new orleans

AMERICAN INSTITUTE
OF
ARCHITECTS

JUN 18 1962
LIBRARY

JUNE, 1962
ROSTER OF MEMBERS
NEW ORLEANS CHAPTER, THE AMERICAN INSTITUTE OF ARCHITECTS
Including Parishes of St. James, St. John the Baptist, St. Charles, Jefferson, St. Bernard, Orleans and Plaquemines

MURVAN M. MAXWELL, President
H. MORTIMER FAVROT, JR., Secretary
JOSEPH G. BERNARD, Director
JAMES R. LAMANTIA, JR., Director
MISS STELLA FAGET, Executive Secretary, 510 Esplanade Ave., New Orleans 16, Louisiana

CORPORATE MEMBERS

Allason, Patrick M.
Amman, Charles E.
Andry, Charles G.
Baar, Albert G. — Emeritus
Barg, William J.
Bergman, William E.
Bernard, Joseph — Emeritus
Bernard, J. Grima
Bleitch, J. Buchanan
Bonio, Walter C.
Burk, Thompson B.
Cazes, Philip P.
Chachere, Tilghman G., Jr.
Cimin, Benedetto, Jr.
Corry, Joseph B.
Coupland, Robert S., Jr.
Cummings, Robert
Curtis, N. C., Jr.
Dansereau, Valeton, Jr.
Davis, Arthur Q. — Fellow
Delatte, Martin J.
de la Vergne, Jules K.
Diboll, Collins C.
Drew, Robert L.
Dreyfous, F. Julius — Emeritus
Dufrechou, Leo F.
Favrot, H. Mortimer, Jr.
Feitel, Arthur — Fellow-Emeritus
Finger, Milton H., Jr.
Fosse, Sidney J., Jr.
Frantz, Phares A.
Freter, Douglas V.
Fuhrmann, Emilie F.
Fulco, Jos. T.
Gardner, Wm. P.
Gibert, Eugene — Emeritus
Gibert, James H.
Goldstein, Louis A.

Goldstein, Moise H. — Fellow-Emeritus
Grimbail, Henry G.
Haase, Lucien M.
Heck, Eldon C.
Hemeter, David K.
Hess, William J., Jr.
Hogg, Mary C. (Miss)
Hooper, Janet E. (Miss)
Hooton, Claude E.
Hymel, Alton C.
Johnson, Komlah L.
Keenan, Walter Cook, Jr.
Keenan, Walter Cook, Sr. — Emeritus
Kessels, J. Jack H.
Koch, Richard — Fellow
Kohler, Irving, Jr.
Labouis, F. Monroe
Lachin, John M., Jr.
Lamantia, James R., Jr.
Lawrence, John W.
Leake, George M.
LeBreton, D. C.
Ladner, Albert C.
Lawrey, Mark P.
Lohman, Ben K.
Mason, E. B.
Mathes, Earl
Mathes, Mildred A. (Miss)
Maxwell, Murvan M.
McCoy, Lemuell W.
Mercer, Thomas S.
Montz, Andrew S.
Moutedous, Richard C.
Murray, Paul
Mykolyk, Mary
Nathan, Ulisse M.
Nolan, Warren
Oelschner, Carl L.

Oppenheimer, Leo M.
Osborne, Thomas L.
Oubre, James P.
Parham, Frederick D. — Fellow
Perez, August, Jr.
Perez, August, III
Perrier, Theodore L.
Rehl, George
Reilly, Maurice E.
Reisch, Erston H.
Riccotti, I. Wm.
Rock, John W.
Rosell, Rudolph B.
Rolf, Arthur, Jr.
Rosenthal, Sol — Fellow
Rowe, Charles J.
Rubin, Maury I.
Sanderson, George A.
Saputo, Albert J.
Saunders, George A.
Schneider, Andrew L.
Seiferth, Solis — Fellow
Silverstein, Edward B.
Simoni, R. T.
Singer, Maurice
Steffle, M. Wayne
Thomson, John H. — Emeritus
Trepagnier, Horace E.
Tsoi, Edward M. Y.
Underwood, H. T.
Vollodares, Rene
Verges, Ernest E.
von Osthoff, Frederick V.
Wagner, Leo F., Jr.
Wicker, Chester
Wilson, Samuel Jr. — Fellow
Wolf, Albert J., Jr.
Wright, L. Lavelle

ASSOCIATE MEMBERS

Boudreaux, Raymond J.
Canger, Thomas D.
Etheredge, Leonare U. (Mrs.)
Fareh, Frederick
Freter, Jack B.

ASSOCIATE MEMBERS

Boudreaux, Raymond J.
Canger, Thomas D.
Etheredge, Leonare U. (Mrs.)
Fareh, Frederick
Freter, Jack B.

JUNIOR ASSOCIATE MEMBERS
Weinstein, Norman J.

HONORARY ASSOCIATE MEMBERS
Donaldson, Joseph, Jr.

ASSIGNED ASSOCIATE MEMBERS
Olsen, Ole K.
NEW ORLEANS TO INDIA VIA ARCHITECTURE

The New Orleans architectural firm of Burk, LeBreton and Lamantia have been chosen by the United States Government to design the new Consulate General Office Building in Madras, India.

Madras, the chief city of South India, lies on the shore of the Bay of Bengal approximately 900 miles north of the equator. It is less congested than the other large cities of India and sprawls 12 miles along the coast and 7 miles inland. Although an ancient city, its present architectural character is the result of English development during the 19th century. Its galleried and colonated houses and lofty interiors immediately suggest New Orleans; in fact, the stylistic vocabulary is the same—Georgian and Greek Revival. It becomes unlike New Orleans when one realizes that there is a population of 1,650,000 and a tropical climate that lasts throughout the year. In fact statistically, Madras is the third city of India and South India's chief business, educational, and cultural center. Further, it is the focal point of an area whose population (and this is a really difficult statistic to comprehend) reaches some 110 millions of people.

