Concrete and Cantilever Design
Cut Costs for Modern School

Attractive, modern appearance distinguishes this fine school, completed at a cost of only 92¢ per cu. ft. —20 to 25 per cent less than the cost of other new buildings of comparable size and quality in the area.

Concrete cantilever beams at 17' 2" centers are an outstanding feature in the design. Supported on twin concrete columns that form a central corridor, they extend beyond the exterior walls of the classrooms as roof overhang. Concrete ribs between the cantilever beams carry lightweight precast concrete panels that form the roof.

In the auditorium, cantilever beams from opposite walls join at the center of the room to form a 58-ft. roof span (see drawing below). Exposed concrete masonry, used for partitions and backup throughout the structure, assures maximum firesafety, economy and durability.

Concrete construction for schools is moderate in first cost, means lower maintenance expense and extra long life. These factors add up to low annual cost— which pleases school officials and taxpayers alike.

Write for free booklet on concrete school design and construction, distributed only in the U. S. and Canada.

PORTLAND CEMENT ASSOCIATION
250 Park Avenue, New York 17, N. Y.
A national organization to improve and extend the uses of portland cement and concrete . . . through scientific research and engineering field work.
For those who want the finest quality windows for their new buildings, General Bronze offers a new fully reversible window in stainless steel.

Embodying all the engineering advancements and designing skill for which General Bronze has been famous for more than 45 years, this new window has been designed for today's modern, completely air conditioned building. Its double gasket completely around the window assures a positive air and watertight seal that prevents the loss of heated air in winter, cooled air in summer, resulting in economies in both heating and air conditioning.

Made from stainless steel, the window offers complete immunity to weathering effects. It resists rust and corrosion, is easy to clean with mere soap and water, and never requires painting or costly maintenance.

The window is fully reversible, rotating 360°. This permits washing both sides of the window from inside, thus reducing window washing costs. In a closed position the window is automatically locked and can only be opened by means of a special key.

For additional information on the General Bronze Reversible Window or other type windows in stainless steel, aluminum or bronze, or for information on GB curtain wall systems call the General Bronze representative nearest you or write us direct. Our catalogs are filed in Sweet's.
On this 100th Anniversary of the founding of the American Institute of Architects we wish to pay tribute to Richard Morris Hunt, Richard Upjohn and the eleven others of “ideals and vision” who on February 23, 1857, founded the A.I.A. At the same time we wish to pay tribute to the 22,000 practitioners who today are continuing to uphold the original ideals on which the society was founded and are envisioning, for the years ahead, even greater accomplishments than those already achieved.

REVERE COPPER AND BRASS INCORPORATED

Founded by Paul Revere in 1801
Executive Offices, 230 Park Avenue, New York 17, N. Y.
The hammering action of fast moving feet is a telling endurance test of a gymnasium floor. Only a floor of exceptional quality can withstand this continued punishment for generations and keep its smooth, beautiful appearance and uniform resiliency. Ironbound* Continuous* Strip Hard Maple floors pass this test with flying colors.

Ironbound endures for generations because of the way it's made — and laid. Finest strips of Northern edge grain maple are installed over layers of mastic and cork and are interlocked with sawtooth steel splines which bind the floor into sections, scientifically controlling the wood's natural expansion and contraction. And every installation is handled by trained and experienced technicians.

To assure even greater endurance, Ironbound is now available with Dri-Vac applied Woodlife, the famous preservative containing PENTA-chlorophenol. This life-prolonging treatment protects against moisture absorption, swelling, shrinking, grain raising and checking, as well as termite and fungi attack... keeps Ironbound floors permanently stable and lastingly beautiful. For details, write to your nearest New York Ironbound installer.

How to simplify and cut costs of Your wall construction with

BAYLEY CURTAIN WALL SYSTEMS

— incorporating BAYLEY Projected Windows and Decorative Panels

Bayley Curtain Wall Systems—in either aluminum or steel—offer you the maximum economies to be realized from modern curtain-wall construction. Incorporating standard time-proved Bayley Projected Window Units, and a Bayley system of sub-frame assembly, a designer's preference can be met without the costliness of special window designing. Also, as illustrated, installation is reduced to the simplest procedure. Other advantages accruing are:

\(\sqrt{\text{Permits a choice of decorative panels and individualized arrangements}} \)
\(\sqrt{\text{Provides an insulated wall treatment to suit the building’s appropriation}} \)
\(\sqrt{\text{Designed to accommodate a building’s movement — expansion and contraction}} \)
\(\sqrt{\text{ Provision against condensation annoyance or damage}} \)
\(\sqrt{\text{ A wall with any desired degree of air, light or vision}} \)
\(\sqrt{\text{ Centralized responsibility for the complete wall system — including sub-frames, windows and panels}} \)

For further information write; or call your local Bayley Representative; or see Sweets.

THE WILLIAM BAYLEY COMPANY
Springfield, Ohio
District Sales Offices: Springfield Chicago 2 New York 17 Washington 16
NEW

Information* Valuable to the Masonry Industry available now on Stabilizing Walls with Dur-O-Wal

Request Yours TODAY!

*Technical data from independent laboratories on Dur-O-Wal masonry reinforcement has just been compiled for you. Send for your free file today. Engineering Department P. Dur-O-wal, Cedar Rapids, Iowa.

Rigid BACKBONE of STEEL For Every Masonry Wall

For a Protected Learning Environment

COLD WINDOW WALLS CREATE 2 PROBLEMS

excessive radiant loss

Without Wind-o-line, pupils seated near the cold walls are uncomfortable because of excessive body heat loss—even with a 70° room air temperature.

chilling downdrafts

Downdrafts from the cold window wall add to the discomfort, forming pools of chilling air around the ankles of pupils seated near the cold surface.

You cannot ignore the need for protective radiation along the full length of cold window walls. Remember that indoor thermal comfort is related not only to the room air temperature, but to the temperature of the surrounding floors, windows and walls as well. For the fully protected thermal environment in your school, specify Nesbitt Syncretizers with Wind-o-line Radiation.

WIND-O-LINE RADIATION SOLVES BOTH PROBLEMS

With Wind-o-line installed along the exposed surfaces, floor, window and wall temperatures are raised; radiant heat protects against excessive loss of body heat; convected heat all along the sill warms the chilling downdraft, diverting it above the heads of the pupils. Wind-o-line Radiation functions only when and as needed, augmenting the work of the Syncretizer unit ventilator to provide a fully protected learning environment.

The Nesbitt Series Hot Water Wind-o-line System provides the protected learning environment at proven lower costs.

For more complete information send for Publication 101—more learning per school dollar.
NOT ALL COSTS ARE UP

The New York State Architects Association recommends the Group Accident and Health Insurance Plan underwritten by the Continental Casualty Company, Chicago, Illinois, which offers among other things, hospitalization benefits, miscellaneous hospital expenses and surgical benefits. Originally endorsed and sponsored by your Association in 1948, the plan has increased its usable benefits since then, without increasing premium costs for the basic coverage.

All active members and their key employees are eligible to apply for this plan, subject to approval by the Continental Casualty Company.

All benefits will be paid in addition to any other coverage you may have.

For further details contact our administrators.

TER BUSH & POWELL, INC.

148 Clinton Street
Schenectady, N. Y.
FRanklin 4-7751

342 Madison Avenue
New York 17, N. Y.
MUrrey Hill 2-7895

905 Walbridge Building
Buffalo 2, N. Y.
MAdison 8353
DOING MORE WITH FLEXICORE

8-CLASSROOM SCHOOL BUILT ON 6-ROOM BUDGET

Precast Flexicore Slab Roof Expedites "Assembly Line Construction"

After this Valparaiso, Indiana grade school was dedicated, one of the trustees said:

"The school system demanded an eight-room school building, while the budget indicated only six rooms were possible. We asked for a design to give us the balancing factor. The result is an eight-classroom school with seven auxiliary rooms, at a cost of $130,000. Flexicore slabs contributed to the lower cost, esthetic appeal and low fire insurance rating."

The designer credits the savings to a plan permitting "assembly line" construction without sacrifice of architectural individuality. Precast concrete slabs help make this possible.

He said, "I scheduled sub-contractors, knowing their work would be under shelter two days after wall and column masonry was prepared to receive slabs. The simplicity of Flexicore construction was reflected in all costs from the drafting board to painting."

Structural frame is masonry and reinforced concrete beam, with brick exterior and block back-up. All doors, frames and window sashes are steel. With the Flexicore roof, and a poured floor, this is a highly fire-resistant school.

Wall-to-wall fenestration was used from unit ventilator height to ceiling. Window mullions are steel columns. Glass area in each classroom is 26% of the floor area, compared to the 17% required by state law.

Smooth undersides of Flexicore slabs are exposed throughout. Caulked and painted, they form attractive ceilings which minimize future maintenance.

Cantilevered Flexicore slabs form 6-foot canopy at inviting entrance. Slabs are cantilevered 8 feet over rear entrance.

Existed Flexicore slabs provide pleasing classroom ceiling. Toggle bolts fasten electrical fixtures to slabs.

CONSTRUCTION COSTS
Valparaiso, Ind., Grade School

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Total</td>
<td>$130,000.00</td>
</tr>
<tr>
<td>Per Classroom</td>
<td>16,300.00</td>
</tr>
<tr>
<td>Per Square Foot</td>
<td>10.66</td>
</tr>
<tr>
<td>Per Cubic Foot</td>
<td>.74</td>
</tr>
</tbody>
</table>

Section details roof slab placement to provide pipe and conduit chase "A."

ANCHOR CONCRETE PRODUCTS
WABASH AVE. AT 2450 WILLIAM ST., BUFFALO 6,
DEDICATION

February 23, 1957

'TIS BUT A BIT OF BRONZE, SOME SAY, CATCHING THE SEA BREEZES OFF NEW YORK BAY — TELLING ITS STORY UNDER PERENNIAL SUNS TO THOSE WHO TARRY HERE AWHILE. MAY IT GATHER GEMS FROM EVERY HEART, PLACING THOUGHTS OF BEAUTY IN EVERY SOUL OF THOSE WHO JOIN THE BREED OF MEN THAT REACH FOR THE STARS.

THE AMERICAN INSTITUTE OF ARCHITECTS

WAS FOUNDED ON THIS SITE FEBRUARY 23, 1857 BY THIRTEEN ARCHITECTS OF IDEAS AND VISION

THROUGHOUT THE YEARS ITS MEMBERS HAVE CONTRIBUTED TO THE ADVANCEMENT OF ARCHITECTURE AND HAVE ENCOURAGED THE DEVELOPMENT OF THE ALLIED ARTS, EXPRESSING THE ASPIRATIONS OF OUR PEOPLE, BRINGING INTO THEIR LIVES INSPIRATION, BEAUTY AND COMFORT.

EREECTED FEBRUARY 23, 1857

Bronze size 22" x 30"

Location: 111 Broadway, corner of Thames St., New York.
Design: McKim, Mead and White, Architects, New York.

ON THE COVER

Home Economics Building
Plattsburgh State Teachers College, N.Y.
Urbahn, Brayton & Burtows, Architects, New York City

Exterior Shot

The general character of the exterior including the color of the brickwork was designed to blend harmoniously with the existing college buildings near it on the campus. The basic structure is fireproofed structural steel, open web steel roof joists, reinforced concrete floors, and 2" pre-cast concrete roof planks. It contains approximately 760,000 cubic feet.

—Photo by Ezra Stoller
WILL THE SCHOOL YOU ARE PLANNING EVER NEED AI?
Plan with the new HerNel-Cool II
INSTALL IT NOW—AIR CONDITION LATER

Nearly every school would benefit from air conditioning now—as have offices, theaters, hospitals and homes. Unfortunately, the money to provide it isn't always in the current school budget. The HerNel-Cool II year 'round unit ventilator solves that problem.

These units can be installed now so that the school enjoys all the usual benefits of the famous Herman Nelson DRAFTSTOPT system—heating, ventilating, natural cooling (with outside air), and control of window downdrafts. Only the addition of a chiller in the boiler room is needed for complete hot weather air conditioning. It can be provided initially or at any future time. When it is wanted, air conditioning can be secured without disruption . . . and without expensive alteration and installation charges.

HOW THE SYSTEM WORKS
HerNel-Cool II units provide individual temperature control for each room, automatically. Most of the year they provide heat, ventilation, or natural cooling (with outside air) as the room requires. When a chiller is installed in the boiler room, HerNel-Cool II units also function as air conditioners. In hot weather, the units switch automatically to mechanical cooling, with chilled water circulating in the same piping that carries hot water during cold weather. The cost is far less than separate heating and air conditioning systems—both for installation and operation.

