ARCHITECTURAL BRONZE PROVIDES A GENUINELY WARM AND FRIENDLY WELCOME FOR THIS DISTINGUISHED BUILDING

The entrance to the Sinclair Oil Building in New York City is another example of the versatility of architectural bronze. It gives zest to the architectural composition. Its warmth of color—and the wide variety of finishes and shapes possible—enhance the beauty of other building materials. Architectural designers are finding that copper alloys in extrusions, drawn shapes and sheets offer almost unlimited opportunities in design and color effects.

As a leader and pioneer in producing architectural metals of copper alloys, The American Brass Company has accumulated the experience that can help you achieve outstanding designs in Copper, Red Brass, Architectural Bronze, Yellow Brass and Nickel Silver. For assistance, write: Architectural Service, The American Brass Company, Waterbury 20, Conn.

The main entrance (above) of the Sinclair Oil Building. Architectural bronze forms the door openings and housings, and frames the glass panels above.

Escalator and stairs (left) from lower-level concourse have architectural bronze paneling and trim.

Elevator lobby (left) has an extremely interesting wall treatment. To complement the marble, the wall surrounding the elevator doors is composed of serrated architectural bronze extrusions. Detail drawing (above) shows how extrusions are fastened to the wall construction. Close-up photo (right) indicates the pleasing vertical striated effect.

ANAconda® ARCHITECTURAL METALS

Made by THE AMERICAN BRASS COMPANY
CURTAIN WALLS of STAINLESS STEEL
by GENERAL BRONZE CORPORATION

North, south, east and west...in every section of the country you'll find outstanding buildings with curtain wall systems and windows by General Bronze.

The Mutual Trust Life Insurance Co. building in Chicago, Ill. is another example of a superbly designed building featuring a curtain wall grid system in stainless steel by General Bronze Corporation.

If you are thinking of curtain walls (either skin or grid and panel system) in terms of aluminum, bronze, or stainless steel, we offer you the benefits of our extensive experience in designing, engineering, fabricating and erecting curtain walls. With a background of more than 45 years in the production of architectural metal work and windows, and more than 10 years in curtain wall construction, we can help you avoid costly pitfalls in this highly specialized field.

For additional information on General Bronze products—curtain wall systems, windows, revolving doors, architectural metal work—call in the General Bronze representative nearest you, or write us direct. Our catalogs are filed in Sweet's.

Mutual Trust Life Insurance Co., Chicago, Ill.
Architects: Perkins & Will
Contractor: A. L. Jackson Co.
WINNER OF CITATION FOR SPECIAL FEATURES
IN COMPETITION FOR BETTER SCHOOL DESIGN

This distinguished school continues to win awards for its novel solutions to problems posed by the new demands of today's educational programs. The latest, presented at the University of Buffalo conference on school and college design, is a Special Feature Citation in the seventh annual competition of The School Executive.

Each building in this school is a special purpose unit in an educational plan that provides for separation of functions; but with improved communications. All its buildings make the most effective use of Hope's Window Wall Units. These are constructed of Hope's Pressed Steel Sub-frames with Hope's Heavy Intermediate Ventilators combined with stationary glazing and porcelain enameled insulated panels. The special adaptability of Hope's Windows and Frames in layout is of great help in the design of buildings in all architectural styles.

You are invited to make use of Hope's engineering and layout aid in any problem on use of windows.

Write for catalog 158 for your files.
Ironbound Continuous Strip Floor of 33/32" thick edge-grain maple in Trinity School Athletic Building, New York. Architect: Thomas M. Bell, N. Y. City.

BEAUTY, RESILIENCY, ECONOMY

The Ironbound* Continuous Strip* Maple Floor installed in New York's Trinity School was chosen for more than three reasons, of course. But the planners of Trinity's new Athletic Building were so impressed with three of Ironbound's features that they specified it without hesitation. These were its beauty, resiliency and long run economy - three features of Ironbound that are unmatched by virtually any other floor.

Ironbound's edge-grain rock maple strips produce a floor that takes a beating and keeps its warm appearance and smooth beauty for generations. Its layers of mastic and cork under the flooring give it a resiliency that prevents sore ankles and leg muscles and keeps players at their best. And Ironbound's exclusive sawtooth steel splines that interlock the durable maple strips help keep it tight and resistant to wear, make it a lasting economical installation.

These three features, and Ironbound's many other benefits, are reasons why Ironbound floors are installed in some of the nation's finest gymnasiums, industrial plants and public buildings. If you'd like to hear more about the benefits of Ironbound, contact your nearest New York State installer.

For added assurance of long life, Ironbound floors are available vacuum treated with Woodlife PENTA preservative by the Dri-Vac process for protection against moisture absorption, swelling, shrinking, grain raising and termite and fungi attack.
Many Contemporary Schools, like the WINDOM SCHOOL* in Orchard Park, N.Y., use

PEELLE PASS WINDOWS

DINING ROOM SIDE

Speeds Service Between Kitchen and Dining Room

Like all the rest of the Windom School, the dining facilities express the most modern concepts in school planning. The architects, Harbach & Clark, included a Peelle Pass Window in this area as an essential unit between the kitchen and the dining room.

The Peelle Pass Window, consisting of an integral door and frame, requires only the installation of the frame, thereby reducing installation costs. The solid panel and integral rail and frame design eliminate dirt-collecting crevices and maintenance. Peelle Pass Window units are properly, positively and permanently counterbalanced with counterweights at the time of manufacture. (Future adjustments are never necessary). The popularity of the Peelle Pass Window has brought forth inferior imitations — *Caveat Emptor.*

Write for further details or see our Catalog in Sweet's.

THE PEELLE COMPANY
Why Dur-O-Wal?

Dur-O-Wal is custom-fabricated to lay flat and tight in the mortar bed. Research tests demonstrate that "a wall with five courses of reinforcing is 260% stronger than non-reinforced masonry walls with Class B mortar and 245% stronger than walls constructed with Class A mortar." "Where strong mortars are used, the strength of the wall increases as the amount of steel increases." Dur-O-Wal, reinforcing pioneer and recognized standard of quality, is preferred for its unexcelled performance.

- Exceeds ASTM Specifications
- 33% more lbs. of steel*
- Increases wall strength 85%**
- Mechanical Bond Strengthens Mortar Lock 46%†
- Deformation 77% more effective††
- Packaging excellence assures handling ease
- Bundles clearly marked on each end in 10' lengths
- Distributed everywhere from 8 strategically located manufacturing plants***

TRUSSED DESIGN BUTT WELD DEFORMED RODS

Rigid Backbone of Steel For Every Masonry Wall

Dur-O-Wal of Ill., 119 N. River St., AURORA, ILL. Dur-O-Wal Prod. of Ala., Inc., Box 5440, BIRMINGHAM, ALA.

Dur-O-Wal of Colorado, 29th and Court St., PUEBLO, COLORADO. Dur-O-Wal Inc., 165 Utah Street, TOLEDO, OHIO
TO MEMBERS OF THE
New York State Association of Architects

STATEMENT of POLICY

Sixty-five years ago, the founders of FLOUR CITY established the principles and policies upon which our reputation has been built. Although the form and design of our products have altered to meet changing concepts of architectural design and incorporate metallurgical advances, the timeless element has continued to be integrity of metal craftsmanship in products of highest quality.

Today our production of custom designed and fabricated curtain walls, windows, doors, and other architectural products, is soundly rooted in a heritage of knowledge gained in over half a century of fabrication of aluminum, bronze, and stainless steel. We believe that custom products, with no necessity for compromise to accommodate "standard" details, will give both architect and owner assurance of permanent satisfaction.

Metalcraft by FLOUR CITY may be seen on some of the most impressive structures in our country and abroad. We take great pride in having shared in the construction of these fine buildings.

In the planning of your next important building, we invite you to make use of our knowledge and experience. The services of our designers and engineers are available without obligation.

HENRY J. NEILS,
PRESIDENT

The FLOUR CITY Ornamental IRON COMPANY
2637 27TH AVENUE SOUTH - MINNEAPOLIS 6, MINNESOTA

1893 SIXTY-FIFTH ANNIVERSARY 1958
1958 STATE CONVENTION

Rochester Society of Architects’ Competition

Ronald E. Sattelberg, 120 Woodman Park, an architectural draftsman of the firm Barrows, Parks, Morin, Hall & Brennan, Architects, of this city was awarded the First Prize in the Rochester Society of Architects’ Competition to design a convention seal to be used as an emblem for programs and stationery for the forthcoming New York State Association of Architects Convention.

The convention will be held at the Powers Hotel next October 16, 17, and 18th and the program will develop the theme “Your Architect—Your City.” The Rochester Society as a constituent organization of the N.Y.S.A.A. will be host for the conclave.

The First Prize of $75.00, awarded to Mr. Sattelberg, was made available through the generous gifts of two local concerns, the City Blue Print Co. and the H. H. Sullivan Co.

Awards of Honorable Mention were also given to Igor Shwabe, and John K. J. Lau. Other member competitors included R. E. Ashley, Jr., Robert A. Jones, Bernard Heatherly, Kenwyn E. Phillips, Robert Helmer, Arthur J. Pohle, Don De Angelis, and member sponsored competitors included James J. Jerris, Jr., Marjorie Sattelberg, and Joseph Kendricks.

The Jury for the selection was the Board of Directors of the Rochester Society of Architects and John W. Briggs, 1st Vice President of the N.Y.S.A.A. who is General Chairman of the convention.

Sattelberg who holds the degrees Bachelor of Architecture granted by Pratt Institute, Brooklyn, New York, and Master of Architecture in Town Planning granted by Cranbrook Academy of Art, Bloomfield Hills, Michigan, is a student and practitioner of city planning. As a result he and his wife, Marjorie J. Sattelberg, a graduate of the University of Toronto, School of Architecture, evaluated the Eastern portion of the United States and found Rochester to be an excellent urban community; consequently they decided to live here.

Formerly of North Tonawanda, Mr. Sattelberg has been employed by James Wm. Kidney and Associates, Architects, Buffalo; Stanley C. Podd, Architect, Buffalo; Ketcham, Gia & Sharp, Architects, New York; Harry N. Denyes, Architect, Birmingham, Michigan; and Arthur C. Jerkens, Architect, Fayetteville, North Carolina.

LEFT; Ronald E. Sattelberg, First Prize Winner in Rochester Society of Architects’ Competition for the “Design of a Convention Seal” looks on approvingly as F. Allen Macomber, President of the Society, affixes award to winning entry.

WOOD SERVES BEST WHEN PROTECTED BY OSMOSE

PRESSURE TREATMENT

Architects, Engineers and Builders Prefer Osmose Pressure Treated Wood

Resists Rot, Termites and Fire
Costs Less Approved in Federal Specs.
Readily Available Clean and Paintable
Public Demand Increasing

The ideal material for sleepers, subflooring, framing lumber, sills and joists, posts and poles—in schools, homes, churches, refrigeration structures, wet-process plants, outdoor theatres, etc., where decay or insect attack might be a problem.

Readily available in all sizes and quantities, large and small. Call or write us for details or aid in preparing specs.

Descriptive folder with instructions for Specs-writers included in 1958 Sweet’s Architectural File (Sd/Os) and Industrial Construction File (Sd/Os). Approved in Federal Specs TT-W-569 and TT-W-00571d.

Osmose Wood Preserving Co.
980 Ellicott St.
Buffalo 9, N. Y.

EMPIRE STATE ARCHITECT
DOING MORE WITH FLEXICORE

FLEXICORE PRECAST STRUCTURAL SYSTEM FOR SCHOOLS
OFFERS MORE ROOMS FOR DOLLARS AVAILABLE

Use of the Flexicore Precast Structural System for Schools is shown to fine advantage in these interior and exterior photographs of a school in the New York State area. The exposed Flexicore ceiling is an excellent sound reflector—it will reflect about 98 per cent of the sound which strikes it—reducing the amount of acoustical material required. The acoustic “border” treatment, as shown above the chalkboard, is highly recommended as most effective.

This two-story attractive, impressive school building is an outstanding example of the use of FLEXICORE precast columns and beams, and FLEXICORE floor and roof slabs.

The FLEXICORE school structural system provides a permanent, low-maintenance school of firesafe materials. It can be built in an extremely short time, and the cost is generally lower than most other methods. The use of mass-production, prefabricated materials makes this possible.

Architects find this system is easy to detail and eliminates all structural steel. No bearing walls are needed, permitting 4” interior partitions and 8” exterior walls.

Fast construction often makes needed class rooms available months sooner on average school. Lower cost permits more rooms for dollars available. Highest quality, permanent-type construction means less future maintenance.

This type construction permits more schoolrooms at a lower cost and saves the cost of future expensive maintenance.

Call, or write, today for complete details.
CONTENTS

Page

1958 State Convention .. 7
From the Desk of the President 15
From the Desk at 441 ... 17
Bronx High School of Science 18
Green Acres School ... 20
New Canisius College Library 21
Windom School .. 22
Shore Road School .. 23
New York State College of Agriculture 24
Middletown Junior High School 29
How to Answer Critics of School Costs 30
The Octagon Fad .. 31
Legislative Committee Report 33
Land Planning Considerations 35
Subsurface Considerations 39
Our Kind of Engineer .. 42
Enter the Consulting Engineer 45

ON THE COVER

PHOTOGRAPH OF MODEL SHOWING MAIN ENTRANCE, CAMPUS, AND ATHLETIC FIELD.
Bronx High School
Emery Roth & Sons, Architects

The State Association does not hold itself responsible for the opinions expressed by contributors to the "Empire State Architect." Your comments are solicited.

May - June Issue — Vol. XVIII, No. III

"Entered as second-class matter March 6, 1943 at the Post Office at Buffalo, New York, under the act of March 3, 1879."

Subscription Price: $1.00 per year. Non-Members $2.50; $.50 per issue
Published 6 Times a Year

Address all communications regarding the State Association to the Executive Director, Joseph F. Addonizio, 441 Lexington Avenue, New York 17, New York; all editorial comments to Charles Rockwell Ellis, 433 South Salina Street, Syracuse 2, New York; all editorial material to Warren Neal Wittek, 819 Forest Ave., Buffalo 9, New York; and inquiries regarding advertising to the Publisher.

