COLONIAL-STYLE HANDMADE BRICK

THE SUBSCRIBER RESPECTFULLY INFORMS ALL ARCHITECTS, BUILDERS AND THE PUBLIC AT LARGE THAT THIS FIRM HAS COMMENCED PRODUCTION OF HANDMADE BRICK USING MATERIAL OF THE VERY BEST KIND AND QUALITY.

It is worthy of your attention that said brick are handcrafted according to the finest manner and tradition of the trade. They are fully pledged to display the same natural irregularities and authentic appearance of those once turned out by early Colonial plantation artisans.

BRICK WILL BE FURNISHED IN ANY NUMBER DESIRED WHEN FIRST DETERMINED BY PREVIOUS ORDER TO ALLOW FOR THE PASSAGE OF SIX WEEKS BEFORE DELIVERY TO THE STATED PREMISES.

By constant attention to our labors, and a desire to please, these brick are warranted to stand and to be as serviceable and enduring as expected.

(Dimensions: 2¾" x 4¾" x 9" — Will meet or surpass ASTM and/or Federal specifications.)

Sold on the most reasonable terms. Prices will be made known, and samples provided to those requesting the accommodation. All orders thankfully received and sent to any part of the United States.
COMMITTEE ON PUBLICATION
Richard L. Rice, AIA, Chairman
C. F. Branan
James L. Brandt
Charles H. Bonny
Robert W. Carr
John T. Caldwell
J. Bertram King
Brian Shawcroft
Gilbert M. Slack
James E. Biggs
Norman L. Zimmerman
Arthur R. Cogswell
Robert H. Stephens
Stuart Baesel
Michael S. Newman
George M. Smart
Alvis O. George
R. Holland Brady
S. Harold James
Frank MacMillan
B. Atwood Skinner, Jr.
John F. Faulk
A. C. Woodruff, Jr.
Cameron R. Dudley
Conrad L. Wessell, Jr.
Elizabeth B. Lee
Art & Layout:
Irene Kayari

NORTH CAROLINA CHAPTER
THE
AMERICAN INSTITUTE OF
ARCHITECTS
J. Hyatt Hammond
J. Norman Pease, Jr.
Richard L. Rice
Beemer C. Harrell
Charles H. Wheatley
Donald H. Hines
Ryland P. Edwards
Macon S. Smith
James C. Hemphill, Jr., FAIA
Robert W. Carr
Arthur R. Cogswell
Jesse M. Page
Roy F. Kendrick
H. R. McLawhorn, Jr.
Louise Hall
R. Mayne Albright
Betty Silver
President
First Vice President
Chairman
Vice President
Vice President
Vice President
Secretary
Treasurer
Director
Director
Director
Director
Director
Archivist
Executive Secretary

North Carolina Architect is published by the North Carolina Chapter of The American Institute of Architects, Mrs. Betty W. Silver, Executive Secretary, 115 W. Morgan Street, Raleigh, North Carolina 27601. Advertising rates on request.

Opinions expressed by contributors are not necessarily those of the North Carolina Chapter of the American Institute of Architects.

Lithographed by Theo. Davis Sons, Inc., Zebulon, N. C.

CONTENTS
The Last Revision ... 4
Systems Generating Systems 6
Purgington Residence 16
Profit Planning For the Architects 18
Sculpture Show ... 19
News and Notes ... 19
N. C. Design Firm Opens Caribbean Office 21
Calendar of Events 22
Index to Advertisers 22
“THE LAST REVISION”

The draftsman and the Architect
are men of skill and vision.
At least they are until they hear
That hated word: Revision!

The Architect with practiced eye
Surveys his grand design.
The draftsman then expertly draws
Each complicated line.

“Complete”! they sigh contentedly.
“Miraculous Precision”!
Oh, optimists! Tomorrow brings
Catastrophe . . . revision!

Revision one adds this new piece.
Revision two improves it.
Revision three makes it just right,
Then number four removes it.

