Los Angeles Temple...

textured panels and grilles of precast concrete add warmth and serene beauty

Once again—for aesthetic and practical reasons—an important building is designed in concrete. To cover the 126,000 square feet of surface on this magnificent Los Angeles Temple, over 2,500 separate concrete panels and grilles were required. To achieve delicate color as well as textural interest the surface of each piece was etched with acid.

These panels and grilles have exceptional durability. They were made with a high quality clean quartz aggregate and white portland cement with a low water-cement ratio. Each unit is 2 1/4 inches thick and is reinforced with a 4-inch steel mesh.

The detail in the grille work over the windows, so easily achieved with concrete, was taken from patterns based on the beehive and the Sego Lily, Utah’s state flower.

Today, architects everywhere are using concrete in its newest forms for greater freedom of expression in structures of all kinds.

PORTLAND CEMENT ASSOCIATION
250 Park Avenue, New York 17, New York
A national organization to improve and extend the uses of concrete
THE PLANNER considers first what a building must do. His definition of the functions of walls, floors, roof-decks and partitions will frequently lead him to “SIPOREX” cellular concrete slabs and masonry blocks. This structural material combines lightness, strength, insulation, sound- and fire-proofing. Ask for full information.

SIPOREX NORTHEASTERN INC.
P.O. BOX 29, SYRACUSE 1, N.Y.

SIPOREX NORTHEASTERN INC. & SIPOREX LIMITED (MONTREAL) are DIVISIONS OF DOMINION TAR & CHEMICAL COMPANY LIMITED
DOING MORE WITH FLEXICORE

Flexicore Precast Prestressed Slabs

... a natural for Motels

Talk with Mr. J. Robert Baldwin of Erie, Pa., and you won’t use anything but FLEXICORE precast prestressed concrete floor and roof slabs in your next building.

Mr. Baldwin and his brother, Arthur W. Baldwin, the officers of Downtown Properties, Inc. of Erie, are the builders and owners of the new, modern, extremely successful The Downtowner Motel in Erie, which they rent to Chris Scott.

Exposed FLEXICORE is used throughout the motel, which was constructed at a cost of $6500 per room, “A real buy,” in the words of Mr. Baldwin.

“Flexicore gave us the fire-safe construction we wanted at the lowest cost of any material we knew of,” Mr. Baldwin continued. “Flexicore is good looking, and it is easy to install. As a matter of fact, the Flexicore was installed during the worst winter we’ve had in Erie in 30 years.”

“The motel was started in October and it was completed on June 1. If we had used any other material, we probably wouldn’t have completed it until September of this year. And that revenue between June and September is mighty important.”

Exposed concrete block also were used in the structure, and Mr. Baldwin points out that the FLEXICORE floors and roof, plus the lightweight concrete block, provide very good sound-proofing.

Anchor Concrete Products Inc.

Buffalo 6, N.Y.

American-Marietta Co.

New York 17, New York

Extremely attractive is The Downtowner in Erie, Pa., (below) which features exposed FLEXICORE precast prestressed concrete slabs throughout (as shown above).

A beautiful panel effect is achieved in this comfortable room, one of 75 in The Downtowner, through the use of smooth, exposed Flexicore ceiling.

Phone or write us TODAY

7 From the President's Desk
8 Resolutions and Pictures from the Convention
9 From the Executive Desk at 441
11 1960 Officers for NYSAA
12 Smith-Corona Marchant Inc.—Parts Manufacturing Plant
14 Department Stores by Leo V. Berger
16 Enos & Sanderson Company
18 Office Building at 66 Beaver Street, N. Y. C.
20 Joma Manufacturing Building
26 Bearing Capacity of Soils by Louis J. Goodman
27 Store To Hang From Ceiling
28 Fund for Adult Education
30 New Advance in Prison Design
34 Olean City Hall
38 $8,500,000 Loan Assures Construction
39 Editorial Themes for 1960
40 Precast Concrete as the Fourth Dimension
40 Problems with Temporary Heat
41 Names in the News

The State Association does not hold itself responsible for the opinions expressed by contributors to the "Empire State Architect". Your comments are solicited.

Address all communications and editorial material to Thomas O. Morin, 133 East Avenue, Rochester 4, New York; and inquiries regarding advertising to Martin Q. Moll Publications, Inc., 35 Scio Street, Rochester 4, New York.

Second Class Postage Paid at Rochester, New York. Subscription Price: $1.00 per year. Non-Member $2.50; $3.50 per issue. Published 6 times a year.

Printed by: Christopher Press, Inc. Rochester, New York
DUR-O-WAL
Rigid Backbone of Steel For Every Masonry Wall

IT'S THE Steel + Design THAT ASSURES Results

Compare these weights
Standard Dur-O-wal 187 lbs. per 1000 ft.
Standard Ladur Type 139 lbs. per 1000 ft.

New Companion Product for Masonry Walls

Rapid CONTROL Joint
Pat. Pending

Wide flange rubber control joint with concave edged neoprene compound flanges allows easy compression; tight control joints.

Mail today for your free literature on better masonry wall construction
DUR-O-WAL
Cedar Rapids, Iowa

NAME
COMPANY
CITY
ZONE
STATE

Dur-O-wal Div., Cedar Rapids Block Co., CEDAR RAPIDS, IA.
Dur-O-wal Prod., Inc., Box 628, SYRACUSE, N.Y.
Dur-O-wal Div., Frontier Mfg. Co., Box 49, PHOENIX, ARIZ.
Dur-O-wal Prod., Inc., 4300 E. Lombard St., BALTIMORE, MD.
Dur-O-wal of Ill., 119 N. River St., AURORA, ILL.
Dur-O-wal Prod. of Ala., Inc., Box 5446, BIRMINGHAM, ALA.
Dur-O-wal of Colorado, 9th and Court St., PUEBLO, COLORADO.
Dur-O-wal Inc., 165 Utah Street, TOLEDO, OHIO.
NEW YORK STATE ASSOCIATION OF ARCHITECTS, INC.
The State Organization of the American Institute of Architects

BOARD OF DIRECTORS

OFFICERS

President
JOHN W. BRIGGS, 311 Alexander St., Rochester 4, N. Y.

1st Vice President
FREDERICK H. VOSS, Bradley Lane, Dobbs Ferry, N. Y.

2nd Vice President
S. ELMER CHAMBERS, 205 Harrison St., Syracuse, N. Y.

3rd Vice President
SIMON HELLER, 38-11 Union St., Flushing 54, N. Y.

Secretary
ALLEN MACOMBER, 900 Powers Bldg., Rochester 14, N. Y.

Treasurer
MARTYN N. WESTON, 44 Court St., Brooklyn 1, N. Y.

Executive Director
JOSEPH F. ADDONIZIO, 441 Lexington Ave., New York 17, N. Y.

PAST PRESIDENTS

JAMES W. KIDENEY
BUFFALO - W. N. Y. Chapter A.I.A.

CHARLES R. ELLIS
SYRACUSE SOCIETY OF ARCHITECTS

MATTHEW W. DEL GAUDIO
NEW YORK SOCIETY OF ARCHITECTS

C. STORRS BARROWS
ROCHESTER SOCIETY OF ARCHITECTS

HENRY V. MURPHY
BROOKLYN CHAPTER A.I.A.

DONALD Q. FARAGHER
ROCHESTER SOCIETY OF ARCHITECTS

ADOLPH GOLDBERG
NEW YORK SOCIETY OF ARCHITECTS

TREVOR W. ROGERS
BUFFALO - W. N. Y. CHAPTER A.I.A.

HARRY M. PRINCE
NEW YORK CHAPTER A.I.A.

DIRECTORS

MAX M. SIMON
BRONX CHAPTER A.I.A.

IRVING P. MARKS
BROOKLYN CHAPTER A.I.A.

JACOB SHERMAN
BROOKLYN SOCIETY OF ARCHITECTS

ROSWELL E. PFohl
BUFFALO - W. N. Y. CHAPTER A.I.A.

DONALD Q. FARAGHER
CENTRAL NEW YORK CHAPTER A.I.A.

BAILEY M. CADMAN
EASTERN NEW YORK CHAPTER A.I.A.

DANIEL PERRY
LONG ISLAND SOCIETY CHAPTER A.I.A.

OLINDO GROSSI
NEW YORK CHAPTER A.I.A.

H. I. FELDMAN
QUEENS CHAPTER A.I.A.

ARTHUR A. SCHILLER
ROCHESTER SOCIETY OF ARCHITECTS

CHARLES V. NORTHUP
STATE ISLAND CHAPTER A.I.A.

MAURICE USLAN
SYRACUSE SOCIETY OF ARCHITECTS

EDWIN B. BRUCE
WESTCHESTER CHAPTER A.I.A.

GERSON T. HIRSCH

STANDING COMMITTEE CHAIRMEN

ARCHITECT AND GOVERNMENT AWARDS
C. Storrs Barrows, Rochester Society of Architects
James W. Kidney, Buffalo - W. N. Y. Chapter A.I.A.
Julian Whittlesey, New York Chapter A.I.A.
Hippolyte Kamenko, New York Chapter A.I.A.
Henry L. Blatner, Eastern New York Chapter A.I.A.

CIVIL DEFENSE
Adolph Goldberg, New York Society of Architects

COMMUNITY PLANNING
Daniel Perry, L. I. Society Chapter A.I.A.

CONFER WITH OTHER PROFESSIONS
Harry E. Rodman, Eastern N. Y. Chapter A.I.A.

CONSTRUCTION AND SPECIFICATIONS
Frederick C. Backus, Buffalo - W. N. Y. Chapter A.I.A.

CONTRACTS
Roswell E. Pfohl, Buffalo - W. N. Y. Chapter A.I.A.

1959 CONVENTION
John W. Briggs, Rochester Society of Architects

EDUCATION
Donald Q. Faragher, Rochester Society of Architects

ETHICS AND PROFESSIONAL PRACTICE
Gerson T. Hirsch, Westchester Chapter A.I.A.

FEES
Gilbert L. Seltzer, New York Chapter A.I.A.

HOSPITALS
Alonzo W. Clark, New York Chapter A.I.A.

INSURANCE
George J. Cavalieri, New York Society of Architects

LABOR LAW
G. Marion Wolfe, Buffalo - W. N. Y. Chapter A.I.A.

LEGISLATURE
Matthew W. Del Gaudio, New York Society of Architects

MULTIPLE DWELLING
Richard Roth, New York Society of Architects

MULTIPLE RESIDENCE
Anthony DeRose, Bronx Chapter A.I.A.

PUBLICATIONS
E. Elmer Chambers, Central N. Y. Chapter A.I.A.

PUBLIC RELATIONS
Charles Rockwell Ellis, Syracuse Society of Architects

RESOLUTIONS
Harold R. Sleeper, New York Chapter A.I.A.

