AT THIS TIME OF THE YEAR
AS ON NO OTHER OCCASION
WE ARE PRIVILEGED TO GIVE
EXPRESSION TO OUR THOUGHTS
CONCERNING THOSE
WHOSE FRIENDSHIP
AND GOOD WILL
WE CHERISH.
MAY YOUR HOLIDAYS
BE JOYOUS AND THE
NEW YEAR PROSPEROUS.
are featured two remodeled structures. One is actually an historic house—or, at least, it is almost so. Built in 1937, it is one of New Mexico’s few good “International Style” houses. This is not to say that the architect is historic—at least not yet! William Burk, Jr., the architect, is alive, well, working and living in Albuquerque.

The second remodeled structure was young (built in 1966), but too small for present needs. The architect, Joseph Boehning, has added to his original building in such a way as to make one wonder if the original successful design was but the central nucleus about which the recent expansion was indeed expected to grow.

A TIME FOR A WELL EARNED THANK YOU

With the September/October issue of NMA a name slipped off the “Commission” list on this page. Robert G. Mallory, A.I.A., asked to be relieved of the burdening task of Advertising Director. Bob first became actively associated with the production of this magazine with the July/August 1968 issue. Miles Brittelle, Sr., asked Bob to assist him in the securing of advertising, which, we all know, and I perhaps most of all, is our life’s blood. (Without the support of the advertiser, we have no magazine!) When Miles died on January 7, 1970, Bob took upon himself the full task of Advertising Director.

For these many years Robert G. Mallory has served us well. Those of us who produce this magazine are grateful beyond our ability to adequately say so; the New Mexico Society of Architects is forever in his debt.

Thank you, Bob Mallory.
Another building, another boost for the Trus Joist system.

Baker Construction Co. of Albuquerque is no stranger to Trus Joist. When architect John Reed called on us to supply a system for the Geology/Engineering Bldg. for Ranchers Exploration and Development Corp. Les Baker was pleased. Upon completion of the Trus Joist installation he told us:

"...we found the use of TJI units as efficient and economical as ever. As one of the first users of Trus Joist units in this area, we have been, and will continue to be one of their boosters."

If you want to see how easy and economical joist application can be, see us soon. We've got exactly what you're looking for.

In Albuquerque, call
McGill Stephens, Inc.,
Suite LL6, Citizens Bank
Bldg., 2500 Louisiana Blvd., Suite 320, El Paso 79902,
N.E., Albuquerque 87110.
Phone 505/292-3366

In El Paso, call
McGill Stephens, Inc.,
4100 Rio Bravo St.,
Phone 915/544-4505

Stanley Structures is Our New Name

Stanley Structures is the new name for Prestressed Concrete Products, and structures are our business.

We are part of a network of companies which was the first in the United States to market precast/prestressed concrete products for building construction.

We introduced the "twin-tee" and erected the first prestressed concrete structure in the U.S.

We were one of the nation's first manufacturers of a family of component parts for all-precast apartment buildings.

After leading in the development of single story buildings in the '50s and '60s, we took a leadership position in the construction of multi-story structures in the 1970's.

In 1971 we expanded production facilities to include the most modern highway girder facilities in the U.S.

In recent years, our architectural precast concrete products have enabled customers to build structures which express excellence in design and construction.

Our customers are architects, contractors, developers, engineers, investors and owners. Our structures include bridges, apartments, offices, condominiums, schools, warehouses, industrial plants, and parking garages.

Since 1971 we have been a part of The Stanley Works, manufacturer of a world famous line of tools and building products. Our network of prestressed concrete plants is located throughout the West and Canada.

Stanley Structures is our new name. It tells you who we are and what we do.

Stanley Structures
1304 Menaul, N.E.
P.O. Box 3855
Albuquerque, New Mexico 87110
(505) 345-5671
You didn’t plan on an energy crisis, but now you’re planning your next building.

Which building material will you use? You’ve got energy shortages to think about. Air-conditioning costs. Heat gain through the long, hot summers. Heat loss in the winter months. Heating equipment costs. The whole set of energy-use factors suddenly has become critically important. The building material you use affects all of them.

