working late?

There's one specification detail that need never again occupy your creative hours — the heating plant. It's this simple: Oil Heat has proven itself in the New England climate. It's a healthful, even heat. Can be backed by automatic weather-keyed delivery, and 24-hour total-system emergency service. Dependable, too... private fuel supply right on the property, not subject to the vagaries of weather or community demand.

No other fuel can match Oil Heat's enviable safety record.

And there's an economy factor that the new owner will appreciate year after year. His heating dollar buys 24% more heating units with Oil than with any other fuel!

9 out of 10 New England homes have Oil Heat. Please keep in mind that it's an equally advantageous choice for public buildings and industrial facilities.

BETTER HOME HEAT COUNCIL OF N.H., INC.

Affiliated with National Oil Fuel Institute
and New England Fuel Institute
STRONGEST FIBRE PIPE on the market!

SONOCO DUROPIPE
BITUMINIZED FIBRE PIPE

complies with GS-226-59

159 Temple Street
Nashua, N. H.
Tel. 882-9729

266 Clay St.
Manchester, N. H.
Tel. 627-3805
NEW WOOD HANDRAILS with an aluminum core substructure are furnished as a complete unit by Blumcraft. The solid walnut wood, with a natural hand-rubbed oil finish, is bonded to the aluminum at Blumcraft's factory. This new railing concept combining wood and metal is trademarked RAILWOOD®.

Complete 1964 catalogue available from Blumcraft of Pittsburgh, 460 Melwood St., Pittsburgh 13, Pa.
Table of Contents

Notes and Comment ... 4
Exhibits in New Hampshire 7
Unitarian Church .. 8
Vacation House .. 15
High School Addition ... 18
Artistry in Metal ... 22
College Dormitories ... 24
Needle Factory .. 28
Chapter News ... 45

Front Cover: Unitarian Church, Concord, N.H.

Granite State Architect is published bi-monthly under the direction of the president and board of directors of the New Hampshire Chapter American Institute of Architects and is the official publication of that chapter. Advertising rates furnished upon request.

FIFTY CENTS A COPY THIRTEEN DOLLARS A YEAR
Notes And Comment

THIS month we have included work by an out-of-state architect. From time to time we anticipate including other such projects if, in our belief, they are of sufficient general interest or of sufficient merit, or if they offer, through their influence on the public, a challenge to those of us at work in New Hampshire.

Hugh Stubbins is an architect of international repute. The Unitarian Church in Concord, his design, won an AIA Award of Merit. These two factors alone proclaim the building of sufficient interest that we should consider it an important part of New Hampshire's architectural atmosphere.

It is precisely because the architect is so renowned, because the building is so successful in so many of its aspects, that we are interested in examining what seems to us to be its imperfections.

Perhaps it is prudent, and certainly it is true, to say at the outset that, in general, we like it; that, specifically, we can find many areas which are outstanding in their beauty, their functionality, their spiritual atmosphere. But also, specifically, there are areas which seem to us seriously flawed, or more seriously flawed than one would expect from an architect of Stubbins' stature.

Compositonally the building has two dominating elements, the spire and the sanctuary. The one serves to signify that the building is, indeed, a church, and a New England church at that. The other is the chief place of worship, an area of deep importance both to the building itself and to the congregation.

Plan of sanctuary.

Which one should be the more important? The sanctuary, we believe. Yet the spire is overpowering. And its function is moot. Do we here in New Hampshire need to be told that our heritage is New England? Or do we need to proclaim to passers-by that although the building may be
contemporary, the traditions are still maintained within it? It seems that if we know it, that should be enough, without making an overt gesture of acknowledgement either to ourselves or to the public.

And, too, the question may be asked whether this spire is really a tie to the New Hampshire countryside or a harsh element disrupting it. The church itself sits very comfortably on its wooded hillside site, fitting brick and stone and wood into the natural setting. The spire alone protrudes. And to what purpose?

But this is theory, a question of symbolism, which is most often subjective. To us the building itself is attractive; the spire, standing top-heavy on four grossly mechanical legs, is not.

Nor do we find it necessary symbolically. It says "church" where "church" has already been said.

The center of worship is the sanctuary. Without the spire, its height, more than twice that of the rest of the building, would lend it dominance. Its high brick walls and multi-peaked roof serve to pull attention to it, or would, without the spire.

Within, the sanctuary is a quiet room. What the architect attempted, what the congregation demanded, are achieved. So perhaps it is unfair to raise what seems at once a highly technical and a fundamental question.

Again the question is that of dominance. Given two important elements, which should the architect project to the front? In this case, the architect states that the octagonal shape of the sanctuary is expressive of unity, surely significant for a Unitarian church. He states further that the octagonal shape focuses attention, interest, to the center of the sanctuary. But what is at the center of the sanctuary? Nothing; an empty aisle.

In this center-focusing room, in this church of individualism and democracy, the pulpit has been placed in its traditional position. Surely this creates a tension of subtly warring architectural pulls, to the spatial center and to the arbitrarily designated front.

Despite this almost subliminal concern (Continued on page 43)
In the preliminary design of multistory concrete buildings it is helpful if column size can be quickly approximated for a specific column spacing.

This can be accomplished by use of the formula and the chart shown below. Both are based on the Working Stress Design method (ACI 318-63). In structures such as 575 Technology Square, where wind load is resisted by shear walls, only the axial load of columns need be considered.

Now coming into wider use is another design method the architect may want to consider. Known as Ultimate Strength Design, it assures the most efficient column size. This approach is not only more consistent with structural behavior, but provides a more uniform factor of safety throughout the building.

For more details, write for free literature. (U.S. and Canada only.)

PORTLAND CEMENT ASSOCIATION
20 Providence St., Boston, Mass. 02116
An organization to improve and extend the uses of concrete
Exhibits In New Hampshire

THE CURRIER GALLERY OF ART, Manchester, New Hampshire. Opens June 24: Decorative Arts from 1650 to 1825, cabinet making, silver, glass, ceramics, textiles, etc.

PAUL ARTS CENTER, University of New Hampshire, Durham. May 22 - August 30: Student Photography.

June 12 - July 5: Ogunquit Art Association Exhibit.
July 12 - August 30: Student Art.
July 10 - Sept. 25: The University Builds. Exhibit of models of new campus builders.

July 20 - Aug. 7: 97th Annual Traveling Exhibition of The American Watercolor Society.

Summer hours: 9-12. Closed Sundays.

Asian Art: Gifts and Loans from the Collection of Mr. and Mrs. William B. Jaffe (June).
Antoine Bourdelle: sculpture (June).
Early American Silver from the Collection of Frank L. Harrington (June).
English Brass Rubbings from the Collection of William B. Jones (June).
Herbert West: watercolors (June) (Carpenter Galleries).
Antonio Frasconi: prints (July)
Contemporary German Prints (July)
Abstract Expressionism: Gifts and Loans (July)
Illinois Faculty Exhibition (July).