REVISED OF BY-LAWS
Albert W. Melniker, Staten Island Chapter A.I.A.

SCHOLARSHIP (Architects Scholarship Committee)
Frederick H. Voss, Westchester Chapter A.A.

SCHOOL BUILDINGS
Perry Coke Smith, New York Chapter A.I.A.

STATE BUILDING CODE COMMISSION
Carl W. Clark, Central N. Y. Chapter A.I.A.

5 / EMPIRE STATE ARCHITECT
Check Up On Elevator Performance...

Through The Eyes Of
HAUGHTON elevonics*

Now—elevator performance in any building can be precisely measured under all traffic conditions for any predetermined time period. Through our development work in Elevonics*, new instrumentation has been created that “sees” every move an elevator makes... and automatically charts a continuous visual record of starts, stops and waiting time.

This information is of incalculable value to evaluate the quality of elevator service. And it provides, for the first time, a truly uncontestable basis for sound corrective action.

This is but one of many ways that Haughton skills and experience are shaping the new technology in vertical transportation... and creating superior new standards for design, modernization, maintenance.

Swift, smooth, dependable elevator service is an unfailing source of satisfaction for building occupants, visitors and owners. Be certain your elevators are doing the best possible job. Ask your Haughton representative to let you see them in action—through the eyes of Haughton Elevonics.

*Haughton’s advanced program in elevator systems research and engineering, with specific emphasis on the creative application of electronic devices and instrumentation for betterment of systems design and performance.
John Briggs is a graduate of the Department of Architecture, Carnegie Institute of Technology, a practicing architect for more than 20 years and has designed many prominent buildings in Rochester and throughout the Central New York area, including the recently completed Mohawk Manor Motorist Hotel, the Wayne County jail and numerous apartment houses, residences and churches. In 1956, Mr. Briggs was commissioned by the General Electric Company to design an all-electric modern home, which was called “The Wonder Home” and has been displayed, and the design used, in many parts of the country.

He is a past president of the Rochester Society of Architects and a member of the Central N. Y. Chapter, AIA. In World War II Mr. Briggs served as a Lt. Commander with the U.S.N. Reserve in the Pacific theatre.

PRESIDENT’S MESSAGE

It is with deep humility that I convey in my first message to the membership of NYSSA my feeling of gratitude upon my election as your President for the coming year.

I am fully aware of the tremendous tasks that confront us. Our Association is entrusted with the solemn responsibility of advancing our profession—architecture, not only in the interest of practitioners, but also and primarily for the public and taxpayers’ welfare. We must add to the prestige of architects everywhere by deeds as well as words. We must take militant action to prevent the encroachment on our profession by those who illegally and improperly seek to lower our high standards and ethics.

With the advent of the forthcoming legislative session, soon to convene in Albany, we can be assured that the efforts of our Legislative Committee will achieve the fine results we have always been led to expect from the capable leadership of Matt Del Gaudio. I know that all our committees will continue to function effectively and selflessly as they have in the past under the administrations of my illustrious predecessors.

I have no doubt that with the help and cooperation of many of our dedicated members we can look forward to the coming year with sustained hope and confidence of achieving many of the objectives of our profession and our Association.

On behalf of the officers and directors, may I extend to all of you our best wishes for a very happy and prosperous New Year.

John T. Briggs

7 / EMPIRE STATE ARCHITECT
RESOLUTION NO. 1
Sponsored by: Resolutions Committee
Title: State Education Law

WHEREAS, the State Education Law with respect to Architectural Practice has been found to contain discrepancies, ambiguities and obsolete provisions which tend to make it difficult of reasonable and proper enforcement,

NOW, THEREFORE, BE IT RESOLVED, that such a corrective bill be prepared by the Education Committee and the Ethics and Professional Practice Committee of N.Y.S.A.A., working in close cooperation with the counsel for the State Education Department and the Assistant Attorney General in charge of the Education Bureau, and that also such bill shall eliminate the cubic foot and dollar exemption, and shall instead provide for the exemption only of bonafide farm buildings and of residence buildings of gross area not including garages, carports and porches, not to exceed 1,200 square feet; such bill then to be referred to the Legislative Committee of this Association for presentation and support in the 1960 Legislature.

This information to be made available to the State Association Legislative Committee before December 1, 1959.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved
October 10, 1959

Millard Whiteside — President of Westchester Chapter, Vice Chairman of the Convention.

RESOLUTION NO. 2
Sponsored by: Brooklyn Chapter, AIA
Title: State Education Law

WHEREAS, public interest requires that plans for the construction of buildings be designed and prepared by architects or engineers, and

WHEREAS, public interest requires that existing legislation designed to enforce the provisions of the State Education Law relative to preparation of plans be strengthened, and

WHEREAS, there is evidence that provisions of the Education Law are being circumvented and violated by architects and engineers placing a seal on blueprints not prepared by them, or on stock plans prepared out of the State, and

WHEREAS, it is desirable that the architect or engineer in whose name plans are prepared personally see, even if only once upon completion, the plans for which he assumes responsibility,

NOW, THEREFORE, BE IT RESOLVED, that the N.Y.S.A.A. recommend the passage of legislation by the State Legislature to require the personal signature on the original drawings of the architect or engineer, when such drawings are to be filed with the appropriate public agencies, and who have prepared those documents or under whose supervision those documents were prepared.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved
October 10, 1959

Turning over the reins to the New President — Left to right, Trevor Rogers, Regional Director, A.I.A.; Harry M. Prince, Retiring President, John W. Briggs, New President.

RESOLUTION NO. 3
Sponsored by: Buffalo-Western New York Chapter, AIA
Title: Corporate Practice of Professions

WHEREAS, a perennial bill has been introduced in the State Legislature authorizing the practice of Engineering by Corporations since 1953, and

WHEREAS, such legislation is a source of embarrassment to the several Legislative Committees to which such legislation is assigned, and

WHEREAS, such legislation is not in the best interests of the public, and

WHEREAS, professional registration laws have been

(Continued on page 22)
A Forward Glance to 1960

In this, my last column of the year, I propose to revise the usual process of looking backward and shall beat the calendar by attempting to peer into the future.

In the light of past events, which can never be ignored by any prophet, soothsayer or historian, the months ahead in the new year are likely to fall into this pattern:

January-February — Our first 1960 issue of Empire State Architect should contain the complete roster of NYSAA, provided of course constituent organizations' secretaries and treasurers will cooperate. The Treasurer will ask for rosters on which payment of dues will be based. A new session of the Legislature will convene in Albany. Many bills affecting architects will be introduced, including the perennial corporate practice and school stock plan bills. Your Association will actively oppose these two pieces of legislation. At the same time we will be proposing constructive amendments to the Education Law.

March-April — These will be months of decision for the Legislature and the Governor, who will sign only the "good" bills and veto the "bad" ones. Every effort will have been made by NYSAA to support legislation in the public interest and defeat such measures that are not.

May-June — The By-Laws Committee will begin to hold meetings on revisions to the by-laws. Other committees will schedule meetings at NYSAA offices. Prospective commercial exhibitors will make inquiries for space at the forthcoming Convention. President and Executive Director will make chapter and society visits when invited.

July-August — The Convention Committee and staff will be working feverishly to complete details of the Fall Convention. The Treasurer will plead for more dues money if more delegates are to be accredited.

September-October — The annual meeting and Convention of NYSAA will be held and will produce a highly successful result, except for those persons whose rooms did not face the lake. The latter will vow not to attend another convention but will be the first to register for next year. The Treasurer will make his annual explanation of how and why dues are collected.

November-December — Convention Minutes, directors' meetings, preparation for year end results and for next year. The Treasurer will remind constituent organizations to prepare to send their rosters and dues checks.

This is where we came in and a good place to end the column.

Happy holiday season and the best in the New Year to all.

Joseph F. Acconiator
Executive Director
CURTAIN WALLS
by GENERAL BRONZE

The Southern New England Telephone Co. General Office Building in New Haven, Conn., is another distinctive curtain wall building, engineered and fabricated by General Bronze.

To create a building that is both outstanding and attractive in appearance, the architect, Douglas Orr, has used a stainless steel grid with fixed light windows, green porcelain enamel spandrel panels and dark green mullions. The over-all effect is one of distinctive beauty.

As the country's foremost producer of curtain walls, windows and architectural metalwork in aluminum, bronze and stainless steel, General Bronze is also anxious and ready to serve you. Why not call us in on your next building job? Our catalogs are filed in Swee's.

Southern New England Telephone Co.
General Office Bldg., New Haven, Conn.
Architect: Douglas Orr
Contractor: Edwin Moss & Son, Inc.
At the Convention in October, John W. Briggs, Rochester, New York, was elected to lead the New York State Association of Architects, the state organization of the American Institute of Architects. Mr. Briggs succeeds Harry M. Prince, New York City architect who was president of the association for 2 years.

Frederick H. Voss of Dobbs Ferry, New York, and of the New York City architectural firm of Kiff, Colean, Voss, Souder, Franklin & McConnell, was elected 1st vice president. S. Elmer Chambers of Syracuse, was elected 2nd vice president.

Simeon Heller of Flushing, New York, secretary for a number of years was elevated to the position of 3rd vice president.

Allen Macomber of the Rochester firm of Faragher and Macomber was elected secretary. Martyn N. Weston of Brooklyn was retained and reelected treasurer.
SMITH-CORONA MARCHANT, INC.

CORTLANDVILLE, NEW YORK

James D. Curtin, A.I.A., Architect

The major products manufactured by Smith-Corona Marchant Inc. include typewriters, calculators, adding machines and printed communications equipment with a net sale in 1959 of $90,400,000. Although the firm is increasing the product-mix, the portable typewriter has been, and continues to be, in great demand. The development of the world's first and only electric portable has further increased the sales potential in this market.

The portable typewriters are manufactured at the Groton, New York, and the Cortland, New York, plants. Since these plants are already expanded to their full capacity, it was necessary to develop new facilities. After an extensive study, the Owner purchased a tract of land south of Cortland and only a few miles from Groton. This tract, consisting of 600 acres, would permit coordinated operation of the three plants with ample space for future expansion of manufacturing facilities and the development of recreational areas. The function of the plant is the manufacture of typewriter parts for assembly at Groton.

In the new plant, castings, extrusions, screw rods, coils and sheet metal stock are processed. The manufacturing departments include milling, screw machine, punch press, drill press, polishing, heat treat and plating. These areas with shipping-receiving, office, lunch room, first aide suite, toilets, boiler room and stock storage required a structure of 168,000 sq. ft. The main structure is 320' x 480' with a boiler room wing 60' x 140'. In addition there are five mezzanines distributed through the plant for electric equipment and a penthouse above the boiler room for expansion tank and deaerating heater.