You can’t do this, you can’t do that,
We’ll wait for a decision.
But in the meantime, just revise
That last revised revision.

Revise . . . revise . . . the very word
Fills Architects with dread.
Though die they must, they’ll be revised
To make damned sure they’re dead.

We hope that God’s no Architect
When He makes His decision.
If once they win their wings they hope
There’ll be no last revision!
INSULROCK
RIGHT On The Job

Huffman High School Auditorium, Birmingham, Ala.

10,600 SQUARE FEET OF ROOF
BEAUTIFULLY DECKED WITH INSULROCK

INSULROCK Roof Deck Systems can match your best design and engineering ideas . . . all in one material . . . acoustical, insulating, non-combustible. And an INSULROCK deck gives you the added feature of an attractive, light-reflecting ceiling surface.

For custom specifications, technical assistance, and personal attention to your requirements . . . contact the INSULROCK Distributor nearest you:

John H. Hampshire, Inc.
Norfolk, Va.; Richmond, Va.

Tauscher Roof Deck Company
Bristol, Tenn.

Asbestos & Insulating Company
South Charleston, W. Va.

The Bonitz Insulation Co.

Paul O. Schubert Company
Lexington, Ky.

Decks, Inc.
Nashville, Tenn.

Georgia Building Specialties, Inc.
Atlanta, Ga.

Smith-Kelly Supply Company, Inc.
Mobile, Ala.

Steel & Roof Structures
Memphis, Tenn.

Anning-Johnson Company, Inc.
Knoxville, Tenn.

Giffen Industries
Cocoa, Fla.; Jacksonville, Fla.; Miami, Fla.; Tampa, Fla.

R. E. Williams Company
Chattanooga, Tenn.

Jack Yauger Company
Birmingham, Ala.

INSULROCK ROOF DECK SYSTEMS by BUILDING PRODUCTS GROUP
10 Stuyvesant Ave., Lyndhurst, N. J. 07071
1. There are two ideas hidden in the word system: The idea of a system as a whole and the idea of a generating system.

2. A system as a whole is not an object but a way of looking at an object. It focuses on some holistic property which can only be understood as a product of interaction among parts.

3. A generating system is not a view of a single thing. It is a kit of parts, with rules about the way these parts may be combined.

4. Almost every "system as a whole" is generated by a generating system. If we wish to make things which function as "wholes" we shall have to invent generating systems to create them.

A candle flame maintains its steady size and shape because of the balance between the amounts of oxygen and fuel that are made available.
refer to a single thing at all, but to a kit of parts and combinatory rules capable of generating many things.

2. A system as a whole is not an object but a way of looking at an object. It focuses on some holistic phenomenon which can only be understood as a product of interaction among parts.

Let us consider some examples of holistic phenomena which need to be viewed as systems.

The great depression is an obvious example of a holistic phenomenon. We cannot understand the depression, except as a result of interaction among rates of consumption, capital investment and savings; the interactions can be specified in the form of equations: if we follow these equations through to their conclusion, we see that under certain conditions they must always lead to a depression.

The stability of a candle flame is another example of a holistic phenomenon. Why does it maintain approximately the same size and shape throughout its flickering? In this case, the “parts” are flows of vaporized wax, oxygen, and burnt gases—the processes of combustion and diffusion give the interaction between these flows—and these interactions show us at what size and shape the flame will be approximately stable.

The strength of a rope is another example of a holistic property. This strength is a result of interaction among the individual strands, caused by the twisting of the rope: untwisted, the rope’s strength is governed by the weakest strand; twisted, the strands act together and increase their strength.