Compare the energy conserving capability of masonry, for instance, with double-plate glass walls. At 4:00 P.M. on a hot August day in Washington, D.C., the heat gain through a square foot of west-facing insulated brick and concrete block wall will be 2.2 Btus an hour.

The heat gain through a double-plate glass wall in the same location will be 173 Btus an hour. A big difference.

Project this differential over 10,000 square feet of wall. You come up with a heat gain through masonry of 22,000 Btuh, while the heat gain through double-plate glass is 1,730,000 Btuh.

In the case of the masonry wall, cooling equipment with a two-ton capacity can handle the heat gain. But with the double-plate glass wall, about 143 tons of cooling capacity will be needed.

An analysis of a typical 10-story building shows that over its useful life, the air-conditioning cost for a square foot of our masonry wall will be about 23 cents. For double-plate glass, about $1.38.

In a time of one energy crisis after another, masonry makes eminently good sense as a good citizen.

The masonry industry believes that the thermal insulating qualities of masonry are an important economic consideration to building designers, owners and investors, and all citizens.

Masonry walls save on air-conditioning and heating costs. And just as important, they are less expensive to build. The masonry wall we’ve described would have a 38% lower initial cost than the double-plate glass wall.

If you’d like to find out more, write to us and we’ll send you a booklet comparing the thermal insulating qualities of masonry walls with double-plate glass walls, metal panel walls and pre-cast concrete walls.

International Masonry Institute
823 15th Street, N.W., Washington, D.C. 20005

Please send the booklet comparing insulating qualities of masonry with other building materials.

Name
Title
Company
City State Zip
Nature of Business

MASON CONTRACTORS ASSOCIATION of NEW MEXICO
EDGE FACTORS OF HISTORIC DISTRICTS ANALYZED IN PRESERVATION PRESS BOOK

As more and more communities are rejecting urban renewal that calls for wholesale demolition in favor of maintaining and rehabilitating their old neighborhoods, they are facing a difficult question: What constitutes an area worth protecting?

Is it limited to single downtown landmark buildings, reminders of the early days of the community? Does it include the nearby buildings, less impressive but still historically interesting and architecturally valuable? Does it extend to natural landscapes? What needs—and is worth—the protection given by historic district designation?

Those questions and how 20 cities and towns in the United States answered them are the subject of A Guide to Delineating Edges of Historic Districts, a new publication from the Preservation Press of the National Trust for Historic Preservation.

From Old San Juan in Puerto Rico to Pioneer Square in Seattle, this 96-page guide provides insights into how cities and towns have protected their famous and not-so-famous historic areas from neglect and destruction. In some cities, citizens wanted to encourage rehabilitation to revitalize property values. In others, historic districts were created to prohibit inappropriate highways or large-scale development.

The historic districts analyzed are in Annapolis, Md.; Boston, Mass.; Charleston, S.C.; Chicago, Ill.; Columbus, Ohio; Elsah, Ill.; Galveston, Texas; Georgetown, Colo.; Grand Rapids, Mich.; Harrisville, N.H.; Jacksonville, Ore.; New Orleans, La.; Providence, R.I.; St. Louis, Mo.; San Juan, P.R.; Santa Fe, N.M.; Seattle, Wash.; Tucson, Ariz.; Wethersfield, Conn.; Woodstock, Vt.

Some of their historic district edges follow rivers, streets, municipal boundaries or property lines. Some are defined on the basis of historic or visual factors such as architectural styles, while others derive from less tangible factors: socioeconomic divisions and political considerations. But all of the districts studied in this book have a reason for being and a rationale for determining where they should start and where they should end.

Planner Russell Wright, the study's principal consultant, analyzes and comments on historic district legislation, ordinances and control systems. He notes potential opposition to historic district proposals and when compromises should—and should not—be made.

Each of the 20 case studies is discussed in detail, with regional maps, maps of the historic districts themselves and illustrations of various district edges. A glossary and selected bibliography also are included.