In developing the design for the plant with our Structural Engineers, Eckerlin & Klepper, thought was given to the relative economy and practicality of various bay spacings. A 20' x 40' bay was found to be most satisfactory. In order to provide for future requirements, all roof framing was computed for a one ton monorail. The framing was increased beyond this limit in certain bays for special loadings.

The basic design of the plant is relatively simple. Floors are a reinforced concrete slab on grade with Monorock Finish; structural steel cantilevered frame; exterior walls, precast lightweight concrete and colored galbestos; roof, poured gypsum on form board. Except for the
office and lunch room, no windows are used in the structure.

In order to expedite construction during winter weather, the exterior concrete wall slabs were precast at the Winkrete Plant in Syracuse. Each panel is 6" thick with a tongue and groove horizontal joint between panels which are 20' x 10'. Esco metal forms were assembled to form the 20' x 10' casting beds with wood bulkheads at the perimeter. A bond breaking solution was applied to the metal before pouring the light-weight concrete. The exterior face of the panels was given a broomed finish. The interior face has a very smooth finish due to the use of metal forms. A concrete "A" frame was precast by Winkrete and mounted on a low bed truck to transport the panels to the site. The normal load consisted of two panels, each weighing 6,000 pounds. This procedure gave excellent control of the concrete pour, curing and finishing, since it was done under ideal conditions. By using 4000 psi early concrete, quick reuse of forms was possible with a constant flow of panels from the casting plant to the job site. Since this procedure was developed for this Project it has been used on other projects in the Syracuse area.

In view of the possible future expansion, our Consulting Engineers, Robson & Woese, Inc., made provision in the heating, plumbing and electric designs for increased demands and convenient extension of services. The initial installation includes the following:

HEATING and VENTILATING — Steam can be generated at the rate of 50,000 lbs./hour in two high pressure, water tube boilers. Each boiler is provided with gas and oil-firing apparatus, oil being the standby fuel. High pressure steam is distributed only where required for process work. The low temperature hot water heating system picks up heat in the Boiler Room through a steam-water heat exchanger and is distributed through the building in a reverse return piping system by centrifugal pump. Hot water supply temperature is varied throughout the heating season which permitted the omission of pipe insulation without overheating the production areas. Over 100,000 c.f.m. of outside air is supplied through a number of fan and coil units to make up for the various industrial exhaust systems. These units are spaced throughout the plant to insure an adequate amount of outside air is introduced to each bay and to provide winter heat distribution (the units are equipped with humidifiers in order to reduce respiratory ailments during winter months). Several large exhausters on the roof exhaust air near the ceiling of the manufacturing space to provide additional summer ventilation and properly to ventilate the area in case of fire.

PLUMBING — The plumbing installation includes
1. All wall-hung plumbing fixtures to facilitate maintenance;
2. Decentralized hot water generating facilities;
3. Temporary sewage disposal system;
4. Both potable and process water supply systems.

ELECTRIC — The electric installation includes a 1500 KVA main outdoor substation receiving power at 34.5 KV and distributing within the plant a 4.16 KV to four 500 KVA unit substations located on mezzanines above the Toilet Rooms to conserve floor space. Plant utilization voltage is 277/480 volts and is distributed throughout the plant via bus duct.

Continuous row high output fluorescent fixtures maintain 65 foot-candles in the manufacturing area and 100 foot-candles in the parts inspection department. All general lighting may be operated either manually or automatically from a program machine.

COST

General Construction
Vincent J. Smith, Inc. $ 718,585.00
Plumbing
A. J. Eckert Co., Inc. 114,000.00
Heating and Ventilating
A. J. Eckert Co., Inc. 302,000.00
Electric
JNO. Z. Barton, Inc. 317,400.00

Total $1,452,285.00

Cost per cubic foot $.44
Cost per square foot $8.64
MAYS DEPARTMENT STORE
JAMAICA, QUEENS, NEW YORK

Three story and basement, 310,000 square feet, fireproof sprinklered department store building, fully air-conditioned throughout including stock and service areas. Located at a busy shopping area in Borough of Queens with 2,000,000 population. A 15,000 sq. feet roof structure was provided for air-conditioning, ventilating and heating equipment for the building.

Building is equipped with conveyors and elevators for transporting merchandise from inside receiving and loading space at first floor, without interfering with exterior or interior traffic or movement. Escalators and elevators afford ample customer transportation throughout to all floors and basement.

Since the store operates until 9 p.m. five nights per week, night lighting of the exterior of the entire building and surrounding streets was accomplished by the street lamps as illustrated in photograph. The photograph illustrates the opening day Aug. 27, 1959. The exterior walls are of white and red glazed brick, porcelain curtain walls with aluminum mullions as illustrated. Canopies have been provided at front and rear main entrances.

For employees, ample recreation lounges, cafeteria, locker rooms and other facilities such as nurses rooms, etc. have been provided on the third floor.

Parking for patrons has been provided by the city installing a two block parking area immediately at rear of this department store.

J. C. PENNEY COMPANY
SAVANNAH, GEORGIA

Proposed four story and basement fireproof, sprinklered and fully air-conditioned department store building to be erected at most prominent business corner at Savannah, Georgia.

Building to be fully air-conditioned throughout including all service areas and employee facilities. Elevators and escalators provided for customer transportation to all floor levels; freight transportation by separate freight elevator as illustrated.

The building will be of steel structural frame with concrete floors and roofs on corrugate. Exterior walls to be of face brick with mosaic tile at first floor store fronts and at end walls on street facades.

The building will contain over 50,000 square feet of selling space devoted to a complete department store operation conducted by J. C. Penney Company, who now operates a block away and will relocate on this site when the building is completed.
ENOS AND SANDERSON

BUFFALO, NEW YORK

Thomas Justin Imbs, Architect

The Enos family, a distributor of steel, aluminum and industrial supplies in Buffalo, Western New York, and Pennsylvania for 65 years, wisely chose to consolidate their office and plant operations in a central site.

Fast movement of products for sorting and delivery called for a definite flow pattern for

(Continued on page 33)
for gymnasiums, classrooms, public and industrial buildings, specify the floor that’s most resilient, looks best and lasts longest—

Ironbound* Continuous Strip* Northern Hard Maple Floor

Write or call for complete details.

STORM FLOORING COMPANY, INC.
2650 Park Avenue, New York 51, N.Y.
Phone: Mott-Haven 9-2700

YAEGER FLOOR COMPANY, INC.
P.O. Box 3874, Brighton Station, Rochester 10, N.Y.
Phone: HUbbard 2-0806
One of the tallest reinforced concrete structures to be built in New York will be a 24-story office building (with a 3 story utility Pent House above) on historic Hanover Square.

OFFICE BUILDING
66 BEAVER STREET, NEW YORK CITY
Henry George Greene, A.I.A.

The plot was originally covered by 3 buildings, one of which housed the New York Coffee & Sugar Exchange. Experience with the new building designed for 79 Pine Street (which now houses the Exchange) influenced the exterior design of this new structure since such masonry design was desired by a predominant number of the firms in the area who preferred being housed in a building of such design. The facades have masonry spandrels with verticality accented by the introduction of granite mullions rising the full height of the structure. The major portion of the utility core was kept against the "dead" (west) wall which immediately adjoins another structure. This accomplished a double entry through two streets and permitted a three-street exposure on all floors.

The use of a reinforced concrete frame enabled us to reduce the floor to floor height enough to obtain an additional floor for the same height of building and also to raise the upper story setbacks by two floors.

The floors and roof are designed as "Flat Plates" using grid domes of the Grid Flat Slab Corporation as forms. Eight inch and six inch
domes will be used. The six inch domes will be substituted for eight inch to accommodate underfloor electric and telephone ducts at the locations of the duct runs.

Lightweight aggregate concrete will be used for the floor system. Four thousand pound concrete will be used in the lower tiers of all columns.

Precautions are being taken to compensate for column shortening and to prevent transfer of load to the brick walls. Pads of compressible material are being placed in the brick joints below the spandrel angles at every third floor. Special brick are being used at these locations to make the brick joints uniform.

The heating and air conditioning system is designed with some entirely new concepts. The design utilizes as little of the rentable space as possible and provides slimmer and more architecturally pleasing exterior columns to affect installation economy by utilizing the building construction to serve a dual purpose. It envelops the space and acts as a duct at the same time.

In order to accomplish this, and stay within the zoning requirements, a multi level penthouse was created on the roof. This penthouse contains an absorption refrigeration system, two low pressure steam boilers, and the fan systems required to handle approximately one-half of the building. The fan systems required to handle the remainder of the building are located on the first floor mezzanine area over the main entrances. Thus, no rentable space is used for mechanical equipment.

In addition, the basement, which in today's rental market is highly valuable, is left completely free. In order to avoid oversizing of exterior columns the usual high pressure duct design which requires the installation of round ducts at each column was discarded. In its place, high pressure duct work is run from the machine rooms to the various floors in the corners of the building facade. Horizontal air distribution is accomplished by means of a structural duct located beneath the window. The duct is continuous along the entire periphery and is located between the outer wall and the outside face of the column. The duct is formed by means of the outside wall, the floor, a gypsum wainscoating face and the sill on top. There are no sheet metal connections in this duct at all.

Air is distributed by means of registers located in the sills on a modular basis. Behind each register is a specially designed pressure and noise reducing valve which will eliminate any duct noise as well as inter-office audio-transmission. Each of these registers is individually adjustable.

The basic system is so designed that variations

(Continued on page 33)
This industrial building is being built for the Joma Manufacturing Co., Inc. at the corner of Zerega and Houghton Avenues, facing Bruckner Boulevard Highway. The size of the plot on which this building is being erected is 66' x 190' and the building will be 66' x 175' with a floor area of 11,550 sq. ft. and total area of 57,750 sq. ft.

The building, five stories high, with ten foot floor heights, will have both freight and passenger elevators.

It will be of reinforced concrete, faced with brick, having an elaborate ornamental lobby and front entrance of glazed enameled brick. The Joma Building, which is under construction by George Hoffmann and Sons, General Contractors, will be streamlined with aluminum windows and completely air conditioned and will be leased to tenants for manufacturing, show rooms and offices.