Would you like more information? Just write to the Herman Nelson representative nearest you. New York State representatives are listed at the bottom of this page.

AMERICAN AIR FILTER COMPANY, INC.
UNIT VENTILATOR PRODUCTS
System of Classroom Cooling, Heating, and Ventilating

NEW YORK STATE REPRESENTATIVES

ALBANY—
Albert L. Becker, 434 Clinton Avenue

BUFFALO 2—

SYRACUSE 2—
American Air Filter Company, Inc., 529 State Tower Building

NEW YORK 17—
American Air Filter Company, Inc., 70 East 45th Street

ROCHESTER 4—
Howard J. Henderson, Jr., 950 Sibley Tower Building
More than ten years have passed since the architects designed this building . . . one of the earliest "Window Wall" installations in the United States. At the time, when Hope's Window Wall construction was adopted, we pointed out the labor-saving advantages of its installation and confidently predicted that upkeep expense would be low. That has proven to be the case. The total Window Wall area in the building group is more than four times that illustrated in the photograph; the location is in a severe climate; yet the maintenance is less troublesome and expensive than for comparable, conventional masonry and window construction.

The great increase in the use of Window Wall construction by architects is sufficient evidence that it offers economies in original building cost and that its esthetic effects and benefits to building interiors are pleasing to owners.

Hope's engineering and planning assistance can be of great help to you and is always available when you have in mind a building with an interesting window problem. Write for Catalog 152E8 for your files.
LENROC
SAWED-BED
ASHLAR:
Sawed Multiple Rise
Low cost—
Minimum Hand-cutting

LENROC
DIMENSION
BLUESTONE:
Sills, treads, copings,
paving, etc. Variety
of machine finishes

LENROC
SEAM FACE
BONDED ASHLAR:
Our Finest Squared
Rubble Stone
All natural seam faces

LENROC
FLAGSTONE:
Natural Cleft Surface
with Variegated Color
All dimensions and sizes

LENROC
RUBBLE:
Basic Rubble Random
Patterns for interior
exterior; uncoursed
polygonal masonry.

ROC STONE REPRESENTATIVES

Write for Full Color Brochure and Estimating and
Detailing Bulletins No obligation, of course.

FINGER LAKES STONE Co., Inc.
Professional Building
903 Honeoye Road
Rochester, N.Y.
Which style fits your new school plan best?

Functional styling that looks "right" in modern or traditional surroundings makes both these American Seating models increasingly popular with educators and architects alike.

For, here is clean-lined beauty that complements an infinite range of architectural treatments... plus color styling in Diploma Blue and Classday Coral — colors scientifically researched to harmonize with all school interiors.

So, if you're looking for school furniture that will stay in style, choose American Seating. Write us today for complete, full-color school-furniture catalog.
DESIGN FOR THE
CENTENNIAL COMMEMORATIVE MEDAL

E. James Gambaro
F. A. I. A.
Member
Steering Committee
Centennial
Observance Committee
Chairman
Sub-Committee on Medal

The eagle on the obverse side of the medal is taken from the official Seal of The Institute. While all elements of the original seal have been retained, design changes were made to give it a more contemporary interpretation.

On the thin edge of the medal is this inscription: Centennial Year, 89th Annual Convention, Washington, D. C., May 14-17, 1957.

The symbol on the reverse side of the medal is a free expression of the Centennial theme “A New Century Beckons.” The micrometer measures time and space, with space being represented by the asteroid and a conventionalized clock representing time. On the secondary plane, back of the above motif, the pair of dividers measures the future as represented by the standard accepted symbol of nuclear fission.

The future of man in the atomic age gives every promise of being a challenging one. Our scientists today are looking towards that vast “space sea” and the possible development of a galactic race of which architects of the future will definitely be a part. Already, our country has plans to launch a man-made earth satellite sometime during this Centennial Year of The American Institute of Architects.

The symbols used in the design are expressive of the future and of the technological and scientific advances which will profoundly affect the architecture of the new era. The design relates in part to the universe and to the laws by which its order and balance are maintained. The symbols express the architects’ constant striving for something as balanced and harmonious as the universe in the broad field of architecture, a fine art and a complex science.

Only those present at the Bi-Centennial Convention of The Institute and the generations beyond will be able to evaluate just how advanced our thinking was in 1957. Mr. Waugh’s design indicates imaginative and forward thinking. If his design succeeds only in stimulating thinking towards the challenging future, then it will have accomplished its primary purpose.

THE SCULPTOR

Sidney Waugh was born in Amherst, Massachusetts in 1901. He was educated in the public schools, at Amherst College and the Massachusetts Institute of Technology. He received his training in sculpture in France as a pupil and assistant of Henri Bouchard. In 1929 he won the Rome Prize in Sculpture and spent three years working in Italy.

In 1932 Mr. Waugh began the practice of sculpture in New York City and except for four years of Army service has worked here continuously. For notable service in combat he received military decorations from the United States, France and Italy.

During his years of practice he has executed a large number of monumental works for public buildings in collaboration with numerous architects. He is also famous as a designer and sculptor in glass, having executed many notable pieces for the Steuben Glass, Inc.

Internationally known as one of our country’s outstanding and distinguished sculptors, he has been the recipient of many honors and awards. Among some of these are, Honorary degrees from Amherst College and the University of Massachusetts, the Saltus Award of the American Numismatic Society, the Bronze and Silver Medals of the Paris Salon and the Herbert Adams Memorial Medal of the National Sculpture Society, the highest honor bestowed on a fellow sculptor by this Society.

Mr. Waugh is a Fellow and Past President of the National Sculpture Society, member and Past Vice-President of the National Academy of Design and a member of The Institute of Arts and Letters.

THE MEDALIST

In their 57th year of reproducing fine medals, Medallic Art Company of New York City was selected to strike the official Centennial Commemorative Medal of The American Institute of Architects. Described by Fortune Magazine as the foremost firm of medalists in the United States, the Medallic Art Company won first prize at the National Exhibition of Numismatics and International Medalists in Madrid 1951. It was the first American company ever to receive this honor.

A Commemorative Medal will be given to all members of The Institute registering for the Annual Convention to be held in Washington, D. C., May 14-17, 1957. Members not attending will have the opportunity to purchase them through their respective Chapters at cost, $3.50 each.
Peelle pass windows

DINING ROOM SIDE

Ease service
between kitchen and dining room
in many prominent schools

The standard Peelle pass window unit is used between kitchen and dining room and other similar locations. It consists of an integral door and frame. Special extended counter sills will not be furnished except when architectural drawings indicate specifically where this is to be done.

THE PEELLE COMPANY • 47 Stewart Avenue, Brooklyn 37, N. Y.

Offices in Principal Cities

PEELLE MOTORSTAIRS • INDUSTRIAL DOORS • FREIGHT ELEVATOR DOORS • DUMBWAITER DOORS
8 REASONS WHY MORE SCHOOL CONSTRUCTION ARCHITECTS ARE SPECIFYING "HAYDITE" . . .

This gymnasium wall appears no different than one of ordinary masonry construction. Actually, however, it is made of concrete masonry units using HAYDITE aggregate, and therefore contains these eight advantages not found in any ordinary building block.

1. PERMANENCE. One of the most important requirements of school construction is long life. HAYDITE'S long performance records prove it one of the most durable of all building materials.

2. QUALITY. Children never spare a building. HAYDITE aggregate in concrete masonry units make them tough and strong, able to stand up to more than usual punishment—just right for the rugged requirements of school construction.

3. SOUND ABSORPTION. HAYDITE expanded shale aggregate incorporated into concrete masonry offers up to 18% greater sound absorption than concrete blocks made with sand and gravel. Wherever noise control is a problem—wherever there are children—HAYDITE is ideal. Gymnasiums, auditoriums, classrooms, and hallways all are far better constructed with HAYDITE masonry.

4. HANDLING WEIGHT. Lighter than most other masonry units, HAYDITE blocks are easier to handle, less expensive to transport. Economy of handling cuts costs.

5. APPEARANCE. Concrete masonry units made with HAYDITE do not require finishing after construction. Their light gray color is attractive and pleasing to the eye.

6. NAILABLE. HAYDITE blocks are less brittle. Wood trim can be nailed directly to them without the use of plugs and strips, resulting in considerable savings.

7. LOAD BEARING. Any masonry block used in school construction must provide adequate support for beams and cross members. HAYDITE'S high degree of compaction of particles assures exceptional strength for building purposes.

8. COST. HAYDITE concrete, the many-purposed masonry, is actually less expensive than other commonly used materials. Its all-around usefulness eliminates the need for many more expensive materials. This, plus the above advantages, proves it exceptionally economical as well as top quality.

SPECIFY CONCRETE MASONRY UNITS MADE WITH HAYDITE—THE BUILDING MATERIAL THAT OFFERS THE MOST ADVANTAGES FOR SCHOOL CONSTRUCTION

ONONDAGA BRICK CORPORATION

Manufacturers of HAYDITE, the lightweight expanded shale aggregate used in building units—lintels and joists—roof and floor slabs—reinforced concrete pre-stressed members

WARNERS, NEW YORK PHONE CAMILLUS, N. Y., ORANGE 2-7321

ARCHITECTS: Write for free DATA HANDBOOK. All the information you need about concrete products made with expanded shale aggregate.
School design objectives economically achieved with **PYROFILL ROOF DECKS**

Integration of design among a group of decentralized classroom units was the objective here. It was economically accomplished with the help of PYROFILL incombustible gypsum, especially adaptable to the continuous, unifying roof design. PYROFILL was poured in place at low cost over permanent formboards with valuable insulating properties. PYROFILL also offers these other advantages:

- **FAST INSTALLATION**—a single crew can pour up to 30,000 sq. ft. per day, ready for roof covering. PYROFILL sets within an hour to carry normal construction loads.
- **INCOMBUSTIBILITY**—made of fireproof gypsum concrete; often permits savings of 30% or more on insurance.
- **LIGHTWEIGHT**—only 10 to 12 lbs. per sq. ft. Permits important savings in structural steel and footings.
- **STRENGTH, DURABILITY**—has a safety factor of 10 or more under normal roof loads. Decks erected over 30 years ago still give excellent service.
- **STRUCTURAL RIGIDITY**—bulb tee sections reinforce the gypsum concrete slab and, along with gypsum, provide lateral stiffening of structural steel framing.

For further information refer to Sweet's Catalog, Section 25, or contact your U.S.G. Architect's Service Representative, or write Dept. ENR-1, 300 W. Adams St., Chicago 6, Ill. *Important Registr. U.S. Pat.*
ADDRESS OF LEON CHATELAIN.

President of The American Institute of Architects

At a luncheon in the Dome Room of Federal Hall, New York, to celebrate the founding of the Institute on February 23, 1857

A century ago thirteen American architects created a profession. Today, twelve thousand American architects are carrying that profession into its second century. During this Centennial year, we will be looking into the next century and its promise and challenge. But today let us look back and marvel at the foresight and courage of those thirteen men. For us, filled with pride in our Institute and our successes, the years ahead are bright. A hundred years ago how many of us could have looked ahead with confidence and eagerness? Certainly there was no successful past to build upon. The times were hardly conducive to nurturing a successful architectural practice, and the architect was ill regarded by the public. He competed not only with craftsmen-builders, but also with other architects. Practices which today are branded unethical then were the order of the day. And 1857 was a year of no great prosperity.

There seems to be a point in time when either a move is made or the chance is lost. We can be grateful to Richard Upjohn that he recognized the moment and called together a dozen of his colleagues to form The American Institute of Architects. Twice before, others had picked the wrong moment, and their associations, The Workshop of the Sons of Vitruvius and the American Institution of Architects had failed to endure.

To the founders, the establishment of a profession was serious business. They were all men of high ideals, and their ideals were translated into the early codes of architectural practice that have guided American architects for a hundred years.

There is no need to trace the history of our Institute's first century; the milestones of our past are well known to most of us. Besides, it is obvious to anyone familiar with the architect's function in society that we would be remiss if we did not do more in this Centennial year than talk about our pride in the glories of the past, for it is the nature of the architect to be thinking about the future. His problem is not merely one of providing shelter; we are no longer a pioneer society.

Simpleexpediency in building is a hangover from our pioneer days. Unfortunately, many people still think in terms of expediency—the quickest, easiest, and cheapest way to build. This, in the long run, causes us much grief and empties our pockets of often ill-spent money, for it inevitably is not only unsatisfactory but ruinously expensive. If proof of this is needed, one need only look around.

