Huron School, Huron, Ohio, designed in architectural concrete by Harold Parker and C. Edward Wolfe, associate architects of Sandusky, Ohio. R. C. Reese of Toledo was structural engineer. Contractor was the Juergens Co., Lakewood, Ohio.

Roof over gymnasium and auditorium areas is series of reinforced concrete barrel shells. Acoustical lining was cast with the concrete in the gymnasium area. Roberts & Schaefer Co., Chicago, was consulting engineer on this roof design.

Architectural Concrete

fits your requirements for School Buildings

Firesafety, strength, durability and low annual cost, as well as any desired architectural appearance are obtained economically with architectural concrete construction.

In the architectural concrete school building at Huron, Ohio, latest technical information was applied to the handling of control joints, form detailing and floor and roof designs. This expedited construction and assured long life with reasonable maintenance expense.

Beyond the advantages of strength, firesafety and fine appearance—concrete gives owners low annual cost, the true measure of economy in buildings.

We have literature especially prepared to assist in architectural planning for educational buildings. Free in United States and Canada.

PORTLAND CEMENT ASSOCIATION

347 MADISON AVENUE, NEW YORK 17, N. Y.

A national organization to improve and extend the uses of concrete... through scientific research and engineering field work.
For every style and price requirement...

Case
Vitreous China Lavatories

WINDELL #785. Matches the Case One-Piece® Water Closet in design and quality. Square basin, anti-splash rim, ledge back lavatory. 24" x 20".

VILLARD #850. Front overflow, anti-splash rim, slanted control panel, and pap depression. 22" x 18" and 24" x 20".

COSMETTE #940. Square basin lavatory with control panel recessed in integral shelf. 20" x 14½" and 24" x 17½".

AVON #912. Wall hung lavatory with 6" back. Excellent quality and convenience at moderate cost. 20" x 18".

WINCHESTER #923. A popular low-cost fixture with spacious oval basin, front overflow. 18" x 15½" and 19" x 17".

There is no need to depart from Case quality, whether you are planning custom-built homes, low-cost housing, or commercial, industrial, or institutional structures.

These examples show how conveniently you can meet every requirement of utility and appearance—at a price befitting the job—while providing the most advanced engineering and dependable performance. The line of Case water closets and urinals is no less complete. For distributors, see your Classified Telephone Directory, or write W. A. Case & Son Mfg. Co., 33 Main St., Buffalo 3, N. Y. Founded 1853.

Case
Fine Vitreous China
Years from now this GE Office-Warehouse will still have window appeal — it features Lupton Master Aluminum Windows with these tangible advantages:

special aluminum alloy frames and members that eliminate painting—drastically cut maintenance and repair bills . . .

efficient operating life through carefully fitted parts — manufacturing processes developed through forty years experience . . .

positive weather control through ventilators that fit snug and tight naturally, without forcing . . .

smooth trim lines that blend with any architectural scheme — windows become an integral design feature of the building.

You will find Lupton Master Aluminum and Steel Windows worth investigating — and specifying. Write today for the General Catalog, or see it in Sweet's — both give complete data for all types of Lupton Windows.

MICHAEL FLYNN MANUFACTURING CO.
Main Office and Factory, Philadelphia 24, Penna.

51 E. 42nd St., New York 17, N.Y. • Bond Bldg., 14th St. and New York Ave., Wash. 5, D.C.
116 S. La Brea Ave., Los Angeles 36, Cal.

Member of the Metal Window Institute and Aluminum Window Manufacturers Association

LUPTON METAL WINDOWS
Here is the most diversified line of packaged centrifugal fans available. There are 103 models with capacities from 360 to 18,300 c.f.m. There are direct drive, belt drive, slow speed and non-overloading types, each carefully designed to do a specific job well. More and more architects, engineers and contractors are specifying and installing Herman Nelson Unit Blowers for the wide range of models insures a unit of the exact capacity needed. Herman Nelson Unit Blowers are compact, easy to install and have inherent ability to deliver or exhaust large quantities of air efficiently.

Herman Nelson Unit Blowers pace the field because constant engineering development and research has resulted in functional, highly efficient units—the result of 45 years of experience in the production of heating and ventilating equipment.

You can judge a unit blower by its fan wheel

The heart of every unit blower is its fan wheel and here is where Herman Nelson superior engineering shows up. All the latest findings of aerodynamic science are put to work in the design of these fan wheels.

Every fan wheel installed in Herman Nelson Unit Blowers is statically and dynamically balanced before assembly. After assembly, the entire unit is carefully tested at the speed it is to operate within the system. It is also tested at maximum recommended speeds.
Why does "rain" often form inside roof spaces of a crowded store or school? (pages 19, 32)
Why does moisture gather on a water-and-vapor-proofed concrete floor? (page 32)
Why is it wrong to vent cold roof spaces to a warm inside space? (page 33)
Does a concrete floor slab lose heat only at the edges? (page 40)
Do "dead air spaces" exist with respect to heat flow? (page 16)
Why do metals radiate and absorb less heat than wood, plaster, rockwool? (pages 13, 46)
Why replace low-conductive air with denser materials of greater conductivity, i.e. ordinary insulation. (pages 11, 13, 14, 29)

The answers to these and numerous other problems of heat and vapor flow are found in the pages of the Revised Fifth Edition of SIMPLIFIED PHYSICS of Vapor and THERMAL INSULATION

By Alexander Schwartz

Written in simple language easy to understand, yet accurate and complete enough to gratify the scientist. Crammed with information the engineer, architect, public official, builder, contractor, insulator, heating installer, need. Hundreds of universities and technical schools use previous editions as a text. 56 pages of Facts, Figures, Charts, Illustrations, and Explanations of Heat and Vapor Flow; Vapor Permeability; Condensation; Dry Rot; Conduction and Density; Convection; Radiation and Emissivity; Reflection and Absorption. Suggests solutions and illustrated techniques for practical problems of insulation installation, condensation, protection against heat loss or intrusion, radiant heating; cold storage.

TABLE OF ABSORPTIVITY AND EMISSIVITY OF MATERIALS

Plus, Revised and Amplified, the Famous CHART OF THERMAL INSULATION VALUES

These 2 charts are indispensable to anyone interested in building and heating. THE VALUABLE MANUAL IS FREE! Just fill in the coupon below.

INFRA INSULATION, INC.
525 Broadway, N.Y., N. Y. Dept. E5
Please send FREE "Simplified Physics of Vapor and Thermal Insulation."

Name
Connection
Address
Send Infra Insulation prices.
Send Infra sample.

INFRA INSULATION, INC.
525 Broadway, New York, N. Y.
WORTH 4-2241
The Holy Sepulchre Mausoleum, Oakland County, Michigan, is a superb and mighty combination of marble and bronze, with a beauty in every way appropriate to the solemn purpose of the building.

Noteworthy and complimentary is the large amount of Anaconda Architectural Bronze used on the exterior and interior. Mr. Lawrence Michaels, President of The Michaels Art Bronze Company, Inc., Covington, Kentucky, reported that a total of 13,870 pounds was supplied.

Countrywide, bronze is time and again preferred for its warmth of character... its lasting ability to add grace and dignity to all types of structures. For information about Anaconda Architectural Bronze, write The American Brass Company, Waterbury 20, Conn.; Buffalo Branch: 70 Sayre St.; District Sales Offices: Buffalo, New York City, Rochester, Syracuse.

NOTE: The use of copper and copper alloys is now subject to the regulations of The National Production Authority.

Anaconda® architectural bronze
BECOME MONUMENTAL... when you Specify HANLEY DURAMIC BRICK

Chrysler Building East
Architects: Reinhard, Holmeister & Walquist

You may obtain Hanley DURAMIC Brick in the following controlled shades:

- 501 Pearl Grey
- 525 Pearl Grey—medium Speck
- 623 Limestone—light Speck
- 723 Pearl White—light Speck
- 725 Pearl White—medium Speck
- 729 Pearl White—heavy Speck
- 824 Oyster Grey—medium Speck

Built with Hanley #824 Oyster-Grey medium-speck DURAMIC Brick, the monumental Chrysler Building East is one of the newest industrial edifices to appear in the modern American skyline.

This imposing structure has that same dominant look of luxury and prestige so typical of all buildings constructed with Hanley DURAMIC Brick.

Impervious to stain and entirely resistant to climatic changes, Hanley DURAMIC Brick will retain its newness throughout the years. These facts are impelling architects the country over to Specify Hanley DURAMIC.

HANLEY COMPANY INCORPORATED
101 PARK AVENUE, NEW YORK 17, N. Y.
14545 Schaefer Highway, Detroit, Michigan
A glance at this pleasing school exterior shows plainly that the interior is also completely satisfying.

Large openings, making a "window-wall" of Hope's Steel Windows in each classroom, give full daylight and an easily adjusted brightness pattern, providing correct natural illumination on every desk.

Clear glass set in narrow steel frames offers the restfulness and hygiene of distant vision to young eyes that need frequent relief from close work.

Note also that the ventilating casements are convenient to operate and assure perfect control of fresh outdoor air.

Such school rooms foster superior health records. Also, when Hope's Steel Windows are used, they provide most satisfying records of economy in construction and maintenance.

Write for Hope's Catalog and illustrations of school fenestration. Hope's Engineering Department, experienced in hundreds of school window installations, is at your service.

HOPE'S WINDOWS, INC., Jamestown, N. Y.
THE FINEST BUILDINGS THROUGHOUT THE WORLD ARE FITTED WITH HOPE'S WINDOWS
The trend of school construction, as indicated in the Ithaca College addition, Ithaca, N. Y., is toward the use of Flexicore precast concrete floor and roof slabs for numerous reasons!

First, and most important, this project was built for less than 50 cents per cubic foot, including architect's fee, less landscaping and less Venetian blinds.

Second, because of the economy arising out of the high production plant methods.

Third, ease and speed of installations. Flexicore precast slabs are taken directly from the delivery truck to the floor or roof.

Fourth, saving in job time. There is no complicated form work when Flexicore is used; no pouring or curing of concrete on the job.

Fifth, Flexicore exposed finished ceiling was used, and required only paint for decoration... an economy in saving plaster on the ceiling.

Sixth, Flexicore provides for simple, clean construction.

There are many other advantages. Flexicore is fire-safe. It is excellent for use over crawl spaces, swimming pools, shower rooms, or in any areas where moisture is a problem. Flexicore does not deteriorate under moisture conditions.

Flexicore also is excellent where non-combustible material is an advantage, such as in boiler rooms, school bus garages or record storage vaults.

OTHER ANCHOR PRODUCTS
Streetscocre Precast Floor and Roof Slabs.
Calcrete, Cinder and Concrete Blocks.
Anchor Silicate, a high quality transparent water repellent for all masonry surfaces.
Precast Lintels and Sills.

DISTRIBUTORS FOR
Dur-O-Wall steel reinforcing for masonry walls.
Medusa Portland Cement Paint, for concrete wall surfaces.
Medusa Floor Coating, for concrete floors.

ANCHOR CONCRETE PRODUCTS INC.
WABASH AVE., AT 2450 WILLIAM ST.
BUFFALO 6, N. Y.
Empire State Architect

THE OFFICIAL PUBLICATION
NEW YORK STATE ASSOCIATION OF ARCHITECTS

BOARD OF DIRECTORS

OFFICERS
President
Donald Q. Faragher
Rochester Society
Rochester Powers Bldg., Rochester 4, N. Y.

1st Vice Pres.
Adolph Goldberg
New York Society
164 Montague St., Brooklyn 2, N. Y.

2nd Vice Pres.
G. Morton Wolfe
Buffalo-W. N. Y. Chapter
1377 Main Street, Buffalo 8, N. Y.

3rd Vice Pres.
Harry M. Prince
New York Chapter
101 Park Avenue, New York 17, N. Y.

Secretary
John W. Briggs
Central N. Y. Chapter
311 Alexander St., Rochester 7, N. Y.

Treasurer
Maxwell A. Cantor
Brooklyn Society
443 East 5th St., Brooklyn 18, N. Y.

PAST PRESIDENTS
James Wm. Kidney
Buffalo-W. N. Y. Chapter

Charles R. Ellis
Syracuse Society

Matthew W. Del Caudillo
New York Society

C. Storrs Bayross
Rochester Society

Henry V. Murphy
Brooklyn Chapter

DIRECTORS
Harry A. Yarish
Brooklyn Society

Sigmund W. Schellkopf
Eastern N. Y. Chapter

Frederick H. Voss
Westchester Chapter

Conway L. Todd
Rochester Society

George J. Cavaliere
New York Society

S. Elmer Chambers
Syracuse Society

William Farrell
Bronx Chapter

Victor V. Martelli
Long Island Chapter

Roswell E. Pfohl
Buffalo-W. N. Y. Chapter

Carl W. Clark
Central N. Y. Chapter

Charles S. Ward
Queens Chapter

Marty Weston
Brooklyn Chapter

Theodore Koch
Staten Island Chapter

Daniel Schwartzman
New York Chapter

PUBLICATION COMMITTEE
Charles Rockwell Ellis
Chairman

George Dick Smith, Jr.
Editor

Warren Neal White
Managing Editor

A. Henry Detweiler
Carl W. Clark
Don Chas. Hershey

Contribution Editors

James W. Kidney
Thomas H. McKaig
Malcolm B. Moyer

Associate Editors

Cartoons

Constituents

Design

Editorials

Legislation

National Activities

State Activities

Walter Killians, Jr.
Morris Ketchum
Robert Hutchins

Address all communications regarding the State Association to the Secretary, John W. Briggs, 311 Alexander St., Rochester 7, New York, all editorial comments to Empire State Architect, c/o Charles Rockwell Ellis, Chairman, 108 W. Fayette Street, Syracuse 2, N. Y., and inquiries regarding advertising to the Publisher.

