ROSTER OF MEMBERS
NEW ORLEANS CHAPTER, THE AMERICAN INSTITUTE OF ARCHITECTS
Including Parishes of St. James, St. John the Baptist, St. Charles, Jefferson, St. Bernard, Orleans and Plaquemines

WILLIAM E. BERGMAN, President
H. MORTIMER FAVROT, JR., Sec'y.
JOSEPH G. BERNARD, Director
MURVAN M. MAXWELL, Director
MISS STELLA FAGET, Executive Secretary, 510 Esplanade Ave., New Orleans 16, La.

COPRORATE MEMBERS

Allison, Patrick M.
Ammen, Charles E.
Andry, Charles G.
Applegarth, Raymond T.
Bartet, Albert G. — Emeritus
Berg, William J.
Bergman, William E.
Bernard, Joseph — Emeritus
Blackstone, William C.
Blich, J. Buchanan
Bonie, Walter C.
Boudreaux, Raymond J.
Burk, Thompson B.
Burns, Robert O.
Coldwell, Donald H.
Cazale, Philip P.
Chachere, Tilghman G., Jr.
Cimini, Benedetto, Jr.
Corry, Joseph B.
Coupland, Robert S., Jr.
Cummins, Robert
Curtis, N. C., Jr. — Fellow
Dansereau, V. E., Jr.
Davis, Arthur Q. — Fellow
Delatte, Martin J.
de la Vergne, Jules K.
Diboll, Collins C.
Doell, Walter G., Jr.
Drew, Robert L.
Dreyfous, F. Julius — Emeritus
Dufrechou, Leo F.
Favrot, H. Mortimer, Jr.
Feitel, Arthur — Fellow-Emeritus
Finger, Milton H., Jr.
Folse, Sidney J., Jr.
Frantz, Phares A.
Fretet, Douglass V.
Fuhrman, Emile F.
Fulco, Jos. T.
Gardner, Wm. P.
Gibert, Eugene — Emeritus
Gibert, James H.
Goldstein, Louis A.
Goldstein, Maise H. — Fellow-Emeritus
Grimball, Henry G.
Haege, Lucien M.
Heck, Eldon C.
Hess, William J., Jr.
Hoiga, Mary C. (Miss)
Hooper, Janet E. (Miss)
Hooton, Claude E.
Hymel, Alton C.
Johnson, Kamalah L.
Keenan, Walter Cook, Jr.
Keenan, Walter Cook, Sr. — Emeritus
Kessels, J. Jack H.
Koch, Richard — Fellow — Emeritus
Kohler, Irving, Jr.
Labouisse, F. Monroe
Lachin, John M., Jr.
Lamantia, James R., Jr.
Lamantia, J. Grima
Law, Robert O.
Le Breton, D. C.
Ledner, Albert C.
Lowrey, Mark P.
Lohman, Ben K.
Mason, E. B. — Emeritus
Mathes, E. I.
Mathes, Mildred A. (Miss)
Maxwell, Murvan M.
McCoy, Lemuel W.
Meric, Thomas S.
Montz, Andrew S. — Emeritus
Mouledous, Richard C.
Muller, Stanley W.
Murray, Paul
Mykolyk, Mary
Nolan, Ulisse M.
Nolen, Warren
Olschner, Carl L.
Oppenheimer, Leo M.
Osborne, Thomas L.
Oubre, James P.
Parham, Frederick D. — Fellow
Perez, August, Jr.
Perez, August, Ill
Perrier, Theodore L. — Emeritus
Riehl, George
Reilly, Maurice E.
Reisch, Erston H.
Ricciuti, L. Wm.
Rock, John W.
Roeske, Rudolph B. — Emeritus
Rofls, Arthur, Jr.
Roenthal, Sol — Fellow — Emeritus
Rowe, Charles J.
Rubin, Maury I.
Sanderson, George A.
Saputo, Albert J.
Saunders, George A.
Schneider, Andrew L.
Seiferth, Solis — Fellow
Silverstein, Edward B.
Simont, R. T.
Singer, Maurice
Smith, Thomas B.
Staub, Guy M.
Stoffle, M. Wayne
Suchke, Frederick R.
Thomson, John H. — Emeritus
Treppagnier, Horace E.
Tsao, Edward M. Y.
Underwood, H. T.
Valladares, Rene
Verge, Ernest E.
von Oshoff, Frederick V.
Wagner, Leo F., Jr.
Wicker, Chester
Wills, Norman J.
Wilson, Samuel Jr. — Fellow
Wolf, Albert J., Jr.

