The American Institute of Architects is the national organization of the architectural profession, and its initials A.I.A. following the architect's name have come to be recognized publicly as a certificate of merit. His membership in the A.I.A. attests to the architect's integrity, proven professional qualifications, and good standing in his community.

EXECUTIVE COMMITTEE
Joe T. Pursell, A.I.A.
President
John C. Skewes, A.I.A.
Vice President
Robert D. Ladner, A.I.A.
Vice President
Edward F. Neal, A.I.A.
Secretary-Treasurer
James G. Chostain, A.I.A.
James E. McAdams, A.I.A.

HOLLY SPRINGS
Hugh H. Rother, A.I.A.

JACKSON
William R. Allen Jr., A.I.A.
Charles C. Barlow, A.I.A.
Robert R. Bossett, A.I.A.
Thomas J. Biggs, F.A.I.A.
Raymond Birchett, A.I.A.
B. A. Brady, A.I.A.
George E. Brock, A.I.A.
W. A. Browne, A.I.A.
Harold C. Brunfield, A.I.A.
William E. Campbell, A.I.A.
James T. Canizaro, A.I.A.
James G. Chostain, A.I.A.
William Watts Clark, A.I.A.
Vance D. Clemmer Jr., A.I.A.
Edgar Coleman, A.I.A.
Charles H. Dean Jr., A.I.A.
Eugene Drummond, A.I.A.
Robert E. Farr, A.I.A.
Frank F. Gates, A.I.A.
William L. Gill, A.I.A.
Earl T. Gilmore, A.I.A.
Arthur J. Godfrey, A.I.A.
Harry Haas Jr., A.I.A.
William R. Henry Jr., A.I.A.
John F. Hester, A.I.A.
Grady L. Hicks, A.I.A.
Ransom C. Jones, A.I.A.
James C. Lee, A.I.A.
Jay T. Liddell Jr., A.I.A.
E. L. Malvaney, A.I.A.
Emmett Malvaney, A.I.A.
John M. Mattingly, A.I.A.
Charles P. McMullan, A.I.A.
Charles C. Mitchell, A.I.A.
William D. Morrison, A.I.A.
R. W. Naef, F.A.I.A.
Edward Ford Neal, A.I.A.
E. E. Norwood, A.I.A.
H. W. Overstreet, F.A.I.A.
Joseph Russell Perkins, A.I.A.
John T. Pursell, A.I.A.
Frank E. Rice, A.I.A.
Jerry H. Smith, A.I.A.
John W. Staats, A.I.A.
T. N. Touchstone Jr., A.I.A.

MEMBERS EMERITUS
John L. Turner, A.I.A.
John M. Ware, A.I.A.
Joseph T. Ware Jr., A.I.A.
Joseph E. Weir, A.I.A.
Edward J. Welty, A.I.A.
John T. West, A.I.A.
Dudley H. White, A.I.A.

William R. Henry Jr., A.I.A.
Editor
Harry Haas Jr., A.I.A.
Editorial Advisors
Edward Ford Neal, A.I.A.
Put Your Architect To Work

It would be interesting to know how many appointed commissions, boards, and committees involving how many people and how many man-hours meet on any given day in the state of Mississippi.

There are commissions on aeronautics, athletics, building, educational finance, forestry, history, hospital care, insurance, junior colleges, libraries, marketing, parks, ports, public safety, research, and taxes.

There are boards for agriculture and industry, banking, bar admissions, blind and deaf schools, education, eleemosynary institutions, health, institutions of higher learning, mental institutions, oil and gas, penitentiaries, planning, plants, public contracts, textbook purchasing, veteran’s affairs, and zoning.

There is the church building committee.

Civic-minded citizens by the thousands serve unselfishly and without compensation in the interest of better communities, facilities, institutions, and government. Architects as a profession are committed to the everlasting improvement of man’s total environment. They are morally bound to exploit every opportunity for civic service.

Inasmuch as most architects seem reluctant to seek opportunities for service, we suggest that you seek them out and put them to work. They are well equipped. They have been trained to plan, to organize, and to administrate. They use creative imagination in combining function, engineering, and beauty into building projects. Let them use these same talents to serve you.