Another example of a holistic property, is the relation between input and output in any computer. In the toy computer called Thinkadot, a ball dropped into one of three holes, comes out on one of two sides. The output side is not determined by the input hole, but by the input hole and the internal state of the machine, which is itself determined by the sequence of past inputs. In order to understand this behaviour, we must understand the machine as a whole, considering the past inputs and the internal states, as parts,

Some self-regulating systems, when they lose components, grow new components to maintain their equilibrium.
and the way that different sequences of inputs and internal states create specific new internal states and outputs as interactions.

Another kind of holistic behaviour is that instability which occurs in objects that are very vulnerable to a change in one part: when one part changes, the other parts change also. We see this in the case of erosion: cutting down trees robs the soil of the roots which hold it together, so that wind and water can strip the soil of all remaining plants, and make a desert. We see it again in the death of the traditional farm: when the combine harvester replaced traditional harvesting, the entire balance of scale economies was destroyed, the little farms collapsed, and gave way to giant farms.

Let us summarize the content of these examples. In every case we are confronted with an object which displays some kind of behaviour which can only be understood as a product of interaction among parts within the object. We call this kind of behaviour, holistic behaviour.

The central point of the whole argument can be stated very simply. The most important properties which anything can have are those properties that deal with its stability. It is stability which gives a thing its essential character. The strength of an arch, the even burning of a flame, the growth of an animal, the balance of a forest ecology, the steady flow of a river, the economic security of a nation, the sanity of a human individual, the health of a society: these are all, in one way or another, concerned with stability.

Stability, no matter in which of its many forms, is a holistic property. It can only be understood as a product of interaction among parts. The essential character of anything whatever, since it must at heart be based on some kind of stability, must be understood.

These devices are not systems. They have a "systematic" appearance because they are the products of processes which may be looked at as systems.
as a product of interactions within the whole. When we view a thing in such a way as to reveal its character in holistic terms, we speak of it as a system.

In order to speak of something as a system, we must be able to state clearly: 1. The holistic behaviour which we are focussing on. 2. The parts within the thing, and the interactions among these parts; which cause the holistic behaviour we have defined. 3. The way in which this interaction, among these parts, causes the holistic behaviour defined.

If we can do these three, it means we have an abstract working model of the holistic behaviour in the thing. In this case, we may properly call the thing a system. If we cannot do these three, we have no model, and it is meaningless to call the thing a system. The idea of a system is synonymous with the idea of an abstract model of some specific holistic behaviour. We may speak of the economic system in a country, because we can construct a system of equations which reproduce important holistic phenomena like depressions or inflation. If we couldn't do this, it would be meaningless to speak of economic systems.

We must not use the word system, then, to refer to an object. A system is an abstraction. It is not a special kind of thing, but a special way of looking at a thing. It is a way of focussing attention on some particular holistic behaviour in a thing, which can only be understood as a product of interaction among
the parts. Everything under the sun may be viewed as a system: a man smoking a cigarette may be viewed as a system; so may a leaf drifting in the wind; so may a brick; so may mankind on earth. But it only becomes a system if we abstract from it some special holistic property, which we cannot explain except in terms of interactions within the whole. Without a specific statement of what holistic behaviour we have in mind, what interactions among what parts cause this behaviour, and how they do so, calling a thing a system is no more than saying: "This is a pretty complicated thing, and I don't understand it very well."

The idea that a system is an abstraction, needs emphasis. Think of a flower as a system. If we want to understand the fact that the flower buds, and swells, and blooms—that we must certainly do by looking at the flower as a system. In this case it is the interaction among the parts, which creates the behaviour of the whole. But the same flower, has other properties which are not helped at all by thinking of the flower as a system: if it is used as a projectile, then its trajectory cannot be explained as a result of interactions among its parts: and if it is given as a gift, there is nothing that the flower does, no matter how complex the situation, that needs to be understood as a result of interactions among the flower's parts. The idea of a system is helpful only in understanding kinds of behaviour which result from interactions among parts.

Furthermore, even though we call a thing a system when we try to view it as a whole, this does not mean that we ever really view the thing in its entirety.