The architect's task today lies in planning for the human environment of the future. We have learned to live longer, to breed at a faster rate, and consume more goods. Our technology is moving forward with such breath-taking speed that the future has become part of today. A mountain range, a foreign tongue, even an ocean, no longer separate people. They must live together, whether they wish it or not. The fact that a decision made in a faraway Asian capital today may affect our lives tomorrow has been brought home to us with dramatic force by the whirlwind movement of international events.

Yet the very environment in which our lives are shaped and spent is deteriorating because of pressures which presently seem almost beyond control. The movement seems slower and less dramatic than the threats of conflicts abroad, because we seldom read about it in our newspapers. For all of this, however, it is just as important.

In this Centennial year of our professional society, we can see that we are being slowly strangled by a creeping paralysis of our cities and towns. The population of the United States has grown to 170 million persons. By 1975, we are told, it will reach perhaps 228 million. We are living to an older age. At the same time, our birth rate is expanding. The average family has two children. Yet the number of families with three or more children has doubled in the past twenty years.

In the years which followed World War II suburban growth was accelerated. People who were earning larger incomes began buying more and more homes. Industry followed its workers to the suburbs. The automobile which made the whole process possible has become a symbol of tyranny as well as a device of convenience.

Now even our suburban schools are inadequate to meet the need. And our cities are constricted to the point of choking.

Actually, the word "city" is nearly an extinct term. So is with the oft-repeated phrase "flight to the suburbs." For the "suburb" itself, in the original meaning of the word, is disappearing. Instead, we have developed into a nation with a score of massive urban mushrooms. These have overlapped to the point where for example there is a huge urban ribbon—600 miles long—extending from Boston to Fairfax County, Va. This huge belt is spreading westward to Chicago and Kansas City.

Some say that the city centers are dying; that they are little more than decaying nerve centers. I would like to say that I believe that no organism can live without its nerve center, and that the preservation and restoration of these nerve centers are of vital concern to all of us. In Philadelphia, Pittsburgh, St. Louis, New York, San Francisco, and other large urban centers, something is being done about this decay. It is heartening to see what private groups and government on all levels have done to halt the decline and infuse new life into these centers by clearing blighted land, providing better housing, and slowing the desperate struggle of people to get farther and farther from the city heart. Yet this condition of blight is not confined to the cities. It affects many thousands of smaller communities throughout the nation, many of whose citizens feel powerless and financially unable to remedy the ills of a haphazard, crazy-quilt expansion of their municipalities.

There is, I think, an important point to be made here. It is this: Municipal borders and state lines have come to mean very little. Sewer and water lines, the need for efficient police and fire protection, the problems of building enough homes and schools, and the fixing of traffic routes, don't end with city boundaries.

In some sections of the United States—notably the South and West—efforts have been made to solve these basic administrative problems by annexation—the process of swallowing up more and more territory and governing more people. The federal government has launched a multi-million-dollar highway program. Yet public hearings must be held in every state, city, and township whose borders are to be crossed by these new federal roads.

(Continued on Page 55.)
Solution to the Elementary School System

The New Elementary school for 620 pupils features an open plan on its 30 acre site. It has five basic elements clearly defined in the Architectural design. The plan permits expansion of all facilities.

The four Kindergartens have a separate entrance and face south toward their own playgrounds. Grades one through three and grades four through six are in independent wings separated by a core unit housing the main entrance Lobby, Administration Area and Library. The fifth element contains the common use rooms including a combined Cafeteria and Auditorium seating 350 students, with a stage, Music Rooms and Serving Kitchen, and a Gymnasium with lockers and storage. The serving entrance for the entire building is in this group.

Circulation has been worked out to segregate age groups and minimize cross traffic. Each of the three teaching units has its own sheltered bus entrance, toilets and storage facilities.

The main lobby forms a central social area for pupils and the community and a pleasant waiting area for the school Offices, Auditorium and Cafeteria. The 72' x 52' Gymnasium has two 46' x 32' playcourts. It is located at the end of the community use wing close to the outside physical education facilities. The Library, with an outdoor reading court, is in a quiet location easily reached from the upper grade wing and the central administrative area.

Each Kindergarten has 1024 sq. ft. of teaching space, a work counter with sink, a toilet room, wardrobes, a storage room and an 8' x 12' stage. Grades 1, 2, and 3 each have three 800 sq. ft. classrooms with wardrobes and individual toilets. Grades 4, 5 and 6 have four 800 sq. ft. classrooms, one used for remedial reading. These classrooms have corridor lockers and group
toilets. Washing facilities for all grade students are open to the Corridors to encourage good health habits. The open plan permits expansion of all facilities.

Solution to the High School Problem

The program called for expansion of the existing High School to serve a total of 600 secondary pupils. This expansion had to be accomplished on a long narrow five acre site. To utilize the old building the existing Gymnasium, Auditorium was divided into two floors and all second and third floor spaces converted to recitation rooms. The replanned ground floor provides Homemaking classes, a large Cafeteria and a new kitchen which will prepare food for both the High School and the Elementary School. Heated food carts will be delivered by truck to the new elementary school serving Kitchen. Other schools in the district will also be served from the High School Kitchen.

The new addition is resolved into two basic structural elements. A simple one-story rectangle forms a horizontal connecting link between the existing three-story brick building and a parabolic shell of the new gymnasium. This element houses the new Main Entrance, Administration and Health Suite and the Special Classrooms for Science, Physics and Chemistry, Arts and Crafts, Music, Agriculture and Industrial Arts. These rooms are grouped around a large library and a 700 seat Auditorium, both facing a landscaped court.

Because basketball is the main sport in Frankfort, the Gymnasium has a 50' x 80' Contest Court and folding bleachers for 900 spectators. A folding partition divides the space to form two 37' x 80' practice courts. The east end of the gym, adjacent to the Athletic Fields is divided into three levels. Boys Lockers, Toilets and Showers are on the main level; Girls Locker facilities and other public toilets are on the balcony level. The third level is the mechanical equipment room. The large public foyer at the west end of the gym is easily accessible from the street and both parking areas.
Figures recently received on the new 950 pupil Penfield High School reveal an exceptionally low 88 cents per cubic foot and $13.70 per square foot costs. These are based on contracts signed for steel, foundations, general construction, heating and ventilation, plumbing and electric work. Foundations and steel erection has already begun.

The contracts accepted by the Penfield Board of Education resulted in a saving $316,120.00 below conservative estimates made in the spring of 1956.

The Penfield Central School district is composed of territory located in the eastern suburbs of the city of Rochester, New York. A large portion of the district is located in the Town of Brighton, and the entire district constitutes one of the finest residential suburban areas in the state.

The Town of Penfield is growing rapidly with the construction of new homes in the $20,000 to $30,000 price range attracting families with better than average incomes. These people are from the professional and semi-professional class and keenly interested in the educational program of the district. Two new 21 classroom elementary schools designed by C. Storrs Barrows & Assoc. were opened last fall.

The population of the entire school district is estimated to be about 13,500 persons. The assessed valuation exceeds $19,000,000 while the full valuation exceeds $50,000,000.

The original site development work constituted Contract No. 1 which was signed in September 1956 for $33,700.00 and Henry J. Kearse Inc. of Rochester performed the work. In November 1956 bids were received for Contract No. 2—Structural Steel Work and Leach Steel Corp. was awarded the job in the amount $155,219.00. At about the same time last fall Werner Spitz Construction Co. was the low bidder on Contract No. 3—Foundation Work for $63,596.00.

By letting these contracts much work was started and materials ordered while the remainder of the working drawings were being completed in the Architect's office.

On February 18, 1957 the following contracts were released to 57 prospective bidders:
- Contract No. 4—Grading, Paving, Landscaping, etc.
- Contract No. 5—General Construction Work
- Contract No. 6—Heating & Ventilating Work
- Contract No. 7—Plumbing Work
- Contract No. 8—Electric Work
- Contract No. 9—Kitchen Work
- Contract No. 10—Exterior Sanitary & Storm Sewer System

Much spirited bidding resulted in the low bidders whose figures are enumerated—Contract No. 4 Neu mann Brothers Paving Corp. of Rochester $143,402.27; Contract No. 5 Vincent J. Smith Inc. of Binghamton $998,000.00; Contract No. 6 Jarvis and Spitz, Inc. of Rochester $218,640.00; Contract No. 7 E. G. Snyder Co., Inc. of Rochester $92,980.00; Contract No. 8 Dwyer Electric Co. of Rochester $199,995.00; Contract No. 9 Cable-Wiedemer Inc. of Rochester $36,995.00 and Contract No. 10 Edwin G. Cornell of Rochester $50,000.

The building has a structural steel frame erected on concrete foundations and the exterior walls are either masonry or aluminum window wall construction.

Due to site restrictions, and with an eye to economy, this structure is a single unit, and partially two story. It is anticipated that as the need arises, additional instruction area can be added at either end of the two academic wings.

Exterior masonry walls will be brick with concrete block back up exposed in the auditorium and gym-
nasion wings. Porcelain enamel panels will be the exterior wall surface in the window wall—where these panels are exposed on the interior, they will have an aluminum face.

The floors will be concrete slabs on grade under asphalt tile, except for small terrazzo pads inside all entries, and wood floors in the gymnasium, stage and shops.

Interior partitions in academic wings are to be metal stud and plaster. Wainscots will be unglazed ceramic tile and plywood in gym and auditorium. Acoustic tile ceilings will be attached in instruction areas and suspended above corridors to provide space for mechanical lines.

Heating will be provided through a hot water window line unit ventilator system with special units for large areas of public assembly. Boilers to be gas fired and an incinerator to be included. Plumbing and electrical design is normal, except that the latter will provide a lighting level of 50 foot candles in the classrooms.

The general office area is the hub of this educational wheel. In close proximity is the health suite, guidance suite, teachers' rooms, a conference room, storage rooms, cafeteria, two main entrances, easy access to the second floor and good control over the main arteries of circulation.

The library with its adjacent work room and conference room will accommodate 75 pupils and approximately 8,000 volumes.

The large audio-visual suite accurately reflects the interests of this teaching medium within the district. These rooms will house all equipment and be the district audio-visual office serving the needs of five schools.

The homemaking rooms have been located on the first floor to facilitate their use for evening adult education program. There are three business rooms, four mathematics rooms, six English rooms, four foreign language rooms, four citizenship education rooms, a double art room, study halls and the science suite to complete the academic wings.

Science plays an important role in and around Rochester—the home of Eastman Kodak, Graflex and Bausch and Lomb. Therefore, it is natural that there be great interest in this subject at the secondary level of education. Proof of this interest is revealed upon

EMPIRE STATE ARCHITECT

(Continued on Page 25.)
Preliminary designs have been completed for this proposed new high school at New Rochelle. The "quadrangular plan" of the 3000-pupil capacity school is designed on three levels to conform to the heavily wooded rolling terrain of the 49-acre site. Expansion to 3600 is possible as need arises.

Basic to the design of the school is a novel academic unit featuring "paired classrooms"—two classrooms of identical size separated by a teacher office-work room. The "paired classroom" unit, originated by Dr. Donald K. Phillips, superintendent of schools at New Rochelle, will provide office facilities for regular and floating teachers, keep classrooms in constant use through a multiplicity of teachers, produce economy by enabling small conferences to be held in small spaces, and add to the flexibility of the building if future changes are required.

Because of the size of the school, the architects have made every effort to scale down the large spaces; for instance, both the library and the cafeteria will be two smaller rooms instead of one large one. The school is designed in a contemporary style to blend with the predominantly residential character of the community. Brick and fieldstone will be used in many areas. An economical panel wall system will be used in the multi-story academic wings.
This school is planned as a comprehensive junior-senior high school for 2600 students. 1100 seniors are accommodated in a two story wing to the right, and 1500 juniors in a similar wing to the left.

Both groups have convenient and separate access to common-use facilities, such as junior and senior libraries, health department, administration and guidance, located at the center; a 2500 seat gymnasium, a cafeteria and a future swimming pool at the rear; and a 1000 seat auditorium, music department and industrial arts department at the left. To the right is a separate vocational and technical wing for the senior students of the entire district.

The gymnasium can be sub-divided into four areas for junior and senior boys and girls, each area being independently accessible from the locker rooms and team rooms in the basement.

A Little Theatre is available for dramatic, choir or band rehearsals, seats 200 for study periods during the school day and for civic association activities in the evenings.

The construction cost for this project is $1,617,000; the appropriation is $5,550,000. The volume of the building is 4,024,000 cubic feet, costing $1.16 per cubic foot. The area is 270,000 square feet, costing $17.30 per square foot. The cost per pupil amounts to $1,758.00.