The projected consulate will contain 80,000 square feet of floor space (equalling the American Embassy in New Dehli) and will house, in addition to consular functions, the U. S. Information Agency. This Agency is America's propaganda instrument abroad and requires library, auditorium, and reception areas that animate the program.

The model shown here is one of the preliminary studies for the building. In character it describes the effort to capture the feeling, most often evasive, that permeates all Indian art, an intensely human almost organic form. That it needs to do this as well as meet our own standard in terms of materials and technology is one of the biggest problems in presuming to satisfy the commission.

India is a country rich in many things—religion, philosophy, and an artistic heritage not the least among them. It would not be inappropriate that any building representing this country should pay due respect to these and still stand squarely as representative of its American origin.
It isn’t often that an architect stands in an empty, open field with the assignment of starting from scratch and creating a university, but this is just what happened in New Orleans in the summer of 1958. The site was a 178-acre abandoned naval air station on the Lakefront, facing Lake Pontchartrain. The architect was the firm of Curtis and Davis and Associated Architects and Engineers. The University was a campus of LSU which was not yet in existence. It was Louisiana State University in New Orleans.

The word, university, of course, suggests immediately a casual complex of mellowed stone halls and towers, overgrown with ivy, and shaded by ancient oaks or maple trees or elms. It suggests the serenity of time and the solidity of tradition, tangibly expressed in an accepted style of the past or in the slow, meandering tastes of at least a century. Such an image, quite obviously, was a bit out of place in this instance. Even if such a campus had been a possibility, it would have been a stark embodiment of dishonesty, as well as an absurd denial of the demands of the modern age.

LSUNO was to be an urban, commuter-type institution, designed to bring state-supported higher education within the immediate reach of a large metropolitan population. Of necessity, it was to serve the needs of the space age; an age in which knowledge advances with incredible velocity; an age in which style is tugged along by technology; an age in which both physical needs and academic concepts are changing by the hour. At this airbase site on the Lakefront, there was no time to grow ivy. Five-thousand students are expected by 1965; perhaps 10,000 by 1970. A plan had to be put on paper without delay.

The Curtis and Davis solution to the problem was a space-conserving, formal grouping of some sixteen buildings around a central Library, and around a dignified, well-disciplined series of courts and plazas. On their Campus Master Plan they divided the site into four general zones; an academic zone, an activity zone, a recreation zone, and a parking zone; each located in its proper relation to the site itself and to the other zones. The Academic zone, for example was assigned the most desirable section of the site, with the finest view of the lake and with a buffer of green park to insulate it from the traffic noise of Lakeshore Drive. The activity zone, centered around a Student Union Building, was given the next most desirable section along the Lakefront, adjacent to both the academic
area and the recreational area. The parking zone was divided into several parts in order to provide parking adjacent to the principal traffic arteries at desirable locations, and in order to keep traffic on the campus itself to a minimum.

Open courts and plazas, of course, are very much in the academic tradition, and at the same time they serve very definite functions. Landscaped with shade trees, fountains, and pools, they provide a pleasant and an aesthetic academic environment conducive to lounging, contemplation, and the social amenities of life, as well as to a human appreciation of man-made beauty in harmony with nature. They also provide places for assembly. Smaller, more intimate patios leading out of these larger squares help establish definite relationships between the physical elements of the various campus functions, and help endow them with their particular identity. Both tradition and function are embodied also in the chosen architectural style, which has been called a contemporary expression of the traditions of Louisiana.

The buildings envisioned by the master planners were characterized by outside corridors or galleries open patios, and broad overhangs, as well as the slender white columns so typical of New Orleans. Of steel or re-inforced concrete frame construction, they would take full advantage of the most modern and most efficient building methods and materials. All buildings would be centrally air-conditioned and centrally heated, and the utilities of the entire campus would be controlled at a central control point.

Since aircraft hangars and frame military barracks offer little that might be incorporated into a permanent university campus, the existing facilities on the LSUNO site were scheduled for eventual removal. These facilities had to be utilized, however, until permanent buildings could be provided. Curtis and Davis phased the campus development accord-

ing to the expected availability of funds, and according to the demands of a growing enrollment. While construction would continue over a period of some ten years, their master plan ensured that the completed campus would constitute an architectural unity.

Construction contracts for our initial three facilities were awarded in the spring of 1960, and these three facilities are complete and in use today. They are a Liberal Arts Building, a Science Building, and a Central Utilities Plant.

Our Liberal Arts Building was designed by Nolan, Norman & Nolan of New Orleans, in association with Richard Koch and Samuel Wilson, Jr., also of this city. Four-hundred-and-ten feet long by one-hundred-and twenty feet wide, it houses numerous modern classrooms, language and psychology laboratories, and a special auditorium which will seat 200 students. In addition, it provides office space for 104 of our faculty members, a faculty lounge, and a lounge for students. It contains two open courtyards. This building is a striking example of the outside galleries, white columns, and broad overhangs specified by the master plan.

Our Science Building, designed by August Perez & Associates in association with Ervin Arata, Associated Architects, both of New Orleans, contains 38 instructional laboratories and 18 classrooms for use in the fields of chemistry, physics, mathematics, biology, engineering, and geology. Like the Liberal Arts Building, it has two inner patios, which are beautiful examples of the dramatic lines and pleasing textures possible with modern materials and techniques.