Publisher
Julian L. Kahle
547 Linwood Avenue, Buffalo 9, New York

EMPIRE STATE ARCHITECT
STRAN STEEL FRAMING
SOLVES SCHOOL HOUSING PROBLEMS

For more information
Call or write the following
Authorized STRAN STEEL Dealers:

ALBANY, N. Y.
Casazza Steel Buildings, Inc.
2 Park Avenue
Phone: 4-3108

BUFFALO, N. Y.
Bos-Hatten, Inc.
French and Union Rds.
Phone: HObart 4366

NEW YORK, N. Y.
Mailable Steel Structures, Inc.
Room 206—527 Lexington Ave.
Phone: PLoza 3-2088

ROCHESTER, N. Y.
DeQuasie Steel Co., Inc.
380 Exchange Street
Phone: LOCust 2-9420

All Steel Frame
Quickly Erected
Economical
Fire Safe
Low Maintenance

STRAN-STEEL CORPORATION
Ecorse, Detroit 29, Michigan • A Unit of
NATIONAL STEEL CORPORATION
NEW YORK STATE ASSOCIATION OF ARCHITECTS

BOARD OF DIRECTORS

OFFICERS

- **President**
 - HARRY M. PRINCE
 - New York Chapter
 - 101 Pork Avenue, New York 17, N. Y.

- **1st Vice President**
 - John W. Briggs
 - Central N. Y. Chapter
 - 311 Alexander St., Rochester 4, N. Y.

- **2nd Vice President**
 - Frederick H. Voss
 - Westchester Chapter
 - Bradley Lane, Dobbs Ferry, N. Y.

- **3rd Vice President**
 - S. Elmer Chambers
 - Syracuse Society
 - 633 South Warren St., Syracuse 2, N. Y.

- **Secretary**
 - Simeon Heller
 - New York Society
 - 38-11 Union St., Flushing 54, N. Y.

- **Treasurer**
 - Martyn N. Weston
 - Brooklyn Society
 - 44 Court Street, Brooklyn 1, N. Y.

- **Executive Director**
 - Joseph F. Addonizio
 - 441 Lexington Avenue, New York 17, N. Y.

Past Presidents

- Henry V. Murphy
 - Brooklyn Chapter

- Donald Q. Faragher
 - Rochester Society

- Adolph Goldberg
 - New York Society

- Trevor W. Rogers
 - Buffalo-W. N. Y. Chapter

Directors

- Geoffrey N. Lawford
 - New York Chapter

- Richard Roth
 - New York Society

- Gabriel Nathan
 - Queens Chapter

- Nicholas J. Masucci
 - Rochester Society

- Maurice Ulsken
 - Staten Island Chapter

- James D. Curtin
 - Syracuse Society

- Harry W. McConnell
 - Westchester Chapter

1958 Standing Committee Chairmen

- **ARCHITECT & GOVERNMENT**
 - C. Storrs Barrows
 - Rochester Society
 - 133 East Avenue, Rochester 4, New York

- **AWARDS**
 - Co-Chairman
 - James W. Kidney
 - Buffalo-W. N. Y. Chapter
 - 220 Delaware Avenue, Buffalo 2, New York
 - Co-Chairman
 - Julian Whitley
 - New York Chapter
 - 31 Union Square West, New York 3, New York

- **CIVIL DEFENSE**
 - Hippolyte Komenko
 - New York Chapter
 - 475 Fifth Avenue, New York 17, New York

- **COMMUNITY PLANNING**
 - Elizabeth Colt
 - New York Chapter
 - 210 East 15th Street, New York 3, New York

- **CONFERENCE WITH OTHER PROFESSIONS**
 - Co-Chairman
 - Harry E. Rodman
 - Eastern New York Chapter
 - Department of Architecture, R. P. I., Troy, N. Y.
 - Co-Chairman
 - Adolph Goldberg
 - New York Society
 - 164 Montague Street, Brooklyn 1, New York

- **CONSTRUCTION & SPECIFICATIONS**
 - D. Kenneth Sargent
 - Central N. Y. Chapter
 - Syracuse Society
 - 712 Erie Boulevard, East, Syracuse 3, New York

- **CONTRACTS**
 - Roswell E. Pfohl
 - Buffalo-W. N. Y. Chapter
 - 85 Niagara Street, Buffalo 1, New York

- **EDUCATION**
 - Donald Q. Faragher
 - Rochester Society
 - 900 Powers Building, Rochester 14, New York

- **ETHICS & PROFESSIONAL PRACTICES**
 - Gerson T. Hirsch
 - Westchester Chapter
 - P. O. Box 101, Pleasantville, New York

- **FEES**
 - Gilbert L. Seitzer
 - New York Chapter
 - 51 Brentwood Drive, Brentwood, New Jersey

- **HOSPITALS**
 - Alonzo W. Clark
 - New York Chapter
 - 101 Park Ave., New York 17, New York

- **INSURANCE**
 - George J. Cavaliere
 - New York Society
 - 384 East 149th Street, New York 55, New York

- **LABOR LAW**
 - G. Morton Wolfe
 - Buffalo-W. N. Y. Chapter
 - 1377 Main Street, Buffalo, New York

- **LEGALISATION**
 - Co-Chairman
 - Matthew W. Del Gaudio
 - New York Society
 - 545 Fifth Avenue, New York 17, New York
 - Co-Chairman
 - Richard Roth
 - New York Society
 - 400 Park Avenue, New York 22, New York

- **MULTIPLE DWELLINGS**
 - Anthony DeRose
 - Bronx Chapter
 - 384 East 149th Street, New York 55, New York

- **MULTIPLE RESIDENCE**
 - S. Elmer Chambers
 - Central N. Y. Chapter
 - Syracuse Society
 - 633 South Warren Street, Syracuse 2, N. Y.

- **PUBLICATION**
 - Charles Rockwell Ellis
 - Central N. Y. Chapter
 - 433 South Salina Street, Syracuse 2, New York

- **PUBLIC RELATIONS**
 - "Harold R. Sleeper"
 - New York Chapter
 - 25 West 44th Street, New York 36, New York

- **RESOLUTIONS**
 - Trevor W. Rogers
 - Buffalo-W. N. Y. Chapter
 - 3491 Delaware Avenue, Buffalo 17, New York

- **REVISED BY-LAWS**
 - Frederick H. Voss
 - Westchester Chapter
 - 101 Park Avenue, New York 17, New York

- **SCHOLARSHIP**
 - George B. Cummings
 - Central N. Y. Chapter
 - 99 Collier Street, Binghamton, New York

- **SCHOOL BUILDINGS**
 - Carl W. Clark
 - Central New York Chapter
 - 625 James Street, Syracuse, New York

- **STATE BUILDING CODE COMMISSION**
 - Thomas J. Imbs
 - Buffalo-W. N. Y. Chapter
 - 225 Delaware Avenue, Buffalo 2, New York
More architects are learning that you can

ELIMINATE NEEDLESS COSTS and IMPROVE EQUIPMENT QUALITY

In 1958, the farsighted, value-minded school boards are walking off with the real "bargains" in classroom heating and ventilating comfort. To learn more about how you can get the most advanced controlled ventilation system within your present budget read below:

ECONOMY

Compared with the installed cost of some other systems, the Nesbitt Series Hot Water Wind-o-line system saves as much as 20% on construction, equipment and installation costs. Each classroom has its own Nesbitt Syncretizer for heating, ventilating and natural air cooling. And Nesbitt Wind-o-line fin-tube radiation extends along the sill to protect students sitting near windows against cold walls and window downdraft. Each student enjoys the full measure of thermal environment most conducive to optimum learning... whether he sits near the window or at the other side of the room.

PERFORMANCE

No other unit ventilator provides controlled heating, ventilating and natural cooling as effectively as the Nesbitt Syncretizer. Add to this the advantages of Wind-o-line radiation and you have two-way Nesbitt protection against (1) excessive radiant loss of body heat and (2) chilling downdraft.

This unique double protection is your assurance of healthful, productive comfort—free of physical distraction—for every child in the room, wherever his seat is located. Only the comfortable student can maintain maximum learning efficiency.

QUALITY and VERSATILE DESIGN

The copper tubing of the Nesbitt Wind-o-line radiation does double duty by serving as the supply and return mains for the Nesbitt Syncretizer in each classroom. And that means savings for you on pipes and coverings and the elimination of expensive pigtails, mains and runouts. Becase less hot water circulates, smaller and less costly pipes and pumps are needed. Piping within the Syncretizer unit is factory-assembled, labor on the job reduced. Gravity heating maintains overnight temperature, saving more on controls. Sum total of these economies: the best in controlled heating...
THESE SCHOOLS CUT COSTS...and improved quality

Heating and ventilating costs for 3 more Nesbitt equipped schools

In New York $1.57 sq. ft.
Myron Avenue Elementary School, Tonawanda, N.Y.
Architect: Fenno, Reynolds & McNeil, Tonawanda, N.Y.
Engineer: Jacobus & Babinski, Buffalo, N.Y.
Gross Area: 15,100 sq. ft.
Total Contract: $256,119.00
Heating & Ventilating: $23,681.00
Nesbitt Series Hot Water Wind-o-line System with Wind-o-line Radiation concealed by storage cabinets as shown at left

In Colorado $1.48 sq. ft.
Machebeuf High School, Denver, Colorado
Architect: John Connell, Denver, Colorado
Engineer: Marwi S. Wilson, Denver, Colorado
Capacity: 550 pupils
Gross Area: 48,390 sq. ft.
Total Contract: $523,200.00
Heating & Ventilating: $71,833.00
Nesbitt Series Hot Water Wind-o-line Radiation

In Maryland $1.57 sq. ft.
Stephen Knolls Elementary School, Montgomery Co., Maryland
Architect: Bailey & Patton, Rockville, Maryland
Engineer: Redmile, Corab & Wood, Washington, D.C.
Capacity: 450 pupils
Gross Area: 28,037 sq. ft.
Total Contract: $303,851.00
Heating Contract: $44,025.00
Nesbitt Series Hot Water Wind-o-line System
eliminated pipe trenches—put all piping above floor for maintenance accessibility

ventilation for your school at a cost that's way down... with quality that's way up for every classroom.

SCHOOLS IN MODERATE CLIMATES

In parts of the country where daytime inter temperatures rarely fall below 50°F., Wind-o-line Radiation may not be necessary because outside window walls do not create special comfort problems. In such areas, Nesbitt offers the Mainline System. It offers the economies of the series piping arrangement without sacrificing quality.

For the big book, packed full of information on the value of controlled classroom ventilation, More Learning per school Dollar.

Nesbitt
THERMAL COMFORT ALL WAYS

Sold also by American Blower Corporation and by American Standard Products (Canada) Ltd.
Precast concrete members make low-cost school possible

The new Linton-Stockton Elementary School in Linton, Ind. has been widely acclaimed in educational circles. It is an example of the speed and economy with which urgently needed classrooms can be provided quickly and economically.

Saving in time and money resulted from the use of precast concrete construction. The frame is formed by precast concrete bents supporting precast channel slabs. Integral parts of the bents are arms for cantilevered sections. Both bents and roof slabs were precast on the site. Careful planning, standardization of members and utmost re-use of forms held down costs and construction time.

As a result the 80,000-sq. ft. school was built for $870,000. Its 36 classrooms, averaging 1200 sq. ft. in size, will accommodate 1,200 pupils. The restrooms and halls are floored with terrazzo, which was also used for wainscoating in the building.

Modern precast concrete schools such as this not only have low initial cost but also low maintenance cost, long life and low annual cost. And they're fire-safe, too! So make your next school precast concrete.

PORTLAND CEMENT ASSOCIATION
250 Park Avenue, New York 17, New York
A national organization to improve and extend the uses of portland cement and concrete through scientific research and engineering field work
FROM THE DESK OF THE PRESIDENT

In my last column I touched briefly on the activities of the N.Y.S.A.A. Architects Scholarship Committee which began early this year to distribute the scholarship fund of $1000.00 donated through the generosity of the New York State Concrete Masonry Association. When the Committee met early in January it unanimously agreed on the following basic policies to guide its decisions:

1. That the Committee would take the most desperate cases based on financial need, with preference to be given to students in their senior year.
2. That the Committee would not disburse the entire fund at one time.

To date, six students from the architectural colleges in New York State have been the beneficiaries. Many more applications were received than the Committee was able to fulfill. The fund, as constituted, is a modest one and will soon be exhausted unless it is implemented with additional contributions. The Committee decided to seek an expansion of the fund and will shortly solicit the assistance of the membership and the constituent organizations in the State Association. It is the sincerest hope of the Committee, in which I wholeheartedly concur, that the enlarged fund will broaden the scope of financial aid to more deserving students and encourage the continuance of those students who may be on the brink of discontinuing or postponing the completion of their studies.

A report on the activities of the Scholarship Fund will be submitted at our Convention to be held in Rochester, N.Y. October 16 to 18, when a definite plan will be presented by the Committee for the consideration of the general assembly. Meanwhile, the Committee is formulating a program it hopes will be practical, acceptable and successful.

The necessity to train and educate architects for the future welfare of our country is greater than ever. The economy of our state and nation is constantly expanding. Our population is growing. New schools, public buildings and civic improvements, hospital facilities and institutions must be adapted to the ever changing progress in the fields of governmental, medical, sociological, technical and industrial research. Business and residential needs must be fulfilled. The future holds an undreamed vista of considerable professional activity that will require all the available architectural talent that can be assembled.

We, the architects of today, owe an obligation to the architects of tomorrow. Your N.Y.S.A.A., dedicated as it is to the present and future welfare of the architectural profession, is happy to lend its services and techniques to the immense tasks that lie ahead. These tasks can only be achieved through the cooperation of the individuals of our membership and the constituent organizations that comprise our Association.

I trust this advance notice of the objectives of the Architects Scholarship Committee will be carefully noted and seriously appraised at this time by our constituent organizations. Your suggestions and recommendations will be most welcome.