Publisher:
Julian L. Kahle, 21 Clarendon Place, Buffalo 9, New York

May - June Issue — Vol. XII, No. III

"Entered as second-class matter March 6, 1943 at the Post Office at Buffalo, New York, under the act of March 3, 1879."

Subscription Price: 50c per year. Non-Members $1.00

Published 6 Times a Year

EMPIRE STATE ARCHITECT

AWARDS TO NEW YORK STATE ARCHITECTS

Picking a winner in the National Contest sponsored by the School Executive of New York City, for the best planned schools in America, Model of new Lido Beach School at Long Beach, Long Island under close study by the judges. (Dr. Benjamin C. Willis, Supt. of Schools, Buffalo, N. Y.; Ray L. Hamon, U.S. Office of Education; Walter Killian, Jr., Morris Ketchum, and Robert Hutchins, New York City Architects.)

Awards for the best-designed buildings — five top honors, and 19 additional citations — were announced at the annual meeting of the American Association of School Administrators. The five chief awards ranged literally from Maine to California. The Maine school honored was the Bangor Elementary School of Bangor (architect, Eaton W. Tarbell), and the California school, the Mira Vista Elementary School of East Richmond Heights (architect, John Carl Warren, San Francisco). The New York metropolitan area scored twice, with the Lido Beach School of Long Beach, Long Island (architect, Reines & Ubbahn, New York City), and the Rosedale Road School of Colonial Heights, Yonkers (architect, Edward Flegel). An Oklahoma school, the Will Rogers School of Stillwater (architect, Cauldill, Rowlett, Scott and Assoc., College Station, Texas), captured the remaining award in this top group.

Photographs and plans of the winning school buildings show a striking departure from the conventional ideas associated with the typical schoolhouse. Among the noticeable changes are novel methods of lighting, better acoustics, effective use of colors, control of ventilation, protection against excessive sun and glare, the disappearance of upper stories, and campus grouping of buildings.

The architectural firm of Moore and Hutchins of New York City received awards for two of their Goucher College Buildings in the biennial contest conducted by the Baltimore Association of Commerce, Baltimore, Maryland.

Buildings submitted by their owners, architects, or builders, were grouped in five categories — industrial, commercial, public buildings, apartments and public housing, and miscellaneous. Froelichler Hall of Goucher College won first award in the miscellaneous group and Van Meter Hall, also of Goucher College, was awarded an Honorable Mention.

Entries were judged for their exterior design, suitability of exterior to use, artistic and practical use of materials and adaptability to the site and neighborhood.
You'd think cartoonist Tobey's famous couple would be discussing something else in a setting like this!

However, the one thing the gentleman above wants to make sure of, in planning his new home, is comfort. And he knows that the best way to get it is to ask his architect or heating engineer to specify Honeywell temperature controls.

If you have a control problem, Honeywell can help provide the proper thermal environment for any client—anywhere—in any kind of structure.

A large staff of well informed control engineers—in 91 different Honeywell offices across the nation—are experienced in doing just that. Or—there's a lot of literature that's yours for the asking—on the automatic control of heating, ventilating and air conditioning.

So, why not talk to Honeywell? Why not write to Honeywell about your control problem? And why not do it now?
Marked Perfect for SCHOOLS!

"The ideal window for schools" - in the words of leading architects

AND HERE'S WHY!

ELIMINATES "DRAFT ZONES"
Every seat in a room is equally safe and comfortable . . . no dangerous "draft zones" anywhere . . . no "cold spots" along window walls . . . cuts heating costs to a minimum.

PERFECT AIR CIRCULATION
Cold gusts are deflected . . . no more flying papers or stiff necks! Air is scooped in and up, distributed evenly. Leave the vents open even when it's raining . . . fresh air comes in, but rain cannot.

NO MAINTENANCE PROBLEMS
Auto-Lok hardware requires no attention or adjustments . . . ever. For the life of your school, opening or closing of Auto-Lok Windows is free and easy. They never stick or rattle. Window washing is simplified, costs far less . . . because all glass is cleaned easily from the inside!

Auto-Lok Aluminum Windows available through the following:

ST. BERNARD HIGH SCHOOL, BREDA, IOWA.
Architect: James E. Loftus, A.I.A., Omaha, Neb.

Tightest closing window ever made!

ST. BERNARD HIGH SCHOOL, BREDA, IOWA.
Architect: James E. Loftus, A.I.A., Omaha, Neb.

Auto-Lok Aluminum Windows

Engineering Service
Architects and designers all over the country call on Ludman's Engineering Service to aid in window planning. This service is yours for the asking.

Write Today for Our Booklet "WHAT IS IMPORTANT IN A WINDOW?"
Answers many questions about window selection for every type of building.

LUDMAN LEADS THE WORLD IN WINDOW ENGINEERING
OVER 2

4950 MARINE DRIVE APARTMENT BUILDING

GENERAL CONTRACTOR — Peter Hamlin Construction Co., 9 South Clinton Street, Chicago, Illinois.

HEATING CONTRACTOR — Davis Construction Co., 18 West Kinzie, Chicago, Ill.

FEDDERS-QUIGAN CORPORATION

Buffalo 7, New York
Men who design and build modern American housing are turning to Fedders Baseboard Radiation for efficient, economical heating.

This ultra-smart apartment building located at 4950 Marine Drive is another example of how men of the profession and the industry are providing new comfort, new cleanliness and new decor with Fedders Baseboard Radiation.

Taking the place of ordinary baseboards, Fedders Baseboard Radiation saves space, facilitates furniture arrangement and simplifies picture window installations.

Fedders Baseboard Radiation has specially designed anti-streak covers (patent applied for) which reduce cleaning and maintenance costs.

They are light in weight, easy to stock and install. They give instant response to thermostatic control thus conserving fuel by eliminating necessity to "force the fire" or open windows to cool off.

Fedders representatives are located in every major city. You will find their names in your classified telephone directory.
Create custom window effects with stock size Pella CASEMENT units

Create exciting window effects without special millwork costs! Do it by combining stock-size Pella Casement units into attractive angular or circular bays, dormers, picture, corner and ribbon windows. Pella Windows also save money on the job because they are completely assembled and pre-fitted at the factory. Investigate Pella Casement units today!

CHECK THESE Pella FEATURES

ROLScreens — Pella Casements are equipped with inconspicuous, convenient Rolscreens that roll up and down like window shades. Rolscreens eliminate putting up, taking down, painting, repairing, and storage of screens.

Dual Glazing and Weather Stripping — All Pella Casements are dual glazed to insulate against winter cold and summer heat... weather stripped to eliminate drafts. Thermopane or Twindow Insulating Glass is also available in standard sizes to fit most Pella windows.

Wood for Beauty — Steel for Strength — Frames consist of welded steel inner frame lined with wood. Exclusive Pella feature.

Use More Glass — Yet Save on Heat — You can do it thanks to Pella’s extremely low air infiltration factor. Ask Pella representative to show you how Pella excels over other windows in this respect.

Pella REPRESENTATIVES IN EMPIRE STATE

BINGHAMTON
C. Y. CUSHMAN
25 Roosevelt Avenue
Phone: 2-0296

BUFFALO
A. O. STILLWELL CO., INC.
200 Sheridan Avenue
Phone: Taylor 8896

RENNSELAER
CRAWFORD DOOR SALES
ALBANY COMPANY, INC.
Sherwood Park
Phone: 77-3374

ROCHESTER
THE MAURER CO., INC.
31 Richmond Street
Phone: HAmilton 0030

SYRACUSE
PELLA PRODUCTS CO.
116 South Salina Street
Phone: 2-8829

VALLEY STREAM, L. I.
ROLSCREEN COMPANY
627 West Merrick Road
Phone: Valley Stream 5-8404

Pella CASEMENT WINDOWS, manufactured by ROLSCREEN COMPANY, PELLA, IOWA
GREAT NECK, N.Y. JUNIOR HIGH SCHOOL gets

"the best in steel boiler heat"

THREE 30360 Sq. Ft. FITZGIBBONS BOILERS

insure comfortable warmth with maximum fuel economy in this big, modern school. It's one of many recent installations of Fitzgibbons boilers in important buildings in New York State. Fitzgibbons boilers are increasingly the choice for institutional, commercial and municipal-housing jobs because of their high heating efficiency, quick-steaming, and reputation for many years of trouble-free service. Be sure of these important benefits on your next job. Catalog data gladly sent. Let us help you specify "Fitzgibbons."

Fitzgibbons Boiler Company, Inc.
General Offices: 101 PARK AVENUE, NEW YORK 17, N. Y.
Manufactured at OSWEGO, N. Y. • Branches in Principal Cities

A steel boiler is a lifetime investment
—sell "the best in steel boiler heat"—

THE FITZGIBBONS BOILER®

"200" SERIES • "400" SERIES • "80" SERIES • "RZU" JUNIOR • "SCOTCH MARINE" • "D" TYPE
You'll like the advantages the new Armorply Building Panel offers in curtain wall construction.

First of all, you will be amazed by its extreme flatness. You'll like Armorply's space-saving features. You'll like its variety of beautiful colors and surface finishes...its variety of core material...its wide range of insulating characteristics.

And you'll like its ease in handling...its low installation cost...its savings in maintenance.

Armorply Building Panels save space. Being only 2 to 3 inches thick they take the place of a masonry wall 12 to 15 inches thick.

These metal-faced panels can be of porcelain-enamelled steel, aluminum, plain steel or stainless steel. They can be ordered in colors to meet specifications.

They can be of Honeycomb core construction (Armorply Honeycomb) or made with incombustible, mineral-type cores.

They are available in any size up to 5 by 10 feet, or even longer if necessary. They require no trimming or cutting on the job. They drop into place for quick, easy erection.

And because they provide both an exterior and interior finished surface they require no painting or other decoration.

Remember, these Armorply Building Panels are always made to order. You get a panel, engineered to meet your customer's requirement on a particular job...every time.

Get the complete information. Send this coupon today.
ART METAL releases

the SECOND of its NEW ideas in

INCANDESCENT LIGHTING

RECESSED ASYMMETRIC AND SYMMETRIC LIGHT DISTRIBUTIONS

Surface and Recessed (150-W) Types

No. 2315-Standard type. Multiple Prismatic Glass Reflector provides a widespread symmetrical source light distribution. Suggested up to 12 times the mounting height above surface to be illuminated provides uniform illumination.

No. 2315—Standard type. Multiple Prismatic Glass Reflector provides an Asymmetric, corridor-type light distribution. Suggested up to 12 times the mounting height above the source provides uniform illumination.

No. 2315—Recessed type. Multiple Prismatic Glass Reflector provides a widespread symmetrical source light distribution. Suggested up to 2.5 times the mounting height above surface to be illuminated provides uniform illumination.

SPECIFICATIONS

No. 2315, Maintenance Factor—A1 Class, 75, Average.

Lamp position—vertical (110Vlk 50-60Hz).

Cabinet size and Glass Holder are made of aluminum.

Two-piece brass bad Brite Hi-lo which is secured to ceiling panel and the glass holder ring.

Surface cover plates with baffle support attachment directly in area of 2 in. or 4 in. added box.

Socket is used with 12" No. 1865 wire leads for easy application.

Installing is accomplished by removing the thumbs screws permitting the light to be repositioned day or evening downward on the fixture.

Approved by Underwriters Laboratories, Inc.

THE ART METAL COMPANY

CLEVELAND 3, OHIO

WRITE for these releases and the leather-bound catalog

INCANDESCENT UNIFIED LIGHTING

Unified in Design Characteristics

Engineered for application performance

Manufacturers of Engineered Incandescent Lighting
Helpful school-planning service

for Architects in the State of New York

American Seating Company files on school planning contain case histories and the results of exhaustive research on many aspects of the subject.

Architects are cordially invited to make full use of this material to save time, effort, and expense. Feel free to call on any of our representatives for information relative to Classroom Furniture, Auditorium Chairs, Gymnasium, Playground and Laboratory Equipment, Library Furniture, Bleachers and Stadium Seating, or Chalkboard and Corkboard.

This helpful school-planning service is yours without any obligation.

American Bodiform Auditorium Chairs are beautiful, comfortable, and durable. Available in a wide range of styles, with or without tablet-arms.