The Utilities Plant, the work of Delaureal & Moses, Consulting Engineers, is unusually interesting in that it isn’t a building at all. In keeping with the Curtis and Davis specifications, it is an example of a very modern trend towards completely outdoor systems in areas where climatic conditions permit. Electrical units, motors, pumps, boilers, gas burners, refrigeration machinery, and all accessories are weatherproofed and placed in a convenient radial pattern around a control tower. One operator, by means of closed-circuit television and central control boards, can operate the entire physical plant of the campus. Since a building is unnecessary, the plant can be easily expanded, simply by adding additional equipment in its proper place on a circular hardstand. The central location of all heavy utility equipment greatly facilitates the performance of maintenance.

LSUNO is now completing its fourth year of operation. Its first class of seniors will graduate in June. As the enrollment grows, and as additional funds are made available, more architects will design more facilities, and our plans will rapidly develop into realities. We are quite confident that in the not too distant future we shall grow into an outstanding, relatively complete metropolitan university which will be an enduring credit to the city of New Orleans, and that quite appropriately we shall have one of the most attractive campuses in the nation.
The Timberlane Estates Corporation sponsored a competition among the students in the Third Year Design Class of the School of Architecture at Tulane University for the design of a large residence to be located in their subdivision on the west bank of the Mississippi River. Prizes totaling $1000 were awarded to four winners selected by a group of faculty members and representatives of Timberlane.

The purpose of the competition, as expressed by the sponsor, was to stimulate the student to think seriously and creatively about the realistic problem of a large residence in a local subdivision with special attention given to the unusual features at Timberlane such as the large plots of ground, the golf course and clubhouse facilities.

A typical 100' x 120' lot fronting on the golf course was selected by the class and a very general program was proposed. A space limitation of 3000-3500 square feet and a budget of $70,000-$75,000 were also set. Exact requirements of the house such as number of rooms and their disposition were formulated by each designer.

The first prize was won by Michael Toups for his two-story house with a "big roof". It was generally felt that his proposal offered an imaginative and spatially exciting solution, one particularly well suited to the site, the community and the region.
MODERN CONCRETE

offers so many opportunities for imaginative landscaping

From a simple patio on a small lot... to large campus-style site planning... modern concrete offers today's landscape architect new opportunities. Reflecting pools, sight screens of concrete block, pebble-surfaced terraces... design ideas are unlimited with concrete. That's because it is so versatile... whether cast-in-place or preassembled, colored, textured or polished.

Why not bring your best plans to life with modern concrete?

PORTLAND CEMENT ASSOCIATION

611 Gravier Street, New Orleans 12, Louisiana

A national organization to improve and extend the uses of concrete
WE ARE DISTRIBUTORS FOR:

Ceramic Color-Stone Roof Chips By MINNESOTA MINING & MANUFACTURING
White Top Roofing Marble By GEORGIA MARBLE
Roofing Tile By LUDOWICI-CELADON
Floor Tile By FLINTKOTE
Aluminum Siding By ALSIDE AND ALCOA
Architect Shingles By BIRD
Asbestos & Asphalt Shingles By RUBEROID, FLINTKOTE, SUPRADUR & GOOLDBOND
Asbestos Siding By RUBEROID, FLINTKOTE & BIRD
Insulated Siding By RUBEROID, FLINTKOTE & GOOLDBOND
Slag In Bags By MASTIC CORPORATION
Waterproofing Materials By BIRMINGHAM SLAG COMPANY
Built-Up Roofing Materials By GULF STATES ASPHALT & FLINTKOTE
Everything in Roofing, Siding & Floor Tile By FLINTKOTE, RUBEROID & KOPPERS

CRESCENT MATERIALS SERVICE INC.
4830 JEFFERSON HWY. P. O. BOX 10097 NEW ORLEANS 21, L.
PHONE VErnon 5-5421

NOW - STEEL DECKING LIGHTWEIGHT AND HEAVY DUTY

ANY LENGTH IMMEDIATE DELIVERY

CORRUGATED INDUSTRIES, INC.
2716 ROYAL STREET NEW ORLEANS, LA.
WHITEhall 7-5568

BEFORE YOU DRAW THE PLAN . . . CHECK THE TITLE TO THE LAND

Furnishing Evidence of Good Title for Prospective Owners and Their Lenders Is Our Business. Often Title Insurance Is Required. Our Service Is Fast and a Consultation Costs You Nothing. To Be Sure, On Your Next Project, Call . . .

DUTEL TITLE AGENCY, INC. — Representing — KANSAS CITY TITLE INSURANCE COMPANY
823 Perdido Street New Orleans 12, Louisiana Phone 523-1991
NEON, PLASTIC, and Porcelain ENAMEL SIGNS

A complete Design Service—

We are happy to cooperate with Architects and Engineers to provide maximum service for the client at minimum cost.
ARCHITECTURAL MILLWORK AND FIXTURES

Bernard LUMBER COMPANY, INC.
NEW ORLEANS, L.A., P. O. BOX 19408

TOP QUALITY MILLWORK — ARCHITECTURAL FIXTURES — CONSTRUCTION LUMBER — WHITEHALL & BRAH
DOM KITCHENS — ARCHITECTURAL FORMICA WORK — PLASTI-CLAD DOORS — PANI-FLEX- FOLDING DOG
UNITS — TABLES — BARS — PANELLING

7833 Edinburgh Street NEW ORLEANS 19, LOUISIANA
HU 8-0814

Jos. J. Bindewald, Inc.
Plumbing - Heating - Air Conditioning
SERVICE • REPAIRS • MAINTENANCE
Mechanical Contractor

5851 Gentilly Road
Box 705, Route 4 New Orleans, La.
WHitehall 7-1105-4

Over 50 Years
Experience
in
PRESSURE - TREATED
PILING & LUMBER
with
Creosote — Pentachlorophenol
and Chromated Zinc Chloride

American Creosote Works, Inc.
1305 DUBLIN ST.
UN. 1-1455

BEST ELECTRIC COMPANY, INC.
Electrical Contracting
Motor Rewinding and Repairs

747-51 SO. RAMPART STREET
NEW ORLEANS 12, U.S.A.