JOHN J. REILLY, INC.
Manchester, N. H.
ELECTRICAL CONTRACTORS

for the

DORMITORIES — MOUNT ST. MARY'S COLLEGE
HOOKSETT, NEW HAMPSHIRE

GRADE - AID STEEL CLASSROOM CABINETS
SPECIFIED AND INSTALLED, IN OVER FIFTY NEW HAMPSHIRE SCHOOLS including:

Thayer High School, Winchester
St. Mary's School, Franklin
New Elementary School, Pembroke
St. Christopher's School, Nashua
Bow Elementary School, Bow
Memorial Junior High, Laconia
Green Acres Elementary, Manchester

GRADE - AID CORPORATION, NASHUA
Phone 603 882-5142

SPECIALIZING IN COMMERCIAL BUILDINGS

GORDON T. BURKE, INC.
General Contractor
NORTH CONWAY, N.H.
Unitarian Church
Concord, New Hampshire
Architect — Hugh Stubbins and Associates, Inc., Boston
Contractor — A. Taylor Corporation

Photographs by Maris ©Ezra Stoller Assoc’s.
except where otherwise indicated.

The well-written words of the committees concerned with building the Unitarian Church in Concord are uniquely evocative of the church they envisaged, the church they now attend:

"We feel strongly that we want a church that is appropriate to our times and truly beautiful. We want one that is sympathetic to our form of Unitarian worship and to our educational and social activities. We want a church, furthermore, that is compatible with our New Hampshire landscape and in particular with the beautiful site we have.

"The sanctuary should create a spiritual feeling. There should be an expression of freedom, both freedom in relation to belief, and freedom within the democratic congregation.

"There should be an impression of simplicity and of light.

"Somehow the search for truth should be felt, perhaps in simple unconcealed building construction methods and honest direct use of materials.

"There should be a feeling of warmth and stillness and aspiration.

"Although we feel that most traditional symbols should not be used in a Unitarian church, we did not wish to have just a traditional church with the essence removed, but to have a positive creation which expressed our faith. We want to build a lasting building and avoid definite symbols. This is not meant to limit the architect in his use of materials or decoration. Perhaps other means than permanent symbols could be used to gain warmth and spiritual quality."

The architect, Hugh Stubbins of Hugh Stubbins and Associates, Inc., of Cambridge, Massachusetts, translated the above words into structural reality using traditional New England materials and traditional New England idioms, in a contemporary man-

(Text continued on page 35)
Sanctuary and spire dominate U-shaped building; main entrance is at right, at rear of courtyard.
Between the sanctuary and the chapel runs a concrete walk which parallels the enclosed ramp from sanctuary to lobby.

Model shows relation of elements. Note peaked roof, skylights.

Walt St. Clair
At left, door to body of church; at right, door to narthex; wood screen hides organ loft.

Sanctuary is light-flooded, airy. Vertical windows may be open for air, or shuttered.

One of pair of access stairs to balcony. Wood screens form design, are white like shutters.
White laminated wood arches support the white folded roof, topping eight windows.
Acoustic ceiling controls noise in informal lounge. Southern light enters from skylights. Lobby is at left.

Walt St. Clair

Typical classroom. Note small-scale furniture, built-ins, light fixtures on beams, peaked ceilings.

Walt St. Clair

Small hexagonal chapel has white tongue in groove ceiling, wall. Note glass inserts, clerestory above.

Walt St. Clair
disturb the natural landscape as little as possible, fitting the home in between the trees...

Vacation House
Freedom, New Hampshire

Owners—Mr. and Mrs. Arthur A. Kidder, Jr.
Architect—Frank Kennett, Jr.
Contractor—Frederick C. Hartwell

Photographs by Gerda Peterich
Honey-colored natural woods, deep red brick, much glass.
Sliding glass doors on two sides let the room become something of a porch.

Open plan makes kitchen part of adjacent living area.

Vacation house or year-round residence? The line between them is exceedingly fine and ever more indistinct. Perhaps this is all to the good. For the comforts required for year-round living add stability to a vacation cottage, and the casual atmosphere of vacation living adds an informality to what might otherwise be a less warm house.

This house in Freedom suits both purposes. It is a vacation home with a potential for good living the year-round. Designed by Architect Frank Kennett, Jr., of North Conway, the house is for Mr. and Mrs. Arthur A. Kidder, Jr. and their three teenage daughters of Barrington, R. I.

The house is located on a very large piece of land which had been owned by the Kidder family for some years. At the upper end of a lake, the protected location provided complete privacy to the occupants. The site was well peppered with tall, handsome pines in an area where the forest floor was mossy and free from underbrush.

The architect planned to disturb the natural landscape as little as possible, fitting the house in between the trees, and cutting as few as possible.

The Kidders desired a small but comfortable house. Long accustomed to vacation living on small boats, they hoped to achieve an almost nautical compactness in their new vacation home. The bedrooms and kitchen were to be as small as seemed reasonable, with all extra space allotted to the living areas.

In addition, the owner wanted a full basement for the storage of boating and other sports equipment and for the installation of the water system and a warm air heating plant.

Because the heavy tree cover shadowed the site naturally, the architect wished to avoid cutting any additional light from the house by attaching the screened porch a vacation home seemed to demand. He states, "This led us to open large areas of sliding glass doors on two sides of the living-dining room, so that the room itself became something of a porch.

(Please turn to page 40)
Handsome screens at cafeteria entryway.

Photographs by Aubrey Janion

High School

Architect — Alfred T. Granger

Ground floor plan; grey area indicates new construction.
LIKE so many New Hampshire secondary schools, Stevens High School in Claremont had reached a point, in the late '50's, at which it was seriously over-crowded, badly in need of new shop space, expanded gymnasium space, enlargement of its cafeteria, and upgrading of other classroom areas. And, as at so many school sites, space available for expansion was limited.

At Stevens High School, the area on which the addition was to be built was restricted to the remainder of the high school site already owned by the city, an area bounded on two sides by streets and on a third by the property of an abutting landowner. The existing school was on the fourth side.

(Continued on page 42)
Fan-shaped desk arrangement in language lab takes advantage of room's telescopic shape.

First floor; grey area indicates new construction.

Gymnasium enlarged, locker rooms, offices added.
Large well-lighted art room also has telescopic shape.

Second floor; grey area indicates new construction.

Ceramic tile columns, ceramic-faced walls in new cafeteria.
George Salo is a craftsman. It is his pleasure and his business to design a unique metal accent for a home or public building, as commissioned by an architect.

