AUGUST • 1951
Vol. IX No. 8

The Danger of Survival
The Architect in Practice
A.S.O. Architectural Competition
1951 Roster of Architects Registered in Ohio
Columbus Chapter News
House Bill No. 484

1951 Roster Edition
SIMPSON ACOUSTICAL Tile helps keep it quiet in the new Truett Memorial Hospital in Dallas, Texas. This fine acoustical material was selected to control noise in the dining room, corridors, elevator lobbies, nurses’ stations, operating rooms and therapy rooms because of its high sound absorption and attractive washable finish. Simpson Acoustical Tile is “keeping it quiet,” too, in many other hospitals, stores, offices, libraries, schools, restaurants and homes throughout the country.

This sound conditioning material is preferred by architects and owners everywhere. Only Simpson offers all five outstanding features listed below. For better sound conditioning specify Simpson Acoustical Tile.

SIMPSON LOGGING COMPANY
Sales Division, 1065 Stuart Building, Seattle 1, Washington

Only Simpson Has All Five!
1. Washable Finish
2. Highest Sound Absorption
3. Hololokore Drilled Perforations
4. Finished Bevels
5. Most Beautiful and Efficient

FOR MORE INFORMATION SEE—
THE MID-WEST ACOUSTICAL & SUPPLY CO.
20001 West Lake Road
ROCKY RIVER 16, OHIO
Phone EDison 1-7100

BRANCH OFFICES AND WAREHOUSES

AKRON
70 Cherry Street
JE 7934

COLUMBUS
1550 W. Mound Street
RA 8497

DAYTON
16 Eaker Street
MI 1643

SPRINGFIELD
264 Dover Road
4-4503

TOLEDO
1605 Hoag Ave.
FA 7402

Truett Memorial Hospital, Dallas, Texas. Thomas, Jameson and Merrill, architects.
Simpson Acoustical Tile installed by the Blue Diamond Company, Dallas

Simpson ACOUSTICAL TILE
For Better Sound Conditioning
Here At Last
NATIONALLY ADVERTISED
MURRAY GAS RANGES

Made by the manufacturer of over 2,000,000 major home appliances (for more than a decade) these ranges have the very latest features, the finest styling and long-life so important today to every home-maker!

And there’s a model to suit your kitchen space . . . just fit your budget! See them now! The big 40” long models, the 36” wide models, the 20” wide unit with extra-large oven for four surface burners!

Outstanding Features!

✓ Beautifully designed one-piece top and waterfall front. No burner-bowl or front edge seams to clean!
✓ Robertshaw precision oven thermostats. Interval timers, on top models, built into fine electric clocks.
✓ Giant ovens, fully porcelain enameled, have rounded, easy-to-clean corners. Model shown has non-fogging window!
✓ High, smokeless broiler that swings out and up . . . extra-convenient, extra-large!
✓ Plenty of storage space. Super-rigid drawers glide on silent nylon rollers!
✓ All outside surfaces completely coated with supreme quality, acid and stain resistant Titanium porcelain enamel!
✓ Fully Fiberglas insulated to keep your kitchen cool; utilize all the heat inside the oven for quick, economical cooking!
✓ Models available with divided or grouped burners. Every range can use any type gas supply!

Beautiful, style-matched Kitchen Cabinets by MURRAY

For the perfect finishing touch! Most any shape and size to suit your kitchen. Plenty of handy drawer and cupboard space, adjustable shelves, semi-concealed hinges, recesses for comfortable toe and knee space!

Wall cabinets have provision for fluorescent lighting. Base cabinets are topped with rugged Vinyl plastic. Luxury cabinet sinks in 66”, 54”, 42” long sizes. Silent brass-runner drawers; sound-insulated doors!

MILMAR INC.
1805 East 40th St. • Phone UTah 1-5161
Northern Ohio Distributors
OFFICIAL MONTHLY PUBLICATION OF THE
ARCHITECTS SOCIETY OF OHIO, INC.
Association Member of the American Institute of Architects
Accepted under section 34.64 P. L. & R. authorized

Volume IX
August, 1951
Number Eight

OFFICERS FOR ARCHITECTS SOCIETY OF OHIO, INC.
Carl C. Britsch, President, 531 Nicholas Bldg., Toledo 4
William B. Huff, Ist V. Pres., 1050 N. Main St., Akron 10
Rollin L. Rosser, 2nd V. Pres., 410 West 1st St., Dayton 2
John W. Hargrave, 3rd V. Pres., 3994 Montgomery Rd., Dayton, Ohio
Horace W. Wachtler, Sec., 1220 Madison Ave., Toledo 2
C. Melvin Frank, Treas., 43 West Long St., Columbus 15
George S. Voinovich, Past Pres., 1101 Stainless Bldg., Cleveland 15

STANDING COMMITTEES
PUBLIC RELATIONS—George S. Voinovich, Chairman, Columbus; John W. Hargrave, Cincinnati; Wm. E. Lynch, Dayton; E. W. Dykes, Canton; John P. Macelwane, Toledo.
LEGISLATIVE COMMITTEE—The Executive Committee.
BUILDING CODE—C. Melvin Frank, Chairman, Columbus; Michael B. O'Shea, Toledo; Harold W. Goetz, Middletown.
MEMBERSHIP—John W. Hargrave, Chairman, Cincinnati; Russell R. Peck, Cleveland; George M. Foulks, Canton; Richard L. Tully, Columbus; Fred M. Morris, Toledo.
ARCHITECT'S REGISTRATION—Ramsey Findlater, Chairman, Cincinnati; Carl F. Guenther, Cleveland; Max G. Mercer, Yellow Springs; Ralph C. Kempton, Columbus; Charles Firestone, Canton; Harold H. Munger, Toledo.
EDUCATION—Wm. Boyd Huff, Chairman, Akron; Gilbert Coddington, Columbus; Francis Bacon, Cleveland; George Roth, Cincinnati; Thaddeus B. Hurd, Toledo.
ARCHITECTURAL PRACTICE—Rollin L. Rosser, Chairman, Dayton; George Marshall Martin, Cincinnati; W. Frank Scott, Cleveland; C. Curtis Insho, Columbus; John Suppes, Akron; Horace W. Wachtler, Toledo.
LECTURE SERVICE TO PUBLIC SCHOOLS—Max Mercer, Chairman, Yellow Springs (committee to be appointed by chairman).
CHAPTER DIRECTORS OF ARCHITECTS SOCIETY OF OHIO, INC.
Harold W. Goetz, Cincinnati, W. E. Linch, Columbus; Carl F. Guenther, Cleveland; Max G. Mercer, Dayton; Geo. M. Foulks, E. Ohio; M. Dewitt Grow, Toledo.

DUAL GLAZING AND WEATHERSTRIPPING
— All Pella Casements are dual glazed to insulate against winter cold and summer heat. Stainless steel weatherstripping around the sash perimeter eliminates drafts.

WOOD FOR BEAUTY — STEEL FOR STRENGTH — Welded, rust-proofed steel inner frame is lined with clear western pine.

STRENGTH
— Many Thermopane sizes are available for Pella casements than for any other wood casement windows! Thermopane or Twindow Insulating Glass also available in standard sizes to fit most Pella picture windows.

DOUBIE-ACTING HINGES
— Double plate hinges screw solidly to rigid steel frame. Hinge plates cover 6" of Pella wood sash at top and bottom. Windows open to 90° angle, flush with jamb.

WORM-GEARED LEVERS
— Precision worm gears open and close sash smoothly when operating crank is turned.

EASY OPERATING SASH LOCKS
— Powerful leverage possible with Pella sash locks makes tight seal against drafts, moisture and intruders.

THE ROLSCREEN COMPANY
Pella, Iowa

All these Efficiency Features

with Beautiful

Pella

CASEMENT WINDOWS

DUAL GLAZING AND WEATHERSTRIPPING
— All Pella Casements are dual glazed to insulate against winter cold and summer heat. Stainless steel weatherstripping around the sash perimeter eliminates drafts.

WOOD FOR BEAUTY — STEEL FOR STRENGTH — Welded, rust-proofed steel inner frame is lined with clear western pine.

STRENGTH
— Many Thermopane sizes are available for Pella casements than for any other wood casement windows! Thermopane or Twindow Insulating Glass also available in standard sizes to fit most Pella picture windows.

DOUBIE-ACTING HINGES
— Double plate hinges screw solidly to rigid steel frame. Hinge plates cover 6" of Pella wood sash at top and bottom. Windows open to 90° angle, flush with jamb.

WORM-GEARED LEVERS
— Precision worm gears open and close sash smoothly when operating crank is turned.

EASY OPERATING SASH LOCKS
— Powerful leverage possible with Pella sash locks makes tight seal against drafts, moisture and intruders.
Within the overall responsibility of the Architect and the Contractor is the design and erection of THE STEEL.

Our major objective throughout the broad field of engineered construction is to handle this job in a manner that repeatedly lays this entire responsibility in our lap.

From your standpoint, the whole steel framing job is wrapped up in a one-source contact.

You have a staff of construction engineers ready to pitch in and detail your framing plan—engineers who can usually reduce costs with standardized members and control fabrication of each unit—direct to the job.

Men, long in the construction industry, like the way Macomber handles THE STEEL. Call us.
Another new hospital selects

AMERICAN-Standard Plumbing Fixtures:

OUR LADY OF MERCY HOSPITAL,
COLDWATER, OHIO

No wonder American-Standard products are so popular with hospitals. They're scientifically designed, smoothly styled, sturdily constructed . . . easy and economical to maintain. And there's a complete line of both heating equipment and plumbing fixtures to choose from. Ask your heating and plumbing contractor about quality American-Standard products when you build or remodel.

This genuine vitreous china MEDICINE SINK in a nurses' station of Our Lady of Mercy Hospital is easy to clean, hard to mar, permanently non-absorbent. The deep-bowl fixture has integral overflow and rugged iron supporting brackets.

This SURGEONS' LAVATORY, with instrument trays, is made of genuine vitreous china for permanent good-looks, ease of cleaning. It's easy to keep area surrounding the wall-supported fixture clean and sanitary, too. For extra convenience, it has elbow-control Chromard fitting.

Made of cast iron, heavily coated with acid-resisting enamel, this PACK TRAY AND SINK will take a lot of hard usage. Combination faucet with swinging spout facilitates use. Furnished with durable iron wall hangers. The SERVICE SINK at right is made of genuine vitreous china.
do magic after one easy lesson!

Now you see an activities room—a gym—an auditorium—then

tables and benches roll from the wall on mark-proof rubber casters in units that seat 20 students each—one unit every 47 seconds. In-Wall space saving equipment for new and existing buildings is the very logical answer to high construction costs and increased enrollments.

MANUFACTURED BY
SCHIEBER MANUFACTURING CO.
12740 Burt Road, Detroit 23, Mich.

OHIO REPRESENTATIVES
OHIO SCHOOL EQUIPMENT CO.
Canfield • Cincinnati • Columbus
RUNNELS BUILDERS PRODUCTS
Richmond, Ind.
ADAM LOOS CO.
Toledo, Ohio

ACTIVITIES AREA TO LUNCHROOM FOR 200 IN 8 MINUTES

ARCHITECT
1951 Officers of the Architects Society of Ohio, Inc.

WILLIAM B. HUFF
First Vice President

CARL C. BRITSCH
President

ROLLIN L. ROSSER
Second Vice President

JOHN W. HARGRAVE
Third Vice President

HORACE W. WACHTER
Secretary

C. MELVIN FRANK
Treasurer

GEORGE S. VOINOVICh
Past President
The Danger of Survival

By MR. CHARLES LUCKMAN, A.I.A.

For a time Mr. Luckman forsook the architectural profession, during which time he was president of Lever Bros. Co., one of the country's leading soap and detergent producers. He has now returned to his first love and this is an address he gave at the Michigan Building Industry Banquet, the concluding event of the 37th Annual Convention of the Michigan Society of Architects.

For emphasis, may I state at the outset, my profound respect for the master planning work which has been done for the unborn cities of tomorrow.

However, the tragedy of today lies in our apparent willingness to await the total destruction of atomic war, before we accept our obligation to replan and rebuild our existing cities. Now of course you can interrupt me to say that "some master plans have been made for some of our present cities." I know. The vaults are filled with master plans which are gathering dust because, for the main part, they were conceived in a vacuum of unreality. They were based on what the planner felt a city should be, instead of what it could be.

Those plans could be fruitful only if the cities are oblitered by war. Is that to be the limit of our genius? Perfection is always a desirable goal but, in this case, the opportunity for a perfect plan exists only if through voluntary or involuntary means, the torch of dynamite is applied to our existing cities. Perfect plans require perfect circumstances. Therefore, unless we have atomic war, the layers of dust will continue to accumulate on the perfect plans.

Can we not, instead, truly show our genius? A realistic approach acknowledges that the cities exist; they are tangible; they are here. Every city has much that is good, and they are functioning today—granted, in some ways good and in some ways bad. But what does a doctor do with a patient who is sick? He diagnoses; he applies therapy; he effects a cure. When he is through, he has the same patient with the same personality—only healthy instead of sick. The disease has not been permanent standard of life will be remedied.

However, in spite of the existence of many conscientious city planning associations, and of trained specialists in the planning and administration of towns, there prevails a shocking lack of direction and an inability to remove the most obvious inconveniences. Thus far we have been unable to save our present cities from becoming simply a vast acreage of hot asphalt and cold stone.

From 1870 on, the great cities developed continuously toward what they are today—unservicable instruments. No one knows when this tremendous waste of time and health will be cut down; when this pointless assault on the nerves will end; when this failure to achieve a dignified standard of life will be remedied.

But I think we can all agree that the city today is profoundly menaced in all countries, and without exception not by any outside danger, but from an evil within itself. This is the evil of the machine.

Because of the confusion of its different functions, its growing mechanization, the omnipresence and anarchy of the motor car, the city is at the mercy of industrial machines. If it is to be saved, its structure must change. This change, which will be forced by machinery just as in other days it was brought about by implements of war, is inevitable.

The question then arises whether the large city as it has been inherited from the 19th century, with its chaotic intermingling of functions, should not be allowed to die.

On this question the division is sharp and clear, especially in the United States, where mechanization is so much more advanced than in Europe. One opinion is that the metropolis cannot be saved and must be broken up and eliminated. The other, that instead of being destroyed, the city must be transformed in accordance with the life and genius of our times.

Between those who believe that the city will disappear, and those who try to preserve it by changing its structure, there is no disagreement on the point that the intricate disorder of the present day cannot continue, that man cannot live forever with the conditions which stimulate ulcers.

From my point of view, cities cannot simply be dis-
Specify Ventilation from a

COMPLETE
Attic Ventilator Line

Specify and use the type of attic ventilation that meets the conditions of your problem, including both practical and esthetic factors. You can do this when you rely on the Complete Donley Line of Attic Ventilators, each type and size rated as to square inches of free opening.

1. The Tri-Vent, least conspicuous, draws warm air from top of attic space. Four shapes fit many roof pitches.

2. The staple, quick selling, rectangular ventilator. Economical and easy to apply.

3. Quarter round ventilators, furnished in pairs to be installed where chimney divides gable end.

4. Half round ventilator, imparts distinction to colonial type of home.

5. Horizontal rectangular ventilator. Often employed under eaves, where floor arrangement permits. Use for angle spaces back of partitions.

6. Roof ventilator, for sloping surfaces, baffled to exclude wind swept rain or snow.

Every Donley Ventilator is strongly fabricated from steel of substantial weight, with protective coating of baked paint. All are notably easy to install and adequately screened against insects. For scores of other Donley products, consult our catalog in Sweet's.

THE DONLEY BROS. CO.
13972 Miles Ave. • Cleveland 5, Ohio
We can take it for granted that the school gives the students about as comprehensive a program as they can expect in the time allotted.

I believe there is a definite advantage in students interspersing their school work with work in an architect's office, preferably an office of medium size. They are likely to get lost in one department of a large office.

In the case of a small office, with one or two men, they cannot hope to get the broad view, as one individual can hardly hope to be proficient in all the branches.

These short periods of employment, in either one, or several offices, should be sufficient to help the student decide whether or not architecture is to be his chosen profession.

There is always the question of how long a draftsman should spend in the employ of others, if he hopes ultimately to have his own practice. Naturally this varies with the individual. In my own opinion, it should be approximately ten years after graduation. I also believe that this 10-year-period should be spent in at least three or four different offices so that his experience be be a varied one.

I think it advisable for the college graduate to try for registration as soon as the law permits; but he should remember that registration does not necessarily qualify him to practice.

Before he is ready for his own practice, he should have a certain amount of experience in each one of the various branches, including planning, design, specification work, and supervision of construction.

The latter is often difficult to obtain while in the employ of others, as an employer would hesitate to send an inexperienced man out onto the field. The draftsman can, however, help himself considerably by paying visits to the jobs, during and after construction, particularly those jobs on which he has worked. This is really worthwhile, even if he has to do so on his own time. It also helps if he can get an opportunity to assist more experienced men in measuring up existing building jobs that are to be altered.

One of the primary reasons for stressing these visits to the jobs, during and after construction, is that, without a thorough knowledge of the various building materials, and their adaptability to the purpose for which he intended them, he can never lay claim to being an architectural designer. — He who designs in line alone is very apt to deceive himself as well as others.

Assuming now for our purpose that our "would-be" architect has the general all-around experience, I just mentioned, there is no reason why he should not make the venture of opening his office.

I am not one of those who feels the field is overcrowded—not that opportunities of the present time do not offer as much as they did in the past. The opportunity has always been there for the right man; and, in this day and age, if anything, they are greater than ever.

Just as in any time, though, the beginner is going to find obstacles, and the path is not all rosy. In my opinion, it lies entirely within the character of the individual whether or not he wins through.

Of course, it is also true that for many individuals it would probably be better not to try operating as a "lone wolf" — but rather to associate themselves with either more experienced men, as junior partners, or with others of complementary abilities.

One thing I should like to stress above all—and that is, in this, just as in any other profession or business, you will probably make good if you set out to do so, and if you are properly prepared to take a few of the hard knocks that are bound to come.

Above everything else, don't "sell out." By this term I mean do not accept a permanent position as architect for a non-architectural concern.

Undoubtedly, you may be offered lucrative opportunities with a large construction firm, or possibly in the architectural department of a large corporation which handles its own construction. Opportunities of this kind are often hard to resist, especially when a young man is married, and living costs are high, and he sees before him the chance of a steady position, regular vacations, pensions after sixty-five, group insurance, and a few other attractions—and, on the other hand, he is faced with going out to battle for a few meagre jobs that he can get in competition against larger offices which are already established in the field.

When I make this statement about non-architectural concerns which employ architects, I have heard some say that, after all, there's very little difference between a position of that kind, and being an employee of one of the very large architectural offices. My answer to that is, it depends upon the office.

I am afraid that in a few cases today, there is very little difference. I refer to offices which, while practicing under the names of architects and engineers, are little better than brokers. Although, we must admit they appear to be good business men. In some cases, the chief stockholders of the corporation are not architects. There may be one or two architects on the Board of Directors, but they really are not responsible for the direction of the office. Promotion men are employed; and in some cases, these professional promoters don't even know the rudiments of architecture.

Offices of this kind sometimes bid against each other for jobs. They often take more work than can possibly be handled in one office, and then sublet it to smaller offices for a consideration. Certainly work handled in this way cannot be given the careful study and consideration that it warrants.

However, there are large offices which really practice the profession as it should be practiced. An architect working for a concern of this kind, even though on a salary basis, will be listened to, his ideas are respected. He may consult with other departments in the matter of engineering—and, it is easy to see where a well organized office of this kind can achieve very good results. I might add too, that a position of this kind offers opportunities for ultimately becoming a partner in the organization.

In the early period of the career, there is a tendency that a good many have already resorted to, unfortunately, and that is to offer their services at lower than the accepted rates. In my opinion this sort of price cutting is a distinct mistake and merely prolongs the battle.

If you have had the experience I mentioned above, before opening your own office, you can probably handle the job as well as one who has been longer established. However, this pre-supposes that you recognize the fact.