TELEPHONE JAckson 5-1134
Analysis of
ALUMINUM WARPED SPACE FRAME COMPONENT

By
JON H. STARNES
University of Texas
School of Architecture

SPACE FRAME STRUCTURES became a matter of special interest in connection with a classroom problem of spanning a large area for a furniture factory. In doing the problem the question of how to support space frames became an intriguing one. After closer examination of this type of structure, it became clear that the problem was not so much in the support itself, but with the elaborate and complex jointage methods of existing space frames. These slow erection time, and they are expensive. Esthetic values are limited too, in that the element must be of a planar composition; and when spanning a large area the depth of the structure seemed excessive.

Since aluminum lends itself to many of the requirements of space frames, this appeared to be a suitable field for study in connection with the Reynolds Aluminum Prize for Architectural Students. The first step taken was a review of several "continuous" methods of construction which were conceived by a development team of faculty members several years ago and which are now being investigated by the Architectural Process Research Laboratory at Balcones Research Center, University of Texas. Using this information as a starting point, I made extensive additional studies and solved the problem of the elaborate jointage system found in conventional space frames. The solution lay in a continuous member with a stitch joint. The joints could be stressed by warping the whole structure.

To further develop this theory, a model 36" square was constructed. Then wire was placed in tension along the diagonals of the structure to produce the warpage.

The next step was to develop the shape of the member and type of stitch joint. It was desirable to use a standard aluminum structural shape to keep the cost down by not having to produce a special shape. This required a rigid shape, but one that would be flat at the joint and keep the thickness at a minimum. The answer was the "T" shape. The stem of the "T" would make the member rigid and could be cut off at the joint so there would be room for the bolt or rivet. This would make it possible for the continuous member to be bent and still stay within the limits of the minimum bending radii for aluminum. The stem would also help in the problems of roofing and the placing of panels on the underside of the structure.

The result of the study is the final design described as the Aluminum Warped Space Frame Component.
UNIVERSITY OF ILLINOIS

In addition to more obvious benefits, athletics have been responsible for the design of architectural structures of distinction since Greek and Roman times. In recent years these have become increasingly original and striking in design. A highly unusual building in this field is the covered stadium of reinforced concrete now nearing completion at the University of Illinois at Urbana.

Variously compared to a covered soup tureen, a gigantic pie, or two saucers clapped together, in technical terms the structure is an inverted truncated cone covered by a segmented folded plate dome. Encircling the rim where the two halves meet and holding in the thrust is a compression ring of posttensioned concrete.

The unique design makes possible an indoor circular arena 400 ft. across, and a seating capacity of approximately 18,000 with no obstructing pillars. In addition to basketball and other sports events, the hall will be used for convocation ceremonies, conventions, rallies, concerts and theatrical productions.

Both the concept and the actual construction of this building depended heavily on modern engineering knowledge.

About one-half of the permanent seats are below-ground. With numerous exits around the circumference, seats are easily accessible and crowds can...
LINOIS COLISEUM

Roof of this unique structure is of concrete shell design. The intricately folded shell spans a circular area 400 ft. in diameter without requiring interior columns for support.

Enter and leave rapidly. To construct the lower portion of the building, excavation was first made for a 250-ft. outside, 218-ft. inside diameter doughnut-shaped foundation grade beam or footing 42 in. deep, from which 48 massive buttresses stem out at an angle. These form the support for the sides of the bowl.

To construct the upper portion or "lid" of the bowl, a temporary 100-ft. steel tower was erected to serve as support for the center of the dome. The top of this tower was used as a platform on which to cast a ring of heavily reinforced concrete 4 ft. thick with an inside diameter of 21 1/2 ft. and an outer diameter of 43 ft. Forms for the dome curved down from this center ring to meet the perimeter of the lower part of the building, and were supported at three intermediate points.

The concrete dome consists of a series of intricate folds of varying thickness, and the job of building forms for these was complex. A 2-in. layer of insulating and acoustical material was placed over the forms, to be left in place as the ceiling surface. Concrete was placed in 24 segments, in a sequence in which one 15-deg. section was followed by the section diametrically opposite it, until the entire area was covered. Low-slump lightweight concrete was used, hoisted by crane starting at the lower portion; the upper part was serviced from a centrally located crane. Careful vibrating and finishing were used to obtain a dense concrete, and the surface was given a protective coating of sprayed-on plastic waterproofing. Web thickness of the concrete is 3 1/2 inches, with the valleys and ridges slightly thicker.

Architects for the $8,350,000 project were Harrison and Abramovitz, with Ernest L. Stouffer university architect; structural engineers, Ammann & Whitney.

Completion of this indoor stadium brings to fulfillment a dream of long standing, which will add new dimensions to many campus activities.
Villa del Mar Marina, the Pacific Coast’s first residential yacht facility, is expected to accept its first seagoing tenants in July as part of the new Marina del Rey Small Craft Harbor, according to William S. Dunn, Villa manager.

Hunter and Benedict, Architects, A.I.A., have planned the entire facility in Parcels 13-14 of the harbor for living aboard the moored boats and have designed its buildings on the mole served by Marquersas Way.

The Villa will incorporate many of the best features developed at the famous Bahia Mar in Fort Lauderdale, Florida, for residential yachtmen on the Inland Waterway.

Manager Dunn, a professional skipper and club manager, believes opening of the Marina del Rey will put Southern California boating on the road to its yet unrealized potential.

"Seattle has four times as many boats as Los Angeles on a population basis," he points out.