The American Universal "Ten-Twenty" Desk, the "Key to the Co-ordinated Classroom"
Top officials of the American Institute of Architects are putting some new angles on this year's 84th annual convention at the Waldorf Astoria in New York City, June 23-27th. Here Executive Director Edmund R. Purves, and President Glenn Stanton near Convention Committee Chairman Arthur C. Holden tell how he has planned to take the convention activities into all of New York's boroughs.

An extensive calendar of events is being planned for architects attending the 84th annual convention of the American Institute of Architects in New York City, June 23-27, according to Arthur C. Holden, New York Chapter member, who is serving as Convention Chairman.

The convention schedule – the first national A.I.A. meeting in New York since 1925 – has been arranged so that business and technical sessions will take place in the mornings, and afternoons and evenings will be open for sight-seeing and special events.

The Convention Program

The theme of the convention will be the importance of architecture in forming environments for human activity. Leading members of the profession and guests chosen for their ability to contribute to the theme, will address the meeting. At the two luncheons, scheduled for Tuesday, June 24, and Thursday, June 26, the speaker on each occasion will be an industrialist of national importance. At the annual dinner on Thursday, new Fellows will be welcomed, and the Gold Medalist, Auguste Perret of France, who will describe the significance of progress in reinforced concrete design, will be honored. Hugh Ferriss will deliver the closing address on Friday morning, June 27, at the conclusion of the New Business Meeting. The subject of his talk will be "The Architect and Improvement of American Cities."

Technical seminars will discuss the following subjects: prestressed concrete; thin shell vault and dome construction; prefabricated structural unit construction in concrete; reinforced brick masonry; aluminum as a structural frame material; and trends in structural design theory applied to reinforced concrete and steel, including welded steel.

Interest in architectural concrete will be represented by three speakers on the program, developed by Walter A. Taylor, A.I.A. Director of Research and Education.

Roger Corbetts, New York builder with extensive experience in both solid and hollow section precast concrete construction, who is currently engaged in construction of the Great Lakes Naval Training Station, will speak on "Precast Structural Systems."

O'Neil Ford, San Antonio, Texas architect and consultant to the Southwest Research Foundation, will speak on the "lift-slab" system which he first employed in buildings of Trinity College in San Antonio.

Prof. M. J. Holley, Massachusetts Institute of Technology, and leader of the first national conference on prestressed concrete held last August, will speak on "Pre-Stressed Concrete."

Current interests in materials conservation and lightweight structures will be represented by C. S. Whitney, of Amman and Whitney, New York consulting engineers, and chairman of the Committee on Thin Shell Design of the American Society of Civil Engineers, who will speak on "Shell Structures."

Henry L. Wright, Los Angeles architect and school building specialist, will survey that very active field for his paper on "Conservation in School Buildings."

William H. Scheik, executive director, Building Research Board, National Academy of Sciences, Washington, D. C., will speak on "Governmental Specifications Problems and Codes."

In keeping with the general theme of "Structural Resources for Architectural Design," there will be a building products exhibit organized by A. Gordon Lorimer, New York City architect. More than 60 manufacturers have been selected to exhibit products at Convention headquarters in the Waldorf-Astoria. The Producer's Council, an organization of manufacturers in the building field, is actively cooperating in this project.

Interest in architectural concrete will be represented by three speakers on the program, developed by Walter A. Taylor, A.I.A. Director of Research and Education.

Roger Corbetts, New York builder with extensive experience in both solid and hollow section precast concrete construction, who is currently engaged in construction of the Great Lakes Naval Training Station, will speak on "Precast Structural Systems."

O'Neil Ford, San Antonio, Texas architect and consultant to the Southwest Research Foundation, will speak on the "lift-slab" system which he first employed in buildings of Trinity College in San Antonio.

Prof. M. J. Holley, Massachusetts Institute of Technology, and leader of the first national conference on prestressed concrete held last August, will speak on "Pre-Stressed Concrete."

Current interests in materials conservation and lightweight structures will be represented by C. S. Whitney, of Amman and Whitney, New York consulting engineers, and chairman of the Committee on Thin Shell Design of the American Society of Civil Engineers, who will speak on "Shell Structures."

Henry L. Wright, Los Angeles architect and school building specialist, will survey that very active field for his paper on "Conservation in School Buildings."

William H. Scheik, executive director, Building Research Board, National Academy of Sciences, Washington, D. C., will speak on "Governmental Specifications Problems and Codes."

In keeping with the general theme of "Structural Resources for Architectural Design," there will be a building products exhibit organized by A. Gordon Lorimer, New York City architect. More than 60 manufacturers have been selected to exhibit products at Convention headquarters in the Waldorf-Astoria. The Producer's Council, an organization of manufacturers in the building field, is actively cooperating in this project.
These monolithic ceilings were sound-conditioned with a trowel

HERE'S how to speed up many jobs and keep costs down—specify Gold Bond Acoustical Plaster and let your contractor sound-condition and decorate the ceilings in one easy continuous operation. Gold Bond Acoustical Plaster is:

ECONOMICAL. Provides incombustible acoustical treatment at low cost.

ARCHITECTURALLY FLEXIBLE. May be applied to flat or curved surfaces. Also to existing ceilings after applications of an asphalt emulsion bonding coat.

EASY TO APPLY. Gold Bond Acoustical Plaster can be applied by any journeyman plasterer to the regular base coat of gypsum plaster. It's light on the hawk, extremely easy to work.

ATTRACTIVE. Gives the beauty of plaster—a smooth, unbroken surface that may be troweled or floated. Furnished in five colors...oyster white, ivory, cream, buff and caenstone.

FIRE RESISTANT. Basically a mineral product, Gold Bond Acoustical Plaster is incombustible.

NON-GLARE LIGHT REFLECTION. Oyster white...70%.

NOISE REDUCTION. .55 to .60 floated or troweled to finish.

PAINTABILITY. Tests with six coats sprayed-on paint showed no loss in acoustical efficiency.

Gold Bond Acoustical Plaster Technical Folder, A.I.A. 39-B-1 supplied without charge upon request.

NATIONAL GYPSUM COMPANY • BUFFALO 2, N. Y.

You'll build or remodel better with Gold Bond
Special Exhibits

The major exhibit during convention week will be held at Lever House, New York's newest major building, and will be entitled "Engineering Contributions to Architectural Design, 1851-1951." The event is being organized and directed by a committee under the chairmanship of Dean Leopold Arnaud of the Columbia University School of Architecture, and the exhibit is being designed by Morris Ketchum, Jr. The exhibit will cover the following subjects: cast iron construction; the development of the elevator; evolution of steel frame construction; evolution of concrete in the United States; evolution of glass; and standardization. Material presented will be both historical and contemporary. After the New York showing, the exhibit will be sent to Chicago to be shown in the early fall at the Centennial Convention of the American Society of Civil Engineers.

In addition to the main exhibit, a series of collateral exhibits will be held throughout the metropolitan New York area during the month of June. They are as follows:

a) Library Exhibit — In Room 112 at the New York Public Library, at Fifth Avenue and 42nd Street, there will be an exhibit on the history and development of library architecture. The transition from the old central, stack-plan, multi-tiered structure to the modern modular conception of library planning will be emphasized. A section on contemporary libraries will include 15 mounts showing a group of outstanding postwar libraries in this country.

Chairman of the committee for this project is Edgar Williams, and Alfred M. Githens is in charge of the exhibit. After the convention, the exhibit will be shown at the American Library Association, which will follow the A.I.A. meeting in New York.

The $2800 LeBrun Traveling Scholarship design competition this year is on a library having facilities for outdoor reading, informal lectures and small art exhibits, for a town of 30,000. Winning drawings will be included as part of the exhibit at the Public Library.

b) Architectural Photography — In collaboration with the Society of Architectural Photographers, there will be an exhibit of architectural photographs.

c) Museums — Special exhibits on various phases of the history and development of architecture in this country will be featured at the following museums: Metropolitan Museum of Art; Museum of the City of New York; New York Historical Society Museum; and the Museum of Modern Art.

d) Columbia University — The Rotunda at Low Library of Columbia University will house an exhibit featuring models and other material supplied by the Public Works Department of the City of New York.

e) Borough of Richmond, Staten Island — Borough President Cornelius Hall of Richmond, has declared June to be "Architects' Month," in honor of the Convention and the exhibits to be placed in all libraries in Staten Island. The main exhibit will be at the new regional library at St. George and will be set up in conjunction with the formal opening of the library. The exhibit will feature historical buildings on Staten Island, and will illustrate in detail the rich Revolutionary War history of the island, together with examples of pre-and-post-Civil War architecture.

Other exhibits will be displayed at the Richmond Historical Museum, which is the site of the proposed Richmondstown restoration; the Staten Island Museum of Arts and Sciences, and the St. George Ferry Terminal Building. The feature of the latter exhibit will be the display of public architecture and will show the work of the Department of Marine & Aviation, Department of Public Works, and New York City Housing Authority.

f) Brooklyn — The history and development of architecture in the Borough of Brooklyn will be portrayed in an exhibit at the central branch of the Brooklyn Public Library. A feature of this exhibit will be projected plans for the development of various industrial and residential areas in the borough. There will also be an architectural exhibit emphasizing Brooklyn cultural activities at the Brooklyn Museum.

g) Bronx — An exhibition of photographs of outstanding contemporary buildings and buildings of historical significance will be held in the Bronx County Court House Building. A feature of this exhibit will be redevelopment plans for one of the blighted areas in the borough. Awards will be made for outstanding contemporary buildings and a plaque will be placed in front of each building noting the event. Plaques will also be placed in front of all buildings of historical and architectural interest.

h) Queens — An exhibition of the best examples of work that has been executed in Queens will be held at the Central Branch of the Queensborough Library.

i) Long Island — Arrangements are being made to place exhibits in various library and bank buildings in Long Island during the months of May and June, in connection with the convention theme. The exhibits will feature historical and contemporary work characteristic of Long Island architecture.

Tours

A full afternoon and evening of tours and events are planned for Monday, June 23. Under the auspices of the Triborough Bridge Authority, two boats will be provided to take 600 people on a boat trip around Manhattan Island. Talks will be given on each boat on the various points of interest from an architectural point of view. At the end of the boat trip, the 600 people will be broken into smaller groups. Three hundred people will be taken to Jones Beach for a Buffet Supper as guests of the Long Island State Park Authority.
Convention Committee men enjoying a committee meeting (l.-r. George J. Cavalleri, New York Society Representative, Ralph Walker, Chairman, Collateral Exhibits; and Julian C. Levi, Chairman of the Reception Committee.)

A group of 100 will go from the boat trip to a cocktail party tendered by the Port of New York Authority at the Port Authority Building. A group of 150 will go on a tour of Rockefeller Plaza, and a group of 50 to the Morgan Library. The latter two groups will then go to the Architectural League Building for a cocktail party.

During the week of the convention, there will be numerous tours scheduled to points of architectural interest in the metropolitan area, including historical buildings and the United Nations headquarters.

BUILDING PRODUCT EXHIBITORS

Nearly sixty leading manufacturers of building products will exhibit their latest developments at the 8th Annual Convention of the American Institute of Architects in the Waldorf-Astoria Hotel in New York City, June 23-27.

The exhibit has been organized around the theme "Structural Resources for Architectural Design," and many exhibitors have announced their intention to prepare special displays illustrating how their products relate to the theme. The exhibits will also relate closely to technical seminars of the convention.

The building products exhibition has been organized under the direction of Mr. Lorimer, assisted by Theodore Irving Coe, technical secretary of the American Institute of Architects, and in cooperation with the Producer's Council.

List of Exhibitors

BUILDING PRODUCTS EXHIBIT
8th Convention of the American Institute of Architects
June 23-27, 1952

Johns-Manville Sales Corporation
Hough Shade Corporation
Rolm and Haas Corporation
Detroit Steel Products Company
Ramset Fasteners, Incorporated
Arcadia Metal Products
U. S. Plywood Corporation
The Kaiser Company
The Art Metal Company
Minneapolis-Honeywell Regulator Co.
The Formica Company
Meal Pack Corporation
Great Lakes Carbon
Master Builders Company
Reddis Plywood Corporation
Brisk Waterproofing Company, Inc.

Otis Elevator Company
Pittsburgh Corning Corporation
Martin Senour Company
Celotex Corporation
Ludman Corporation
Ardmare Products Company
American Hospital Equipment
Structural Clay Products Institute
Gymnasium Seating Council
Bisco Manufacturing Company
Corinlurx Corporation
Timber Structures, Inc.
Truscon Steel Company
Cupples Products Company
American Radiator and Standard Sanitary Corporation
Unistrut Products Company
American Structural Products Company
The Stanley Company
Kentele, Incorporated
Hanley Company
Martin-Party Company
Tile Council of America
Hunter Douglas Corporation
Wasco-Flashing Corporation
Trenco Manufacturing Company
Miracle Adhesives Corporation
Stewart-Warner Corporation
New Castle Products
Schlage Lock Company
Vermont Marble Company
S. H. Pomeroy Company, Inc.
American Lumber and Treating Company
The Mosaic Tile Company
Crane Company
Architectural Terra Cotta Institute
Graco Steel Products Company
Ceco Steel Products Corporation
Baltimore Porcelain Steel Corporation
Masonite Corporation
J. C. Furniture Company
The Miller Company

Special Events

Tuesday afternoon, June 21, there will be a President's Reception at the Cloisters, Fort Tryon Park for all convention registrants.