If you need an architect member on your board or committee and there is no architect in your community, contact us and we will recommend one from elsewhere in the state.

—Bob Henry
LOCATED at a busy intersection in an area quickly changing from residential to commercial, this motor bank is oriented toward the automobile.

The exterior use of concrete channels and load bearing brick walls are reflective of the interior disposition of spaces. Bold forms were chosen in place of intricate details in order that the building read stronger in the context of fast moving traffic. Rather than visually crowd an already busy intersection, the building and drives were positioned to the rear of the lot to free the space at the corner.

Unlike most branch banks accommodating only two cars, requirements of a growing city necessitated facilities for four cars. Expansion provisions for six have been provided within the existing structure.

Greenville Motor Bank

Motor Bank
of
Commercial National Bank
Greenville

M. L. Virden III
& Associates
Architect
Greenville
Three years ago, the idea for a small-size inn was born. Executives of Holiday Inns, who had already tried their hand at larger inns, decided the time was right for a compact inn with compact rates to match.

The unit, to be built in smaller communities or city areas where space is at a premium, would provide adequate accommodations without frills.

Swimming pools and meeting rooms would be eliminated to keep the costs down, but it would have all the luxuries found in larger Holiday Inns, only smaller in size and price.

At the same time, they wanted the inn facilities to be standardized so that guests could expect the same.

(Continued on following page)
consistent quality anywhere in the country. To guarantee uniformity, the inn would be best constructed on an assembly line.

With these characteristics in mind, the architectural-engineering firm of William W. Bond, Jr., and Associates set about designing this innovation for the accommodations industry.

The designers decided the inn would function best with a maximum of 50 rooms and a restaurant in the style of a coffee shop. In addition, each room of the compact unit would have to utilize every inch of space in order to provide facilities that are standard in every Holiday Inn room and still give an air of spaciousness.

They came up with a modular room which could be produced on an assembly line, transported over the highway to the selected site, and erected with minimum of on-site construction.

The selection of an exterior surface material was made only after considerable analysis of available substances. Since attractive appearance, lightness, durability, and easy maintenance were essential to the modular unit, 8 ply, non-toxic Fiberglas was chosen for the exterior skin.

They felt this material was unique because a definite pattern could be designed into the surface. The architects knew the exterior color would have to be one that guests would not tire of, so white with universal eye appeal was chosen.

The Fiberglas skin, combined with a bonding material of Hetrofoam #92 and birch plywood paneled for the interior surface form the pre-fabricated wall which will support the roof and give required strength for over-the-road hauling.

The Hetrofoam, a pressurized liquid which expands under proper temperature conditions to 30-33 times its original volume, is injected between the skins of the wall panels. The most important physical property is its insulating quality, the architects noted.

There is additional insulation in the Fiberglas bat of the ceiling and each plywood wall panel receives five coats of fire-retarding varnish.
Long Island's JFK Center

Plans for one of the nation's most exciting cultural complexes, Nassau County, L. I.'s seven building John F. Kennedy Educational, Civic and Cultural center, have been approved by the County's Mitchel Field Planning Committee, according to Eugene H. Fickerson, county executive.

Cost of the 186-acre complex, designed by Welton Becket and Associates, architects and engineers, to provide for the cultural needs of Nassau County's 1.5 million residents while creating a civic focal point for the County, is estimated at $45.5 million. The site has been officially dedicated by President Lyndon B. Johnson.

As conceived by the architectural firm, six structures — a Concert Hall, Library, Social Center, Forum Theater, Fine Arts Gallery, and a Museum of Science, Industry, History and Transportation — will rise from a grand, pedestrian podium with parking underneath. A 10,000 seat enclosed Coliseum will balance the podium across a sunken garden.

The Becket firm has been authorized to proceed with drawings for Phase I — the Coliseum, Library and a portion of the podium. Construction is scheduled to begin in 1965.