(Continued on page 31)
MERIT AWARD

TO THE

Crawford Door Company

GRANTED BY THE NATIONAL BOARD
OF GOVERNORS FOR LEADERSHIP IN
RESEARCH, ENGINEERING, DESIGN
AND MANUFACTURE IN THE GARAGE
DOOR FIELD

AMERICAN
SOCIETY OF INDUSTRIAL ENGINEERS

Industry's
Highest
Honor
Awarded
to
Crawford
Door
Company

AMERICA'S LEADING
MANUFACTURER OF
OVERHEAD GARAGE DOORS

"For Leadership in Research, Engineering, Design and
Manufacture in the Garage Door Field" our company and
our products have won the Merit Award of the American
Society of Industrial Engineers.
This is the first time that the Society has granted its award
to any door.
More than anything we could say, the judgment of this
independent, impartial and competent body testifies to
the excellence of Crawford Marvel-Lift Doors.

CRAWFORD DOOR COMPANY
Crawford Marvel-Lift Doors and Operators
Industrial • Commercial • Residential
FABRICATING PLANTS in Portland, Tacoma, Los Angeles,
San Francisco, Dallas, Kansas City, Chattanooga,
Milwaukee, Hudson, Cadillac and Ottawa, Canada.
DISTRIBUTING WAREHOUSES in 79 major cities.
SALES AND SERVICE companies everywhere.

CRAWFORD DOORS RESIDENTIAL, INDUSTRIAL
and COMMERCIAL GARAGE

RADIO CONTROL AND INDUSTRIAL OPERATORS

• INSTALLATION
 • Individually designed doors to match your home
 • All residential doors are "Woodlife" dipped to resist rot

• SALES
 Crawford Door Sales
 of Columbus, Inc.
 554 West Rich Street
 Columbus 8, Ohio
 Main 7858

• SERVICE
 • Radio control operators
 • Inclined track

Crawford Door Sales
of Cincinnati, Inc.
Montgomery Road at
Lexington Avenue
Cincinnati (Norwood) 12, Ohio
Jefferson 8343

The Crawford Door
Sales Co., of Ohio
2066 East 70th Street
Cleveland 3, Ohio
EXpress 1-7000
If you want to know the best way or the most economical way or the easiest way to remodel your kitchen, Betty Newton is the person to see. She can advise you about decorations, and color schemes. She can give you tips on arrangement of work areas. She can plan the amount and kind of storage space you need. In fact, there is hardly any question concerning kitchens and their equipment that she can't answer!

To make your remodeling job easier, call, write, or stop in at your local Gas Company office and consult Betty Newton. Her advice is free — another service of The Gas Company!

The ohio fuel gas company
showroom in Grosse Pointe, Michigan. The exterior of the building is strictly colonial and the architect, Mr. Brad Edwards, felt the colonial chandeliers, though ornamental only, would complement the modern lighting systems which is barely seen in passing the building on the outside.

The modern lighting is switched in four phases; the perimeter, the center diamonds and two combinations of recessed adjustable spots which provide innumerable combinations of lighting effects.

- Recessed slimline fixtures by R. & W. Wiley.
- Adjustable spots by Litecraft Manufacturing Co.
- Chandeliers by American Lighting & Engineering Co.
- All lighting furnished in cooperation with Mr. Edwards by Robert Zannoth Agencies.
Our organization is dedicated to diligently serving the Architect, Electrical Engineer, Wholesaler and Contractor with a complete and diversified line of high quality LIGHTING EQUIPMENT in the tri-state area of Ohio, Michigan and Indiana.

All products shown carry manufacturer's guarantee and are fully guaranteed by Zannoth AGENCIES

406 McKERCHENY BLDG.
2631 WOODWARD AVE.
DETROIT 1, MICHIGAN

OHIO OFFICE
MR. PAUL F. STILLER
3253 Ormond Road
Cleveland 18, Ohio
Phone: YELLOWstone 2-4488

INDIANA and WESTERN MICHIGAN
MR. EDW. W. WHEELER
418 W. Chicago Road
Sturgis, Michigan
Phone: 450-R

REPRESENTING

R. & W. WILEY Co., Troffers
Slimline School and Office Lighting

EASTERN FIXTURE CO.
Industrial, Commercial and School Lighting

KURT VERSEN CO.
Spectacular, Focal, Recessed and Silver Bowl Lamp, Incandescent

ZANE MFG. CO.
Small Dimension Slimline Strip

ELCO PRODUCTS CO.
Recessed Dome, Quality Recessed Boxes and Plastic Directional Signs

AMERICAN LIGHTING & ENGINEERING CO.
Custom Made Church Lighting

LITECRAFT MFG. CO.
Recessed and Adjustable Lighting

SUNBEAM LIGHTING CO., Los Angeles
Holophane Lens and RLM Lighting

S AND M LAMP CO., Los Angeles
Flood Lights and Automotive Lights

FEDERAL ENTERPRISES, INC.
Louvered Ceilings, Cell-Coil

O. C. WHITE CO.
Machine and Bench Lights

HOUSE-O-LITE COMPANY
Quality Fluorescent Equipment

R. A. MANNING ASSOCIATES
Church Fixtures

Composite Catalogue of All Above Companies Available on Request
OVERLOOK PARK APARTMENTS

100% Modern . . .
100% Gas-Equipped

Drying . . . Water Heating

Forty-four deluxe one, two and three-bedroom suites located in three-acre natural park at 2235 Overlook Road at Euclid Heights Boulevard.

Built for discriminating people by discriminating builders. Gas was specified for cooking, refrigeration and heating to assure long time, modern convenience at lowest cost.

Full-size gas ranges in compact kitchens give fastest cooking with lowest fuel-cost and practically no maintenance expense. Freezing systems of silent Servel gas refrigerators have nothing to wear out. Floor-panel radiant heating system with clean automatic gas has individual controls for tenant comfort. Modern gas water heaters assure an abundance of hot water. Laundries are equipped with automatic gas clothes dryers.

Credit for choice of these modern gas appliances goes to Architect George Howard Burrows, of Hinman & Gabriel, A.I.A., and L. M. Gunderson, Builder.

Why not plan the convenience and economy of gas in your buildings, too? We will be happy to cooperate with you. Just get in touch with our nearest office.

The EAST OHIO GAS Company
Air condition your business fast—
this low-cost FRIGIDAIRE way!

You'll be amazed how swiftly and inexpensively you can air condition existing buildings—and new buildings, too—with Frigidaire equipment. Use the self-contained Frigidaire unit shown below—singly or in multiple—and count on low installation costs, for little or no duct work is needed. And there'll be no major building alterations to pay for. Operating costs are equally low; for individual Frigidaire units can be turned off or on to fit changing conditions.

What's your problem?
If yours is a problem of refrigeration or air conditioning, you'll find the right answer in the big Frigidaire line. It's the most complete in the industry.

Electric Dehumidifier
Prevents moisture damage, retards rust, mold and mildew, speeds paint and plaster drying in areas up to 25 x 40 x 8 ft.

Water Coolers
Self-contained types for offices and factories. Tank type for industrial water cooling—for heat-treating, for high speed coolants and many other uses.

Low Temperature Cabinets
For storing ice cream and frozen foods, also for storing annealed aluminum alloy rivets, shrinking metal parts and many other uses. 4.8 to 17.1 cu. ft. capacities.

Compressors
From 1/5 to 25 H.P. capacities for refrigeration and air conditioning applications.

Cooling Units
Forced air and gravity type cooling units to control temperatures in many manufacturing processes.

Reach-in Refrigerators
Self-contained or remote, up to 62 cu. ft. For cafeterias, medical depts., factory stores.

Beverage Coolers
Self-contained or remote, wet or dry storage. For cafeterias and factory stores.

Get a free survey of your air conditioning needs!

Your dependable Frigidaire Dealer is ready now to make a free survey of your air conditioning needs—to give you facts and figures about Frigidaire Air Conditioning and what it will do for your business.

He'll also be glad to give you full information on other Frigidaire Air Conditioning products—compact Frigidaire Room Conditioners; easily-installed, self-contained Frigidaire 10-Ton Conditioners; big, versatile Frigidaire Central Systems.

Look for your Frigidaire Dealer's name in the Classified Phone Book, under "Air Conditioning" or "Refrigeration Equipment." Write or call Frigidaire Sales Corporation, 1729 East 22nd St., Cleveland 14, Ohio. Cherry 1-4120.

FRIGIDAIRE Air Conditioning
Over 400 Frigidaire commercial refrigeration and air conditioning products—most complete line in the industry.

FRIGIDAIRE SALES CORPORATION, 1729 East 22nd St., Cleveland 14, Cherry 1-4120
Start Taking Your Pictures Now for the Annual A.S.O. Competition

1951 COMPETITION PROGRAMME
ARCHITECTS SOCIETY OF OHIO, INC.

Once again an architectural competition will be held in connection with the Annual Meeting of the A.S.O. The Convention this year will be in Columbus, at the Deshler Hotel from Oct. 17th to Oct. 20th and entries will be received at the hotel through Monday, October 15th.

Judgment will be confined this year to two classes: Hospitals and Residential Work.

Class No. 1 — Hospitals — including any kind or size of hospital, nursing home, out-patient facilities, or medical laboratory.

Class No. 2 — Residential — single family and multi-family buildings, hotels, apartments, and other structures for human habitation.

The judges will be three out-of-state architects. They will choose a first prize in each class and one building as “Best of the Show.” Winners of sufficient merit, in their judgement, will be awarded medals which will be specially struck. Results of the judgement will be announced at the annual dinner.

As usual all architects resident and registered in the State are eligible to compete. Entries may be submitted by firms or by individuals. All entries are to be completed buildings executed since 1951.

Material submitted must be photographs plus necessary line drawings, black line prints or photo-stats to give plan information, all to be arranged on a 20” x 30” mount composed vertically.

Detail requirements will be published in the next issue of the “Ohio Architect.” The Committee

THE HOOSIERS ARE COMING!

As in previous announcements on this subject, this is to remind all architects in Ohio and Indiana as well that the annual football game between Ohio State and Indiana will be held on the last day of our annual convention, October 20th and that arrangements have been made by the A.S.O. Convention Committee to have some good seats for this game—providing application for each (2) two seats accompanied by a check to cover the cost of same at $3.50 each, are on file with C. Melvin Frank, chairman, 43 W. Long St., Columbus, Ohio not later than October 1st. All seats so reserved may be picked up at the Convention Reservation Desk on Thursday or Friday before the game. No refund of the amount paid for any tickets will be made unless request for such refund is in the hands of Mr. Frank on or before October 1st.

From all reports a good game is assured and while no guarantees against a Jupiter Pluvius exhibit are being offered, it is more than reasonable to say that the game will not be played in the snow.

SPRED SATIN

The 100% Latex Emulsion Wall Paint

WILL CUT YOUR PAINTING COSTS IN HALF

- Glidden Spred SATIN applies and dries faster than any other interior finish. Dries in twenty minutes without lapmarks! Assures finest deep-tone color uniformity without streaking or sheen flashing. Extreme ease of application cuts painting time in half! Has the same washability and rubber-tough durability in pastel colors. Phone or Write us for Spred SATIN color cards.

Glidden Paints

Phone WOodbine 1-8300
11001 Madison Ave., Cleveland 2, Ohio

See The New Spred SATIN Colors

Sixty new colors created by Glidden after extensive surveys in the decorating field. 12 original colors, plus 48 easy-to-make intermixes using standard measures—gallons and quarts. Let us tell you about the Special Glidden Color Service to Architects.

See Our Exhibit In BROOTH 14
Columbus Convention
Installation of Corflor at Franklin County Children's Home, Columbus, Ohio

74,785 Sq. Ft.

This 12-unit project is an outstanding example of modern planning. Modern too, is the use of 74,785 Sq. Ft. of Corflor to speed and simplify roof and floor construction. Centrifugally cast, prestressed steel reinforced, Corflor is a hollow beam type concrete unit that is being specified by leading architects and engineers. The 8” x 8” section (standard building module) is simple to design and detail. And your clients and contractors are sure to be pleased with the savings in construction time. Write for information and prices.

Clear Span — Feet

<table>
<thead>
<tr>
<th>Tension Bar Dia.</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8”</td>
<td>510</td>
<td>360</td>
<td>265</td>
<td>200</td>
<td>150</td>
<td>117</td>
<td>90</td>
<td>70</td>
<td>53</td>
<td>40</td>
</tr>
<tr>
<td>3/4”</td>
<td>310</td>
<td>210</td>
<td>150</td>
<td>110</td>
<td>80</td>
<td>57</td>
<td>40</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8”</td>
<td>140</td>
<td>90</td>
<td>58</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above loadings are pounds per square foot and are in addition to the weight of the material which is 53 lbs. per sq. ft. Loading tests approved by the Building Inspection Dept. of the City of Columbus.
SATISFIED CLIENTS are guaranteed when You specify "Modernfold" doors. That's because no other folding door offers so many advantages. As proved on countless installations in every type of building, "Modernfold" doors are unsurpassed for pleasing appearance, strength of construction, smooth and positive folding action.

You're ahead, too, because it's so simple to write up specs. Since the "Modernfold" line is complete, you know you can get the door that fits your design—whether you need stock doors for standard openings, or curved, sound insulated or mechanically operated doors for special problem closures.

Some Typical Ohio Installations

CHURCH OF THE COVENANT, Cleveland
ARCHITECTS—Garfield, Harris, Robinson & Schafer, Cleveland
ERIESIDE CHURCH ON THE BOULEVARD, Wickliffe
ARCHITECT—Arnold A. Peterson, Painesville
TRINITY LUTHERAN CHURCH, Monroe, Michigan
ARCHITECTS—Hahn & Hoyes, Toledo
SEVENTH DAY ADVENTIST CHURCH, Toledo
ARCHITECT—Wayne E. Tolford, Toledo
E U A CHURCH, Fairhope
ARCHITECT—Ralph R. Orr, Columbus
CARROLL WEIR FUNERAL HOME, Columbus
ARCHITECT—J. Edgar Outcalt, Columbus
NOBLE ROAD PRESBYTERIAN CHURCH, Cleveland
ARCHITECTS—Richard Hawley Cutting Associates, Cleveland
MENTOR, OHIO ELEMENTARY SCHOOL
ARCHITECTS—Fulton, Krinsky and DelaMotte, Cleveland

Exclusive Installing Distributors

MODERNFOLD DOOR CO.
67 No. Washington Ave.
Columbus, Ohio
FL 3889

MODERNFOLD DOOR CO. OF TOLEDO
Division of Adam Looe Co.
145 So. ERIE ST.
Toledo, Ohio
AD. 4211

MODERNFOLD DOOR CO. OF CLEVELAND
3804 Payne Ave.
Cleveland 14, Ohio
EX. 1-0311

MODERNFOLD DOOR SALES CO.
134 Salem Ave.
Dayton 6, Ohio
FU. 5711

DURBROW-OTTE ASSOCIATES
1426 Clay St.
Cincinnati, Ohio
PA. 0068
1951 - ROSTER - 1951
ARCHITECTS SOCIETY OF OHIO, INC.
(Corrected to August 10, 1951)

A

1750 Abbot, Henry M. (Abbot & Pichler) 17 S. High St., Columbus (15)
935 Abenrooth, Fred J. (Regional Plan Com.) Rm. 415, The Arcade, Cleveland 15
1779 Abramovitz, Max (Harrison & Abramovitz) 630 Fifth Ave., New York 22, N. Y.
444 Adams, John Quincy, 33-35 S. Champion Ave., Columbus 5
1553 Adams, John Q., Jr. 1575 West First Ave., Columbus (12)
1905 Adams, Richard C., 512 5th Street, Williamstown, W. Va.
477 Addams, William W., 18 Sunset Ave., Ft. Thomas, Ky.
1811 Ahlert, William L. E. (Div. of Bldgs.) City Hall, Cincinnati 2
1306 Albert, Jack (Garfield, Harris, Robinson & Schaefer) 705 E. 12th St., Cleveland 14
1187 Altneul, Herman J., 512 McCrellonds Bldg., Massillon
1244 Alcox, Lawrence H., 1720 Waltham Rd., Columbus, Ohio
1518 Alexander, Louis T., 77 Bank St., Waterbury 18, Conn.
1192 Algé, Robert F., First Natl. Bank Bldg., Findlay
2525 Allan, James E., 914 Main St., Cincinnati 2
1421 Allen, Harry G., (State Arch) 705 Ohio Depts. Bldg., Columbus (15)
1378 Allen, J. Lloyd (Allen & Kelley) 335 N. Pennsylvania St., Indianapolis 4, Ind.
1691 Allen, Stephen J., 715 Prospect Ave., Cleveland 15
1641 Almirall, Francis C., 5041 Millwood Lane, N. W., Washing­
ton (16) D. C.
1431 Althouse, William L., 683 Maple St., Mansfield
1657 Altman, Harry W., Craig and Derrick Sts., Uniontown, Pa.
746 Altshul, Meyer I., 935 Parkerwood Dr., Cleveland (16)
1534 Anderson, Helmer N., 5948 Midway Park, Chicago 44, 111.
1715 Anderson, WalUie, 6120 South Canterbury Rd., Cleveland (9)
1608 Andrews, Frank T., 1720 Wallheim Rd., Columbus
1347 Arduser, Robert C., 3750 Charlie Court, Cincinnati (27)
1949 Arend, Arthur R. (Arend and Arend) 914 Main St., Cincinnati 2
1275 Arend, William S. (Arend and Arend) 914 Main St., Cincinnati 2
1401 Armstrong, Kyle W., 114 N. Sixth St., Coshocton, Ohio
1388 Armstrong, Timothy G. (Benham, Richards and Armstrong)
167 E. State St., Columbus 15
1153 Arrasmith, William S., 1720 Euclid Ave., Cleveland (15)
374 Austin, Ernest W., 17 S. High St., Columbus 15
556 Avers, Robert D. (Incs, Brand and Insco) 60 E. Broad St., Columbus 15
1079 Azzarelli, Frank A., 4626 Eppes St., Houston 4, Texas