Mr. Salo, who now lives in Sutton, New Hampshire, was trained in the arts of drawing, painting, and illustration at the Chicago Art Institute. He has, in his time, turned his hand to a wide range of artistic endeavors, including such diverse fields as silk screen printing, furniture decoration, and mural painting.
In 1948, when Mr. Salo’s attention was first drawn to New Hampshire, he had completed extensive training at the Napier Silver Company in Meriden, Connecticut, including the techniques of production soldering, assembly, simple tool making, sample making, sample construction from design, and final designing. While working for the Napier Company, Salo was active with the Meriden Arts and Crafts group, who entertained as their guest speaker the late David Campbell, then Director of the New Hampshire League of Arts and Crafts. Salo was so impressed by Campbell, and with the scope of the organization he represented, that he decided to move to this state.

He became an assistant to Campbell and also taught classes for the League. He designed a small line of jewelry and, through his wife’s efforts in New York City, received an initial order from Georg Jensen. As Salo’s work became well known throughout the state, he began to receive a (Continued on page 33)
Administration wing entrance; dormitory wing and connecting corridor at left.

Balconies are functional, decorative.
Concrete screen provides attractive pattern at entrance.

College Dormitories

Mount St. Mary College
Hooksett, New Hampshire

Architect — Leo P. Provost
Contractor — Davison Construction Co.
(1st phase)
Bond Brothers (2nd phase)

The new dormitories at Mount St. Mary's College in Hooksett are part of an overall building program with which the college plans to meet the growing educational demands of the 1960's. Despite the distinctly Victorian style of the building which dominates Mount St. Mary's hillside site, it was decided that future construction would be in the contemporary manner.

The dormitories, built in two phases, are so constructed by Architect Leo Provost of Manchester that, except from the highway, the onlooker never confronts the two conflicting schools of architecture at once. Within the arms of the building, near its front entrance, any angle of vision meets only the new structure. In the area between the two buildings, one faces either the older building on the crest of the hill or the newer building, half way down.

The first phase, finished in December of 1961, included the central building (housing administration offices, main entrance, and common rooms) and one dormitory wing. The project was undertaken with the thought in mind that expansion of the facilities would follow in the very near future. As a matter of fact, the second phase was completed in July of 1963, only 18 months later. This involved the addition of two more dormitory wings in areas on the site already designated for them.

The first phase was constructed with private financing; the second was financed by the Federal Housing and Home Finance Agency. In order to approach the cost requirements of that agency, an approximate maximum of $4,000 per student, some changes were made from the original plans: ground floor or basement area was used for students' rooms; a general laundry area in the basement serves the entire dormitory instead of laundries on each floor; toilet and shower facilities were decreased.

Two other functional changes were made: the students' lounge on each floor is a separate room in the newer wings, a widening of the corridor in

(Continued on page 38)
Balconies overlook superb hillside view.

Quiet lounge is separated from lobby by room divider, bookcases.

Administration wing connects with three dorm wings.
High-ceilinged recreation room has translucent panels, brick walls.

Typical dorm plan; others are similar, not identical.
Raised location allows basement entrance at parking lot level.

Aluminum, glass and enamel facade.

Needle Factory
Laconia, New Hampshire

Architect — Henry W. Erickson
Contractor — Winston P. Titus

Laconia Needle Company in foreground.
The first building constructed in O'Shea Industrial Park in Laconia, one mile from the city's downtown area, was designed by Architect Henry W. Erickson for the Laconia Needle Manufacturing Company, makers of high carbon steel needles for knitting machines.

The former location of the company was an old multi-story building, where much of the factory space was too dark for pleasant working conditions, and the office space was too exposed, filling it with too much light and heat. The owner of the firm anticipated increased production and the need for an expanded working area; management desired better working conditions for the staff of skilled workers.

Architect Erickson was supplied with an indication of floor space requirements for anticipated production, and a preliminary machinery layout. With Mr. Erickson, the plant's managers visited several sites under consideration before a final selection was made. The site chosen was wooded, contoured, and served by two access roads provided by the industrial park.

There was also the bonus of a magnificent mountain view.

Working with the spatial and mechanical requirements of the client, Architect Erickson determined a preliminary plan and preliminary estimate of costs. “This approach to building is the only sound one; it makes sense,” comments Erickson. “We determine what we need in order to build the project properly; then we can determine if we can afford to build it as it should be built. Otherwise we should not build it at all.”

Location in the O'Shea development placed some restrictions on the architect. Perhaps most obvious was the fact that all sides of the structure facing the road had to show brick or stone, not exposed concrete block.

“Of course, I was aware that the firm was trying to escape the atmosphere of their old building. They (Continued on page 31)
Exposed steel beams in light, airy manufacturing area; note lack of dangling wires.

Sage-green enamel panels, topped by glass, form office partitions.
Needle Factory
(Continued from page 29)

felt, and I agreed, that a pleasant place to work helps employee relations, makes it easier for all to work well and happily," states Erickson. "We wanted the building to be light and airy; we wanted to avoid the dust-collecting spiderweb of pipes and wires which dangles from the ceiling of so many factories."

The specialized equipment used to manufacture needles presented additional requirements. Some machines were moved from area to area at various times; some required a steady flow of recirculating oils or chemicals.

To take care of the first problem, while avoiding overhead electrical wires, the architect specified 1" magnesium oxychloride flooring poured over the reinforced concrete floor. This off-white magnesium product offers complete flexibility in location of machinery, since it can be easily cut with a saw in order to remove or prepare a channel for the necessary heavy-duty electrical conduits. The material can be patched easily by pouring new magnesium oxychloride to match the existing flooring. Resilient and insulating, the specialized floor covering provides a comfortable base on which the workers may stand.

In European factories owned by the firm a similar flooring is used, but it is mixed on the site by men expert in their field. It was originally planned that a crew from Germany would come to Laconia to lay such flooring, but doubts were raised as to the availability of the specific ingredients in use in Germany. The magnesium oxychloride has proven an efficient substitute.

The machines which require oils or chemicals were all located near a specially devised "trench" in the floor, through which pipes flow to more machinery in the semi-basement. Oils and chemicals are pumped from basement storage to the machines which require them and then flow back to the basement where they are magnetically cleaned of metal particles, filtered, and prepared for re-use. This system enables bulk purchase of material and maximum re-use.