In his foreword National Trust President James Biddle notes that A Guide to Delineating Edges of Historic Districts is the first Trust study "to attempt a systematic determination and assessment of how these districts have been created and changed and how they have been affected by their edges. As such it represents the expanded National Trust commitment to the preservation of the amenities and ambience of given places in our cities, towns and countryside—not in static, museum-like fashion, but in contemporary, enriched environments.

"It is hoped," adds Biddle, "that this report will be a contribution to the working tools available to those responsible for historic districts, both in facing issues generated by existing districts and in creating new districts, which we especially wish to encourage."

A Guide to Delineating Edges of Historic Districts resulted from a study conducted by the National Trust Office of Preservation Services under a City Edges grant from the Architecture + Environmental Arts program of the National Endowment for the Arts. Representatives of each of the historic districts contributed to the study under the coordination of four regional consultants: Robert B. Retzig, Northeast; Bernard Lemann, South; W. Philip Cotton, Jr., AIA, Midwest, and John P. Conron, FAIA, FASID, West.

The guide is available for $5.50 plus 50 cents postage from the Preservation Bookshop, National Trust, 740 Jackson Place, N.W., Washington, D.C. 20006.

ACHIEVEMENTS OF THE SECOND SESSION OF 94TH CONGRESS

A LEGISLATIVE MINUTEMAN REPORT

What was accomplished in 1976? By adjournment day on October 2nd, the 94th Congress had completed action on, among other items, more than a dozen measures supported by the AIA. Our only disappointments were the failure of the House of Representatives to pass a bill increasing federal earthquake research activities and to appropriate $25 million for restoration of the West Front of the U.S. Capitol.

As for our successes, bills were enacted into law—

1) authorizing the development of energy conservation performance standards for new construction;
2) providing federal financial assistance for energy conservation retrofitting of existing buildings;
3) encouraging multi- and adaptive-use of public buildings;
4) authorizing and appropriating $2 billion for an emergency state and local public works program;
5) authorizing funds for implementation of Washington, D.C.'s Pennsylvania Avenue Plan;
6) establishing an Alpine Lakes Wilderness Area in Washington State;
7) providing higher funding levels for the Land and Water...
serving New Mexico
and the El Paso area
with
Quality Concrete Masonry Products
and many allied building materials

Modernfold Wood and Plastic Folding Doors
Hollow Metal Doors and Frames
Steel and Formica Toilet Partitions
Commercial Toilet Accessories
Residential and Commercial Steel and Aluminum Windows

Builders Block & Stone Co., Inc.
P. O. Box 1633
Roswell, N. M. 88201
505 622-1321

Builders Block & Stone Co., Inc.
P. O. Box 10284
Albuquerque, N. M. 87114
505 265-6085

Members: New Mexico Concrete Masonry Association, National Concrete Masonry Association
Conservation Fund and permitting up to 10 percent of a state’s allocation for sheltered recreation facilities;

8) setting up an historic preservation fund with authorized spending of $500 million over the next four fiscal years;

9) calling for a study of the feasibility of naming the Olmsted Home and Office in Brookline, Massachusetts as a national historic site;

10) providing guidelines for the management of the national forests, including provisions for sustained yield practices and protection of marginal lands;

11) expanding the Indiana Dunes National Lakeshore;

12) establishing management guidelines for the public domain lands;

13) authorizing and appropriating funds for housing and community development programs;

14) creating tax incentives for the preservation of historic buildings and for the removal of architectural barriers.

Legislative Minutemen were asked to write their senators and representatives on many of these issues. As always, your letters were very effective in persuading members of Congress to amend or support the legislation and we thank you for your help. Accountability to constituents has received increased emphasis and we believe the Legislative Minuteman program is more important than ever.

As soon as the Congressional election results are official, we will be mailing you a new Legislative Minuteman registration card. You will have the opportunity to renew your participation in the program by returning the completed card to us—postage free. You must send us the new card to continue as a Legislative Minuteman! There will be approximately 100 new members of Congress and our files can only be accurate if you give us information related to newly-elected 95th Congress. —Nicola Cara

FEDERAL PROGRAMS CONFERENCE SLATED FOR NEW ORLEANS

WASHINGTON, D.C., Oct. 27, 1976 — Energy, public works, and the international market will be among the chief topics at the fifth national Federal Programs Conference for architects and engineers to be held in New Orleans, Feb. 24-25, 1977.