The building site is one of four non-contiguous parcels of former Mitchel Field property totalling 435 acres purchased by Nassau County from the Federal Government. The architect recommended utilizing a 45-acre parcel across the Hempstead Turnpike for natural settings including a variety of gardens, an arboretum, and a planetarium. The other sites were designated for a trade-technical high school and for maintenance facilities and a pistol range.

Three phases of development have been recommended by the architects for the main parcel. Phase one, the Coliseum and Library, would begin the latter part of 1965; phase two, the Concert Hall and Social Center, would begin in 1966; and phase three, the Fine Arts Gallery, the Museum and the Forum Theater, would begin in 1967.
Photo-montage of Hydro-Quebec's Manicouagan 5—the multiple-arch dam which will be the highest of its type in the world—as it will appear when completed in 1968. The crest of the dam is more than 4,200 feet long and it will create a reservoir of about 5,000 billion cubic feet (115 million acre feet) of water. A construction camp is in the left foreground.

Work progresses on the center arch of Manicouagan 5 in Quebec's northern wilderness.

Besides a base camp with facilities for 3,000 men and all necessary equipment shops, comfortable trailer camps such as this one have been built in the vicinity of the Manicouagan 5 dam.

Special aluminum cable for the world's highest voltage alternating current transmission line is stranded at the Shawinigan, Quebec, plant of Aluminum Limited (Alcan), which designed the cable for Hydro-Quebec.
is used for controlling temperature in this large concrete placement. About 340 miles of pipe will be required to complete the job.

Before each five-foot layer of concrete is poured, aluminum pipe is laid in a zig-zag pattern. Cold river water then is pumped through the pipe to dissipate the great heat generated by the concrete as it hardens. This concrete contains an unusually high proportion of cement, and to ensure that no cracks develop, its temperature must be regulated with extreme care—no easy job in an area where winter temperatures may fall to 60 degrees below zero and where there often is a temperature differential of 70 degrees between night and day.

Thermometers inserted in the concrete, short distances apart, check the temperature; and the circulation through the aluminum pipe is adjusted accordingly. After about a year of this treatment, when the concrete steadies at about 40 degrees, the aluminum tubing itself is filled with concrete so that it remains solidly embedded and forms a permanent part of the dam.

The smaller of the two dams, Manicouragan 2, is expected to be complete October 1965.
The clay, the trowel and mortar, and a pair of skilled hands—these are the elements which are defying the machine age by producing a new return to human craftsmanship in building. Here, the bricklayer finishes a basket-weave pattern in brick.

By the year 2,000—only a forty-year mortgage away—we will have to duplicate every single building in the nation today to meet the needs of a doubled population. We will, in effect, have to build a second America.

This is the conservative estimate provided by the nation’s leading economists, sociologists, and architects. And it is not just a “file-and-forget” report. Already more than 100 major American communities are undertaking large-scale redevelopment and new building programs. Architects, city planners, engineers, developers, and financiers backed by local governments, are pooling their professional skills for the job.

But how will our new communities and buildings be built? Will they be vast in scale, cold and impersonal, or warm and human, and related in size to the people who will live in them? This is one of the biggest preoccupations of designer and sociologists today and a large body of new thinking on the subject points to one interesting trend—the return of human craftsmanship.

In the age of machine technology, particularly in a nation which provides 50 per cent of the world production with a relatively small labor force, the idea seems to present a paradox. Two centuries ago the first industrial machines sounded the death knell of the European craftsmen’s guilds. One hundred years later, in the nineteenth century, a remarkable group of painters, sculptors, engineers and architects grouped together to adapt the new machine processes to the art of building. Since then, America’s manufacturing industry and its advances in mathematics and materials have brought about the skeleton frame on which walls hang like curtains. They have led to thin-shell construction and remarkable building forms such as the saddle-shaped hyperbolic paraboloid.

Yet, in seeming contradiction to all this, two things have remained and are in ever greater demand than they were 10 years ago—the brick and the bricklayer.