(Please turn page)
SPECIALISTS
IN MADE TO ORDER CASE WORK
AS EXEMPLIFIED IN THE DORMITORIES
MOUNT ST. MARY'S COLLEGE
HOOKSETT, NEW HAMPSHIRE

E. J. DAVIS & SONS, INC.
established 1890

ARCHITECTURAL WOODWORK
E. J. KREUZ, Pres.
H. E. WHITEHOUSE, Treas.
16 MILL STREET
ARLINGTON 74, MASS.
PHONE 648-0060

ALUMINUM CURTAIN WALLS,
WINDOWS AND ENTRANCES
for the dormitories at the
MOUNT ST. MARY'S COLLEGE - HOOKSETT
furnished and installed by
GEORGE J. KEHAS CO.
967 ELM STREET Tel. 622-6431 MANCHESTER, N.H.

Needle Factory
(Continued from page 31)

The 36,956-square-foot building has a structural steel frame with long span bar joists on load-bearing masonry (brick and cinder block) walls, and a row of bearing columns in the manufacturing area. The basement is poured concrete and concrete block. The front facade of the building is an aluminum, glass and porcelain enamel panel curtain wall, with stone accents at the corners.

The sage-green porcelain enamel pre-fabricated panels are used also in the office area, lending color to the interior and providing a continuity from outside to inside. The offices have light-finished maple panels and an acoustical ceiling with flush lighting fixtures. Office areas are divided by low porcelain enamel and glass partitions.

The executive offices occupy the eastern corner of the building, taking maximum advantage of the mountain view through broad windows.

The office area and adjacent storage and service areas have 8'-8" ceilings. In the manufacturing area the ceiling is raised to 14' clearance, to provide additional light and space, and sufficient height for some machines. The exposed steel beams are topped by a 3" insulating fiberboard, used because it provides both insulation and a structural deck on which roofing can be applied, and serves, as well, as an acoustical baffle. Light neutral paint shades are used throughout the manufacturing area to add to the lightness of atmosphere.

In the employees' entrance, ceramic tile flooring, specified for ease in cleaning, provides bright color accents, which are carried into the employees' cafeteria in blue paint on the wall and colored vinyl asbestos flooring.

Heat for the entire building is multi-zoned forced hot water, controlled outside temperatures.

Since fire control was an important factor in the construction of this building, fire-resistant or non-combustible materials were used as much as possible. The building is 100% sprinklered, with a completely fireproof boiler room. The product is non-inflammable, and manufacturing
procedures do not involve inflam­
ables such as lacquer. Good lo­
cation, with no near neighbors to
contribute an indirect fire threat, and
good housekeeping within the plant
add to the safety factor.

The site was chosen and the plant
designed with the possibility of ex­
ansion by as much as 200%. Re­
location of the tool room would allow
office expansion, and the site itself
would allow expansion of the park­
ing area.

The plant cost a total of $419,000,
including land, site preparation and
landscaping costs, and architectural
and engineering fees.

Artistry in Metal
(Continued from page 23)
steady stream of assignments and
special orders. He acquired such
commissions as the making of a silver
lunchbox and a gold ring for Sherman
Adams, then Governor of New Hamp­
shire.

His work first appeared in New
Hampshire in the displays of the New
Hampshire League of Arts and Crafts.
In 1950 he began to receive national
recognition. He was represented in
the New Hampshire Crafts Show at
the Currier Gallery of Art in Man­
chester, a display which was later
circulated throughout the United
States by the American Federation
of Art. His work won an award in
the first nationally organized crafts
exhibit, "Designer Craftsmen's Coun­
cil 1953," a show arranged by the
American Craftsmen's Council, the
Brooklyn Museum, and the Chicago
Art Institute.

In 1955 he received first prize at the
National Decorative Arts Exhibition
in Wichita, Kansas. In that same
year he received a commission to de­
sign and execute in silver an Academic
Collar for the Inauguration of Dr.
Eugene M. Austin to the Presidency
of Colby Junior College in New Lon­
don, the collar to be worn by all fu­
ture presidents on formal academic
occasions.

In recent years Salo has concen­
trated his efforts on architectural
work. Since almost all such commis­
sions are one-of-a-kind, each new
job requires new techniques and
skills.

(Please turn page)
Artistry in Metal
(Continued)

For Temple Beth Abraham in Nashua, he was asked to execute metal designs in aluminum. This metal was selected because it can be anodized to give it color, and it will not oxidize. He had never before worked with aluminum and was told by many craftsmen that the task before him was impossible but after reading all he could find about aluminum working and talking at length with metal workers who were familiar with aluminum’s qualities, he set to work. Within a month he had mastered the techniques of welding the metal and was ready to begin designing the necessary decorative elements.

Other commissions include the weather vane for the Concord Unitarian Church designed by Hugh Stubbins and Associates of Boston, and the Eternal Light for the small chapel of the Hebrew Community Center in Lowell, Massachusetts.

Salo made a brief excursion outside New Hampshire to become head designer for the Gorham Company in Providence, R.I., and to work with the ecclesiastical silversmiths at Swift and Fisher in North Attleboro, Massachusetts. Then, with another designer from the Gorham Company, he established a new company in Providence. The firm prospered, but Salo felt compelled to return to his New Hampshire work bench to fulfill the personal commissions waiting for him.

One of these jobs was “a challenge to step into the past,” an opportunity to help in restoring an old New England church, the New London Baptist Church. For this building, Salo designed distinctive lantern-styled exterior lights.

“I am a craftsman who enjoys solving problems, who relies on his own inventiveness,” states George Salo. “Although I have a very sketchy background in the field of traditional design and traditional work methods, I can bring my own creativity to bear on the commissions I receive. I am not concerned or restricted by what others do.

“I would rather innovate and create a school of thought, a method of approach, than follow one. I believe that Grandfather was once a young man, too.”

NEW! Insulated TRANSLUCENT KALWALL

- Has a U Value of .25
 (or to your exact specifications)
- Permits Light Control 28% to 20%
 (or to your exact specifications)
- Has sparkling new textured appearance

KALWALL

88 PINE STREET
MANCHESTER, N. H.
AC 603 627-3861

Building: Antenna Systems, Inc.
Manchester, N.H.

Architect: Koehler & Isaak
Manchester, N.H.

Contractor: Davison Construction Co.
Manchester, N.H.
Unitarian Church
(Continued from page 9)

er. He set the building into its con­
toured, wooded site so that it became
part of the New Hampshire hillside.
The building is almost U-shaped,
partly enclosing an attractive stone­
walled grassy courtyard between its
welcoming arms.

The white New England church
spire, topped by a beautiful George
Salo weathervane, dominates the
building, the only outward sign that
the building is, indeed, a church. Re­
petitive roof peaks, pushing out of
flat roof surfaces, are reminiscent of
old New England buildings. Red
waterstruck brick, white wood, dark
exposed wood beams, stone — all of
these bespeak New England.