Top level federal agency officials and members of Congress will brief design professionals on opportunities in the federal marketplace. A wide range of workshops, panel discussions, and speakers will cover such areas as transportation, community development block grants, military services procurement and construction programs, and federal encouragement for small and minority firms.

The 30 participating federal agencies will include the General Services Administration, National Aeronautics and Space Administration, the Energy Research and Development Administration, the Army Corps of Engineers, and the Departments of Commerce; Health, Education, and Welfare; Housing and Urban Development; Justice; State; Transportation, and the Treasury.

A LETTER:

Mr. Anthony C. Antoniades, AIA, AIP
Re: Article, “Space in New Mexico Architecture as a Resource for an Energy Ethic,” January-February, 1976, New Mexico Architecture”.

Dear Mr. Antoniades:

Please accept my thanks and congratulations for the above subject article. It is extremely well written and thought provoking. I can only hope it will provoke some action of the right sort as well.

Unfortunately, the only activity I presently note is on the part of generally uninformed governmental agencies: cities, counties, and states who rush to do something they consider politically proper even if it’s wrong.

Legislative attempts, for example, to tie energy conservation to insulation ‘U’ values only, without considering the total thermal performance of a building and its use and environment, are like treating a symptom and not the disease.

They tend to look at the visible point of the iceberg, rather than delve deeply into the total problem. As a result, since ‘U’ factors were developed to more than safety size mechanical equipment for a “worst case” condition, both the ‘U’ factors, and the method, may actually result in energy waste rather than energy conservation.

Beyond this devastating possibility exists also the very good prospect that initial building costs may be needlessly increased, thus reducing market potential in the face of great needs, and that both life-cycle dollar and energy costs will be adversely affected.

Permit me to send literature as follows, all of which bear on facets of this problem:

“New Insights Into Energy Use and Conservation in Structures”—NCMA

“The Role of Brick Masonry in Energy Conservation Design”—BIA

“American Appraisal Company’s Comparison of Apartment Building Costs in 205 Major Markets”—BIA

“Walls to Save Dollars”—BIA

The objective of these items is to present some little known—perhaps “forgotten” would be a better word—virtues of mass in walls, floors and roofs in relation to the total problem.

We do not feel that mass is the only answer. But it deserves at least to be an important part of the answer. And your suggestion that we develop, or rediscover, an “energy ethic” is most meritorious.

Respectfully yours,

BRICK INSTITUTE,
REGION 12

Henry E. Bollman
Regional Director

NMA NEWS

NMA November-December 1976

9
The UNM Arena expands.

Architect Joe Boehning, A.I.A.
Structural Consultant Cottrell-Vaughan & Associates
Mechanical Consultant Bridgers & Paxton
Electrical Consultant Uhl & Lopez
Acoustical Consultant C. P. Boner, (Austin, Texas)
Graphics Corey Planning & Design Group (New York)
Contractor George A. Rutherford
Photographer Jerry Goffe
In 1966, the University of New Mexico constructed University Arena in the athletic complex on the South Campus. The 14,859 seat facility was constructed for a cost of $1.5 million. The facility was designed primarily for basketball. However, it also serves for shows such as Bob Hope, Bill Cosby, Lawrence Welk, and the Rolling Stones. It has also housed commencement, boxing matches, and the ordination of the Archbishop of Santa Fe. In 1971 and 1974 UNM led the nation in collegiate basketball for home attendance. Thousands of fans had to be turned away each year because of lack of seats. It was mandatory that additional seating capacity be constructed.