Of the two, the brick seems easier to explain...
here are still bricks on exhibit which are 5,000 years old. Drawn from the earth and baked like bread, the material is cheap and seems to be almost indestructible. It is a dense substance which shuts out noise, ater, and insulates against heat and cold. Small in unit size, it is extremely flexible to build with. Asy to shape, it can be produced in any surface texture or color. It was probably the first prefabricated building product in history and it is still hard to beat.

But what about the bricklayer? Here, surely, is an anachronism in a machine age. He lays up pieces of buildings one at a time. Many people believe him to be slow, surly, and restrictive. At one time, the literal belief was that he laid 300 bricks a day and no more. Curiously enough, that appraisal now seems to have risen to 500 bricks a day.

So the inevitable question arises — why is he still around?

Comments on this question from architects, manufacturers, and contractors produce two separate reasons. First, as the case with almost any long-lived belief, the “300-500 a day” story does not entirely square with the facts. Architectural Forum commented: “It is time for the construction industry to stop apologizing for its performance. Building one of the most productive enterprises, in terms of gross output, of any on the industrial scene. The annual output of a construction worker . . . is double that of the average U.S. worker. And in the decade since World War II, his efficiency has improved significantly.”

Citing the case of a contractor who checked old records and found he got better production on a comparable wall in 1956 than he did in 1928-32, someone added: “Mason groups have also wearied of the perpetual need to explain to the uninformed that rarely any jobs today are comparable to work one in the era of 2,000 bricks per day per man. That site was possible in old-style load-bearing walls that were often three and four feet thick, with only one-tenth of the brick exposed and required to be plumb accurately. The unexposed central section was literally slapped together.

“To counter jibes about . . . the good old days” 2,000 bricks a day, Robert Taylor, director of the Structural Clay Products Research Foundation (supported by industry manufacturers), likes to display a 1910 building cost handbook that declares 400 bricks a day for veneering a frame house is good day’s work.” Adds Taylor: “Today, we have engines on which we are getting veneer work of 450 or 500 face brick — more wall per day, by quite a margin, than in 1910.”

Netted by accusations of limited production, the masons’ union publicly offered $1,000 to anyone who could show proof of any such restriction by a subordinate local union. The money has never been claimed.

Now revealing information has come from another quarter. The Mason Contractors Association of America, representing the contractor-employers of bricklayers, surveyed mason production in 13 states. The average face brick production per man, per day, was 638 units. In one case, a crew of bricklayers on a large insurance company building laid 450 bricks per man-day. Several weeks later, the same crew laid 2,800 bricks per man-day on a memorial tower. The difference, it turned out, was that in the former job, the wall was eight inches thick, involved out-size bricks and a complicated bonding pattern, and required working around many window and pipe openings. The memorial tower job simply involved a sixteen-inch backing-up of a stone face.

One prominent contractor, William F. Nelson, of Washington, D. C., pointed out that the bricklayer “now works with adjustable scaffolding that eliminates much stooping and bending. Fork-lift equipment and conveyor belts raise materials over great distances, both laterally and vertically. He uses new equipment, pneumatic, hydraulic, and electric. Though he is sometimes paid as much as $4 an hour, he seldom has a chance to work more than eight months out of a year . . . If we were still making the same walls our grand-fathers did, we would produce literally thousands of brick in the wall per man-day.”

“In any case,” Nelson added, “the man-hour rate is only a part of the total picture. It’s the total building price that counts. According to many new cost studies, masonry is still a good deal less per square foot than any other permanent type of wall.”

The second reason, according to many architects, flows from the new trend in architecture. Modern architecture in the thirties turned severely away from the gingerbread and imitative forms of the nineteenth century and stripped off the ornaments in a sweeping design purgative. The result, dubbed the “International Style,” was a gleaming, precise, but cold, twodimensional architecture.

Today, however, leading designers are returning to three-dimensional architecture, employing ornament as part of the structure rather than simply pasting it on. The masonry screen, a modern adaptation of the air-conditioning of the ancients, has brought new variety and delight to buildings. In addition, the use of varying bonds, patterns, and surface textures are being used to return a sense of human scale to buildings. From this trend, a clothing of architectural flesh on the bare bones of modern structure, masonry has profited.