The Architects Scholarship Committee is composed of George B. Cummings, F.A.I.A., of Binghamton, former A.I.A. president, who is chairman; Leopold Arnaud, F.A.I.A., Dean of the School of Architecture, Columbia University; Matthew W. Del Gaudio, F.A.I.A., of New York City, regional director A.I.A. and past president N.Y.S.A.A.; Donald Q. Faragher, F.A.I.A., member of the New York State Architectural Board of Examiners and a past president of N.Y.S.A.A.; Perry Coke Smith, F.A.I.A., of New York City, past president New York Chapter A.I.A.; Frederick H. Voss of the firm of Kill, Coleen, Voss & Souder of the Office of York & Sawyer and a past president of Westchester County Chapter, A.I.A.; Alden C. McGuire of Rochester and of the New York State Concrete Masonry Association, and your president, ex-officio. The Committee deserves your complete support.

HARRY M. PRINCE, President
New York State Association of Architects
lenroc stone
Puts New Excitement in Your School Architecture AT CONSERVATIVE COST

These leading architects have selected Lenroc:

- Carl C. Ade & Assoc., Rochester
 - Charles E. Riley Elementary, Oswego, N. Y.
- Bice & Beaird, Utica
 - New Hartford School, New Hartford, N. Y.
- Eggers & Higgins, New York City
 - Garden City School, Garden City, L. I.
- John Ehrlich, Geneva
 - Geneva Junior High School, Geneva, N. Y.
- Epple & Seaman, Newark, N. J.
 - Millburn Sr. High School, Millburn, N. J.
- Faragher & Macomber, Rochester
 - Greece Central School, Greece, N. Y.
- Fenno, Reynolds & McNeil, Buffalo
 - Green Acres Elementary, Tonawanda, N. Y.
- Haskell, Considine & Haskell, Elmira
 - Our Lady of Lourdes School, Elmira, N. Y.
- Heacock & Plott, Philadelphia
 - Shady Grove Junior High, Ambler, Pa.
- Duane Lyman & Assoc., Buffalo
 - Watkins Glen Elementary, Watkins Glen, N. Y.
- McCoy & Blair, White Plains
 - Mamaroneck High School, Mamaroneck, N. Y.
- Sanders, Thomas Assoc., Pottstown, Pa.
 - Pope Pius X High School, Pottstown, Pa.

Many, Many Others Too Numerous To Mention

Are you tired of the monotony of designs dictated by tight building budgets?

Now, Lenroc Stone lets you break away from conventional solutions to this ever-present problem. With a full variety of color, texture, and scale available only in natural stone, Lenroc Stone allows you an exciting freedom of creative expression.

From a cost point of view, a base bid for Lenroc is much more competitive than you might imagine—both in lower initial costs and reduced maintenance costs throughout the years.

Our Architectural Staff is prepared to assist you in early stages of planning with cost-cutting detailing procedures. Complete shop drawing service is provided.

Consult us at any time without obligation.
FROM THE EXECUTIVE DESK AT 441

A Report on Progress

It has been an extremely busy two-month period since my last report. Much of my time has been devoted to legislative matters in Albany.

I am happy to advise that we had a most successful session. The perennial and persistent corporate practice engineering bill never came out of Committee. The bill which would have deleted the $10,000 provision in the Education Law which now requires the seal of a registered architect was first passed by the Assembly, subsequently recalled, the vote nullified and the measure overwhelmingly defeated and recommitted back to the Rules Committee. It is inevitable that whatever changes are made will be initiated by the Legislative Committee of N.Y.S.A.A.

We believe our membership will be pleased to learn also that the Resolution introduced by Assemblyman Goddard which would have created an architectural division in the State Education Department was defeated in Committee, as it deserved to be. Other measures which would have waived the present requirements for registration of architects were killed through our efforts. I shall not attempt to report in detail the disposition of all legislation in which we were interested, favorably or adversely. A complete report has already been submitted to all constituent organizations by the Legislative Committee. The summary is published elsewhere in this issue of Empire State Architect. Co-chairmen Matthew W. Del Gaudio and Richard Roth deserve the warm commendation of the entire membership of the State Association for the splendid job they have done this year. The Committee watched, analyzed, reported every bill that in any manner affected the interests of the architects and submitted numerous memoranda to the Governor.

The end of the legislative session did not diminish, however, the use of the well-travelled executive director's carpet bag. Conferences were held in Syracuse, Rochester and Albany. Also a delightful visit to the Annual Convention of the Ontario Association of Architects in Toronto at the invitation of executive secretary John D. Miller. Our Canadian cousins really rolled out the red carpet and gave your executive director the V.I.P. treatment. It was a pleasure too to see immediate past N.Y.S.A.A. president, Trev Rogers, and the charming Pat Rogers, as fellow-guests in attendance. Most impressive was the ceremony at the "graduation exercises" on the evening of the annual banquet when the certificates of registration were distributed to the new architects by the Ontario Association. This is something we hope will happen in New York State some day when the N.Y.S.A.A. will do the conferring upon newly registered architects.

I want to thank the two Chapters whose annual functions I was privileged to attend—the dinner-dance of the Queens Chapter at Far Rockaway, presided over by president Arthur Schiller, and a memorable visit to the annual dinner-dance at Freeport sponsored by that gay Long Island Society Chapter group, of which my host was that up and coming young architect, president Walter Watson. Regrettably, I was unable to attend the Staten Island Chapter annual dinner due to my needed presence in Albany. I hope president Mike Diamond gives me a rain-check for a future meeting.

The next two months will be equally busy ones. (Editor's note: Who said this was a 3-month job only? Not if you could sit at my desk at 441!) Immediately ahead is the formulation of plans for the annual N.Y.S.A.A. Convention to be held in Rochester in October. If you have not yet entered these dates in your calendar, please do so now. Here they are:

October 16 to 18, 1958

Powers Hotel, Rochester, N. Y.

See you soon.

[Signature]

Executive Director
The Bronx High School of Science is one of the two “super” schools in the New York City Board of Education construction program. SCIENCE as a school has been in existence for 20 years and is recognized by colleges as the foremost secondary school in the entire country for the teaching of science and mathematics.

Its present plant which is completely inadequate for its growing needs is located about one mile south of the new site; the new building will provide every facility needed, to continue the superb reputation, its principal and organizer, Dr. Morris Meister, created with such foresight and perseverance. The reality of the new school came about through the efforts of Charles H. Silver, President of the NYC Board of Education and Charles J. Bensel, Chairman of the Board’s Committee on Buildings and Sites. Through their instigation, and with the cooperation of Mayor Wagner, the 1956 capital budget was amended to make available the necessary funds for this $8,000,000 project. Construction started in December, 1956, and is now approaching completion, so that it will be ready for the Fall term of 1958.

The new school is located at the northern end of Bronx County in New York City, just south of Moshulu Parkway and Van Courtlandt Park. The site which covers about eight and one half acres, is on fill land (formerly a reservoir) created years ago when the Jerome Avenue subway was constructed. The elevation of the streets surrounding the project had been raised to approximately 8′0″ above the property, creating what is essentially a saucer shaped plot. Therefore, while the building is actually four stories in height, the main school entrances are at street level; and the lower depths of this bowl-form site helped to produce a substantial student campus and athletic field at the present ground level; thus eliminating cellar space. With no cellar as such being necessary, maximum natural light and air was available for all rooms.

Above the entrance (or street) level the building is 3 stories high, constituting in essence three wings; (1) science; (2) academic; (3) auditorium and gymnasium. The southeast portion, flanking the main entrance is the science wing. The first floor is devoted to the study of physics, the 2nd floor to the study of chemistry and the 3rd floor to the study of biology.

The classroom or academic wing is to the east of the main entrance and is the secondary approach to the building, being the portion of the project closest to the subway; probably the means of transportation most widely used by students. All three floors of this wing contain social study classrooms. The dominant wing of the building—to the north—is flanked by the athletic field and has easy access to the campus level. The wing contains the main entrance to the building and also the auditorium and two gymnasiums, with all their necessary appurtenances. This main approach to the school is a broad promenade deck, leading off 205th Street. The entrance feature is 3 stories in height, allowing for an undisturbed view of a mosaic mural, being done by Frank J. Reilly. The mural itself, covering the entire rear wall of the Lobby, pictorially depicts all the sciences and their origins.

The cafeteria is immediately below the main entrance and opens directly upon the campus level so that the students may eat either in a sheltered area, or in more clement weather can dine in the open.

The spaces between the 100′0″ trusses that span the auditorium were utilized for music and drafting rooms. The planetarium, radio and weather stations and a greenhouse were placed on the main roof.

Shops, classrooms, medical department, cafeteria and student activity rooms are all on the campus level; the locker rooms are directly below the gymnasiums and afford easy access to the gymns themselves and to the athletic field.
The building, having accommodations for approximately 3,000 specially selected boys and girls, has been designed to standards and facilities that are unique in the ordinary school planning. Despite the rarity of this type of school, the Board of Education's program of requirements had to be met. Provisions were made for 42 regular classrooms, 37 science rooms and shops, science lecture halls, four science project labs, three photographic dark rooms and studio, two greenhouses, radio house and weather stations, planetarium and astronomy observatory; as well as two gymnasias for boys and girls: 1,000 seat auditorium, library and cafeteria. All these are in addition to the usual offices, teachers lounges, and student and faculty dining rooms. Special facilities are being included for parent, alumni and student activities, and for guidance and college-entrance services.

A closed-circuit television loop will permit special programs to be viewed in many classrooms simultaneously. Lectures given in the science halls and dramatic rooms can be broadcast to certain other rooms and areas of the building. The electrical layout and services are complete enough to cover all scientific needs. A complicated and comprehensive system is being provided so that variable voltage will be available as needed.

The magnitude of the structure can possibly best be illustrated by the fact that 15,000 cubic yards of concrete, over 1,000 tons of reinforced steel and about 5,000 tons of structural steel went into the project.

In planning the Bronx High School of Science, the aim has been to have as many features as possible contribute to the education program. For this reason the heating plant, plumbing layout, electrical system and other equipment will be utilized as "teaching equipment." The shops are intended to develop fundamental skills in the use of basic tools and machines useful in and for the teaching and application of science, and to give opportunities for construction and repair of scientific equipment and apparatus.

Thus this school is not only meant to be preparatory for the higher education of physicists, architects, astronomers and engineers, but is also basic training for meteorologists, photographers, printers and skilled mechanics.
Green Acres Elementary School is situated in the northeastern part of the Town of Tonawanda, Erie County, New York, and is the eighth school to be added to the Kenmore School System, Union Free School District No. 1, since World War II.

This building was designed for 650 pupils; contains twenty classrooms and two kindergartens. Additional features consist of an Auditorium with a seating capacity of 325, and a well-equipped stage; a cafeteria and kitchen to accommodate 200 students at a sitting, with a separate dining room for teachers; a double gymnasium with adequate locker and shower rooms.

The cafeteria is also designed to serve as a community room for neighborhood activities. The Administrative Suite includes General Office, Principal’s Office and Mimeograph Room.

Special rooms for the educational activities are a health center, consultant’s room, special teacher’s room, faculty room and a music room.

The typical classroom used in this building for the first time, was the outgrowth of months of study by the Architects, Administrative staff of the School District and the teachers of the School System. Its special features are a classroom area of 850 square feet, a self-contained coat room, storage closet and teacher’s closet, which form a buffer between the classroom and corridor. Corridor lockers are completely eliminated.

In addition, each classroom has a working counter across the entire rear of the room with a Formica top, recessed sink, and drinking fountain. Storage space is provided under the counter. A 3’0” high by 6’0” long wall-hung storage cabinet and a 3’6” wide by 6’8” high book case are also included.

Metal window wall storage units are provided in conjunction with the unit ventilator cabinets. A maximum of chalkboard and corkboard area is provided on three sides. The primary rooms have their own private toilet in addition to the above features. All classrooms have wood floors, acoustic ceilings, painted walls and are lighted with fluorescent fixtures.

The building is steel frame construction with floors and roof supported on steel joists. Foundations are all reinforced concrete; exterior walls are brick with Indiana Limestone trim; classroom windows are of glass block with operating vision metal units, full-length of the room. Interior finish includes terrazzo flooring and facing tile wainscoting in corridors and in the cafeteria.

The toilet rooms have ceramic tile floors and facing tile wainscoting. The gymnasium has a wood floor, facing tile wainscoting, with brick above and suspended acoustic tile ceiling.

All other principal areas have suspended acoustic tile ceilings. All windows are glazed insulating glass.

The building is heated by two steam, oil-fired boilers, each capable of carrying 7.8% of the heating load of the extreme period.

Contracts were let for this building in November of 1955 and were completed in April of 1957 at a cost of $15.53 per square foot.
The new Canisius College library is a three-floor building containing approximately 11,166 square feet on each floor, a total of 33,500 square feet. Rectangular in shape, the library is situated in front of the main classroom building, and is connected with it by a covered passage. The main entrance is close to ground level; wide window areas on the north and south sides give the building an open and inviting air. The library as planned is modern, functional, and economical in its operational aspects.

Mechanical features include the control of humidity, light and air-conditioning of each floor level on an individual level basis. Since all windows will be of fixed insulating glass, all air entering into the building will be electronically filtered and washed.

It has a structural steel frame, fireproofed. Floors are of reinforced concrete. Entire structure is sound-conditioned.

Except for a collection of reserved and restricted books, the library will be open shelf, and will have a book capacity of approximately 125,000 volumes distributed over three floors. Slightly more than one-third of the total capacity will be shelved on the lower level; the remainder will be distributed about evenly on the main and upper levels. Provision has been made for the shelving of recordings, periodicals, pamphlets, microfilm, etc. Free-standing steel shelving will be used.

Provision has been made for a reader capacity of approximately 400. Seating and study facilities include regular reading room tables and chairs, individual study desks, informal lounge areas, seminars, a typing room, small studies and discussion rooms. It is not anticipated that this maximum will be required for many years. In addition, a room for group listening or film viewing will accommodate an audience of 70, it is also equipped for broadcasting and telecasting.

Of modular construction, with bays 22 feet 6 inches square, the building has a minimum of fixed interior partitions, and will thus be flexible and adaptable to changing needs. Shelving areas can be converted to reading areas, and vice versa. The work space for the library staff is adequate, but not extravagant, and has been planned in anticipation of a normal staff growth. Staff control points are centrally located on each floor; on the main floor, the circulation desk is strategically located for control, ease of access to the processing and work areas, and the Librarian's office.