B

323 Bacon, Francis R. (School of Arch., WWRU) 11206 Euclid Ave., Cleveland (6)
643 Badowski, T. A. (Patter & Badowski) 3607 E. 71st St., Cleveland (5)
812 Baer, Arthur F. (Cleveland Board of Education) 1380 E. 6th St., Cleveland 14
311 Bail, Frank W., 2230 Hendry St., Ft. Myers, Fla.
1828 Bail, George H., P. O. Box 510, Fort Myers, Florida
312 Bail, Ralph E., 2230 Hendry St., Ft. Myers, Fla.
856 Bailey, Alonso W., 715 Prospect Ave., Cleveland 15
1125 Baker, Joseph E., 240 N. 14th St., Newark
528 Ball, George J., 614 Met. Bldg., Akron 8
1689 Ballinger, Robert I., 121 North Broad St., Philadelphia 7, Pa.
1106 Barber, Charles, 419 Orr Block Bldg., Toledo (6)
548 Barber, Charles H., 3030 Prospect Ave., Cleveland (15)
706 Bardon, Oliver H., 305 East Sixth St., Cincinnati 2
1132 Barnes, Paul K. (Spahn and Barnes) 12429 Cedar Rd., Cleveland 6
1129 Barone, Philip V., 61 Burley Circle, Cincinnati (18)
154 Barrett, Leo J., 1740 E. 12th St., Cleveland (15)
1340 Barry, Gerald A. (Barry and Kay) 53 W. Jackson Blvd., Chicago (4) Ill.
1456 Baumer, Herbert, Ohio State University, Brown Hall, Columbus (10)
1163 Baxter, Cyrus L., 5903 Oak Ave., Cincinnati (27)
1724 Beardsley, Wallace P., Seward Block, Auburn, N. Y.
1327 Beatty, Hamilton (Austin Co.) 11012 Euclid Ave., Cleveland (12)
1044 Beatty, Robert F., Potters Sav. and Loan Bldg., E. Liverpool
367 Beck, William H. (Union Central Life Ins.) Cincinnati (1)
1723 Befort, John W., (Garriott, Becker) 800 Broadway, Cincinnati 2
102 Becker, Karl H., 201 Gardner Bldg., Toledo 4
1668 Becker, William E., 205 E. Gambier Ave., Mt. Vernon
1968 Beeghly, Robert R. (Potter-Tyler-Martin) 128 Sixth St.,
Cincinnati (2)
1290 Beidler, Herbert B., 952 N. Michigan Ave., Chicago 11, Ill.
1215 Beihl, George P., 527 S. 27th St., Fayetteville, Ind.
1653 Bell, Kenneth E., Jr., 1051 N. Springfield Ave., Chicago (51) Ill.
666 Bell, Wayne Everett, 423 Salem Ave., Dayton 6
213 Bellman, Lawrence S., 30 Pueblo Vista, Santa Barbara, Calif.
920 Benham, Eugene T. (Benham, Richards and Armstrong)
167 E. 12th St., Columbus 15
1736 Bennett, Robert J. Monongahela Bldg., Morgantown, West
Virginia
1329 Bentz, Carl E. (Tibbals, Crumley & Musson) 584 E. Broad St.,
Columbus (15)
1722 Berger, Leo V., 356 Fulton St., Brooklyn 1, N. Y.
1651 Bernhard, Harold C. (Shreve-Lamb-Harmon) 11 East 44th
St., New York (17) N. Y.
1543 Bernstein, Nathan, 4618 Euclid Ave., Cleveland 3
1750 Berr, Alfred H., Jr., 18222 Winward Rd., Cleveland 19
415 Bertsg, F. William (Kruckmeyer and Strong) 1304 Carew
Tower, Cincinnati 2
626 Berolzi, Charles F. (Goodrich Co.) 500 S. Main St., Akron
1278 Betman, Henry A., 514 Provident Bank Bldg., Cincinnati 2
1891 Betts, Charles J., 222 S. Downey Ave., Indianapolis (7) Ind.
157 Betz, Eugene W. (Schneck and Williams) 1406 Third Natl.
Bldg., Dayton 2
1443 Beverly, James W. (Austin Co.) 16112 Euclid Ave.,
Cleveland (12)
1796 Bialosky, Jack Alan, 2845 S. Moreland Blvd, Shaker Hts. (20)
Cleveland (15)
1755 Bickerstaff, Glenn A., 1311 Investment Bldg., Pittsburgh 22,
Pennsylvania
742 Blickell, Russell A. (Cooperative Industries) Blue Ash &
Harwood, Ohio
1580 Bingham, George R. (Weich, Bingham & Roberts) 303-304
American Trust Bldg., Middletown, Ohio
1499 Binkele, Robert M., 654 George St., Lancaster, Pa.
684 Birchfield, John R., Sr. (Conrad, Hayes, Simpson & Ruth)
Hanna Bldg., Cleveland
1674 Biskup, Emil J., 4350 Harris Rd., R. D. No. 8, Brecksville
747 Bitter, C. Bert R., 2159 Scottwood Ave., Toledo (2)
1665 Bliss, Edwin F., 509 East Exchange St., Akron (6)
595 Bloodgood, Wylie, 418 Benton St., Aurora, Ill.
605 Bocca, Michael G., 505 Osborn Bldg., Cleveland
1108 Bochek, Stephen, 22 Purchase St., Rye, N. Y.
988 Bock, Edward Paul (McGeorge-Hargett) 7016 Euclid Ave.,
Cleveland (8)
623 Boensch, Julius (Assoc-M. H. White) 804 Finance Bldg.,
Cleveland (15)
1030 Bohlen, August C., 930 State Life Bldg., Indianapolis 4, Ind.
1365 Bohm, May B. (A. M. Kinney) 1211 Enquirer Bldg.,
Cincinnati (2)
1021 Bolinger, Donald D., 2300 Oak Park Ave., Dayton 9
156 Bollinger, Orville F., 1228 Dorr St., Toledo 7
1747 Bonebrake, John C., 20812 Syndenham Rd., Shaker Hts. 22
888 Bondfield, Harold O., (Bonefield and Cumming) 1900 Euclid
Ave., Cleveland 15
1604 Borchers, Perry E., Jr., 412 W. Hillcrest Ave., Dayton (6)
1297 Bostwick, Donald L., 34 S. Main St., Niles
(Continued on page 30)
OUR PRESIDENT'S MESSAGE

The raw wind that came across "The Straits" Friday morning, August 3rd, found the passengers of the first trip of S.S. Algoma II seeking the shelter of the cabin, which was far too small on a morning like this to accommodate the indomitable Mackinac bound excursions. Those of us who couldn't get inside, sought the shelter of a funnel or stack and just shivered and turned purple. But once on the Island, the temperature registry changed with the warm sunlight that poured thru the long colonade of Grand Hotel's renowned veranda, and the welcome extended us by our fellow Architects of Michigan in their three day midsummer conference.

On this neat little island, Michigan's fabulous summer resort, the Architects of that state, for the past eight years, have been holding midsummer conferences, which have served somewhat as a means of transacting a bit of state organization business, but more as an excuse for the boys to get away from the press of office affairs for a few days of the mellowing influence of fraternizing over cocktails.

Under the critical eye of the newcomer Architect relaxing on the veranda of Grand Hotel, the long lines of wood siding seem to wave in both the horizontal and vertical direction, but the veteran of many midsummer conferences accepts this phenomenon as part of the experience.

We also discovered at the Saturday evening banquet, that Rodger Allen's understudy Adrian Languis, showed the old maestro a good time at toasting toastmasters et al. At Mackinac Island, and Grand Hotel in particular, there is something synonymous in the presence of horses and the profusion of red geraniums.

President of the Michigan Society of Architects, Leo M. Bauer, and his able staff secretary Clair W. Ditchy and line of V.P.'s Ralph Hammet, Adrian Languis, and Jim Spence made us feel very comfortable in their warm welcome, commissioning us to bear greetings to Ohio Architects, and to assure you that the invitation is extended to all for next year's event. All of this was reinforced by our Regional Director, John N. Richards, with whom we of course feel very much at home.

On the morning of the second day of the conference, President of the A.I.A. Glenn Stanton arrived from Portland, Oregon, giving the meeting national significance. From across our western boundary, Ray S. Kastendick of Gary, President of the Indiana Society, represented the Hoosier Architects.

Here we had some opportunity to advertise our own state convention at Columbus, October 17, 18, and 19, which is to be a combination of Great Lakes Regional Seminars and Architects Society of Ohio Annual Convention. The O.S.U.—Indiana State football game Saturday, October 20th may be a great inducement to our neighbors in the profession to attend Great Lakes Seminars.

The members of A.S.O. Executive Committee are looking forward to the September 6th meeting at Sleepy Hollow Country Club near Massillon, Ohio, which by some coincidence is also the date of Eastern Ohio Chap-

CARL C. BRITSCH

We are fully equipped to fabricate and erect steel framing for any type or size of building . . . a call will bring our representa-

INDUSTRIAL and COMMERCIAL CONSTRUCTION

Here's why the exclusive Stran-Steel feature—nailability—is known far and wide as a time saver and money saver:

Collateral materials for inside or outside application are nailed on—fast—by ordinary carpenter's tools. Sub-assemblies can often be made by shop labor, which speeds final, on-the-site assembly of framing sections.

FRAMING SYSTEMS, INC. ARGUS INDUSTRIES, INC.
E. 196th St. & Nickel Plate R. R. 5184 Broerman Ave.
Phone IVanhoo 1-7764 Phone University 2152
CLEVELAND 17, OHIO CINCINNATI 17, OHIO

STRAN-STEEL FRAMING IS A BUILDING PRODUCT OF GREAT LAKES STEEL CORPORATION

22 [August, 1951] THE OHIO
ter's annual golf party at the same place. We forecast a mixture of business and pleasure.

Following this date, on September 7th the Inter-professional Committees of A.S.O. and O.S.P.E. meet at Columbus to discuss the interests and problems of Architects and Engineers. At the risk of taking the punch out of George Voinovich's report to the annual convention on this activity, I wish to say here that very satisfactory progress in inter-professional relations is resulting from these joint committees which were started earlier in the year.

We wish to take advantage of this opportunity to inform the Architects of Ohio that a tentative draft of a portion of the proposed new Building Code for the State of Ohio, being prepared under the direction of the Ohio Program Commission will be ready for preliminary review on or about September 1, 1951.

Copies of the tentative draft of Chapter 6 which covers the "Classification of Construction and Requirements Based on Type of Construction" will be forwarded to those who may be directly concerned with the material covered, upon written request to Paul E. Baseler, Code Coordinator, Ohio Departments Building, Columbus, Ohio.

CARL C. BRITSCH

Long-Term Wood Preservation Reported With Metal-Base Shingle Coating

A unique combination of a toxic preservative and a base of fine particles of noncorrosive metals has led to outstanding records of good shingle preservation by Meta-Kote Wood Shingle Coating, a product of the Meta-Kote Corporation of Toledo, Ohio. This photograph shows The Toledo Country Club about to receive its second finish of Meta-Kote Shingle Coating, ten years after the first application. The shingles are all in excellent condition.

Gentlemen:

The following letter from John A. Hill, president of The Toledo Country Club tells of their satisfaction with the wearing qualities of Meta Kote:

In 1940 we had Meta-Kote applied on the Wood Shingles of our Club House and this year, ten years later, Meta-Kote has again been applied.

We have been delighted with the appearance and durability of the product and enthusiastically recommend its use to any owner of a wood shingle home.

Sincerely,

JOHN A. HILL, President
The Toledo Country Club

This is typical of hundreds of unsolicited testimonials from Meta-Kote users.

Meta Kote Shingle Coating is now available in ten colors: grays, greens, browns, bronze, red, white and cream. For further information, address The Meta-Kote Corporation, 517 Gardner Building, Toledo, Ohio.

Warm, friendly rooms don't just happen

THIS LOUNGE at The Mayfield Country Club grew from the drawing boards of an architect and an interior designer working together on the complete plan. The result—a blend in good taste for delightful entertaining.

Whether it be for a small house, a club, or any building, we offer you years of design experience—and a habit of working pleasantly with architects. We would enjoy working with you, too, to cooperatively interpret your plans.
COLUMBUS CHAPTER NEWS

The members of the Columbus Chapter have been extremely fortunate in having many fine programs in 1951. One of the outstanding meetings was held at the Scioto Country Club recently and one of the largest turn outs of the year enjoyed a fine dinner followed by a very profitable program. Rather than try to summarize and spoil what was said, it seems far better to repeat portions of the program in full. From the biographical data covering the speakers, it is evident that they are fully informed concerning their subjects and therefore speak authoritively.

Russell Rarey, President of The Marble Cliff Quarries Company, was born at Groveport, Ohio, and has spent all his life in Columbus and its immediate vicinity. Upon graduation from High School, he took a short business course, and his first regular employment was as shipping clerk and time-keeper with The Claycraft Brick Company, Groveport plant. After about two years at the brick plant, he was transferred to the Woodruff-Pausch Stone Company at Marble Cliff—the late John W. Kaufman, having had a substantial interest in both companies. About this time The Woodruff-Pausch Stone Company led in the consolidation of the Casparis Stone Company, the Columbus Stone Company and the Scioto Stone Company into the present Marble Cliff Quarries Company. Shortly after this consolidation, Rarey was transferred to the retail yard of the Quarries Company, then the Columbus Macadam Company, where he later became Manager. The chief activity of the Columbus Macadam Company was the distribution of rubble or building stone to local buildings. Transferred once again, this time to the main office of the Quarries Company, Rarey successively operated as salesman, Vice-President in Charge of Sales, and more recently as President of the organization.

Rarey's entire business life has been spent with his present organization. During that time he has seen the development and wide use of limestone sand, the installation and successful operation of the rotary lime kilns at Marble Cliff, the expansion of the use of ground stone as an architectural liming material and the development of the bituminous concrete or Black Top paving business. Meanwhile, the use of limestone for highway construction and as railroad ballast continues at high levels, and the use of limestone flux by the steel industry constitutes the largest single item of Marble Cliff production.

The Arrow Sand & Gravel Company was consolidated with the Quarries Company and the production of sand and gravel was continued and the distribution of ready-mixed concrete greatly expanded.

Rarey holds membership in the National Lime Association, the Agricultural Limestone Institute and the
National Crushed Stone Association. He has served as National Director of each of these associations, and is currently a member of the Executive Committee of both the Agricultural Limestone Institute and the National Crushed Stone Association. He was President of the National Crushed Stone Association for two years. He is a member of the Columbus Athletic Club, the Scioto Country Club, and the Rotary Club of Columbus. He resides with Mrs. Rarey at 2666 Kent Road, Upper Arlington. Of his three sons, Charles is associated with the Quarries Company, Robert is Resident Plant Engineer with the Chrysler Corporation at Detroit, and John is associated with The Columbus Coated Fabrics Corporation.

Aside from his business, Rarey plays some golf, but his major outside interests lie in hunting and fishing. He also was quite a bowler for a long time and played baseball until the Boy Scouts crowded him out.

Remarks by Russell Rarey, President, The Marble Cliff Quarries Company:

Those of us at Marble Cliff are appreciative of your presence here tonight. The opportunity of meeting with members of your profession on the more or less common ground afforded here is indeed a privilege and a pleasure.

It has been quite some time since I had my first impression of the architectural profession. That early impression was a mixture of awe and admiration. The "awe" portion probably had its source in an early visit to the office of a local architect—my mission then was the selling of face brick—where I encountered two signs on the architect's door. The one sign stated "Hours—1 to 5"; the other, in somewhat bolder lettering, said "Material agents not admitted." Small wonder that I was impressed.

The "admiration" portion of my early impression was better founded. The very stature and integrity of the architect and his profession was reflected then, as it is now, in the beauty, stability and utility of the buildings he creates.

Today I am happy to add that my admiration for the architect and the architectural profession continues undiminished. I have great respect for the high ethical standards and the accomplishments of your profession. You definitely contribute to the finer living and the better traditions of our people.

It would be quite surprising if our inviting you here tonight would not develop some selfish purpose.

We have two programs relative to the use of two of our major materials that we are hopeful will be interesting and instructive to you. We also would like for you to know us better. To that end I would like now to introduce to you the several members of our Engineering, Sales and Service Departments.

Most everyone in the building industry in Columbus knows Stephen Stepianian. Steve is a pioneer in the aggregates business, in ready-mixed concrete, and in concrete products. Along with his other accomplishments, Steve is the inventor of ready-mixed concrete. Today probably 90% of our concrete used in building construction, at least in the east, is delivered ready mixed. Steve's most recent interest in concrete is the Arrowcrete Corporation, local producers of Flexicore.

Mr. Emery Haines, General Manager of Arrowcrete, is also a guest here tonight.

Associated with us in our concrete business are the Ready-Mix twins—Bob Massman, with the ruddy cheeks, and George Bukey, with the ruddy hair. While these boys are primarily interested in securing orders for concrete, they really follow through from batching plant to
construction project. I am sure they can be helpful to you if given the opportunity.

Our highway and paving boys are Frank Longabaugh, interested primarily in stone for construction and paving projects, and Floyd Redick, our asphalt or black top expert. Both well trained and both with a back-ground of wide experience, these boys can be really helpful to your specification men if you will call them.

Bill Margraf and Ralph Morden are old-timers with us, dating back as shipping clerks over 35 years ago. Margraf very efficiently handles our pulverized stone and agricultural departments. In addition, Bill is a barber-shop quartetter, a good golfer, and an all round good guy.

Ralph Morden is our Traffic Manager and is responsible for flux stone sales to steel mills. Ralph has been tops with us away back to Casparis days. They just don't come any finer.

Clyde McMurray works close with Morden in traffic matters and rates a bow for his efficient handling of our order department. For years a shipping clerk at the quarry, Mack's experience stands him well in his present duties.

The limestone department is headed by my son, Charles Rarey. "Chuck" does things well and quietly and I am happy and proud to present him to you.

One just can't deliver stone, concrete, asphalt or lime without adequate trucking service. The Anderson Haul-age Company has dedicated itself primarily to serving our customers. Most of you know Archie Anderson and all of you should learn to know his son, Frank. We are proud of our association with them.

At each of your places you found a twin picture showing past and present quarrying methods. We have no information as to the origin or exact date of the one picture, but it is typical of the very earliest quarrying methods in the Marble Cliff district. Close observation of the picture will show that the steam engine had no traction or self propelling device. It was mobile only insofar as it was drawn by horse power. We checked with the Case Manufacturing Company and were informed that the type of engine shown in the picture was no longer built after about 1895. Certainly the engine and perhaps the quarrying scene in that picture anti-dated that year. This was one of the earliest crushing operations in the district. Prior to that early date, quarrying was limited to producing stone for the burning of lime through pot or oven type of kiln and for the quarrying of stone for foundations, range works, water tables, etc. Stone for the exterior of the State House, built in 1851, came from the Marble Cliff district. It is, therefore, safe to say that the quarrying industry at Marble Cliff as of this year 1951 is at least in its 100th year.

These earlier operations, particularly the burning of lime, were carried on by the Stitt-Price Company and perhaps others, with the lime kilns located at Marble Cliff along the Scioto River and directly west from the Scioto Country Club grounds, and other kilns at downtown Columbus about where the new Post Office building now stands. Many of the foundations, particularly of the older buildings in Columbus, are constructed of rubble stone and lime from Marble Cliff, and it might be said in passing that many of these foundations are in excellent shape and continue as good foundations for the structures they support. Later quarrying shifted from hand methods to mechanical crushing and the early operations were carried on by a number of partnerships.
and small corporations. These early operations included the Casparis Stone Company, probably best remembered, and the Woodruff & Pausch Stone Company, from which latter organization the present Marble Cliff Quarries Company had its beginning.

There has been a constant development in the size and type of the equipment used in quarrying. Carts and horses have been replaced first by steam or dinky locomotives, and more recently by diesel powered rubber tired trucks. Hand loading was replaced by steam shovels and more recently by full electric shovels. Original crushing was accomplished by stone hammers and drop balls, while modern crushers both in size and productive capacity are truly surprising. Lime burning has progressed from the hand fired pot or oven kilns to the modern rotary kiln. Marble Cliff has kept pace with each and all of these developments. Aside from some relatively minor changes and installations that are necessary to bring our modernized plant to final completion. Marble Cliff reflects the very best in plant design and equipment known today.

The stone at Marble Cliff belongs to the Devonian period—sub-divided into the so-called Delaware and Columbus formations. The chemical and physical analysis of these two stones lends well to a wide variety of uses. Approximately 800 lbs. of stone is required to produce one ton of pig-iron and an additional 150 lbs. of burned lime is required to convert one ton of pig-iron into steel. With approximately 100,000,000 tons of steel to be produced in the U. S. in 1951, it follows that the steel industry alone will consume almost fifty million tons of limestone. Flux stone from Marble Cliff is consumed in the Canton, Wheeling, Weirton and Ashland, Kentucky districts and will total in 1951 approximately one million tons.

Stone from these same ledges are used in the production of burned and hydrated lime. Much of the lime from Marble Cliff is used in the metallurgical processes and very substantial quantities are required for water purification, sewage treatment, and many other chemical industries.

The construction industry requires lime for masonry purposes and today there is a very definite trend among architects and architectural engineers to specify mortars of high lime content as against the temporary trend of a few years back of specifying high cement mortar. Better work-ability, better bond, and greater resistance to weather are secured without any critical sacrifice of high crushing strengths.

In the construction field, high consumption of stone ballast by the railroads continues. The resiliency of the road-bed, the definite supporting strength of the keying action of the crushed stone particles, combine to produce a ballast material not approached by any other medium.

In highway construction, the old water-bound or macadam road continues the superior of all other types of base construction. This pavement needed only the development of the plant mixed asphaltic concrete surface as a wearing course to establish unquestioned superiority.

In the field of concrete, Marble Cliff crushed limestone and Marble Cliff limestone sand recognize no superiors locally. True, most of the concrete used by this group in their buildings is of another and cheaper aggregate. This lower price results from the more economical methods of processing the native aggregate and from having its production sources closer to the high

Mr. Architect: Never underestimate the power of a woman—

or the selling power of Hamilton the original automatic CLOTHES DRYER!