PENFIELD HIGH SCHOOL (continued)

The examination of the science suite. There have been provided a combination classroom and laboratory for general science and two similar areas for biology with necessary storage and preparation rooms. The physics and chemistry departments each have a separate classroom (with tiered seating), laboratory and preparation rooms. The well-appointed dark room is adjacent to this area.

Each department has a conference room for the use of the department head.

The cafeteria will accommodate 500 pupils, and the kitchen and three serving counter facilities will adequately serve the initial two feeding periods or the ultimate three feeding periods, when increased enrollment becomes mandatory.

Loading dock, storage areas, refrigeration, garbage room and hoist to lower storage room are adjacent to kitchen.

Industrial arts and scenery docks have been grouped for obvious purposes—that one may benefit the other. The music department is also in this location—using the stage and 1000 seat auditorium as a sound buffer to limit transmission to academic teaching rooms.

This 90' x 112' gymnasium will provide rolling bleachers for 1500 persons at an interscholastic event or may be divided—with its folding partition—to permit two simultaneous gym classes.

The smaller corrective gymnasium is adjacent and surrounded by the usual locker, shower and drying rooms.

A pool equipment room is located at the end of this wing next to the location of a future swimming pool if and when approved by the district residents.
CAMPUS-TYPE SCHOOL ACCLAIMED
BY EDUCATORS—CUTS COSTS

The "campus-type" school—a new concept in public educational building—has been acclaimed by educators as a step toward solving the critical shortage of schools for our 30,000,000 children.

The "campus" plan embodied in the new Middleville Road, Northport, L. I. high school achieves revolutionary improvements. Northport has 20 percent more classroom space for every dollar spent than any previous plan offered, and all of this space provides the finest kind of teaching-learning conditions based on the most modern developments in the field. And, what is of key importance, the design offers the flexibility for expansion without any impairment whatsoever of the school's quality. This pattern for expansion is possibly the primary reason the school may be considered a milestone.

A section of the Middleville Road High School campus looking toward the library on the right, and the auditorium on the left. The Ketchum, Gina' & Sharp campus-type plan considerably cuts non-useful space such as foyers and corridors. All classroom buildings open onto outside, covered walks, giving the teaching and library areas more privacy and isolation. This separate construction permits all units to be used individually for student and community needs. The open design of the new school not only gives it an aesthetic appeal and a feeling of more light and air, but also provides an excellent expansion pattern.

The New York architectural firm of Ketchum, Gina' & Sharp, which designed the revolutionary Northport high school, had one over-all aim, in the words of Stanley Sharp, "to design a school, placing emphasis on the activities within rather than on the structure itself."

This new plan is radically simple and, surprisingly, it is closely akin to the most old-fashioned school we know, the little red school house consisting of only one or two rooms. The plan was developed through intensive research and detailed analysis of all the elements that go into making a school operate, plus designing with careful emphasis on one thing—the function of educating the students in the classrooms.

This resulted in a plan which replaced the usual big, imposing structure with a group of separated units, cutting educationally non-useful space such as foyers and corridors to a previously unheard of low for secondary schools. All classroom buildings open onto outside, covered walks, giving the teaching and library areas more privacy and isolation from cafeterias, auditorium, shop, laboratory, gymnasium and administration units. The Northport school includes ten covered-walk-connected buildings: an instructional services building; a library and materials center: a science and shops unit; an auditorium and cafeteria building which logically includes a band room, music library and homemaking unit; a gymnasium with adjoining locker rooms; four classroom buildings, and boiler building.

This separate construction permits all units to be used individually for student and community needs. It also produces, by the greater degree of isolation, improved conditions for teaching and study in the classroom and library areas, more freedom in the activity areas.

Economically, it cuts the non-productive corridor space which takes expensive construction, heating and maintenance dollars in the conventional big structure type of high school. In the conventional school buildings, planners were satisfied to have 50 percent of their building space used for actual teaching. The rest was "dead space" as far as the school's functional classroom purpose was concerned. In Northport, more than 60 percent of the total space is "live space"—actually being used for teaching.

Additional savings in building work, time and expense, plus gains in campus beauty, freedom and flexibility were made by designing the buildings to fit on the various levels of the attractively rolling countryside, rather than having to level a large area to build one big structure.

The open design of the campus plan does more than give Middleville Road High School aesthetic appeal and more feeling of light and air let into the school. It eliminates the regimented, cell-block atmosphere that the serried ranks of almost identical classrooms in the conventional school engender in many youths. It also, as pointed out above, provides an ex-
cellent pattern for expansion of facilities that is limited only by the area of open land around the school. This is all-important at a time when our steadily increasing population figures indicate a continued growth of our school systems will be necessary.

Currently, school building is lagging behind the needs of our bumper crop of World War II babies. Furthermore, statistics indicate that by 1960 the number of youngsters elbowing for classroom space will be up another 20 percent to 36,000,000. Those are a lot of kids to educate—a fact that has had a lot of educators pulling their hair and newspapers writing desperate editorials to get us to think about this all-too-imminent future.

Ketchum, Gina' & Sharp carried their project of stripping away non-essentials right into the classrooms of the Northport school. They did not stop with the general structure. The program of the school was carefully studied, and with it the specific needs and purpose of each teaching area. Each was sized to the appropriate space requirements, equipment, and atmosphere, combining the cleanest, most simple design and the latest educational principles. The final result was again improved facilities plus economy as compared to conventional schools.

The improvements in educational value of facilities and in the over-all efficiency with which the school-building dollars were spent in Northport, added to the provisions for expansion in the “campus” design make the new high school a theme for tomorrow’s school systems to follow—a real step toward solving the country’s school building problems.
OAK ORCHARD ELEMENTARY SCHOOL
MEDINA, NEW YORK

Duane Lyman and Associates, Architects

The Board of Education of the Medina Central School District wisely chose a 50 acre site for this school, a Junior High School now under construction, and a bus garage. It is fairly level, served by adequate water and sewer services and is adjacent to the Municipal Athletic Field used by the High School athletic teams. Locker facilities for the High School athletic teams are included in this Elementary School. The site is within a few blocks of the High School, readily accessible but away from major traffic arteries.

At the time of planning three elementary schools were in use in the Village. Two of these have been retired and the third has been altered to provide a lunch room. For reasons of economy, the Board chose to build here one 42 grade room school for 1,200 pupils rather than two smaller schools.

The four kindergarten rooms are housed in their own wing, separated by a playroom from the wing containing 12 first and second grade rooms. Third, fourth, fifth and sixth grade rooms are in a two story wing. Administration offices and an auditorium seating 576 are at the center of the school. A cafeteria seating 350, 53' x 72' gymnasium, boiler room, grade and high school locker rooms are in a fourth wing.

The building has a steel frame, two-way first floor concrete slab, steel beam and concrete second floor slab, and bar joist and poured gypsum roof slab. Copings, windows, entrances and air intakes are aluminum. There is little but handrails, gratings, and the penthouse door and frame to be painted on the outside of the building.

The children are proud of the bright new facilities, and the building in its turn has done something for the children. The high school teachers have remarked that the first class to come to them from the new elementary school has been the best behaved in years.

On September 3, 1954 the general contract was let to Frank J. Balcerzak & Son, Inc., Medina, New York. Instruction for 1,200 primary pupils commenced on September 1, 1955, less than one year later and in spite of three building trades' strikes in this period. The net total of extras of every kind in connection with the general contract of $1,055,255.00 amounted to only $56.00.

—Guy H. Baldwin
THE GREEK REVIVAL
INSTALLMENT 2
CARL F. SCHMIDT

The plans for public buildings, churches and homes had been in the process of development for more than one hundred years. The arrangement of rooms, their usage, as well as certain principles of design had developed through the Colonial and Post-Colonial eras. Then with the introduction of the Greek Revival, the proportions and details of the Classic Greek architecture had to be reconciled with the plans and building methods which were then in existence.

We know that the roots of every new style sprouted in the soil of the last years of a previous style; therefore the compositions of the designs and the plans of the early Greek Revival are generally the same as we find in the Post-Colonial. It was a matter of applying Classic Greek details and proportions in place of the Post-Colonial. This was not very difficult because, as we shall see later, Jefferson and his followers, had already solved their most difficult problems.

On the east side of Cayuga Lake there are several beautiful Greek Revival houses built of local stone. The plan is the "center-hall" type with a four-column portico across part of the long front facing the highway.

The antique Greek monuments had but few motives for the American builders to begin with—the colonnade, entablature, pediment and a few simple entrances as found in the Erechtheum and the Tower of the Winds. There was no source of material for stairways, fireplaces or interiors. The architects and builders had to take the motives of the Post-Colonial and redesign them in such a manner as to be in harmony with the spirit of the Classic Greek.

At the turn of the century a type of plan was developed in the eastern cities that became very popular. The street fronts were divided into narrow lots so that the center-hall type of plan, with the wide front parallel to the road, could not be used. This city-plan consisted of one side and the center hall of the salt-box plan. The entrance to the hall was on one side of the narrow front with two windows on one side of the entrance. The stairway in the hall led to the second and third floors. The dining room, kitchen and pantry were located in the rear of the two parlors, usually as a wing extending to the rear. The Post-Colonial master-builders and later the Greek Revival architects and builders developed many variations of this type of plan. It was a plan that fitted perfectly into the "temple" scheme—the entrance and windows located in the spaces between the four columns.

Thomas Jefferson began the construction of the University of Virginia about 1818, in which he used the architecture of Classic Rome as his model as interpreted by Palladio. Here, a one-story high colonnade extends along two sides of a quadrangle, its long horizontal line interrupted at intervals by two-story buildings. The buildings were rectangular in plan with the narrow end facing the quadrangle. Several of these had two-story porticos of four columns, supporting the entablature and pediment. The roof of the building is a continuation of the roof over the portico and its slope was determined by the slope of the pediment.

There is no doubt that the successful use of the two-story portico, with its continuous roof line at the University of Virginia, and the development of the "city-plan" by the Post-Colonial builders solved the most difficult problems the Greek Revival builders faced. All that was required was the application of Classic Greek details and proportions.

In the latter 1820's the people became enthusiastic about Greek architecture and from the Atlantic coast to the Mississippi River the demand was for houses and buildings built in the Greek style. The only way the master-builders could become familiar with the new style was through the "builders-handbooks." The libraries of the professional architects most likely contained the books of Thomas Major, J. Stuart and Palladio, but these large archaeological works were of little help to the master-builders. Handbooks had been in use for many years and the craftsmen became very skillful in their use. One is often amazed at the excellent taste and judgment shown by the builders in selecting and developing details from the handbooks. The most popular handbooks on the Greek Revival were published by Asher Benjamin, John Haviland, Minard La Fever and Chester Hills and they filled a great need. The drawings in these books were modifications and new designs based on Stuart and Revets monumental works, but were so simplified that any carpenter could interpret them. Asher Benjamin was very skillful in making simplified designs of pilasters, cornices, mantels and entrances which could easily be adapted by the carpenter-builders to their various needs. His design of a pilaster treatment for door and window openings with flanking pilasters became a favorite feature, throughout the country.

The Moore House on Lake View Park in Rochester is also the old center-hall type plan with a one-story porch with balustrade, across part of the front.
The leading professional architects of the time; Mills, Strickland and Haviland, opposed the precise copying of the Greek forms and details. Their idea of the free interpretation of the Classic forms became the spirit of the Greek Revival. Benjamin also instructed his readers that an order built of wood should be more slender than one built of stone. In his drawings of the Doric, Ionic and Corinthian columns the heights are ten, eleven and twelve diameters respectively instead of the conventional eight, nine and ten.

They departed from the idea of archaeological correctness and developed numerous new functional plans which led to many new and interesting design compositions. The mouldings may have been inspired by the antique Greek monuments but they were so simplified and adapted to wood characteristics until there is very little resemblance between them and the Greek mouldings.

During the first quarter of the twentieth century we often heard the critics of the Greek Revival refer to this “departure” from the original Greek proportions or the development of new mouldings and architectural details as “due to ignorance,” or “lack of training” in the correct drawing of the orders. They called the best work of the Greek Revival “a complete degeneration of architecture,” because the details and proportions were not in accordance with Palladio, Mauch, and the Ecole des Beaux Arts.

Rose Hill on the east side of Seneca Lake is a beautiful example of the Greek Revival. The nearly square central section is two stories high with a six-column portico across the front. The plan is of the center-hall type with rooms on each side of the hall. One-story wings on each side also have narrow porches along their fronts.