Lounge space, where smoking will be permitted, is provided on each floor, as are restroom facilities and janitor closets.

The library's collection of old and rare books will be exhibited in various locations in protective shelving.

Display space for special exhibitions is provided in strategic locations.

It is anticipated that with the library's normal acquisition rate of between 2,500 and 3,000 volumes a year, the building will be adequate for the next twenty years. Sufficient ground will remain available at the west end for an addition, and provision has been made for an addition in planning construction details, heating, plumbing, lighting and air-conditioning.
The Windom Elementary School is the most recent unit of the Orchard Park Central School System, having been completed and occupied in the fall of 1957.

The problem was to provide a twenty-eight room Kindergarten through Sixth Grade building with combined Cafeteria-Auditorium facilities and a physical education unit larger than usual to encourage community youth activities. The policy of the district being to hold Kindergarten half-day sessions, the foregoing was accomplished with twenty-six Class Rooms, the Library being an added requirement as was the Art Room which, in reality, is a work project area supplementing the individual work areas in the Class Rooms.

The site is reasonably level with extensive play areas for the proposed youth activities program referred to above.

Due to the nature of the sub-soil, it was expedient to keep all foundations and floor levels of boiler room areas as shallow as possible. The building itself is structurally of slab on grade construction with utility corridors under the corridor around the Gymnasium unit.

The structure is completely framed with light steel columns and beams, gypsum roof deck insulated and exterior walls of a light, warm, pinkish brick. All windows are of the continuous window-wall type.

A very extensive use of plastic skylights permitted deep class rooms with excellent daylight distribution, thus shortening the corridors of the semi-detached class room wings which are each allotted to related grades. Each class room wing has a distinct color combination in terrazzo floor, glazed block wainscots and class room decor, including varied colors of corkboard tacking space in each room, together with the necessary work counters, sinks and, in the case of the Primary Wing, individual toilets.

The Gymnasium interior is of simple concrete block, painted, with a padded type wainscot.

The plan stresses multiple use of the Cafeteria-Auditorium unit with the Music Department. The stage is provided with simple curtains and drapes and lighting and, in addition, a folding partition which, when closed, permits use of both stage and music room as a music or other instructional area, while the main area is supporting other activities.

The heating system is of an oil-fired, forced hot water type for both convectors and ventilating units so designed that it could be converted in the future to a water cooling system should extensive summer use become desirable. The accompanying perspective shows the contemplated expansion of a fourth wing on the extreme left for eight additional Class Rooms.

Because of the isolated nature of the site, an extensive parking area has been provided for extra-curricular activities in addition to the use by the staff. As the District maintains a central bus depot, no provision was made for a bus garage for this particular unit.
The Shore Road School has an area of 59,310 square feet, and is located on a 10-acre site. This Kindergarten through Sixth Grade School will house 650 elementary school children with separate Auditorium, Gymnasium and Cafeteria facilities. The facilities, plus Administration, Health and Library areas are contained in a central block separating the classrooms into two wings, one for primary age and the other for secondary. Special classrooms for Music and Art, Home Economics and Shop classes are provided. An interesting plan feature is the very pleasant landscaped interior court adjacent to the Library and Music and Art room.

The building is of one story contemporary design and is located on the south shore of Long Island within view of the Jones Beach Tower. The school is constructed of fire resistant materials throughout with exterior walls of buff brick and porcelain enamel panels with limestone trim. The focal point of the design is a terra cotta mural over the main entrance, consisting of sea life motifs in keeping with the building’s location.

The soil conditions required pile foundations and reinforced concrete floor construction providing a crawl space under the entire building. The insulating concrete roof slab is supported on steel joists and structural steel frame. Interior walls are of lightweight block and all walls are finished in plaster or other special finishes.

The classrooms are complete with built-in bookshelves, closets, bulletin boards and chalkboards. Separate toilet facilities for girls and boys are provided for each two classrooms. Daylight is supplied through a continuous window wall of glare reducing glass in projected sash. Walls are plaster, ceilings acoustical tile and floors vinyl tile.

Kindergartens and first grade classrooms have direct access to exterior play areas.

The Auditorium has fixed seating on a sloping floor and is acoustically treated for best sound conditions. Lighting is provided through indirect coves continuing from one sidewalk across the ceiling and down the other wall.

The Gymnasium has a folding partition to divide the space into two teaching stations, one for girls and one for boys, complete with locker rooms, showers, etc. for each. With the partition retracted, a full size basketball court is provided complete with folding bleachers for spectators. Ceiling is perforated metal tile, walls sprayed plastic on block and floors, wood.

The corridors have terrazzo floors, and wainscots, with acoustical tile ceilings and plastic skylights to provide daylight.

The heating shall be forced hot water supplemented by unit ventilators. Lighting is mainly fluorescent.
A new multi-million dollar building for the Department of Animal Husbandry at Cornell University will give the New York State College of Agriculture up-to-date facilities for development in this field. The College is a unit of the State University of New York.

Designed by New York architect, James Cameron Mackenzie, F.A.I.A., the new structure will harmonize with existing buildings while still bringing a new note to the eastern section of the campus.

State University architect, Otto J. Teegen, has coordinated the efforts of state officials, professors, scientists, and laboratory experts who have cooperated in the planning to produce a functional unit capable of housing the teaching, extension, and research programs of the department.

Covering approximately three acres, the new building will be located at the southeast corner of Tower and Judd Falls Roads. It is hoped that ground may be broken in the summer or fall of 1958.

According to plans, the building will have a four-story front facing on Tower Road and a two-story wing along Judd Falls Road, tapering to a one-story structure in the rear to house the meats division of the department. In terms of floor space, approximately 135,000 square feet will be provided. The proposed exterior is natural brick with limestone trim.

Six classrooms will be provided, including one of 300-student capacity, five student teaching laboratories, offices for academic and non-academic personnel, 18 research laboratories, modern facilities for slaughtering and processing the meat of livestock, animal rooms for housing small laboratory animals, a seminar room and supporting equipment.

The research projects of the department include such fields as dairy cattle, beef cattle, sheep and swine studies, animal nutrition, animal physiology, animal breeding, meat processing, forage crop utilization, and others. Provision is made to house this work along with the large division of animal husbandry extension personnel.

As in any highly specialized building, much thought went into interpreting the needs and aims of each division, the architect said. For example, it was found that a small separate slaughter room was needed for the slaughter and processing of certain experimental animals not suitable for use as food. The use of fixing fluids needed in the preparation of tissues for microscopic study, the introduction of undesirable organisms, strict food inspection codes and the reactions of retail buyers made it highly impractical to use the regular slaughter room for this purpose.

A further indication of the advanced thinking in the plans is the incorporation, in the slaughter room, of an anaesthetizing trap for CO₂ hog immobilizer. Developed in Europe, this trap has only recently become available in the United States. It will eliminate the disturbing squealing of hogs at slaughter and will conform to the recommendations of the leading humane societies.

The building will give adequate space to enable the staff in animal husbandry to do a more efficient and expanded job in teaching undergraduate and graduate students, said Prof. K. L. Turk, department head. It will also provide quarters for staff members who now are located in other buildings because of the inadequacy of the present headquarters. The principal building of the department, Wing Hall, was completed in 1914.

Aiding in the planning was the building committee of the department which included Professors J. K. Loosli, William Hansel, J. I. Miller, C. R. Henderson, K. L. Turk, and S. E. Smith, Chairman.
IF CLASSES WERE HELD OUTDOORS...
Yes, if classes were held in the open like this . . .

You’d buy American
Seating furniture every time!

The second best way to look at school furniture is in a beautiful setting like this (where everyone could see and admire American Seating equipment every day).

But the very best way, of course, is to look at this fine school furniture at a private demonstration in your own school.

So, unless you’ve seen a demonstration lately, we hope you’ll arrange one soon.

In an hour or so of your time, we can show you just how modern and colorful our new furniture is . . . how our scientific designs develop good posture . . . how you can cut down student fidgeting and fatigue, encourage better student performance, and create a better atmosphere for teaching.

You won’t be obligated to buy. But the chances are that you will buy . . . either now or in the future.

School authorities recognize that American Seating furniture has more postural advantages and more structural features than any other school furniture on the market—and that it lasts much longer. Consequently, it is the most economical furniture they can buy.

For this reason, they buy more American Seating furniture than any other make. Theirs is a decision that is easy to live with.

So why not arrange a demonstration NOW? A call, a card, a coupon will bring our representative to your office for a private showing at a time convenient to you. American Seating Company, Grand Rapids 2, Mich.

Let this picture remind you of the freedom American Seating furniture provides for students. Freedom of ingress and egress, freedom from foot and knee obstructions, freedom to change positions, freedom from table "rock" (thanks to self-leveling silicone-floating glides). Only American Seating offers you all these benefits. Shown here is our Classmate line.
Have you seen a demonstration of American Seating school furniture lately?

There must be a reason why the Metropolitan Opera House, Radio City Music Hall, the U.S. House of Representatives, the U.S. Senate, first-run legitimate theatres on Broadway, and thousands of schools and theatres throughout America use American Seating Bodiform chairs. And there is. It is the exceptional comfort, along with extremely long life and attractive appearance, that is built into each model. Let us demonstrate them to you soon.

AMERICAN SEATING COMPANY
General Offices and Factory
Ninth and Broadway Grand Rapids 2, Michigan

EMPIRE STATE BRANCH OFFICES
923 W. Genesee Street
SYRACUSE 4, NEW YORK

1776 Broadway
NEW YORK 19, N. Y.
Supporting the recent Reader’s Digest article on the need for economy in current school building costs, the residents of the City of Middletown, New York, are justifiably elated with the fact that construction will begin immediately on their new 1,200 student junior high school at a cost one quarter million dollars less than expected. (Bids were received November 12, 1957.)

The Board of Education has directed the office of Robert A. Green, Architect of Tarrytown and Pleasantville, New York, to prepare contracts for formal signing with the following prime contract low bidders:

General Construction:
- Dean Construction Co. Inc. $1,383,636.00
- Heating and Ventilating: E. J. Wohrle, Inc. $133,153.00
- Plumbing: Meola-Annis Plumb. & Heat. Co. Inc. $102,525.00
- Electrical: Asa J. Strong $134,865.00

Total Contract Price for Construction $1,754,179.00

*Total cost of construction includes the following costs for site work and fixed equipment not generally included in tabulating the cost of school building construction:

- Site Development $83,090.00
- Roads, Parking, and Bicycle Shed $26,945.00
- Grounds Lighting $2,874.00
- Fixed Equipment (Kitchen Equipment, Stage Furnishings and Seating, Lockers, Bleachers, Science, Art and Library, Window Draperies) $83,698.00
- Elevator $13,795.00

Total Costs for Site Development and Fixed Equipment Included in Prime Contracts as Stated Above $190,592.00

Detailed Unit Costs for Project are as follows:

<table>
<thead>
<tr>
<th>Control:</th>
<th>Per Pupil</th>
<th>Per Sq. Ft.</th>
<th>Pupils</th>
<th>Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Less Fixed Equipment and Site Work)</td>
<td>$1,563,787.00</td>
<td>$1,303.00</td>
<td>$15.21</td>
<td></td>
</tr>
</tbody>
</table>

Construction:

- (Including Fixed Equipment and Site Work) $1,754,179.00 $1,462.00 $15.95

The Architect and his assistant, Mr. Roger Sheppard, were formally commended by the Board of Education for the "evident completeness of plans and specifications which contributed in no small measure to the spirited bidding which resulted in a most favorable building cost."

Questioned as to the reason for the favorable construction costs received for the Middletown School project, the Architect states that the combined School Board and Citizen’s Committee insisted upon an economical practical solution of their educational needs without sacrificing quality of materials or space and equipment requirements.

The superior quality of the specifications is established by the following examples of materials included in the above stated construction costs:

- Reinforced concrete and non-combustible framing, aluminum windows and exterior doors, face brick exterior walls, integrally colored sound absorbing masonry interior walls, 20-year built-up roof, mineral tile acoustical ceiling, solid core doors, lobby and entrance porches heavy flagstone, glazed corridor wainscots, toilet floors and wainscots ceramic tile, solid brass hardware, stainless steel kitchen equipment, vinyl tile floors, hardwood floors at gymnasium and shops.

Educational spaces provided for, exclusive of administrative and circulation requirements, include the following: 37 regular classrooms, 4 science rooms, 3 art rooms, 3 homemaking rooms, 1 metal and crafts—1 industrial arts—1 printing and textile, double gymnasium divided by automatic folding doors, boys’ and girls’ lockers, special exercise room, combined fixed seat sloped floor auditorium with stage and cafeteria with automatic folding doors, teachers’ dining room, music suite, exhibit hall, library and student activity room.

The accompanying architect’s perspective illustrates how the three story academic building is flanked by the gymnasium and auditorium on opposing ends.

The office of Robert A. Green is Architect for the new one and one-half million dollar campus expansion program for the Orange County Community College located in the City of Middletown, New York, and has received commissions for twenty-three schools in Westchester County in the past eight years.
HOW TO ANSWER CRITICS OF SCHOOL COSTS

By ROBERT T. CLARK, A.I.A.
Chairman, Public Relations Committee
Central New York Chapter, A.I.A.

Critics of school construction costs resort to isolated projects and distorted conclusions to undermine the school building programs sorely needed throughout America today.

Consequently, grave harm is done to the educational opportunities of our children, to school administrators, to boards of education, to reasonable taxpayers who seek the truth, and to our architectural profession.

Illustrations of recent attacks directed at educators and architects are the following:

"Must Schools Be Palaces?" by Dorothy Thompson in the August 1957 issue of "Ladies Home Journal."

"Do School Pupils Need Costly Palaces?" by Holman Harvey in the September 1957 issue of "Reader's Digest."

Questions asked by Dave Garroway on his morning T.V. program, September 2, 1957.

Realizing that counter-measures must start in individual school districts where voters have an opportunity to register a direct "yes" or "no" on school modernization and expansion proposals, the Central New York Chapter of the American Institute of Architects has prepared a list of recent sources to which members of the chapter and others may turn for examples of the economy and good judgment that go into current school design and construction.