...a satisfied woman is a satisfied client
...smart women want Hamilton because
 - Hamilton is the modern way to dry clothes
 - Hamilton saves work, time, clothes
 - Hamilton gives "Sunshine-and-Breeze" freshness
 - Hamilton brings the sunshine indoors
 ...eliminates weather worries

Hamilton AUTOMATIC CLOTHES DRYERS
Gas and electric models

HAMILTON DISTRIBUTORS
IN OHIO
- CINCINNATI
 The York Supply Co.
 2624 Colerain
- CLEVELAND
 Tecca Distributing Co.
 211 St. Clair Ave.
- COLUMBUS
 Leuthi and Welsh, Inc.
 73 East Naghten St.
- DAYTON
 The York Supply Co.
 531 East 3rd St.
- TOLEDO
 Buckeye Appliance & Sporting Goods Co.

ARCHITECT

[August, 1951] 27
consuming areas down town. However, since the cost of a yard of concrete using limestone and perhaps limestone sand as aggregate is only a little higher than concrete using other aggregates, and since the price of a yard of concrete delivered by the transit mixer to the job represents only a relatively small portion of the cost of the concrete per cu. yd. in place—which incidentally is where you become interested in your costs—it follows that a yard of stone concrete in place represents a very small higher cost percentage-wise. It is my judgment that architects and builders can with very definite advantage to themselves and their clients specify limestone concrete.

It is with very real pride that we at Marble Cliff point to the Ohio Stadium, built over twenty-five years ago, using Marble Cliff stone and Marble Cliff limestone sand as aggregate. Neither the architect nor the engineer on that project have cause for regret in the selection of those aggregates.

May I again thank you for your interest and the opportunity afforded me for talking with you tonight—and let us now proceed with the more formal part of our program which will be presented by Mr. Joe Gray, Field Engineer for the National Crushed Stone Association, Washington, D. C., and Mr. Fred Swineford, well known Highway Engineer, who is now Engineering Director for Macadam Pavements, Inc. He has directed paving work on municipal and state projects for thirty years.

Fred E. Swineford received his degree in Civil Engineering from Ohio State University in 1915. He had also attended Wooster College and the University of Akron. He is a Registered Professional Engineer and a member of the American Society of Civil Engineers and the Ohio Society of Professional Engineers. He was formerly Director of Public Service at Akron, Ohio. Prior to Fred Swineford’s appointment as Engineer-Director to Macadam Pavements, Inc. in 1947, he was affiliated with the Ohio Department of Highways at various times since 1920, serving in the capacities of Division Engineer at Ravenna, Ohio; Chief Engineer of Maintenance; Chief Engineer of Tests; and Chief Engineer of Construction. Mr. Swineford now resides at 198 Walthalla Road, Columbus, Ohio.

The above outline does not say but during the “dark” 30’s Fred was one of the king pins in the alphabetical agencies starting out with offices in the Wyandotte Building here in Columbus. During this period his work covered the checking and reviewing the drawings for many building projects throughout the state.

In his contacts with the architects he was a very sympathetic and cooperative administrator often under very trying circumstances, both parties profiting quite materially in working out the many problems involved in the designing and erecting of buildings during that period.

Parking for the Customer
Architects are in the paving business whether they like it or not. Every new retail or amusement enter-
prise must provide attractive and adequate parking space for the patrons’ automobiles.

With present high building prices there is seldom enough money for an adequate building, nevertheless, an attractive and durable parking area must be provided or the new shopping center, suburban market, theatre, restaurant or recreation center will not attract much business. Likewise, churches, schools and auditoriums must provide adequate parking areas for cars.

Bituminous pavements, often called “blacktop” just naturally fit into the better class developments to such an extent that a new building surrounded with an attractive bituminous pavement brings in the business.

Fortunately this bituminous pavement on a macadam base is low in cost and extremely durable. In most areas commercial crushed limestone or blast furnace slag are available for such macadam bases and experienced contractors are standing by ready to do the work.

For automobile parking areas a macadam base with an asphalt surface can be laid for approximately 22c per square foot.

The procedure in paving off street parking areas is easy. First, the area is graded so that it will drain to the outer edge or to storm-water inlets with a slope of no less than 1/8” per foot and preferably 1/4” per foot. If the ground is unstable it should be stabilized by the addition of a layer of crushed stone or slag. It should be carefully shaped to conform to the finished surface because variations in the subgrade are bound to show up in the finished pavement.

The design, specifications and construction methods are simple and in everyday use. The following specification is an example which specifies the thickness, materials and methods.

PAVING SPECIFICATIONS FOR AUTOMOBILE PARKING AREAS AND DRIVEWAYS

A. The subgrade shall be carefully shaped, well drained and thoroughly compacted to the grade specified by the architect or engineer.

B. Upon the compacted subgrade there shall be constructed a 5” (finished thickness) course of waterbound macadam using No. 1 and 2 size 100% angular crushed limestone or blast furnace slag filled with screenings.

The materials, equipment and methods shall conform to Item R-20 of the Ohio Highway Specifications which include the following operations:

Spreading 1” of limestone or slag screenings (3/4” to dust) on the subgrade with a mechanical spreader;

Spreading No. 1 and 2 size (31/4”) crushed limestone or slag with a mechanical spreader to make a 5” (finished thickness) course;

Rolling with heavy rollers to thoroughly compact and key the large stone;

Filling the voids in the large stone with several applications of limestone or slag screenings and jarring each application into the course by rolling until the course is completely filled;

Waterbinding the course by applying water and rolling. When dry the surface shall be swept to remove excess screenings prior to the application of the bituminous wearing course.

C. Upon the waterbound base there shall be laid a 2” (finished thickness) course of bituminous concrete. This course shall consist of dense graded, plant mixed, hot laid bituminous concrete spread with a mechanical spreader and thoroughly compacted by rolling, all in accordance with Item T-35 of the Ohio Specifications.

Comment: The 5” thickness in paragraph B may be written as 4”, 5”, 5 1/4”, or 6” to meet varied traffic and subgrade conditions.

(Continued on page 30)
Here's Traffic Control with a Beauty Angle

You can make vehicles "keep their place" and at the same time enhance the appearance of parking areas and roadways by using Flex-Beam Guardrail.

This sturdy rail combines ample strength with neat, attractive appearance. The corrugated surface reflects light from all angles—provides high visibility and sharply defines the limits of safety.

Flex-Beam is made of heavy-gage, corrugated steel sections bolted together to form an even, continuous beam of steel. It is easily installed by unskilled workmen.

Engineers have long used Flex-Beam Guardrail to provide greater highway safety and beauty. As an architect, you'll likewise find it ideal for parking lots, private roads and driveways as well as for many other uses. Mail the handy coupon for complete data. Armco Drainage & Metal Products, Inc., Central Division, Middletown, Cincinnati, Columbus, Cleveland.
that there are still many things that you can learn only by experience; and, because of this, you may have to, at first, expend a greater portion of your fees for expert advice on mechanical and structural engineering, etc.

To those who might have given some thought to "selling out" as I put it before, and obtaining one of the so-called safe jobs, I would like to remind them that if this had never been done by members of our profession, the architects' field would be many many times as great as it is at present.

It has been said on good authority that as much as 75% or 80% of the construction work in the country is being done without the employment of a regular architect. Remember, this does not mean that it has been done without architectural services because whoever designs the building, no matter in what capacity he happens to be working when he designs it, is performing architectural work. One of the differences is that if he is doing it for a builder, or a large corporation of another kind, he is still an employee and, as such to a greater or lesser extent, he must do what he is told. The builder who offers architectural services free actually hopes to get well paid for it. Since, however, he is in competition with others of the same caliber, and cost is a big factor, his design is bound to be influenced by experience: and, because of this, you may have to, at first, expend a greater portion of your fees for expert advice on mechanical and structural engineering, etc.

To those who might have given some thought to "selling out" as I put it before, and obtaining one of the so-called safe jobs, I would like to remind them that if this had never been done by members of our profession, the architects' field would be many many times as great as it is at present.

It has been said on good authority that as much as 75% or 80% of the construction work in the country is being done without the employment of a regular architect. Remember, this does not mean that it has been done without architectural services because whoever designs the building, no matter in what capacity he happens to be working when he designs it, is performing architectural work. One of the differences is that if he is doing it for a builder, or a large corporation of another kind, he is still an employee and, as such to a greater or lesser extent, he must do what he is told. The builder who offers architectural services free actually hopes to get well paid for it. Since, however, he is in competition with others of the same caliber, and cost is a big factor, his design is bound to be influenced by the material more readily available to him, the type of construction that he is more familiar with, and other considerations that enter into the cost factor.

I can site concrete examples of particular jobs where the so-called free service would have actually cost the owner three or four times as much as if that same job

Josam Catalog "J" holds the A.I.A. product literature award for best serving the architect in selection and specifying plumbing drainage products.
was handled by a regular competent architect and a competitive bidder.

The reason why a considerable amount of this work does go to some of the large builders, who offer this complete service in cellophane, is in just one word, "salesmanship."—It might be well for the practicing architect to recognize the fact that he needs a certain amount of ability along that line as well.

Many of the large corporations who do their own work feel that it is the logical thing to do, because their plant engineers, who really know just how they intend to function, are better qualified than the outside architect to make the layouts that will give them the greatest efficiency. While it is true that these plant engineers are certainly best qualified to know how they intend to handle the manufacturing of their products, and that it is certainly essential to consult with them on the plant of industrial work, they are, nevertheless, not architects; and the finest results have been achieved when handled by members of our profession outside the plants. Moreover, it has even been shown that this has been done at a considerable cost saving to the owner of the plant.

In one sense what I have said about consultation of the architect with plant engineers also applies in every branch of construction. In the case of the home, the prospective owners certainly have ideas of their own, and should be listened to. In the case of commercial work, the merchant knows best how he can handle his goods.

In various other types of building, such as hospitals, public institutions, banks, etc., there are those who have made a study of the particular requirements, and can certainly be of great help to the architect; but when all is said and done, and that after he has listened to all this advice, the architect should be the one best qualified to co-ordinate it, and to set it on paper, as well as to finally see it through the construction stages, if he has the qualities that will give him a right to make a success of his profession.

To enumerate a few of these qualities then—he should be a dreamer and a realist; an artist and a business man.

The late Albert Kahn once said that the practice of the profession consisted of about 90% business and 10% art.

I don’t believe A. K. was serious when he said this for in my opinion he was really a great artist. He was, however, a great business man as well, and I should say a very good salesman. Very few of us can hope to have all of these qualities, but it is always best to set our goal high and keep aiming.

I would also like to make a remark about present tendencies on the part of a good many practitioners of doing, what I would call, only part of the job. By that I mean, very often they make a set of what is called the working plans and leave details to others.

In the case of institutions, they sometimes build the shell of the building; then the so-called interior designers step in to provide much of the built-in equipment, the decorations, color schemes, draperies, etc. Very often the excuse is that the architect’s fee is not large enough to cover the cost of all this special work. Again I believe this is wrong and that the condition was brought about through men who really didn’t have the ability.

The architect should be the master of the design—from the foundation to the roof, on the exterior and interior.
A building design should be visualized in brick and mortar, in stone, in plaster, and all the other materials to be employed, and certainly it cannot be without picturing it in color.

In design, as in planning, the architect should seek, and should certainly be helped by, the views of those who specialize in the various fields; but, unless he has the ability to co-ordinate and direct, there are very apt to be clashes, and the final result will not be what it should be.

In this age of specialization, and because we cannot hope to be all things to all men, it seems to me that an architect is well advised to specialize in certain types of buildings. This is a matter that is rather hard to decide at the outset, when one must necessarily take whatever is offered; but, either by accident or design, he will come to find that one type of structure appeals more to him than another, or that he is better qualified for one than he is for another. This might also well be influenced by the type of men he has in his employ as time goes on. Even the difficult when they try too great a variety.

CORRECTION!

On Page 18 of this issue, only two classes of entries are given for the 1951 Architectural Competition. THIS IS IN ERROR.
ADD to these Class No. 3 — Churches of all styles and denominations.

Industrial Projects, Too, Use Beautiful BEREA SANDSTONE

- Industrial buildings take on new appeal and attractiveness when Berea Sandstone is used to emphasize unusual effects. What might be an ordinary building is released from drabness through the use of this popular, Ohio, natural building stone.

Buildings, bridges, walls, walks, pools, and memorials—all can be enhanced with Berea Sandstone. Write us for further information.

THE DANGER OF SURVIVAL

(Continued from page 9)
carded like worn out machinery. They have too large a part in our destiny. But it is abundantly clear that the life which they have abused is increasingly exacting its revenge—and that this feverish institution must soon be brought within narrower limits.

In the accomplishment of this there are some who, unfortunately, are not aware of the fact that plans do not exist in a political and economic vacuum. That the decision as to what to plan should always be determined by what can in fact be realized. This latter decision is not made by planners. Yet the decision partly depends on the people's and the planners' determination to plan for something substantive; on their determination to change the program if there cannot be a practical realization of the program.

Those who are unwilling to accept the age old philosophy, “A bird in the hand is worth two in the bush,” might be well advised to plan for a new job—instead of a new city.

The real issue in redevelopment of our existing cities, is that of revolution versus common sense. As for myself, I do believe in master plans. But I do not believe in the revolutionary master plan. I believe only in the common sense master plan. To put it simply, I am opposed to “dream-able” plans. I am in favor of “do-able” plans.

Here is a ringing quotation from a recently published “manual on city planning.”

“The time has come to rebuild our cities. The mere redevelopment of problem areas will not provide the inspiration. The American city mocks at
us. The dead hand of the past baffles every effort. Our towns were built hastily and carelessly. Are we to be forever satisfied with mere improvement? Or shall we not instead completely rebuild our cities? Can we not ignore present obstacles and dream big dreams?"

End of quote. End of paragraph. End, I hope, of such marijuana inspired day dreaming.

Now, may I read you a well worded castigation of the view which I have been expressing: "Nothing is more contemptible than the timid or commercial reformers, "practical idealists," who express scorn for the great utopian planners—who ever spread the lie that the purpose of 'academic' plans is to prevent anything from being done—but when they press their own plans to the point where they could be effective, they end up by emasculating precisely one of the great plans, usually long out of date."

But where are these "great plans"—these brain children of the Utopian planners? Where in the entire United States is there a single example of an "ideal" master plan having been actually superimposed upon an already existing city? The facts require my question to be answered only by a thundering silence! I like being labeled a "practical idealist." I suspect each of you also welcomes that tag. When a client brings his problem to you, you give him an imaginative solution. You don't give him a lecture, complete with color slides, on how much better you could have done—if only he didn't have a problem!

Recognizing that we have a problem, we must elevate community planning to the top of our profession, for the future of architecture itself is inseparably bound to the future of planning. A single factory or a single housing development bears little consequence to the total scheme. The inter-relation between living, labor and leisure can no longer be left to chance. Conscious planning is demanded.

A community plan is not a layout of streets and houses, or of viaducts and factories. It is more like a choreography of society in motion and in rest, an arrangement for society or being directed. There is, of course, a variety of town schemes: gridirons, radiations, ribbons, satellites, or vast concentrations. What is important, however, is the activity going on—how it is influenced by the scheme and how it transforms any scheme. How it uses or abuses any site. How it actually contributes to the living, labor and leisure of the people.

The community does not create its conditions. In fact, it's the reverse; the conditions should stimulate the plan. Therefore the plan must not be imposed as if it were an end—but rather as achievable means to a desirable end.

Consider, for instance, the original laying-out of the District of Columbia and the City of Washington. For various reasons of politics and transportation, the plan was to connect the Potomac waterway with the Ohio, and the new city on the Potomac was thus to become the emporium of the West. But the canal system which would have fulfilled this technological scheme fell through. A hundred years later, therefore, Washington was still a small political center, without economic significance, while the commerce of the West flowed through the Erie Canal to New York.

But now, ironically enough, a political change has made Washington a metropolis far beyond its original grandiose plans, and people flock from near and far to the capitol, to wander dazedly through a forest of red tape, in the hope of transacting their business. I am

(Continued on page 43)
Be it enacted by the General Assembly of the State of Ohio:

Sec. 12600-1. Under part two which follows, will be found under their respective titles, the various classes of buildings covered by this code together with the special requirements for their respective design, construction and equipment.

The classifications of the various buildings will be found under the following titles, viz.:

Title 1. Theaters, assembly halls and assembly halls built in connection with school buildings.

Title 2. School buildings.

Buildings or parts of buildings used only for the specific purposes mentioned under their respective title and classification shall be designed, constructed and equipped as called for under all of the sections coming under such title and classification.

Buildings used for two or more different classes of occupancy and combining the classifications covered under one title shall be designed, constructed and equipped in accordance with the requirements for the least safe construction and arrangement called for under the various sections of the Ohio state building code affecting such buildings or parts of such buildings.

The detailed requirements of the above mentioned special requirements, together with standard devices will be found in subsequent parts of this code.

Sec. 12600-1a. Where fireproof or composite construction is required for structural elements and openings in school buildings or assembly halls built in connection with school buildings, said structural elements and openings shall conform to the fire resistance ratings as provided in the following table:

<table>
<thead>
<tr>
<th>TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE RESISTANCE RATINGS OF STRUCTURAL ELEMENTS AND OPENINGS (IN HOURS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exterior Walls 30' or more</th>
<th>Non-Bearing Walls—Walls Exterior</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lintels</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interior Lot Line or Building</th>
<th>Building Materials Composite</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Walls</td>
<td>Non-Combustible</td>
<td>Non-Combustible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bearing Walls—Interior</th>
<th>Doors 6' and under $\frac{1}{2}$ steel—</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spandrel</td>
<td>over 6'—2 Hr. inside</td>
<td>sofists and sides—</td>
</tr>
<tr>
<td>Beams</td>
<td>over 6'—2 Hr. inside</td>
<td>sofists and sides—</td>
</tr>
<tr>
<td>Columns</td>
<td>2—Note 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Bearing Walls—Walls Exterior</th>
<th>Windows</th>
<th>Non-Combustible</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Windows</th>
<th>Non-Combustible</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interior</th>
<th>Walls</th>
<th>1/2 for one story bldgs.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fire Walls</th>
<th>Walls 2 Hr.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Non-Bearing Walls—Walls</th>
<th>Windows</th>
<th>Non-Combustible Heater Rms. 2 Hr.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interior</th>
<th>Doors Same as for bearing Walls</th>
<th>Same as for bearing Walls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Columns</th>
<th>15/ for one story bldgs.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tables</th>
<th>Fire Res $\frac{1}{4}$—Note 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Elements</th>
<th>Rooms All members & deck</th>
<th>Non-Combustible</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Non-Combustible, or mill constr. if 20' from floor</th>
<th>Note 4</th>
</tr>
</thead>
</table>

| Fire resistance rating defined as the measured time in hours or fractions thereof that the material of construction will withstand fire exposure as determined by fire tests conducted in conformity to recognized standards hereinafter referred to.

The fire resistance ratings approved by the board of building standards shall be approved ratings for the structural elements and doors required in this table. Ratings given in this table are minimum ratings.

The fire resistance ratings of the "Uniform Building Code, 1949 Edition," of the "Pacific Coast Building Officials Conference" shall be
approved ratings for structural elements. Also the fire resistance ratings resulting from tests made on fire doors according to the "American Society for Testing Materials," designation "E-152-41," shall be the approved fire resistance ratings for doors.

Non-combustible construction is defined as the use of non-combustible materials which will neither ignite nor support combustion in air at a temperature of twelve hundred (1200) degrees Fahrenheit due to exposure of five (5) minutes to a vented tube or a vented crucible furnace. One and one-half (1 1/2) hour fire resistance may be provided by a four (4) inch reinforced concrete slab or reinforced concrete joint construction with three (3) inch slab. One (1) hour fire resistance may be provided by reinforced concrete joint construction with two (2) inch slab.

Note 3. The exterior columns supporting the roof of a one story building when used as a means of egress may have the required fireproofing extending to a minimum of thirty-four (34) inches above the first floor level, except in heater rooms, theaters, assembly halls, assembly halls built in connection with school buildings, and gymnasia.

Note 4. Except as required in section 12600-9 of the General Code.

Sec. 12600-11. Acoustical materials may be used as interior finish for walls and ceilings of school buildings subject to the following requirements:

(1) Acoustical materials used in corridors or exit ways, including lobby egress providing a required means of egress, in kitchens, and in rooms exceeding five thousand (5,000) square feet in floor area or to be occupied by more than three hundred (300) people shall meet the classification of Incombustible in Federal Specification SS-A-118a, promulgated February 12, 1948, hereinafter referred to as "SS-A-118a," except as otherwise provided in subparagraphs (3) and (4) below.