"With our huge population, you can imagine the enormous growth which is possible when boating becomes equally popular here. There is no reason why southern California should not enjoy the full enthusiasm for boating which is already common in Florida, New England, and the Pacific Northwest."

The Villa del Mar’s 12 floating walk-and-finger structures are designed to accommodate 311 boats of every size, from dinghy to 120-footer, with power or sail.

All foot traffic surfaces are of fiberglass with a non-slip diamond tread, and the flotation system rests on 2500 plastic and fiberglass pontoons.

The floating elements were fabricated in 40-foot units at the Long Beach plant for trucking to the site for final installation.

The $500,000 first phase of the Villa del Mar Marina will include the shore buildings which house administrative offices, sanitary facilities, dinghy storage, and the parking areas.

Negotiations are in progress for a rooftop coffee shop and for a yacht supply and service center, with leading lines of electronic equipment. The administrative offices will serve as a message center for all tenants.

Telephones to each boat, mail, and all utility services will be available, with high-capacity electrical connections for larger boats needing heavy power, a feature not found in any other Pacific Coast Marina.

All utilities are underground on the mole, and are carried low in the flotation systems to remove hazards to moving or drifting boats.

Future plans include swimming pools, apartments, and restaurants on the mole; yacht brokerage and insurance sales offices; new and used boat sales areas; and a lounge and reception room where tenants can entertain visitors or hold gatherings.

As Villa del Mar Marina reaches full activity, there are plans for laundry service, marine hardware and supply shops, a vending machine "grocerette," and ice machines for 24-hour operation.

There will be garages for rent, designed to double as storage space for bulky equipment, smaller dockside lockers, and boarding ladders which can be rented. There will be dinghy storage racks on the mole near the floating walks.
Education in the round is the theme of this unusual school at Newport, Arkansas. In keeping with the trend to color in architecture, the designers of this school used brilliant dark-blue panels of Glasweld.

Teachers can't corner the kids at the new Gib Castleberry elementary school in Newport, Arkansas.

The novel idea of education in the round was the brainchild of architects McAninch & Mahnker of Little Rock, Arkansas, who designed the building.

The circular plan of the new school is only one of the features that make this building an eye-catcher. Brilliant dark blue panels of Glasweld, a decorative cement-asbestos product exclusively distributed by United States Plywood Corporation, were used in the construction of both exterior and interior walls — forming a circle of blue around the outside of the school, around the walls of the circular interior court and inside the classrooms themselves.

A panel system comprising two Glasweld faces laminated to a styrofoam core was developed especially for institutional wall systems which provide interior/exterior walls of quality in a price range that even low-budget school construction plans could meet. The mineral-enamel coating of color fused onto Glasweld surfaces, moreover, is as permanent as the panels are durable — an important factor in a rugged-wear installation.

'Round and round' the classrooms go at the new Gib Castleberry elementary school in Newport, Arkansas. Brilliant, dark-blue panels of Glasweld, a cement-asbestos board product, form the unusual wall system seen to advantage in this shot from the courtyard interior of the school.
Thirty-five thousand pounds of 16-ounce sheet copper was supplied by Chase Brass & Copper Co., for the new $1.2 million Fremont County Court House shown above. A total of 32 panels of copper, 18 feet long by 11 feet high by four inches thick, were laminated to rough-surfaced native marble for the exterior walls. Each panel weighs 5,000 pounds.

IN HARMONY with the foothills surrounding Canon City, Colorado, the recently completed Fremont County Court House stands in eloquent testimony to the imagination of a Rocky Mountain architectural firm and its creative combination of copper and concrete.

The $1.2 million project was started in September of 1959 in this County Seat town, located about 65 miles southwest of Colorado Springs, and was completed in September, 1961. Providing some 56,000 square feet of floor space, the structure consists of two stories and a basement which house the Fremont County offices and court rooms. The architects are Thomas Nixon and Lincoln Jones of Nixon and Jones, Boulder, Colorado.

The exterior walls of the new courthouse are of rough-surfaced native marble capped with a total of 32 huge panels of copper laminated to concrete. Each panel weighs 2½ tons. Simulating the pyramidal structure of the Rocky Mountain foothills which form the backdrop of the site, the design of the copper-faced panels follows a triangular pattern, presenting an effect at once powerful yet graceful, and reflecting the culture of the region.

Nixon & Jones carried their design motif inside the courthouse to a two-story, skylight-covered central courtyard. Laminated sheet copper and concrete panels, considerably smaller than the 16-foot long by 11-foot high by four-inch thick exterior panels, were used as facing for each of the two floors opening to the courtyard. The floor of this richly ornamented courtyard is finished with white stone chips, and supports several big boulders and wild cedar trees taken from the Cotopaxi foothills in the western half of the county.

Anchored in the courtyard floor is an immense pylon which supports cantilevered stairs ascending to the upper floors. The stairs, suspended in this manner, appear to be totally independent of the floor and walls. Beneath the lowest stair landing is a pool which is fed by a series of streams falling from the stair landing. This sound of running water spilling on the river rocks is carried lightly throughout the entire building.

Of technical interest is the fact that this project represents the first time that concrete backing was used with sheet copper in such a large quantity. Including the copper used in the valleys, gutters, flashings, interior and exterior finishes, $90,000 worth, or about 35,000 pounds of 16-ounce sheet copper were supplied by Chase Brass & Copper Co., a subsidiary of Kennecott Copper Corporation.
The process of laminating this amount of sheet copper to concrete slabs was, in itself, an imaginative bid by Nixon & Jones to take advantage of the metal's attractive appearance and long-wearing quality. After the designs were formed in the copper, the reverse side of each sheet was fitted with a series of copper clips and coated with an epoxy glue. Following the pouring of the concrete, the laminated panels were permitted to age for seven days before the forms were removed. The panels were then raised and bolted to a perimeter truss.