In addition there will be provided a parking lot to accommodate about 100 cars for the use of the tenants and their employees adjoining this new building.
3-DIMENSIONAL ALUMINUM GRILLES FOR RAILINGS AND DECORATIVE SCREENS

REFER TO 1959 SWEETS FILE 6e/Blu OR SEND FOR CATALOG M-59
BLUMCRAFT OF PITTSBURGH, 460 MELWOOD STREET, PITTSBURGH 13, PA.
enacted to prevent non-professionals, who by education and experience are unqualified for practice, or from practicing that profession, and

WHEREAS, the New York Court of Appeals has held that the Corporate practice of learned professions is obnoxious, and

WHEREAS, the Court of Appeals' decision prohibits indirect practice of a profession through a Corporation, and

WHEREAS, United States District Courts have ruled that only natural persons may practice a learned profession because only natural persons can be charged with the moral responsibility that practice of a learned profession requires, and

WHEREAS, obviously, a Corporation cannot take an examination,

NOW, THEREFORE, BE IT RESOLVED, that the New York State Association of Architects, in Convention assembled at Lake Placid, New York, this tenth day of October, 1959, authorizes the Legislative Committee of this Association to confer with the New York State Society of Professional Engineers, for the purpose of mutual legislative action.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved
October 10, 1959

Harry M. Prince — Retiring President of NYSAA.

RESOLUTION NO. 4
Sponsored by: Eastern New York Chapter, AIA
Title: Stock School Plans

WHEREAS, legislation twice has been introduced in the State Legislature whereby the State Architect would prepare "stock," "uniform," or "standard" plans for use in school construction in all but the largest of communities in the State, and

WHEREAS, it is the considered opinion of the Central New York Chapter, AIA, that pursuing such a program would be inadvisable and contrary to the best interests of the taxpayers as has been shown in those states which have undertaken such a program even for the smallest types of school buildings,

NOW, THEREFORE, BE IT RESOLVED, that the New York State Association of Architects in convention assembled expresses its complete approval of the position taken by the Central New York Chapter, AIA, and declares its opposition to the adoption of any legislation directed toward the preparation and promulgation of such stock plans for schools by the State Architect, whether or not such legislation is permissive or mandatory, and further whether or not such legislation provides for preliminary site preparation or supervision of construction by architects other than those who are members of the staff of the State Architect, and be it further

RESOLVED, that the Legislative Committee of N.Y.S.A.A. take whatever steps it deems necessary to carry out the opposition recommended by the Central New York Chapter, AIA, to any Stock School Plan legislation, and shall receive the full cooperation of all constituent organizations in this matter.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved and referred to Legislative Committee for action
October 10, 1959

RESOLUTION NO. 5
Sponsored by: Community Planning Committee
Title: Community Architecture

WHEREAS, the term Community Planning is a broad, loose term over which architects have no control, and

WHEREAS, architects, landscape architects, city planners, engineers, surveyors and others profess to practice Community Planning and confusion exists as to the proper place of each profession in Community Planning,

NOW, THEREFORE, BE IT RESOLVED, that the New York State Association of Architects change the name of its Community Planning Committee to Community Architecture Committee, and be it further

RESOLVED, that the Community Architecture Committee carry out the following directive:
1. To foster and encourage the planning and redevelopment of existing communities as well as the planning and development of new communities.
2. To define the term Community Architecture to encompass all those phases of work related to the profession of architecture which are normally associated with city planning, village planning, community planning and site planning.
3. To promote the concept and the use of the term Community Architecture by architects and others.
4. To call the attention of architects to the field of service in Community Architecture.
5. To cooperate with community planning groups and professions and official Planning Boards in
order to further the orderly development and re-
development of our cities, villages and communities.

Disposition:
By Resolutions Committee — Approved
By Convention — Amended and approved to retain origi-
nal title of Committee on Community Planning

RESOLUTION NO. 6
Sponsored and Presented by: Eastern New York Chapter,
AIA
Title: State Building Code Commission
WHEREAS, the State of New York, in its wisdom, estab-
lished a competent State Building Code Commission
for the purpose of developing and promulgating a uni-
form State Wide Building Construction Code integrated
with standard regulations for the benefit of the People
of the State, and
WHEREAS, that Commission succeeded in promul-
gating an effective State Wide Building Code with adequate
and satisfactory provisions for the safeguarding of life
and property, and
WHEREAS, the State of New York abolished the
State Building Code Commission before it was possible
to effectively make the Building Code program and
services readily available to the municipalities of the
State and to coordinate the local procedures for the ad-
ministration and enforcement of the Code by the au-
thorized local agencies, and
WHEREAS, the implementation of the State Building
Code is urgently necessary for its benefits to be fully
realized by the architectural profession and the build-
ing construction industry, and
WHEREAS, its continued acceptance and usefulness
is entirely dependent upon State and local coordination
of its administration and enforcement provisions.
NOW, THEREFORE, BE IT RESOLVED, that the
New York State Association of Architects in convention
assembled does petition the sovereign State of New York
to re-establish the State Building Code as an effective
and separate independent agency, in order to best utilize
the Building Code program, without conflicting inter-
est of other agencies and thus better contribute to the de-
velopment of modern construction methods, devices, ma-
terials and techniques consistent with the expressed in-
tent of the Joint Legislative Committee on State Wide
Building Code, such agency be re-established in accord-
ance with article 18 of the State Building Code Law of
the Executive Law, or as modifications are required with
power granted to Legislative Committee.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved

RESOLUTION NO. 7
Sponsored by: Syracuse Society of Architects
Title: 1960 State Fair
WHEREAS, it is important that the Architects of New
York State avail themselves of all opportunities to foster
and improve relations with the public as a whole, and
WHEREAS, the New York State Association of Archi-
tects is the organization representing the profession on a
state-wide level, and
WHEREAS, the New York State Fair annually attracts
thousands of visitors from all areas of the State.
NOW, THEREFORE, BE IT RESOLVED, that a Com-
mittee be appointed to study and report on the recom-
pendation of the Syracuse Society to the Association
Board of Directors relative to the New York State As-
sociation preparing an exhibit to be entered in the 1960
State Fair for the particular purpose of educating the
public in the value and scope of architectural services,
and be it further
RESOLVED, that the Association Board of Directors
may be empowered to authorize financing such exhibit,
not to exceed $1,000.00, from funds made available by
regular dues of the membership.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved

RESOLUTION NO. 8
Sponsored by: Brooklyn Society of Architects
Title: Board of Standards and Appeals, City of New York
WHEREAS, the problem of relocation and rehabilita-
tion of low income groups in the City of New York has
reached such proportions so as to delay the construction
of new multiple dwelling housing, and
WHEREAS, the City of New York as to multiple dwell-
ings is governed by the Multiple Dwelling Law and the
Multiple Dwelling Code, and
WHEREAS, both statutes do not agree in such cases
affecting rehabilitation, and
WHEREAS, it has been determined that due to these
defects, rehabilitation and relocation have been retarded.
and
WHEREAS, the Board of Standards and Appeals as-
NOW, THEREFORE, BE IT RESOLVED, that the New York State Association of Architects, in Convention assembled at Lake Placid, New York, this tenth (10th) day of October, 1959, authorize the Legislative Committee or other appropriate Committee of this Association to communicate with other professional groups for the purpose of promoting the establishment of such an inter-professional organization.

Disposition:
By Resolution Committee Approved
By Convention Referred to Committee on Other Professions

October 10, 1959

RESOLUTION NO. 10
Sponsored by: Resolutions Committee
Title: Expression of thanks to Matthew W. Del Gaudio

WHEREAS, Matthew W. Del Gaudio is a past President of the New York Association of Architects, past President of many constituent organizations and a former regional director of the American Institute of Architects and is highly regarded and esteemed by his fellowmen as an Architect, a Gentleman and a Loyal Citizen of our Great Country, and

WHEREAS, he has served faithfully and diligently on the various committees of the said Association, and

WHEREAS, the profession is now enjoying the fruits of his leadership as Chairman of the Legislative Committee, and

WHEREAS, he has served as Chairman of the Convention Committee for eight years, and

WHEREAS, the growth and success of the Association, to a great extent, is due to the time, effort and wisdom he so faithfully, unstintingly and endlessly devoted to it, now

NOW, THEREFORE, BE IT RESOLVED, that he be appropriately recognized by the New York State Association of Architects for his efforts and achievements by being presented with a parchment inscription commending him for such service to the Association, and be it further

RESOLVED, that this resolution be, and it is, hereby unanimously adopted by the membership of the New York State Association of Architects in Convention assembled this 10th day of October, 1959.

Disposition:
By Resolution Committee — Approved
By Convention — Adopted by Acclamation

October 10, 1959

FROM LEFT TO RIGHT: Gerson T. Hirsch, Director, Westchester Chapter; Vincent G. Kling, Philadelphia Architect; Thomas Creighton, Editor of Progressive Architecture.
RESOLUTION NO. 11
Sponsored by: Resolutions Committee
Title: Thanks to President Harry M. Prince

WHEREAS, the effectiveness of the NYSAA is dependent on its leadership, and
WHEREAS, for the past two years the NYSAA has been most fortunate in having as its President, Harry M. Prince, F'AIA, and
WHEREAS, during his term of office this Association has enjoyed great prestige and accomplishment.

NOW, THEREFORE, BE IT RESOLVED, that the NYSAA in Convention assembled at Lake Placid, on October 10, 1959, commend Harry M. Prince for his untiring efforts on behalf of the Association and the Architectural Profession.

Disposition:
By Resolutions Committee — Approved
By Convention — Adopted by Acclamation
October 10, 1959

Charles A. Selby — President of Vermilya-Brown Construction Co., Inc., Director of New York City Chapter of the Associated General Contractors of America.

WHEREAS, we are most fortunate in having amongst us those who give of themselves unceasingly to make our stay extremely interesting and enjoyable, and
WHEREAS, they have again displayed outstanding ingenuity in making this 1959 Convention one to be long remembered for its many interesting features and hospitality.

NOW, THEREFORE, BE IT RESOLVED, that the NYSAA in Convention assembled at Whiteface Inn this October, 1959, commend and thank the Westchester Chapter AIA, as Host Chapter, and convey our thanks and appreciation to the following members of the Convention Committee: John W. Briggs, General Chairman; Millard F. Whiteside, Vice Chairman; Joseph F. Addonizio, Secretary-Treasurer; P. Compton Miller, Jr., Assistant Treasurer; Robert W. Crozier, Architectural Exhibits; Nicholas J. Masucci, Commercial Exhibits; Gerson T. Hirsch, Program and Seminar; Robert Quentin, Publicity; Frederick H. Voss, Reception and Hospitality; Donald H. Newman, Special Committee; Howard H. Battin, Transportation; and be it further

RESOLVED, that a special vote of thanks is due to the Women's Committee for a very interesting program accomplished under the guidance of Mrs. Millard F. Whiteside, Mrs. Gerson T. Hirsch and Mrs. Frederick H. Voss, and be it further

RESOLVED, that this Convention wishes to express its grateful appreciation to all who were responsible for a most enjoyable stay.