In 1974, UNM hired the same architect to design the expansion
Before
And
After

Note: These two “before photographs are by Dick Kent.
and remodeling. The primary design requirement was to maintain the same open concept that made the original structure so successful. The extremely tight budget for the original structure left it with: a concourse that was too narrow; too few restrooms; and too few concession stands. The expansion also had to correct these problems. In addition to these improvements, an 8,000 square foot office and storage building was to be constructed over the basement dressing rooms at the southeast corner, and all dressing rooms were to be remodeled. All athletic ticket sales will be handled from this building. A total of 2,300 new chair back seats were added by cantilevering five rows of seats over the back of five rows of existing seats. These new seats carried around the perimeter of the building to match the original concept. A new mezzanine concourse is located behind these new seats, again to maintain the original concept. These new mezzanine seats are made accessible to the main concourse level with six stairways. Six new concession stands were designed to integrate with the stairways. Four new restrooms were added to double the restroom capacity.

In order to widen the main concourse, the existing exterior walls were removed. These walls were replaced by precast concrete columns and beams which help support the cantilevered mezzanine structure. The large expanses of interior wall in the enlarged concourse have been decorated with supergraphic basketball players. The new walls and roof that enclose the widened concourse are of precast concrete. The exterior wall panels were finished with an adobe colored cement finish to help relate the building to the architecture on the main campus.

The original facility had a landscaped space between the exterior walls and the sidewalk. The expanded concourse absorbed this space. The owner intends to landscape the dividers at the parking lots.

One important feature of the 8,000 square foot addition in the southeast corner is the meeting room. This meeting room will serve several functions:
1) Special meetings of UNM groups.
2) Lounge for VIP spectators at intermissions.
3) Recruiting of athletes.
4) Use of press during large tournaments.

Construction of the $2 million addition was accomplished in the eight-month span between basketball seasons. The new seating, along with standing room on both levels, has increased the capacity to over 18,000. The largest crowd for the 1975-76 season was 18,962. The total attendance for the 1975-76 season was 241,521, the third largest season attendance in the history of the NCAA.
A few years ago in the pages of New Mexico Architecture, Anthony Antoniades (A.I.A., A.I.P., Assoc. Prof. of Architecture, Univ. of Texas at Arlington) took a look around Albuquerque at early examples of the "modern," categorizing three styles: Art-Deco, Prairie, and International. At that time he speculated about the origins of some local residences, most of them in the general vicinity of the University of New Mexico campus, in which he saw a common vocabulary of International Style elements. A house Antoniades picked out for special praise ("one of the best works of early modern architecture in New Mexico"), 324 Hermosa Dr., S.E., was identified in the following issue of NMA as the work of William Burk, Jr., A.I.A., designed in 1937 for Walter C. Raabe.

I was interested in this beginning of historical research both as owner of the house and as a student of architecture; at the time Antoniades' article was published, I was studying the influence of Regional on International Style as defined in Henry-Russell Hitchcock and Philip Johnson's The International Style. Since then I have been fortunate in learning more about the history of this particular house, and have also had the opportunity to make my entrance into the practical world of architecture by designing an addition to it: an addition which is revivalist in deliberately following the lucid theory which describes the style of the original structure.

When my husband and I bought this house in 1972, our neighbors told us that it was known as the Kelvinator House, a name given provenance by the electric kitchen and once-elaborate air refrigerating and humidifying installation. The construction of "houses of tomorrow" for the purpose of demonstrating such advanced home technology was not uncommon in the late thirties. The University of New Mexico's library possesses bound volumes of Albuquerque Progress, a business newsletter published since 1934 by the Albuquerque National Bank, containing (Dec. 1937) a photograph of the house under construction (figure 1) and this interesting description:

"To prove that a family of moderate income can enjoy the fruits of modern housing research, Raabe and Mauger Hardware Company are sponsoring the construction of an ultra-modern, electrically equipped, air-conditioned home at 324 South Hermosa Avenue. When completed, the Kelvin-Home will feature many advanced improvements not embodied in residences costing several times its price, according to W. C. Raabe. The first floor will provide a spacious living room, dining alcove, two bedrooms and bath, and a scientifically planned and equipped kitchen. The second floor will be a recreation room.

"When completed, the building will be open for public inspection."