When we look at an airplane from a systems point of view, we may focus on its scheduling—and we shall learn that because the airplane only has a limited number of aircraft, the schedule of a flight from New York to Chicago turns out to be dependent on the schedule of another flight from Minneapolis to Salt Lake City. In this instance, we are looking at the airline "as a whole," because we are looking at the interactions among parts, but we are not concerned with the last button on the last mechanic's cap. The notion of "whole" refers only to the breadth of vision, not to the inclusion of detail: it is still abstract.

Most often common language obscures this very badly. When we speak of the solar system, or a hi-fi system, or an airline system, or of a plumbing system, the words are used in such a way as to suggest that the "system" is synonymous with the objects. But just occasionally the word is used correctly, even in common language. For instance, when we speak of the Ptolemaic system as opposed to the Copernican system, in each of these cases the word "system" is used correctly: it refers to an abstract way of looking at the interaction among earth, planets, sun and stars—not to the objects themselves.

The discipline of abstraction has one drawback. Occasionally we are confronted with phenomena which are clearly the products of interactions—but the interactions are so complex that we cannot see them clearly, and we cannot make the effort of abstraction successfully. Take for instance, the baffling complexity of a seagull landing, or of an ecstatic, screaming, laughing girl. In these cases a too rigid insistence on the idea that a system is an abstract model, might easily lead us to abstract out some facile inessential system—at the cost of the wonder which is really there.

This is exactly what happens when a systems analyst looks at a building—manages to describe the circulation, the acoustics, the heating and the load bearing structure as systems—and fails to identify the most interesting human and social systems, because he can't describe them in explicit terms.

Thus there is a second lesson to be learned. The first lesson said: Don't call a thing a system unless you can identify the abstract system you are talking about. The second lesson says: learn the first lesson, but don't let it railroad you into making facile abstractions.

When we are confronted with a complex thing, we often begin with nothing more than a feeling or a "sense" that it functions as a system. Driven by this feeling, we then try, painstakingly, to abstract out just that holistic behaviour which seems essential, and those interactions which cause the behaviour. This is an active process. It begins with feeling, and sensing, and only turns to thinking later. Start with some aspect of life so interwoven that you feel in your bones it must be a system, only you can't state it yet—and then, once you can feel it clearly, then try to pin the system down, by defining the holistic behaviour you are discussing, and which interactions among which parts create it. But feel it clearly first, before you try to think it.

The systems point of view is not neutral. It will change your whole view of the world. It will lead you to realize that the most important characteristics of human individuals are products of their interactions with other people. It will lead you to realize that the life of nations—though these nations may seem self-sufficient—is produced by interactions in the whole world, and that they only get their strength from their position in this larger whole. It will lead you to see that the health of cities, is produced by interactions among interdependent parts, including houses, cafes, and theaters, yes, but also equally including slums and graveyards.

The system viewpoint is a modern, disciplined, version of the sense of wonder. It is that view of things which man takes when he becomes aware of oneness and wholeness in the world.
The ways in which man has viewed the solar system have resulted in many ideas about its structure. A single set of objects may be thought of as a system in a number of different ways.
3. A generating system is not a view of a single thing. It is a kit of parts, with rules about the way these parts may be combined.

This is a different use of the word system from the first one. In colloquial English we often use the word system to mean “a way to do something”; that's what a betting system is; that's what the Montessori system is; that's what the democratic system is.

Each of these systems is, at heart, a system of rules. A betting system tells you how to place your bets, the Montessori system lays down rules to be followed by children and teachers in nursery school, the democratic system of government lays down certain rules about the nature of representation, the choice of representatives, and the conduct of elections. In all these cases, the rules are designed to generate things. A betting system supposedly generates winning bets, an educational system generates well educated pupils, the democratic system supposedly generates freedom and good government.