ASSOCIATE MEMBERS

Beller, Leonard E.
Conger, Thomas D.
Etheredge, Leora U. (Mrs.)
Farrah, Frederick
Fretet, Jack B.
Gibert, Eugene — Emeritus
Gibert, James H.
Goldstein, Louis A.
Goldstein, Maise H. — Fellow-Emeritus
Grimball, Henry G.
Haege, Lucien M.
Heck, Eldon C.
Hess, William J., Jr.
Hoiga, Mary C. (Miss)
Hooper, Janet E. (Miss)
Hooton, Claude E.
Hymel, Alton C.
Johnson, Kamalah L.
Keenan, Walter Cook, Jr.
Keenan, Walter Cook, Sr. — Emeritus
Kessels, J. Jack H.
Koch, Richard — Fellow — Emeritus
Kohler, Irving, Jr.
Labouisse, F. Monroe
Lachin, John M., Jr.
Lamantia, James R., Jr.
Lamantia, J. Grima
Law, Robert O.
Le Breton, D. C.
Ledner, Albert C.
Lowrey, Mark P.
Lohman, Ben K.
Mason, E. B. — Emeritus
Mathes, E. I.
Mathes, Mildred A. (Miss)
Maxwell, Murvan M.
McCoy, Lemuel W.
Meric, Thomas S.
Montz, Andrew S. — Emeritus
Mouledous, Richard C.
Muller, Stanley W.
Murray, Paul
Mykolyk, Mary
Nolan, Ulisse M.
Nolen, Warren
Olschner, Carl L.
Oppenheimer, Leo M.
Osborne, Thomas L.
Oubre, James P.
Parham, Frederick D. — Fellow
Perez, August, Jr.
Perez, August, Ill
Perrier, Theodore L. — Emeritus
Riehl, George
Reilly, Maurice E.
Reisch, Erston H.
Ricciuti, L. Wm.
Rock, John W.
Roeske, Rudolph B. — Emeritus
Rofls, Arthur, Jr.
Roenthal, Sol — Fellow — Emeritus
Rowe, Charles J.
Rubin, Maury I.
Sanderson, George A.
Saputo, Albert J.
Saunders, George A.
Schneider, Andrew L.
Seiferth, Solis — Fellow
Silverstein, Edward B.
Simont, R. T.
Singer, Maurice
Smith, Thomas B.
Staub, Guy M.
Stoffle, M. Wayne
Suchke, Frederick R.
Thomson, John H. — Emeritus
Treppagnier, Horace E.
Tsao, Edward M. Y.
Underwood, H. T.
Valladares, Rene
Verge, Ernest E.
von Oshoff, Frederick V.
Wagner, Leo F., Jr.
Wicker, Chester
Wills, Norman J.
Wilson, Samuel Jr. — Fellow
Wolf, Albert J., Jr.

JUNIOR ASSOCIATE MEMBERS
Weinstein, Norman J.

HONORARY ASSOCIATE MEMBERS
Donaldson, Joseph, Jr.

ASSIGNED ASSOCIATE MEMBERS
Olsen, Ole K.

Publications Committee: Lemuel W. McCoy, Chairman
Mark P. Lowrey
Robert L. Drew
Ernest E. Verges
H. Mortimer Favrot, Jr.
Tilghman G. Chachere, Jr.
Raymond J. Boudreaux
Mary Mykolyk

New Orleans Architect is published monthly
by the New Orleans Chapter of the American Institute of Architects in conjunction with
Construction News, Inc. Opinions expressed herein are those of the contributors and not
necessarily those of the New Orleans Chapter,
A.I.A. Inquiries may be addressed to
510 Esplanade Ave., New Orleans 16, La.
An open front with dramatic interest was essential to command attention from the passing motorists. The chosen lot fronts on a major boulevard which has considerable afternoon and evening traffic. This eastern exposure with brilliant light indicated that some form of sun control must be provided to protect the glass areas. Control of the display area was accomplished by recessing the glass wall, while the second floor area is protected by stationary aluminum louvers.