In February of 1938 Albuquerque Progress published a photograph of the completed structure, calling it "modernistic." (Figure 2).
SECOND FLOOR PLAN

Original floor plans prepared by William Burk, Jr., A.I.A.

FIRST FLOOR PLAN
appointment with Mr. Burk, who besides generously spending some time discussing the house, gave me the original plans. (See 1st and 2nd floor plans page 16) Kelvinator House has an interesting place in the brief history of “modern” architecture in Albuquerque, not only because of its aesthetic distinction but also because of its theoretical purity. It is this theoretical quality which made it particularly satisfying to understand and to adhere to principles of style in designing an addition to it.

In 1932, Hitchcock and Johnson perceived a crystallization of a style, the true style which was supposed to emerge, after the applied styles of the nineteenth century, from the rational perception and analysis of new materials and processes. They defined it thus:

“There is, first, a new conception of architecture as volume rather than as mass. Secondly, regularity rather than axial symmetry serves as the chief means of ordering design. These two principles, with a third proscribing arbitrary applied decoration, mark the productions of the international style.” (p. 20)

The principle of the fundamental organic source of order was expounded by Le Corbusier in 1923 in *Towards a New Architecture:* “A unit gives measure and unity; a regulating line is a basis of construction and a satisfaction.” (p. 68) Hitchcock and Johnson also discuss the rejection of axial symmetry under the same principle:

“Axial symmetry has generally been used to achieve the ordering of regularity, as in Baroque architecture, dominating and relating the confusion of independent features and elaborate detail. Modern standardization gives automatically a high degree of consistency to the parts. Hence modern architects have no need of the discipline of bilateral or axial symmetry to achieve aesthetic order.” (p. 59)

The principle of expressing volume rather than mass is perhaps the most striking feature of this phase of International Style. Reyner Banham, in *Theory and Design in the First Machine Age,* traces this to H. P. Berlage, whom he quotes from *Grundlagen und Entwicklung der Architektur* of 1908: “The art of the master-builder lies in this: the creation of space, not the sketching of facades. A spatial envelope is established by means of walls, whereby a space, or a series of spaces is manifested, according to the complexity of the walling.”

Kelvinator House is of wood frame construction, which properly lends itself to the lightness and distributed tension which effectively expresses the enclosed space. Over the frame, the smooth and unifying stucco surface emphasizes the same qualities. Windows placed at corners negate the possible reading of corner as support, and emphasizes the thinness of the enclosing fabric, the presence of the space enclosed.

The compact plan, largely free of projecting elements and details, is consistent with the same goals. All functions are not enclosed in a single volume, but neither do the articulated volumes move apart to separate into objects; rather, they appear to be the parts of a whole from which any excessive mass has been pared away. The flat roofs, without cornice or ornament at the edge, simplify the geometric forms and work to the same end, the abstraction of forms to the simplest geometrical description. The purified geometry, like the smooth surface, works against the expression of mass and for the expression of volume. The sharp-edged, precisely geometric form appears light, an idea freed of materiality, a thin shell surrounding thin air. Both perceptually and symbolically the thin line, the right angle, the circular section push architecture toward the realm of idea, seek the first principle of space, not mass.

Kelvinator House makes use of the vocabulary of the mass-produced steel casement window, divided into panes of uniform size, and the lights of the glaz-
ed doors are modulated to the same horizontal lines. (Figure 4) The balance of the original facade is achieved not by symmetry but by the long horizontal of the single story on the north, emphasized by the thin line of the roof over the second story terrace, fixing the grouped volumes of the bedroom wing and the second story room and staircase. The plan, pivoting the large rooms around entry, closets, and spiral staircase, achieves an asymmetrical balance in which right angles and semicircles play against and into one another.

To the post-modern eye, Kelvinator House is not lacking in ornament. The stepping-back of the wall to the front door, with its glass brick lights (Figure 3); the 2" setback along the base of the terrace wall above; the pilaster which matches the chimney flue, flanking the second story window—all are ornaments. Yet these are ornaments reduced to their abstract elements, and related to the reality of the structure and its function. "Details actually required by structure or symbolic of the underlying structure" (p. 70) are acceptable under the principles outlined by Hitchcock and Johnson—who interestingly also remark that this is what "provided most of the decoration of the purer styles of the past."