The Central New York Chapter has compiled a list consisting of articles in national professional magazines and made available to the members, a "letter to the editor" written by the Chapter's Committee on School Buildings, headed by F. Curtis King of Syracuse, and the Chapter's Public Relations Committee, headed by the author.

The Chapter is pleased to place its findings at the disposal of architects everywhere, but it cautions that the material should be used only where and when local conditions demand a debate on building costs.

Source Material

Refer to the following material when your editor questions a building appropriation, when a taxpayer asks "why" at a school meeting, or when a leaflet is circulated by opponents prior to a school bond vote: "A.I.A. Memo" dated December 16, 1957. The third and fourth pages of this issue of the Memo lists many sources of factual information on school costs.

"Stretching the School Building Dollar," September 1957, The American Association of School Administrators, Washington 6, D. C. With text and graph it shows that communities are receiving "more mileage out of the school building dollar than people are getting out of the dollars they spend for nearly any other product." The article also declares: " . . . a good look at the facts reveals that they (schools) have been planned with a careful eye to economy as well as to usefulness and pleasing appearance."

A speech by W. Tjark Reiss, senior architect, Division of School Buildings and Grounds, State Education Department, at the annual convention of the New York State Association of District Superintendents of Schools, Cooperstown, New York, September 13, 1957. His theme: Modern New York State public schools reflect economy in space, design, materials and maintenance. "The debt service for a new building represents only a small part of the increase in the total tax rate. Most of the increased tax rate goes for current expenses. This matter cannot be too strongly stressed in the presentation of a bond issue to the people."

"Must Schools Be Shacks?" by Peter Prouse, assistant to the executive director, NSBA, in the October 1957 issue of "The American School Board Journal." He writes a direct rebuttal to the stories by Miss Thompson and Mr. Harvey.

"School Cost Rise Halts" in the October 17, 1957 issue of the "Engineering News-Record." The article points out that "Costs of new elementary K-6 schools in New York State appear to halt their 18 month rise which began in the third quarter of '55" It adds: "Costs of secondary schools show a similar trend. It is apparent that New York taxpayers are getting their money's worth when buying new schools in 1957. This is because the median cost of new schools has not risen as rapidly as basic costs of construction materials and labor"

"Planned Propaganda," a feature written by Arthur H. Rice for the October 1957 issue of "The Nation's Schools." He effectively refutes the misleading impressions left by Mr. Thompson, Mr. Harvey and Mr. Garroway.

"The School Building Situation" by Walter D. Cocking, editor of "The School Executive," in the November 1957 issue of "The School Executive." He poses the question: "Shall we build the schools we need or shall we sacrifice the educational opportunity of today's children?" He urges construction of the schools, and outlines way of providing them.

A leaflet, "Economies in Schoolhouse Construction," published by the Empire State Chamber of Commerce. It summarizes ways to save money and at the same time build better schools.

Suggestions from Mr. Purves

Mr. Edmund R. Purves, F.A.I.A., executive director of the A.I.A. in Washington, D. C., wrote to the author in September 1957, offering these suggestions: "In addition to taking steps to counteract the susceptibility of editors to articles expressing ill-founded bias against the design and building of schools befitting the needs and standards of education in the United States, we are planning to turn public interest in such articles to our advantage. This can be done in your area, as well as elsewhere across the nation, by architects explaining to educators, PTAs and taxpayer groups, as well as to newspaper editors, the basics of (Continued on Page 44.)
THE OCTAGON FAD

INSTALMENT II

By Carl F. Schmidt

Very few octagonal houses were built that followed generally all the recommendations of Fowler. The idea of the entrance into the basement is rarely found. Located the kitchen in the basement and the dining room on the first floor was tried in probably ten percent of the octagons. It was not a new idea since it was popular in the south from Savannah to New Orleans. It took time to send a large meal to the floor above with an inadequate dumb-waiter. Some of the houses were encircled with a one-story porch, very few had a two-story porch. Most of them had a porch across three of the eight sides, and a rear porch across one side and some had no porches. Less than fifty percent of the octagons had central stairhalls. Many of the houses were small, with sides less than sixteen feet long, in which it was not practical to have a central stairhall.

The octagonal house plan illustrated in "A Home for All" published 1854, as the residence of John J. Brown, Williamsburgh, New York, was very popular. This plan provided two nearly square rooms through the center of the house and the remaining space on each side was used for the stairhall on one side and a small bedroom, closet and pantry on the other.

Although never suggested by Fowler, many of the octagons had a rectangular projecting wing in which were located the kitchen, pantry and store rooms.

The "gravel" or "grout" wall, over which Fowler waxes enthusiastically in the book published in 1853, is made by mixing sand, gravel, small stones, as well as some large stones with lime. Oyster shells, slate chips, brick bats, furnace cinders, or anything hard would answer the purpose just as well as stones, said Fowler. He advises that the materials be mixed wet in a mortar-bed, first the lime and then add the sand, coarse gravel, small stones, brick bats and slate chips. When thoroughly mixed, the material was deposited between wood plank forms, the thickness of the wall. The form boards were from twelve to eighteen inches high, secured to vertical standards. After the material was allowed to dry for twenty-four hours, the form boards were raised and again secured to the standards and the next layer of wall poured. The durability of the gravel walls depended on the plaster applied on the exterior of the walls. It consisted of a coat of common plaster similar to the scratch-coat applied to interior walls, and a hard finish coat containing some plaster of Paris, as well as indigo lampblack or other coloring matter. It was then often scored or marked off to imitate stone jointing.

When the finish coat breaks or flakes off from the gravel walls, water and the action of freezing and thawing can easily attack the softer gravel walls and it will rapidly deteriorate. But many houses with this type of walls are still standing and are in good condition.

When Fowler said that—Goodrich was the original discoverer of the gravel or grout wall, he was very much misinformed. The Romans were familiar with pozzolano concrete, made with a natural cement. As early as 1796 James Parker of England obtained a patent for the manufacture of a cement, and a cement was made in the United States as early as 1818, with the discovery of a natural cement rock near Chittenango, New York, by Canvass White, an engineer on the Erie Canal. A cement mill was built in Rosendale, New York, as early as 1828.

A type of wall called "pise" made of rammed earth or adobe has been used in Europe for several hundred years. In England it was called "cob." The walls were made of clayey, somewhat sandy, loam and vegetable earth. Sometimes it was mixed with milk of lime instead of water. The walls were built with wood plank forms, and covered with a lime and sand plaster just as Fowler suggested for his gravel wall. There certainly were immigrants from Europe who could have given Fowler all the information necessary to build this type of wall.

Another type of wall that Fowler recommended in his books was the "board wall," and we find examples of it in localities where lumber was cheap. It was built of boards of various thicknesses, from one to two inches, and they were about four and six inches wide. The boards were laid flat alternately, starting with a six-inch-wide board and then a four-inch-wide board and nailed down solidly, letting alternate boards overlap at the angles. Interior partitions were built up in the same manner and at the same time as the exterior walls, letting a board project every few rounds into the exterior walls and nailed to it. Lathing is omitted on both exterior and interior partitions because the plaster is forced into the one inch deep recesses and clinches into these openings. The same result can be achieved by using boards of equal widths and staggering them, laying one board out about three-quarters of an inch, and the next in the same distance, thereby forming the same recesses for the plaster to clinch.

There are other suggestions in his books very interesting to us today, but they were not original with Fowler because they are also found in builders' handbooks of that time. He advocates that each room should have its ventilator, and that the ventilator should open at both the bottom and top of the room, so as to carry off any bad air which may settle at the bottom or rise to the top. The ventilators should be provided with registers, so that their action may be under control. The vents should be carried to the top of the house just under the eaves where they can be opened between the rafters and thus the bad air cast out of the building. A box or round stick six to eight inches in diameter is pulled upward through the walls as the grout walls are poured, leaving flues or vents in the wall. Similar ducts can be built into the walls to be used as speaking tubes.
Another real necessity for a good house Fowler suggests is the installation of an indoor water-closet. "And under the stairs is just the place for one, its contents passing down one of those chimneys, into a receiving box in the basement, made tight and easily cleaned, and the closet itself ventilated into an adjoining chimney." — "To squeamish maidens and fastidious beaux this point is not submitted, but matrons, the aged and the feeble, are asked is not such a closet a real household necessity and luxury? Yet it need be used only in cases of special need, the one generally used being outside, as usual."

There were other men besides Fowler who were advocates of the octagonal plan, and some architects who published books on residential and cottage building, including plans of this type. Samuel Sloan, the famous architect from Philadelphia, published a book in 1852. It contained the plans of a large house very similar to the one he designed for Dr. Haller Nutt, in Natchez, Mississippi.

"The American Cottage Builder" was published by John Bullock in 1854. He not only repeats Fowler's reasons for the superiority of the octagonal plan, but says that an octagonal house looks well from all sides and offers much less resistance to the wind. Along the coast from North Carolina to Maine one often hears that the octagonal form was chosen because it had much less resistance to the wind.

In the book of plans, "The Economic Cottage Builder," published by Charles Dwyer in 1856, there is an octagonal one story cottage with an encircling porch.

Stories that have been handed down say that some people built octagonal houses to eliminate the howling of the winds around a right angle corner, others just wanted something new or to be different. On several occasions we did hear that the builder used the octagonal form so that the devil could not corner him.

There was also some opposition to the building of the octagonal house. Builders knew that it took more time to frame an octagonal house and in spite of Fowler's arguments about the increased floor area in proportion to length of exterior walls, it was difficult to properly arrange the rooms around the angles. The editor of "Moore's Rural New Yorker" in 1860 writes as follows: "With the octagon and six-sided houses we were never much pleased, and never recommended such to our readers. They require more labor in their construction than square buildings of the same dimensions; and it is difficult to arrange the rooms in a desirable form without loss of space"

Most of the octagonal houses were very simple, none had an elaborate entrance which we associate with the Post-Colonial or Greek Revival styles. Generally, in the cornice the crown moulding and facia projects from about fourteen to thirty inches beyond the wide plain frieze. Rarely do we find an architrave member below the frieze. Often simple sawed wood brackets support the overhanging cornice, and only occasionally do we find elaborately carved wooden brackets. Of course, there are a few exceptions as "Longwood" in Natchez, Mississippi, the Armour-Carmer House at Irvington, New York, and the Richards House in Watertown, Wisconsin, which were large well designed, elaborate mansions. Usually, the interiors were very simple without wood carvings, ornamental plaster ceilings, or moulded cornices. The spacious rooms had high ceilings, were well lighted, with heavy and often crude mouldings around the doors and windows.

The people who built the eight-siders were individuals and did not care if their house was the only one of that type in the community. They would not cling to the traditional ideas or customs, but were bold experimenters. Let us read some of the truths of beauty that Fowler, the "high priest of phrenology," expounded in his books. "And here let me develop the law which governs this whole subject of taste and beauty. Nature furnishes our only patterns of true ornament. All she makes is beautiful, but mark, she never puts on anything exclusively for ornament as such. She appends only what is useful, and even absolutely necessary, yet she appendes it as that all necessary appendages add to beauty."

"The beauty of a house is scarcely less important than its room. True, a homely but convenient house is better than a beautiful but inconvenient one, yet beauty and utility, so far from being incompatible with each other, are as closely united in art as in nature; they are inseparable. It is hardly possible to have a truly handsome house without its being capable of being made as handy inside as it is beautiful outside; nor can a homely-looking house well be made convenient. I repeat, beauty and utility are as closely united in architecture as they are throughout all nature. If, therefore, the square or winged form of house is best, it will look best, and if it is the most beautiful, it can be made the most comfortable."

"Form embodies an important element of beauty. Yet some forms are constitutionally more beautiful than others. Of these the spherical is more beautiful than the angular, and the smooth and undulating than the rough and projecting. — Hence a square house is more beautiful than a triangular one and an octagon or duodecagon than either."

"Since, then, the octagon form is more beautiful as well as capacious, and more consonant with the predominant or governing form of Nature—the spherical—it deserves consideration."

The distinctiveness of the design and the reasons Fowler presented in his books appealed to many people. The decade between 1850 and 1860 was the age of the octagons. Eight-sided houses, school houses, barns, carriage houses, smoke houses, chicken houses, bath houses and even an octagonal blacksmith shop was built. There were also many other architectural appendages built in the octagonal form and are still being built, as judges' stands at race tracks, garden houses and pavilions on fair grounds. In Alabama and Mississippi there are many houses with octagonal towers. Some are the same height as the house, two stories; others are carried a story higher. They are said to have been influenced by the octagonal pilot houses on the Mississippi River steamboats.

(Continued on Page 16.)
Because of the numerous inquiries received at the headquarters office of N.Y.S.A.A. as to the disposition of many architectural bills that were introduced in the 1958 session of the Legislature, the Legislative Committee is pleased to submit the following summary of the more important measures which the Committee considered and received. First we report the result of major bills which were defeated or killed in Committees of the Legislature:

1. The engineering corporation bills by Milmore and Manley. Defeated. We had opposed them.

2. The proposed amendment to the Education Law that would have eliminated the architect's seal and the $10,000 provision, leaving only the 30,000 cubic foot requirement. This is the bill that first passed the Assembly, then reconsidered and debated and, due to the efforts of our executive director, was recommitted to the Rules Committee where it remained to the end of the session. We had opposed this bill.

3. The Goddard Resolution No. 95, which would have set up an architectural section in the Education Department and sidetracked the private architect in the preparation of plans for various types of schools. Defeated in Rules Committee. We had vigorously opposed this bill.

4. All the bills which would have waived qualifying examinations for registration and licensing of architects were defeated. We had opposed all of them.

5. The bills permitting licensing and registration of landscape architects never got out of committee. We had approved of the legislation "in principle."

6. The bill that would have given the State Labor Department jurisdiction in all areas of the state on industrial and mercantile buildings was defeated in committee. Because of the conflict between the Labor Department and the State Building Code Commission, we had supported this measure as a temporary expedient until these differences were resolved.