Wednesday evening there will be the American Architecture Foundation Theatre party at "THE KING AND I," Broadway's current musical hit.

Committee Personnel

Members of the convention committee, who are responsible for the overall direction of the convention and related activities, include the following: Arthur C. Holden, chairman; Matthew W. Del Gaudio, co-chairman; Daniel Schwartzman, treasurer; and Alonzo W. Clark, secretary.

Chapter and Society representatives from the metropolitan area are: Vito Battista, Brooklyn Chapter; Michael A. Cardo, Bronx Chapter; George J. Cavalleri, New York Society; Simeon Heller, Queens Chapter; William C. Halbert, Westchester Chapter; Francis Keally, New York Chapter; Theodore Koch, Staten Island Chapter; Joseph Watterson, Long Island Chapter; Harry A. Yarish, Brooklyn Society.

Sub-committee chairmen responsible for specific activities and events include: Dean Leopold Arnaud, Engineering Advancement Exhibit; Robert W. Cutler, Trips & Visits; Albert F. Heino, Honor Awards; A. Gordon Lorimer, Building Products Exhibit; Geoffrey N. Lawford, Public Relations; Julian Clarence Levi, Reception; William Potter, Finance; Eldredge Snyder, Ladies Entertainment; Ralph Walter, Collateral Exhibits, Edgar I. Williams, Special Entertainment.

22

EMPIRE STATE ARCHITECT
REPORT OF THE JURY OF FELLOWS

After careful consideration of the evidence of qualifications for advancement to fellowship submitted with the nominations, the following 39 were so advanced:

<table>
<thead>
<tr>
<th>Name</th>
<th>Chapter</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abramowitz, Max</td>
<td>New York</td>
<td>Central New York</td>
</tr>
<tr>
<td>New York 20, New York</td>
<td>Central New York</td>
<td>Public Service</td>
</tr>
<tr>
<td>Barrows, C. Storrs</td>
<td>10 Reynolds Arcade</td>
<td>Southern California</td>
</tr>
<tr>
<td>Rochester, New York</td>
<td>Becket, Welton D.</td>
<td>Detroit</td>
</tr>
<tr>
<td>5657 Wilshire Blvd.</td>
<td>Los Angeles, California</td>
<td>Delaware</td>
</tr>
<tr>
<td>Black, Kenneth C.</td>
<td>706 Capitol Savings & Loan Bldg., Lansing 68, Michigan</td>
<td>Chicago</td>
</tr>
<tr>
<td>Carlson, Walter</td>
<td>200 Pennsylvania R. R. Building, Wilmington 50, Delaware</td>
<td>Northern California</td>
</tr>
<tr>
<td>Carr, George Wallace</td>
<td>335 North Michigan Blvd.</td>
<td>Virginia</td>
</tr>
<tr>
<td>Clark, Birge Malcom</td>
<td>321 Channing Avenue</td>
<td>Maine</td>
</tr>
<tr>
<td>Palo Alto, California</td>
<td>Clark, Pendleton S.</td>
<td>Philadelphia</td>
</tr>
<tr>
<td>Krise Building</td>
<td>Lynchburg, Virginia</td>
<td>New York</td>
</tr>
<tr>
<td>Crowell, Charles P.</td>
<td>6 State Street</td>
<td>Saginaw Valley</td>
</tr>
<tr>
<td>Bangor, Maine</td>
<td>Duhring, Herman L.</td>
<td>Central Pennsylvania</td>
</tr>
<tr>
<td>51 East Cliveden Street</td>
<td>Germantown, Philadelphia, Pa.</td>
<td>St. Louis</td>
</tr>
<tr>
<td>Foley, Max</td>
<td>101 Park Avenue</td>
<td>New York</td>
</tr>
<tr>
<td>New York, New York</td>
<td>Frantz, Robert Benjamin</td>
<td>Saginaw, Michigan</td>
</tr>
<tr>
<td>320 North Washington Avenue</td>
<td>Galley, James Herbert</td>
<td>Georgia</td>
</tr>
<tr>
<td>Saginaw, Michigan</td>
<td>Georgia Institute of Technology</td>
<td>Central Pennsylvania</td>
</tr>
<tr>
<td>Galley, James Herbert</td>
<td>Atlanta, Georgia</td>
<td>Alabama Society of Architects</td>
</tr>
<tr>
<td>Green, M. Edwin</td>
<td>321 North Front Street</td>
<td>Washington—Metropolitan</td>
</tr>
<tr>
<td>Harrisburg, Pennsylvania</td>
<td>Hill, Lawrence</td>
<td>Southern California</td>
</tr>
<tr>
<td>University City, Missouri</td>
<td>Jacobson, Francis B.</td>
<td>Virginia</td>
</tr>
<tr>
<td>215 East 37th Street</td>
<td>312 McKay Building</td>
<td>Oregon</td>
</tr>
<tr>
<td>New York 16, New York</td>
<td>Portland, Oregon</td>
<td>Public Service</td>
</tr>
<tr>
<td>Jacobsberger, Francis B.</td>
<td>Knight, Eugene Herbert</td>
<td>Alabama Society of Architects</td>
</tr>
<tr>
<td>702 Protective Life Building</td>
<td>Locraft, Thomas Hall</td>
<td>Minneapolis</td>
</tr>
<tr>
<td>Birmingham, Alabama</td>
<td>Lyndon, Maynard</td>
<td>Southern California</td>
</tr>
<tr>
<td>1518 P Street, N.W</td>
<td>Lynden, Maynard</td>
<td>West Virginia</td>
</tr>
<tr>
<td>Washington 5, D. C.</td>
<td>6000 Wilshire Boulevard</td>
<td>Minneapolis</td>
</tr>
<tr>
<td>Martens, Walter Frederic</td>
<td>manganese, Dale Robert</td>
<td>New York</td>
</tr>
<tr>
<td>1503 Virginia Street, East</td>
<td>Miller, Warren D.</td>
<td>Indiana Society of Architects</td>
</tr>
<tr>
<td>Charleston 1, West Virginia</td>
<td>Minneapolis 9, Minnesota</td>
<td>Toledo</td>
</tr>
<tr>
<td>McLaughlin, Robert</td>
<td>570 Lexington Avenue</td>
<td>New York</td>
</tr>
<tr>
<td>New York 22, New York</td>
<td>Miller, Warren D.</td>
<td>Public Service</td>
</tr>
<tr>
<td>200 Opera House Building</td>
<td>Terre Haute, Indiana</td>
<td>Design</td>
</tr>
<tr>
<td>Munger, Harold Henry</td>
<td>331-37 Nicholas Building</td>
<td>Toledo</td>
</tr>
</tbody>
</table>

(Continued on Page 47.)
TWO
ELEMENTARY
SCHOOLS
by
MOORE AND HUTCHINS, Architects
CLARKE, RAUANO AND HALLORAN, Landscape Architects and Site Engineers
THEODORE BARBATO, Structural Engineer
LEVY AND O'KEEFF, Mechanical and Electrical Engineers

Main Entrance
Roaring Brook Elementary School

ON THE COVER
ROARING BROOK ELEMENTARY SCHOOL
MOORE & HUTCHINS, ARCHITECTS

EMPIRE STATE ARCHITECT
The Roaring Brook Elementary School was completed in 1951. The building and grounds are designed to accommodate children from Kindergarten through the sixth grade. Twenty-three classrooms are provided together with auxiliary areas consisting of a combination Auditorium-Gymnasium, Cafeteria, Kitchen, Administration and Health Suites, Library, Remedial Reading and Visual Aid Rooms, Art Office, Music Rooms, Teachers' Rooms, Conference Room as well as Storage and Service Areas, Shower Rooms and Toilets.

The site obtained, while ample in area, is typical of the topography in this portion of Westchester County. Much of the acreage was too steep to use for play areas. The underlying rock is close to the surface with many outcroppings of stone. In developing the site plan, the building was located so as to preserve as well as possible the major level areas for play fields. A one-man main drive was designed to effect the best vehicular approach to the building.

Before any plans were prepared, there was a period of intensive collaborative study by the School Board, the Teaching Staff, interested members of the community, and the Architects to develop a proper statement of the needs of the School. The plan as finally approved and built reflects this study. Of particular interest in the plans of the school is the relationship of the various elements to suit the specific requirements. The areas of the school which are to be used for community purposes are carefully arranged for independent access and use. The driveway and parking areas are carefully separated from the recreational areas.

The Auditorium stage and the Cafeteria are planned adjacent to one another, so that each area may supplement the other as need arises. The Cafeteria is provided with a platform and is planned for multiple use as a Meeting Room, Music Room and for normal Cafeteria use. Music Practice Rooms and Storage Rooms are immediately accessible. Locker Rooms are planned to be used principally in conjunction with the playing fields by students from other schools in the district and for community use; hence they are not adjacent to the Gymnasium-Auditorium.

All lower grade classrooms are on the ground level. Eight classrooms for older pupils are placed on a second floor level in the interest of construction economy as well as preservation of valuable site areas. In the Kindergarten and First Grade rooms there is immediate access to outdoor play areas. The two classroom wings are not parallel in plan in order better to adjust to the site and to reduce noise reverberation.

Both classroom wings are planned for future extension. The classroom wings are modular in structural system, not only for economy in construction, but for interchangeability of equipment. All classrooms have been equipped not only with specially designed built-in storage cabinets, sinks and work counters, but also with open and closed storage units having work tops. They are modular in design and can be shifted to varying positions in the classrooms to provide different work centers. These units may also be moved from classroom to classroom depending on the preferences of different teachers. All structural elements of the building are incombustible.

The Greenburgh School was completed in 1950 and is significant in a number of its aspects. It is a neighborhood school designed to provide for the specific educational needs of a group of pupils from Kindergarten through the third grade. The area served, though part of a much larger school district, is in itself set apart by main arterial traffic patterns. Most of the pupils live near enough to the new school to be able to walk to and from it.

The site selected is approximately ten and one-half acres. Though rolling in contour, it provides for all the essentials of a good school plant.

The program of requirements developed in consultation with the Architects called for two sections of 25 pupils at each grade level from Kindergarten through the third grade or eight classrooms in all. A General Purpose room was required but not with full gymnasium facilities as would be needed for older age groups. Kitchen facilities are required only for the purpose of community use of the building, as there is no lunch program for pupils. Other requirements were a general office and nurse's room which could alternate as a teachers' room. Ample storage for indoor and outdoor equipment was required.
In the design of classrooms every effort has been made to provide the maximum of space and equipment for self-contained programs. Washing and toilet facilities are integral with each room, but in the case of the pairs of second and third grade rooms they are interconnected. Corridors are “single-loaded”. The ceiling heights throughout classroom areas are 9’ 1”. These low ceilings are most desirable in producing a sense of scale in keeping with the needs and normal environment of young children. A simple and effective means of bilateral lighting in the classrooms through the use of reflected daylight was developed. The upper portion of the screen wall separating corridor and classroom areas is clear glass through which natural daylight is transmitted from the light reflective corridor floor to the classroom ceiling. The results have been satisfactory under light meter tests as well as actual use.

The section of corridor outside each classroom is considered to be part of the classroom area and contains the coat lockers for the pupils of each class.

The structural elements of the building are incombustible. The roof structure spans the classroom wings without intermediate supports, thus permitting flexibility in the arrangement and rearrangement of partitions.

Total cost of the project, including extensive site development and paving \(\$335,330.00 \)
Cost of building per square foot \(\$15.80 \)
Cost of building per pupil \(\$1,185.00 \)
Cost of building per classroom \(\$35,572.00 \)
WOOD WINDOWS WOMEN WANT!

WOODCO Auto-Lok Wood Windows

The new, beautiful, miracle window of modern building

Woodco Auto-Lok Wood Awning Windows

- Carefully assembled at factory
- All parts manufactured of selected kiln-dried ponderosa pine
- Toxic and water-repellent treated
- All glass bedded in glazing compound

The wood window that answers every need
WOOD WINDOWS Women Want...

These Features Captivate Consumer Demand:

PRACTICAL BEAUTY
Narrow horizontal lines add distinct beauty to any home... lend themselves to a wider variety of architectural arrangements.

EASY TO CLEAN
All from the inside. Nothing to lift, no sash to remove, no gadgets to disengage.

INTERCHANGEABLE
Inside Screens and Storm Sash... flip the clips... no tools required.

FRESH AIR DURING RAIN
No more running to close windows... rain can't enter through slanting sash.

WARMER IN WINTER
Patented WOODCO Auto-Lok mechanism plus "floating seal" weatherstripping so window shut like your refrigerator... keeps heat in, keeps cold out. Extra Safe Lok doubles protection against weather intruders.