Another unique accomplishment was the natural patina which the architects were able to form on the sheet copper. Dissatisfied with the available solutions for aging copper, the architect and the contractor experimented and found that conventional sweat-soldering flux could be used in liquid form to produce a rich aqua color on the sheet metal. The exterior of the building now is beginning to weather to its final color, a blend of green, blue and brown hues, in keeping with the natural environment.

The new courthouse replaces an 1889 structure.
This builder relays important information to his foreman on the eighth floor of a building.

Ideal for civil engineers on job sites is the new Interviewer field recorder. With the Interviewer, important information can be recorded instantly and on-the-spot without the necessity of time-consuming, sometimes illegible, handwritten notes.

Communication Devices Aid Builders

Perched on a catwalk, eight stories above the ground, the foreman learns from the command post that a vital steel shipment is ready to be hoisted to the job site.

PICTURE A LINE-UP of thirty concrete trucks, motors running and giant gears clashing while their concrete tanks revolve. Add to that the roar of two giant cranes with winches straining to lift a seven ton load of steel 14 stories high. Blend this with the chatter of a dozen hammers, power saws, jack hammers, and the voices of 150 construction workers.

That's noise! Plenty of deafening noise.

Noise makes communications difficult if not impossible, especially when you're a builder erecting a 21-story apartment building, or some similar structure. The usual loudspeaker system used to keep in touch with workers on the job is not always adequate. As a result, the walkie-talkie system for on-the-job communication is being initiated in the high-rise construction industry by veteran builders and urban renewal developers. The system has saved countless man hours and dollars . . . and more important, prevented injuries and even death.

"With our walkie-talkie system, we maintain constant contact with all our key personnel," says one builder, Henry Berger. "Communications used to be tough, often impossible because of the complexities and size of the building operation. Imagine trying to shout instructions to a man sitting on a catwalk 10 stories above the ground.

Another communications aid for builders is the Interviewer, a small device weighing less than five pounds, designed for voice recording away from the office. It is especially suited for use by civil engineers on job sites, and will record important information on-the-spot without the necessity of time-consuming, sometimes illegible, handwritten notes.
EKCO DISTRIBUTORS, Inc.

Distributors of
WOOD
FOLDING
DOORS &
PARTITIONS
and
OTHER TOP QUALITY BUILDING SPECIALTIES

4102 ST. CLAUDE AVE. WH 9-4821
NEW ORLEANS 17, LOUISIANA 7-0355

Avegno & company incorporated

- bonds
- insurance

512 whitney building 529-5571
new orleans 12, louisiana

LOUISIANA BLUE PRINT INC.

Blue Prints
Direct Prints
Photostats - Films
Superstats

940 PERDIDO STREET TEL. 524-7529
NEW ORLEANS, LA.

ALBERT D. HULSE CO., INC.

439 POYDRAS STREET NEW ORLEANS 12, LA.

- THOMPSON'S WATER SEAL
- SURCO LATEX BINDERS
W. R. MEADOWS LINERS
M Mitchell Rand Flashing
SERVING ARCHITECTS, ENGINEERS & CONTRACTORS

Brick & Stone Center, Inc.

Natural Stone - Face Brick - Landscaping Stone
"Natco" Structural Glazed Faced Tile

PHONE 488-1542
JAckson 2-9165
401 N. JEFF. DAVIS PKWY.
NEW ORLEANS, LA.

Avegno & company incorporated

- bonds
- insurance

512 whitney building 529-5571
new orleans 12, louisiana

LOUISIANA BLUE PRINT INC.

Blue Prints
Direct Prints
Photostats - Films
Superstats

940 PERDIDO STREET TEL. 524-7529
NEW ORLEANS, LA.

ALBERT D. HULSE CO., INC.

439 POYDRAS STREET NEW ORLEANS 12, LA.

- THOMPSON'S WATER SEAL
- SURCO LATEX BINDERS
W. R. MEADOWS LINERS
M Mitchell Rand Flashing
SERVING ARCHITECTS, ENGINEERS & CONTRACTORS

Brick & Stone Center, Inc.

Natural Stone - Face Brick - Landscaping Stone
"Natco" Structural Glazed Faced Tile

PHONE 488-1542
JAckson 2-9165
401 N. JEFF. DAVIS PKWY.
NEW ORLEANS, LA.

For Dependable Intercom and Sound

Call...

Executone

PHONE 488-1542
JAckson 2-9165
401 N. JEFF. DAVIS PKWY.
NEW ORLEANS, LA.

Avegno & company incorporated

- bonds
- insurance

512 whitney building 529-5571
new orleans 12, louisiana

LOUISIANA BLUE PRINT INC.

Blue Prints
Direct Prints
Photostats - Films
Superstats

940 PERDIDO STREET TEL. 524-7529
NEW ORLEANS, LA.

ALBERT D. HULSE CO., INC.

439 POYDRAS STREET NEW ORLEANS 12, LA.

- THOMPSON'S WATER SEAL
- SURCO LATEX BINDERS
W. R. MEADOWS LINERS
M Mitchell Rand Flashing
SERVING ARCHITECTS, ENGINEERS & CONTRACTORS

Brick & Stone Center, Inc.

Natural Stone - Face Brick - Landscaping Stone
"Natco" Structural Glazed Faced Tile

PHONE 488-1542
JAckson 2-9165
401 N. JEFF. DAVIS PKWY.
NEW ORLEANS, LA.

For Dependable Intercom and Sound

Call...

Executone

PHONE 488-1542
JAckson 2-9165
401 N. JEFF. DAVIS PKWY.
NEW ORLEANS, LA.
THE MOONEY Equipment Company

ELEVATORS — For Home, Rectories, etc.