Disposition:
By Resolutions Committee — Approved
By Convention — Unanimously Approved
October 10, 1959

Thomas Creighton — Seminar Moderator

RESOLUTION NO. 12
Sponsored by: Resolutions Committee
Title: Thanks to Commercial Exhibitors and Nicholas J. Masucci

WHEREAS, the Convention of the NYSAA would be limited in its scope were it not for the cooperation and participation of the manufacturers of building material and allied products, and
WHEREAS, the exhibits now on display during the Convention at the White Face Inn, Lake Placid, October 8 to 10, 1959, are outstanding in their presentation.

NOW, THEREFORE, BE IT RESOLVED, that the NYSAA in Convention assembled at Whiteface Inn, October 10, 1959, does hereby express its appreciation and thanks to all of the exhibitors for their cooperation and ingenuity, and be it further

RESOLVED, that the NYSAA wishes especially to further commend Nicholas J. Masucci as chairman of the Commercial Exhibits for his untiring efforts, and to give to him the Convention's sincerest thanks and appreciation.

Disposition:
By Resolutions Committee — Approved
By Convention — Approved
October 10, 1959

RESOLUTION NO. 13
Sponsored by: Resolutions Committee
Title: Thanks and appreciation to Convention Committee — 1959

WHEREAS, no Convention would be successful without the efforts of certain untiring members, and

Disposition:
By Resolutions Committee — Approved
By Convention — Unanimously Approved
October 10, 1959

25 / EMPIRE STATE ARCHITECT
THE BEARING CAPACITY OF SOILS

by Louis J. Goodman, P.E., Consulting Soils Engineer
Associate Professor of Civil Engineering, Syracuse University

One of the most important problems in structural design is the determination of the bearing capacity of a given soil. Bearing capacity has been defined in many different ways but the meaning most frequently given to this term by structural engineers is as follows: "Bearing capacity is the largest intensity of pressure that can be transmitted by a structure to the soil which supports it without causing failure of the soil in shear or excessive settlement".

This maximum pressure is known as the safe soil pressure or allowable bearing capacity and is a loading intensity which is so limited that it provides an adequate factor of safety against soil rupture and also insures that settlement due to the loading will not exceed the tolerable limits. The factor of safety generally used for the shear consideration is 2 to 3 and depends upon the soil and loading conditions along with size and depth of the foundation.

The accurate determination of bearing capacity is a matter of concern in the safe and economical design of many structures. In some cases, a structure is founded upon a rock or soil layer which has more than ample strength to support the loads which are to be placed upon it. In other cases, preliminary test boring data may disclose difficult subsoil conditions which will require the use of piles or some other foundation solution. However, in the majority of cases, the soil at a proposed site will be of an intermediate nature, necessitating a careful choice of the bearing value to be used in the foundation design for purposes of both safety and economy. Before discussing some of the practical and theoretical considerations in the problem of determining allowable bearing capacities of various soils, it must be emphasized that an adequate subsurface investigation must be made at the site of a proposed structure. The field and laboratory investigations which are essential to an intelligent and satisfactory foundation selection and design have been covered in previous articles.

Factors Affecting Bearing Capacity

The bearing capacity to be used for the foundation design of the proposed structure can be determined by any one of several methods after the nature and extent of the critical soil strata have been properly established. However, the bearing capacity is dependent upon several factors which are too often ignored in practice. A summary of these factors follows:

1. Size of Bearing Area
2. Depth of Foundation
3. Effects of Water
4. Effects of Weak Substrata

Before discussing these factors, it is again emphasized that two definite requirements must be fulfilled for the satisfactory design of a shallow foundation such as a footing or a mat. First, the shearing stresses which are transmitted to the soil must be smaller than the shearing resistance of this material to prevent a shear failure. Secondly, the differential settlements which occur must not exceed amounts which are permissible in-so-far as the structural requirements are concerned.

1. Size of Bearing Area

The size of footing is a variable that has an important effect on the bearing capacity. This is primarily because of the fact that the stressed zone created beneath a loaded area is a function of the size of the area. This zone is called the "pressure-bulb" and must be considered in the application of any method in use for determining safe soil pressures for design purposes.

With respect to the shear consideration, the ultimate bearing capacity of cohesive or clay soils is independent of the footing size whereas it is proportional to the footing size in cohesionless soils. On the other hand, the settlement is significantly greater with a larger footing size on clay than on sand. The foregoing statements are based on footings loaded to the same bearing intensity, regardless of size.

2. Depth of Foundation

The ultimate bearing capacity below the surface of cohesive soils is only slightly greater than it is at the surface and any increase from increased depth is generally ignored. In cohesionless soils, theory shows that the ultimate bearing capacity increases with depth. The Boston Building Code permits an increase of 2 ½ percent for foot of depth of the loaded area before the lowest ground surface, not to exceed twice the usual design value.

3. Effect of Water

The position of the water table is of the utmost importance in determining the bearing capacity of a footing on a sandy soil. If the pressure bulb in this type of soil is entirely below the water table, the unit weight of the soil is the submerged value, which is approximately 50 percent of the unit weight above the water table. Since the ultimate bearing capacity of a cohesionless soil is proportional to the unit weight, it is apparent that a water table at the base of a footing or higher would have the effect of reducing the bearing value by about one half.

4. Effects of Weak Substrata

If one or more weak layers is located in the subsoil below footing grade, a computation must be made to determine whether the induced pressures reaching the weak layer exceed the safe value for that layer. If this is the case, the design value must be adjusted.

Divide this value by factor of safety for allowable bearing capacity.

Methods Used to Determine Bearing Capacity

Current methods in general use for determining the allowable bearing capacity of a soil for foundation design purposes originated years ago, and contain certain shortcomings. A summary of these methods with a brief discussion about each follows:

1. Shear Considerations

It has already been emphasized that one of the requirements in determining the bearing capacity of soil is to insure that the shearing stresses which are transmitted to the soil are smaller than the shearing resistance or strength of the soil to prevent a shear failure. The bear-

(Continued on page 36)
Travelers hurrying through New York City’s Grand Central Station this fall will view a startling innovation—a shoe store suspended from the very ceiling of the terminal!

Construction has already begun on a Kitty Kelly shoe store that will hang from the ceiling of the station just inside the 42nd St. Vanderbilt Avenue entrance. The “air space” was rented by the shoe chain from the New York Central System and the New Haven Railroad for the store, the first ever to utilize this new concept.

Enclosed in glass and cradled by steel girders, the store will appear as an illuminated hanging glass “shoebox” braced in mid-air. Use of the air-suspension technique was devised by noted architect Jose Fernandez to overcome the prohibitive expense of bringing in steel girders from below the station to hold the store. Partially hanging it from the ceiling of the station, utilizing the steel girders of the elevated Park Avenue roadway just above, was the answer.

“We only rented the air space in the terminal,” said Kitty Kelly general manager Sid Charney. “This space would ordinarily never be used. There will be nothing below the store but air, so people will have free access to the main concourse of Grand Central and to the subways.”
The general description of this plan is as follows. The building was designed for the occupancy of The Fund for Adult Education, an independent organization of the Ford Foundation. There is approximately 18,000 square feet of floor space in the two story and basement building which is completely air conditioned.

Ample parking space is provided for visitors and employees, at each end of the building with the main entrance approach under the long canopy which serves as a shelter extending from parking area to the Main Lobby.

The first floor contains a large reception lobby with corridors leading to executive offices, a large library and two large discussion rooms. Between these discussion rooms, there is a projection booth and recording room. In the basement there is provided a large Lounge for employees and shipping and Storage room in addition to the utility room.

From the Main Lobby there is a wide open stair leading to the second floor which is also served by a passenger elevator.

The main executive offices, accounting and clerical work space is on the second floor and all interiors are in the contemporary style.

In general, the building is of fireproof construction, steel frame, and masonry walls with face brick on the exterior. All exterior trim is of Indiana limestone surrounding the special aluminum sash windows and doors. The canopy trim is of stainless steel.

The construction cost was approximately twenty dollars per square foot of floor space.
COMMUNICATION PROBLEMS? WE CAN HELP!

With Stromberg-Carlson sound communication equipment—and our factory-trained organizations to help you—you can solve many communication problems.

Stromberg-Carlson sound systems are custom-engineered from standard components to meet your needs efficiently and economically in any type of construction.

We can take care of all installation and maintenance. Stromberg-Carlson's staff of field engineers is available to consult with you on any project.

"There is nothing finer than a Stromberg-Carlson"

A Stromberg-Carlson Sound Communication Specialist is in your area.

521-527 E. Washington St.
Syracuse 2, N.Y.
Granite 5-5161

Frontier Electronics, Inc.
1503-1505 Main St.
Buffalo 9, N.Y.
Garfield 5727

Gaffney Sound Systems
131 Genesee St.
Utica, N.Y.
Redwood 3-6259

Handy Sound Service
24 Francis Ave.
Norwich, N.Y.
4-6105

Handy Sound Service
R.D. #4
Binghamton, N.Y.
Raymond 4-4613

Rochester Radio Supply Co.
600 E. Main St.
Rochester 5, N.Y.
Locust 2-9900

Sound Systems, Inc.
39-22 Thirteenth St.
Long Island City 1, N.Y.
Stillwell 6-4474

Taylored Sound, Inc.
433-B Sand Creek Road
Albany, N.Y.
8-3165

Warren Radio, Inc.
2208 Washington St.
Jamestown, N.Y.
9-8185

Waveguide Electronics
30-43 Thirty-first St.
Long Island City 2, N.Y.
Ravenswood 1-6611

CONCRETE PLANK CO., Inc.
PRESENTS
Cantilite Products
Foam Fill
T&G Concrete Plank
Concrete Joists
Lap Plank
Concrete Adhesives
Concrete Underlayment

15 EXCHANGE PLACE
JERSEY CITY 2, N.J.

Henderson 4-1401

SWEET'S CAT. 2gCo
NEW ADVANCE IN PRISON DESIGN
In formulating the plans for a Medium Security Prison for the State of Connecticut to house 1,100 inmates, La Pierre & Litchfield, Architects, not only drew on their fund of experience in the design of correctional institutions during more than forty years, but also with the collaborated effort of Warden Mark Richmond and his staff, introduced a number of novel features which make this an outstanding example of advanced prison design.