The church is separated into four
sections, each used at different times
for differing purposes. The dominat­
ing area, the single most important
element, is the sanctuary, around
which the religious activity of the
church centers. Eight classrooms oc­
cupy most of the northern wall of
the main wing of the building; other
rooms in this wing are service and
Supply areas, office and administra­
tive space, a very pleasant informal
parlor, and a small chapel. The small­
er wing is occupied by an all-purpose
room, kitchen, and complementary
service areas.

Each of the four sections is inde­
dendent of the others in terms of
exterior access and use. They can be
and often are closed off from other
areas by use of doors in the long cor­
rider. Four independent direct fire
gas furnaces serve the individual
areas with warm or fresh air when
and as needed. There are no sight
or sound problems even when differ­
et areas of the church are used
simultaneously. Each has convenient
access without stairs; each has its own
service areas.

The sanctuary is more than twice
the height of the other parts of the
building — and it is octagonal. The
architect explains that this shape,
which approaches the circular, ex­
presses unity and tends to focus in­
terest toward the center of the room,
rather than away from it. The walls
are brick; the trim, white; the floor,
(Please turn page)
Unitarian Church (Continued)

parquet. Floor to ceiling windows at the eight corners provide glimpses of the trees and shrubs around the room; light is controlled by the pairs of shutters which flank each set of windows.

White laminated wood arches support the white folded roof which tops eight pentagonal window walls, introducing maximum light into the sanctuary at all times.

The choir and organ balcony, its twin access stairs, and the main entrance of the sanctuary occupy three of the room's eight sides. White wood screens partially conceal the stairs and loft.

On a slightly raised stage at the front of the sanctuary stands the pulpit. Furniture on the platform and the pews, which seat the congregation of 200, were designed by the architect and superbly executed by Alejandro de la Cruz of Canterbury, N. H. These extremely handsome wood pieces complement the church in simplicity of design, a contemporary handling of old New England motifs. In the hands of Mr. de la

FOR YOUR BUILDING

ORIGINAL SCULPTURE,
INTERIORS AND EXTERIORS

your inquiries invited

ELIZABETH WEISTROP, SCULPTOR
WHITEFIELD, NEW HAMPSHIRE
TEL. 837-2669

Photo, "Justice," For A Law Office
By Elizabeth Weistrop, Sc.
Cruz, an extremely skilled furniture craftsman, each became a work of art.

From this sanctuary there is an enclosed ramp leading to the main body of the church, at a slightly raised level. The ramp itself has, on one side, floor-to-ceiling windows looking out to the court. On the other side is the choir room.

At the top of the ramp is a small lobby, from which the classroom hallway extends, and the small chapel is reached.

Brick walls, broken with translucent vertical glass inserts, frame the chapel on two sides. The roof is flat, with tongue in groove planking, raised above that of the adjacent corridor, permitting the introduction of additional light through a clerestory. Flooring is parquet.

Along the north wall are bright classrooms, each separated from the hall area by partitions and clerestory windows which lend light to the darker corridor. The classrooms gain additional height from their peaked wood-deck ceiling and additional light from the skylights placed in the roof. The architect placed the skylights so that they introduce warm, southern light to the classrooms which have only northern exposure. Classrooms have dark exposed wood beams, on which are fastened the lighting fixtures. Exterior walls have broad window areas; interior walls are covered with vinyl fabric.

Each classroom has built-in storage closet, work counter and sink. Extending from the north wall are projections for additional closet space (lighted by clerestories) and individual toilets for the primary classrooms. One classroom, now in use as a Youth Room, can be divided by a flexible folding door.

The central parlor, a handsome informal room, looks out upon the front courtyard through window walls and upon the wooded lot through the windows in the north wall. The two interior walls are brick, used by the architect to bring the outside within the building. Peaked ceilings add extra height; dark beams provide rustic warmth. Traffic flows smoothly from the main entrance around to the lounge, following the architect's well-devised pattern.

The office is viewed from the bluestone-floored lobby through a wood lattice, providing a semblance of privacy and a maximum of supervision.

Two bluestone steps down from the lobby level is an all-purpose room with tile flooring and a peaked acoustical tile roof. This room too can be divided through use of a folding door. Windows look out on the entrance courtyard. Both the room itself, and its service areas, can be entered directly from the outside.

The church is wood-framed with wood posts. The roof is wood decking, tongue in groove, covered with acoustic tile only in areas of maximum noise. The architect comments that excessive use of acoustic tile deadens a room — that “sound should be allowed to bounce a little.”

Throughout the building, close attention has been paid to details, which are consistently fine, and support the architectural intent.

The church, completed in 1960, won the AIA Award of Merit. Total construction cost was $303,000.

Large building or small

Flameless ELECTRIC HEAT is best for them all!

You can’t beat electric heat. That’s why more and more New Hampshire architects are specifying this modern way of heating buildings for home, business and industry. Electric heat is quiet, efficient, safe, convenient and practically maintenance free. Check the PLUS advantages with us.
College Dormitories
(Continued from page 25)
the original wing; and, in the individual rooms, the built-in desks were separated one from the other by a dresser, while in the original wing the desks were together, a single unit.

"Functionally it's delightful," comments Sister Robert, Dean of Students at the college. "It is conducive to study. The social center in the central administration building is well away from the bedroom wings; no amount of noisy activity bothers anyone who is studying. And, for that matter, noise doesn't seem to penetrate from floor to floor, either."

Architect Provost states that this was the central concept behind the dormitory's construction: the wings to serve for sleeping and study, the central building for all social activity.

Each wing is served by its own entrance, placed in the brick-lined corridor which connects it to the central building. These corridors serve as "mud rooms," taking the brunt of bad weather wear.

The administration unit encompasses the main entrance, lobby, lounge area, offices, and recreation room with adjacent snack kitchen, and service and storage areas.

The main entrance, at the top of a flight of stairs, is protected by a concrete roof resting on two concrete screens and four columns. Color is introduced in blue and beige ceramic tile. The glass doors are set in aluminum window panels.

Within the lobby and lounge, which are separated only by a low bookcase and room divider, blue-gray is the dominating color, with rose and beige accents. Flooring is vinyl tile in beige tones. The ceiling is white acoustic tile with flush lighting fixtures. Walls are covered with vinyl fabric, which the architect selected for its maintenance-free life.

The room is separated from the large, high-ceilinged recreation room by a flexible folding door, allowing each to serve as a multi-purpose unit.

The floor and ceiling of the recreation room are identical to that of the lounge, but here the resemblance stops. The east wall is brick, as are the wall sections which separate the ceiling-high Kalwall panels. Use of
the translucent panels allows the room to gain maximum light but provides privacy for the students’ activities. Bright colored panes add gaiety to the room’s decor and complement the bright enamel accents in the window walls of the dormitory wings.