Although the architects and builders were impressed by the rectangular temple plan with a portico across the narrow front end, which remained basically fixed in their minds throughout the entire period, they almost at once began to take liberties with these forms. Generations of experience enabled the builders to thoroughly understand the local climatic conditions and the use of local building materials. They naturally altered and added to the basic temple plan until it expressed the geography and the social customs of the region.

Some builders found it difficult to abandon the “center-hall” type plan and placed it on the lot with the narrow end and portico toward the highway and the entrance to the central hall on the side. Occasionally the “center-hall” type plan was placed parallel to the highway and a four-column portico, about one third of the width of the front, was built in the center. Sometimes, we find the center hall type plan with a wing extending to the rear at right angles to the horizontal axis containing the dining room, kitchen and service rooms.

Often the portico of the “temple plan” was omitted and pilasters were located at the corners and the gable end of the house was finished in the form of a pediment design and the entablature carried around the entire house as its main cornice.

The addition of one or two-story subordinate wings on one or both sides, at right angles to the main axis of the house became favorite features. Sometimes a two-story portico embellished the main part and narrow one-story porches extended along the wings.

In the large cities of Boston, New York and Philadelphia, a plain box-like house, two or three stories high, without portico, pediment or pilasters, became very popular. The plan and the fenestration had been completely developed in the Post-Colonial period. The Greek Revival builders merely designed an entrance and sometimes an entrance porch in the Greek manner. A three member entablature extended across the front or entirely around the house. It was sometimes adorned with a balustrade across the top and frieze windows.

The southern States developed a two-story box-like structure, nearly square in plan, having three and sometimes four sides of the house faced with a two-story colonnade supporting a three member entablature. The house and portico were covered by a very flat pitched hip roof. Often a gallery was built at the second floor level with delicately turned balusters or a wrought iron railing. The entrance was located on one or even on all four sides of the house, the hallways intersecting in the center, where a magnificent, free standing circular stairway led to the floors above. Because of the warmer climate and longer duration of outdoor living, the plans and designs in the South should be different than those of the North. The Greek Revival builders understood these natural advantages of climate and developed in Charleston, New Orleans and Natchez a distinguished regional architecture.

Another farmhouse type found frequently in western New York is a small square, or nearly square, story and one-half central section, with one-story wings on each side projecting one-half their depth in front of the main part of the house. The space in front of the main section between the projecting wings is filled in with a porch. Square posts, with caps and bases, support the cornice and roof. The cornice is continuous across the front of the projecting wings and porch, and the main cornice, and horizontal ridge lines of the main section and wings, these houses have the fitness of site, a setting in the countryside as if they grew out of the soil and belonged there.

(Continued on Page 44.)
For long life and low maintenance cost, only steel meets today's building requirements and its uses are unlimited. Leach Steel has facilities for light and heavy steel fabrication and, in many cases, materials for fabrication are available from warehouse stocks.
“Someone might make an interesting book, for architects, by describing the successive scandals, alarms, revolutions, quarrels, disappointments and fatalities which have attended the construction of the Albany State-House.” Thus wrote the editors of THE AMERICAN ARCHITECT AND BUILDING NEWS for the issue of January 26, 1889, as part of the coverage which this magazine had given to the story of the new Capitol since it began publication in 1876. While it is not my purpose to carry out such an ambitious assignment, it may be relevant to present an outline of the story and give an analysis of the professional conditions which it demonstrates. Various articles from THE AMERICAN ARCHITECT AND BUILDING NEWS of 1876 through 1899 constitute the greater part of my references, supplemented by data from "Landmarks of Albany County, N. Y." edited by A. J. Parker (1897) and "History of the County of Albany, N. Y., from 1609-1886" by Howell and Tenney (1886). We are thus separated from their comments by more than fifty years and may regard the situation with some detachment.

Several factors stand out. The site was chosen before expert advice could determine its suitability. In fact, its relative narrowness, slope and adverse subsoil conditions were later discovered to present difficult problems. The program of requirements was inadequate, and suffered from lack of architectural advice, as did the conduct of the competition based on it. The winner was offered the commission without a clear definition of his duties and compensation; the other competitors were offered little or no consolation in prizes. Major features of the plan were dictated by the Board of Capitol Commissioners, and changes of an arbitrary nature were made by them from time to time. Construction began without detailed plans for the whole building; only after seven years was it considered necessary to finish them to a point where comprehensive estimates of the cost of completion could be made. At first the anticipated cost was not to exceed four million dollars, but in the end about twenty-five million dollars were expended. Work was done partly by purchase of materials and hiring of men, and partly by sub-contracts. The “chain of command” was changed several times during the course of construction. Appropriations were made on a year to year basis and varied according to the prevailing political winds, so that work was hampered at times by lack of money. The architects and engineers employed were men of character, experience and competence, eminent in their fields of practice, yet differences of opinion and taste existed, the effects of which spread throughout the profession and confused the public. In some ways this was unfortunate for the profession of architecture, but it did call attention to questions which demanded clarification before architects could achieve the standing which they enjoy today. The troubles encountered during construction of the new Capitol were directly related, it appears, to the following factors:—1) initial lack of understanding of the problem, and of how professional services could be used to best advantage, 2) magnitude of the work, 3) difficulties of the site, 4) changes of administration, 5) interference by laymen in matters demanding technical competence, and 6) loose practices amounting to outright dishonesty at times.

An outline of the progress of the work is given here, some parts of which will be treated more fully in subsequent issues of the EMPIRE STATE ARCHITECT.

1860—The subject of a new Capitol building was being agitated.
1863—In April the subject was referred by the State Senate to the Trustees of the Capitol and the Committee on Public Buildings.
1865—A Senate committee “shopped around” to determine what inducements other cities might offer; in the end Albany offered a site, which was accepted.
1866—A Board of Capitol Commissioners was appointed.
1867—Plans of Thomas Fuller and Augustus Laver were first approved.
1868—Additional commissioners were appointed to the Board. On August 12 Fuller was named Architect of the Capitol. On September 10 John Bridgford was named Superintendent.

(Continued on Page 50.)
The planners of Abington Senior High School looked ahead three generations!

By specifying three No. 60-S-30 oil-fired cast-iron Smith-Mills boilers for the new Senior High School at Abington, Pa., the planners made sure that students attending today and for the next 20, 30 — even 40 years — will be warm and comfortable. Because cast iron is practically indestructible and virtually impervious to the residual corrosion of combustive gases, it has been proved to have prodigiously long boiler life.

The taxpayer, today, and in the years to come, will save in fuel, maintenance and repairs. Because the unique H. B. Smith flue design exacts the complete boiler heat potential from any fuel, the full value of every fuel dollar spent is realized. Maintenance cost of Smith-Mills boilers is negligible, even over 40 years and more of service.
The magazine U.S.A. Tomorrow through its editor, Maxwell Levinson, announced today that the winners of the international "U.S.A. Tomorrow Manhattan Redevelopment Competition," are a group consisting of the firm of Katz, Waisman, Blumenkranz, Stein, Weber, Architects Associated, and Patrick S. Raspante, Frank Pisani, Herbert Auerbach and Joseph M. DeChiara, a team of recent graduates of Pratt Institute.

The winning solution creates an elevated cross-town highway loop, a mid-city parking facility capable of handling the 80 to 90,000 cars that enter and leave the busiest business center in the world, a regional civic center and an exposition complex of fashion and industry.

The design of this mid-city transfer, the designers explained, was a natural development of the 30th Street elevated cross-town highway which has been under consideration as a needed traffic artery for many years. The winning scheme envisages as part of its regional center; civic, fashion and home furnishings areas, with accompanying hotel, recreation, and exhibition spaces, a veritable permanent World's Fair, in the center of Manhattan. Visitors to the center could park on an elevated level and transfer to local elevated jitney bus connections to Penn Station, Terminal, Grand Central, East Side and West Side Air Lines and the U.N. or visit the fair. A business man might arrive at the parking level and go directly into the particular office or exhibition building he has to visit. Raw materials and finished products would be handled at the present street level and at underground and subway levels. This separation enables both automotive and pedestrian, to move quickly and efficiently. One-way expressways would connect the East Side and West Side highways, the Queens Midtown Tunnel, and Lincoln Tunnels and the facilities of the Mid-City Transfer.

The areas adjacent to the transfer are developed as commercial and housing areas all developed in a park-like environment. Separation of pedestrian and parking, and

(Continued on Page 55.)
AMONG THE CONSTITUENTS

BY WARREN HENDERSON

327 Englewood Ave.
Syracuse 7, N.Y.

(Correspondents please note change of address.)

BROOKLYN CHAPTER

CONGRATULATIONS

Congratulations to the new officers of the Architects Council of New York City, for 1957. Brooklyn is well represented.

The officers are:

President
Harry A. Yarish

Vice President
Raymond Irreza

Secretary
Frank Randazzo

Treasurer
Harold C. Bernard

May they continue the good work of the Council on behalf of the profession.

BROOKLYN CHAPTER CENTENNIAL COMPETITION

Members attending the April meeting had the privilege of seeing the award-winning drawings of the competition "A Wholesale Meat Market and Farmers Market in Brooklyn."

The winners of the award were invited as guests of the Chapter. Dean Grossi and the jurors discussed the results of the project. The following are the award winners:

1st prize $100.
Eugene Hoberman & John Mathieu

2nd prize $75.
Edward Lamkay & Donald Schwartz

3rd prize $25.
Robert Keller & Leo Mahony

BROOKLYN CHAPTER, ANNUAL MEDAL

The 1957 Medal of Honor will be awarded to Harry N. Barone, who has been selected by the faculty of Pratt Institute as the senior student in architecture for excellence in design.

CHAPTER DINNER-DANCE ADVANCE DATE

The Chapter will hold a Dinner-Dance to celebrate our 500th meeting, in this centennial year. It will take place on Tuesday evening, October 29th, 1957 at the Hotel Granada.

BUFFALO - WESTERN NEW YORK CHAPTER

THE UNIVERSITY OF BUFFALO ROUND TABLE

On February 16th various aspects of residential design were discussed by a television panel; a woman home consultant, a representative of Pearce and Pearce; and Jack Highland, who was not only entertaining but got in some nice plugs for Architecture and the Architects. Our thanks to him.

JOINT LUNCHEON AT THE STATLER HOTEL

On Wednesday, February 20th, the A.I.A. held a joint luncheon with the Buf-

falo Chamber of Commerce in the Statler Hotel Ballroom. It was a tremendous success, with 483 in attendance. The Architectural Profession was extremely well represented, and many offices reserved whole tables and brought their entire staff. These men should be thanked and congratulated.

Fred Backus, as Chairman of the A.I.A. Centennial Celebration Committee, was an able toastmaster, and in that capacity, introduced: Charles Dieffendorf, President of the Buffalo Chamber of Commerce; Bob Stoll who blew out the candles on an anniversary cake; William Lawless (representing Mayor Pankow) who read the proclamation declaring the week as "Architects Week"; Matthew Del Gaudio, Regional Director National Body of A.I.A. who spoke on the history of the A.I.A. through its first century; Charles J. Wick, Administrative Vice President of Niagara Mohawk Power Corporation who talked on Industry's part in the cultural development of America as co-partners with its planners, teachers, and defenders; and Dr. Clifford C. Furras, Chancellor of the University of Buffalo, who delivered a very entertaining address in which he looked ahead to the "new Century that Beckons." All the talks were concise, topical, and well-received.

ARCHITECTURAL EXHIBIT

Louis Greenstein arranged a fine display in the foyer of the Ballroom, contrasting a number of perspectives of current Buffalo work to photographs of buildings done through the past one hundred years in Buffalo. These were extremely interesting, nicely displayed, and provoked much comment and conversation by all those who attended the luncheon.

THE B.W.N.Y. CHAPTER of the A.I.A. is grateful to these men, and to all those who participated, for making "Architects Week" the success it was. Fred Backus and his Centennial Committee did a grand job, and they are to be congratulated. Thanks are also due to the Chamber of Commerce, the Producers Council, and our Chapter's Directors.

CENTRAL NEW YORK CHAPTER

CHAPTER MEMBER STARS ON TELEVISION SHOW

Ex-chairman of the Public Relations Committee, Darrel D. Rippeleau, is now receiving fan mail because of his recent appearance on the national T.V. show, "Beat the Clock." The freezer he won is so beautiful that a major remodeling project is now underway so it can be displayed as a corner cabinet in the Rippeleau's living room.

MEMBERS ON THE MOVE

The following announcements of new firms and locations have been received:
MEMBERSHIP COMMITTEE

Chairman David L. Eggers has announced that the Committee is concentrating this year on architects working for architects. These valuable men can help the A.I.A. and the profession greatly with their backing. The Committee is contacting several of the larger offices, asking them to sponsor certain candidates in this category and inviting them to a special membership supper party and discussion. The Committee continues to urge the membership to search for prospective candidates in their offices.