The rooms which I have added to the Kelvinator House are a studio, and a bathroom and closet which makes the upstairs—originally simply a recreation room with terraces—usable as a bedroom. Circulation, dressing, and sitting area evolved conveniently from the exigencies of fitting new into old structure. (Floor plan, figure 5) The volume of the garage is expanded upwards: the original horizontality is changed to a balance of larger volumes on each side of the entrance, toward which both sides curve. (Figure 7) The curve of the new wall above matches the curve of the old wall below, and both move in toward the center where the terrace steps back above the front door. Sharp edges and smooth surface, especially the unbroken curve and flatness of the front (west) wall, appear cloudlike and weightless, an impression enhanced by the slight cantilever out to the line of the original marquee over the doors. (Figures 8 and 9).

The notched northwest corner was an historical accretion, being the continuation of a configuration produced by the addition in the fifties of an extension of the garage door to accommodate a very large automobile. Functionally, the corner window here overlooks the front yard and entrances to the west and gives a view of the city and mountains to the north. At the same time, the occupant is placed in the tops of the juniper trees which shelter and mark the corner. (Figure 11) The shape of the northeast corner window is established by the mountain view. (Figure 10) The studio is filled with north light augmented by morning and afternoon sunshine, controlled on the east by the existing elm trees and on the west by venetian blinds installed in only the west-facing windows.

The window configuration, both in unit and in
5. Plan of new studio on the second floor above garage.

6. Isometric sketch of the original house . . . and

7. with the newly completed 2nd floor studio.
Your business has to change with the times, so why have walls that won't?

Steelcase Movable Walls

A wall that's only a wall is an obstacle. But a Steelcase Movable Wall System can form an office today or a conference room tomorrow or two or three work-stations the day after. In other words, it gives you unlimited flexibility in planning your office interiors. And that's a boon to any business.

6437 Linn Ave. N.E. • Albuquerque, New Mexico • (505) 265-7841
8. Front of remodeled "Kelvinator" house. Figure 9 shows the new studio atop the garage. Figures 10 and 11 show the new studio windows looking out into the tree tops.

pane sizes, has been kept consistent with the existing windows, and the new door is the same size as the other two front doors. Window details — sills, flashing, and reveals — were matched to the existing windows.

In 1932, Hitchcock and Johnson wrote, “Anyone who follows the rules, who accepts the implications of an architecture that is not mass but volume, and who conforms to the principle of regularity can produce buildings which are at least aesthetically sound.” (p. 68) In 1951, Hitchcock says, “We were amazingly optimistic and full of faith.” (p. 254) Yet their clarification of principles, their lucid theorizing, has been of value not only in understanding the source of the form and character of Kelvinator House, but also in adding to the structure harmoniously, in creating a new whole which remains as aesthetically satisfying as the original.

At the same time, the authors also said, “Critics should be articulate about problems of design; but architects, whose training is more technical than intellectual, can afford to be unconscious of the effects they produce.” (p. 38) In 1951, Hitchcock also repudiated the idea, despite the passage quoted above, that they had intended to create “an academic rulebook.” (p. 242) A part of the current reassessment of the architectural past, including the nineteenth century, is due to the recognition that the revolution has not been total: we are not freed from theories, ideas, intentions, meanings; but that the processes and materials of the industrial age and the electronic age and the future will continue to offer possibilities for many interpretations. In this as in past periods, the designer must make choices, and the clarity and richness of his conception, whether it is based on a powerful personal intuition or on a lucid theory, must be the strongest influence on the aesthetic quality of his design.

In the recent past, architects have insisted on the universality of a pure truth—insisted because we could not, like the builders of the Middle Ages, assume it. Yet we are historical: a literate people with knowledge of the past. More than that, we are global, knowing histories of many pasts. We need not approach the past guiltily, pretending to embrace ugliness, justifying ourselves by sentiment or through condescension to the bad taste of the ignorant: we can allow styles their own "rationales," understand them on the grounds of their own theories, —even, if the occasion suits, use those theories to embody them again.