DOVER-SHEPARD HOMELIFTS - ESLIFTS

PUMPS AND LIQUID METERS — For High-Pressure Petroleum and Chemical Service,
Ultra High-Pressure Water Blast Service

JOHN BEAN-BLACKMER - BYRON-JACKSON - GILBERT & BARKER
RED JACKET - ROCKWELL MANUFACTURING CO. - A. O. SMITH

HYDRAULIC PLATFORM LIFTS AND DOCK RAMPS — For Plants, Warehouses, Shops,
Department Stores, etc.

ROTARY LIFT COMPANY

VALVE ACTUATORS AND CONTROLS — Hydraulic or Pneumatic.

BETTIS MANUFACTURING COMPANY

2704 St. Claude Ave. P.O. Box 3294 Whitehall 3-6676
New Orleans 17, Louisiana

ARKLA-SERVEL

GAS AIR CONDITIONERS

SELF CONTAINED AND REMOTE CHILLER-HEATER UNITS

FOR INFORMATION CALL

GULF ENGINEERING CO. INC.

1000 SO. PETERS STREET
New Orleans, Louisiana

Complete Design and Fabrication Service

SWITCHBOARDS
LIGHTING PANELBOARDS
POWER DISTRIBUTION PANELS
MOTOR CONTROLS
AIR CONDITIONING PANELS
SHEET METAL ENCLOSURES

Underwriters Approved

INDUSTRIAL ELECTRIC

3315 Magazine Street TWinbrook 1-6311
New Orleans, La.

BRUNER MALLETT ROOFING CO.

Bonded - Built-Up - Tar & Gravel

- Sheet Metal
- Gutters & Pipes
- Repair Work
- Built-up Roofs

Jackson 5-8625

Commercial — Residential — Industrial

1717 FELICITY NEW ORLEANS, LA.

Chas. C. Lang Co.

PAINTING & DECORATING

COMMERCIAL • INDUSTRIAL
RESIDENTIAL

TWinbrook 9-8694
NEW ORLEANS 15, LOUISIANA
THE ARCHITECT

The word architect, like many words derived from the Greek, is made up of two parts: archi—"chief", and tekton—"a builder." Thus the original meaning of the word explains a union of designing and building activities, a union which the architect maintained up to the middle of the 19th century. At that time, he was thought of more as a designer than as a builder. Architecture was seen as a "fine art", and transferred from the outdoors to an inside atelier, where it remained for nearly 100 years.

Today's interpretation of architecture places the architect somewhat nearer to that original meaning of the word. But the complex social and technical conditions of our highly industrialized society no longer makes that original union of designing and building quite possible.

An architect is a composite personality made up of two basic ingredients: the artist and the technician. As an artist, the architect possesses qualities which artists have possessed throughout the ages; an extraordinary imagination, and a keen awareness and expression of feelings.

As a technician, an architect must possess more than a speaking acquaintance with the available building materials and technology of his day; he must follow the ever-growing variety of equipment and appliances which form the core of modern building.

Today's architect comes closer than ever to fulfilling his historic mission by serving as "chief builder."

and the same applies to water heaters

It's true! Just because your business needs hot water doesn't mean you have to invest capital to buy a water heater.

Not when you take advantage of the Ruud Water Heater Lease Plan. Now, for a small monthly...

You can lease a top-quality, fully serviced Ruud water heating system. With it you get a Free Survey, Free Installation, and Free Maintenance. And, you lease the finest water heater available — the Ruud Copper Sanimaster.

IN ADDITION, YOU BENEFIT ALL THESE WAYS:
1. No capital investment
2. No financing
3. No tax or depreciation
4. No health code problems
5. No budget worries
6. Fully tax deductible
7. No fuel storage
8. No obligations
9. Cost-free upkeep
10. Free removal at termination

GET COMPLETE DETAILS TODAY. CALL OR WRITE
SOUTHERN HEATER COMPANY, INC
844 BARONE STREET PHONE 523-552
NEW ORLEANS, LA.
SAVE TIME SAVE MONEY
Use Precision Built Roof Trusses
RESIDENTIAL • COMMERCIAL
R. F. "DICK" Mestayer
LUMBER CO., INC.
1533 Lafitte Street
JA 5-6285
NEW ORLEANS 16, LOUISIANA

J. WILTON JONES CO.
Established 1894
WHOLESALE ONLY
• SHEET METAL PRODUCTS
• HARDWARE SPECIALTIES
731 Tchoupitoulas St. JA 5-0471
Warehouse at Baton Rouge and Lafayette
NEW ORLEANS, LA.

WORK AREAS:
by professional office designers for distinctiveness
planned by experienced equipment engineers for efficiency

Dameron-Pierson
NEW ORLEANS BATON ROUGE

CALL OMECO first for Steel Requirements
• FABRICATED STRUCTURAL STEEL
• MISCELLANEOUS IRON
• COMPLETE WAREHOUSE STOCKS
• REINFORCING STEEL

ORLEANS MATERIALS & EQUIPMENT COMPANY
5501 France Road NEW ORLEANS 26, LA.
PHONE 288-6361

A. G. SIEGEL
ELECTRICAL CONTRACTOR
4136 Jefferson Highway VE 831-1386
New Orleans 21, Louisiana

ROUBION
Tile & Marble Company
• CERAMIC TILE • MARBLE
• VINYL TILE • CARPETING
INDUSTRIAL TILE FLOORS
1128 Dublin Street PHONE 866-2323
NEW ORLEANS, LOUISIANA

The American Institute of Architects
New Orleans Chapter
1703 Pere Marquette Bldg.
New Orleans 12, Louisiana
This garden shop and adjoining stores in Newton, Mass., have been dressed up with smart Ray-O-Lite translucent fiberglass awnings. The bright, attractive awnings not only improve the appearance of the stores' exteriors but also enhance their interiors by admitting soft diffused light. The awnings are marketed nationally by Ray-O-Lite Corporation of America, 316 Peachtree St., Atlanta, Ga.