ANNUAL PARTY, NEW YORK CHAPTER

The 50th Anniversary Dance at the Metropolitan Club on March 8th was—what's the word? A wing ding? The music was excellent for both old timers and younger members; the company was equally excellent. When he received the Chapter's Medal of Honor, Arthur Holden spoke with great sincerity of the broad fields opening out before architects—large scale planning and civic design—after modestly disclaiming his own worthiness of the honor.

Charles McKim Norton made us all feel good in accepting honorary chapter membership, by his praise of the work and attitudes of architects. These were only brief interruptions, however. Dawn wasn't quite coming up as most of us got to bed, but it was a close thing.

EXHIBITION

The Museum of Modern Art's current Architectural Exhibition, "BUILDINGS FOR BUSINESS AND GOVERNMENT," a handsomely-arranged, dramatic presentation of scale models, full-size wall panel mock-ups, photographs and drawings of six outstanding current works—Skidmore, Owings and Merrill's Chase-Manhattan and Colorado Springs Projects, Edward Stone's Delhi Embassy, Saarinen's General Motors Research Center, Yamazaki's St. Louis Airport and Johnson and Van der Rohe's Seagram Building, all illustrating the thematic premise that good architecture inherently contributes to the community.

Perhaps this worthy theme has been illustrated with too limited a selection of examples. While the projects presented are outstanding in their near perfection, there is no suggestion of the numerous more modest but nonetheless sincere efforts of our entire profession toward the goal of civic progress. The impression of these being unique examples, rather than cross-sectional, is heightened by the drama of the individual displays, which appear as sharply lighted cases of interest against jet black wall, floor and ceiling backgrounds.

INTERNATIONAL EXHIBITION OF STUDENT ARCHITECTURAL WORK

A look at the future of architecture on a world-wide scale was provided by the International Exhibition of Architectural Student Work. Over a year in preparation, this show was held from April 22 to May 4 at the Carnegie Endowment for International Peace, United Nations Plaza and 46th Street, New York City. The student work from approximately fifteen countries shows a variety of technique and content, dependent upon differences in politics. (Continued on Page 42.)
BRICK for beauty and durability

The use of brick is the perfect answer to today's demand for naturally durable and beautiful building materials. And they offer an almost unlimited range of colors and textures to fit any decorative scheme.

Syracuse Brick Co., Syracuse, N. Y.
Consolidated Brick Co., Inc., Horseheads, N. Y.
John H. Black Co., Buffalo, N. Y.
Weckesser Brick Co., Rochester, N. Y.
Mohawk Building Materials Corp., Rensselaer, N. Y.
Hutchison-Rathbun, Inc., Rochester, N. Y.
The Belden-Stark Brick Corp., New York City
Binghamton Brick Co., Inc., Binghamton, N. Y.
Buffalo Brick Corp., West Falls, N. Y.
Paragon Supply, Inc., Syracuse, N. Y.
Acme Shale Brick Co., Inc., Buffalo, N. Y.
topography, weather and materials available. About 150 panels made up the show. One or more schools were represented from Austria, Belgium, Canada, Cuba, Greece, Italy, Japan, the Netherlands, Norway, Switzerland, Turkey, Uruguay, Czechoslovakia and Yugoslavia. The exhibition is sponsored by the National Institute for Architectural Education.

ROCHESTER SOCIETY OF ARCHITECTS

The one hundredth anniversary of the founding of the American Institute of Architects was celebrated in Rochester by a Centennial Dinner held at the Chamber of Commerce, Monday evening, March 1, 1957.

This festive event culminated approximately three weeks of celebration sponsored by the Rochester Society of Architects, and was attended by 250 area architects, their friends and guests.

Mr. Conway L. Todd acted as toastmaster for the occasion and introduced the honored guests, such as Peter Barry, Mayor; C. Morris Barrows, Immediate Past Regional Director of the American Institute of Architects; Gordon A. Howe, Chairman of the Board of Supervisors; William D. Martin, President of the Builders Exchange; Rev. Francis J. Pegram of the St. Thomas More Parish; Trevor W. Rogers, President of the New York State Association of Architects; Dr. Paul M. Schroeder, Pastor of the Salem Church; and Cyril T. Tucker, Immediate Past President of the Central New York Chapter of the A.I.A.

As guest speaker on this commemorative occasion it was most fitting that a native son would perform. Mr. Philip Will, Jr., of Perkins and Will, Architects of Chicago, Illinois—a successful practitioner in the profession and 2nd Vice-President of the American Institute of Architects, ably challenged the group on the theme “A New Century Beckons.”

After reviewing the history of the Institute from its conception by the 12 original members to the more than 14,000 members of today, Mr. Will urged architects to greater civic responsibility and to improve community standards of architecture by continual stress on the importance of aesthetics. In addition, Mr. Will begged the profession to increase its amount and character of service to the clients to combat the “package dealer.”

Since February 18th, there had been at the Chamber of Commerce a display of architectural work showing the new Rochester Civic Center, the new East High School for Rochester, many other schools, shopping centers, and residences. Also shown was the annual traveling exhibit of the Central New York Chapter, A.I.A., composed of representative work of its members and exhibited in Syracuse, Utica, Watertown, Ithaca and Elmira.

Part of the national celebration centered around the issuance by the Post Office Department of the A.I.A. Centennial postage stamp. The first day of sale was held on February 23 in New York City. The following Monday these stamps were first offered to the Rochester public when Mr. Leonard A. Wanslorp purchased 6,000 of these commemoratives for his firm.

At the conclusion of the dinner, Nicholas J. Maucci, President of the Rochester Society of Architects, thanked the following members for their efforts:

Exhibition: Albert L. Balesriere, Chairman; Peter J. Biechem, William S. Lattin, Elwyn D. Van Houten, John S. Wallour, John C. Wench.

Dinner: Thomas O. Morin.

Hospitality: Charles V. Northrup.

Publicity: Richard A. Stevens.

Reception: G. Carroll Madden.

Reservations: Daniel F. Giou.

The exhibit recently concluded marked the first showing by the Rochester Society of Architects in the Chamber of Commerce, and we were well pleased with the facilities, the cooperation and the service.

WESTCHESTER CHAPTER CENTENNIAL DINNER

A good proportion of the Chapter members, plus their many guests, turned out for this party on February 19, which replaced the usual Chapter meeting. The surroundings were pleasant, the food good, and the company congenial.

Altogether, it was a most satisfactory evening. To give the event more importance, the week was proclaimed “Architects’ Week” by County Executive James Hopkins.

The following more expert description of the affair was taken from the White Plains Reporter Dispatch:

“Westchester Chapter celebrated the centennial of the American Institute of Architects at a dinner for 100 members and guests last night at the Orienta Beach Club.

“Westchester Chapter is 20 years old this year. The A.I.A. was founded February 23, 1857, by 13 men and now has a membership of 11,500, President G. Norman Blair noted.”

734 RIDGEWAY AVE. ROCHESTER, N. Y.

EMPIRE STATE ARCHITECT
"Architects were urged to take an active part in civic affairs and help guide Westchester's rapid growth by Benjamin H. Carroll, editor and general manager of the 'Reporter Dispatch,' the guest speaker. Westchester cities, towns and villages have building codes and master plans but they must be kept up-to-date to be effective, Mr. Carroll said. There is a pressing need for housing within the reach of employees of large corporations moving to Westchester, he said.

"Executive offices and light industry are needed for a balanced development, Mr. Carroll declared. They are large taxpayers and they provide stable employment, but they must have housing for their white collar workers, he said.

"Mr. Carroll suggested that architects offer their services to planning and zoning boards and Chambers of Commerce, sponsor awards to recognize outstanding design and architecture, and work to prevent look-alike housing and 'Coney Island' commercial development. 'We can't stop growth and we don't want to, but we can guide it,' he said.

"Guests included County Executive James D. Hopkins, James C. Harding, County Public Works Commission; John J. Ballint of Yonkers, president of Westchester County Building Officials; and Worth A. Judge, real estate editor of Westchester County Publishers.

"Millard F. Whiteside of White Plains, Chapter Vice President, was toastmaster. Past President Gerson T. Hirsch of Pleasantville was chairman of the centennial observance. The invocation was given by James F. Cook of White Plains, honorary associate member." The chapter meeting of March 19th was well attended. President Norman Blair introduced the guests of the evening: Messrs. Robert Charles Quinten, C. Paul Jennewein, and Peter Jennewein.

The Committee Reports were as follows:

CHAPTER AFFAIRS—Millard Whiteside

The annual scholarship dinner will be held on Thursday, May 23, 1957, at the Glen Island Casino. This dinner will replace the May chapter meeting. Tickets for the dinner will be $10.00 each. Included in the dues of each member is his ticket. Members are urged to sell tickets to as many in the construction industry as well as others who may be interested, as possible.

MEMBERSHIP—Harry McConnell

Harry introduced Edwin Paul and Robert Metens, two new Associate Members; Joseph Belfatto, new Corporate Member; and Mr. Robert Charles Quinten, applicant for Corporate Membership. Harry urged that members contact him on questions regarding new applicants for membership.

COMMUNITY DEVELOPMENT—Compton Miller

The questionnaire on "Hurricanes" has been answered and sent to national headquarters in Washington.

Because of Bill Halbert's serious illness, which will make it impossible for him to serve longer as chairman of this committee, President Blair asked Compton to take the chairmanship.

PUBLIC RELATIONS—Donald Newman

This committee was able to produce excellent coverage of the Centennial Dinner. They expect equally good coverage of the Scholarship Dinner.

NOW IS THE TIME TO RING UP THE DATES

SEPTEMBER 19-20-21 1957 CONVENTION

New York State Association of Architects

Hotel Statler, Buffalo, N. Y.

Improved drinking facilities

INSIDE THE CLASSROOM

...with HAWS deck-type fountains

Specify drinking fountains where needed most...inside classrooms!

HAWS deck-type models are specifically designed to meet school requirements for New York and other states, and are watertight on a cabinet top. HAWS-igation and vandal-proof features of years of service. Increase classroom efficiency in your schools—by specifying HAWS deck-type fountains.

GET DETAILED SPEC DRAWING

Write today, and also get Haws 1957 catalog with full details on the complete Haws line.

HAWS DRINKING FAUCET COMPANY

1443 FOURTH STREET (Since 1909) BERKELEY 10, CALIFORNIA
GREEK REVIVAL (Continued)

Many cities and villages developed minor regionalisms because of climatic conditions, the abundance of a certain kind of building material or the architectural discernment of the local builder. This short paper will not permit the discussion of these minor developments. However, we must mention the beautiful work done with Granite in Boston and in the vicinity of the granite quarries in New England. The architects and builders had a most sensitive feeling for this very hard material which resulted in the elimination of carving and a simplification of moldings and details.

The large plain wall surfaces built up of the large blocks of granite, the simple moldings, and the subtle proportions resulted in powerful, dignified designs that are models for modern architects to study.

In western New York State where the glaciers deposited tons of small stones over the fields which interfered with plowing and reaping, there developed a type of masonry wall construction called locally "Cobblestone." At first the stones were field stones of various sizes and colors, laid in uneven courses about four or five inches high. The method of laying the stones went through a regular process of development and ended with the selection of lake-washed sandstones, carefully selected for color and size, and laid in straight, even rows about one and one-half inches high.

One is amazed at the rapidly changing plans through the years of the Greek Revival. The Post-Colonial architects and master-builders had already started to open up the interiors for more spacious living, but during the Greek Revival the interiors were developed to a far greater extent to meet the demand of the new social conditions. Every large house had two parlors, dining room and often a library, drawing or music room. Wide openings between the hall and the rooms and between the various rooms gave a continuity to the plan which resulted in interesting vistas and a feeling of grandeur. Sometimes, exceptionally wide openings were partially screened by free standing columns. Later, double sliding doors were introduced permitting the rooms to be shut off from one another for quiet family living or opened up for formal entertainment. But the design of the interiors must have been a source of much annoyance to them at first because very little remains of the interiors of the Classic Greek monuments. The elements of the interiors, the doors, fireplaces, corner cupboards were needed in the Greek Revival house as well as they had been in the Post-Colonial. The interiors required architrave moldings around the windows and door openings, base moldings and cornices. The publishers of the builders-handbooks had to use their imagination and provide details which the builders could easily interpret and build. It is remarkable that the handbooks were used with such good taste and discrimination.

Ceiling heights were increased considerably and the height of the room was emphasized by the vertical lines of the pilasters which often flanked door and window openings or the strong vertical lines of the door and window architraves.