(2) Acoustical materials in all other rooms, areas, and locations not included in subparagraph (1) above, in buildings required to be of fireproof or composite construction, shall be of any classification in "SS-A-118a," above Combustible.

(3) Acoustical materials used against wood sheathing roof decks in gymnasia and assembly halls built in connection with school buildings of fireproof or composite construction, where such decks are authorized by sections 12600-11 and the Table of Fire Resistance Ratings of Structural Elements and Openings set forth in said section shall be of any classification in "SS-A-118a," above Combustible;

(4) Acoustical materials used in one-story school buildings of fireproof or composite construction shall be of any classification in "SS-A-118a," above Combustible, however, in corridors or exit ways, including lobby egress providing a required means of egress, and in kitchens, such acoustical materials shall meet the classification in "SS-A-118a" of Incombustible; and

(5) Acoustical materials meeting the requirements of this section may be suspended from or attached to any wall, floor or roof construction and attached to any wall where such floor or roof construction or wall alone meets the requirements of section 12600-1a and the Table of Fire Resistance Ratings of Structural Elements and Openings set forth in said section shall be of any classification in "SS-A-118a," above Combustible.

Sec. 12600-2. Under the classification "theaters" are included all buildings or parts of buildings to which the general public is admitted to witness regular theatrical, vaudeville, burlesque, dramatic or operatic performances in which scenery is used, or motion pictures or television pictures projected.

For assembly hall stages, see section 12600-43 of the General Code.

Under the classification "assembly halls" are included all buildings or parts of buildings seating or accommodating one hundred (100) persons or more and used for the assembly of persons for education, instruction, entertainment or amusement, in which no transient scenery is used.

For assembly hall stages, see section 12600-43 of the General Code.

Sec. 12600-3. The highest point of the main auditorium foyer of any theater shall be so located that materials may be used from the adjacent grade line or sidewalk levels by means of gradients or ramps with not to exceed one (1) foot rise in twelve (12) feet of run.

Theaters seating more than one thousand (1000) persons and theaters with one or more balconies shall be of fireproof construction, except the working part of the stage, viz., the stage floor between the jambs of the prosenium opening from the curtain line to the rear wall of the stage which shall be of mill or fireproof construction.

Theaters seating one thousand (1000) persons or less and containing no balcony shall be of fireproof or composite construction, except the working part of the stage floor which shall be of mill construction or better.

No rooms or apartments for any purpose whatsoever shall be placed over a theater seating five hundred (500) persons or more, unless the entire building is of fireproof construction, except that in buildings of substantial construction, seating over three hundred and not more than five hundred persons and where the theater is on the ground floor in such building, may be rented for other purposes, if the fire, ceiling and side walls of such theater are of fireproof construction and all openings communicating with such theater are covered by double standard fire doors.

For assembly halls built in connection with school buildings shall have a maximum area and seating capacity and be of the type of construction and limited as to the height of the main floor level not more than eight (8) feet.

Assembly halls and assembly halls built in connection with school buildings shall be assumed to be the total aggregate seating capacity of all balconies, galleries, stages and platforms and the main portion of such assembly halls has rooms or assembly halls built in connection with school buildings. Where fixed seats are not to be used the number of persons shall be computed upon a basis of six (6) square feet of floor area per person, except in dining rooms, dance halls and gymnasiums where the floor area shall be computed upon a basis of fifteen (15) square feet per person.

Assembly halls and assembly halls built in connection with school buildings shall have a maximum area and seating capacity and be of the type of construction and limited as to the height of the main floor level not more than eight (8) feet above the average grade line at any entrance to or exit from the building as shown in the following table:

| Areas In Sq. Ft. | Capacity | Fireproof | Composite | Height in Ft. | Height in Ft.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>300</td>
<td>no limit</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>400</td>
<td>no limit</td>
<td>30</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>500</td>
<td>no limit</td>
<td>25</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4200</td>
<td>700</td>
<td>no limit</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4800</td>
<td>800</td>
<td>no limit</td>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5400</td>
<td>900</td>
<td>no limit</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>1000</td>
<td>no limit</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*** 9000</td>
<td>1500</td>
<td>no limit</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12000</td>
<td>2000</td>
<td>no limit</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15000</td>
<td>3000</td>
<td>no limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18000</td>
<td>4000</td>
<td>no limit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frame requirements shall apply only to assembly halls.

Assembly halls and assembly halls built in connection with school buildings of fireproof construction are unlimited as to the height of the main floor level if ingress and egress is provided as required by sections 12600-20 and 12600-21 of the General Code.

Assembly halls and assembly halls built in connection with school buildings of fireproof or composite construction shall meet all the requirements of subparagraphs (1), (2), (3) and (4) above, whichever is applicable.

Sec. 12600-31. Where fireproof construction is required for theaters, assembly halls and assembly halls built in connection with school buildings under the provisions of section 12600-3 of the General Code, roof construction shall be of fireproof or non-combustible materials.

Sec. 12600-4. No theater or motion picture show room shall be less than five (5) feet from the nearest fireproofing in the clear between the walls, nor less than thirteen (13) feet high.

Theaters not over one hundred (100) feet long, and seating or accommodating not over three hundred (300) persons and all assembly halls and assembly halls built in connection with school buildings have in
addition to the main entrance, either the rear or one side wall abutting upon a street, alley, open court or fireproof passageway with direct access to a public thoroughfare.

If the lobby or entrance to the above theater or motion picture show room is level with an angle to the auditorium, the length of the lobby or entrance including the thickness of the walls, added to the length of the auditorium and stage including the rear wall shall not exceed one hundred (100) feet.

The above street, alley, open court, or fireproof passageway shall be not less than eight (8) feet wide in the clear for theaters; assembly halls and assembly halls built in connection with school buildings seating or accommodating not to exceed one thousand (1,000) persons with an additional three (3) inches of width for each additional one hundred (100) persons or fraction thereof, to be accommodated.

Said streets, alleys, open courts or fireproof passageways shall connect with and accommodate all exits leading thereto from the building and shall be kept clear of obstructions at all times.

No openings other than the exit doors from the auditorium, balcony and gallery shall be placed in the above mentioned fireproof passageways, and no stage exits or other openings from the stage shall connect thereto.

Walls, floors and ceiling of such fireproof passageways shall be of fireproof construction and the ceiling height shall be not less than ten (10) feet in the clear.

The said courts or passageways shall not be used for storage or other purposes whatsoever, except for egress and ingress.

Sec. 12600-5. A theater or assembly hall in connection with or as a part of a building used for other purposes, shall have all of its various parts separated from the other parts of the buildings by standard fire walls and fireproof floors and ceilings and all openings between the theater or assembly hall and the other parts of the building or buildings shall be covered by double standard fire doors, provided that in theaters seating less than three hundred the fireproof ceiling is not required.

Openings which are used or liable to be used as a means of egress, shall be covered by standard self-closing fire doors.

Exceptions. Where an assembly hall is built in connection with and is a necessary adjunct to a church, *** lodge building, club house, hospital or hotel, and is designed principally for the use of the occupants of such building, then the above-mentioned standard fire walls or fireproof walls, ceilings and floors will not be necessary, providing the construction of the other parts of the building is of the same, or of a better grade than the assembly hall.

No theater or assembly hall shall have any door or window connecting directly with any sleeping or living room of a tenement or dwelling house, and no theater or assembly hall shall be used for living or sleeping purposes.

All exterior and court walls of buildings coming under this classification within twenty (20) feet of any other building, structure or adjoining lot line shall be fire division walls not less than twelve (12) inches thick and all openings shall be protected by special standard fire doors or standard automatic fireproof windows.

All exterior and court walls of buildings of frame construction coming under this classification shall be fireproof forty-eight (48) feet or more from any other building, structure or adjoining lot line.

Sec. 12600-5a. Assembly halls built in connection with school buildings shall have all of their various parts separated from the other parts of the buildings by fire walls, fire doors, and fireproof floors and ceilings except where the construction of the other parts of the buildings is of the same fireproof construction.

No such assembly hall shall have any door or window connecting directly with any sleeping or living room of a tenement or dwelling house, and no such assembly hall shall be used for living or sleeping purposes.

All exterior and court walls of buildings coming under this classification within twenty (20) feet of any other building, structure or adjoining lot line shall be fire division walls not less than twelve (12) inches thick and all openings shall be protected by Special standard fire doors or standard automatic fireproof windows.

All exterior and court walls of buildings of frame construction coming under this classification shall be fireproof forty-eight (48) feet or more from any other building, structure or adjoining lot line.

Sec. 12600-6a. A stage in an assembly hall built in connection with a school building shall be separated from the rear wall of at least one (1) hour fire rating extending the entire width of the stage and to the highest adjoining roof.

The curtain wall under the proscenium opening shall be located under the center line of the stage and shall be a fire wall, built up to the upper side of the stage floor.

There shall be no openings in this wall above the stage floor level except the proscenium opening and two (2) communicating openings between the stage and the auditorium, and not more than two (2) openings below the stage floor level, and not more than one (1) opening to the attic.

The proscenium opening shall be covered by a fire curtain and all other openings by self-closing fire doors. The latter openings shall not exceed twenty-one (21) square feet in area for any opening.

The wall over the proscenium opening shall be of non-combustible construction with at least one (1) hour fire rating. The height of the proscenium wall over the proscenium opening shall not be less than twice the greatest height of the proscenium opening, plus six (6) feet where a vertical lift curtain is used.

Sec. 12600-7a. No scene dock, workshop, storage or general property room shall be placed above the stage or auditorium of any assembly hall built in connection with a school building, or in any fly gallery.

No boiler or furnace shall have property rooms shall be enclosed by fire walls and all openings shall be provided with self-closing fire doors of at least two (2) hour fire rating.

If scene docks, workshops, storage or general property rooms are located under the stage the same shall have fireproof ceilings and floors with at least two (2) hour fire rating.

Sec. 12600-8a. Stages in assembly halls built in connection with school buildings shall be separated from the dressing rooms by walls of at least one (1) hour fire rating. Such dressing rooms shall also be separated from other parts of the building by fire walls. Dressing rooms shall have fireproof floors, ceilings and partitions.

The above rooms shall be separated from the other parts of the building by self-closing fire doors of at least two (2) hour fire rating.

All dressing and employees' rooms shall be well ventilated by windows opening into areaways, streets, alleys or open courts.

Sec. 12600-9. Furnaces, hot water heating boilers and low pressure steam boilers may be located in the buildings, provided the heating apparatus, breeching, fuel room and firing room are inclosed in a standard fireproof heater room and all openings into the same are covered by standard self-closing fire doors.

Fire furnaces in an assembly hall built in connection with a school building, the same shall be inclosed in a fireproof heater room and all openings shall be covered by self-closing fire doors as provided in section 12600-1a.

No boiler or furnace shall be located under, adjacent to or in direct connection with any stairways, elevator shaft or exit of any theater, assembly hall or assembly hall built in connection with a school building.

Low pressure boilers located within the main walls of any theater, assembly hall or assembly hall built in connection with a school building shall have a reinforced concrete slab not less than six (6) inches thick over the boiler room.

No communicating doorway or other opening shall be placed between the heater or fuel room and the fan, room or air intake.

Sec. 12600-10. No smoking room shall connect with, or be entered directly from any auditorium of a theater or assembly hall; or *** connect with, or be entered from any lobby, entrance, foyer or corridor leading to any such auditorium *** unless protected by a vestibule with two sets of self-closing doors.

Sec. 12600-11. The plans shall be clearly marked showing the maximum number of persons to be accommodated in the various parts of the building.

All seats, chairs and benches in the auditorium, balcony and gallery shall be spaced not less than two feet six inches (2' 6") from back to back, measuring horizontally.

The width of seats or chairs measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from back to back shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from back to back shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from back to back shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from back to back shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from back to back shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.

All seats, chairs and benches in the auditorium, balcony and gallery measuring from center to center of backs are used shall be not less than thirty (30) inches of width for each additional one hundred (100) persons or fraction thereof.
the height of the rise from one platform to another is fourteen (14) inches or less, in which case such platform may be a minimum of twenty-two (22) inches in width. No stair shall be more than thirty (30) feet from any aisle in this type of seating.

Sec. 12606-12. No seat bench or platform shall have a riser of more than twenty-two (22) inches, be placed more than one foot two inches (1' 2") above the level of the aisle immediately next to the same. No balcony platform or seat or aisles shall be placed nearer any ceiling or soffit than seven (7) feet.

Balcony aisles with steps will not be considered stairs.

Sec. 12606-13. Aisles on the main floor level with seats on both sides shall be not less than three (3) feet wide in the clear at any point and shall be increased in width not less than one (1) inch in addition thereto for every six (6) feet of run.

Aisles on the main floor level with seats on one side only shall be not less than two feet and six inches (2' 6") in the clear at any point and shall be increased in width not less than one-half (1/2) inch in addition thereto for every six (6) feet of run.

Aisles in each balcony and gallery with seats on both sides shall be not less than three feet and six inches (3' 6") wide in the clear at any point and shall be increased in width not less than one (1) inch in addition thereto for every six (6) feet of run.

Aisles in each balcony and gallery with seats on one side only shall be not less than three (3) feet wide in the clear at any point and shall be increased in width not less than one-half (1/2) inch in addition thereto for every six (6) feet of run.

Steps in balcony aisles may not exceed seven and one-half (7 1/2) inches in height and treads may not be less than nine (9) inches in width.

Where the main aisles do not lead directly to the exits cross aisles or foyers *** shall be provided, intersecting with all main and wall aisles and leading directly to each exit. Said cross aisles shall not be less in width than the widest aisle with which they connect and in no case less than nine (9) feet.

Ventrailories connecting the main exit with the cross aisles shall have a total width not less than the sum of the width of the widest aisle leading thereto plus fifty (50) per cent of the total width of the remaining aisles leading thereto or according to the requirements in section 12600-21.

Sec. 12600-14. No false openings giving the appearance of a door or window where none exists shall be placed in any part of a theater, assembly hall or assembly hall built in connection with a school building used by the general public.

Sec. 12600-15. No mirror shall be placed in any part of a theater, assembly hall or assembly hall built in connection with a school building used by the general public, except in the women's and men's retiring and toilet rooms.

Sec. 12600-21. The width of stairways in theaters used as a means of ingress shall be at the ratio of one foot eight inches (1' 8") to every one hundred (100) persons to be accommodated.

No stairway shall be less than three (3) feet or more than five (5) feet wide measuring in the clear between the hand rails.

Where more than one stairway is required for any one tier or level they shall be located as far apart as possible.

Where the seating capacity exceeds the limit of five (5) foot stairways, wider stairways may be used providing substantial center hand rails not less than three (3) feet in height are used to divide the stairways into two or more not less than three (3) feet and not exceeding five (5) feet wide.

Stairways used by the general public shall have a uniform rise of not more than seven (7) inches and a uniform tread of not less than ten and one-half (10 1/2) inches.

Stairways not used by the general public shall have a uniform rise of not more than seven and one-half (7 1/2) inches and a uniform tread of not less than nine and one-half (9 1/2) inches. The above dimensions shall be from riser to riser and from tread to tread.

No riser shall be less than five (5) inches. ***

No stairway shall have more than sixteen (16) nor less than three (3) risers in any run.

No winder shall be used and all nosings shall be straight.

Hand rails shall be provided on both sides of all stairways and steps. Outside steps and areaways shall be provided with guard rails not less than two feet and six inches (2' 6") high.

A uniform width shall be maintained to all stair and stair platforms used by the general public by rounding or beveling the angles and corners.

No door shall open directly upon a stairway, but shall open upon a platform or landing equal in length to the width of the door.

All stairways leading directly from the basement to the stage, shall be enclosed by fire division walls not less than eight (8) inches thick, and the ceiling shall be of fireproof construction and all openings protected by standard self-closing fire doors.

No stairways used by the general public shall be placed over any basement stairway, unless the basement stairway is enclosed in fireproof walls, and the ceiling or soffit over the same is of fireproof construction, and all openings to the basement stairway are provided with standard self-closing or automatic fire doors.

No closet for storage shall be placed under any stairway.

No stairway used by the general public shall lead downward to a platform and then upward to a new level or vice versa except the steps in the balconies and gallery aisles.

If a theater has more than one balcony, the stairways from the level above the first balcony shall run directly to and connect with the streets, alleys or open courts, and shall have no direct connection with any part of the theater.

Stair treads shall be provided with approved non-slip treads or shall be carpeted or covered with other material to prevent slipping or tripping.

Where stairways are required in theaters, inclines or gradients may be used providing the same are supplied of the width, in the number and are located as prescriribed for stairways. The pitch of incline or gradient shall not exceed one (1) foot rise in ten (10) feet of run.

All stairways in assembly halls shall be enclosed by fire division walls not less than eight (8) inches in thickness and shall have fireproof ceilings and floors and all openings shall be protected by self-closing fire doors.

Widths of stairways shall be at the ratio of three (3) feet per hundred (100) persons to be accommodated.

Otherwise stairways and inclines shall be constructed and equipped the same as required for theaters.

Stairways in assembly halls built in connection with school buildings shall be enclosed by fire walls and shall have fireproof ceilings and floors and all openings shall be protected by self-closing fire doors as provided in section 12600-10 of the General Code, except that interior ingress stairways from the auditorium floor to the first balcony shall have a total of one (1) hour fire rating and need not have fire doors.

Otherwise stairways and inclines shall be constructed and equipped the same as required for assembly halls.

Sec. 12600-22. All lobbies or entrances to theaters shall be level or flush with the sidewalk.

To overcome any difference in levels in and between courts, corridors, lobbies, passageways, auditorium and aisles on the ground floor, gradients shall be employed.

Gradients in auditorium aisles shall not exceed one (1) foot rise to five (5) feet run, and no other gradient or incline shall exceed one (1) foot rise to three (3) feet run without hunches. Gradients in hallways and passageways required for stairs shall not exceed one (1) foot rise to eight (8) feet run.

Steps at all exits shall be so designed as to be level and flush with the adjacent floors.

Sec. 12600-23. Halls, foyers and passageways shall be so designed and proportioned as to prevent congestion and confusion.

No hall, foyer or passageway leading to a stairway or exit shall be less in width than the width of the stairway or exit, and in no case less than four (4) feet wide.

All corridors, passageways, hallways and stairways used by the general public leading from any public part of the building or to any toilet, retiring or check room shall permit of a free passage to an outer exit of the building without returning.

The aggregate capacity of foyers, lobbies, corridors and passageways for the use of the general public, not including aisles space between seats, shall be for each floor, balcony or gallery, sufficient to contain the entire number of persons to be accommodated on the said floor, balcony or gallery, in the ratio of one and one-half (1 1/2) square feet per person.

Any stairway, corridor or passageway shall be of equal capacity to the aggregate width of all stairways, corridors or passageways which it serves as a means of egress.

The foyer requirements designated in this section do not apply to assembly halls built in connection with Grade A school buildings.

Sec. 12600-24. Elevators in theaters and assembly halls shall be enclosed by fire division walls not less than six (6) inches in thickness and by fireproof ceilings and floors and all openings shall be covered by standard elevator fire doors.

Elevators in assembly halls built in connection with school buildings shall be enclosed by fire walls, fireproof ceilings and floors and all openings shall be covered by elevator fire doors as provided in section 12600-10 of the General Code.

Otherwise elevators shall be constructed, equipped and installed in accordance with the requirements of the department of industrial relations and the industrial commission of Ohio.

Elevators shall not be considered or computed as a means of egress.

Sec. 12600-30. In calculating construction the *** live loads on the various floors and roofs shall be assumed as follows:

- In auditoriums with fixed seats, eighty (80) pounds per square foot.
- In auditoriums with movable seats, one hundred (100) pounds per square foot.
- In halls used for dancing, one hundred and twenty-five (125) pounds per square foot.
- In lobbies, passageways, stairways and corridors, one hundred (100) pounds per square foot.
- In dressing rooms, fifty (50) pounds per square foot.
On theater stages, two hundred and fifty (250) pounds per square foot, and on assembly hall stages or platforms, one hundred and fifty (150) pounds per square foot. In scene doors, not more than one hundred (100) pounds per square foot.