Encouraging the public use of second floor operator training facilities without passenger elevator service indicated an inviting open stairway in the prominent corner location.

The side street provides access to off-street parking, shipping and receiving.

Construction consists of spread footings, cast-in place peripheral columns and beams and prefabricated interior concrete columns, beams and channel floor slabs. Two steel plates, one anchored into beam and one into column, produce continuity of the structure by job welding. Lightweight concrete was poured over the channel slabs to provide a smooth floor for the asphalt tile. Interior office walls are of wood stud and gypsum board with stair and toilet area walls of masonry. Ceilings are acoustical tiles in all areas.
BUNCHE VILLAGE GYMNASIUM

Representing the first joint ownership project with the Jefferson Parish Playground Department and the Jefferson Parish School Board, this 15,000 S. F. Gymnasium is scheduled for completion in November 1963.

The facility includes seating for 750 spectators, rooms for arts & crafts, ceramics, classrooms and meeting rooms and locker room — dressing rooms for boys and girls.

ARCHITECT — RICHARD C. MOULEDOUS
MECH. & ELEC. ENGINEERS — EDWARD M. ALBA & ASSOC.
STRUCTURAL ENGINEERS — J. J. KREBS & SONS
CONEY EQUIPMENT COMPANY
04 St. Claude Avenue New Orleans 17, La.
Whitewall 3-6676
Shepard Home Elevators
Rotary "Levelator" Lifts
Living Shelter" Fallout Shelters
Ultra-High Pressure Pumps & Valves

We Test Water
and give you proper
recommendations for treating it —
so that your boilers —
heating units —
air conditioning systems and
cooling towers perform properly
Specialized Engineering Service for the Correction of
Cooling & Heating Water Problems in Industry — Slime
& Algae Control — Corrosion Control — Water Treatment
Consulting Service
ACCURATE INDUSTRIES, INC.
Telephone 949-8315
2831 New Orleans Street
New Orleans 19, La.

Pittsburgh Testing Laboratory
Established 1881
Inspecting Engineers and Chemists
New Orleans Office
724 Central Ave.
Veron 5-0341
P. O. Box 10398
New Orleans 21, La.
Branches in all Principal Cities
Approaching a quarter of century of Architectural
Specification assistance and Technical advice.
Resilient Floor Tile
Wall Covering
BROWN and DAMARE', INC.
633 So. Broad St.
New Orleans 19, Louisiana
Distributors & Factory Representatives
Dealer Sales Only

S. K. Whitty and Co., Inc.
Pile Driving
Prompt, Friendly Service
3600 Desire St.
New Orleans 26, Louisiana
P. O. Box 26186

Cash and Save
Refinished Wall Paneling $3.84 up
12 x 12 x 1/2 Ceiling Tile $.10 1/2
9 x 9 Vinyl Floor Tile .09 1/2
4 x 8 x 1/4 Prefinished Birch 7.98
Disappearing Stairs 15.93

Lumber • Plywood • Paints
Plywoods, Inc.
7300 Washington Ave. HU 6-6277
New Orleans, Louisiana
new dimensions in creating with masonry

FOR DISTINCTIVE INTERIORS
SELECT VERSATILE ACME BRICK

Truly the designer's material, Acme Brick, in almost countless colors, textures and combinations, makes possible the creative expression of any interior mood or functional requirement.

One course of Acme Brick will give two lateral walls that will never need finishing or upkeep. Acme Brick floors can be laid in many patterns with or without mortar, and will retain their good looks with a minimum of routine care.

Genuine new burned clay Acme Brick can never fade or wear. It cushions sound and diffuses light. Fire insurance premiums are much lower in many areas on fire-resistant clay masonry. Heating and air conditioning costs are lower because of its excellent insulating qualities.

Visit soon with your Acme Brick representative and investigate fully the unique creative opportunities possible with interiors of Acme Brick.

ACME BRICK COMPANY
Since 1891 • Sales offices in principal cities
GENERAL ELECTRIC COMPANY'S New York World's Fair attraction, created by Walt Disney, will feature life-size talking figures that seem almost real, a dramatic demonstration of the thermonuclear process by which the sun and stars achieve their tremendous energy, and a six-stage auditorium where audiences move from stage to stage without leaving their seats.