In certain areas the enframement, so popular in the Hudson River Valley during the Post-Colonial Era, continued to be used. It consisted of a molded architrave with square corner blocks, and rectangular block over the center of the opening. Sometimes, the moulded panels were left plain and at other times elaborately carved.

The walls of the room were plain plaster surfaces and rarely was a dado or chair rail used. The cornices were usually run in plaster and were heavy and bold compared to the Post-Colonial. Usually only the cor- nices of the entablature was used but whenever the rooms were of sufficient height the other two members, the frieze and architrave, were also used.

The plaster ceilings were often enriched with moulded recessed panels and "center-flowers" or large rosettes, elaborately modeled, based on the Greek honeysuckle or pomegranate. Sometimes, the center-flowers were enclosed in a circular band of moldings and in the more modest designs the centerpiece consisted merely of the circular band of moldings.

In many of the small, inexpensive houses, the trim is made up of flat boards with small flat or beveled pieces applied, with straight or battered side architraves.

Mantels continued to be the center of interest in a room. Its practical form and size had long been established and there were no Classic Greek examples to follow. All they could do was to apply details and moldings derived from Greek sources, to existing mantel forms in place of the Post-Colonial details. The simple moulded enframements of fireplace openings were made with a moulding of Greek character. The architraves with crossettes or "projecting ears," with straight or battered side architrave moldings became a very popular type. The narrow pilasters of the Post-Colonial mantels were replaced by wider and heavier pilasters with caps and bases of Greek moldings. Frieze boards were usually plain with a simple bed moulding under a plain heavy shelf. They also made use of small free-standing or engaged colonettes with channels and caps like miniature Doric columns.

Architrave moldings with corner blocks, as described for door openings were also used around fireplace openings.

Generally the mantels were made of wood. However, in the parlors of the more elaborate homes, native and imported marbles were employed. The designs were similar to those used in the wood but simplified to be more appropriate to the quality of marble. Often modeled brass or ornamented cast iron enframements were used around the fireplace opening.

The Greek Revival interiors have an atmosphere of quiet dignity and restraint. Even in the most elaborate interiors, the architectural details were concentrated at the windows, doors and mantel, contrasting with the large plain wall surfaces. There may be an effect of luxury but there is never a loss of dignity.
Your local metal fabricators build these aluminum railings from Blumcraft materials. Competitive bidding by local fabricators is provided for public and private work. Two price ranges... Blumcraft Deluxe-Line... and low-cost Tube-Line.

Creative design by the architect with interchangeable Blumcraft stock components. General Catalogue M-57 is available to architects; or consult Sweets File 6e/Blu.
SPECIFY PROPER FLOOR TREATMENTS
• FOR BEAUTY • FOR SAFETY • FOR CLIENT SATISFACTION

Over 90% of flooring complaints are caused, not by the floor itself, but by improper original treatment or improper maintenance after installation. You can eliminate these complaints! Just call in your Hillyard "Maintaineer."

The Hillyard Maintaineer in your area is a floor expert. He can advise you on this very specialized field. And he will follow up on the job to see that your instructions are carried out. He'll set up a daily maintenance program, too, to preserve the beauty and utility of the floor, assuring greatest client satisfaction.

For Architects . . .
FREE FLOOR SURVEY compiled for your particular floor problems.
Ask Your Maintaineer

The Hillyard Maintaineer will act as your JOB CAPTAIN
See list at right for the name and address of the Maintaineer nearest you. For expert floor care help, give him a call. He will follow through with "Job Captain" service. He will be

CALL ON YOUR HILLYARD MAINTAINEER

IN ALBANY—
Allan R. Ely
49 Tull Drive
Phone: Colonie UN 9-7831

IN SARANAC LAKE—
Thomas J. Kelly
11 Baker Street
Phone: 1709

IN SYRACUSE—
Jerry Grindrod
5532 S. Salina St.
Phone: 9-3333

IN TARRYTOWN—
A. J. Oest and James Oest
112 Union Ave.
Phone: Medford 1-1511

IN KENMORE—
C. E. Creekmore
39 Midland Ave
Phone: Amherst 7100
The Building Game is inseparably linked to the Trade Unions. Every move we make must first be tested for possible Union reaction. Lack of information on the Union Demands for “temporary Heat,” “over time pay” and the like has placed many an Architect or Engineer in great embarrassment and caused much unanticipated expense to the Owner.

And the present practice of Uniform Scales—same pay to “run of the mill” “hands” (just out of their apprenticeships) as seasoned craftsmen can command has gone a long ways to discourage men from pushing towards a higher plane of skill, than the mediocre man possesses.

How frequently we hear some of the older men in our professions ask, “Where have the old time craftsmen gone?” The answer has already been stated.

One of the brightest rifts in the clouds came up in the recent AFL-CIO convention, where it was reluctantly voted to allow a differential in the pay scale to apply to men of superior skill. It remains to be seen just how broad will be the coverage, or how it will be administered. Over in Germany an apprentice must spend a year or more in studying the uses and make ups of the materials he will use in his chosen craft.

The writer corresponded for several years with a German Family whose son aspired to become a journeyman painter. In the end he not only knew his pigments but had to pass rigorous examinations, and demonstrate his skill before he could become a journeyman.

The need for better men in the mechanical trades is only matched by the same lack in the other trades. At the bottom of it all is the deadening effect of the Uniform Scale. The steps which have already been taken to encourage greater effort on the part of our craftsmen all go in the right direction. We can applaud and encourage these efforts, even if we cannot take an active part in adjusting pay rates. Our “twin” needs our help.

CONCRETE PLANK

ROOF AND FLOOR INSTALLATIONS

TONGUE AND GROOVE
LIGHTWEIGHT

PRECAST
CONCRETE

CONCRETE PLANK CO., Inc.

15 EXCHANGE PLACE

JERSEY CITY 2, N. J.
Henderson 4-1401

New York City Phone Digby 9-2450

OUR SIAMESE TWIN

By Malcolm B. Moyer

CONCRETE PLANK

ROOF AND FLOOR INSTALLATIONS

TONGUE AND GROOVE
LIGHTWEIGHT

PRECAST
CONCRETE

CONCRETE PLANK CO., Inc.

15 EXCHANGE PLACE

JERSEY CITY 2, N. J.
Henderson 4-1401

New York City Phone Digby 9-2450

EMPIRE STATE ARCHITECT
BOOK REVIEW

JAPANESE TEMPLES AND TEA-HOUSES, a thoughtful study of classic Japanese architecture, by Werner Blaser, has just been published by F. W. Dodge Corporation, New York. This new book is distinguished by its accomplishment of several major objectives. It is an exquisite collection of photographs and drawings of classic examples of Japanese architecture. It is, in its text, a penetrating, brilliant study of the elements—historical, spiritual, social—which provided the inspiration for these structures and fostered their perfection between the Fifteenth and the Eighteenth Centuries.

Blaser has selected, for his illustrations, buildings, utensils, and objects in everyday use which possess a remarkable unity of purpose, structural form and material. Possibly this was attained because the early artisans were priests as well as craftsmen and fully aware of their dual responsibilities. They were able to integrate their practical demands with their spiritual and aesthetic needs for a building or object of religious meaning. Conceived and constructed in an atmosphere of discipline, tradition and reverence, these works seem to have a spiritual force which enhances their physical purity of form.

Over 100 brilliant photographs, 8 of them in full color, and 21 sketches illuminate the vital text. The reader cannot help comparing many of our barren contemporary buildings with the richer, more perfectly fulfilled structures in this folio.

Werner Blaser is a professional designer who has traveled and studied throughout the world. He has been awarded prizes for furniture designs by the Museum of Art in New York and he carried on research for this work with a grant from the Swiss government. The original Swiss edition of this book received a prize as one of the most beautiful books of the year.

JAPANESE TEMPLES AND TEA-HOUSES

by Werner Blaser

$12.75

9 1/4 x 12 1/4

136 pages

Illustrated
THEODORE KOCH
1886-1957

Theodore Koch, A.I.A., a practicing architect and Past President of the Staten Island Chapter American Institute of Architects, died on Saturday morning, March 23, 1957. His was a long and fruitful life in the practice of architecture. In 1956 he celebrated fifty years of practice.

Theodore Koch was a native of Pennsylvania, and prior to World War 1, practiced in Scranton, Pennsylvania. He came to Staten Island in 1917 in the capacity of a representative of the United States Navy in charge of a training school for shipyard workers. From 1929 to 1933 he was an architect with the firm of McKim, Mead & White. From 1935 through 1936 he was a member of the United States Bureau of Biological Survey, which work took him to North Dakota and Washington, D. C.

He then returned to McKim, Mead & White and left this firm in 1944 to become associated with Maurice O. Uslan, a St. George architect. During his service with McKim, Mead & White, he was supervising architect for the University of Vermont Buildings, Bellevue Hospital Buildings in New York, the Savoy Plaza Hotel in New York and the Gerard Trust Company in Philadelphia.

He was a charter member of the Staten Island Chapter of the American Institute of Architects and was its Past President in 1952 and again in 1955 and 1956. He was a member of the New York American Institute of Architects Convention Committee for the New York Convention in 1952 and a member of the Borough President's Advisory Committee. He was a director of the New York State Association of Architects.

Pine Hill Concrete Mix Corp.

Ready-Mixed Concrete
For Every Purpose

Our Fleet of 100 Truck Mixers Assures Prompt Service

"No Job Too Small or Too Large"

"We have State Approved Materials"

TRANSIT MIX PLANTS—
2255 Bailey Ave. BA 2255
5636 Transit Rd. RE 1016
6067 Genesee St. RE 3419
520 Young St., Tonawanda .. JA 5267
19 Martin Ave., Blasdell WO 1518

GRAVEL PITS—
324 Pavement Rd. RE 6205
Stage & Billo, Clarence 3891
Genesee & Shisler RE 4224
Shisler & Wiltse RE 3419

SALES OFFICES

JEROME F. WALKER
35 West 45th Street
New York 36, New York

ROOF STRUCTURES, INC.

Valentine Hall Road
Victor, New York
New York 36, New York
Telephone—Victor 2081
Telephone—Judson 2-1920

NEW FILM — An interesting new 16mm sound and color film entitled GLUED LAMINATED WOOD ARCHES available free for group showings. Write for Details.
1869—Work began on the foundations on July 7.
1871—The second Board of Capitol Commissioners was appointed. The cornerstone was laid on June 24.
1873—William J. McAlpine was named Superintendent on June 11.
1874—During this year there was a work stoppage for six months. On June 12 James W. Eaton was named Superintendent.
1875—The walls had reached the top of the second story, at a cost of over five million dollars. The Legislature refused to appropriate any more money until the plans were finished, and an exact estimate made of the cost of completion. A new Capitol Commission was created, headed by Lieutenant Governor Dorsheimer. An Advisory Board consisting of Leopold Eidlitz, H. H. Richardson and Frederick L. Olmsted was appointed on July 5, and charged with investigating the building, securing estimates and making recommendations.
1876—The Advisory Board rendered a report early in March. The Board, and Fuller as well, were superseded by the appointment of Eidlitz, Richardson and Olmsted as Architects of the Capitol on September 12. Construction proceeded, with significant changes in design.
1877—Work was being pushed to complete the legislative chambers, at the third floor level.
1878—On May 11, a concurrent resolution was adopted, declaring the new building to be the Capitol of the State of New York.
1879—On January 7 the building was formally occupied, although not completed. By the end of the year $9,600,000 had been spent, in all.
1881—The Senate Chamber was opened in March. Apprehension grew over the safety of the vault of the Assembly Chamber. By the end of the year a total of over twelve million dollars had been spent.
1882—An investigating committee consisting of W. P. Trowbridge, Charles Babcock and George B. Post advised replacing the vault of the Assembly Chamber. The remainder of the building was considered sound.
1883—On March 30 Isaac G. Perry was appointed Commissioner of the new Capitol, to take charge of its completion in all respects.
1886—By the middle of the year the total cost had risen to about seventeen million dollars.
1888—The Assembly Chamber vault was examined by a committee consisting of John Bogart, Thomas C. Clarke and Richard M. Upjohn. In a series of three reports the committee found a dangerous condition, and urged the immediate removal of the vault, as well as its replacement by a lighter ceiling.
1889—A new ceiling was constructed over the Assembly Chamber.
About 1898 construction appears to have been completed.
HUDSON RIVER BRICK

for every

"DESIGN DEMAND"

Whether designing in contemporary or conventional architecture, no building product will do more to enhance the beauty of your building than Hudson River Brick.