As indicated on the accompanying site plan and aerial perspective, the complex consists of about twenty buildings, all but five of which are connected by enclosed corridors, to house the following activities:

1. Receiving and Orientation Unit, including facilities separate from the main institution for:
 a) Receiving Inmates
 b) 30-day Cell Block for newly committed inmates
 c) Diagnosis and Orientation
 d) Dining and Recreation
 e) Work
2. Housing for the seasoned inmates, including:
 a) 3 New Blocks and 4 existing Blocks, all cells exterior
 b) 2 Blocks all cells interior
 c) Segregation Block, all cells interior
 d) Hospital and Central Barber Shop
 e) Commissary
3. Food Service Unit, including:
 a) Butcher Shop, Freezer, Refrigerators and Storage Rooms
 b) Kitchen, and Bake Shop
 c) Mess Halls for Inmates
 d) Guards' Lounge and Mess Hall
4. Industrial-Maintenance Area, Housing:
 a) Clothing Manufacture
 b) Laundry and Dry Cleaning
 c) Mattress Shop for cleaning and rehabilitation
 d) Print Shop

 (Continued on page 38)
The First Methodist Church of Auburn is another striking example of the use of Lenroc Sawed-Bed Ashlar. Originally, this project was designed for brick and limestone, due to the tight building budget.

The Architects asked for Lenroc Sawed-Bed Ashlar and cut stone as an alternate. Because of the small difference in contract price, the Church and Architect both agreed on Lenroc and were particularly pleased with the final result. Permanence, beauty and low maintenance are reasons why more than one out of six of today's churches are constructed of stone... and there is no finer stone than Lenroc.

Design more for less, esthetically and structurally, with Lenroc Stone.

Our Architectural Staff will gladly assist you in detailing information or budget estimates.
Medium Security Prison
(Continued from page 31)

e) Carpentry, Plumbing, Electrical & Paint
Shops and Classrooms

5. Indoor Recreational Programs, including:
 a) Gymnasium, with Locker Rooms
 b) Auditorium
 c) Hobby Shop
 d) Library, Audio-visual and Classrooms

6. Religious Program; including:
 a) Protestant Chapel
 b) Roman Catholic Chapel
 c) Jewish Prayer Room
 d) Offices for Priest and Rabbi

7. Rehabilitation Unit, including offices for:
 a) Classification and Parole Officers
 b) Psychologists
 c) Clerical Staff
 d) Inmate Records

8. Administration Building, including offices for:
 a) Warden, Deputy Warden and Secretaries
 b) Business Mgr.; Asst. Bus. Mgr., Purchasing Agent, etc.
 c) Clerical Staff and Mail Rooms

9. Store House, for receipt and storage of all materials and food products to be used by the industries, as well as the institution itself, and storage of all inmate-manufactured items pending delivery for State use. Facilities will include:
 a) Cool rooms for vegetables, flour, cereals, etc.
 b) Refrigerated rooms for meat, eggs, milk, etc.
 c) Fireproof storage for oils, paints, greases, etc.
 d) Security storage
 e) General storage space

10. Powerhouse, located outside of the enclosure fences

Even this brief summary gives an idea of the wide scope and complexity of a modern prison project thoroughly designed for the intense goal of rehabilitation.

The institution will occupy a tract of about 50 acres near the new Minimum Security Prison at Enfield, Connecticut.

Estimated construction cost, $12,500,000.

Clarence B. Litchfield, A.I.A., is the Partner-in-Charge of this project; Henry Ludorf, A.I.A. of Hartford, is Associate Architect and Hector E. Zazzi, R.A., is Job Captain.

Clarence Higginson Dies

General Higginson was one of the nation’s leading designers of industrial plants.

A graduate of Peekskill Military Academy, General Higginson joined the family concern in 1911 and later took special courses at Columbia University. He succeeded his father as head of the firm more than twenty years ago.

He was a member of the New York Chapter American Institute of Architects.

66 Beaver Street
(Continued from page 19)

in adjustment of the individual registers have no appreciable affect on the overall airbalance in the system. This type of system is one of the first of its kind. It is used for both heating and cooling. By its adoption, for example, there is no piping beyond the machine room. Partitions along the perimeter can be moved at will without affecting the system. The heating and air conditioning of the interior zones is accomplished by means of a high pressure air distribution system, controlled at each floor.

Enos and Sanderson
(Continued from page 16)

receiving by both truck and rail, processing, bin sorting to a conveyor belt, through packaging and to a delivery dock for local express service.

Communication between office and plant was effected with the inclusion of both an intercommunication system and a pneumatic tube system, so that all orders could be handled rapidly by remote control.

The building is small compared to the large units surrounding it in the neighborhood, and so strong colors of bright persimmon and turquoise porcelain were used to compete with the surroundings and give the structure advertising value.

Air conditioning, acoustical treatment and fluorescent lighting in the office added to the steel frame, heated warehouse, with bar joist roof and elevated concrete floor, was completed for $9.40 per square foot.
The new Olean City Building replaces an antiquated building formerly located on the same site, and consolidates the departments of City government under one roof. The building contains offices of the Mayor, City Clerk, Assessor, Water and Sewage, Engineer, Public Works, Building Inspector, Vital Statistics, etc., a Council Chamber which is planned as a dual-purpose room to serve as a Court for City and District Court Sessions, Police Station and Civil Defense Control Center.

The City Jail and Police Station is designed as a wing at the extreme east end of the building, and provides facilities for the Police Chief, Officers, Patrolmen and Men's and Women's cells. The police entrance is at the rear of the building, well shielded from public view.

A unique feature of the building is a Civil Defense Control Center located at the west end of the basement area. The Control Center is a self-contained unit with heavily reinforced concrete walls and ceiling for radiation fall-out protection. It contains an independent air-conditioning system which filters radioactive materials. The Center is planned to shelter 75 Civilian Defense workers for a period of two weeks on a self-sustaining basis.

The exterior of the building is faced with light buff brick, limestone, granite, aluminum and terra cotta trim. The west wall of the Council Chamber is decorated with a mosaic tile mural depicting the historical development of Olean.

General Construction .. $ 605,906.00
Plumbing ... 34,763.00
Heating and Air Conditioning .. 131,350.00
Electrical ... 62,279.00
Jail Equipment ... 18,990.00
Elevator ... 19,477.00

Total Construction Cost ... $ 873,765.00
Sq. Ft. Cost — $22.21
Bearing Capacity of Soils
(Continued from page 26)

ing capacity determined from the shear criterion is frequently designated as the ultimate bearing capacity and must be divided by a factor of safety, usually 3.

Various equations or formulas have been developed for the ultimate bearing capacity by investigators in the field of soil mechanics, such as Terzaghi, Prandtl, and Fellenius. Generally speaking these were derived by consideration of an idealized soil mass and by use of the concepts of elastic theory. Certain of these equations are applicable to both cohesive and cohesionless soils and to footings located either at or below the surface. An example of a formula of this type for a long footing on the surface of a cohesive soil is derived by Fellenius. This equation is

\[qu = 5.5 c \]

Where \(qu \) = ultimate bearing capacity
\(c \) = cohesion of soil

The shearing strength of cohesive soils is generally taken equal to the cohesion, which can be determined from unconfirmed compression tests on undisturbed samples in the laboratory. Obtaining a truly undisturbed sample for laboratory shear tests to determine the shearing strength of a cohesive soil presents somewhat of a problem.

The vane rotating auger for measuring shear strengths in the field has much promise, but more experimentation is necessary.

The shearing strength of cohesionless soils is a function of the angle of internal friction. This value can be estimated from boring data with a sufficient degree of accuracy so that shear tests on these soils are seldom required.

If the foundation job is not important enough to justify the laboratory or field determination of the shearing of clays, it is then recommended that the bearing capacity be estimated on the basis of the standard penetration test.

2. Penetration Tests

Several methods have been developed for determining the relative density of cohesionless soils or the consistency of cohesive soils. Most of these procedures are based on measuring the resistance of the soil against penetration of a device such as a sampling spoon used in the drilling operation or a penetrometer. Some of these penetration tests are:

a. Standard Dynamic Penetration Test
b. Kneas Drop Penetration Test
c. Apfel-Goodman Penetration Test
d. Cone Penetration Test

The first three penetration tests listed are dynamic in nature. The penetration test which is generally accepted as standard in the United States consists of a 140 pound hammer falling 30 inches to drive a 1.4 or 1.5 inch 1D, sampling spoon. This record is so important that it should be specified as a part of the work. Also, in view of the fact that considerable data relating soil density, consistency and strength to the standard penetration test have been collected, the use of other procedures is not desirable. Resistance data from this method of sampling can be used by a qualified person to estimate bearing capacities.

The A-G and the Kneas penetration tests are primarily intended as a means of shallow probing of excavations for footing foundation purposes to determine the possible presence of loose or soft material between test boring locations. Resistance data from these methods have also been analyzed to afford indications of bearing capacities for small projects involving relatively light loads.

The cone penetration test has been used rather successfully to determine pile cutoff points and merits further experimentation.

3. Load Tests

Load tests are expensive and therefore are justified only in large projects. Also, proper interpretation of these tests is necessary, and differences in size between the test area and the structure must be accounted for. Care must be taken in the conduct of load tests to insure that the location selected is representative of the area upon which the proposed structure is to be founded.

4. Building Codes

Almost all large cities have building codes in which bearing values are tabulated for various soil types. These serve a useful purpose when proper judgement is exercised but unfortunately these codes usually divert the attention of the designer from the fact that the bearing capacity depends on many factors other than soil descriptions. Allowances must be made for the shape and size of footings, water table effects, etc. Also, in many instances overly conservative values may be tabulated, yielding unusually high factors of safety.

Discussion thus far given relative to the bearing capacity of soils has been simplified and in closing it should be pointed out that this is a fairly complex subject. A second article on this problem will appear in the next issue. This article will cover settlement considerations in detail and will also present and discuss a typical city building code on bearing capacity of soils.
The use of brick is the perfect answer to today’s demand for naturally durable and beautiful building materials. And they offer an almost unlimited range of colors and textures to fit any decorative scheme.
$8,500,000 LOAN ASSURES CONSTRUCTION

Announcement of completion of financial arrangements was made at a press conference today in the Cushman & Wakefield, Inc., offices at 232 Baronne. Present for the announcement were L’Huillier S. Sheaff, president, Cushman & Wakefield, Inc., New York rental and management agent for the building; attorney Philip E. James, representing John J. Mack noted Chicago real estate developer and sponsor of the project; and Clarence A. Legendre, president of Standard Mortgage Corporation, New Orleans, which is the mortgage loan correspondent for the Metropolitan Life Insurance Company for the State of Louisiana.

“Completion of the financial arrangements assures construction of the building,” Sheaff said. “Plans are now being completed by the Chicago architectural firm of Shaw Metz and Associates and will be submitted to a select list of contractors in late November. It is expected that a contractor will be chosen by January 1, 1960, and demolishing of existing structures on the site will begin shortly thereafter.”

The structure will be built on the lake side of Baronne in the square bounded by Gravier, Dryades and Common. It will front 158 feet along Baronne and 109 feet along Gravier.