The attraction will be known as "General Electric Progressland" and will be presented in a three-story dome-shaped pavilion which is the first of its kind in the world. The interior of the dome will provide what is believed to be the largest projection screen ever built.

Theme of the Progressland attraction will be the ways in which electricity, put to use for human betterment, is changing our world and our lives.

Steven C. Van Voorhis, manager of the Company's World's Fair operation, estimates that 14 million Fair-goers will visit the General Electric pavilion between the April 22 opening next year and the final closing in the fall of 1965. The circular building is already nearing completion at the edge of the Fair's "Pool of Industry."

(Continued on following page)

"General Electric Progressland"

A unique 200 ft. in diameter dome formed by steel tubes will support the roof over General Electric's pavilion in the 1964-65 New York World's Fair. Designed by Welton Becket and Associates, architects and engineers, the roof spans a three-level show featuring six 234-seat theaters revolving around a fixed stage.
Critical Path Method (CPM) chart used with the General Electric 225 computer, is helping to speed completion of the G-E World’s Fair Attraction. James G. Rebela, operations manager of the G-E World’s Fair Attraction, (left), and S. C. Van Voorhis, manager of the G-E World’s Fair operation, check over progress on the project with a scale model of the company’s World’s Fair building to guide them.

"General Electric Progressland"
(Continued from page 3)

Rising 30 feet high, the pavilion is topped by a 200-foot-diameter dome, containing on its inner surface the enormous full-circle projection screen. The screen will be used for projected effects simulating the awesome forces of nature.

Visitors will enter the white-and-blue structure on a moving ramp which will take them directly to the second floor’s “Carousel of Progress.”

Mr. Van Voorhis said the second floor will contain the first auditorium ever designed to accommodate several audiences at one time, each watching shows on different stages. The stages will be stationary, forming the core of the second floor. The audiences will be moved around them without ever leaving their seats—remaining before each stage three to four minutes.

Seating 1,500 persons, the entire six section auditorium will move as a single unit around the stationary stages. As the auditorium moves, the whole second floor area—viewed from outside—will appear to rotate.

The presentation will dramatize the contribution of electricity to the progress of better living in America, from the Gay Nineties up to the Fair years. This story will be told through electronically-controlled animated figures which are expected to prove one of the highlights not only of the General Electric attraction but of the entire Fair.

It is believed the mechanical-electrical figures, invented by Walt Disney, will represent the closest approach ever made by science to the creation of characters that look and talk like people. The “Audio-Animatronic” figures are being created especially for the Progressland attraction by Mr. Disney’s WED Enterprises at Glendale, California.

A “time tube” equipped with a moving ramp will take visitors from the “Carousel of Progress” to the third floor, where they will pass through a “corridor of mirrors” illustrating advanced work in General Electric laboratories. They will then enter the huge observation area directly beneath the dome.

Completely free of obstructing pillars, the dome is expected to constitute the most unusual planetarium-like facility ever devised. A lightning storm and the flames on the surface of the sun are among the awesome forces to be represented in the sights and sounds projected across the vast interior of the dome.

A demonstration of the basic process by which the sun and stars achieve their tremendous energy will climax the pavilion’s show, which traces man’s quest for new and more powerful sources of energy. Creating temperatures up to 30 million degrees C., this will be the first demonstration of nuclear fusion ever exhibited to the general public.

The spectacular visual and sound effects of the fusion demonstration will be witnessed in an 80-foot-deep centerwell, as the visitors descend from the third to the first floor by an open ramp which spirals down the center core of the pavilion.

The demonstration is being developed by the General Electric Research Laboratory and, with final safety approvals from various State agencies, will be operated under the direction of the Laboratory’s scientists. It will point up the prospects of fusion as a distant future source of unlimited and controllable energy to turn deserts into gardens and to boost living standards all over the world.

Visitors will complete their tour of the pavilion on the first floor with a walk up the main street of a model community to be known as “Medallion City.” They will be free to step inside such Medallion City attractions as a model home, school, hospital, town hall, store, factory, newsreel theater, electric utility, and space observatory. All will be equipped with the latest products available from the Company’s various manufacturing plants at the time of the Fair.