These steel enameled panels in blue-gray with accents of blue, yellow, light blue, brown and white brighten the facade of the building. In the center of each dormitory wing and at the corners, red brick lends an element of stability. The lounge areas are delineated in each case by balconies which serve functional and design purposes simultaneously. The white enameled aluminum railings are a sharp contrast to the brick. Roof eaves follow the outline of the balcony projection, helping to break up the long, horizontal line of the wings.

The students’ rooms are small and compact, with all furniture built-in. The two beds along one wall are divided by a built-in headboard; along the other wall are built-in desks, dressers and closets. Windows take maximum advantage of the very handsome view.

Corridor and bedroom walls are pastel, except in the basement hallways where bright yellow has been used to simulate sunlight. In the basement rooms, government requirements precluded the use of any covering for the cinder blocks, so paint is used in lieu of the vinyl covering.

Although no two dormitory floors are exactly alike, each one has a proctor’s suite, and approximately 14 students’ rooms, a lounge area, and toilet and shower rooms. It was planned originally that the completed building would house 150 students, but with changes suggested by the HHFA, it now has room for 190.

The contoured location provided some construction problems, for which a partial solution was found by allowing each unit to occupy its own level. Stairs form part of the connecting links between the administration unit and the wings. Exposed concrete foundations will be masked with shrubs in the near future.

The frame of the building is a combination of reinforced concrete and steel columns, with concrete slabs. Walls are non-bearing.
Vacation Home (Continued from page 17)
The house is thus open to the movement of fresh air and yet fully protected from bugs and bad weather. The broad window areas serve as well to make wide vistas of wooded land and quiet lake visible from almost anywhere within the living-dining room, creating the illusion of being outside, while fully enclosed.

The broad deck outside the sliding doors expands the living area in both summer and winter, since it is open to direct sun in both seasons, an advantage which the Kidders, active skiers, appreciate.

In order to keep the basement above the water table of the area, the floor level of both house and deck was constructed well above grade. This raised location also provides a good vantage point for a view down the length of the lake from the living room and deck.

The architect notes that when excavation was well underway, within 18" of the proposed bottom of the hole, the contractor notified him that the bottom of the hole had turned into a soupy mass and Mr. Coleman (in charge of site preparation) and his bulldozer were threatening to disappear from view. Mr. Kennett sent soil samples to a Boston laboratory where it was classified as fine inorganic silt. Consulting engineer James J. Reynolds devised a method for completing the excavation and placing a gravel mat upon which the foundation was built. Now, almost four years later, there has been no evidence of differential settlement.

Basement foundation is poured concrete. The rest of the house is of wood frame construction, well insulated.

Exposed Douglas fir beams and natural spruce roof deck were sanded and waxed. The slight difference in color presents a subtle indication of the home's structure.

"We could not obtain a sufficiently deep piece of sawn stock for the main beam of the house without undue expense," comments the architect. The contractor suggested that additional pieces be glue-laminated at top and bottom of the beam, providing at once the required depth and an interesting design element.
Walls and cabinet work in the living room and kitchen are of elm plywood. Architect Kennett and Mr. Kidder made a trip to the manufacturer's warehouse in Cambridge to select material of compatible color and grain, so that all exposed wood surfaces in the house would blend. Paneling and cabinet work were finished with two coats of natural stain wax, with what the architect says was an unusually painstaking effort on the part of the contractor, Frederick Hartwell.

The fir beams, the spruce roof deck, and the elm walls and cabinets provide a finished effect of yellow-brown, a warm honey color throughout the living-dining-kitchen area.

Contrasting with this is the deep red of the irregular-colored, irregular-textured brick at fireplace and hearth. The mantel is a single slab of mottled green and purple Vermont slate, with sawn edges and natural cleft faces.

Artificial light is provided by a hanging fixture in the dining area, and by fluorescent lights concealed behind the wood valance along two sides of the living-dining room.

The pitched ceiling provides additional height in this small home and "makes the spaces look bigger."

The small kitchen gains its feeling of spaciousness from the adjacent living-dining room from which it is separated only by waist-high cabinets and open shelves. This open plan allows those working in the kitchen to take full advantage of the lake view through the living room windows and to participate in family activities even during times of meal preparation.

Walls in bedrooms and bath are of painted gypsum board in neutral shades; windows are steel casements, the sliding glass doors are aluminum.

Concrete posts and wood beams support the prow-shaped deck. Treated with a weathering gray stain, the deck blends in with the wooded setting, as, indeed, does the home itself.

The natural setting will be undisturbed by any grassed or paved areas. A parking space near the kitchen is currently used. In the future a car shelter is planned where the gravel drive enters the clearing.
High School Addition
(Continued from page 19)

Architect Alfred Granger of Hanover planned to use every square foot of space available. "We built to the lot lines and the sidewalks, and there wasn't a right angle anywhere," he comments.

The original Stevens High School, built in 1915, had been enlarged by an addition in 1929. It is interesting to note that Mr. Granger, forty years ago, worked with the architect of that addition, Frank Irving Cooper.

The older buildings were brick with concrete trim, high-ceiled, wide-corridor, traditional schools with no distinct architectural style.

The brick-and-cast-stone trim of the 1962-63 three-story addition matches that of the old; the lines of the new building, although contemporary, blend with the old without making an abrasive contrast.

Requirements for the addition, as outlined by the Claremont Superintendent of Schools, then Mr. Newell Paire, and the interested committees of citizens, were complex: additional classrooms; enlarging the gymnasium and its seating capacity; a cafeteria to seat 300, with kitchen and storage areas; additional boys' and girls' locker rooms; a direct entrance from Middle Street to serve cafeteria and gymnasium; athletic director's office; storage areas; first aid and training room; woodworking, electrical, building construction, and industrial drafting shops; an art room; a language laboratory; conference and guidance rooms; a vice-principal's office; and girls' and boys' toilets.

The building was designed so that a fourth story could be added when necessary. "We have no place to build but up," comments high school principal Frederick W. Carr.

On the ground floor level of the addition, the existing gymnasium wall was removed and the court extended. A kitchen and cafeteria complex was added, with two entrances serving it, one of them a lobby designed to accommodate the public for the gymnasium as well, for basketball games and the like. On the north side of the site, new locker rooms, offices, and a new building-construction classroom were squeezed in between the existing building and the property line.

While the main body of the new addition is three stories tall, parts of the building have only one or two stories, permitting light to enter the existing building where needed.

The building-construction room has over it one additional story, housing the new industrial drafting room, and allowing light to enter the classrooms on the third floor of the existing building. The girls' locker room, adjacent storage area and first aid and training rooms are in a one-story section which permits light to enter the second floor level of the gymnasium.