We may generalize the notion of a generative system. Such a system will usually consist of a kit of parts (or elements) together with rules for combining them to form allowable “things.” The formal systems of mathematics are systems in this sense. The parts are numbers, variables, and signs like + and =. The rules specify ways of combining these parts to form expressions, ways of forming expressions from other expressions, ways of forming true sentences from expressions, and ways of forming true sentences from other true sentences. The combinations of parts, generated by such a system, are the true sentences, hence theorems, of mathematics. Any combination of parts which is not formed according to the rules is either meaningless or false.

A generating system, in this sense, may have a very simple kit of parts, and very simple rules. Thus the system of triangles which may be put together to form a square, is a generating system. Its rules generate all the ways of putting these triangles together to form a square. It is typical of a system that the rules rule out many combinations of the parts. Thus these triangles could be put together in an infinite variety of ways—but most of these ways are ruled out, because the outside perimeter is not a square, and this thing is not connected.

Another example of a generating system, is the system of language. Here we have rules at several different levels. At one level, the letters are the parts, and there are rules which govern the way that letters may be put together to form words. In English there could be no word beginning with Rx. The rules of phonology prohibit it. At another level, the words are themselves parts, and there are rules which govern the kinds of sentences which may be made from words.

Perhaps the most interesting and important generating system in the world, is the genetic system. Every animal in the animal kingdom is generated by a set of chromosomes specific to that animal. Each chromosome in turn is generated by four bases (like a necklace which uses only four kinds of bead). The four bases form a kit of parts which generates the chromosome. These chromosomes themselves provide the rules for building amino acids (another kit of parts), proteins from amino acids (another kit of parts), cells from proteins (another kit of parts) and then builds the animal from cells. The kit of parts
formed by the four bases, and their rules of combination, indirectly generates every animal there is.

A building system is a generating system in this sense. It provides a kit of parts—columns, beams, panels, windows, doors—which must be put together according to certain rules.

4. Almost every "system as a whole" is generated by a generating system. If we wish to make things which function as "wholes" we shall have to invent generating systems to create them.

There is a relationship between the two ideas of system which have been defined. Almost every object with behaviour that depends on some "system as a whole" within the object, is itself created by a generating system.

Take an obvious and simple case: a hi-fi system. Its purity of performance can only be understood as a product of the combined effect of all the various components, working as a whole. The same hi-fi system is also generated by a generating system: the kit of all the parts on the market, and the rules governing the electrical connections and impedance matching between these parts.

To take a more complicated case: the railroad switchyard. It plainly functions as a whole. In order to understand it as a device for breaking up and making trains, we must focus on the sequence of switches, and on the fact that the length of track in front of the switches depends on the length of track behind...
THESE ARE KITS OF PARTS

(WHICH MAKE↓)

THIS KIT OF PARTS

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(WHICH MAKES↓)

THIS KIT OF PARTS

(WHICH MAKES SENTENCES)
the switches and on the length of trains. At the same
time, the switchyard is also plainly generated by a
generating system. The pieces of track, switches,
couplings, cars, together with the rules for putting
them together, form a kit of parts which generates
properly functioning switchyards.

The most complicated case of all, and the clearest,
is that of an animal. A landing seagull certainly
needs to be seen as a system: so does almost every-
thing else that seagulls do. At the same time, this
seagull is created by a generating system: the genetic
system. An animal is both something which needs to
be seen holistically, and generated by a generating
system.

The relationship between holistic systems and
generating systems is easy to understand. If an object
has some holistic property caused by interaction among
parts—then it is clear that these particular parts and
these particular interactions, will only come into being
if the parts have very constrained relationships to one
another. The object then, must be generated by some
process which assembles parts according to certain
constraints, chosen to ensure the proper interaction of
these parts, when the system operates. This is exactly
what a generating system is.

The generating system need not be conscious
(as in the case of the switchyard), nor even always
explicit (as in the genetic case). Sometimes the proc-
esses which make up the generating system are inte-
gral with the object being formed—thus the candle
flame is generated by chemical processes which are
the same as those processes which then maintain the
system's equilibrium and make up the interacting
parts, when we view the flame as a holistic system.