Mr. Van Voorhis said “Progressland” will include not only products and developments of today but, in addition, nearly all the major unclassified projects now underway by the Company’s science and engineering laboratories—such as the development of new sources of electric power.
Unusual auditorium in which audiences move from stage to stage without leaving their seats is illustrated in this second floor section of scale model representing the General Electric Pavilion designed for the New York World's Fair.

An actual demonstration of the thermonuclear fusion process by which the sun generates its energy, indicated in this artist's concept, will be one of the highlights at the "General Electric Progressland" attraction being planned for the New York World's Fair.
Schokbeton --

A New Version
Of Concrete

Schokbeton originated more than 30 years ago in Holland, where it has since become the foremost process for producing architectural concrete elements throughout Europe.

The resultant patented method for molding superior quality precast concrete elements that evolved is comparatively simple in explanation, though the execution is a carefully controlled production. The Schokbeton process involves placing a scientifically designed stiff mix of concrete (zero slump) into molds of intricate form. This is accomplished by a low frequency impact of "shock" that consolidates the material without segregation, resulting in qualities of great strength, exact tolerances, sharp arrises, high density, and low absorption.

The versatility of the Schokbeton process is demonstrated by the contrast of the free-form and rigidly rectangular as combined in the American Cyanamid Co. headquarters, Wayne Township, N. Y. Vincent G. Kling, architect.

The introduction of Schokbeton to the United States was made by George J. Santry, in 1959. Santry, now operating president of Schokbeton, was an international trade expert who had observed the use of Schokbeton in the rehabilitation of war-torn Dutch cities, and was greatly impressed.

He joined the company and after several years there, was able to arouse the interest of several well known architects, including Yamasaki and Belluschi, as a result of a period of market testing of the product. Qualified franchisers were selected, first in New York and next in Chicago. Now it is available in Maine, New Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island, New York, New Jersey, Maryland, Delaware, Washington, D. C., Virginia, Pennsylvania, Ohio, West Virginia, Wisconsin, Illinois, Indiana, Michigan, and throughout Eastern Canada and Puerto Rico. A plant is presently under construction in Florida, and additional plants will soon serve the South and West.

At first attracted by its unique quality of producing exceptionally dense water tight surfaces with infallible certainty, and its high strength, more and more architects are looking to Schokbeton for its attractive and almost unlimited design possibilities.

This versatile process permits the casting of sections up to 12 by 40 feet with obvious economies of production. The most delicate detail is possible—even allowing reinforced sections of Schokbeton shaved down to a thin two-inch thickness.

One of the most striking applications of Schokbeton can be found in the Banque Lambert in Brussels. Designed by Skidmore, Owings & Merrill (New York office) the impressive structure features cross-shaped Schokbeton units joined by stainless steel connectors at the halfway point between floors and ceilings. Honed to a smooth finish, it fits comfortably into the background of neighboring structures in complete compatibility with their limestone facings so familiar on the European scene.

One of the first structures in the United States to employ panels of Schokbeton was a motel on Long Island. An illustration of the wide range of ideas possible with Schokbeton, it features an interesting design in panels of smooth and rough concrete made possible by using retarder on certain portion and later brushing away the cement paste to expose the aggregate.
The sculptural quality possible with the plasticity of Schokbeton precast concrete is evidenced by the Rutgers University Engineering Building, New Brunswick, N. J. Architect: Frank Grad & Sons.

Decorative, intricate panels . . . such as this one are possible when designing building utilizing Schokbeton precast components.

A dramatic demonstration of the resistance to weather is the use of Schokbeton at Thule Air Base in Greenland, where great variations of temperature, including extreme cold, are common.

The process has been widely used in Puerto Rico and in Europe, and there are hundreds of further examples of Schokbeton here in the United States. A successful combination of beauty and efficiency is reflected in Philadelphia's Police Administration Building, one of the first major buildings in this country designed to use Schokbeton. Its exterior, a latticework of structural windows, is a good example of the freedom and structural interdependence the precast units can offer.

The textural qualities possible with Schokbeton are exemplified in the B. Altman Department Store, White Plains, N. Y.; architect/engineer, Abbot Merkt & Co. Special aggregates can be used for decorative units; they can be revealed by etching with acid, sandblasting, or bushhammering.
Surgical gowns, gloves, and masks are standard work clothes in the new sterile room at Philadelphia Laboratories, Inc., Roosevelt Blvd. and Blue Grass Rd., Phila., Penna.