Application of REN Shape, RP-301, an epoxy based paste material produced by Ren Plastics, Inc., Lansing, Mich., is made to repair a leaky joint on a 5” copper pipe. The newly-introduced material can be mixed with its hardener right on the job for use in five minutes.

Products and Progress

Simplified installation, instant, even heating and attractive, modern appearance are features of Emerson Electric's new built-in bathroom heater. This new bathroom heater installs quickly and easily with no framing necessary because of steel hanger straps supplied with the unit. There are only two wires to connect. A balance of radiant and convection heat is assured instantly with automatic controls for just the right degree of comfort. The chrome plated grille gives a distinctive appearance and lifetime finish.

The new heater is rated 1250 watts, 120 volts, and develops 4260 B.T.U. The grille is 12-1/4 inches wide by 18-5/8 inches high. The thermostat ranges from 60 to 90 degrees Fahrenheit.

Mueller Climatrol has announced a new line of remote waterless condensing units (Type 938) in three, four, and five ton nominal sizes for installation with coil and cabinet or air handling units. New design features include large, extra capacity centrifugal blower to insure quiet and dependable operation under any climatic condition. All controls, other than thermostat, are located inside the condensing unit and all parts are easily accessible for installation and service. Units are weatherproofed against the elements for outdoor installation in any climate. Raised base and undercoating prevent rust and insure long life. Controls, receivers, and many other parts of the 938 series are standardized to minimize stock problems. All units are shipped assembled, pre-charged with refrigerant and pre-wired.
One-third the weight of steel, these huge, laminated plywood beams are hoisted into position at United States Plywood Corporation’s new Oklahoma City branch headquarters and warehouse. Twelve of these beams formed the entire support for the panelized plywood roof of the 25,000 square foot structure.

SOMETHING NEW in roof design was demonstrated in Oklahoma City, Okla., with the recent construction of a new United States Plywood Corporation branch headquarters and warehouse.

Huge, laminated plywood beams, 59 feet long by 4 feet deep, were used in conjunction with a panelized deck system—a unique structural plan that provides substantial cost savings. Twelve of these beams, their weight about one-third that of steel beams, formed the entire support for the panelized plywood roof of the 25,000-square-foot structure.

“This roof system of plywood box beams not only is easier to install than steel, but has comparable strength without the weight of steel,” says William Dmytryk, U. S. Plywood materials handling engineer. “An additional advantage is the attractive appearance of these beams as compared with the skeletal look of exposed steel members.

The beams are manufactured from %4-inch plywood fastened on a framework that leaves much of the inside hollow, Dmytryk explained.

The roof system, designed and supplied by Weldwood Structures, a division of U.S. Plywood, features 25 Weldwood fiberglass skylights, 4 feet by 8 feet. These, together with 4-foot-high ribbons of “industrial white” fiberglass that traverse the facade and rear walls of the entire building.

Forklifts sufficed to raise the panelized plywood roofing panels into position after the light box beams were in place.

In addition to its ribbon of fiberglass, the face of the building is decorated with native brick in a toasted buff shade, accented with panels of light blue and blue-green Glasweld—a cement-asbestos board panel with a ceramic-like finish for exterior and interior use.

Both exotic and domestic hardwood paneling is used to decorate the headquarters interior. V-plank prefinished walnut, pecan, Nakora, cherry, dove grey Samara, oak and architectural teak in a sequence-matched design by U.S. Plywood’s Algoma, Wis. mil, are among the woods displayed in various offices and showrooms. In several areas, the decorative woods are contrasted with harmonizing shades of Glasweld for a dynamic color effect.

The unusual roof of the Oklahoma City headquarters-warehouse represents the first use of Weldwood Structures’ panelized, box-truss system in the Midwest. The system first gained popularity on the West Coast where it was introduced by Berkeley Plywood before that company was acquired by U. S. Plywood in 1960.
This architectural drawing shows a new 70,000 square foot Zayre self-service department store which will be located in a $2,000,000 shopping center in Rock Island, Ill. Completion of the center is scheduled for September of 1962 and will include a food center, six service shops, and a service station in addition to the Zayre store. One other major tenant is expected to occupy space in the center.

ZAYRE CORP., Boston, Mass., a self-service department store chain, has signed a long-term lease for a 70,000 square-foot store to be built as part of a new $2,000,000 shopping center in Rock Island, Illinois.

Arthur Rubloff & Co., represented by Gene Beak, Vice President, representing Zayre's in the transaction, and Albert Dockerman & Sons, management agents for the shopping center, represented the lessor.

The Zayre store will be the heart of the shopping center, which will include an Eagle Food Center store, six service shops and a service station. One other major tenant will occupy space in the center.

The development covers 645,250 square feet, including a parking lot with a capacity for 1,030 cars. Completion is scheduled for September of 1962, and when finished the center will be one of the most modern and complete in the Quad-City region.

Containing over 800 separate departments, the one-story concrete and glass Zayre store will offer several convenient shopping innovations. A covered mall will connect the Zayre and Eagle stores, allowing customers to shop in either store in complete comfort protected from the elements.

Zayre’s will also feature a one-stop drive-in automotive department. Motorists will be able to drive in any one of six doors, purchase automotive accessories and have them installed at once. A lunch counter will be open in the Zayre store for shoppers.

The new Zayre store is the twenty-first for the chain, which operates stores in the east, south, and midwest, including two in Chicago.

Architects for the center are Sidney H. Morris & Associates, Chicago.