The Governor took action of the following bills, which had been approved by the Legislature:

<table>
<thead>
<tr>
<th>Senate Int.</th>
<th>Print</th>
<th>Assembly Int.</th>
<th>Print</th>
<th>Subject</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>4909</td>
<td>236</td>
<td>4457</td>
<td>(Penal Law, institution, fire-escapes)</td>
<td>Vetoed by Governor</td>
</tr>
<tr>
<td>1026</td>
<td>1973</td>
<td>1255</td>
<td>4842</td>
<td>(M.D. Law, heights, ownership)</td>
<td>Chapter Law</td>
</tr>
<tr>
<td>1037</td>
<td>3198</td>
<td>1264</td>
<td>4846</td>
<td>(M.D. Law, (sprinklers, exceptions)</td>
<td>Chapter Law</td>
</tr>
<tr>
<td>1038</td>
<td>4256</td>
<td>1264</td>
<td>4846</td>
<td>(M.D. Law, (motor vehicles area)</td>
<td>Vetoed by Governor</td>
</tr>
<tr>
<td>1029</td>
<td>1032</td>
<td>1973</td>
<td>1255</td>
<td>(M.D. Law, (heights, ownership)</td>
<td>Chapter Law</td>
</tr>
</tbody>
</table>

(Continued on Page 47.)
Put Your Curtain-Wall Requirements in EXPERIENCED HANDS...

THESE FOUR CATALOGS show how Bayley can work with you on both steel or aluminum windows and curtain wall systems for buildings of all types. Copies will be gladly sent on request—or see Sweet’s Architectural and Industrial Construction Files.

On every point of window and curtain-wall function, Bayley systems give you maximum effectiveness ... cost-saving, trouble-free erection ... unusual design latitude without the extra cost and delay of fully “customized” fabrication.

And there’s an exclusive Bayley feature of even greater importance: the extra services you can count on when you place your window-wall problems in Bayley’s skilled and capable hands.

You are invited to counsel with Bayley engineers from the first moment windows or curtain walls enter into your planning picture. The earlier you do so, the sooner you get helpful information on what today’s foremost curtain-wall specialists have learned to provide for—and to avoid.

These extra services encompass the follow-through responsibility Bayley assures for every job on which Bayley products are used—right through to building occupancy.

There’s a BAYLEY representative in your immediate area at your service. Call him in today.

BAYLEY
Steel and Aluminum Windows and Curtain Walls

The WILLIAM BAYLEY Co.
Springfield, Ohio

District Sales Offices:
Springfield • Chicago 2 • New York 17 • Washington 16

ORIGINATORS • DESIGNERS • MANUFACTURERS • INSTALLERS
LAND PLANNING CONSIDERATIONS

JAMES E. GLAVIN, JR., Landscape Architect, A.S.L.A.

PART II
THE TOPOGRAPHIC SURVEY

The first basic tool required by the design team prior to commencement of work is a good topographic survey. The designer should be in a position to advise the client as to his exact survey needs, justify the cost of same, and specify the exact requirements to the surveyor by means of a check list.

The above is necessary for the following reasons:

1. Many surveyors in a client's territory are well experienced in boundary work but have had little experience in the type of topographic survey required for a large project such as a central school or industrial concern involving many thousands of dollars in earthwork and drainage.

2. A topographic survey can have a different meaning to each of several surveyors—depending on background experience, training, etc.

3. The topographic survey is the basic research data on which a project is conceived, and a design conceived on incomplete, vague or inaccurate data can prove costly to the client and embarrassing to the designer.

4. The topographic survey is the basis for the bidding and construction documents. Incomplete, vague or inaccurate data can lead to terrifying extras. When one considers that a 6" discrepancy over 5 acres amounts to approximately 4000 cubic yards, the accuracy of the "topo" becomes a must. Many of the central schools in upstate New York develop thirty to fifty acres.

Based on the above, the following is suggested as a check list, that sent to a surveyor, should help to clarify the needs of a project.

CHECK LIST OF INFORMATION NEEDED ON SURVEY MAP

The following information is needed on this survey:

I. Boundary Surveys—shall show the following information:
 a—Bearings and distances of all property lines and adjacent right of way. Precision shall equal 1/5000 or better.
 b—All easements, if any, across property to be shown.
 c—Total acreage of tract.
 d—Corners shall be staked with iron pins and marker stakes shall be provided.

II. Topographic Surveys—shall show the following information:
 a—Horizontal Control—by co-ordinate point method.
 1. 50'0" grid to cover the entire site from an established base line (stakes for grid to be left in the field) plus additional points necessary to locate all breaks in grade. Precision shall equal 1/500.
 b—Drives, walks, curbs, and culverts—indicate type and surface materials.
 c—Stream, ponds, wells, springs—describe if necessary.
 d—Existing trees (over 6") give species and diameter.
 e—Fences, hedgerows and edges of wooded areas.
 f—Public roads, through or adjacent to property—give bearing and distance of tangents and all curve data.
 g—Locate rock outcrops, if any.

3. Utilities:
 a—Locate all underground utilities on or within a reasonable distance of property; show all valves, M. H., connections, etc.
 b—Locate power and telephone poles on or adjacent to site.
 c—Give pressure of water and gas lines.

 b—Vertical Control—describe bench mark source and datum.

1. Location of additional Bench Marks set by surveyor on property to complete survey.

2. Elevations at 50'0" co-ordinate points and other ground points to nearest 0.1 of a foot. Show all spot elevations. Show contours, one foot interval.

3. Elevation of all structures to nearest 0.01 of a foot.

Elevations required:

1. Existing buildings—first floor, basement floor, ground grade at corners, steps and entrances.

2. Roads and drives—along center line sufficient to show profile.

3. Trees at base; high and low side if on slope.

4. Inverts at sewers and culverts.

5. Finished grade of all M.H., valve boxes, grade slabs, steps, etc.

6. Proposed profile by city ordinance, if any, of plotted but undeveloped streets.

III. Surveyor may be required to locate proposed building in the field, giving ground elevation at corners and breaks in grade to facilitate footing design.

IV. Remarks

Questions often arise as to the need for this apparent maze of information. The following may help clarify and justify some of the items.

* A. This writer has learned never to trust ground surveys that show contours only. The spot elevations taken by the surveyor are the only check the designer has. The spot elevations allow the designer to check both the interpolation of the surveyor—and also the liberties taken in the name

* Aerial photogrammetric surveys are an exception.

(Continued on Page 46.)
WESTFIELD ACADEMY & CENTRAL SCHOOL
Westfield, N. Y.

DUANE LYMAN & ASSOCIATES, Architects
The use of brick is the perfect answer to today's demand for naturally durable and beautiful building materials. And they offer an almost unlimited range of colors and textures to fit any decorative scheme.

HUTCHISON-RATHBUN, INC., ROCHESTER, N. Y.
THE BELDEN-STARK BRICK CORPN., NEW YORK CITY
BINGHAMTON BRICK CO., INC., BINGHAMTON, N. Y.
BUFFALO BRICK CORP., WEST FALLS, N. Y.
PARAGON SUPPLY, INC., SYRACUSE, N. Y.
ACME SHALE BRICK CO., INC., BUFFALO, N. Y.
SYRACUSE BRICK CO., SYRACUSE, N. Y.
CONSOLIDATED BRICK CO., INC., HORSEHEADS, N. Y.
JOHN H. BLACK CO., BUFFALO, N. Y.
WECKESSER BRICK CO., ROCHESTER, N. Y.
MOHAWK BUILDING MATERIALS CORP., RENSSELAER, N. Y.
MARIETTA Precast Concrete Panels achieve beauty... permanence... economy... in buildings of every type

Modern, clean line design... attractive textured finishes... complete harmony with other building materials. That's how MARIETTA Precast Concrete Panels help achieve architectural beauty in buildings of every type.

These panels come in a variety of standard shapes and sizes, either solid or with an insulation core making them superior in "U" value to a 12" masonry wall. Cast-in metal inserts make erection a simple bolting job any month of the year. Tongue and groove joints go smoothly together forming a maintenance-free wall. And the thin 5" thickness of Marietta Concrete Panels adds valuable extra floor space to interiors.

Write for complete information now on how you can use Marietta Concrete Wall Panel construction to achieve functional beauty at low cost.

THE

MARIETTA

CONCRETE CORP.
MARIEETTA, OHIO

BRANCH OFFICES: 501 Fifth Ave., New York 17, N. Y.
Pulaski Hwy. at Race Rd., Baltimore 21, Md.
411 Foster St., Nashville, Tenn.
Box 592, Jamestown, N. Y.
SUBSURFACE CONSIDERATIONS

by

LOUIS J. GOODMAN

Part II

METHODS OF UNDERGROUND EXPLORATION

Introduction

This is the second of a series of articles dealing with the field and laboratory investigations which are essential to an intelligent and satisfactory foundation selection and design. The field and laboratory investigations required to obtain the necessary information are called the subsurface investigation program. These articles are being presented concurrently with a series of articles by James E. Glavin, ASLA, on land planning. Topics that will be covered in this series of articles include methods of underground exploration (including depth and spacing of test borings), soil identification and soil classification, purpose of laboratory tests, foundation types for difficult sites, soil modification techniques (including vibrofotation) and earthwork control.

The first article was of a very general introductory nature and appeared in the March-April issue of the Empire State Architect. This article will concern itself with methods of underground exploration, spacing and depth of borings and boring reports.

Methods of Preliminary Underground Exploration

The primary aim of preliminary explorations is to obtain an approximate picture of the underground conditions at a nominal cost. A reconnaissance consisting of a geologic study and a site inspection should be made first to estimate the soil conditions so that a satisfactory and economical method of preliminary exploration is selected.

The most common and in many cases the best method of preliminary exploration is the dry-sample type of test boring. This is a combined operation consisting of drilling to open a hole in the ground and driving a sampling spoon at the bottom of the hole to obtain a sample that is suitable for visual examination and for water content and classification tests. The hole is generally advanced by washing inside a driven casing or by using an auger. This operation is applicable in both cohesionless and cohesive soils and is the most reliable of the inexpensive methods. Additional valuable information is provided by measuring penetration resistance of the sampling spoon. The number of blows required of a specified weight of hammer falling a specified distance to drive the sampler 1 foot is an indication of the density of cohesionless soils and of the consistency of cohesive soils. The penetration test which is generally accepted as standard in the United States consists of a 140 pound hammer falling 30 inches to drive a 1.4 or a 1.5 inch I.D. sampling spoon. This record is so important that it should be specified as a part of the work. Also, in view of the fact that considerable data relating soil density, consistency and strength to the standard penetration test have been collected, the use of other procedures is not desirable. Resistance data from this method of sampling can be used by a qualified person to estimate bearing capacities.

The soil auger is the simplest equipment for making a shallow hole in the ground. Several different styles of augers are available, varying from devices resembling a carpenter's tool to the post hole auger which consists of two curved blades which retain the soil as it is cut. Rotation of the auger loosens the soil and samples are recovered from material brought up on augers when removed to the surface. The post hole auger is a very effective type of auger and is available in sizes from 2 to 12 inches in diameter. Hand-operated augers can be used to reach depths as great as 20 feet whereas motor-driven augers are available which are capable of drilling holes in some soils as deep as 30 to 40 feet in a matter of minutes. Auger borings are used principally in dam site exploration and in highway and airfield work. They can be used in many cohesive and cohesionless soils above the ground water table.

Test pits afford an excellent means of shallow exploration where conditions are favorable for excavation since the soils can be inspected in place in their natural condition. Arrangement, uniformity and inclination or dip of the strata is readily disclosed by an inspection of the sides of the pit.

Sounding rods or probing rods have been developed for determining the consistency of cohesive deposits or the relative density of cohesionless deposits. This method of investigating subsoil conditions is based on measuring the resistance of the soil against penetration of a device known as a penetrometer and may be accomplished by dynamic or static tests. As a general rule, dynamic penetration tests are preferable in cohesive deposits and static tests in cohesive materials. Until recently, no soil samples could be taken by this method.

The Apfel-Goodman penetrometer was recently developed to sound between boring locations and to probe excavations for footing foundation purposes. The penetration test is dynamic in nature, consisting of a 35 pound weight falling 30 inches to drive a rod and recording the blows per foot for several feet or more penetration. It can be noted that the driving energy is \(\frac{1}{4} \) that from the standard penetration test. Experience to date has been such as to demonstrate that a 35 pound weight can be easily handled by one man. The driving rod can be either standard A- or E-rod with a solid drive end or A-rod with a standard sampling spoon. The apparatus has been used with considerable success for probing excavations prior to the pouring of footing foundations, to determine whether or not there are any loose or soft locations. Another application that appears to have merit is that of obtaining resistance data along with samples which can be used to afford indications of the allowable bearing capacities of soils at shallow depths.

Geophysical exploration based on seismographic or electrical resistivity methods have been employed

1 Associate Professor of Civil Engineering, Syracuse University Consulting Soils Engineer
3 "Geophysical Exploration" by C. A. Heiland, Prentice-Hall, 1940

(Continued on Page 41.)

EMPIRE STATE ARCHITECT 39
SPECIFY PROPER FLOOR TREATMENTS

• FOR BEAUTY • FOR SAFETY • FOR CLIENT SATISFACTION

Over 90% of flooring complaints are caused, not by the floor itself, but by improper original treatment or improper maintenance after installation. You can eliminate these complaints! Just call in your Hillyard "Maintaineer."

The Hillyard Maintaineer in your area is a floor expert. He can advise you on this very specialized field. And he will follow up on the job to see that your instructions are carried out. He'll set up a daily maintenance program, too, to preserve the beauty and utility of the floor, assuring greatest client satisfaction.

For Architects . . .
FREE FLOOR SURVEY compiled for your particular floor problems.
Ask Your Maintaineer

The Hillyard Maintaineer will act as your JOB CAPTAIN

See list at right for the name and address of the Maintaineer nearest you. For expert floor care help, give him a call. He will follow through with "Job Captain" service. He will be

IN ST. JOSEPH, MISSOURI
Passaic, N. J.
San Jose Calif.