BRICK MANUFACTURERS ASSOCIATION OF NEW YORK, INC.
1949 GRAND CENTRAL TERMINAL
NEW YORK 17, N. Y.
We are now producing prestressed concrete under the Freyssinet process for bridges, and for industrial, commercial, and school buildings.

Prestressing transforms concrete economically into a flexible, efficient building material that takes tension without cracking, and overcomes tensile stresses caused by loads, impact, and volume change. For greater bending moment, we use only the best concrete and high tensile strength steel.

Let our engineers consult with you on this revolutionary construction material.

- Wide-flange bridge girders
- I-Beam girders
- Channels
- Double-T slabs

Approved by the Council of the City of Rochester, N. Y., and many other municipalities.

GOODSTONE MANUFACTURING CO., INC.
470 HOLLENBECK STREET
ROCHESTER 21, NEW YORK

THE DEXTONE CO.
NEW HAVEN 3, CONN.
ENDURING MASONRY

By George C. Miller

The tremendous program of school construction continues unabated and attractive and enduring masonry plays one of the most important components. Excepting for those engaged in the many phases of the huge industry few are well informed regarding the various qualifications of the materials involved.

This short article on brick might in a small way prevent some misconceptions which are commonly found when the subject is discussed.

The importance of the correct use of the term has recently been emphasized by the Federal Trade Commission which ruled that no other unit except one which is produced by firing can be called a brick unless a prefix is attached.

So many examples of incorrect application of various types of brick are found in most American cities, yet the same errors are being demonstrated today. These may be summed up in the following:

A—A deeply textured or scratched surface brick should never be used in the business section of a city. The consequent gathering of dirt will in most cases after a few years blacken the areas which are most exposed, and disfigure the finest structure. A smooth impervious unit will, on the contrary, assure a surface of remarkable cleanliness, and when finally in need of cleaning, can be renewed by the stemming method which restores its original color and beauty. Where texture is demanded the modern shallow types should be chosen.

B—Brick made by extrusion to which a sanded application is made can never be cleaned unless sandblasted—a treatment rarely recommended by the experienced builder because the surface is removed permanently and penetration of dirt to a greater depth will result. A sandfaced extruded brick will build a wall to which incident dirt and impurities will find a permanent abode, even when the masonry is indoors and not exposed to the elements. On the other hand—a sand-molded brick—(not extruded), is the same texture throughout and will repel such penetration with great efficiency.

C—Water-struck brick of the so-called Harvard type and produced almost entirely in New England, are possessed of a harder surface than sand-mold brick, because as the term implies, the moulds are immersed in water, (to which caustic soda has been added), to permit speedy ejection to the ground for the first stage of drying. This method—(excluding the actual moulding which is done by machine) is centuries old and the excellent condition of Old South Church and Samuel Hall eloquently attest to the durability and permanent weather-tight masonry developed by the combination with lime-sand mortar of "Harvard" brick.

D—While a mortar made of a 50%, addition of Portland Cement (or even better—88 1/3%) to the lime content will assure a tonal character, which greatly enhances the appearance of brickwork—its more important function is the development of a non-shrinking grout which insures water-repellency. New York State specifications allow lime-cement mortar only!

E—In Upstate New York climate of constant cycles of changing temperatures, glazed and coated brick or tile should only be used if guaranteed by the producer for at least a 20 year period. The 20-year-bonded roof demonstrates the confidence in his product by the manufacturer. At least a dozen local buildings can be inspected where the failure of glazed or Terra-cotta surfaces call for complete removal and replacement, some being less than 10 years old.

F—Backup materials of fired shale or clays assist materially in building walls which repel dampness and offer a base on which plaster will not crack. Partitions of the same demonstrate similar service. Many architects specify hollow tile on these reasons.

Finally—no architecturally beautiful substitute has been developed through the ages which will match the cost of good brickwork. Colored concretes fade and disintegrate—sandstone and limestone accept deep penetration of dirt and are much costlier. Granite and marble carry astronomically high costs, while metal substitutes are still experiments and also prohibitively priced.
Precast concrete shapes and panels provide unlimited design...faster building...and lower costs

Buildings requiring "years ahead" architectural styling or standard conventional structures can be made more functional...more economical...easier to erect with Marietta precast concrete products.

Columns, grade beams, girders, or any structural sections are quickly available from Marietta plants, precast to any size and load specifications.

For curtain wall construction Marietta precast concrete wall panels provide beauty, economy and fast erection. Panels, with or without insulation, are available and come in standard and special sizes, adaptable to any architectural design. Exteriors prefinished in a variety of decorative textures.

Call on Marietta's more than 40 years know-how and experience to assist you in obtaining precast concrete shapes and forms to your design or creating a complete structure with Marietta precast concrete components. Write for details to...

Branch Offices:

The

Marietta

Concrete Corporation

Marietta, Ohio
I believe that there is another way. It is federation. I do not believe that the federal government can or should assume control of the development and redevelopment of our communities. This is not the way of America. At the same time, we know that many of our simplest problems of providing community facilities for our growing urban areas cannot be solved by individual local governments working in opposition to one another, or at best heedless of one another.

There must be large-scale planning. Without it, we can do nothing. It has been proposed that millions of dollars of federal money be appropriated for the nation’s public schools. It is needed, of course. But all the money in the world won’t correct our school-building problems. We must find a way to set up long-range building programs—whose targets can be adjusted from year to year—so that school boards can emerge from the perpetual atmosphere of emergency and begin planning ahead of the immediate need.

This applies, on a broad scale, to all our problems of improving our shabby or inadequate community facilities. In order to establish a procedural basis for getting this done, I suggest that we need large federations of local governments, working together voluntarily on public problems which bridge their boundaries.

Call it, if you will, a new layer of government. This informal federation of local governments is working in a number of areas today. Planning commissions work out agreements for mutually-financed public parkland, sewer and water facilities, and recreational centers. This reasoning and working arrangement, I believe, also must apply to urban renewal programs and to the vitally-important integration of urban redevelopment with the building of new highways. The two cannot be planned separately.

There is one further element in finding a way to cope with our national redevelopment problems. It is citizen support. Public support is a tired-sounding phrase; perhaps because it has been spoken too lightly for too long to too many people. This is too bad, because nothing will work without it. When the need for such support is pressed on people determinedly, they often turn and say, “All right, just tell me what I can do?”

This is what can be done. And for the moment I am addressing all thinking Americans. If you want to protect the future of your community, you can learn about and even get onto the governmental bodies and boards which are very important—the planning commission, the board of zoning, the housing and redevelopment authority. You can get on your civic, service, and fraternal clubs interested in your community problem. You can describe the implications of the problem to your newspapers and enlist their support. You can contact your community leaders in all occupations. For technical and professional help, you can seek the continuing advice of your architects.

Now let me speak for all of the 12,000 members of the American Institute of Architects: We are interested in this problem. We have been trained for it. We want to help. We will serve on public committees. It is only through these committees that the public is organized and the various levels of government are brought together in common focus to clear a slum, ease traffic congestion, erase blighted areas, and build better schools.

This is a huge economic problem, yes—but it is more than that. It is a moral, educational, cultural and spiritual problem too. As such, it demands the efforts of your government, your educators, your doctors, your ministers—and, most of all, the ordinary citizen who affects—and is affected by—the environment in which we all must live.

URBAN REDEVELOPMENT COMPETITION (continued)

The designers feel that in the future at least two other crosstown transfers, one at Canal Street and one at 125th Street—each designed for a similar comprehensive solution to the one proposed for the mid-city area—would lead to the eventual elimination of the traffic problem that today has grown to crisis proportions.

Katz, Waisman, Blumenkranz, Stein, Weber, Architects Associated are well known in our city for the design of several outstanding projects including the new Coney Island Hospital, William E. Grady Vocational High School and Bay View Houses. The firm, with offices in the Grand Central area, is composed of five architects—a hospital consultant, and a professional engineer. There are two female associates in the group, and three of the members teach architectural design in our local colleges—Pratt Institute and Cooper Union.

Mr. Raspante, now associated with the firm, and the first recipient of the Architects Associated Graduate Scholarship at Pratt Institute, developed the city planning phase of the project as a part of his graduate thesis leading to the M. Arch. Degree. Upon comple-

tion of the master planning research, Mr. Pisani and Mr. Auerbach, 5th year undergraduate thesis students at Pratt, joined the group to develop the design drawings. Mr. DeChiara, also a Pratt graduate and an architect associated with the firm as a specialist in housing and planning, developed the housing areas of the project. Together these ten collaborators developed a scheme which won the prize. The group wishes to acknowledge with gratitude the assistance of Mr. Morris Ketchum, architect and graduate critic at Pratt Institute, for his help with the thesis students. Mr. Auerbach and Mr. Pisani are presently serving with the Corps of Engineers as lieutenants in Paris, France and Alexandria, Virginia.

The jury for the competition was composed of leading architects and city planners including Percival Goodman, Architect, Maurice Rotival, noted authority on city and town planning and Jose Sert, architect, city planner and dean of the Harvard Graduate School of Design. Entries were received from all parts of the U.S. and 12 foreign countries.

The winning designers, of course, are especially proud of having won over so many outstanding opponents. They hope someday to be given the opportunity to participate in helping the city grow.

CHATELAIN ADDRESS (continued)
Vertically scored Concrete Masonry Units, painted in pastel shades, are an important feature of the beautiful new Syosset High School in Syosset, L. I.

Not only are a wide variety of patterns available with attractive Concrete Masonry Units, but they have innumerable advantages.

Especially important to schools are the fire safety features of Concrete Masonry Units. They also have a high value in sound insulating efficiency and sound absorptive ability.

They are economical to install and maintenance costs are low. Insulation is built-in.

Masonry Units may be left exposed, saving on finishing costs, or they may be painted.

Write for suggested patterns today.
Combined convector and radiant heating slashes fuel costs

New idea in heating yields significant fuel savings. Anaconda Pre-formed Panel Grids in the floor serve as highly effective heating elements and as return lines for convectors.

Mr. Richard S. Leigh, consulting engineer, designed this combination convector and radiant heating system, and one of his most recent installations was the Woodbury, Connecticut, High School for which he specified the time-saving PG's* (Anaconda Panel Grids) and Dunham-Bush convectors.

Mr. Leigh reports that the Woodbury School has an annual fuel bill of about $1000 for heating 22,000 sq. ft. floor area. Similar schools, employing other heating methods, are spending approximately $2000 for heating an equivalent area.

IDEAL FOR SCHOOLS, HOSPITALS, OFFICES. "This combination of convector and radiant heating," continues Mr. Leigh, "is economical to install, comparing favorably with competitive 'economy' type systems. A curtain of warm air at the windows prevents cold drafts and uncomfortable temperatures at the outer walls. The copper tube floor coils provide uniform warmth throughout the room. Individual room zoning is inexpensive. Such comfort cannot be obtained by any other method of heating at so low a cost."

FOR INFORMATION on Anaconda Panel Grids, the ready-to-install copper tube coils for radiant heating in floors and ceilings, and details about this combination convector-radiant heating system, write Building Products Service, The American Brass Company, Waterbury 20, Conn.

ANAConDA®
PRE-FORMED COPPER TUBE PANEL GRIDS
FOR RADIANT PANEL HEATING

Available through distributors of Anaconda Pipe and Tube
IN THE NEW JOHNS HOPKINS OPERATING SUITE...

walls and floors of
American-Olean Tile

American-Olean Tile walls and floors were specified throughout the entire operating suite in the new wing of Johns Hopkins Hospital.

The pleasing colors are easy on the eyes. Conduct-O-Tile floors safely dissipate accumulations of static electricity, reducing the danger of anesthetic explosions. From the maintenance angle, ceramic tile is durable, inexpensive to keep clean, and unharmed by the strongest disinfectants.

Architects specify American-Olean Tile when they want superlative appearance. Careful control of size, color, and alignment result in installations that are a credit to everyone associated with them.

AMERICAN-OLEAN TILE COMPANY
Executive Offices: Lansdale, Pennsylvania
Factories: Lansdale, Pennsylvania • Olean, New York
Member: Tile Council of America, Producers Council

NEW LARGE SIZES in glazed ceramic are especially suitable for schools and hospitals. More economical installation and easier cleaning. Described in free Folder 900—send in a blank card.

American-Olean Tile Company
1227 Cannon Avenue, Lansdale, Pennsylvania

Gentlemen: Please send my free copies of
□ Folder 900, "Large sizes in glazed ceramic tile"
□ Folder 600, "Tile for Hospitals"
□ Booklet 207, "Catalog of Tile Products"

Name

Firm Name

Address

City

Zone

State