COOLER IN SUMMER
Opens widest... scoops air inward upward... luxurious ventilation, but drafts.

FRESH AIR NITE-VENT
Bottom sash opens slightly for partial ventilation, while upper sash remain securely locked... ideal for bad weather air circulation.

FINGER-TIP CONTROL
So easy a child can do it, with handroto-type operator. Handle does not interfere with drapes, blinds, etc.

CONCEALED HARDWARE
No unsafe, unsightly, dirt-collecting, posed mechanism.

A COMPLETE UNIT on the job

Every WOODCO AUTO-LOK Wood Window unit delivered to the building site arrives completely assembled... all you have to do is to secure it in the opening. No hardware to apply... no parts to misplace... no adjustments necessary... no delays!

Think of the time savings! Think of the ease and simplicity of installation! There's no doubt about it WOODCO AUTO-LOK. Wood Windows reduce window installation time!

ADVERTISED
Nationally and Locally
Acclaimed by Architects & Builders

Adaptable to Any Type of Construction:

New...

The Only Window Sealed as Tight As a Refrigerator!

The "FLOATING SEAL"

Woodco Auto-Lok is the tightest closing window ever made... many times tighter than any other window. The patented, self-locking hardware combines with complete weatherstripping to provide a miraculous "Floating Seal," absolutely unaffected by dimensional changes in the wood due to atmospheric conditions. Weather is isolated to a degree heretofore believed impossible. You save real money on heating and air conditioning costs!

A Product of GENERAL WOODCRAFT CO., Inc., North Bergen, N.J.
Any Way You Look At It...

The Perfect Window...

- For any type of architecture
- For any type of structure
- For any climate

so new
so beautiful
so absolutely perfect

it's the wood window women want most!

no other window gives you so many exclusive, home-owner-wanted features

WOODCO Auto-Lok

THE WOOD WINDOW THAT ANSWERS EVERY NEED!

Factory-Assembled of Selected Ponderosa Pine, Toxic-Treated for Protection against Decay; Water-Repellent Treated to Reduce Shrinking and Swelling to a Minimum

GENERAL WOODCRAFT CO., Inc.
North Bergen, N. J.
N. J. Phone: UNion 3-1200 • N. Y. Phone: LOngacre 5-7417
SCHOOL OF MEDICINE AND DENTISTRY

BY LEWIS E. HOWARD, JR.
JAMES & MEADOWS, Architects

Why is the University of Buffalo building a new Medical and Dental School? Basically, the answer is that these schools have long enjoyed a reputation for being leaders in their fields; however, over a period of years their buildings and equipment have become obsolete. Unless something was done, these schools would no longer be able to maintain their high position. Furthermore, with the growing need for more doctors and dentists, more space would be required to teach an increased enrollment.

The University determined to erect a modern building which would be in keeping with the high standards of its medical and dental schools and at the same time be flexible enough to keep pace with the rapid strides being made in the science of medicine.

To gain some idea of the complexity of the project, think of the building as a large diversified group of specialized laboratories and clinics each of which must be treated as a unit in itself and yet to be an integrated part of the whole. In addition to this there are problems in hospital design which must be taken into consideration. There are many departments in the building, yet they bear little similarity one to another. In fact, there are no two rooms exactly alike.

Our problem was to design one building to house both schools with certain common facilities easily accessible to both. Provisions were to be made for an entering medical class of 100 and an entering dentistry class of 80 students. Since medical students will spend two years in this building and two years in hospitals, and dental students will spend four years in the building, the building was designed to accommodate 200 medical and 320 dental students, plus a varying number of graduate students.

Medical science is advancing rapidly and it is not our intention that this building will soon fall into obsolescence. With this in mind, most of the partitions are so constructed that they may be moved to accommodate changes in room sizes for new uses. Service lines are exposed on the ceilings of laboratories so that outlets can be relocated or new ones added with a minimum of trouble. The equipment throughout the building is the most modern and up-to-date obtainable, including specially constructed radio-isotope fume hoods and other highly specialized items.

To give some impression of the size of this project, the total floor area is approximately 200,000 sq. ft. (five acres). The height varies from two stories at the wing ends to five stories at the center section. The extreme overall dimensions on the ground are 450' x 250'. The total cost will be $4,500,000.

The School of Dentistry occupies the ground, first and second floors of the north wing with its main entrance at the first floor in the center of the north facade.

The ground floor of the north wing contains the prosthetics clinics with 42 chairs, oral examination clinics with 12 chairs, clinical photography, radiology and oral surgery departments. Laboratories and other adjunct facilities are located adjacent to the clinics.

The first floor of the north wing contains the 69-chair general clinic with its waiting, dispensing and sterilizer rooms. The endodontia department is located at the north end of this clinic and is separated from it by a glass block partition. Three large lecture rooms and the dental school administration offices are also on this floor.
The second floor of the north wing contains the orthodontia clinics, cephalometric photography, prosthodontics technic laboratory, crown and bridge technic laboratory, dental anatomy and histology laboratory, ceramics room and smaller related rooms.

Facilities used jointly by both schools are located in center section of the building on the ground and first floors. A large student lounge 105' long, two tiers of book stacks with individual study cubicles, service and work rooms are located on the ground floor.

The main entrance to the building, and to the medical school, is at the center of the center section at the first floor level. Across the lobby from the entrance is the large amphitheater which will seat 360. Rather than slope the amphitheater floor, it was decided to have a step at each row of seats. This increased the pitch of the floor thus allowing occupants of all seats to look down on the demonstration table. In the wall behind the table there is a 9 foot square opening which will be fitted with a translucent television screen, the projector being in the room beyond. It is intended that this amphitheater will be used, not only by the medical and dental students, but by other groups for meetings, lectures, etc.

South of the large amphitheater, off the main corridor, is a smaller amphitheater seating 250 with seats on steps as in the large amphitheater. This room will be provided with a portable T.V. screen and projector.

The purpose of the T.V. set-ups in the amphitheaters is to provide the students with a good view of unusual operations as they are actually being performed in large hospitals.

North of the large amphitheater is the library reading room which, with the stack room, will have a capacity of 120,000 books.

The medical school administrative offices occupy the entire east side of the first floor of the center section.

The remaining and largest part of the building is devoted to the school of medicine consisting of 12 separate departments each with a different function to perform. A typical department consists of a large laboratory for 80 to 100 students, a dozen or so small laboratories, preparation rooms, stock rooms, offices, special purpose rooms and cold rooms.

The animal quarters occupy most of the top floor and are provided with a large dog run on an adjoining roof. Special animal rooms housing monkeys, etc., are fully air-conditioned as the air for these animals must be kept at a certain critical temperature and humidity. On this same floor, but segregated by a sub-corridor, is the virology department with its own animal rooms, technic rooms and cubicles. The air exhausted from these rooms is decontaminated by germicidal lamps in the ducts before being emitted to the outside air. Because of the nature of virus research and the dangers of infection involved, this small department presented many new problems.

Mechanical facilities play an important role in the working of this building, as without them the schools could not function at all. Let us examine the services required for one typical laboratory table, of which there are hundreds throughout the building. Outlets on the table are required for hot water, cold water, gas, compressed air, vacuum, distilled water (piped from a central still in one of the penthouses), 115 volts a.c., 208 volts a.c., 115 volts d.c. and in some cases, other special outlets. The fume hood at the end of the table is connected to a special duct system and exhausted to outside air above the roof. As pointed out earlier, service lines are exposed on ceilings of all laboratories for the sake of flexibility. However, these pipes, ducts and conduits are concealed by suspended acoustical ceilings in the corridors.

The building will be heated by convectors, the steam for which will be supplied by the boilers in the university power house and piped through a tunnel to the building. However, since the power house is shut down during the summer, and research and clinical work will be carried on in the schools, an auxiliary source of hot water and steam is provided in the building.

This project is one of the most interesting that it has been our privilege to work on and it is difficult to imagine a more cooperative and helpful group to work with than the staffs of the University of Buffalo Medical and Dental Schools. The success of this building will, in no small measure, be due to their untiring efforts.

Progress photograph from west showing partially completed north and south wings. When completed, the center section will be five stories high or one story higher than the highest part of the wings. (Note: Chimney is not part of this building.)
ONONDAGA HILL SCHOOL

CHARLES E. CROOM, Architect

The plans show the layout of the new elementary school at Onondaga Hill, N. Y. Contracts were awarded March 8, 1952 with a total cost of $261,000. This does not include fees or equipment or site improvement. The cost per cu. ft. figuring the gym at 60% of its actual cubage was $3.50 per cu. ft. This price represents economical construction by today's standards. School prices in Central New York have been running from $1.00 to $1.25 per cu. ft. recently. Due to low assessed valuation and the fact that this was a common school district, careful planning and material selection was mandatory. However, space was not sacrificed; grade rooms have approximately 900 sq. ft. including toilet and teachers' storage rooms.

The school is located on a site sloping down from the road with K-5 grades on the upper floor and 6-8 and arts room on the lower floor. The shower room and gymnasium are also on the lower level. Preliminary studies made it apparent that the site prevented a one-story scheme or any attempt at bi-lateral lighting. Central New York's winter weather makes extensive use of artificial lighting necessary as we get only one-third of the possible sunshine in this season. Following this line of reasoning, we determined that flat ceilings and indirect lighting from silver-bowl lamped 3-ring fixtures was the best in quality and most economical in first cost.

(Continued on Page 35.)
FOUR SCHOOLS – TOWN OF

McKownville School

No particular problems were encountered at McKownville outside of foundation problems. Some of the site has been re-graded in the past, and the determination of footing needs will probably be a field operation. However, loads are relatively light – one of the advantages of one story construction – and no particular difficulties are expected.

Junior-Senior High School and Bus Garage

Specific planning problem here was to design a building expandable in a variety of directions. Both the junior high and the senior high wings, as well as the specialized shop areas, are expandable. One story construction was decided upon for reasons of cost and general workability of plan and ease of expansion.
Altamont School

At Altamont the problem was to design a new structure on a site on which an existing building already stood. The old building will be destroyed upon completion of the new building, leaving play area to be used in connection with the new building. Problems presented by topography were solved by very careful placing of the one story structure with relation to existing grades so that the minimum of cut and fill would be necessary in the siting of the building.

Fort Hunter School

This is an addition to an existing two room building and created the difficulty of having the old building penalize the amortization period of the bonds for the new building. This was overcome by building the new addition as a completely isolated structure, tied to the old building by glassed in gallery. 30-year bonds are now possible for the construction of the new building.
The Liverpool Junior High School is one unit of several that will comprise a "Campus Group" of educational facilities for the town of Liverpool, New York. Construction has already begun on the Junior High School and when completed next fall it will accommodate approximately 550 students.

The building will contain 15 class rooms as well as the usual art, science, library, homemaking and industrial art rooms. Class room features include built-in sinks and cabinet units and individual storage closets. The rear wall of each class room is finished with cork tile which serves a number of purposes. The cork
lends a distinctive coloring to the wall as well as providing an acoustic treatment, it may also be utilized as an allover tack board and display wall.

The Auditorium and Cafeteria have been combined as an economy measure but are so laid out as to serve the dual purpose efficiently. A Music Suite is provided at the rear of the stage with direct access to the stage and Auditorium. Notice how the Gymnasium and Auditorium isolate the relatively noisy shop and music areas from the rest of the school and yet are not located too remotely as to inconvenience the students passing to and from these areas.

The Gymnasium is approximately 82' x 68' and is provided with a folding door and folding bleachers. The boys' and girls' locker rooms are located on either side of the gym and each have direct access to the athletic fields. Here again, notice how cleverly the girls' locker room, stairhall and storage rooms are arranged so as to reduce sound transmission from the gym to the class room wing.

The Administration and health suite has been set aside apart from the class room area, however, its central location allows easy accessibility to all parts of the building.

The structural system is steel frame and bar joists. A glance at the wall section will serve to show that there is nothing unusual about the framing system, however, one will pause at seeing a plastic exterior finish treatment. The space above the window strip as well as the spandrel employs a corrugated surface of plastic and metal. It is felt that the plastic over the windows will help to reduce condensation and because of its lower transmission factor it will cut down on heat loss. The corrugated plastic also has the advantage over glass in that it is monolithic, non-breakable, and may be repaired, patched or resurfaced. Although the initial cost of the plastic is considerably higher than glass it is hoped that an economy will be realized in the installation costs, in that less labor will be involved. The color chosen for both the plastic and the metal spandrel is a sea foam green which should provide a soft pleasant light on the interior of the class rooms. The perspective sketch attempts to show how the exterior will look with its unbroken strip of vision windows and the corrugated surface of the metal and plastic.
CADYVILLE ELEMENTARY SCHOOL
Reisner & Ueblen, Architects

The Cadyville Grade School Building offers an excellent example of what can be done in the realm of school design on a very limited budget.

The towns of Saranac and Cadyville, N. Y., were faced with the problem of housing their overcrowded school population on a limited budget of $200,000. The resulting building provides accommodations for 200 children as well as a library and auditorium-gymnasium that will be available to the community for evening use.