It is true then, that almost every "system as a
whole" is generated by a generating system. This
axiom contains a remarkable lesson for designers.
Man as a designer is concerned with the design and
construction of objects which function as wholes.
Most of the important properties a city needs to sup-
port life, for instance, are holistic properties.

Our axiom means this: To ensure the holistic
system properties of buildings and cities, we must
invent generating systems, whose parts and rules will
create the necessary holistic system properties of their
own accord.

This is a radical step in the conception of design.
Most designers today think of themselves as the
designers of objects. If we follow the argument pre-

tended here, we reach a very different conclusion. To
make objects with complex holistic properties, it is
necessary to invent generating system which will gen-
erate objects with the required holistic properties.
The designer becomes a designer of generating sys-
tems—each capable of generating many objects—rather
than a designer of individual objects.

A final word of caution. As we have already
seen, a building system is an example of a generating
system. It is a kit of parts with rules of combination.
But not every generating system necessarily creates
objects with valuable holistic properties. The gen-
erating system which makes squares out of triangles
is an example. It is a perfectly good generating sys-
tem; yet the objects it produces do nothing: they have
no holistic system properties whatever. In the same
sense, those building systems which have so far been
conceived, make buildings, but they do not make
buildings with any really important holistic system
properties. In a properly functioning building, the
building and the people in it, together form a whole:
a social, human whole. The building systems which
have so far been created do not in this sense generate
wholes at all. While it is inherent in the generating
system of an animal that the finished animal will work
as a whole, it is not inherent in any of today's building
systems that the buildings they produce will work
as social or human wholes. Creating building systems
in the present sense is not enough. We need a new,
more subtle kind of building system, which doesn't
merely generate buildings, but generates buildings
guaranteed to function as holistic systems in the social,
human sense.
PURRINGTON RESIDENCE
Raleigh, North Carolina

Owner:
A. L. Purrington, III
Raleigh, North Carolina

Architect:
Edwin F. Harris, Jr.
Raleigh, North Carolina

General Contractor:
Davidson and Jones
Raleigh, North Carolina

Photographer:
Donald Whitesell
Raleigh, North Carolina
Based on their experience with the Cost Study, with the National AIA, with State Societies and Chapters and with individual architectural firms, Dr. Marsh and Mr. Werolin have developed a concept and methodology of accomplishing profit objectives in the practice of architecture.

Topics discussed at the seminar included:
- The challenge faced by today’s private architect.
- The architect’s need for actively planning a profitable practice.
- The nature and behavior of costs.
- The mechanics and interrelationships of planning and controlling costs and profits.
- An illustrative example demonstrating the practicability of applying profit planning in the management of an architectural office.

In 1966 and 1967 a comprehensive study of the costs of architectural services was conducted for the AIA by Case and Company under the direction of Dr. Marsh and Mr. Werolin. Data and information was collected from 223 firms in 47 states, and included 1,150 projects. A full report of this study has been published by The American Institute of Architects, titled “The Economics of Architectural Practice”, and may be purchased from The Institute.
SCULPTURE SHOW
Architects are invited to preview a show: "Southeastern Sculpture Today—Inside and Out" at the Gallery of Contemporary Art in Winston-Salem, N. C. The preview will be on April 21, from 3-5 P.M. at 500 South Main Street.

Exhibiting will be 25 of the top sculptors from North Carolina, South Carolina, Tennessee, Virginia and Georgia. All works will be for sale. The show will run April 21 through May 25.