Call on your Hillyard Maintaineer

IN ALBANY—
Allan R. Ely
49 Tull Drive
Phone: Colonie UN 9-7831

IN SARANAC LAKE—
Thomas J. Kelly
11 Baker Street
Phone: 1709

IN SYRACUSE—
Jerry Grindrod
5532 S. Salina St.
Phone HOWard 9-3333

IN IRVINGTON
A. J. Oest and James Oest
10 South Broadway
Phone: IR 9-7555

IN HUNTINGTON—
Charles J. Rose, Jr.
42 Colonial Dr.
Phone: MYrtle 2-6240

IN KENMORE—
C. E. Creekmore
39 Midland Ave.
Phone: Amherst 7100

BRANCHES IN PRINCIPAL CITIES
SUBSURFACE CONSIDERATIONS (Continued) in various fields of engineering for more than 25 years. These methods have been used considerably in recent years for preliminary investigations of dam sites and for highway work. When properly correlated with the results of a few check borings, both retraction seismic and earth-resistivity methods have been found to be useful, rapid and economical in obtaining preliminary information on the depth and nature of subsurface formations. The seismic method is based on the principle that sound travels more rapidly through dense materials than through loose materials. Velocities as high as 18,000 to 20,000 feet per second have been recorded in dense, solid rock while velocities as low as 600 feet per second have been found in loose sand. The electrical method consists of the measurement of changes in the electrical resistance of the soil. Dense rock has a very high electrical resistivity and soil, saturated clay has a low resistance.

When a soil boring is stopped abruptly by some obstruction and the hole is not very deep, offsets should be made to determine whether a boulder or bed rock is present. If obstructions are still encountered, rock drilling should be done. A commonly accepted basis for making core borings is when a material is encountered which takes more than 60 blows of a 140 pound hammer falling 30 inches to drive a 1.4 or 1.5 inch I.D. sampling spoon 1 foot. Resistance data of this magnitude is generally termed refusal and ordinary earth drilling tools are unsuited for further exploration. Specifications usually call for minimum coring of 5 or 10 feet. If there is evidence of deep weathering or solution channels, deeper coring until sound rock is encountered may be necessary, especially if the structure is to be founded on rock. The soundness of the rock is determined by the core recovery, which is a ratio of the length of core obtained to the distance cored. In sound rock, a recovery of over 80 per cent is expected. Diamond drilling is the most advisable of the different ways of taking core borings.

The results of the preliminary underground exploration may indicate the need for additional detailed data before a safe or economical design can be made. The detailed investigation has as its objective accurate data on the engineering properties of the critical soil strata. This can be accomplished by undisturbed sampling along with the necessary laboratory tests and/or field tests on the soils in place. However, it is emphasized that the experience of the writer in over 100 underground exploration projects has been such that the results of the preliminary exploration, if interpreted properly, give all the information needed for foundation choice and design purposes in the majority of cases.

A summary of basic data relative to the various sampling methods as prepared in tabular form by H. A. Mohr is given in Table 1.

Spacing and Depth of Borings
No definite rules can be established for the spacing and depth of test borings since they depend not only on the type of structure, but also on the uniformity of the soil deposit. Ideally, a preliminary estimate of the spacing and depth of borings should be made based on a reconnaissance which will determine the probable nature of the deposit. As outlined in the March-April article, the reconnaissance consists of a geologic study and a site inspection. Then the actual program of soil exploration should be developed as subsoil information is compiled. For example, if loose or soft material is encountered within the depth of significant stress due to the loaded area, the boring should be con-

continued until 15 consecutive feet of 15 to 20 blow material has been drilled below the weak deposit. Borings which are stopped before this information is obtained are of little value. The thickness of the weak layer is necessary if a settlement study is to be made and adequate information on the underlying stronger material is necessary if it is desired to consider the use of piles. Also, on sites where subsoil conditions are erratic, strategically located test borings with intermediate subsurface soundings would probably suffice for most projects, resulting in economies in both time and expense.

The following spacings and depths are recommended as a guide in planning a preliminary soil exploration program:

<table>
<thead>
<tr>
<th>Type of Structure or Project</th>
<th>Spacing of Borings</th>
<th>Depth of Borings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. One-story buildings*</td>
<td>75-100 ft.</td>
<td>20 to 30 feet minimum below foundation level with at least one deep boring to search for hidden weak deposits. For a heavily loaded structure, the deep boring should go to a depth approximately twice the width of the structure or rock which ever comes first.</td>
</tr>
<tr>
<td>2. Multi-story buildings*</td>
<td>40-50 ft.</td>
<td>3-5 feet minimum below subgrade.</td>
</tr>
<tr>
<td>3. Highways (subgrade)</td>
<td>500 ft.</td>
<td>40 to 50 feet minimum or 10 feet into sound rock, whichever comes first.</td>
</tr>
<tr>
<td>4. Earth dams</td>
<td>100 ft.</td>
<td>10 to 20 feet.</td>
</tr>
<tr>
<td>5. Borrow pits</td>
<td>100 ft.</td>
<td>10 to 20 feet.</td>
</tr>
</tbody>
</table>

*For buildings of ordinary size, the first boring should be drilled to a depth within which the stress caused by the structure might cause excessive settlement.

Boring Report
The records of subsurface investigations and sampling operations should be clear and accurate. The boring report should contain the following information if it is to be of value:
1. Starting grade of each boring with reference to an established base.
2. True cross section of ground showing depth of all strata boundaries below the starting grade.
3. Elevation and depth of ground-water level and any unusual water conditions. Elevation of ground-water level when first encountered and at 24 hours after completion of the boring should be reported.
4. Number of blows per foot of casing penetration together with the weight and distance of hammer fall and the same data for driving the sampler.
5. Proper identification and classification of each different type of soil encountered.
6. Record of every trial or uncompleted boring.
7. Plot plan showing location of each boring with reference to definite survey lines.
8. Identification as to project, owner, engineer or architect, location and date.

An article on soil identification and soil classification will appear in a later issue.

2. This table is taken from “Exploration of Soil Conditions and Sampling Operations” by H. A. Mohr, Soil Mechanics, Series 21, Third Revised Edition, Publication 376 of the Graduate School of Engineering, Harvard University, November 1943.

Note: Test rods, jet probings, geophysical methods, and so forth are not included in this table, because no samples are obtained.
OUR KIND OF ENGINEER

Of all the engineering specialists who serve the building industry, plumbing engineers probably receive the least public recognition of their contributions.

Several months ago, we published an article on the new Plumbing Standards of the State Building Construction Code. (See our November-December issue, pages 24, 26.) The name of Louis S. Nielsen, the plumbing engineer of the State Building Code Commission, was mentioned as one of the principal authors of those standards.

Who is Louis Nielsen?

Nielsen's Background

Father-son partnerships are not unknown in the profession of architecture; several, in fact, are very well known indeed. Plumbing engineering is not as old a profession as architecture; but family practices in the plumbing field are common. As in other fields, the sons of master plumbers, too, are most likely to go into their fathers' business.

Lou Nielsen's father, Peter Nielsen, was a master plumber and contractor in Brooklyn for many years. His brother is also in the plumbing business.

In the middle 1920's, the National Association of Master Plumbers established a four-year plumbing and heating scholarship in the engineering school of Carnegie Institute of Technology open to sons of master plumbers. Funds for the scholarship were received from master plumbers, materials manufacturers, and contractors in the plumbing industry. It is worth noting, incidentally, that the plumbers' association was one of the first organizations of its type to recognize the advantages of higher technical education to its industry.

Lou Nielsen became the holder of this national engineering scholarship at Carnegie Tech. During the summer months of his undergraduate years, he worked at plumbing jobs selected by the scholarship committee. After his graduation in 1930, Nielsen was awarded a fellowship for plumbing and heating research at the Virginia Polytechnic Institute.

In 1945, Nielsen received his license as a professional engineer. He has done layout and design of plumbing and heating and fire protection systems, and has been an inspector and examiner of plumbing plans for the City of New York. He has given courses in plumbing theory and design, and shop instruction in other plumbing subjects. He has taken an active part in the affairs of plumbers' organizations.

Nielsen was a field representative in the U. S. Government survey of cross connections in federal buildings in New York and Detroit which resulted in improved methods of protecting potable water supply systems in buildings against contamination through cross connections, interconnections and back siphonage. That survey also brought a number of new plumbing code provisions for the protection of public health.

For several years he gave lecture courses at the New York Structural Institute for architects preparing for the State Board and National Board examinations. These lectures on plumbing, sewage disposal, gas piping, standpipe and sprinkler systems were based on a consider-
able extent on Nielsen's own field and laboratory research work.

This was the background of education and experience that Lou Nielsen brought to the State Building Code Commission six years ago. Nielsen had scored highest on civil service examinations for Senior Plumbing Engineer and for Associate Plumbing Engineer. He later scored third highest on a civil service examination for Assistant Technical Director.

(Continued on Page 49.)

DIRGE FOR DAMES WOT MARRY
ARCHITECTS

By Norma Prokopch

Now listen to me, Sister.
'Cause I'm a-preachin' true,
Dese here architects
With horn-rimmed specs
Will be the ruin of you.

Dey done got the brains
Ta whirl ya a-spinnin'
So yer head gets no vacation...
What with lookin' at houses
And choiches and what not,
You're jest one mess of obsfucation.

And odd, Oi, Sister!
When God made this species
Ta inhabit this heah terrain,
He jes' laughed and He howled
Ta think of the women who'd marry
This mighty unusual strain.

But don't let it joll ya...
'Cause way down beneath dey
Is a right and a dandy fine crew,
And as lovers
Ya couldn't do better,
Dey is superior tru and tru.

And wait till ya marry
And sets up yer home!
Pink toilettes and knickknacks, ya say?
Whadaya crazy? No, Sister,
It's mobiles and Eames chairs
And yer house is a brilliant display
Of what yer genius created
One poetic, inspiring day!

God help ya!

As people! Oh, honey!
Here's is a nomenclature dat
Jest don't fit a conventional list,
Wich ya'll soon learn and sadly discern
Is known as In-DIVID-ULU-A-LIST!!

Takes time to adjust
But, believe me, it's woth it,
In twenty years he'll fulfill his intention
He'll jest about fill ya
With Mies, Wright and Miller
Till EVEN YOU
Thumb ya nose at convention.

Beans to Colonial, Gothic and Tudor!
It's all such tiresome cliche
YOUR man'll larn ya
There's nothin' like livin'
The unsurpassed, modern way.

So don't let it getcha,
Don't even conjecture,
Ya're doomed, Baby,
And ain't got no choice,
Ya're stuck with a member
Of gay Architecture
Wait the hell...
It could be worse!

F. P. ARNOLD CORP.
1703 E. Fayette St.
SYRACUSE 10, N. Y.

Consult the Davidson Architectural Porcelain distributor in your area. (listed below). He offers skilled engineering and erection service, plus assistance on any application.

ZONOLITE

- Cuts Days Off Construction Time
- Cuts Material Costs, Reduces Dead Weight

Zonolite’s revolutionary new technique of direct-to-steel plastic fireproofing was used throughout the new Onondaga County Building—cut days off construction time—provided sound-conditioning—afforded highest fire ratings—and saved ceiling height, thus reducing dead weight and material costs.

Perfect For Modern Schools, Hospitals, Office Buildings

Answering today’s problems of lightweight, fire-safe construction—and with more than usual regard for cost—Zonolite makes the most of modern design. Mail the coupon and have complete Zonolite data handy for your next project.

MAIL FOR FREE BOOKLET

ZONOLITE COMPANY
135 S. La Salle St., Chicago 3, Ill., Dept. ESA-58
Send me booklet PA-41 on Zonolite plaster, acoustical and fireproofing systems.

Name ...
Firm ...
Address ...
City .. Zone ... State

SCHOOL COSTS (Continued)

school design in terms of local educational needs and the proper relationship of the architect to everyone involved in any program of school construction.”

Mr. Purves further stated: “Both the A.I.A.’s public relations counsel and staff public relations coordinator are intensifying their work with national media to increase understanding of the role of the architect in the nation’s school construction crisis.”

Letter to the Editor

The Central New York Chapter has developed the following “letter to the editor” for mailing to newspapers or to be used as the basis for personal discussion with an editor.

The text of the letter follows:

December 20, 1957

Dear Editor:

The average bill for educating each child in New York State public schools in the fall of 1957 was around $564, compared with $386 in 1951.

This increase, as reported in statistics released by the New York State Education Department, is explained by two factors:

(a) In 1951-52, the impact of the tremendous increase in our birth rate immediately after the war was only beginning to be felt and most schools were still able to operate in buildings constructed in the 1930’s, or in many cases in buildings 50 to 60 years old. This meant that they were carrying little or no debt service.

(b) But since 1952, post-war babies have been entering school age, making it necessary to rapidly expand our school plants during a period of inflation when all costs of operation are rising rapidly.

Five years ago, carrying charges for buildings, including debt payments and interest on bonds, represented 8.2 cents out of every dollar spent to educate a child. In 1956-57, after the great expansion in educational facilities, the cost for the same service was 16.4 cents. In 1951-52, salaries for teachers and custodial staffs accounted for 57.5 cents of the education dollar. In 1956-57, salaries represented 66 cents on the school dollar.

We all agree that teachers merit their additional income and an increasing school population demands more schools. As a consequence, salaries now take 2/3, and building costs 1/6 of the school tax dollar.

The low percentage of the average school budget that goes toward school construction also is reflected in another manner:

The average cost per square foot for schools built in New York State during the summer months of this year is $18.20. This represents both small and large projects.

References to schools in this state costing less, such as one in Ardsley in the Hudson Valley, should quote the year of construction. The Ardsley school was built for $13.70 per square foot in 1952! Buildings in Onondaga County and its adjacent area were built for this price in the same year.

For years, architects have used multipurpose rooms, special materials, prefabricated parts and other economies to reduce school construction expenses. They design from a program set up by the State in consultation with local authorities. Large cities, such as Syracuse, determine their own facility needs. Architects, being taxpayers and parents as well as professionally trained experts in building, work seriously to maintain school costs at as low a level as is possible consistent with reasonable maintenance costs and permanence of construction.

EMPIRE STATE ARCHITECT
ENTER, THE CONSULTING ENGINEER

By Malcolm B. Moyer

Time was when an Architect invited Contractors to submit bids on a plant to heat his newly designed building "to 70 degrees with zero outside." The Contractor had to guarantee to do this with a system of his own design.

In general, this got satisfactory results unless the competition became so keen that some sharp shooter would stretch his flexible conscience to the end of its elastic limit, bid low, and install a job which could not possibly heat the place.