Because of the limited finances available, an inexpensive structure was planned (see building section). The building "cubes" at 213,773 cu. ft. and the cost of the structure, bid on the 6th of December, 1950, was $166,544 or $0.78 per cubic foot. This includes the construction cost increase created by "Korea".

The classrooms are 22' x 32' with east-west orientation, built-in wardrobes, and include chalkboard and tuckboards. The four foot overhang on the south-west elevation acts as a sunshade and also affords weather protection.

The Kindergarten is 27' x 35' in size, including coat space, storage space and toilet. The sunshade on the south protects the interior from the direct sunrays. Equipment included is tuckboards, chalkboards, storage cubicles, toy lockers, sink and cabinet.

The Auditorium-Gymnasium might better be called the Multi-purpose room for it also acts as cafeteria. The kitchen affords direct accessibility to this room for serving purposes and opens to the outside for each service delivery. The serving counter faces the passage from corridor to Auditorium-Gymnasium. The 19' x 38' stage adds to the usefulness of this "Multi-purpose Room".

The library features built-in bookcases and tuckboards and is approximately 20' x 27' in size. This room is to be used by the community as a meeting room for social organizations. In order that the library may act as a single unit, a side entrance was provided for public access from the street, thus enabling the library to be shut off from the rest of the school when used by the public.

Office and storage areas are centrally located to control school circulation. The boys' and girls' toilets, also centrally located, can be used by both the public attending functions in the gymnasium or by the students attending classes. The shower room although seemingly misplaced in plan makes use of the serving space passage and allows access to the gymnasium without using the corridor.

The boiler room and additional storage space is located in a partial basement.
Construction and cost outline is as follows:

CONSTRUCTION:
- Footings—concrete
- Foundations—concrete block and concrete
- Floor construction—concrete slab on grade
- Floor finish—cement
- Exterior walls—concrete blocks with stone piers supporting steel framed overhang
- Interior walls—cinder blocks painted
- Roof construction—bar joists, planks and built up-roofing
- Ceiling finish—paint
- Interior finish—temporarily exposed
- Insulations—insulated ceilings
- Window sash—wood

COST:
- General Contractor—$132,500
- Plumbing—$4,820
- Heating and Installation—$20,582
- Electrical—$8,642
- Cost per Cubic Foot—78c
- Cost per pupil (190 students)—$881

Windows are fixed glazing in wood frames with some sill vents. Light control by double roller shades operating from a center cross mullion. This is not a new scheme but in our opinion still one of the best. It is our contention that more elaborate sun control devices as well as bi-lateral lighting schemes are out of place in the North-Eastern States. Skylights present a difficult light control problem as well as excessive heat loss. We have enough hot weather in September, May and June to make a forced ventilating system more preferable than window ventilation, especially with double-loaded corridors. Double-glazing would be nice but costs are high. Most opinions are that ventilation is probably more important than heating while school is in session. To avoid the "cold-wall" effect we have used continuous fin-type radiation under the windows with the forced warmed air supplied by a central fan system. The radiation is supplied by forced hot water from a converter operated by steam. The mains run on the ceiling of the lower floor, thereby eliminating pipe trenches and permitting the lower floor to be a slab on grade. The gymnasium is heated by forced warm air from diffusers at the ceiling and returned thru baseboard slots around the exterior wall thence between a double layer of 2x3 sleepers under the floor to a collecting duct under the stage.

The reinforced concrete structural system (made necessary by NPA) is laid in a pattern of bays 24', 20', 2' across the grade room wing making it possible to take full advantage of continuity in the 10 plus 2½ bays. The girders running the other way are 48" wide and 12½" deep in the interior spans and 24" wide at the outside. They span columns 16' oc and make possible a slab and girder of the same thickness making for economy in framing; there are no formed beams on the job. All columns are 12"x12". In our opinion economy can be achieved if the structural plan has a regular layout. In this case it is practically duplicated on the upper floor and roof.

The exterior spandrels are covered with 24" red cedar shingles, 1½" to the weather left natural, put on over furring strips on the 8" concrete block curtain walls. Part of the front elevation is brick as well as all of the gymnasium bearing walls. The perspective shows a preliminary design which has been changed to 12' wide porch running across the front from the chimney to the gymnasium as shown on the plan. The gymnasium roof is framed with 32" deep longspans and has a poured gypsum slab on 1" insulating board. All interior walls are concrete block walls painted. The saving in omitting plaster comes in first of all omitting all of it and the fact that time is saved by not having to wait for it to dry out before interior trim is installed. Grade room and corridor ceilings are acoustical tile. Furred down ceilings in grade rooms are 5½" gypsum board. Floors are the usual quarry tile, ceramic tile and asphalt tile. Stair treads and landing slate.

Each grade room on the upper floor has its own toilet with sink and drinking fountain. The teacher's closet is equipped with adjustable shelves, coat rack and space for movable equipment. Clothes rack is on the corridor wall of the grade rooms. All other storage units in the rooms are movable. Back wall of each room tackboard 7'-0" high. All interior trim natural.
PLEASE, MR. ARCHITECT!

We want kitchens that are easy to work in and pleasant to be in!

With housewives in mind, more and more architects specify famous

Youngstown Kitchens

GIVE HOUSEWIVES THE MOST MODERN AND CONVENIENT KITCHENS AVAILABLE

Today's modern homes and apartments deserve today's most modern kitchens. Youngstown Step-Saver Kitchens. These famous kitchens, with gleaming Youngstown cabinets strategically placed, save steps, time and work. And their feature attraction is the sensational Youngstown Automatic Jet Tower Dishwasher that does dishes thoroughly, automatically and quickly.

Convenience and beauty are only part of the Youngstown Kitchens story. Their sound construction assures building owner of kitchen equipment that maintains top appearance and performance through the years.

See any of these Youngstown Kitchens Distributors

- **WEISS & BESSERMAN CO., INC.**
 41 E. 42nd St., New York
- **RCA VICTOR DISTRIBUTING CO.**
 1209 Broadway, Buffalo — 120 Portland Ave., Rochester
- **MORRIS DISTRIBUTING CO.**
 1153 W. Fayette St., Syracuse
 195 Water St., Binghamton
- **INTERSTATE PLUMBING SUPPLY CO., INC.**
 733 Broadway, Albany — 161 Smith St., Poughkeepsie
"Brooklyn in Progress," an exhibit dealing with that borough's housing and planning problems, opened April 23rd at the Brooklyn Museum. Occupying the main entrance hall of the Museum, the show was designed and installed by senior students of the Department of Architecture of Pratt Institute in cooperation with the Brooklyn Chapter of the American Institute of Architects.

In statements accompanying the show, which is both spectacular and controversial, the students call for interest and action on the part of citizens, business leaders and government agencies to realize the replanning suggestions which would relieve congestion in housing, on main thoroughfares and in industrial areas and bring new beauty and comfort to Brooklyn's 3,000,000 residents.

The material on display presents documentary evidence of a thorough canvassing by Pratt students of civic agencies and individual architectural sources in an effort to uncover all available data relating to the theme of the exhibition. Photographs, maps, architectural drawings and scale models are used in the show.

Constituent parts of the exhibition include: the Brooklyn Civic Center, now under construction; public and private housing; health and education; recreation, public works, commerce and industry.

Historical landmarks, such as the Brooklyn Bridge and such early dwellings as the Peter Wyckoff house of Canarsie Lane, built in 1641, occupy prominent positions in the show. A wealth of human interest material — scene on sidestreets and backyards photographed by Pratt students — are importantly placed.

"Brooklyn in Progress" was undertaken to inform the public of the architectural and planning progress in the borough of Brooklyn and to make each citizen aware of his individual responsibility in the continuation of this progress. The exhibition was originally conceived as a result of a design competition of Professor Olindo Grossi. Three entries were chosen from which further elimination resulted in the ultimate design of James Parkes, senior student. In the evolution of the exhibit, refinements to the original scheme were made as required. Planning and execution were done by senior students of the Department under the direction of Sheldon Schorr, senior thesis student.

Student design problems are purposely intermingled throughout the sequence to invite comment and analysis by the observer as a stimulus toward action.

"Brooklyn in Progress" will be exhibited through September 1st and, therefore, will be available for the American Institute of Architects Convention in July.

The Department of Public Works, the Department of Parks, the Board of Transportation, the Board of Education, the New York City Housing Authority, the Brooklyn Navy Yard, and the President of the Borough of Brooklyn cooperated in the show.
Will you take a tip from a tree?

In the shade of a tree, even on the brightest days, you can read comfortably. Light coming from all sides is equalized—no deep shadows, no glare.

You can design classrooms like a tree—as regards good lighting. That’s important because authoritative studies show that much of our eyestrain is caused by too little daylight in schoolrooms. In offices and factories, too, people can see most comfortably when they have lots of light evenly distributed throughout the room.

Daylight Walls come nearest to duplicating the daylight you find under a tree. They admit the maximum amount of light because they are made with clear flat glass, wall-to-wall, and all the way to the ceiling. Clear glass transmits more light than glass in any other form—as much as 40% more than some forms of translucent but nontransparent glass.

To control light when it’s too bright, flexible shading is used as in the classroom shown above. That permits reflecting bright sunlight toward the ceiling and diffusing it throughout the room.

Compare the cost of Daylight Walls with any other type, and you’ll see that they enjoy the advantage of economy as well as superior lighting. Write for literature on school design.

FOR WINDOW INSULATION
Thermopane® insulating glass is widely and successfully used. Thermopane with ½” of dry air hermetically sealed between two panes has twice the insulating value of single glass. This minimizes chilliness, drafts and heat loss at windows. Thermopane cuts air conditioning costs by reducing the amount of heat entering during summer. Write for Thermopane literature. Libbey-Owens-Ford Glass Company, 4752 Nicholas Building, Toledo 3, Ohio.

Thermopane® Plate Glass
That Don’t Obscure Vision

Other L.O.F. Glass Products: Vitrolite® Safety Glass E-Z-Eye Safety Plate Tul-flex® Plate & Doors Fiber-Glass

FOR WINDOW INSULATION
Thermopane® insulating glass is widely and successfully used. Thermopane with ½” of dry air hermetically sealed between two panes has twice the insulating value of single glass. This minimizes chilliness, drafts and heat loss at windows. Thermopane cuts air conditioning costs by reducing the amount of heat entering during summer. Write for Thermopane literature. Libbey-Owens-Ford Glass Company, 4752 Nicholas Building, Toledo 3, Ohio.
AMONG THE CONSTITUENTS
By Cyril T. Tucker and Charles V. Northrup

BROOKLYN CHAPTER

Three Pratt Institute students were awarded all three prizes offered by the Annual Competition of the Brooklyn Chapter, The American Institute of Architects. Students from about ten Eastern colleges and Schools of Architecture had competed in designs for REDEVELOPMENT OF "THE HUB" OF BROOKLYN.

First prize of $100 was won by Howard Seltzer, 3957 Gouverneur Avenue, New York; Ronald Turner, 9104 Newkirk Avenue, Brooklyn, was awarded the second prize of $50; and the $25 third prize went to Saul Rosenblum, 7666 Austin Street, Forest Hills.

Outstanding characteristic of the successful design was the combination of traffic solution and good architectural composition. The Jury of Awards included Acting New York Traffic Commissioner T. T. Wiley; noted Architects Morris Ketchum, I. M. Pei and Jedd Reisner; Joseph Di Stasio, Consulting Engineer; and Michael Rapuano, Landscape Architect. Among the Brooklyn Chapter members on the Jury were Henry V. Murphy, Adolph Goldberg, and Vito P. Battista, Chapter President.

Announcement of the winners was made jointly by Olindo Grossi, Chairman of the Department of Architecture at Pratt, and Gabriel S. Vallone, Chairman of the Education and Registration Committee, which organized the Competition for the Brooklyn Chapter.

Winning drawings were exhibited at the annual awards meeting of the Chapter, at Michel's Restaurant, 346 Flatbush Avenue, Brooklyn, on Tuesday, March 25th. They will also form part of the major exhibit on Brooklyn's buildings, past and future, to be held later this Spring at the Brooklyn Public Library in conjunction with the National Convention of The American Institute of Architects.

We have stolen the following cold from the "Bulletin" of the Brooklyn Chapter, as we felt it would be of general interest. We hope this Chapter will continue to publish these Vignettes and that other Chapters will do the same.

"OFFICE VIGNETTES — office of Henry V. Murphy. Distinguished Brooklyn firm ably led by H. V. Murphy himself — Pratt graduate, past Chapter and State president — application for A.I.A. Fellowship for 1953 now up for approval. Stephen Stachurski, Harry Merz and Philip Mano, three good men in the profession, work here. Formerly with the office were our own President Vito Battista, Edwin Ciorcles, head of Lerner Stores Architectural Department, Mike Harris, Max Rome, and others who have made their notch in the field. Some of the work produced by the office: the beautiful stately Our Lady of Refuge Church, the modern and warm St. Bernadette Church, schools for the Board of Education, and institutional work for the Department of Public Works, St. John's University and hospital organizations."

