. Whether it’s out front in the public eye with attractive lighting, or behind the scenes with heating, cooling, cooking or water heating, electricity assures you of comfort, convenience and economy. Let us prove this to you by supplying complete details—you’ll be glad you did!

Mississippi Power & Light Company
... owned by investors “Helping Build Mississippi”

McLEMORE ROOFING & SHEET METAL CO.
Builders Specialty Items
Dealer For Expand-O-Flash
Applicators For
Solarflex Roof Systems
Fiberglas — Form — Board
O. BOX 446
PHONE 601-483-7162
MERIDIAN, MISSISSIPPI

TSC*
EVERYTHING IN STEEL
Fabricated Structural Steel
Longspan Joists & O. T. Joists
Steel Deck — Standard & Heavy Duty
Miscellaneous Iron — Erection
TUCKER STEEL CO., INC.
P.O. Box 231
Meridian, Miss.
Phone 482-3168

COAST MATERIALS CO.
— Ready Mixed Concrete —
P.O. BOX 61 - GULFPORT, MISSISSIPPI

PLANT LOCATED
9th St. & I. C. Railroad

MPMA
MISSISSIPPI PINE MANUFACTURERS ASSN.
535 COLLEGE STREET/JACKSON, MISS.
only GAS heats fast enough to insure

unlimited hot water

Dependable, thrifty GAS heats water twice as fast... assures unlimited hot water, automatically, in any weather, anytime . . . that's why GAS is first choice for water heating.
Now You Can Design "Clear-Span" for Less Than You Ever Thought Possible

The revolutionary principle of stressed-skin construction lets you span wide-open spaces with amazing simplicity and savings. Steel panels form both finished roof and ceiling in a complete, light-weight system . . . quickly assembled with less materials. Maintenance is next to nothing.

Flat Roof Spans From 80' to 300' . . . flexibility of design will meet almost any architectural requirements. Combines beautifully with conventional building materials or Behlen structural curtain wall.

Arched Spans From 250' to 1000' . . . lets you design huge structures at a surprisingly low cost. Clean, clear exteriors and interiors with no exposed trussing or supports of any kind.

Complete engineering details available to architects through . . .

WHOLESALE MATERIALS COMPANY
Box 1605 — Hattiesburg, Miss.
Mississippi Representatives for BEHLEN STRUCTURAL SYSTEMS

ALEXANDER MATERIALS
P.O. Box 245 — Hattiesburg, Mississippi

TEXLITE MASONRY — CERTIFIED BY UNDERWRITERS
Paints • Cement • Dur-o-Wal • Mortar Mix • Zonolite

Mike Russell
PAINTING CONTRACTOR
COMMERCIAL • INDUSTRIAL

SANDBLASTING • WATERPROOF
073 GERTRUDE DR.
JACKSON 4, MISSISSIPPI

Faulkner Concrete Pipe Company
Established 1915
• Manufacturers of Concrete Pipe •
Tel. 584-6226 • P.O. Box 992
Hattiesburg, Mississippi
PLANTS: Gulfport, Miss., Hattiesburg, Miss.
Jackson, Miss., Meridian, Miss., Mobile, Ala.

Builders Accessories
REINFORCING STEEL FABRICATORS

Sargent
COMMERCIAL and RESIDENTIAL HARDWARE

Magnolia Steel Company
WIRE MESH
HOLLOW METAL DOORS & FRAMES

PHONE 483-4301
This publication comes to you through the courtesy of the Sponsor, whose name appears on the front cover, and the responsible group of firms listed on these pages.

JACKSON Blue Print & Supply Co.
Frank S. Arnold, Owner
ARCHITECTS AND ENGINEERS SUPPLIES
FLEETWOOD 3-5803
416 E. AMITE STREET
P.O. BOX 182
JACKSON, MISSISSIPPI
Mississippi's First Blue Print Shop - - Established 1923
JACKSON READY-MIX CONCRETE

READY-MIX CONCRETE, JAX-LITE CONCRETE MASONRY, JAX-DEK PRESTRESSED CONCRETE, MISS-LITE AGGREGATE, SAND & GRAVEL

FL 4-3801

Jackson, Mississippi

P.O. Box 1292

"A HOME OWNED INDUSTRY"

Wetmore & Parman, Inc.

Contractors and Builders

649 N. Mill St. 355-7443
Jackson, Mississippi

L. Parman, President W. A. Schmid, Vice-President

ELLIS SUPPLY COMPANY

"Since 1927 - - - Serving Mississippi with Steel"

JOISTS - - - STRUCTURAL STEEL

O. BOX 1016 PHONE 939-4584

JACKSON 5, MISSISSIPPI

BRANCH OFFICE & PLANT AT WEST POINT, MISS.
P.O. BOX 383 — PHONE 2081

THE BUSINESSMAN’S DEPARTMENT STORE

Office Furniture • Printing
Office Supplies • Rubber Stamps
Office Machines • Library

GREETING CARDS & GIFTS

STAFF DESIGNER • STAFF ARTIST

The

OFFICE SUPPLY COMPANY

"Complete Office Designers, Outfitters and Printers”

09 East Capitol Street Jackson, Miss. Dial 948-2521

LAUREL BRICK & TILE COMPANY, Inc.

Manufacturers

— Office and Plant —
N. MERIDIAN AVENUE
P.O. Box 583
Phone 428-7467
LAUREL, MISSISSIPPI

IN MISSISSIPPI
it's . . .

SOUTHERN GLASS

for . . .

• GLASS and GLAZING
• BUILDING MATERIALS
• BUILDING SPECIALTIES
• The BEST in SERVICE

315 E. Pine Hattiesburg, Miss. • JU 2-1574

CONCRETE BLOCKS

Allied Building Supplies
Masonry Insulation
Steam Cured • Burned Clay
for Strength • Accuracy • Beauty
A.S.T.M. Underwriters’ Label

"BETTER BLOCKS
FOR BETTER BUILDING”

LYLES CONCRETE BLOCK PLANT

102 11th Ave. South Ph. 483-2803
Meridian, Mississippi
MISSISSIPPI ARCHITECT—A.I.A.

Quality Building Products

RUSSWIN
BUILDERS HARDWARE

MITCHELL
METAL BUILDINGS

Blue Bond
FOR CONCRETE AND CEMENT COATINGS

BONDING AND CURING AGENT

MIRAWAL
Veneer Insulated PORCELAIN PANELS

modernfold
FOLDING DOORS

by THRASHER CO.
2689 LIVINGSTON ROAD • JACKSON, MISSISSIPPI

METAL WINDOWS—GLAZED STRUCTURAL TILE—MOVABLE PARTITIONS—ROOF DECK