The new addition is steel-framed with open truss joints. The non-bearing walls are brick and concrete block, exposed and painted in pastel colors in the corridors and classrooms. Locker-lined corridor walls have Glazon blocks to shoulder height. For flooring vinyl asbestos tile was used, beige in the hallways, colored to complement the walls in the classrooms. Ceilings are white acoustical tile, with flush lighting in the hallways.

Windows are Seeco aluminum with grey glass; "Mississippi burlap" glass is used in ground floor windows which front on the sidewalks.

Since the building walls were brought out to the lot lines, which were not perpendicular, the architect designed what he calls "telescopic rooms," with interior walls plotted to complement the exterior walls. The teacher's desk is placed at the end of the room which has the smallest dimension, with the students' desks fanning out from it. The slanted walls provide ample room for storage within the classroom-corridor wall.

Two over-sized telescopic class-rooms are used for a language laboratory and an art room. Mr. Granger is very proud of the art room. "It is perhaps the largest in the state, and very well-lighted," he states.

Included in the contract were complete renovations to the electrical and heating system of the school, to permit them to support the requirements of the new addition. Total cost of the project was $617,000.
Notes and Comments
(Continued from page 5)

lict, the sanctuary functions, if quiet is its function. It is a silent room, conducive to meditation, set apart from the main flow of traffic.

To connect the sanctuary to the main body of the building a glass-walled link has been constructed. Does it serve its purpose? We think not.

The solid wall, which divides the link in two, severs the relationship between the two glass walls, removing their esthetic dependence. The area which serves as a choir room could perhaps benefit more from the privacy afforded by an opaque wall. The area which serves as a ramp is part of a very congested section of an otherwise smooth-flowing plan.

Grouped here are an outside walk, the glass-walled ramp, a seven-doored lobby, and the small chapel. All are necessary elements, but all are very complex and rendered more so by their immediate juxtaposition.

The glass wall does not provide a vista, since it is blocked by the sanctuary entrance and the spire, and by the protruding walls of the chapel. Neither does the wall itself become part of a vista, since it is hidden in the alley between the chapel and the sanctuary. And it is more complex than a simple brick wall would have been, in its place.

The chapel itself is a peaceful room. Once within it, one is no longer aware of the congested lobby which leads to it, or the way in which its complex exterior wall surface adds to the confusion. So, it may be unfair to expect that the practical elements surrounding the successful esthetics be successful, too.

No doubt the lobby well serves its purpose; yet the visual impression it conveys is confused. Was there no way to expand the plan at this one point, to place the disparate elements in settings which suit them?

And beyond the question of esthetics which we have raised, there lie such mundane issues as leaking roofs and heating problems, matters.

(Please turn page)
Notes and Comments (Continued from page 43)

which may well bear no relation whatsoever to the architect, for responsibility had not yet been established. But, since we are aware that such problems exist, we mention them, for in the eyes of the lay public, architecture is as much a problem of "holding out the weather" as of fine design.

In the February, 1964, issue of PROGRESSIVE ARCHITECTURE, Editor Jan C. Rowan, AIA, comments, "... not all architecture must be judged solely by the way it performs ... Nobody seriously interested in the art of architecture damns them [great buildings] because they did not work perfectly as utilitarian structures. Some worked well and some did not; some were inexpensive to build, and some were not. What one admires in them and remembers about them is not circulation flows and squarefoot costs. What they achieved goes far beyond such considerations

"It is worth remembering, however, that few buildings reach such distinction . . . And only these exceptional buildings can shrug off some of the more pedestrian requirements. There is a vast difference between a leaky roof in a great building by a great master and a leaky roof in a building by a lesser architect. Noblesse oblige, they say. One could also say that, at times, noblesse excuse. But noblesse has to exist before any excuse can take place. There lies the glory and also the danger."

Of course, for the assessment of the public the beautiful design and the well-built structure are both important, no, indispensable.

The Unitarian Church is handsome, and might have been more so. But, as it stands, it is pleasant to look at; its members say it is pleasant to live with. Certainly it contributes to the New Hampshire countryside as do all such successful designs. We're pleased that it's here.
1964
NEW HAMPSHIRE CHAPTER
A.I.A.

OFFICERS
President: Arnold Perreton, Concord
Vice-President: John A. Carter, Nashua
Secretary: Arthur M. Doyle, Keene
Treasurer: Guy K. D. Wilson, Concord

DIRECTORS
John R. Holbrook, Keene
Shepard Vogelgesang, Whitefield
W. Brooke Fleck, Hanover

COMMITTEE CHAIRMEN
President:
Arnold Perreton, Concord
Vice-President:
John A. Carter, Nashua
Secretary:
Arthur M. Doyle, Keene
Treasurer:
Guy K. D. Wilson, Concord

Directors:
John R. Holbrook, Keene
Shepard Vogelgesang, Whitefield
W. Brooke Fleck, Hanover

Members of A.I.A - A.G.C.
Committee:
CH. Maurice E. Witmer, Portsmouth
Stephen P. Tracy, Nashua
Guy K. D. Wilson, Concord
Bliss Woodruff, Nashua
Joseph F. Lampron, Manchester
Nicholas Isaak, Manchester

Meeting Chairman:
Edward Miles, May 21, 1964
Wentworth-By-The-Sea
Unappointed, August 20,
North Country
Unappointed, November 19,
Concord

Past Presidents' Committee on Corporation and By-Laws:
Chairman, Andrew C. Isaak
Vice-Chairman, John R. Holbrook

Judiciary Committee:
Chairman, W. Brooke Fleck
Vice-Chairman, Maurice E. Witmer

Chapter Activities:
Norman P. Randlett
Chapter Affairs Chairman
Richard Koehler, Membership
John A. Carter, Education
Maurice E. Witmer, Office Practice

Leon E. Pearson, designer
Chosen to execute the planting of trees
and shrubs that grace the dormitories of the
Mount St. Mary's College in Hooksett, N.H.

N. H. LANDSCAPING, Inc.
6 Oak Hill Road
Hooksett, N.H. 623-4313

CAMPTON SAND AND GRAVEL, INC.
Washed, crushed sand & gravel
Driveway gravel
Loam Cold Patch Blocks
All materials meet state and federal specifications.
West Campton N. H.
Tel. 726-2871
THE scene above was typical of the life of the late John D. Betley. At his left is Governor John King. Much of John Betley's time was spent working with government officials and public servants.

Born in Manchester in 1913, John Betley worked his way to a Bachelor of Science degree in Architecture.

After he completed postgraduate courses in London and traveled and studied in Europe, he returned to practice his profession in his home town.

In John Betley's philosophy of architecture, flexibility was paramount. Responsive to a client's wishes, he was always willing to modify his designs to achieve reasonable alternatives. By following his favorite dictum, "Keep the basic design flexible," he was always able to achieve that which was most important to him: getting the building built. But at the same time he was always alert to the small, considerate details of design which would best serve the public.