In New York, Norman Carpenter, vice president of Metropolitan Life, said the “loan of more than $8,500,000 indicates the confidence our company has in the future growth and development of New Orleans. The building is located in the very heart of New Orleans’ financial and business district. Based on our studies of its location and the preliminary plans as developed by the architects, we feel the building will meet the demand for Class A office space in the heart of the city’s business and financial area.”

Sheaff said the building should help meet a major part of the present need for Class A office space in the core of the city’s business district. This need was expressed earlier this year in a study made by James C. Downs, Jr., chairman of the Board of the Real Estate Research Corporation of Chicago, for the central area committee of the Chamber of Commerce.

“At that time, Downs reported his calculations indicate a present market for an additional 400,000 to 500,000 square feet of office space in the core area and a continuing expansion of demand for office space at the rate of nearly 100,000 square feet per year,” Sheaff said.

“The study said that Class A office space, such as will be provided in the 225 Baronne building,
will help reinforce New Orleans' position as an administrative and financial center of the South Central region," Sheaff said. "The Downs report pointed out that more Class A office space should be provided for national and regional firms which are now going to other cities or moving out of the business district of New Orleans," he said. "We feel this building will help attract major corporations to the city, since they will be assured of the finest of office space."

Editorial Features For 1960

JANUARY - FEBRUARY — Featuring
- Directory Issue containing the complete membership list of the New York State Association of Architects.

MARCH - APRIL — Featuring
- Architecture of Long Island and Staten Island.

MAY - JUNE — Featuring
- Education Buildings: Elementary, Secondary, and Higher Education.
- Legislative Report Issue.

JULY - AUGUST — Featuring
- Modernization of Commercial Properties: Retail Stores, Office Buildings, and Manufacturing Plants.

SEPTEMBER - OCTOBER — Featuring
- Buildings Representative of Members of the Syracuse Society, hosts for the 1960 Convention.
- Convention Issue.

NOVEMBER - DECEMBER — Featuring
- Urban Renewal, Hospitals and Churches.

RIGHT ON THE SITE

Member American Society for Testing Materials
SUB-SURFACE Exploration—Soil and Concrete Testing

EMPIRE SOILS INVESTIGATIONS, INC.

OVERBURDEN & ROCK CORE DRILLING
AUGER BORING—LOAD TESTS—TEST PITS
FIELD AND LABORATORY ANALYSIS

No. 17 Wall Street, Dryden, N. Y. • Phone: Viking 4-3194
If You're Located In: • ALBANY • BINGHAMTON • BUFFALO • ELMIRA • JAMESTOWN • ROCHESTER • SYRACUSE • UTICA — Dial Operator, Ask For ENTERPRISE 2387

39 / EMPIRE STATE ARCHITECT
"Precast Concrete
As The Fourth Dimension"

by Arch Albert
Supervising Architect, St. Louis Board of Education

The above title may not make too much sense at first glance, and no one will argue the fact that a building is so long, so wide and so high. Those are the three, but where does the fourth come in? Was there ever a time when a client did not ask, "When will my building be completed?" And the assurance as to "when" is seldom justified by performance.

So, we feel that, because "time" is such an important factor, the building equation should read, "Length by Width by Height by Time." The first three will remain constant but the fourth is an illusive one and subject to any number of conditions. However, discarding weather, strikes and the like, we can do something definite — or shall we say concrete— make it "precast concrete."

We certainly would not be justified in making the above assertion if we had nothing to back it up. We think we have. On one of our buildings now under construction, we have good reasons to believe that we may clip as much as 83 calendar days from the time schedule submitted and 122 calendar days from the time required to complete a building of similar dimensions.

The columns and beams which are precast at the plant form the skeleton construction. The erection is simple and rapid.

Then the floor and roof slabs are laid. For the floors, spans 26 feet, we use the 10-inch Flexicore slab and for the roof areas the 8-inch slab. After grouting, we have a fairly weather tight construction.

Now, contrast this condition with a poured concrete job. Here, we have a maze of formwork which has to remain in place until the concrete is cured. With precast construction, the entire floor areas are free and uncluttered, with nothing in the way of the mechanical trades or the laying out of partitions. If rain halts outside brickwork, the bricklayers can move to the inside on masonry partitions.

Other considerations were responsible for choosing Flexicore precast floor and roof construction. One is that with a 5½-inch special cement finish, the overall thickness from floor to ceiling below is only 10 5½ inches, thus reducing the building height. Also, the bottom of the slab is smooth, and, after the joints are caulked and painted, they present a very acceptable finished ceiling.

Another consideration, to us the most important, is the use of the 6-inch diameter cores for the return air in the heating and ventilating system. Perhaps a brief description of this system would clarify the association between the heating and ventilating and the structural.

We use a high-velocity dual-duct system with air being supplied to the classrooms through two ceiling type air diffusers in each room. The ducts and mixing boxes are held close to the ceiling and housed in an acoustic grid enclosure which provide a major portion of the noise reduction. The air volume is always constant and the temperature in each room is controlled by an individual thermostat. Beneath the under-window shelving which extends the full length of the room, the return air passes through continuous registers and drops into the cores of the slabs. It is then carried through the floor system across the room to the main return air duct concealed in the space above the corridor ceiling. The entire system is designed to accommodate cooling facilities if and when requested.

Thus we see that with the use of precast materials, including the floor and roof slabs, we accomplish a reduction in total floor thickness; provide a vehicle for the heating and ventilating system; and last, but surely not least, reduce the "time" required to complete the building.

We believe in the "Fourth Dimension".

Problems With Temporary Heat

With the widespread use of Automatic Heating in public buildings, certain problems in the use of "temporary heat" have become acute.

The first problem is to clearly define "Temporary Heat." The words bring to the minds of "old Timers" the old coal fired job with cast iron radiators. Some of these were strategically placed in rooms being plastered, and removed again when finished. The temporary attendant was occupied by hand firing coal into the boiler. He was usually recruited from the "common labor" group, and spent the nights on a cot, to awake at intervals to stoke the boiler.

Today, under Union Rules, a journeyman steam fitter must be put on an eight hour shift, and given time and a half each night plus another similar handout to his buddy who completes the night shift. But since (Continued on page 43)
Names... IN THE NEWS

ADVISORY COUNCIL VISITS SCHOOL OF ARCHITECTURE

The Cooperating Committee of the School of Architecture of Syracuse University met in an all-day session at the university Friday, Oct. 23 to inspect the plant and confer with the School's staff.

The Cooperating Committee, which serves as an Advisory Council, makes recommendations for the improvement of the School. Of special concern to the committee were the curriculum and facilities of the School of Architecture.

BUILDING AWARDS COMPETITION ANNOUNCED BY QUEENS C. OF C.

The Queens Chamber of Commerce has announced complete rules and regulations for its 1959 Annual Building Award competition in which owners, architects and builders will compete for plaques and other prizes for "outstanding construction" in Queens during the past year.

Edward A. Tully of Flushing, president of Tully & DiNapoli, Inc., Flushing, one of New York City's largest contracting firms, is chairman of the Building Awards Committee. President of Tully & DiNapoli since its incorporation in 1924, he has spent his entire life in the contracting business.

Inaugurated by the Chamber in 1928, the Building Awards contest is open to owners, architects and builders of new structures.

The Chamber invites owners, architects and builders to submit entries in the 1959 annual competition for any buildings substantially completed during the period from November 1st, 1958 to October 5th, 1959. Fifteen classes of buildings are to be considered by the judges. Any building is eligible for consideration. There is no entry fee of any kind.

Entries must be received not later than October 14th, 1959, addressed to Building Awards Committee, Chamber of Commerce of the Borough of Queens, 24-16 Bridge Plaza South, Long Island City.

Owners of distinctive buildings will receive plaques at the 47th Annual Dinner of the Queens Chamber at the Hotel Commodore, Manhattan, on Tuesday, December 1st. Where honorable mentions are awarded, a scroll will be presented. Architects and builders will also receive awards.

Building Awards selections will be made by Chairman Tully and his committee consisting partially of:

- Assistant Chairman Carl H. Salminen, Flushing architect; and Alfred H. Eccles, Raymond Irnre representing Joseph Cafiero, Franz J. Meier. Guerino Sailer, all of Long Island City, all of whom are architects;
- Simeon Heller, Flushing architect; Benjamin Braunstein, Jamaica architect; Ingram S. Carnor, Forest Hills architect; Richard M. Adler, Manhattan architect; William L. Savacool, Elmhurst civil engineer and chairman of the Chamber's Borough Planning Committee; Alfred N. Warwick, Long Island City contractor-developer and chairman of the Chamber's Aviation Committee.

Some of the honorary judges assisting in the selection of prize-winning buildings are:

- Peter J. Reidy, P.E., Commissioner of Buildings, City of New York; L. Bancel LaFarge, President of New York Chapter of American Institute of Architects; Charles M. Spindler, President of the Architects Council of New York City; W. Thomas Schaadt, President of the Long Island Chapter of the American Institute of Architects; Stanley H. Klein, President of Queens Chapter of American Institute of Architects.

LUZON, as exotic-looking as its name. So closely resembles delicately woven burlap you must touch it to realize it's another exciting VICRTEX V.E.F. * fabric - so practical for wallcovering and upholstery.

LUZON is just one of over 24 Vicrtex three-dimensional patterns in enduring, practical vinyl; in hundreds of decorator colors.

See your decorator or architect.
in New York: Vicrtex Sales Corp., 49 East 53rd St., N.Y. 22

*vinyl electronically fused
NEW PRESIDENT A.W.I.
ROBERT HOE, JR.

Robert Hoe, Jr., of the Hoe Corporation, Poughkeepsie, N. Y., was elected president of the Architectural Woodwork Institute as that group concluded its October convention in Chicago.

AWI is an association of millwork manufacturers and their suppliers. Membership exceeds 500 and is drawn from the U. S., Canada and Australia. The association had its start six years ago in Chicago with 63 members.

Mr. Hoe has been a member since 1954 and has served this past year as first vice president.

RIPPETEAU ELECTED DIRECTOR A.I.D.A.
Darrell D. Rippeau, Watertown, N.Y., Director of the Central New York Chapter, A.I.A. and a member of the New York State Association of Architects, was elected a director of the New York State Association of Industrial Development Agencies at the annual meeting of the A.I.D.A. in Rochester, N.Y., October 28. Mr. Rippeau is a partner in the firm of Sargent - Webster - Crenshaw and Foley.

GEORGE BAIN CUMMINGS COMMENDED FOR WORK

Just before the closing of the Convention on October 10th, the following motion was made by Thomas J. Imbs of the Buffalo Western New York Chapter, AIA and seconded unanimously:

"That this Convention recognize the splendid work of past president of the AIA, Mr. George Bain Cummings, as a State Building Code Commissioner. His work has been scholarly and we and other citizens of the State of New York owe him a debt of gratitude for the services of this fine architect and gentleman."