With the advent of the Webster and Dunham traps on radiators, and the so-called "Proprietary systems," sales engineers then began to design the complete systems as a favor intended to place the Contractor under obligation to buy.

Next, these engineers began to court the favor of active Architects, and prepared drawings which were incorporated in the set which covered the job. But when the Architect found rival sales engineers going to his clients and aiding certain favored contractors to offer a cheaper system of a "different" design, the letting of a heating contract became one of exasperation and frustration. The owner was very much interested in "saving money" and usually viewed with suspicion the fact that the Architect had incorporated something different in his specifications which was higher priced.

To eliminate this possibility, the Consulting Engineer, specializing in heating became established and the relationship between the Architect and "his consultant" broadened and has grown more cordial as time has passed.

At present, the Consulting Engineer is called upon to make estimates, frequently to "sit in with" the client, to advise concerning heating, to evaluate salesmen's claims concerning new products, prepare fully, detailed drawings and ample specifications, which are bound in with the Architect's own paragraphs. Every Contractor bids on the same work. The Engineer usually attends the bid opening and reviews the figures. On an "over run," he redesigns his work to get lower figures, usually without extra remuneration. Gradually, this kind of service has spread to designing plumbing and electrical systems, and frequently, outside sanitary work. Structural engineers are quite as frequently employed by Architects as Consultants.

What the ultimate will be must depend largely upon results. Consulting Engineers have sprung up in increasing numbers. Their ultimate success will largely depend upon how indispensable they can become. Not everyone who "hangs out his shingle" is destined to succeed.

Cheerful cooperation, the slapping on of the "Extra ounce" of service when it is needed are the necessary ingredients to a lasting friendly relationship with a select group of architects. The greatest benefit which a well trained engineer can be to his Architectural associate is in the final operation of his work. Broad experience and unfailing determination to "make the job work" when initial troubles arise makes the difference in Engineers.

Truly, the Consulting Engineer has entered. How long he stays "in" depends upon his service to the Architect.
of interpolation. One instance comes to mind in which a surveyor interpolated between two spot elevations three hundred feet apart. The explanation offered was that “the piece of ground is really level.” A resurvey clarified the situation to the extent that the normal surface drainage pattern was determined.

Flat ground, if anything, justifies more “shots” than less, for obvious drainage reasons, and shots should be extended outside the property lines somewhat.

Many surveys have come across this desk showing contours, but little else. Horizontal items 2 and 3 add up to a substantial list that may influence a design—or the cost, depending on the disposition of such items.

The most frustrating topo, I think, was the one needed for an addition to an existing building. The job was an excellent one—except that the first floor elevation of the building to be enlarged was missing.

The topography of the ground is a fascinating thing, and on a map it stimulates the imagination. The designer need not start with a blank sheet of paper and a set of room requirements. He can “work from the outside in” so to speak. He can determine from the topo map “that this area lends itself to the play fields, this to the parking, this to the entrance drive, therefore the gym should relate to the play fields, therefore the classroom wing can relate here, etc., etc.” and the design process is on.

A wise man once said that “the design is only as good as the research that goes into the problem.” To the planning team, one of the problems is the site to be developed. The research is carried on by the surveyor and related to the designers in the form of the topographic map. This map will be only as good as you demand that it be.

OCTAGON FAD

Here and there octagon houses have been built since the passing of the octagon era. An octagon house was built in Arcade, New York, in 1920 and Mr. Haines built his octagon house near Hilton, New York, in the early 1920’s.

At the Century of Progress Exposition in Chicago in 1933, George Fred Keck, a Chicago architect designed “The House of Tomorrow.” It was a twelve-sided three-story structure with a central core containing the stairs, utilities and ducts. All the rooms radiated from the central portion. The exterior walls were glass. The third floor was smaller than the second permitting an encircling deck or porch, a development of the cupola. Keck spent his boyhood in Watertown, Wisconsin, and was familiar with the famous octagon house there built by John Richards.

1958 CONVENTION
ROCHESTER, N. Y.
OCTOBER 16-18

DoxPlank FLOOR and ROOF SYSTEM

10 KEYS TO IMPORTANT SAVINGS in SCHOOL CONSTRUCTION

1 Saves Time and Labor 4 Simplifies Service Installation 8 Saves Space
2 Eliminates Delay 5 Cuts Cold Weather Delay 9 Cuts Finishing Costs
3 Saves Material 6 Saves Estimating Time 10 Cuts Cost of Field Work
7 Adaptable

For COMPLETE DETAILS Call MIDSTATE CONCRETE PLANK CO.

HAMILTON, N. Y. 420 or 799
We wish to conclude the report with this suggestion:

To those organizations which felt strongly about bills that either died in Committee or were vetoed, please communicate with the Legislative Committee well in advance of the 1959 session so that we may ascertain why the legislation failed. After discussion and consideration we will attempt to have the bills reintroduced next year. SEND US YOUR RECOMMENDATIONS ON LEGISLATION AS SOON AS YOU CAN.

Again, we wish to thank all the members of the Legislative Committee and our constituent organizations for their fine support and cooperation which has made possible a most successful legislative year.

Respectfully submitted,
Matthew W. Del Gaudio, Co-chairman
Richard Roth, Co-chairman

What's more natural than to use fire safe glued laminated wood in modern schools? Functional to fit any building needs from classrooms to gymnasiums and auditoriums, glued laminated members are economical, easy to erect, result in important savings to budget-minded schoolboard officials.

UNIT STRUCTURES, INC.
45 West 45th Street—New York 36, New York—Judson 2-1920
P. O. Box 54—Glen Rock, New Jersey—Gilbert 5-6856

FOR FACTUAL DATA AND PLANNING ASSISTANCE CONTACT:
MR. JEROME WALKER
Valentine Hall Road—Victor, New York—Victor 2081

For quality you can depend on!
Yes ... you can depend on Unit for prompt service, the finest materials, and expert craftsmanship. Unit laminated members are fabricated of Southern Pine, the strongest and most beautiful of all laminating softwoods. Since its inception, Unit Structures has practiced the highest quality standards in the laminating industry. You'll prove it to yourself when you specify UNIT.

For factual data and planning assistance contact:
MR. JEROME WALKER
Valentine Hall Road—Victor, New York—Victor 2081

EMPIRE STATE ARCHITECT
The Earl Warren Senior High School is the pride of the Downey Union High School District of Downey, California. It should be — it's one of the most modern schools in the world! The architect's drawings above show the vast area covered, the orderly layout of the buildings, the fresh architectural approach and the generous recreational facilities.

Two No. 60 20-section H. B. Smith boilers supply adequate heat and domestic hot water for the 14 buildings now standing. Boiler room space has been provided for two more boilers which will be added when nine or ten new buildings are erected. The two boilers now in service are fired by natural gas. The heating medium is steam, circulated through underground conduit to the various buildings. Automatic vacuum return pumps are placed at critical locations throughout the plant.

Consulting Engineers Storms & Lowe, Los Angeles, did not hesitate to specify H. B. Smith cast iron boilers for this huge task. For many years H. B. Smith boilers have set performance records in schools, churches, hospitals, stores and other commercial and industrial buildings.

H.B. Smith
CAST IRON BOILERS

H. B. SMITH COMPANY, INC., WESTFIELD, MASSACHUSETTS • Established 1853
OUR KIND OF ENGINEER
(Continued)

Plumbing Standards of the State Code

Since then, the Commission has issued a State Building Construction Code in three portions, applicable respectively to one- and two-family dwellings, multiple dwellings, and general building construction. The Commission also prepared a Code Manual, which describes and illustrates acceptable ways of satisfying the performance requirements of the Code. As the plumbing engineer of the Commission’s technical staff, Nielsen has, of course, participated in the preparation of both the Code and the Manual.

Before new plumbing standards could be written, an intimate knowledge of other such standards was essential. Analyses and reevaluations of those standards were needed. More logical arrangements of content were required. Working drafts were then developed and circulated among outside experts for their opinions and suggestions. In these activities, Nielsen’s wide experience and knowledge of the plumbing field were indispensable.

The Commission’s technical staff includes architects as well as engineering specialists in every phase of building construction; and although Nielsen has been principally concerned with the plumbing provisions of the state code, his collaboration with architects and engineers specializing in many varied fields has given him an uncommon appreciation of the problems of integrating plumbing with the requirements of space, structure, fire safety, and other equipment in buildings.

Such problems, of course, are primarily the responsibility of architects. But the architect’s task is simplified considerably if the engineers with whom he works have a better understanding of the problems of coordinating the work of all the specialists who contribute to the design and construction of buildings.

A comparison of the new plumbing standards with most plumbing codes now in use reveals this clearly. In using many of these plumbing codes, one is often struck by an apparent isolation in them of the plumbing services. It is almost as if the plumbing equipment and systems were to be designed to operate outside or independently of buildings or other equipment.

In contrast, the provisions of the plumbing standards of the state code are everywhere related to buildings and the uses to which buildings are put. There is a separate chapter, for example, on “Minimum Plumbing Facilities” for buildings of every type. There is evidence on every page of an awareness that it is the requirements of buildings and their users which determine the requirements for plumbing. Such an appreciation that the whole is greater than any of its parts is, unfortunately, not universal among engineering specialists in the building industry.

In a field which is vitally important to architects, Lou Nielsen is our kind of engineer.
NEW PRODUCT

Wood has been added to aluminum to create a new concept in aluminum railing design. Blumcraft of Pittsburgh has combined the warmth and elegance of natural-finished wood with the structure of aluminum to develop their new post style No. 170.

A choice of select birch or American walnut trim is available to the Architect to relate the railing design to the surrounding decor and color. The wood-trimmed post will be furnished to the metal fabricator in rubbed-satin finish. All of the Blumcraft adjustable features are contained in this post, which can be used with any of the stock handrail shapes.

Blumcraft railings have received enthusiastic reception by Architects throughout the western hemisphere for all types of structures. By making their components available to all metal fabricators, Blumcraft has provided the architect with the element of competitive bidding that is required for public projects as well as for private work.

With the advent of the Low-Cost Tube-Line the architect now has available two price lines of Blumcraft railings. A survey which Blumcraft made among fabricators in various parts of the country indicates that Tube-Line is in a price range of aluminum pipe railing. The De Luxe Line, because of its labor saving adjustable features, is less costly than a quality custom-built railing.

1958 CONVENTION
ROCHESTER, N. Y.
OCTOBER 16-18
CONCRETE MASONRY UNITS . . .
Ideal for Schools

Exposed and painted CONCRETE MASONRY UNITS are used throughout the interior of the new 11-story University Tower dormitory at the University of Buffalo in Buffalo, N. Y.

A variety of pleasing colors are used in the Dormitory, achieving a textured surface in color which adds to the decor. The main floor corridors are painted a buff, with a deep red used on the Blocks around the elevator entrance. A buff color was used on the exposed Blocks in the large dining halls, while green, yellow, and buff predominate on each of the other floors.

Not only are a wide variety of patterns available with attractive Concrete Masonry Units, but they are fire-safe and they have a high value in sound insulating efficiency and sound absorption.

Concrete Blocks are economical to use and maintenance costs are low.

Write for suggested patterns today.
PERMALITE Precast Insulating Roof Slabs With Built-In Insulation For Economy in New High School Project

Three inch thick precast PERMALITE Precast-Lightweight Insulating Roof Slabs were used on the Sweet Home Central High School, Amherst, N. Y., over a 12,000 sq. ft. area. The precast PERMALITE slabs are shown in place. The ease with which they are installed is also shown. Stanley Podd, Buffalo, was the architect; the John W. Cowper Co., Inc., Buffalo, the contractor.

PERMALITE, made of perlite aggregate, is an outstanding Precast-Lightweight Insulating Roof Slab that requires no additional application of insulating material.

With a "U" factor of thermal conductivity equal to .21, the 3" thick PERMALITE Precast-Lightweight Insulating Roof Slabs may be installed quickly and efficiently in all types of weather. There are no costly delays that may be attendant with other types of roof materials. They have a weight of 10 lbs. per sq. ft.

Sawing, cutting and nailing may be done on the job with ordinary tools. Expensive hoisting and handling equipment is not necessary at the jobsite, assuring lower erection costs.

PERMALITE requires no painting and gives a high light reflectivity.

PERMALITE precast slabs were used on 12,000 sq. ft. in the project shown here. In the Junior High School addition to Maryvale High School, Cheektowaga, more than 40,000 sq. ft. of PERMALITE Precast-Lightweight Insulating Concrete Roof Slabs were used. Felt & Baschnagle, Buffalo, were the architects; Carpenter & Staer, Buffalo, the contractor.

BUFFALO PERLITE CORP. 100 SUGG RD., BUFFALO 25, N. Y.
STEEL is available

STRUCTURAL STEEL is available now... ready to offer you the exclusive advantages that only STEEL can provide. ECONOMY... SPEED... ADAPTABILITY... SAFETY.
In your designing, always SPECIFY STEEL.

NEW YORK STATE STEEL FABRICATORS ASSN. INC.

ALBANY, N. Y.
Clausen Iron Co., Inc.
James McKinney & Son, Inc.

BINGHAMTON, N. Y.
Binghamton Steel & Fabricating Co., Inc.

BUFFALO, N. Y.
Ernst Construction Corp.
August Feine & Sons Co.
Lackawanna Steel Construction Corp.
R. S. McManus Steel Construction Co., Inc.

CORRY, PA.
Rogers Structural Steel Co., Inc.

ERIE, PA.
Electro-Weld Manufacturing Co.

ROCHESTER, N. Y.
F. L. Heughes & Co., Inc.
Leach Steel Corp.

ROME, N. Y.
Rome Iron Mills, Inc.

SYRACUSE, N. Y.
Empire Structural Steel Fabricators, Inc.
Smith & Caffrey Co.
Syracuse Engineering Co., Inc.

TROY, N. Y.
West Side Structural Co., Inc.

UTICA, N. Y.
Utica Steam Engine & Boiler Works
You have, of course, noted the increasing use of ceramic tile on exteriors. Here is another excellent example of the design and color potential of ceramic tile, and of its unsurpassed practicability for walls in heavy traffic areas.

You will find our Design Department at Olean helpful in creating special treatments in ceramic mosaics. Let them help you with your next project.