Past president of the New Hampshire chapter of the A.I.A. and recipient of many other professional honors, Betley was most honored by his appointment to the State Board of Registration for Architects, an appointment which capped his career. In this office he began immediately to press for his longtime goal, true interstate reciprocity in licensing architects.

John Betley was a son of New Hampshire. He served the public as citizen, as philanthropist, and as architect. He will be sorely missed.
Chapter News
(Continued)

By Emil W. Allen, Jr.,
New Hampshire State Librarian

A building boom for libraries is headed for New Hampshire.

Federal money — for fiscal '65 it will be $199,023 — is earmarked for the Granite State, under the new Library Services and Construction Act (P.L. 88-269), signed by President Johnson on February 11, 1964. Action by Congress to release funds is expected momentarily as this is written.

The building program — covering both new and remodeled libraries — will be an important concomitant of the new Statewide Library Development System, approved by the 1963 New Hampshire Legislature.

Title II of the federal act provides for assistance in the construction of public library buildings in areas which lack facilities for proper development of library services.

The program includes an annual grant to New Hampshire of $132,683, though the higher figure mentioned above has been approved by the Bureau of the Budget for the first year.

There is, of course, a matching provision.

Money will come to the states in proportion to their population, to be matched by the states in proportion to their per capita income. In New Hampshire, the federal share of the fund will be 53.21%, with local matching to cover the remaining 46.79%.

The matching provision applies to the aggregate sum to be spent by each state; any given individual project may receive only a portion of the funds available. Decisions on allocation of funds rest with New Hampshire State Library Commission.

Money will come to the states in proportion to their population, to be matched by the states in proportion to their per capita income. In New Hampshire, the federal share of the fund will be 53.21%, with local matching to cover the remaining 46.79%.

The matching provision applies to the aggregate sum to be spent by each state; any given individual project may receive only a portion of the funds available. Decisions on allocation of funds rest with New Hampshire State Library Commission.

The official definition of construction includes erection of new libraries and the expansion, remodeling or alteration of present buildings. The money may cover initial equipment (including books) as well as architect's fees and the cost of land.

The State Library Commission, which will administer the building program, has already set up eligibility criteria. They include the following provisions:

1. The proposed program must be for a free public library receiving financial support in whole or in part from public sources.

2. The proposed location must be in a community geographically suitable for regional use.

3. The local library board must agree to participate in the Statewide Library Development program (Laws of N.H., 1963, Chapter 334).

4. There must be written evidence to show that the construction program has been presented to the municipality for at least tentative approval, and that funds for adequate staffing and maintenance will be available.

5. A written program outlining the community needs which will be met by the proposed construction must be submitted.

6. Library plans must meet generally accepted national standards for modern library service.

New Hampshire architects will be familiar with certain federal regulations which must also be met, such as those of the Davis-Bacon Act.

New Hampshire architects with problems relating to this program are invited to contact the State Library for assistance.

Sprague's #6 Fuel Oil for large installations with steady load requirements
Sprague's #4 Distillate Fuel Oil for Municipal and commercial installations with automatic controls and intermittent load requirements
Sprague's engineering help in comparing fuel costs

C. H. SPRAGUE & SON CO.
Portsmouth, New Hampshire
Gosling Road — P. O. Box 478
Code 603 - Tel.: 436-4120

47
ACOUSTICAL CEILINGS in
Broad Street Elementary School — Nashua
Green Acres Elementary School — Manchester
Addition to the Nashua Senior High — Nashua
University of New Hampshire Bookstore — Durham
Additions and Renovations, Stevens High — Claremont
Mount St. Mary's Dormitories, First Installation — Hooksett

FURNISHED AND INSTALLED BY
PITCHER & COMPANY, INC.
15 Church Street
Goffstown, N. H.

SUPPLIERS OF:
Movable Partitions
HUFCOR Folding Doors
POLRIZED Translucent Ceilings
BURGESS-MANNING Radiant-Heated & Cooled Ceilings

THE PAINTING AND DECORATING CONTRACTORS FOR —
THE NEW DORMITORIES
MOUNT ST. MARY'S COLLEGE
HOOKSETT, N.H.

COTE'S PAINTING SERVICE, Inc.
90 Hampshire Street
Lowell, Mass.
Phone 452-7871

Lockers and Shelving
For Stevens High School
Distributors for:
SKIL Saws
Roto-Hammers
Electric and Air TOOLS
Wire Partitions
Abrasive Blades

STEVENS & SON CO.
800 Main St.
North Swanzey, N.H.
Tel. 352-4100

Roofing and Sheet Metal Work on the Addition to
Stevens High School — Claremont

by
Brattleboro Roofing & Sheet Metal Co.
154 ELLIOT ST.
BRATTLEBORO, VT.

INERT GAS WELDING OF ALUMINUM
DUST COLLECTING SYSTEMS
CUSTOM & INDUSTRIAL VENTILATION
THE SPIDER IS THE MASTER ENGINEER
... using nature's strongest yet thinnest materials

HUMAN ENGINEERS DO BETTER
... through the use of today's modern structural steels — stronger, more compact, and adaptable to every type of construction.

STRENGTH — DURABILITY — VERSATILITY
"Steel When You Want It!"

LYONS IRON WORKS, INC.
62 MAPLE STREET
MANCHESTER, N. H.
Call DENSMORE For Fast Delivery of Clay Products

Suppliers of quality

BRICK, TILE

&

MASONRY SUPPLIES

for over half a century.

Densmore Brick Company

Hopkins Cultural & Social Center
Dartmouth College, Hanover, N. H.
Architects
Harrison & Abramovitz
New York, N. Y.
General Contractor
Malden, Mass.

Main Office & Plant Lebanon, N. H. Tel. 448-4360

Plant, Essex Junction, VT. Tel. 878-3341

MICRO-MASTER® — an amazing new process providing clear, distortion-free “second originals”. Tiny 4 x 6” negatives can be projected up to original size and more. Save storage space, mailing costs.

HERCULENE® Drafting Film — the newest, most durable drawing medium. Ideal surface “take” for pencil, ink, or typewriter. Balanced transparency. Lies flat. Resists rough handling. Matted one or both sides. In Rolls or Sheets. Find out today!

K & E INSTRUMENTS — select from our complete line... for every engineering and drafting use.

Choice of Engineers for OVER 60 YEARS

K+Σ QUALITY PRODUCTS and PRECISION INSTRUMENTS

• Expert Blueprint, Photostating and Plan Reproduction Service
• Engineering, Surveying and Drafting Equipment
• Professional Repair Service

B. L. MAKEPEACE Inc.
1266 Boylston St
Boston Mass

Call Copley 7-2700