"OFFICE VIGNETTES — office of Henry V. Murphy. Distinguished Brooklyn firm ably led by H. V. Murphy himself — Pratt graduate, past Chapter and State president — application for A.I.A. Fellowship for 1953 now up for approval. Stephen Stachurski, Harry Merz and Philip Mano, three good men in the profession, work here. Formerly with the office were our own President Vito Battista, Edwin Ciorcles, head of Lerner Stores Architectural Department, Mike Harris, Max Rome, and others who have made their notch in the field. Some of the work produced by the office: the beautiful stately Our Lady of Refuge Church, the modern and warm St. Bernadette Church, schools for the Board of Education, and institutional work for the Department of Public Works, St. John's University and hospital organizations."
to expand and cost the taxpayers many times that required if such work was let to private practitioners. We hope the Buffalo architects will be able to demonstrate that architectural work by private offices is cheaper and more efficient than architectural bureaucracy.

CENTRAL NEW YORK CHAPTER

The Chapter recently enjoyed a trip to Ithaca for its April meeting. The members and wives, about ninety in all, gathered from the extremes of this, one of the largest (in area) of the chapters, to be entertained at the New Statler Club at Cornell University. Arrangements were in charge of Prof. Henry A. Detweiler of the College of Architecture, who, with his committee, designed one of the most successful of a succession of good programs.

The facilities of the Statler Club are excellent and are recommended to any Cornellians among the constituents who happen to be in Ithaca. Prof. Meeks of the Hotel Administration school showed colored slides taken on his recent tour of South American hotels. The splendor and color of these buildings left all of us drooling for some of the same. After his talk, Prof. Meeks took the crowd through the club and connecting school.

The next meeting is scheduled for Corning where the members and wives are invited to take a tour through the Corning Glass Center. This meeting is also the Annual meeting and election of officers.

NEW YORK CHAPTER

Chapter members and their ladies turned out in force for a gay evening at the Biltmore for the Chapter's 83rd Anniversary Dinner under the joint chairmanship of Bob Jacobs and Eldredge Snyder. The cocktail hour before gave a chance for visiting; the dinner was delicious; distinguished guests added prestige; and the AIAREs entertained with song.

Rear Admiral J. F. Jelley, Chief of Bureau of Yards and Docks, Department of the Navy, introduced by Max Foley, toastmaster, was the principal speaker. He outlined the manner in which the Bureau selects architects for its work, stressing that the small office has an equal opportunity with the large one.

Francis Keally, Chapter President, told of his recent experiences as consultant for a new library in Berlin. Arthur Holden outlined the program and social activities being planned for the Convention in June.

Donald Q. Faragher of Rochester, President of the State Association, presented Awards of Merit and Mention Awards won at the State Convention in Buffalo last fall.

This Chapter lists three structures for the delegates to put on their agenda as places to see. One is Lever House at Park Avenue and 53rd Street. The other is the Port Authority Bus Terminal on Eighth Avenue at 41st Street, "a most interesting three-dimensional essay in handling many people and many vehicles at many levels—three-dimensional with a vengeance." And the third: "rising out of the Jersey Flats between Newark and the Hudson is to be seen a structure not less impressive than Stonehenge, and hardly less mysterious, until you identify it as a chunk of the new New Jersey Turnpike. It sweeps up over rivers and down under existing causeways in a manner quite suggestive of the 60 mile fair-weather speed limit. The long flexible ribbon of roadway is supported on concrete beams which are flawless in their perfection and simplicity of form, and the bridges notable for their exquisite marriage of girders and pier."

(Continued on Page 50)
Public Relations

BY DON HERSHEY
Public Relations & Publicity Chairman

Some time ago I asked C. Morton Wolfe, one of my committeemen, to give me his ideas on the Architect’s best Public Relations Contributions. The following letter, printed in its entirety, is one man’s opinion as to “Where Should Public Relations Start?” I urge every member of the State Association to read what “Mort” has to say on the subject, and then ask himself the same question—“Where Should Public Relations Start?”

April 7, 1952

Mr. Don Hershey, A.I.A.
Five Landing Road South
Rochester 10, New York

Dear Don:

I have your letter of February 20, 1952, relative to public relations for the profession and I could write a week on this subject but will try to boil down my thoughts to as few words as possible on the subject, “Where Should Public Relations Start?”

Good public relations begin and it might be said, end with the Architect for it is he who can spread the importance of the profession yet destroy it by poor performance.

Picture a new isolated community of 200,000 persons blessed with a group of good Architects. The law of the State decrees that plans of all buildings costing over $10,000.00 must be sealed by an Architect or Engineer. If one of the Architects became Mayor, another President of the Chamber of Commerce and all the others were selected or elected to high responsible positions, yet allowed to continue to practice, would any more buildings be built than if these Architects never showed their faces past the front door of their homes or offices and did not take any interest in community affairs? I say no. Advertising the Architect does not mean an increase in building construction. The fact that the Architect is a great man, well learned in his profession, is honest and most considerate of the pocketbook of his client will not cause the Smith Jones Company to build a new Plant, the Ninth National Bank to build a ten story building or will slums be cleared and replaced by modern dwellings. If and when the Owners believe there is a good reason for expansion or the City believes it has or can get money enough to rebuild slum areas—then the work starts without much thanks to the Architects or the advertising of the profession.

If the planning and control of a new building is in the hands of a capable and conscientious Architect, well schooled in the type of building he undertakes and the building is completed to the entire (not half or three-quarter) satisfaction of the Owner, that Architect has “public relations” the profession more than $10,000.00 worth of newspaper, radio or television advertising for the profession would do.

If each and every Architect, upon completion of his contract, knew that he had a well satisfied client through his building and services, Brown and Company would not have any reason to ask the out-of-state Contractor to submit a proposition for a building which would include plans. When there is such an occurrence, it is a sure bet that Mr. Brown asked Mr. Black how he got along with the building he built last year similar to the one Brown wanted and was told that the cost was 45%, greater than he had figured on spending because the Architect either made poor guesses as to cost, left out essential parts that had to be paid for at drug store prices or he never saw the Architect except on pay days.

Yet this Architect might have given good services for a different type building, one which he was experienced in and capable of designing. This fellow could be compared to the appendicitis specialist who practiced this specialty for twenty years and was really tops in his line and then attempted to remove a blood clot from some poor guy’s brain. The fortunate thing about medi-
CHILDKRN ARE SEEN
and not heard ...

IN MODERN
FITCHBURG YOUTH
LIBRARY

RIGIDIZED-
Metals

Noise is kept to a mini-
mum in the Youth Library
at Fitchburg, Mass., per-
mitting students to study
or browse in quiet sur-
rroundings. Acoustical fins
of perforated RIGIDIZED
METALS on the ceilings of
this modern, functional
library are insulated and
composed of "dishes" that
swivel maximum sound
absorption. This is but
one of the many applica-
tions where RIGIDIZED
METALS can contribute
modern beauty and utility
to your architectural plans.
Be sure to investigate all
the fresh IDEAS offered
you in three-dimensional
design strengthened RIG-
IDIZED METALS.

WRITE on your company letterhead for
a copy of the RIGIDIZED METALS CON-
SERVATION HANDBOOK—today.

U.S. & Foreign Patents

FARRAR & TREFTS, INC.
Established 1863
20 Milburn Street, Buffalo 12, New York

U. S. SCOTCH BOILER
with all burner and induced draft fan

BISON BOILERS

Heating and Power Boilers in sizes ranging
from 10 H.P. to 350 H.P.
API-ASME ASME CODE
Quality Boilers To Give Quality Service
* See Sweets' Catalog

EMPIRE STATE ARCHITECTS

Sincerely yours,

G. MORTON WOLFE
About the turn of the century codes for ventilation were being pushed through legislatures and "30 cubic feet of 'fresh air' per pupil" became legal. Fan and duct systems, designed to meet these codes, frequently were not run since designers had evolved the split system which provided a full heating effect from radiators without the help of the fan coils. Low air pressures, inadequate temperature control, susceptibility to unbalance were outstanding defects in these installations.

The Monarch Cabinet Ventilator undertook to replace the fan system. This was a crude mechanism. It employed a pair of fans to draw outside air over a large cast iron heating element, and then discharged this air into the room. To obtain speed adjustment a direct current motor driven by a motor generator set was located in the basement.

Temperature control was soon applied. Aluminum and copper heating elements replaced the cumbersome cast iron heaters and the size of the unit ventilator decreased and beauty of design received more attention. Non-freeze coils are now used. Noisy squirrel cage induction alternating current motors have been replaced by very quiet and flexible capacitor motors.

While the height of these machines has been cut from 38 to 28", they still project into the room about 14 1/2". Book shelves and attached radiation which extends to right and left of the unit ventilators are now quite common. The use of partial recirculation makes it possible to utilize one of these units in each classroom for both heating and ventilating.

Since it is possible to use glass blocks in the hitherto lavish window areas, and since ceiling heights have been reduced from the former 12 foot level to 9 feet, there is a considerable reduction in heat losses. For the moment, costly ductwork places the modern fan and duct system at a slight disadvantage pricewise with the use of 60° air distributed to individual classroom air heating coils (completely hidden from the classroom and tied in with the room heating thermostat system) excellent control is obtained. With recessed convectors, no floor space is taken for heating or ventilating equipment.

Today's tremendous cost of school buildings, together with the rapid increase in child population, points to the ultimate use of school properties twelve months each year. When this time arrives, the modern fan and duct system can be quickly and economically equipped for air cooling to maintain satisfactory working conditions in the rooms. Unit ventilators, in their present form, cannot be used for cooling because condensation would drip from the air. Having no place to go, it would lodge in the interior. In hotels and offices high pressure air is being circulated in tubing instead of ductwork. By some such means, the investment cost of a cooled air system can be reduced to a point where it will cost less than the present unit ventilator system.

Today's system of ventilation should be able to cope with such trends in the future without too much extra expense.
The Charm of Brick

MOHAWK BUILDING MATERIALS CORP., RENSSELAER, N. Y.

HUTCHISON-RATHBUN, INC., ROCHESTER, N. Y.

THE BELDEN-STARK BRICK CORPN., NEW YORK CITY

BINGHAMTON BRICK CO., INC., BINGHAMTON, N. Y.
THE intelligent choice of colors to properly blend together and produce an effect in harmony with the character of the building, its style of architecture and its surroundings, is a matter of vital importance. Brick architecture possesses a charm not surpassed nor inferior to any other building material.
BOOK REVIEW

FORMS AND FUNCTIONS
OF 20TH CENTURY ARCHITECTURE

BOOK REVIEW

A revolution in building technique and materials, and "the impact of a very widely-held concept of social welfare, based upon the richest life of the individual," underlie the startling changes in architecture during the first fifty years of the 20th Century, according to Talbot F. Hamlin, professor of Architecture at Columbia University, whose monumental and unique work, "Forms and Functions of 20th Century Architecture," was published recently by Columbia University Press.

"The industrialization of the past fifty years has brought with it not only brand-new methods of construction and the use of a whole series of new materials, but, more significantly, has led to the central idea that everybody deserves a good house," the author of the 3,100-page study points out. Today, housing is no longer a matter merely of slum clearance, although architects owe a great deal to the housing movement which originated in Germany, Sweden, Austria and Switzerland in the first quarter of the century, but is also concerned with the best manner of living for all kinds of people, Professor Hamlin says.

"Forms and Functions of 20th Century Architecture" is the result of five years' intensive effort by Professor Hamlin, who was granted leave of absence from his post as Avery Architectural Librarian at Columbia in order to complete the four-volume work. The idea for the project originated with him and Dean Leopold Arnaud of the University's School of Architecture in 1945. The plan for the work was submitted to Columbia's Trustees who approved a grant to finance the research, writing and publication costs.

Containing over 3,700 illustrations, Professor Hamlin's book is intended to succeed the definitive 19th Century work on architecture, Julien Guadet's "Elements and Theory of Architecture," published in 1902. The inadequacy of Guadet's work in meeting the needs of modern architects was, in fact, the motivating cause behind the present publication, says the Columbia professor.

Professor Hamlin believes that the United States is "at a cultural turning point," which is reflected in our architecture. He poses the question "Are we going to develop into a land of Levittowns and Stuyvesant Towns, or along the lines of such advanced housing construction and planning as the Baldwin Hills development?"

"Our new materials and techniques have opened the way to an emotional aesthetic equal to or greater than that of any previous historical period," Professor Hamlin states. "The asceticism of the early pioneers of contemporary architecture has been seen to be obsolete and essentially defeatist. Today we hold the concept of the community as a conscious design meant to create not only better living but also through aesthetic considerations to carry social and moral value."

Professor Hamlin's concept of modern architectural development is reflected in the four divisions of the work. Volume I, "The Elements of Building," and Volume II, "The Principles of Composition," were written by him in the main. Volumes III and IV, "Building Types," consists of 51 chapters written by outstanding authorities in the field of architecture and planning, including William Lescaze, Lewis Mumford and George Nelson. The entire work was edited by Professor Hamlin. Dean Arnaud has written the introduction.