The sterile room is one of the leading product quality control features in the new 50,000 sq-foot plant located on a six acre plot in Northeast Philadelphia. To prevent contamination, the sterile room is isolated from the remainder of the plant. Its air is purified by ultraviolet lamps and electrostatic type filters, and pressurized to prevent entry of air and dust from the exterior areas. Drug containers are brought into the room directly from autoclaves where they have been sterilized. The containers—ampules and vials—are filled with drugs and sealed in the room, then transported out for packing.

This sterile room is believed to be one of the first in the industry to have walls with an epoxy resin coating. This was spray-applied over concrete block and sheet rock. The coating is a polyamide-cured material having a tough, durable finish. Besides being easy to maintain, it is particularly suitable for sterile rooms since it leaves a smooth surface with no crevices for collection of dust and harmful bacteria. (The wall coating is Ply-Tile 520 by M. A. Bruder Co., Philadelphia.)

Philadelphia Laboratories manufactures and packages a wide range of pharmaceutical products—injectables, tablets, and capsules, including vitamins, steroids and anti-biotics—for independent distributors, larger drug companies and government agencies.
Up Big Cottonwood Canyon in Utah, a crystal mountain creek pushes lazily down the canyon. That's the setting for Maxfield Lodge, popular dining spot of the Salt Lake City area. Big view windows glazed with Thermopane insulating glass line the entire elevation overlooking the creek, lending an assist to capturing the open world atmosphere created by the rugged mountain location. Inside, diners look out onto the stream and upward at the rocky slopes as they climb heavenward above the floor of the canyon. Maxfield Lodge is at Brighton, Utah, 18 miles southeast of Salt Lake City. Architects were Lamoine & Nicholatis, of Salt Lake City.
CIRCULAR BUILDING
Designed For Union Federal

Circular in shape, the new Union Federal Savings & Loan in Rossmoor Center, Los Alamitos, Calif., features walls of glass and a clerestory with tinted windows. Designed by Burke, Kober & Nicolais, Los Angeles architectural and engineering firm, the new building has 5,000 square feet of office space.

Contemporary architecture, highlighted by its circular shape and glass walls, is featured in the new branch office building of Union Federal Savings and Loan Association in Rossmoor Business Center, Los Alamitos, Calif.

Burke, Kober & Nicolais, Los Angeles architectural and engineering firm, has designed the 5,000 square foot steel and reinforced concrete structure, which is built on a pebbled concrete platform.

A walk-way with metal railing on the perimeter of the platform, completely encircles the exterior of the building, and is shaded by the pebbled flat roof overhang.

To illuminate the center core of the building which contains a work area, Burke, Kober & Nicolais designed a clerestory with tinted windows. Bright blue mosaic tile decorated the dome above the windows.

Teak paneled walls and teak counters are used throughout the interior with flooring in a light terrazzo. The glass walls on the front semi-circle of the building create a light and airy atmosphere in the interior.

Recessed ceiling lighting is installed in the air conditioned and soundproofed building.
dome shell roofs
a.i.a. file: 4-a

Prepared as a service to architects by Portland Cement Association

Designing for long spans and column-free space. The basic dome shell of concrete is architecturally important today for both practical and aesthetic reasons. Because strength is inherent in the shape, shell roofs in the United States are being designed with thicknesses of as little as 2½ inches.

Dome shells are especially suitable for structures such as gymnasiums where spans are long and column-free space is required. As seen from the table below, shell thickness varies with length of span and curvature of dome.

Domes may be pierced as desired for natural light, or appropriate domed or flat-fixed lights may be used.

Get complete technical literature on additional aspects of concrete dome shell design, as well as other applications of concrete. (U.S. and Canada only.) Send a request on your letterhead.