In gridiron, seventy-five (75) pounds per square foot.

In property rooms, one hundred (100) pounds per square foot. In attics not used for storage, twenty (20) pounds per square foot.

On roofs, ninety (90) pounds per square foot.

Sec. 12600-31. A heating system shall be installed which will uniformly heat all parts of the building to a temperature of sixty-five (65) degrees in zero (0) weather.

Assembly halls, assembly halls built in connection with school buildings and theaters and auditoriums shall be provided with a system of ventilation which will change the air not less than six (6) *** room volumes per hour *** and supply not less than two hundred (200) cubic feet of outside air per person for each person to be accommodated during each performance. Sufficient fire air intakes shall be provided for the entire number of air changes required and where there is any recirculation, automatic controls shall be installed to regulate the quantity of this fresh air supply to maintain the required room temperature. A system which provides for mechanical circulation or recirculation of air and which automatically maintains the required room temperatures may be used if it conforms to the above capacity requirements. An accessible and self-contained type of unit ventilator may be used providing that it conforms to the above provisions.

When this type of ventilator is used, the rate of discharge shall be at a minimum velocity of six hundred (600) feet per minute. Seating capacities set shall be computed upon the basis established under section 12600-32. In general, first class, dressing rooms, retiring rooms, toilet rooms, check rooms and smoking rooms not having mechanical ventilation, shall be ventilated by a system which will change the air not less than four (4) times per hour.

No direct-indirect permanent lighting shall be used where ventilation is required, and no stove or open fire shall be used in any theater, assembly hall built in connection with a school building or assembly hall.

Where ventilation is required, the fresh air supplied shall be taken from outside the building above the grade line, except where ventilation is required for toilet rooms, in a clean and sanitary location. The intake shall be properly screened and drained to prevent the collection of dirt or water. Where ventilation is required for toilet rooms, the ventilation shall be taken from corridors. Vent registers shall be provided near the floor line and ventilated air shall be conducted through flues or ducts to and be discharged above the roof of the building.

Sec. 12600-32a. Toilet requirements, except requirements for drinking fountains, for assembly halls built in connection with school buildings may be the same as provided for school purposes if readily accessible and not more than one hundred (100) feet from the assembly hall, provided the assembly hall is used for no other purpose than assembly. If not readily accessible and not more than one hundred (100) feet from the assembly hall, the requirements shall be as provided for assembly halls in section 12600-32 of the General Code.

Sec. 12600-35. All electrical materials and installations shall be in strict accordance with the *** .1951 National Electric Code *** of "The National Board of Fire Underwriters *** , except that all electrical wiring shall be installed in *** rigid metal conduits, electrical metallic tubing or nonmetallic raceways, meeting the requirements of such code.

Exit lights shall have not more than one set of fuses between same and service fuses.

Exit lights and all lights in halls, corridors or any other part of the building used by the audience, except the general auditorium lighting, shall be fed independently of the electric supply and controlled only from the lobby or other convenient place in front of the house.

Under "exit" lights are included lights over all stairways and tunnels leading from the auditorium, balconies or galleries, lights over every door leading from the auditorium, balconies or galleries to streets, alleys, courts or lobbies, in fact all light as may be necessary to lead or direct the audience from the auditorium, balconies or galleries to such parts of the building as are normally kept lighted, or to streets, alleys or open courts.

Under "exit" lights are also included such lights as may be necessary to lead or direct all performers, stage employees including all persons on or about the stage, to public streets, alleys or open courts.

Every portion of the theater, *** assembly hall or assembly hall built in connection with a school building used or occupied by the public, including all courts, corridors, stairways, exits and outlets from the building to streets, alleys or other public ground and necessary means of egress for performers and stage employees shall be adequately lighted during each performance and shall remain lighted until the entire audience has left the premises.

Over each exit light shall be placed a box or receptacle not less than six (6) inches by six (6) inches by twelve (12) inches, made of twenty (20) B & S gauge galvanized iron or other incombustible materials of equivalent fire resistance, with a sign and receptacle attached, fire hydrants shall be provided with a sign with the word "exit" in plain, block, transparent, red letters not less than five (5) inches high. Where necessary, signs shall also contain an illuminated arrow pointing to the means of egress.

Sec. 12600-37. Where a water supply of sufficient pressure is available the following standard stand pipes with lines of one and one-half (11/2) inch hose shall be provided.

Theaters and assembly halls less than sixty (60) feet wide and less than one hundred (100) feet long, shall have stand pipes and hose placed as follows: one in the balcony, one at the rear of the auditorium, one on the stage and one under the stage.

Theaters and assembly halls more than thirty (30) feet wide or more than one hundred (100) feet long shall be provided with stand pipes and hose placed as follows, viz., one in the auditorium; one in each balcony and gallery; one on each side of the stage; one in each fly gallery and one under each of the basement doors or exits from the stage.

The above lines of hose shall not be more than seventy-five (75) feet long, and where lines of hose of the above length will not reach the extreme portions of the building additional stand pipes and hose shall be installed.

Where water supply of sufficient pressure is available automatic sprinklers operated by fuses shall be placed over the stage and in each property room, carpenter shop and paint room. Automatic sprinkler over the stage shall be placed not more than six (6) feet from the stage walls and between these points shall be spaced in both directions and not more than one hundred (100) feet on center.

Sprinklers shall be so designed as to operate at a temperature from one hundred and sixty (160) to one hundred and sixty-five (165) degrees Fahrenheit.

Where sprinkler equipment is installed as above specified no stand pipe or hose need be provided for the areas protected by the sprinklers.

Where water supply of sufficient pressure is not available, or where water supply of sufficient pressure to reach the various parts of the building for which the same is intended, in lieu of stand pipes and hose, standard chemical fire extinguishers shall be provided as follows:

In theaters and assembly halls less than thirty (30) feet wide and not more than one hundred (100) feet long, chemical fire extinguishers shall be placed as follows: one in the heater room, two on the stage, two under the stage, one in dressing room section, two in auditorium, two in each fly gallery and one in each property room, one in each check room and in each paint or property room. Automatic sprinkler over the stage and in each property room, carpenter shop and paint room.

Sec. 12600-39. All aisles, foyers and passageways in assembly halls, *** assembly halls built in connection with school buildings and theaters shall be kept free from camp stolls, chairs, sofas, and other obstructions, and no fossil fuel shall be allowed in the foyers or passageways. breeze ways, and no stove or open fire shall be used in any theater, assembly hall built in connection with a school building or theater.

Sec. 12600-43. No roof garden, roof theater or skating rink shall be placed on the roof of any building unless the entire building is of fireproof construction, and no part of any such roof garden, roof theater or skating rink shall be placed over or above any garage or any portion of the stage of an assembly hall, assembly hall built in connection with a school building or theater.

Sec. 12600-44. When an assembly hall or room of any academy, school, college, or other educational institution, or a concert hall in any club house or hotel, or the lodge room in a temple or place of assembly of external or internal organizations, either for the exclusive use of the members or for the public at large, contains a stage and a limited amount of scenery as hereinafter described, such hall, room or place of assembly shall comply with all the prescribed conditions for theaters and assembly halls, and with the exception of the following modifications for the stage.

An assembly hall stage shall be consistent with the stage of an assembly hall built in connection with a school building with not to exceed one permanent set of scenery and on which no transient scenery is used need not be provided with an asbestos curtain, stage ventilator or masonry proscenium wall as required for theaters.

Sec. 12600-38. Of ** * *** of the General Code except fireproof scenic or decorative walls or set partitions built as a permanent part of the building, which may be of unlimited area. Otherwise such stages shall be designed, constructed and equipped as required for theaters.

An assembly hall stage with not to exceed one permanent set of
scenery and on which no transient scenery is used, but in excess of the requirements regarding the area of the permanent scenery as above stated, shall be separated from the other parts of the building as required for theaters and shall be provided with an automatic stage ventilator with an area equal to one-sixteenth (1/16) of the area of the stage floor.

Otherwise the stage shall be designed, constructed and equipped as required for theaters, and the auditorium shall be designed, constructed and equipped as required for assembly halls.

Assembly halls and auditoriums containing a stage in excess of the above requirement shall be designed, constructed and equipped as prescribed for theaters.

Sec. 12600-46. No building of grade B shall occupy more than ninety-five (95) per cent of a corner lot nor more than ninety (90) per cent of an interior lot or site.

No building of grade A shall occupy more than seventy-five (75) per cent of a corner lot nor more than seventy (70) per cent of an interior lot or site. The measurements being taken at the lowest tier of floor joists.

No wall of any building coming under this classification containing windows used for lighting school or class rooms shall be placed nearer any opposite building, structure or property line than thirty (30) feet. No exterior walls containing windows for toilet rooms and school offices shall be placed nearer any opposite building, structure or property line than twenty (20) feet.

Light courts may be used providing the least distance between any two opposite walls containing windows for the lighting of class and school rooms is equal to the height from the lowest window sill to the top of the highest exterior cornice or wall. All court walls shall be fire self-closing fire doors with a fire rating as described for exterior bearing walls in section 12600-1a.

No light court shall be covered by a roof, skylight, or other construction.

If the areaways are used for lighting basements, the width of the area shall be not less than equal to the height from the lowest window sill to the top of the adjoining grade line.

Sec. 12600-47. Buildings of any classification built in connection with a building or buildings of a lower grade of construction, or a different class of occupancy, shall be separated from the other parts of the building or buildings by walls, fireproof ceilings and floors, and all communicating openings in these walls shall be covered by fire doors, using a self-closing door or doors, as provided in section 12600-1a of the General Code. Where the nearest wall, adjacent property line or nearest possible building wall is one hundred (100) feet or more away and a minimum of fifteen (15) foot candles of artificial light is provided, there shall be a minimum of one (1) square foot of glass area to each six and one-half (61/2) square feet of floor area. There shall be not less than one (1) square foot of glass area to each eight (8) square feet of floor area in each domestic science, carpenter shops, general repairing, paint shops, laboratories or other equally hazardous purposes shall be constructed with fireproof walls, ceilings and floors and all openings between such rooms or apartments and the other parts of the building shall be covered by self-closing fire doors.

No open wells communicating between any two stories shall be used, except the necessary stair and elevator wells.

Where they exist, court walls or enclosures of fireproof or composite construction within twenty (20) feet of any other building, structure or lot line shall be fire self-closing fire doors with a two (2) hour fire rating and all openings shall be covered by fireproof doors or windows with a two (2) hour fire rating.

Sec. 12600-48. Furnaces, hot water heating boilers and low pressure steam boilers may be located in the buildings, providing they are properly damp proofed, heated and ventilated, and have the required glass area.

Sec. 12600-48a. For purposes of sections 12600-9 and 12600-48 of the General Code, a high pressure boiler shall be defined to be any boiler carrying in excess of fifty (50) pounds pressure.

Sec. 12600-49. Rooms used for school purposes may be placed not more than one-half the height of the story below the grade line providing they are properly damp proofed, heated and ventilated, and have the required glass area.

Sec. 12600-50. The minimum floor space to be allowed per person, in school and class rooms shall be an area sufficient to accommodate seats, desks and chairs used with aisle spaces as provided under section 12600-53 of the General Code. The floor space per pupil, where seats are not fixed shall be figured at eighteen (18) square feet each pupil, with clerestory lighting providing at least one square foot of glass area to every ten (10) square feet of floor space.

The height of all other rooms used for school purposes shall be not less than one-half (1/2) the average height of the room minus twelve (12) inches, and in no case less than ten (10) feet to the main part of the ceiling. The heights required from the floor to the top of windows may be considered as meeting the room height requirements of this section.

Where bilateral natural lighting is provided for schoolrooms in addition to the minimum natural lighting requirements of section 12600-54 of the General Code, and is located at least eight (8) feet from the floor of the room and in the wall opposite the main source of natural light, then the height of the room shall be considered as producing the principal source of light, and (§) the inside face of the nearest wall, adjacent property line or nearest possible building wall is one hundred (100) feet or more away and a minimum of fifteen (15) foot candles of artificial light is provided, there shall be a minimum of one (1) square foot of glass area to each six and one-half (61/2) square feet of floor area. Where the nearest wall, adjacent property line or nearest possible building wall is one hundred (100) feet or more away and a minimum of fifteen (15) foot candles of artificial light is provided, there shall be a minimum of one (1) square foot of glass area to each six and one-half (61/2) square feet of floor area. Where the nearest wall, adjacent property line or nearest possible building wall is one hundred (100) feet or more away and a minimum of fifteen (15) foot candles of artificial light is provided, there shall be a minimum of one (1) square foot of glass area to each six and one-half (61/2) square feet of floor area. Otherwise the stage shall be designed, constructed and equipped as prescribed for theaters.

In laboratories, drafting rooms, domestic science rooms, manual training rooms and shops, rooms from two or more sides or by means of skylights, with less than one (1) square foot of glass area to each five (5) square feet of floor area, the requirement for a relative location of window tops to room width may be disregarded. The room shall be clearly marked showing the maximum number of pupils or persons to be accommodated in each room.

Sec. 12600-52. A room seating or accommodating more than one hundred (100) and fifty (50) persons shall be considered as an assembly hall built in connection with a school building.

No such assembly hall in a building of grade A shall be located above the second story in a building of fireproof construction, nor above the first story in a building of composite construction.

Otherwise such assembly halls shall be constructed and equipped as called for under part 2, title 1.

Sec. 12600-54. There shall be provided not less than one (1) square foot of glass area to each five (5) square feet of floor area in each class, study, recital, school office and laboratory room and toilet or water closet room, and an area equal to one-sixteenth (1/16) of the area of the stage floor.

Otherwise the stage shall be designed, constructed and equipped as prescribed for theaters.

Where bilateral natural lighting is provided for schoolrooms in addition to the minimum natural lighting requirements of section 12600-54 of the General Code, and is located at least eight (8) feet from the floor of the room and in the wall opposite the main source of natural light, then the height of the room shall be considered as producing the principal source of light, and (§) the inside face of the nearest wall, adjacent property line or nearest possible building wall is one hundred (100) feet or more away and a minimum of fifteen (15) foot candles of artificial light is provided, there shall be a minimum of one (1) square foot of glass area to each six and one-half (61/2) square feet of floor area. Otherwise the stage shall be designed, constructed and equipped as prescribed for theaters.
windows.

Sec. 12600-54. Light directing glass block consisting of partially evacuated hollow units of glass, produced by fusing two sections of pressed glass together at elevated temperatures, and capable of directing fifty (50) percent or more of the transmitted light in an upward direction under all conditions may be used in lieu of flat glass areas required by section 12600-54 of the General Code, provided that the installation of such glass block starts at a minimum of five (5) feet nine (9) inches from the floor and provided that the gross area of such glass block panels in relation to the floor area shall be fifteen (15) percent greater than that for flat glass areas.

Glass block, other than the light directing type, consisting of partially evacuated hollow units of clear colorless glass produced by fusing two sections of pressed glass together at elevated temperatures, may be used in lieu of flat glass areas required by section 12600-54 of the General Code; provided the gross area of such glass block panels in relation to the floor area shall be twenty-five (25) percent greater than that required for the gross flat glass areas.

Where natural lighting in the form of exterior windows or skylights, or both, is not provided, they shall be provided with a minimum of ventilation openings in such windows or skylights equivalent to twenty-five (25) percent of the required glass area.

Sec. 12600-55. All means of egress from the building shall be by exit doors placed in exterior walls and swing outward only.

Grade A buildings of fireproof construction. Means of egress from rooms in the basement and superstructure shall be in proportion to three (3) feet in width to each one hundred (100) persons to be accommodated in buildings accommodating not more than five hundred (500) persons.

When buildings accommodate from five hundred (500) to one thousand (1000) persons, two (2) feet additional exit width shall be provided for each one hundred (100) persons or fraction thereof in excess of five hundred (500) persons.

When buildings accommodate more than one thousand (1000) persons, one foot additional exit width shall be provided for each one hundred (100) persons or fraction thereof in excess of one thousand (1000) persons, but in no case shall an exit be less than three (3) feet or more than six (6) feet wide.

Means of egress from each room in the building may be by exit doors leading directly to the corridors and all such doors shall be so arranged that there are no pockets or dead end corridors beyond any stairway or other means of egress from the building.

Grade A building of composite construction. Each room in the superstructure shall be accessible to a class or school room, shall have at least two separate and distinct means of egress.

No class, school or high school room shall have more than one door or opening between it and the main halls or corridors of the building.

Communicating doors between two class or school rooms shall not be considered as a means of egress.

The proportion of exits to the seating capacity shall be not less than three (3) feet to each one hundred (100) persons to be accommodated.

One exit door from each room shall lead to the main corridor and all other exits shall lead to **inclosed fireproof stairways**.

All such exits not more than eight (8) feet above the grade line may lead to fireproof outside steps or stairs and thence to the grade. In no case shall an exit be less than three (3) feet or more than six (6) feet wide.

Each room in the basement used by the pupils shall have a direct exit not less than three (3) feet wide, with stone, cement or iron stairways leading up to the grade line.

Stairways shall be not less than three feet six inches (3' 6") wide.

Areaways around such stairways shall have substantial hand and guard rails on both sides.

These exits shall be provided in addition to the usual service stairways and means of ingress.

Grade B buildings of fireproof or composite construction. Each room or apartment used for any purposes other than storage shall have two (2) feet of additional exit width. (1000) persons two feet of additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of five hundred (500) persons, when buildings accommodate more than one thousand (1000) persons, one foot additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of one thousand (1000) persons.

No stairway shall be less than three (3) feet nor more than **six (6) feet** wide in the clear measuring between the hand rails. Stairways over six (6) feet wide shall have substantial center hand rails with **non-combustible walls of one (1) hour fire rating**.

No riser to be more than seven (7) inches in height and no tread to be less than ten (10) inches in width exclusive of the nosing, measured from tread to tread and from riser to riser.

No door shall open directly upon a stairway, but shall open on an outside wall or corridor or through self-closing fire doors of one (1) hour fire rating in each story.

Stairs shall be provided with grade line platforms with exit doors not less than three (3) feet wide leading to streets, alleys or open courts.

Grade B Buildings of composite construction. In buildings of composite construction, stairways shall be separated from the main part of the building by **walls of one (1) hour fire rating**.

Monumental stairs from the basement to the second story may be used in buildings of grade B, providing they are placed as far distant from the other stairways as possible.

Width of stairways shall be at the rate of three feet per hundred (100) persons accommodated in buildings accommodating not more than five hundred (500) persons, when a building accommodates from five hundred (500) to one thousand (1000) persons, one foot additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of five hundred (500) persons, when buildings accommodate more than one thousand (1000) persons, one foot additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of one thousand (1000) persons.

No stairway shall be less than three (3) feet nor more than **six (6) feet** wide in the clear measuring between the hand rails. (1000) persons two feet of additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of five hundred (500) persons, when buildings accommodate more than one thousand (1000) persons, one foot additional stairway width shall be provided for every one hundred (100) persons or fraction thereof in excess of one thousand (1000) persons.

No stairway shall be less than three (3) feet nor more than **six (6) feet** wide in the clear measuring between the hand rails. No stairway shall be less than three (3) feet in height. No inside or outside stairway or fire escape shall have less than two (2) nor more than eighteen (18) risers in any run.

No stairway shall have winders and all treads shall be of uniform width.

Hand rails shall be provided on both sides of all stairways and steps. Outside stairways and areaways shall be provided and guard rails shall not less than three (3) inches in width. Riser height shall be not more than two (2) inches in width exclusive of the nosing, measured from tread to tread and from riser to riser.

No door shall open directly upon a stairway, but shall open on an outside wall or corridor or through self-closing fire doors of one (1) hour fire rating in each story.

No door shall open directly upon a stairway, but shall open on an outside wall or corridor or through self-closing fire doors of one (1) hour fire rating in each story.

No closet or storage space shall be placed in, under, or over in connection with any stairwell or stairs. Stair treads shall be covered with approved material to prevent slipping or tripping.

Sec. 12600-57. **Gradients shall be of six (6) feet or more in length and shall not be covering one (1) inch rise to two (2) inch rise to two (2) inch rise to eight (8) inch run if provided with hand rails as required for stairs.**

Floors at all exits shall be so designed as to be level and flush with the adjacent floors.
Sec. 12600-59. Elevators shall be enclosed in ** fireproof shaft walls, or by fireproof walls, ceilings and floors, and all openings to the enclosures shall be covered by ** fire doors for elevators.