The motion was adopted by acclamation.

EASTERN N.Y. CHAPTER ELECTS OFFICERS

The following have been elected to serve as officers of the Eastern New York Chapter of the American Institute of Architects for the year 1959-1960.

President, Frank J. Matzke; Vice President, Charles A. Schade; Treasurer, E. Gilbert Barker; Secretary, Daniel Kliger; Directors: Bailey M. Cadman, John J. Quackenbush, J. Charles Cataldo; Director of State Association: Bailey M. Cadman.

D.E.W. LINE ARCHITECTS MOVING DECEMBER 31ST

La Pierre, Litchfield & Partners, Architects for the extraordinary buildings erected North of the Arctic Circle to house Distant Early Warning radar equipment, and for many correctional institutions in various parts of the country, are moving on December 31st, from 292 Madison Avenue to more commodious quarters on the 21st and 22nd floors at 8 West 40th Street.

IMPORTANT NEWS for Architects and Specifiers

Noncombustible Standard met by Lexsuco Vapor Barrier and Lexsuco Adhesive R907T. Underwriters' Label granted.

- Underwriters' Laboratories, for the first time, has tested and accepted a roof vapor barrier and adhesive. Extensive tests proved that the Lexsuco Vapor Barrier and Lexsuco Adhesive R907T meet the noncombustible standards established by the National Fire Protection Association and the National Board of Fire Underwriters.

Assured Fire Protection. With or without a vapor barrier, the Lexsuco system completely eliminates combustible asphaltic materials between the roof deck and roof insulation. When you specify Lexsuco Adhesive R907T with the Lexsuco Vapor Barrier, or the adhesive only, over metal roof deck, you get assured building fire protection.

More for Your Roofing Dollar. Lexsuco products give you far more value for the money you invest. When you put Lexsuco products in your base specifications, subject to competitive bidding, you pay little or no more for the extra protection and value of these noncombustible materials than you would for combustible materials.

Lower Insurance Premiums. With Lexsuco roof constructions you may receive lower insurance rates, and this is a permanent saving, repeated year after year. Both Underwriters' and Factory Mutual have tested and accepted the Lexsuco materials. Lexsuco Roof Constructions are also recognized by Factory Insurance Association and many State Rating and Inspection Bureaus. Investigate possible insurance savings on all your projects.

Engineered Application. By removing much of the human element the Lexsuco system of engineered mechanical application assures a more thorough, uniform application and more dependable construction.

Better Roof Construction. On all roof decks—metal, poured, precast or wood—you get economical and dependable securrement with Lexsuco Adhesive R907T. Where it is necessary to protect the insulated, built-up roof from moisture migration from within the building, you get proven protection with the Lexsuco Vapor Barrier.

Write us for complete information and the Underwriters' Report on Lexsuco Products.
PROBLEMS WITH TEMPORARY HEAT

(Continued from page 40)

the automatic plant requires electricity to operate it, an electrician attaches himself to the project. Thus during the working week, if temporary heat is required around the clock, we have a cost of $144.00 per night, and when Saturday comes up we have a charge of $216, and Sunday the tab is $288.00. These figures are without a Contractor's markup, and are roughly current in this territory.

If the fuel is gas or oil, it will be relatively small in cost as compared to the cost of the attendance. Quite frequently the cost of fuel is specified as being by the Owner. This commonly is accepted without protest. But when the attempt is made to have the owner pay for temporary attendance, he is staggered by the amounts.

The present day General Contractor is becoming equipped with portable heaters, which he can place where he wishes them and have one of his own men care for them. Some have endeavored to use gas fired heaters. These produce a large amount of water vapor, which is apt to freeze on the windows and outside walls. Care should be taken in the specifications to exclude heaters which consume bottled gas, if an excess of moisture in the building will be detrimental.

The currently unsettled steel strike will contribute to many delays in construction during 1960, which will tend to prolong the usual summer operations into the winter. If the work is to continue, some form of temporary heat will be required. The writing of temporary heat specifications will deserve especial attention, and should be amply described with clearly defined limits of responsibilities. When tempted to "put it in the heating," be prepared for some robust charges. If passed on to the General Contractor, make sure that he is limited to the use of proper equipment. Indeed there are problems in Temporary Heat.

STATEMENT OF OWNERSHIP

Statement of the ownership, management, and circulation required by the act of Congress of August 24, 1912, as amended by the acts of March 3, 1933, and July 2, 1946 (Title 39, United States Code, Section 233) of Empire State Architect published 6 times a year at Rochester, New York for Oct. 1, 1959.

1. The names and addresses of the publisher, editor, managing editor, and business managers are: Publisher, Martin Q. Moll Publications, Inc., 35 Scio Street, Rochester 4, N. Y.; Editor, Warren N. Wittek, 819 Forest Ave., Buffalo, N. Y.; Managing Editor, Thomas O. Morin, 133 East Ave., Rochester 4, N. Y.; Business Manager, Martin Q. Moll, 35 Scio St., Rochester 4, N. Y.

2. The owner is: (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding 1 per cent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual member, must be given.) New York State Association of Architects, Inc., 441 Lexington Ave., New York 17, N. Y.

Haws Model HWT-13

CLEAN from every angle...

HAWS brilliant new wall mounted electric water coolers are a clean break with tradition! Compact design hugs the wall - leaving floor area clear! Crisp, clean styling is crowned by gleaming stainless steel - with plumbing and electrical unit completely enclosed. HAWS "clears the deck" for uncluttered maintenance ease and shining clean floors. This innovation in water cooler concept and design scores a clean sweep for HAWS - leader in the field since 1909! Find out about HAWS' complete line of drinking facilities. See HAWS Catalog in Sweet's Architectural File or write for your copy today.

HAWS DRINKING FAUCET CO.
1441 Fourth Street
Berkeley 10, California

WRITE FOR DATA ON HAWS CAFETERIA AND RESTAURANT WATER COOLERS

Season's Greetings
And our every wish for a happy and a prosperous NEW YEAR
Publication Committee
The wonderful world of **Block**!

Leading architects have created many new Concrete Masonry wall patterns from units now available from the industry . . . units such as the Hi-Lite Block shown above. Concrete Masonry walls provide fire-safe, textured beauty of dramatic contrasts. They give you countless numbers of wall patterns, are so easy to maintain.

Specify exciting Concrete Masonry Units on your new building projects.

NEW YORK STATE Concrete Masonry ASSOCIATION, INC.

HEADQUARTERS OFFICE: 1 NIAGARA SQUARE, BUFFALO 2, N.Y.

Copyright 1959 New York State Concrete Masonry Association, Inc., Buffalo, N.Y.

MEMBERS OF THE NEW YORK STATE CONCRETE MASONRY ASSOCIATION

<table>
<thead>
<tr>
<th>Location</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFRED</td>
<td>Southern Tier Concrete Products Co.</td>
</tr>
<tr>
<td>AUBURN</td>
<td>Auburn Cement Products Co.</td>
</tr>
<tr>
<td>BALDWIN</td>
<td>Nassau Concrete Products Corp.</td>
</tr>
<tr>
<td>BINGHAMTON</td>
<td>Bowen Building Block & Supply Co.</td>
</tr>
<tr>
<td>BROOKHAVEN</td>
<td>Picone Bros.</td>
</tr>
<tr>
<td>BUFFALO</td>
<td>Anchor Concrete Products, Inc.</td>
</tr>
<tr>
<td>ELMIRA</td>
<td>Elmira Block, Inc.</td>
</tr>
<tr>
<td>FARMINGDALE</td>
<td>Picone Bros. of Suffolk, Inc.</td>
</tr>
<tr>
<td>GLENS FALLS</td>
<td>Dempsey's Concrete Products</td>
</tr>
<tr>
<td>HAMILTON</td>
<td>Cassill Concrete Products, Inc.</td>
</tr>
<tr>
<td>HICKSVILLE</td>
<td>Inland Building Block Co.</td>
</tr>
<tr>
<td>INWOOD</td>
<td>A. Pollara & Sons</td>
</tr>
<tr>
<td>JAMESTOWN</td>
<td>Hildom Cinder Block Co.</td>
</tr>
<tr>
<td>LOCKPORT</td>
<td>Frontier Dolomite Concrete Products Corp.</td>
</tr>
<tr>
<td>NEW YORK CITY</td>
<td>National Brick Corp., Astoria</td>
</tr>
<tr>
<td>ROCHESTER</td>
<td>Conmac Builders Supply Corp.</td>
</tr>
<tr>
<td>SCHENECTADY</td>
<td>Dagostino Building Blocks</td>
</tr>
<tr>
<td>SMITHTOWN</td>
<td>Smithtown Concrete Products Corp.</td>
</tr>
<tr>
<td>SYRACUSE</td>
<td>Barnes & Cone, Inc.</td>
</tr>
<tr>
<td>THOROLD, ONT.</td>
<td>Thorold Concrete Block Co., Ltd.</td>
</tr>
</tbody>
</table>
STEEL provides a plus

STEEL PLUS! Only steel gives you these added advantages. SPACE ... more wide-open, usable space. SPEED ... goes together fast. ECONOMY ... rapid erection cuts cost. VARIETY ... adaptable to almost any type of structure. SAFETY ... rugged strength and endurance. Add them up ... and SPECIFY STEEL!

NEW YORK STATE STEEL FABRICATORS ASSN. INC.

ALBANY, N. Y.
James McKinney & Son, Inc.

BINGHAMTON, N. Y.
Binghamton Steel & Fabricating Co., Inc.

BUFFALO, N. Y.
Ernst Construction Corp.
August Feine & Sons Co.
Lackawanna Steel Construction Corp.
R. S. McManus Steel Construction Co., Inc.

CORRY, PA.
Rogers Structural Steel Co., Inc.

ERIE, PA.
Electro-Weld Manufacturing Co.

ROCHESTER, N. Y.
F. L. Heughes & Co., Inc.
Leach Steel Corp.

ROME, N. Y.
Rome Iron Mills, Inc.

SYRACUSE, N. Y.
Empire Structural Steel Fabricators, Inc.
Smith & Caffrey Co.
Syracuse Engineering Co., Inc.

TROY, N. Y.
West Side Structural Co., Inc.

UTICA, N. Y.
Utica Steam Engine & Boiler Works
LARGE SIZE TILES FOR LARGE WALL AREAS

The larger sizes in American-Olean ceramic tile offer unique advantages to architects and designers looking for new ways to add interest to large wall areas. As the two sketches shown here illustrate, these larger sizes can be used to achieve desired scale effects as well as to create decorative treatments that are fresh and distinctive.

For complete information and many other suggested applications, write for American-Olean's new Color Booklet "New Interiors with Large Size Tile".