Volume of concrete in the dome (cu. yd.)

\[D^2 \left(\frac{t+1}{16.25} \right) \]

\[360 \]

D in feet, t in inches

DOME/SPAN DATA

<table>
<thead>
<tr>
<th>D</th>
<th>t</th>
<th>(\phi)</th>
<th>a</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>100'</td>
<td>3'</td>
<td>30</td>
<td>13.4'</td>
<td>100'</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>20.7'</td>
<td>70.7'</td>
<td></td>
</tr>
<tr>
<td>125'</td>
<td>3'</td>
<td>30</td>
<td>16.8'</td>
<td>125'</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>25.9'</td>
<td>68.4'</td>
<td></td>
</tr>
<tr>
<td>150'</td>
<td>3½'</td>
<td>30</td>
<td>20.1'</td>
<td>150'</td>
</tr>
<tr>
<td>(3')</td>
<td>45</td>
<td>31.0'</td>
<td>106.0'</td>
<td></td>
</tr>
<tr>
<td>175'</td>
<td>4'</td>
<td>30</td>
<td>23.5'</td>
<td>175'</td>
</tr>
<tr>
<td>(3½')</td>
<td>45</td>
<td>36.2'</td>
<td>123.7'</td>
<td></td>
</tr>
<tr>
<td>200'</td>
<td>4½'</td>
<td>30</td>
<td>26.8'</td>
<td>200'</td>
</tr>
<tr>
<td>(4')</td>
<td>45</td>
<td>41.4'</td>
<td>141.4'</td>
<td></td>
</tr>
</tbody>
</table>

Note: Shell thickness \(t \) is usually increased by ½ to 1½ per cent near the periphery.

PORTLAND CEMENT ASSOCIATION

A national organization to improve and extend the uses of concrete

611 Gravier Street, New Orleans 12, Louisiana
EKCO DISTRIBUTORS, Inc.

Distributors of
WOOD FOLDING DOORS & PARTITIONS
and
OTHER TOP QUALITY BUILDING SPECIALTIES

4102 ST. CLAUDE AVE.
NEW ORLEANS 17, LOUISIANA

WH 9-4821
7-0355

RESIDENTIAL AND INCOME PROPERTY

MORTGAGE LOANS

F. H. A. - G. I. Terms

75% Conventional at Low Interest Rates

225 Baronne St.
Phone 525-5273

"Visit our showroom"

ROUBION
TILE & MARBLE CO
CONTRACTORS

- CERAMIC TILE
- VINYL TILE
- ACID PROOF FLOORS

1128 Dublin St.
Phone 866-3677

New Orleans, La.

A. G. SIEGEL
ELECTRICAL CONTRACTOR

4136 Jefferson Highway
New Orleans 21, Louisiana
DELTA MORTGAGE CORPORATION

DOUGLAS L. BLACK, President
CLAUDE E. MEYER, Vice Pres. & Secty.
EMMETT ST. GERMAIN, Vice President

802 Perdido Street New Orleans 12, La.
Telephone 523-6221

COMMERCIAL — INSTITUTIONAL — RESIDENTIAL FINANCING

BRANCH OFFICES
BATON ROUGE — SHREVEPORT — MONROE

W. D. FAUST
Electrical Sales Agency
manufacturers representative

- THE MILLER CO. (Since 1844)
 Industrial & Commercial Lighting

- CENTURY LIGHTING, INC.
 Stage Lighting — Control Systems

- N. L. CORPORATION
 Church Lighting Since 1904

- SILVRAY LIGHTING, INC.
 Indirect Lighting for seeing comfort

833 HOWARD AVE. JACKSON 2-5791
NEW ORLEANS 12, LOUISIANA

DAVIS MANUFACTURING CO., INC.
MILLWORK — SASH & DOORS
PHONE HU. 6-6201
1075 S. CLARK STREET NEW ORLEANS, LA.

CUSTOMUSIC
Music to please
and profit by

in plants and offices; in stores and shopping centers;
in banks and savings and loan associations; in trans­
portation terminals; in business and institutions of every
kind and type.

J. H. LYNCH CO., INC.
Phone 866-9657
1601 S. GAYOSO STREET • NEW ORLEANS

This publication comes to you through the courtesy of
the Sponsor, whose name appears on the front cover,
and the responsible group of firms listed on these pages.
Specify **full HOUSEPOWER**
for your clients . . .

- **ENOUGH ELECTRIC OUTLETS** so lamps and appliances can be plugged in without moving furniture or using extension cords.
- **ENOUGH BRANCH CIRCUITS** of proper size to distribute electricity properly and prevent blown fuses—plus spare circuits for the future.
- **ENOUGH LIGHTS and SWITCHES** properly placed so there's never any need to grope around in the dark.
- **ELECTRIC SERVICE ENTRANCE** of at least 100-ampere capacity to take care of today's electrical needs—and tomorrow's, too.