Not more than one elevator shall be placed in any one shaft.

Thresholds to elevator shaft openings shall be of non-slip material. All elevator doors shall have electrical interlocking attachments to prevent the shaft being opened, unless car is at floor level, and all cars are to be equipped with electrical interlocking safety gates.

All rules and requirements of the industrial commission of Ohio, relating to elevators, shall be complied with.

Sec. 12600-61. Every building ** having a flat roof or attic shall have ** a bulk-head or scuttle not less than two (2) feet wide and not less than five (5) feet high, covered over with fireproof metal and provided with a stairway or permanent ladder leading thereto.

Bulk-head and scuttle doors shall never be locked.

Sec. 12600-63. In calculating ** construction, the ** live load uniformly distributed on the various floors and roofs shall be assumed at not less than the following, viz.:

- Classrooms, sixty (60) pounds per square foot.
- Halls, assembly halls built in connection with school buildings, stair and corridors, eighty (80) pounds per square foot.
- Museums, libraries and art galleries, one hundred (100) pounds per square foot.
- Attics not used for storage, twenty (20) pounds per square foot.
- Roofs, ** thirty (30) pounds per square foot.

Sec. 12600-64. A heating system shall be installed which will uniformly heat all corridors, hallways, play rooms, toilet rooms, recreation rooms, art rooms, gymnasium and manual training rooms up to a uniform temperature of 65 degrees in zero weather; and will uniformly heat all other parts of the building to 70 degrees in zero weather.

Rooms with one or more open sides used for open air or outdoor treatment need not be ventilated.

A system of ventilation shall be provided for the supplying of pure fresh air to all parts of the building except the corridors, halls, heater rooms, fuel rooms and storage closets. Rest rooms, offices and other rooms not greater than two hundred (200) square feet in area need not be ventilated.

The ventilating system shall be capable of supplying not less than six (6) room volumes of air per hour and shall provide for the positive introduction of outdoor air at the minimum rate of two hundred (200) cubic feet per hour per stair. Such fresh air intake capacity shall be provided for the entire number of air changes required and where there is any re-circulation automatic controls shall be installed to regulate the quantity of this fresh air supply to maintain the required room temperatures. A system which provides for mechanical circulation or re-circulation of air and automatically maintains the required room temperature may be used if it conforms to the above capacity requirements. The system shall provide the above requirements in each study, class, recitation, assembly, laboratory, and other room used for instruction purposes ** In all other parts of the building not otherwise excepted **, the system shall provide not less than three (3) complete changes of air per hour.

The ventilating system to be installed where required, shall be a gravity, indirect or mechanical indirect system, or a unit ventilating system except that one story buildings without an (4) school or class room standard ventilating stoves may be used.

Where wardrobes or lockers are in the class room they shall be considered a part of the class room and the vent register shall be placed in the wardrobe or lockers where possible.

The bottom of warm air registers shall be placed not less than (8) feet above the floor line, except that unit ventilators with a substantially vertical discharge may have the outlet not less than twenty-four (24) inches above the floor and floor registers may be placed in corridors or lobbies. An accessible and self-closing type of unit ventilator may be used providing that it conforms to the above provisions. When this type of ventilator is used, its air delivery capacity shall not exceed fifteen hundred (1500) cubic feet per minute and the rate of discharge shall be a uniform rate of one and one-half (1½) feet per minute.

Vent registers shall be placed not more than six (6) inches above the floor line, except in rooms where no direct supply of fresh air is required.

The fresh air supply shall be taken from the outside of the building, except where ventilation is required for toilet rooms, in a clean and sanitary location above the grade line. The intake shall be properly screened and drained to prevent the accumulation of dirt and water. Where ventilation is required for toilet rooms, no independent fresh air supply need be provided and ventilating air may be taken from corridors.

The ventilating air shall be conducted through flues or ducts to and be discharged above the roof of the building.

A hood shall be placed over each and every stove in the domestic science room, over each and every compartment desk or demonstration table in the chemical laboratories and chemical lecture rooms, of such a size as to fit the stove and carry off all other fumes, odors, fumes and gases.

These ducts shall be connected to vertical ventilating flues placed in the walls and shall be independent of the room ventilation as previously provided for.

Where electric current is available electric exhaust fans shall be placed in the ducts or flues from the stove fixtures in domestic science rooms and chemical laboratories, and where electric current is not available and a steam or hot water system is used, the main vertical flues from the stove fixtures shall be insulated with such material of proper size to create sufficient draught to carry away all fumes and offensive odors.

Sec. 12600-65. Where a water supply and sewerage system are available sanitary equipment shall be installed as follows:

In the superstructure of the building one (1) sink and one (1) drinking fountain shall be installed on each floor to each six thousand (6000) square feet of floor area or less.

In the basement one (1) sink and one (1) drinking fountain shall be installed on the main side, and the same on the females' side, to each three hundred and fifty (350) pupils, or less.

Sinks shall be the ordinary slop sinks, in lieu of which lavatories may be used providing the waste plug or stopper has been removed.

Sanitary drinking fountains shall be installed, and no tin cups or tumblers shall be allowed above the floor line.

In libraries, museums and art galleries there shall be provided the following fixtures, viz.:

- One water closet to each one hundred (100) females, or less.
- One water closet to each two hundred (200) males, or less.
- One urinal to each two hundred (200) males, or less.

The above to be based upon the actual number of persons to be accommodated, the capacity ** being established as prescribed under section ** 12600-35 of the General Code.

In all other school buildings there shall be provided the following fixtures, viz.:

- Water closets for males shall be installed in the following proportions:
 - For the first one hundred (100) male pupils, one water closet for each fifty (50) male pupils or fraction thereof.
 - For all exceeding one hundred (100) male pupils, one water closet for each seventy-five (75) male pupils or fraction thereof.
- Urinals for males shall be installed in the following proportions:
 - One urinal for each thirty (30) male pupils or fraction thereof.
- Water closets for females shall be installed in the following proportions:
 - For the first one hundred (100) female pupils, one water closet for each twenty (20) female pupils or fraction thereof.
 - For all exceeding one hundred (100) female pupils, one water closet for each thirty-five (35) female pupils or fraction thereof.
- Toilet accommodations for males and females shall be placed in separate rooms, with a traveling distance between the entrance doors of not less than twenty (20) feet **, except that separate toilets for males and females directly off classrooms used exclusively for primary grades, up to and including the second grade, may have the entrance doors adjoining one another.

Juvenile or short closets shall be used for primary and grammar grade schools. This does not apply when latrine closets are used.

In buildings accommodating males and females it shall be presumed that the occupants will be equally divided between males and females.

Where water supply and sewerage systems are not available no sanitary equipment shall be installed, but pumps in lieu of drinking fountains, closets and urinals in the above proportions shall be placed upon the school building grounds, and no closets or urinals shall be placed nearer any occupied building than fifty (50) feet.

Where pumps or hydrants are used the outlet shall be inverted.

Buildings more than three (3) stories in height shall be provided with toilet rooms in each story and basement, and in these shall be installed water closets and urinals in the above required ratios in proportion to the number of persons to be accommodated in the various stories.

Toilet rooms for males shall be clearly marked "BOYS" or "MEN" and for females "FEMALES" or "WOMEN.

Sec. 12600-67. *** All electrical materials and installations shall be installed in accordance with the provisions of section 12600-35 of the General Code.

All stairways, corridors, passageways, hallways and other parts of the building used as a means of ingress or egress shall be adequately lighted by artificial light. Where the building is occupied after dark, such lights shall be controlled by switches accessible only to those in authority.

Assembly halls, ** built in connection with school buildings shall be provided with exit lights according to section 12600-35 of the General Code. All class rooms shall have not less than fifteen (15) foot candles of artificial lighting computed at desk top level.

Sec. 12600-69. Standard stand pipe and hose shall be provided in each story and basement of grade A buildings and in each story and basement of grade B buildings with sufficient length of one and one-half (1½) inch hose to reach any part of the story.

Hose lengths shall be not more than seventy-five (75) feet, and (continued in back of book)
sure there is no need to relocate the capitol. No enemy would bomb Washington and deliberately end all that confusion.

Historians can point to, and debate with intense interest, the various facets and comparative qualities of town planning as exemplified in the early days of London, Paris, Frankfort on Main, Rotterdam and Amsterdam.

Of these Amsterdam is one of the few cities of our times which shows a continuous tradition in town planning, unbroken since 1900. This uninterrupted building activity is particularly important for our purposes this evening, since it affords us a view over a long period of development.

Town planning in Amsterdam operated within the realm of what was really possible. There were no erratic developments, no Utopian enterprises—there was only sensible and steady progress. The method behind the work can only be termed analytic. Both progress and mistakes were made by slow stages at Amsterdam.

In the interval between 1900 and 1920 the population increased by 50%. It was in this period that the maximum building activity took place. For what classes were these buildings raised? The early London squares were for the gentry. The middle classes were the chief objects of Haussman's boulevard building in Paris. In Amsterdam the building activity was carried on in the interest of the lower middle class and the working people.

The impetus for all of this came from the Dutch Housing Act of 1901. "This enactment," to quote from the Harvard City Planning Studies, "is perhaps the most comprehensive single piece of legislation ever to be adopted in this field. Its eleven chapters provide the essentials of a complete attack upon the national problems."

The general plan for the future development of the city was prepared by a joint commission of architects and the Department of Public Works. A careful and sane analysis was made of all those factors which determine the social and economic makeup of a city.

For example, the recreational needs of the future population were studied in detail. It was found that people make little use of any parks farther than one quarter of a mile from their homes. The maximum distance between any two parks has, therefore, been limited to a half mile. Such planning is consciously proportioned to the human scale. It moves in the direction of those "playgrounds at the doorstep" which Corbusier has proclaimed as one of the fundamental requirements of city planning.

I wish time permitted us to examine the entire plan. Suffice it to say, in the steady progress of realizing this scheme, only conditions actually in force—and those which calculation established as most probable—were taken into consideration. All measures so far adopted have been approved by the later course of events. It was not, on the other hand, a Utopian plan. Mistakes were made; compromises ensued; but a steady and visible progress was made. Life has filled out and diversified the original plan the way a river occupies and shapes its bed. This is always the inevitable result of a total concept which is based on freedom and flexibility.

Speaking of freedom, I believe our best hope of keeping it lies in a clearer realization of the limitations as
well as of the advantages of our system of private enterprise. We have scarcely begun to explore the possibilities of a partnership between government and private enterprise. To the contrary, many rugged individualists are adamant in feeling like the famous admiral who said "We have just begun to fight." However, the nation might benefit greatly by the adoption of the earthly philosophy, "if you can't beat 'em—join 'em!" And as long as the government already participates with its hand so deep in our cash registers, we may as well legalize the relationship.

If we could think of government as the partner rather than as the truant officer of business, we may be able to devise a procedure that relies more on incentive than it does on compulsion. The proper incentives could stimulate the best qualities of private business, instead of restraining it by endless regulations. The task will not be easy! But is that a sufficient reason for not attempting it?

Nor is it easy to secure creative action. Yet it is virtually necessary. Decentralization, as we now see it, affects not only the locality and the surroundings of the city, itself but also the whole state, the region, even the whole nation. This broad field must now be included in our planning. Local, state, or regional planning can be adequate only if it is related to national planning. National planning must develop according to comprehensive principles, in which local and regional planning are interrelated parts.

A broad concept of our task would enable us to find, not only the right location for the decentralized industries, their settlements and their related agricultural areas, but also the best routes for power lines and transportation systems; we could discover new and better ways for the use of land and water; for the development and conservation of local, regional, and national resources.

Every city has its zone of influence, the area where live people who work within its boundaries. The larger the city, the more its zone of influence expands. Interurban tracks at first, and later the automobile, have provided the means of transportation within this zone. As transportation has advanced, settlement of such areas has increased. The tendency toward decentralization, the exodus from the city, is manifest in every large growing city.

However, because the growth of these suburban areas has been planless, a disorganized and chaotic suburbanization has resulted, uneconomic and unsatisfactory to the population.

As people leave the city because conditions become unfavorable for good living there, so also do industries seek more convenient locations for their plants outside the city limits. Their movement, like the movement of the population, is proceeding without plan or foresight. This planless decentralization of industry is even more dangerous than the random flight of residents to outlying areas. In a very short time, it will produce outside the city, the same unfavorable conditions of smoke, soot, fumes and snarled traffic, which now prevail within it.

Such a planless suburbanization must unquestionably be put under control. The zone of influence of the city, as well as the city itself, must be replanned. Even the replanning of this influence zone may not be enough. It becomes evident, as we study our problem more deeply, that adequate solutions can be reached only when planning extends to the entire region, of which the city and its zone of influence is only a part.

The nation needs its urban industrial centers and its agricultural areas, both working together. To render
such cooperation possible and efficient, we need national planning, superimposed upon the planning of city, state, and region. Only national planning can link together the different functions of different areas and relate them to their respective importance.

Plan we must, not only economically, but always and primarily for the benefit of man. We should always bear in mind that at the center of all things is man—man who creates everything, and for whom everything is created. Our real problem is life itself. Agriculture, industry, and transportation are important only as they contribute to the richness and fullness of life. We should plan to make this world a better place in which to live. And there is nothing wrong with this country that cannot be cured by a good dose of unselfishness.

"In a philosophical sense, the goal of city planning should be the fulfillment of 'life, liberty, and the pursuit of happiness.' Our forefathers were careful to guarantee life and liberty, but equally careful not to guarantee happiness—only the pursuit of happiness. If we gave the people of our nation the proper environment, the proper distribution of those things which are presumably free—the sun and the air—we would be well embarked on the road to eliminating some of the malignancies upon which socialism and communism are born and fed. Upon us rests the principal responsibility for these environments—both physical and psychological. As architects, everything we do directly affects the conditions surrounding the living, labor and leisure of our people.

"In conclusion, therefore, I recommend for your consideration the passage of a National Community Planning Act, which would require every community of 10,000 or more inhabitants to devise a plan encompassing its future expansion. In order to recognize that continued growth inevitably results in changed requirements, the community plan should be revised every ten years. To accomplish this, our primary need is not money but direction. Across the United States there exists countless agencies responsible for various aspects of city planning and development. We have plenty of brain power but not enough co-ordination.

We must recognize that the present emergency is very likely to be an extremely long one. The distribution and use of present building materials; the use and substitution of new materials; the revision of outdated city codes governing the use of materials; the plans affecting the cities' use of these materials all should become part of a national, coordinated effort.

Obviously, we can not have a uniform development plan applicable to all communities, but we can have a common denominator in conception, cooperation, and courage.

And speaking of course, we must not allow the shadow of atomic war to dim our eyes. As architects, we must not accept the fatalistic attitude so prevalent today. For myself, I have no patience with the fearful who cry out "Atomic war will be the end of civilization." Actually, nothing but a power mightier than man will ever end civilization.

Of course atomic war will be fiery beyond imagination! Cities will be obliterated. Some of us will die—some of us will live. It is upon the survivors the world must depend for leadership.

It has ever been thus. Civilization as we know it today is born of the trials and tribulations of yesterday. All through the ages, the cities of the world have been ravaged by fire, earthquakes, plagues, and devastating warfare. Each time, out of the ashes, the survivors have built anew. Even the motto appearing on the great seal

![ARTISTIC METAL WINDOWS](image)

ARTISTIC METAL WINDOWS

custom built to your designs and requirements

STEEL

Truscon Sections and Engineering Standards

ORNAMENTAL WINDOWS

Bar • Tubular • Channel

ALUMINUM BRONZE

J. G. Braun Sections

The CHARLES HAAS Co. • • • CUYAHOGA FALLS, OHIO
of the city of Detroit empraises 'out of the ashes, build anew."

Today many cities of the world are repairing the ravages of one war, while simultaneously anticipating destruction from a new war. In this country our cities did not have the wrath and destruction of war dumped directly upon them. While this is a blessing, it nonetheless leaves open to question the resiliency of our national character. If atomic warfare should rain down upon us, we must hope and pray for the strength to rebuild for tomorrow. To plan for that tomorrow, is our assignment today. For this, architecture will need great individualists—thinkers, planners, and doers. For the only 'danger of survival' would be our failure to prepare for it.

Yet I know we will find the spirit and strength to build and rebuild—to prove in every way that America is truly a great nation—to show that in a very real sense, democracy is a living, breathing, dynamic force, which will carry the world safely through these perilous times.
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen, Samuel N.</td>
<td>3620 Woodford Rd., Cincinnati</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>Hansen, Richard K.</td>
<td>6605 Murray Ave., Cincinnati</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>Hansen, Walter C.</td>
<td>582 Oak St., Columbus</td>
<td>Columbus</td>
</tr>
<tr>
<td>Harper, John W.</td>
<td>9391 Montgomery Rd., Montgomery</td>
<td>Montgomery</td>
</tr>
<tr>
<td>Hart, Alvin E.</td>
<td>1507 Stroh Bldg., Detroit</td>
<td>Detroit</td>
</tr>
<tr>
<td>Hart, Edward F.</td>
<td>119 Federal St., Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>Harris, Ralph H.</td>
<td>133 W. High St., Springfield</td>
<td>Springfield</td>
</tr>
<tr>
<td>Harris, James Lee</td>
<td>791 Oak St., Columbus</td>
<td>Columbus</td>
</tr>
<tr>
<td>Harris, Alfred W.</td>
<td>1011 Swetland Bldg., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Harris, George R.</td>
<td>1740 E. 12th St., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Harrison, Wallace B.</td>
<td>622 Hippodrome Bldg., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Haselkamp, William B.</td>
<td>3541 W. 9th St., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Halley, H. F.</td>
<td>20 Federal St., Hamilton</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Halley, Frank J.</td>
<td>1021 Dixie Industrial Bldg., Ashland</td>
<td>Ashland</td>
</tr>
<tr>
<td>Hall, Erskine A.</td>
<td>335 Sixth Ave., Columbus</td>
<td>Columbus</td>
</tr>
<tr>
<td>Hall, Myron L.</td>
<td>791 Oak St., Columbus</td>
<td>Columbus</td>
</tr>
<tr>
<td>Hall, Harold A.</td>
<td>723 Adams St., Toledo</td>
<td>Toledo</td>
</tr>
<tr>
<td>Hall, Myron T.</td>
<td>3544 W. 9th St., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Paul G.</td>
<td>402 S. Perry St., Attica</td>
<td>Attica</td>
</tr>
<tr>
<td>Hall, Aloys Frank</td>
<td>131 Lafayette Blvd., Detroit</td>
<td>Detroit</td>
</tr>
<tr>
<td>Hall, Earl C.</td>
<td>1004 Delta Ave., Cincinnati</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>Hall, Frederick J.</td>
<td>1002 Ingalls Bldg., Cincinnati</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>Hall, Henry W.</td>
<td>508 Main St., Scio, Ohio</td>
<td>Scio</td>
</tr>
<tr>
<td>Hall, Lottie B.</td>
<td>12192 Cedar Rd., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, James O.</td>
<td>13502 Drexel Rd., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Nancy Rose</td>
<td>609 Shadowlawn Ave., Dayton</td>
<td>Dayton</td>
</tr>
<tr>
<td>Hall, Murray D.</td>
<td>10153 Prospect Ave., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Ralph H.</td>
<td>1200 Locust St., Kansas City</td>
<td>Kansas City</td>
</tr>
<tr>
<td>Hall, Thomas H.</td>
<td>2900 Dime Bldg., Detroit</td>
<td>Detroit</td>
</tr>
<tr>
<td>Hall, Vivian J.</td>
<td>3544 Wickliffe Parkway, Toledo</td>
<td>Toledo</td>
</tr>
<tr>
<td>Hall, Clark H.</td>
<td>5304 Hampden Lane, Bethesda</td>
<td>Bethesda</td>
</tr>
<tr>
<td>Hall, James O.</td>
<td>13502 Drexer Rd., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Herbert F.</td>
<td>131 Lafayette Blvd., Detroit</td>
<td>Detroit</td>
</tr>
<tr>
<td>Hall, Charles H.</td>
<td>508 Cuyahoga Savings Bldg.,</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Chauncey M.</td>
<td>1740 E. 12th St., Cleveland</td>
<td>Cleveland</td>
</tr>
<tr>
<td>Hall, Frederic H.</td>
<td>5402 E. Perry St., Attica</td>
<td>Attica</td>
</tr>
<tr>
<td>Hall, Edward M.</td>
<td>335 Hillwood Ave., Lima</td>
<td>Lima</td>
</tr>
<tr>
<td>Hall, H. A.</td>
<td>335 Hillwood Ave., Lima</td>
<td>Lima</td>
</tr>
<tr>
<td>Hall, Myron T.</td>
<td>3544 Wickliffe Parkway, Toledo</td>
<td>Toledo</td>
</tr>
<tr>
<td>Hall, Charles A.</td>
<td>253 S. Linden Ave., Dayton</td>
<td>Dayton</td>
</tr>
<tr>
<td>Hall, David B.</td>
<td>1800 Rowan Hill Drive, Cincinnati</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>Hall, Edward M.</td>
<td>1303 Prospect Ave., Cleveland</td>
<td>Cleveland</td>
</tr>
</tbody>
</table>

INFRA INSULATION has wide use in buildings of a long list of colleges, universities, and engineering schools. With access on their own campuses to the finest scientific talent, tests are thorough, selection is based on keen, impartial appraisal. In test after test Infra is selected! Why? Because Infra’s greater heat control efficiency is so quickly demonstrated.