CCPDCA ELECTS OFFICERS
Sam Hayworth of Rocky Mount, N. C. was elected President of the two-state CAROLINAS COUNCIL, of the Painting and Decorating Contractors of America at the Annual Meeting held in Durham, N. C. during February. Elected to serve as Vice-Presidents are: B. J. Herring, Winston-Salem and Lonnie C. Ferguson, Charleston, S. C. Ned H. May of Durham was re-elected Secretary-Treasurer. At the annual banquet, B. J. Herring, Winston-Salem, received the "Man of the Year" Award for his outstanding leadership and service to his local Piedmont Chapter and to the Council. A. B. Whitley, Jr. of Greenville was presented the Past President's plaque by Ned H. May, Chairman of the Awards Committee.

IN MEMORIAM
William Lewis Crouse, 40, an architect, died January 12 at Haven Nursing Home in Lexington after a long illness. A native of Winston-Salem, he was a graduate of N. C. State University, School of Design, in 1955. Survivors include his wife and three daughters; his mother, seven sisters and three brothers.
SOLITE DESIGN PRIZES GO TO 4 NCSU STUDENTS

Four students at N. C. State University were judged to be equal winners of the design Prizes in Architecture for 1967, offered annually by the Carolina Solite Corp., Charlotte, N. C.

Winners are Paul K. Thames, Raleigh; William J. Patrick, Shawboro; James H. Ross, Ayden and Stephan L. Setzer, High Point. Winners were announced by Henry L. Kamphofner, Dean of the university's School of Design. Each of the men will share in the $500 prize given annually by the sponsoring Solite Corp.

AISC ANNOUNCES 1968 ARCHITECTURAL AWARDS PROGRAM

The American Institute of Steel Construction has announced the opening of its 1968 Architectural Awards of Excellence Program. The competition is to encourage the creative use of structural steel. It is open to all registered architects practicing professionally in the United States. Entries should be completed after January 1, 1967 and prior to June 1, 1968. Entries must be submitted prior to June 1, 1968. Details of the program and entry information can be obtained from AISC, 101 Park Avenue, New York, N. Y. 10017.

INCIDENTALLY...

Allred & Mercer, Architects of Thomasville, N. C. formed a new architectural firm. . . Arthur R. Cogswell, AIA and Werner Hausler, AIA, announce the formation of a partnership — Cogswell/Hausler Associates, Architects, University Square, Chapel Hill, N. C. . . . John S. MacRae III, formerly with Woodroof and MacRae, Architects, has opened his own office for the practice of architecture at 1803 Pembroke Road, Greensboro, N. C.

NCAP NAMES NEW OFFICERS

W. J. Smith, R. Ph., and Executive Director of the North Carolina Pharmaceutical Assoc., Chapel Hill, was elected President of the North Carolina Association of Professions at its annual meeting held in Durham on March 20th.

Elected to serve with Mr. Smith were: George F. Kirkland, DDS, Durham, First Vice-President; Robert L. Clemmer, FAIA, Hickory, as Second Vice-President; Edward G. Batte, DVM, of Raleigh, as Secretary; and George G. Gilbert, MD, of Asheville, as Treasurer; Mrs. Annette S. Boutwell serves as Executive Secretary for the member Association. Robert G. Carson, P.E., of Raleigh was elected a member of the Executive Committee and Robert G. Bourne, P.E., out-going President, will serve as ex-officio member of the Executive Committee.

New and re-appointed members of the thirty-six member Board of Directors were announced by the Secretary at the meeting of the Board of Directors.

Past-Presidents were recognized at the Luncheon Session and presented wall plaques and diamond emblem pins by President-Elect W. J. Smith. Honored were: Thomas C. Cooke, P.E. of Durham; John R. Kernodle, MD of Burlington; Earl L. Knox, DVM of Raleigh; William W. Dodge III, AIA of Raleigh and Robert G. Bourne, P.E. of Raleigh.
N. C. DESIGN FIRM OPENS CARIBBEAN OFFICE

Wm. F. Freeman, President of Wm. F. Freeman Associates, an architectural, engineering, planning and surveying firm, located in High Point announced the opening of a new office in St. Thomas, U. S. Virgin Islands, to handle the firm's environmental design practice in the Virgin Islands as well as the entire Caribbean area.