A. F. LIVAUDAIS COMPANY

Building Specialties
- MOVABLE OFFICE PARTITIONS
- ELEVATED FLOOR SYSTEMS
- LAMINATED ARCHES & BEAMS
- ARCHITECTURAL METAL SOLAR SCREENS & FACADES

816 HOWARD AVE. PHONE 529-4408
NEW ORLEANS 12, LOUISIANA
THE ARCHITECT

The word architect, like many words derived from the Greek, is made up of two parts: archi—"chief", and tecton—"a builder." Thus the original meaning of the word explains a union of designing and building activities, a union which the architect maintained up to the middle of the 19th century. At that time, he was thought of more as a designer than as a builder. Architecture was seen as a "fine art", and transferred from the outdoors to an inside atelier, where it remained for nearly 100 years.

Today's interpretation of architecture places the architect somewhat nearer to that original meaning of the word. But the complex social and technical conditions of our highly industrialized society no longer makes that original union of designing and building quite possible.

An architect is a composite personality made up of two basic ingredients: the artist and the technician. As an artist, the architect possesses qualities which artists have possessed throughout the ages; an extraordinary imagination, and a keen awareness and expression of feelings.

As a technician, an architect must possess more than a speaking acquaintance with the available building materials and technology of his day; he must follow the ever-growing variety of equipment and appliances which form the core of modern building.

Today's architect comes closer than ever to fulfilling his historic mission by serving as "chief builder."
ARCHITECTURAL MILLWORK AND FIXTURES

Bernard LUMBER COMPANY, INC.
NEW ORLEANS, LA., P. O. BOX 19408

TOP QUALITY MILLWORK — ARCHITECTURAL FIXTURES — CONSTRUCTION LUMBER — WHITEHALL & BRAN
DOM KITCHENS — ARCHITECTURAL FORMICA WORK — PLASTI-CLAD DOORS — PANI-FLEX- FOLDING DOO
UNITS — TABLES — BARS — PANELLING
7833 Edinburgh Street NEW ORLEANS 19, LOUISIANA 1017 Jefferson Highway
HU 8-0814 VE 5-2536

New Orleans Blue Print & Supply Co.
Architectural and Engineering Supplies
Surveying Instruments — Drafting Room Furniture
Blue Printing — Photostat Prints
Super Photostat Prints — Photo Murals
Phone JA 5-4271
820-824 Union Street New Orleans 12, La.
Authorized Representatives KEUFFEL & ESSER CO.
HOBOKEN, NEW JERSEY

C. R. BRANDON CO.
"Screening the Gulf Area Since 1920"

KoolShade® DISTRIBUTOR
SOLAR HEAT and GLARE CONTROL
• KoolShade CORP.
• KANE MFG. CORP.
421 So. Salcedo St.
HU 2-6921
New Orleans 19, La.

ARKLA-SERVEL
GAS AIR CONDITIONERS
SELF CONTAINED AND REMOTE
CHILLER-HEATER UNITS
GULF ENGINEERING CO. INC.
1000 So. Peters Street New Orleans, Louisiana
JA 2-4421

See Our Fine Displays of
LOCKWOOD HARDWARE and ELJER PLUMBING FIXTURES
Woodward, Wight & Co. LTD.
THE LARGEST GENERAL SUPPLY HOUSE SOUTH SINCE 1867
451 HOWARD AVE. • NEW ORLEANS 9, LA.
TELEPHONE 524 - 2471
Guarantee Yourself

SKILLED CRAFTSMEN

For Every Piping Need

The Pipe Council of Greater New Orleans, 866-7541, can provide you a mechanical contractor who specializes in meeting your particular piping requirements. This may be the installation, repair and maintenance of industrial process piping in plants or plumbing, heating and air conditioning systems in industrial and commercial buildings. Whatever your need, the Pipe Council can guarantee a mechanical contractor to serve you!

Dealing with a member of the Pipe Council assures you
A Completely Bonded, Licensed Company
Fully Trained, Union Journeymen
Highest Quality Materials
Competitive Prices
Prompt Service
Reliable Performance
Guaranteed Installations

THE PIPE COUNCIL OF GREATER NEW ORLEANS
1420 South Jefferson Davis Parkway / Telephone: 866-7541