And so, apparently, has the man who many building authorities term the “last of the craftsmen.” Though he may be the last, he seems today to have acquired a new lease on life as man seeks once again to demonstrate that he is the master of the machine and not its servant.
Rendering depicts unusual shape of Regency Towers, new $3 million steel-framed apartment building now under construction in Hartford, Conn. This imposing structure, with 141 living units on ten floors plus penthouse, is an architectural showpiece of glass-clad facades and masonry end walls.

Unusual shape, steel-frame economy, speed in fabrication and erection—these were among the key considerations in designing the Regency Towers, an imposing new $3 million apartment building now under construction at Hartford, Conn.

Designed by Walter J. Douglas Associates of West Hartford, the 11-story structure takes full advantage of the steel's architectural freedom. Rising from a Japanese garden setting, the building displays sweeping glass-clad curved facades facing north and facing south to provide outside exposure for all 141 apartment units.

The distinctive shape of the building will utilize 1200 tons of ASTM A36 grade structural steel, rolled by Bethlehem Steel Company's Bethlehem, Pa., plant.

Each of the building's apartment units will include an outside terrace accessible through a sliding glass door incorporated in the outside glass wall of the living room. The terraces are attached by dropping the spandrel beams at the various points and connecting cantilevered steel channels directly to the floor beams.

High-strength bolts will be used for field connections of steel frame members. Floor beams will be only 12 inches deep—with corrugated steel centersing plus three inches of concrete. Heavy wind bracing will be used in the frame.
What do we mean by “comfort conditioning”? Just that. Lighting that meets the scientifically-planned IES standards... heating and cooling that assures your clients of just-right temperatures economically achieved... all the quality features that come with Total Electric design. Whether it’s out front in the public eye with attractive lighting, or behind the scenes with heating, cooling, cooking or water heating, electricity assures you of comfort, convenience and economy. Let us prove this to you by supplying complete details—you’ll be glad you did!

Mississippi Power & Light Company
... owned by investors “Helping Build Mississippi”

McLEMORE ROOFING
& SHEET METAL CO.
Builders Specialty Items
Dealer For Expand-O-Flash
Applicators For
Solarflex Roof Systems
Fiberglas — Form — Board
D. BOX 446
PHONE 601-483-7162
MERIDIAN, MISSISSIPPI

COSIUM MATERIALS CO.
— Ready Mixed Concrete —
P.O. BOX 61 - GULFPORT, MISSISSIPPI

TUCKER STEEL CO., INC.
P.O. Box 231
Meridian, Miss.
Phone 482-3168

There’s nothing in the world like wood...and there’s no construction wood like SOUTHERN PINE
ALWAYS ASK FOR QUALITY GRADE-MARKED SOUTHERN PINE
PRODUCED AND SOLD BY MEMBER MILLS OF
MISSISSIPPI PINE MANUFACTURERS ASSN.
535 COLLEGE STREET/JACKSON, MISS.
Quiet and compact, year 'round GAS air-conditioning is so reliable that many units up to 14 years in service still need only routine filter change.
Now You Can Design “Clear-Span” for Less Than You Ever Thought Possible

The revolutionary principle of stressed-skin construction lets you span wide-open spaces with amazing simplicity and savings. Steel panels form both finished roof and siding in a complete, light-weight system... quickly assembled with less materials. Maintenance is next to nothing.

Roof Spans From 80' to 300'... flexibility of design will meet almost any architectural requirements. Combines beautifully with conventional building materials or Behlen structural curtain wall.

Spans From 250' to 1000'... lets you design structures at a surprisingly low cost. Clean, clear interiors and interiors with no exposed trussing or supports of any kind. Complete engineering details available to architects through...