E. H. B.

BIBLIOGRAPHY

1. Albuquerque Progress (Albuquerque, New Mexico, Albuquerque National Bank, 1937-38)

3 RECENT FLEX-SHIELD applications in Albuquerque

TWO PARK PLAZA HIGH RISE OFFICE BUILDING
ALBUQUERQUE INN
NATIONAL BUILDING

Wellborn PAINT
Mfg. Company, Albuquerque, N.M. 877-5050

NMA November-December 1976 21
Structural integrity:
The concrete facts of southwestern life.

Employment Security Commission Office Building in Albuquerque
Architect: W. C. Kruger and Associates
Structural Engineer: Robert Krause
ChemComp Concrete supplied by Albuquerque Gravel Products Company

The assignment was to place concrete floors on metal decks in the new Employment Security Commission Office Building in Albuquerque. ChemComp® was specified to reduce or eliminate cracking typical of this type of placement. The architects and engineers were well satisfied with the results (see inset). Check ChemComp's many advantages by writing for our free brochure: Box 392, El Paso, Texas 79943.

SOUTHWESTERN PORTLAND CEMENT COMPANY
MAKERS OF EL TORO CEMENTS / EL PASO, AMARILLO, ODESSA
ALBUQUERQUE
TESTING LABORATORY....
TO BE SURE!

SUBSOIL INVESTIGATIONS
PHYSICAL TESTING
INSPECTION
RESEARCH
WELDING CERTIFICATION
NUCLEAR DENSITY
LABORATORY ANALYSIS AND
EVALUATION OF CONSTRUCTION
MATERIALS

ALL WORK DONE UNDER SUPERVISION OF REGISTERED
PROFESSIONAL ENGINEERS

532 JEFFERSON, N. E.
ALBUQUERQUE, NM
P. O. BOX 4101

PHONE 255-8916 or 255-1322

The paints and coatings
Southwestern
professionals use.

Easy-on interior paints, climate-designed
exterior paints, color coordinated wall-
coverings, industrial-technical coatings,
and a complete selection of professional
supplies and accessories. Since 1936.

Hanley
Paint
Manufacturing Co.

Albuquerque, N.M.: 1214 San Pedro N.E.
El Paso, Texas: 1531 Magoffin, 9054 Dyer,
7636 Gateway East, 5937 N. Mesa

TODAY'S TOP PRIORITY. . . .
energy saving!

TWO
OF THE OLDEST
AND MOST RESPECTED NAMES IN
INSULATION HELP YOU REACH
TODAY'S ENERGY SAVING GOALS.

Permalite®
PEARLITE CONCRETE AGGREGATE AND
MASONRY FILL INSULATION.

AND

®
TECHNIFOAM® POLYEURATHANE

ALBUQUERQUE SPECIALITY PRODUCTS, INC.
4402 2nd St., NW, Albuquerque, NM 87125
P. O. Box 25844 — (505) 345-8401
THE INTERNATIONAL SPACE HALL OF FAME

A TRIBUTE TO MAN'S ACHIEVEMENTS IN SPACE...

AND A TRIBUTE TO THE ENDURING SERVICEABILITY OF PRECAST CONCRETE.

The Shrine building, the first structure of the International Space Hall of Fame at Alamogordo, N.M., features a maintenance free exterior of precast concrete panels in a brush blasted warm tone finish produced by Hydro Conduit Corp. Speed of enclosure of the structure also dictated the use of precast concrete panels.

This first building in the complex now contains artifacts and exhibits and will in the future be a free exhibit building to the public.

In the future a planetarium, an auditorium and an exhibit building will be added.

ARCHITECT—Charles E. Nolan, Jr., A.I.A.
Alamogordo, N.M.

STRUCTURAL ENGINEER—John Fulgenzi, P.E.

CONTRACTOR—Frank Tatsch
General Contractor,
Silver City, N.M.

HYDRO CONDUIT CORPORATION
2800 SECOND STREET, SW — ALBUQUERQUE, NEW MEXICO 87103