The new office is known as Freeman Associates Caribbean and is located at International Plaza on the waterfront of St. Thomas' internationally famous harbor. It is affiliated with Antilles Land Development, Inc., the largest real estate and land development firm in the Virgin Islands.

When asked why St. Thomas was chosen as the base of operations, Mr. Freeman pointed out its central location within the chain of Caribbean Islands whose economic development throughout the entire Caribbean area is accelerating and resulting in need for professional environmental design services to guide this development. Plus the fact that the Virgin Islands are U. S. possessions and offer a favorable business environment similar to that on the U. S. mainland. "This was a major consideration in determining the precise location of the new office."

New design projects are already underway on St. Thomas, including several residential land development projects and a new apartment complex. Several other major projects are being studied. Also because Wm. F. Freeman Assoc. has extensive design experience with government and military projects, it was felt that the new office could provide a valuable professional service to U. S. Military and space activities which continue to ex-
spread throughout the Caribbean as a result of the area's strategic location to the U. S. mainland.

Mr. C. Edmond Powell, a Professional Engineer and head of the Construction Department will be in charge of coordinating activities of the new office. Additional specialists will be assigned there as required to manage all new projects.

CALENDAR
April 19: Profit Planning Seminar for Architects, YMCA, Hillsborough Street, Raleigh.
April 22-23: National AIA Board of Directors Meeting, Grove Park Inn, Asheville.
May 2: Raleigh Council of Architects, YMCA, Hillsborough Street, 12:15 P.M., George M. Smart, AIA, President.
May 7: Durham Council of Architects, Jack Tar Hotel, 12:30 P.M., Wm. B. Keener, AIA, President.
May 8: Charlotte Section, N. C. Chapter, AIA, Charlottetown Mall Community Hall, 12:30 P.M., Roy F. Kendrick, AIA, President.
May 16: Greensboro Registered Architects, Cellar Antoine's, 12:30 P.M., R. E. L. Peterson, AIA, President.
Aug. 1, 2 & 3: N. C. Chapter AIA Summer Meeting, Grove Park Inn, Asheville.
Oct. 9-13: South Atlantic Regional AIA Convention, Atlanta, Georgia.

INDEX TO ADVERTISERS
Acoustics Inc. 22
Andco Industries Corp. 20
Borden Brick & Tile Co. 2
Brick & Tile Service, Inc. 23
W. A. Brown & Son 4
Ferree Studios 4
The Flintkote Co. 5
Giant Portland Cement Co. 20
H. R. Johnson Construction Co. ... 18
Mabie Bell Schokbeton Corp. 21
McDevitt & Street Co. 19
Ezra Meir & Associates 19
Renfrow Distributing Co. 22
Watson Engineers, Inc. 19
J. D. Wilkins Co. 19
Zonolite Co. 19

RENFROW DISTRIBUTORS ...
Ceramic Tile Specialists

Complete line of SUNTILE products
Suntile • Ceratile Marble • Spivak Ceratile Designs
Horizon Tile Colors • Etruscan Tile • Sun Spray
Design Service • Adhesives & Grouting Compounds

RENFROW DISTRIBUTING COMPANY
1822 Sunnydale Ave., Charlotte, N. C. Phone ED 4-6811

IT PAYS TO ADVERTISE IN N. C. ARCHITECT

ACOUSTICS INCORPORATED
Acoustical & Roof Deck Contractors
Movable Partitions – Fireproofing
Other Building Specialties

3224 Pelton Street
Charlotte 3, N. C.
Phone 523-4316
North Carolina National Bank
Coliseum Branch
Winston-Salem, N.C.

Architect:
Fred W. Butner, Jr. Associates

Structural Engineer:
Sutton & Kennerly

General Contractor:
Massey Construction Co.

Ageless Architecture through Brick Beauty