WHOLESALE MATERIALS COMPANY
Box 1605 — Hattiesburg, Miss.
Mississippi Representatives for BEHLEN STRUCTURAL SYSTEMS

ALEXANDER MATERIALS
P.O. Box 245 — Hattiesburg, Mississippi

TEXLITE MASONRY — CERTIFIED BY UNDERWRITERS
Paints • Cement • Dur-o-Wal • Mortar Mix • Zonolite

MIKE RUSSELL
PAINTING CONTRACTOR
COMMERCIAL • INDUSTRIAL

SANDBLASTING • WATERPROOF
3 GERTRUDE DR. 372-7361
JACKSON 4, MISSISSIPPI

BUILDERS ACCESSORIES
SARGENT
COMMERCIAL and RESIDENTIAL
HARDWARE

FAULKNER CONCRETE PIPE COMPANY
Established 1915
Manufacturers of Concrete Pipe
Tel. 584-6226 • P.O. Box 992
Hattiesburg, Mississippi

PLANTS: Gulfport, Miss., Hattiesburg, Miss., Jackson, Miss., Meridian, Miss., Mobile, Ala.
This publication comes to you through the courtesy of the Sponsor, whose name appears on the front cover, and the responsible group of firms listed on these pages.

JACKSON Blue Print & Supply Co.
Frank S. Arnold, Owner

ARCHITECTS AND ENGINEERS SUPPLIES

FLEETWOOD 3-5803
416 E. AMITE STREET

P.O. BOX 182
JACKSON, MISSISSIPPI

Mississippi’s First Blue Print Shop - - Established 1923

JACKSON Stone Company

MANUFACTURERS • ARCHITECTURAL STONE
VIBRAPAC MASONRY UNITS • EXPOSED AGGREGATE PANELS

330 W. MAYES ST. JACkSON, MISSISSIPPI Emerson 6-8441
Wetmore & Parman, Inc.

Contractors and Builders

649 N. Mill St. 355-7443
Jackson, Mississippi

L. Parman, President W. A. Schmid, Vice-President

ELLIS SUPPLY COMPANY

"Since 1927 - - Serving Mississippi with Steel"

JOISTS - - - - STRUCTURAL STEEL

O. BOX 1016 PHONE 939-4584
JACKSON 5, MISSISSIPPI

BRANCH OFFICE & PLANT AT WEST POINT, MISS.
P.O. BOX 383 — PHONE 2081

THE BUSINESSMAN'S DEPARTMENT STORE

Office Furniture
Office Supplies
Office Machines

GREETING CARDS & GIFTS
STAFF DESIGNER • STAFF ARTIST

The
OFFICE SUPPLY
COMPANY

"Complete Office Designers, Outfitters and Printers"
09 East Capitol Street Jackson, Miss. Dial 948-2521

LAUREL BRICK & TILE COMPANY, Inc.

Manufacturers

— Office and Plant —
N. MERIDIAN AVENUE
P.O. Box 583
Phone 428-7467
LAUREL, MISSISSIPPI

IN MISSISSIPPI it's . . .

for . . . • GLASS and GLAZING
• BUILDING MATERIALS
• BUILDING SPECIALTIES
• The BEST in SERVICE

315 E. Pine • Hattiesburg, Miss. • JU 2-1574

CONCRETE BLOCKS

Allied Building Supplies
Masonry Insulation
Steam Cured • Burned Clay
for
Strength • Accuracy • Beauty
A.S.T.M. • Underwriters' Label

"BETTER BLOCKS FOR BETTER BUILDING"

LYLES
CONCRETE BLOCK PLANT
102 11th Ave. South Ph. 483-2803
Meridian, Mississippi
MISSISSIPPI ARCHITECT—A.I.A.

Quality Building Products

RUSSWIN
BUILDERS HARDWARE

MITCHELL
METAL BUILDINGS

BONDING
AND
CURING
AGENT

Blue Bond

FOR
CONCRETE
AND
CEMENT
COATINGS

MIRAWAL
Veneer Insulated
PORCELAIN PANELS

modernfold
FOLDING DOORS

by THRASHER CO.
2689 LIVINGSTON ROAD • JACKSON, MISSISSIPPI

METAL WINDOWS—GLAZED STRUCTURAL TILE—MOVABLE PARTITIONS—ROOF DECK