A native New Yorker, the 62-year-old author was graduated from Amherst College in 1910 and received his Bachelor of Architecture degree from Columbia in 1914. His father, the late Alfred D. F. Hamlin, was professor of the History of Architecture at Columbia.

Until 1934, Professor Hamlin was a practicing architect. He designed Ginnling College, in Nanking, China. He has been a member of the staff of the School of Architecture since 1917, serving as Avery Librarian from 1934 to 1936, and was appointed professor of Architecture in 1947. He is married to the former Miss Jessica V. Walters.

DESIGN CREDIT

We wish to give credit to Mr. Aaron G. Alexander of New York City for his association with the Syracuse firm of Harry A. and Curtis King, Architects, in the execution of the Industrial Bank of Central New York which was published in the March-April issue of the EMPIRE STATE ARCHITECT.
Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance

Imperial Danby Marble and Andes Black Granite join in a beautiful and practical combination of exterior veneer for this department store. Circular marble columns in quarter segments also enclose the structural reinforced concrete, supporting the overhanging second story.

Contemporary in design and easy of access, the store will attract the more public interest because of the harmonious color and veining in sand finished crystalline white marble in contrast with the uniform glossy black of the granite. Both marble and granite were supplied by this company.

Color — Character — Permanence — Low Maintenance
MERCOID AUTOMATIC CONTROLS
FOR THE HOME AND INDUSTRY

You can always count on their fine engineering for dependable service.

MERCOID CONTROLS ARE EQUIPPED WITH MERCURY SWITCHES, THEREBY INSURING GREATER SAFETY, BETTER PERFORMANCE AND LONGER CONTROLLER LIFE.

SENSATHERM
The Thermostat of Beauty and Mechanical Perfection

Thousands of home owners are enjoying the proven accuracy and year after year of dependability of this notable room thermostat in maintaining uniform room temperature without encountering unnecessary service expense.

In selecting automatic heating equipment, your best assurance for complete satisfaction is in knowing your controls, and the more you know about the controls, the more you will insist upon Mercoird, the only 100% mercury switch equipped control line on the market.

WRITE FOR CATALOG 700--PLEASE MENTION THIS PUBLICATION
THE MERCOID CORPORATION
4201 BELMONT AVE. CHICAGO 41, ILL
NEW YORK OFFICE: 265 E. 42nd STREET
TELEPHONE: MURRAY HILL 4-5071
PHILADELPHIA OFFICE: 3137 N. BROAD ST.
TELEPHONE: RADCLIFFE 5-1800

BUFFALO
BUFFALO BLUE PRINT CO.
L. J. Marquis, Jr., Owner-Manager
Phone CL. 0370 35 Court Street

COMMERCIAL BLUE PRINT CO.
Geo. G. Merry
Phone CL. 0815 White Building

SENeca BLUE PRINT CO.
Herbert Knight
Phone WA 6772 187 Delaware Avenue

SULLIVAN-McKEEGAN CO., INC.
R. K. McKeegan
Phone CL. 4400 739 Main Street

ROCHESTER
CITY BLUE PRINT CO.
W. F. Schock
Phone Hamilton 3730 Six Atlas Street

H. H. SULLIVAN, INC.
William W. Schwen, Mgr.
Phone Baker 4220 67 South Avenue

SYRACUSE
H. H. SULLIVAN, INC.
R. C. Howard
Phone 3-8159 213 E. Genesee Street

SYRACUSE BLUE PRINT COMPANY, INC.
A. B. Nye, Pres.
Phone 2-4714 427 E. Jefferson Street
birch. Individual color schemes for each room in rubber-base paint. Kindergarten has separate entrance porch, interior and exterior storage space. Note extra large space devoted to clothes storage.

Lower floor for grades 6-8 and related activities, some of which are carried on in the arts room. Group toilets for their use as well as for community activities in the gymnasium. This room is partly for after-school use of our high school pupils who attend classes in Syracuse and need a place for their recreation. It is anticipated that the community will make extensive use of the facilities also.

NEW YORK STATE CONVENTION
LAKE PLACID, N. Y.
OCTOBER 2-3-4, 1952

LIGHTNING ROD SYSTEMS
MATERIALS AND INSTALLATIONS
TO MEET SPECIFICATIONS OF
Government - Underwriters - Insurance Companies

Our trained staff of technicians are at your service without cost or obligation to design—layout system and assist in writing specifications for all types of buildings.

The Hallmark of Quality
LIGHTNING Rod Co., Inc.
17 JOHN ST., RENSSELAER, N. Y.
Tel. 5-5855
Room 1202
405 Lexington Ave., New York City MU 9-4459

Timber Trusses
of heavy monochord construction
for your clear span buildings...

Economy of timber, safety of heavy timber construction and dimensional stability of thoroughly seasoned wood are combined in these Tim-Flat parallel chord trusses. They provide permanent, maintenance-free buildings and large areas of clear floor space.

"Shop grown" of kiln dried material by Timber Structures, Inc., pioneers in glued lamination, chords of the Tim-Flat truss are thoroughly seasoned at the outset. When used in conjunction with suitable materials for walls and roof decking, the Tim-Flat qualifies as mill-type construction, provides effective resistance to destruction by fire, earns favorable insurance rates.

For details of both Tim-Flat and bowstring trusses, get our booklet, "Engineered Timber Construction", from your nearest Timber Structures office, or fill in and mail the coupon.

Timber Trusses, Inc.
P. O. Box 3782-N, Portland 8, Oregon
Offices in New York, Chicago, Detroit, Kansas City, Dallas, Seattle, Spokane
TIMBER STRUCTURES, INC. OF CALIFORNIA - Oakland, California
TIMBER STRUCTURES OF CANADA, LTD. - Peterborough, Ontario
Local Representatives throughout the United States and Canada

Specify with Confidence
for Houses
Schools
Hospitals
Factories

Specify
Benjamin Moore & Co.
Paints - Varnishes - Enamels

TIMBER STRUCTURES, INC.
P. O. Box 3782-N, Portland 8, Oregon
Please send me a copy of your booklet, "Engineered Timber Construction".

Name
Company
Address
City

Position
Zone
State

49
NOW AVAILABLE IN GREATER SUPPLY

- Dur-O-wal... the patented steel reinforcing for every type of masonry wall... is being shipped on stepped-up schedules.

This backbone of steel is economical, lays fast, prevents unsightly cracks. Trussed design incorporates architecture’s reinforcing principle.

CEDAR Rapids BLOCK COMPANY
Dur-O-wal Div., 650 - 12 Ave., SW
Cedar Rapids, Iowa

DUR-O-WAL PRODUCTS, INC.
P. O. Box 628
Syracuse 1, N. Y.

AMONG THE CONSTITUENTS

QUEENS CHAPTER
New officers of the Chapter are: Oswald Fischer, President; Gerorino Salerni, Vice President; Richard Lukovsky, Treasurer; and Arthur A. Schiller, Secretary.

ROCHESTER SOCIETY
The month of April has been a month of critiques at the weekly noon meetings. On April 3 Cy Tucker described a recent house, Cy and Don Hershey collaborating with a most interesting discussion of house design.

On April 10 Bart and Olga Valvano presented one of their houses, which proved to be most interesting.

On April 17 Robert E. Tompkins Inc. presented and discussed the subject of Radiant Heating. The meeting of April 21 was a business meeting.

A. MASON & SONS, INC.
PERU, N. Y. PLATTSBURG, N. Y.

Manufacturers of
MILLWORK
CABINETS
WOOD PRODUCTS
SUPPLIERS TO
THE ELEMENTARY SCHOOL
CADYVILLE, NEW YORK

CONCRETE PLANK
ROOF AND FLOOR INSTALLATIONS
TONGUE AND GROOVE
LIGHTWEIGHT

PRECAST CONCRETE

CONCRETE PLANK CO., Inc.
15 EXCHANGE PLACE
JERSEY CITY 2, N. J. Bergen 4-1401
New York City Phone Digby 9-2442
BUILT BY Blanchard

Office Building
The Hooper-Holmes Bureau, Inc.
Morris Township, New Jersey

Designed by Edwin Kline, Architect
Wm. L. Blanchard Co., Builders

IN New Jersey

We are prepared to serve you in this area

Our Own Who's Who will be sent on request

YOU CAN ALWAYS DEPEND UPON SPECIALISTS. By concentrating in construction work in the New Jersey area, the Wm. L. Blanchard Co. has achieved distinctive recognition for faithful and prompt fulfillment of its contracts.

New York architects call freely upon us on building problems, since we offer them the skilled knowledge of our entire organization. We are familiar with current costs, material sources and labor conditions.

INDUSTRIAL, COMMERCIAL AND INSTITUTIONAL CONSTRUCTION

Wm. L. Blanchard Co.

55 Poinier Street • Newark 5, New Jersey
Telephone: Bigelow 8-2121, Ext. 26

BUILDERS SINCE 1860
In KENSINGTON VILLAGE . . .

Largest Private Apartment Development in Western New York

. . . 648 Spacious Apartments

Equipped with GAS Ranges, Refrigerators, Clothes Dryers, Water Heaters

. . . the choice of experts, with a broad background of experiences as builders-owners-managers of modern apartments, the Godfrey M. Weinstein Co. has selected gas appliances for modern beauty . . . for top value . . . for dependable service and complete satisfaction to the householder. We of the gas industry are proud to have a part in the planning for the use of these fine gas appliances throughout Kensington Village.

IROQUOIS GAS CORPORATION

ROCHESTER GAS and ELECTRIC BROOKLYN UNION GAS CO.
When Building Schools... SPECIFY
LIGHTWEIGHT CONCRETE MASONRY UNITS

One of the most beautiful buildings in New York State is the new Orchard Park Primary School in Orchard Park, N. Y., in which the architect used variegated colored Celocrete Masonry Units.

Combinations of four colors were used in various parts of the building... brown, green, yellow and natural, and red, yellow, brown and natural. The attractiveness of the school has already attracted architects, members of school boards, and contractors from throughout the country.

One of the attractive classrooms in the Orchard Park School. Four colors in several combinations were utilized in many of the rooms.

Colored Celocrete Masonry Units, featuring four different colors, were also used in the corridors of the school.

The all-purpose room, used for various school activities, features Celocrete Masonry Units in four colors, as do the corridors. Some of the classrooms are in solid colors, such as green, brown, yellow.

The school is not only colorful and pleasing to the pupils attending, but the utilization of Celocrete Masonry Units has provided other advantages.

Acoustics are built into Celocrete Masonry Units, eliminating the need for other materials of this type. The use of colored masonry units makes it unnecessary to paint or plaster, a cost-saving factor. And what is most important where parents are concerned, the Lightweight Celocrete Masonry Units are fire-safe.

For more complete information about Lightweight Concrete Masonry Units, consult any of the members of the National Concrete Masonry Association listed below.

Albany, N. Y.
Albany Block & Supply Co., Inc.
Ramloc Stone Co.

Auburn, N. Y.
Auburn Cement Products Co., Inc.

Bedford Hills, N. Y.
Bedford Hills Concrete Products Corp.

Binghamton, N. Y.
Bowen Building Block & Supply Co.
Dinaburg Block Co., Inc.

Brooklyn, N. Y.
Nailable Cinder Block Co.
Picone Bros.

Buffalo, N. Y.
Anchor Concrete Products, Inc.

Forest Hills, N. Y.
Forest Hills Concrete Block Co.

Ridgefield Park, N. J.
Bergen Building Block, Inc.

Syracuse, N. Y.
Barnes & Cone, Inc.
Paragon Supply, Inc.

Rochester, N. Y.
Comac Builders Supply Corp.
Domine Builders Supply Co., Inc.
Schafer Bros. Building Supply Co., Inc.

Utica, N. Y.
American Hard Wall Plaster Co.
As further evidence of the trend to Insulated Metal Walls in modern construction, the new plant recently built for Quaker Oats in Omaha, Neb., is presented. A second plant for Quaker Oats is now nearing completion in Chattanooga, Tenn. Mahon Insulated Metal Walls with Aluminum exterior wall plates, coping, flashing, etc., and Mahon Steel Deck Roofs, were employed to good advantage in the construction of both of these completely new and modern plants. Mahon Insulated Metal Walls can be furnished in the three distinct exterior patterns illustrated at left...they are available in two “Field Constructed” types, and in two types of “Prefabricated Panels”. Walls of the “Field Constructed” type can be erected up to fifty feet in height without horizontal joints—a feature of Mahon walls which is particularly desirable in power houses or other buildings where high expanses of unbroken wall surface are common. For complete information on this modern, permanent, firesafe Wall and Roof Construction see Sweet’s Files, or write for Catalogs No. B-52-A and B.

THE R. C. MAHON COMPANY
Detroit 34, Mich. • Chicago 4, Ill. • Representatives in All Principal Cities
Manufacturers of Insulated Metal Walls, Steel Deck for Roofs, Partitions, and Permanent Concrete Floor Forms; Rolling Steel Doors, Grilles, and Underwriters’ Labeled Rolling Steel Doors and Fire Shutters.