With 4 heat-ray-deflecting surfaces and 4 reflective air spaces, Infra is 97% effective against Radiant Heat; BLOCKS wasteful Convection; and is UNSURPASSED in checking Conduction heat flow.

Infra INSULATION

DISTRIBUTED IN OHIO BY

- CLEVELAND
 - ASKUE SUPPLY CO.
 - 7309 Grand Ave.
 - EX. 1-8826

- AKRON
 - GLOVER MFG. & SALES CO.
 - 2491 Manchester Rd.
 - SH. 2814

- TOLEDO
 - HOLLY RESERVE SUPPLY, INC.
 - 3058 Monroe St.
 - AD. 7158

- COLUMBUS
 - MOONEY & MOSES
 - 1688 S. High St.
 - GA. 8373
Acoustical treatment supplied for temple auditorium, assembly hall and lobby in the new Park Synagogue, Cleveland Heights.

Architect: Eric Mendelsohn of San Francisco; associate architect, Charles C. Colman, Cleveland.

The George P. Little Company, Inc.

Cleveland • Pittsburgh
Akron • Columbus • Toledo

Sound Conditioning with

Acousti-Celotex

SPECIFY Penco

PUTTY, CAULKING and GLAZING COMPOUNDS

for WOOD, STEEL and ALUMINUM SASH

LASTING WEATHER RESISTANCE

FASTER and MORE ECONOMICAL

SELECTED MATERIALS

and CLOSELY CONTROLLED BATCHING

Each Penco Putty undergoes exhaustive laboratory and field tests to provide proper drying, skimming, and weathering qualities. Proper consistencies are maintained for maximum adhesion without stickiness for ease of application and important savings of materials and time. Many glaziers say that bedding and facing time is greatly reduced with easy-handling Penco Putties.

"CRAFTSMEN IN PUTTY"

• Use SUR-STIK Tile and Wallboard Cement for perfect adhesion.

Penco Folder.
Knowledge + Facilities = SERVICE!

Let Mid-West help you keep your clients quiet with the best Acoustical Products.

SIX CONVENIENT LOCATIONS WHERE YOU MAY GET ASSISTANCE IN SELECTING THE PROPER ACoustical AND PARTITION MATERIALS

OFFICES AND WAREHOUSES

AKRON70 Cherry St.JE 7924
CLEVELAND20001 West Lake Rd... ED. 1-7100
COLUMBUS1550 W. Mound St.RA 8497
DAYTON407 So. Ludlow ...MI 1643
TOLEDO1603 Hoag Ave.FA 7402
SPRINGFIELD ...264 Dover Rd.4-4931

“Specify Mid-West for Products of the Best”

The Mid-West Acoustical & Supply Co.
SOUND CONDITIONING ENGINEERS & CONTRACTORS
General Offices & Warehouse: 20001 West Lake Rd., Cleveland, O.
"For lighter, lower cost concrete and plaster, use...

Wyo-Lite VERNICULITE AGGREGATES

Wyo-Lite Concrete Aggregate, used in place of sand or gravel, makes extremely light weight, low cost insulating concrete for monolithic roofs or floors — grade level floors of basement-less homes — radiant heat applications. Wyo-Lite Plaster Aggregate, mixed with gypsum plaster, produces light weight, easily-applied, insulating plaster. Phone or write for data.

Mfd. by WYO-LITE INSULATING PRODUCTS Cleveland

The HOWARD G. WILEY Company
20001 WEST LAKE RD. CLEVELAND 16, OHIO ED. 1-7100

The CLEVELAND LUMBER & DOOR CO.

DON B. BEAUMONT, Pres.

EUCLID AVE. LUMBER CO., 11615 Mayfield Rd.

INDUSTRIAL LUMBER — CRATING

2 CONVENIENT LOCATIONS

MAIN YARD
LONGACRE 1-8100

BRANCH
17600 MIILES AVE. RANDOLPH 1-5555

We Recommend

• HARRIS "Brand" Oak Flooring
• Logan Long Roofing • Upson Wall Boards
• U. S. G. Sheet Rock • Perma Stain Shingles
• Celotex • Marsh Tile • Insulate Products

SASH — DOORS — FRAMES — MILLWORK

COMBINATION DOORS & STORM SASH

ALL TYPES OF INSULATION

Quality Products Since 1899
SHAKER AT ITS BEST

In keeping with the Shaker tradition established by the Van Swearingens, Marc Smythe has erected this commercial building for The A. B. Smythe Co. at Kinsman and Lomond. Architecture by Geo. H. Burrows & Associates. We were proud to have a part in it.

DC

THE DUNBAR CO.

8201 Cedar Avenue Since 1884

The Choice of Buyers Who Investigate!

IT'S A BARCOL OVERdoor!

FITS TIGHT • SAVES HEAT

Most Efficient, Dependable, Quiet

OVERdoors • Operators • Radio Controls

MANUFACTURED BY BARBER-COLMAN CO.

FOR OVER TWENTY YEARS

Let Us Help You Use This Specialized Experience

G. J. NEWLIN EN. 1-0207

54 [August, 1951]
THE RELIANCE ART METAL Co.
593-601 W. Mckicken
Cincinnati 14, Ohio

MUNICIPAL CASTINGS

A complete line of cast iron Contractors' and Builders' Supplies

MANHOLE COVERS
CATCH BASINS
SEWER INLETS
GRATES & FRAMES
HEAVY GRATINGS
ALLEY DRIPS

LAMP POSTS
WHEEL GUARDS
DOWN SPOUTS
CISTERN COVERS
COAL HOLE COVERS
TILE DRAINS

Serving the Building Trades of Dayton for over 25 years.

THE KRAMER BROS. FOUNDRY CO.
DAYTON 4, OHIO

Write for free Catalog No. 6
Today more than 27% of the plastering in this country is done with Zonolite Plaster Aggregate. This amazing preference for Zonolite is the result of plastering advantages available in no other aggregate: Zonolite offers up to 4 times the fire protection of ordinary plaster, making it an ideal fireproofing material. ZONOLITE is more resilient, has greater ability to withstand shock and vibration.

Do you have complete details and specifications on this money and time-saving plaster aggregate? Get them today by writing or calling:

ZONOLITE COMPANY
14300 Henn Avenue Dearborn, Michigan
Phone: Tiffany 6-1010
ARCHITECTURAL PLYWOOD for Creative Flexibility!

BESTLINE PLYWOOD is the finest in beautiful, durable plywood. BESTLINE offers you plenty of variety in any species of plywood, both in regular and bending, to help you create original, distinctive designs.

We welcome your inquiries about plywood. Write or phone us today.

THE DAVIS PLYWOOD CORP.
12555 Berea Road
Cleveland II, Ohio
Handsomely designed wrought iron to enhance the beauty of residential and commercial architecture, interior and exterior. Stock and special designs. Also residential and commercial FENCE of all types, cellar doors, gratings, railings, etc. Write for FREE CATALOGUE.

THE OHIO

58 [August, 1951]
THE A. G. STAFFORD CO.
ORNAMENTAL IRON, SHEET METAL
AND BUILT-UP ROOFING CONTRACTORS

Phone 64591 CANTON, OHIO 2006 Allen Ave. S.E.

THE AKRON MIRROR & GLASS CO.
"KAWNEER"
METAL DOORS AND STORE FRONTS
“THERMOPANE” & “TWINDOW”
INSULATING PICTURE WINDOWS
“INSULUX”
GLASS BLOCKS
All Kinds of Mirrors and Glass for Building Purposes
180 E. South St. JEFFERSON 9189
AKRON 11, OHIO

Stage Curtains

Stage Engineering Service and Specifications cheerfully provided
THE JANSON INDUSTRIES
1901 FULTON RD. N.W. CANTON 3, OHIO

GEO. BEHM & SONS CO.
DISTRIBUTORS
PITTSBURGH PLATE GLASS CO.
GLASS PRODUCTS
PLATE AND WINDOW GLASS
MIRRORS — ROUGH ROLLED GLASS
Glazing Contractors
24 McDonough Fulton 7193 Dayton 2, O.

THE OHIO

1825 Ruza, Francis L., 3210 West 86th St., Cleveland (2)

5

1339 Saarinen, Eero, 145 West Long Lake Road, Bloomfield Hills, Michigan
1307 Saarinen, Eliel, 145 West Long Lake Road, Bloomfield Hills, Michigan
832 Sagadencky, Trefon, 429 Chestnut Blvd., Cuyahoga Falls
364 Samuels, John H., 211 N. Champion St., Youngstown 3
905 Simon, Sanford (H. L. Vokes) 5300 Chester Ave, Cleveland (5) Ohio
1396 Sarvis, Lewis J., 206 McCardy Bldg., Battle Creek, Mich.
1920 Schackne, David, Jr., 1815 West First Ave., Columbus (12)
1857 Schatzman, Paula F., 209 Erie Rd., Columbus (14)
51 Schatz, G. Donald, 215 Tryonball Ave., Lebanon, Warren
732 Schaefer, Gilbert P. (Garfield, Harris & Schaefer)
915 National City Bank Bldg., Cleveland (14)
1404 Schatz, George F. (H. N. Hermann) Enquirer Bldg., Cincinnati (2) Ohio
1857 Schachman, Paul F. 209 Erie Rd., Columbus (14)
150 Scheibel, Morris Wm. (Assoc. W. H. Shaffer) 1301 Realty Bldg., Youngstown (3)
406 Schenck, Harry L. (Schenck and Williams) 1406 Third Natl Bldg., Dayton 2
1707 Schewninger, Bruce M., 4108 Harrison Ave., Cincinnati (11)
1288 Schliebe, Edward A., 311 Cuttriss Place, Park Ridge, Ill.
1410 Schildknecht, R. B., 31 E. 4th St., Cincinnati 2
835 Schilling, George F., 10717 Fortune Ave., Cleveland
1587 Schlegler, Benjamin, 660 Madison Ave., New York (21)
New York
1843 Schlussel, Joseph J., 8511 Coleville Rd., Silver Spring, Md.
1466 Schmidlin, Emil E., 566 Central Ave., East Orange, N. J.
1808 Schmidt, Elmer H., 6023 Cambridge Ave., Cincinnati (30)
1000 Schmueling, Carl R., Lexington Circle, Terrace Park, Cincinnati
1074 Schnurr, Alfred A., Jr., 5143 S. Columbus Ave., Sandusky
1421 Schock, Kenneth B. (Zeller and Hunter) 17½ S. Center St., Springfield, Ohio
1259 Shoeneman, Vincent J. (Crafton) 44 Lincoln Ave., Pitts­
burgh (5) Pa.
1795 Schofield, Clinton A., 331 Madison Ave., New York (17)
New York
1497 Scholer, Walter, 1141 State St., Lafayette 2, Indiana
578 Scholl, Adolph P., 8205 West Blvd., Cleveland 11
241 Schwoley, John P., 2901 North High St., Columbus (2)
1667 Schott, John R., 2622 Victory Parkway, Cincinnati (6)
1714 Schroeder, Robert F. (J. T. Partridge) 914 Main St., Cincin­nati (5)
1562 Schrand, Eugene F. (B. Pepinsky) 1701 Union Trust Bldg., Cincinnati 2
1612 Schrand, Robert J (Wilkes, Schrand & Wilkens) S-105
Cincinnati Union Terminal, Cincinnati 3
827 Schuler, Howard J., 325 Huron St., Toledo 4
162 Schulte, George F., 920 E. McMillan St., Cincinnati 6
781 Schultz, Julius C., 1370 Main St., Buffalo 9, N. Y.
1045 Schulzinger, Maurice (Scheibler Mfg.) 9017 Blue Ash Rd.,
Cincinnati, Ohio
1610 Schwartz, Walter R., 3268 West 12th St., Cleveland 11
614 Schweikart, Lovell G., 32 Hanover Road, Pleasant Ridge, Michigan
1708 Schweininger, Bruce M., 4118 Harrison Ave., Cincinnati (11)
520 Schwerzler, Urban G., Hemlock Point Road, R.F.D. No. 2,
Chagrin Falls
1897 Scott, Charles D., 4125 Parakeet Ave., Toledoa (12)
928 Scott, Elmer F. (Lakewood) 184 Elwood Ave., Cleveland 7
1207 Scott, Franklin G. (Mellenbrook, Foley & Scott) 26 Front
St., Berea
253 Scott, Granville E., 315 Citic Natl. Bank Bldg., Norwalk
1561 Scott, J. Arthur (B. F. Goodrich Co.) 500 S. Main St.,
Akron, Ohio
1729 Scott, Jesse Arnold, 305 West Sixth Ave., Columbus (1)
1281 Scott, Robert H., 870 Chelsea Rd., Bexley, Columbus (9)
822 Scull, Willett S., 160 E. Aumundale Ave., Youngstown (5)
1603 Seibach, Clyde R. (Burk & Seibach) Warner St., Forest, O.
1569 Seidel, John M. (Benham, Richards & Armstrong) 167 E.
State St., Columbus (15)
1131 Seligson, Leon, 490 City Ave. Park, Columbus (15)
1370 Selz, Jean Raymond, 106-25 Monroe St., Chicago (3), Ill.
1630 Senseman, Ronald S. (Takoma Park) 327 Carroll St., Washi­
ington 12, D. C.
999 Seymour, Russell, Atlantic Bank Bldg., Jacksonville 2, Fla.
224 Shaffer, Willard H. (Scheibel & Shaffer) 1301 Realty Bldg.,
Youngstown 3
Stone Contractor
Established 1888
All Kinds of
CUT STONES
for
HOMES and BUILDINGS
SIDEWALKS — STEPPING STONES
MANTELS
KIENTZ CUT STONE CO.
464 WEST STATE ST.
COLUMBUS 8, OHIO

Lottridge
Incorporated
DRY-WALL CONTRACTORS
Single and Laminated Dry-Wall Construction
Telephone WAInut 0888
961 NORTHWEST BLVD. COLUMBUS 12, OHIO

The Claycraft Co.
MANUFACTURERS OF
FACE BRICK — GLAZED BRICK and TILE
P.O. BOX 866 • DO. 2727
COLUMBUS 16, OHIO

ALFOL
The Fabricated
ALUMINUM FOIL
Insulation Blanket
COMMERCIAL, INDUSTRIAL
AND RESIDENTIAL INSTALLATION
New Construction — or Occupied
ROSS LOTTRIDGE CO.
CENTRAL OHIO DISTRIBUTORS — CONTRACT APP LICITORS
961 Northwest Blvd. COLUMBUS 12, Ohio
Engineered Timbers
Glued Laminated Structural Members
VERSATILE • ECONOMICAL • PERMANENT • BEAUTIFUL
• GLUED LAMINATED ARCHES
• TRUSSES AND COLUMNS
• BEAMS & GIRDERS
• CHURCHES & INDUSTRIAL STRUCTURES

TIMBER STRUCTURES, INC.
NORTHEASTERN OHIO DISTRIBUTOR
MOORE & GLASS CO.
18609 ST. CLAIR AVE. CLEVELAND 10, OHIO

FOR
BONDED INSULATION
Get the facts about...
INSUL-WOOL INSULATION installed by our approved applicators is BONDED FOR LIFE to be resistant to moisture, fire, and rodents, and guaranteed not to pack or settle.
STATE-WIDE FACILITIES TO SERVE YOU
We Invite Your Inquiries

INSUL-WOOL INSULATION CORP.
PHONE: Enicott 1-6874
3820 ST. CLAIR AVE. CLEVELAND 14, OHIO

Accepted Heating Equipment
LO-BLAST
POWER GAS BURNERS
JACKSON & CHURCH
WARM AIR HEATING EQUIPMENT
Conditionaire, Inc.
Engineering Sales Representatives
TERMINAL TOWER CLEVELAND 13, OHIO

« CITY BLUE »
The Open Sesame for
BLUE PRINT and PHOTOSTAT SERVICE
In Cleveland Since ’93
CHerry 1-7347
209 SWETLAND BLDG. CLEVELAND

1800 Van Alstyne, Raymond E., 119 Main St., East, Rochester (1) N. Y.
169 Van Arsdol, H. P. (Hannaford) 1024 Dixie Terminal Bldg., Cincinnati (2)
1741 Van Buren, Hiram H., 1701 N. E. 5th St., Ft. Lauderdale, Florida
1814 VanderMeer, W. J., Jr., 70 S. May St., Aurora, Ill.
635 Van Rooten, Luis R. D., 233 E. 60th St., New York (22)
1906 Varasso, Orville, 706 East Broad St., Columbus (5)
518 Vetter, Harry G., 3606 Broadview Rd., S. W., Cleveland 9
1752 Viemeister, August L. (Edludgeon) 101 Park Ave., New York (17) N. Y.
587 Vogel, Willis A., 748 Security Bank Bldg., Toledo (4)
1157 Voinovich, George S. (Miller & Voinovich) 1011 Swetland Bldg., Cleveland 15
1450 Voorhees, Stephen F., 101 Park Ave., New York 17, N. Y.

160 Wachter, Horace W., 1220 Madison Ave., Toledo 2
1023 Wachter, Robert Earl, 1253 Edgewood St., S. E., Warren
575 Wade, Robert V., (Cooper, Wade & Peck) 10528 Wilbur Ave., Cleveland 6
1695 Wagner, Clarence, 457 William St., Williamsport 2, Pa.
270 Wagner, Edwin D. (Wagner & Luxmore) 200 Permanent Bldg., Akron (8) Ohio
898 Walker, George R. (Walker-Norwick and Templin) 1301 American Bldg., Dayton (2)
1451 Walker, Ralph T., 101 Park Ave., New York 17, N. Y.
588 Walling, George L., 10 Rockefeller Plaza, New York (20)
1685 Wallach, John A., 145 East 32nd St., New York 16, N. Y.
491 Walsh, George P., (Damon & Worley) 1743 25th St., Cleveland (14)
573 Walsh, Travis G., 508 Cuyahoga Savings Bldg., Cleveland 15
917 Walters, Albert V., 921 Fed. Reserve Bank Bldg., Cincinnati (2) Ohio
552 Walters, George C., 1206 Citizens Bldg., Cleveland 15
1397 Wahlenmaier, Gustav W., 1564 Broadway, New York (19)
1095 Ward, David M. (Ward & Conrad) 702 Swetland Bldg., Cleveland 15
853 Ward, William G., 618 Mutual Home Bldg., Dayton (2)
624 Warwick, Spencer J., 6296 Glade Ave., Cincinnati (30)
1092 Weber, Fred C., 6747 N. Ionia Ave., Chicago (30) Illinois
765 Weber, Stewart K., (Weber & Weber) 510 Traction Bldg., Cincinnati (2)
1746 Wetl, Walther J., Jr., 17405 Scottsdale Blvd., Cleveland (20)
849 Wehrrell, John F., 8 Indiana Ave., Middletown, Ohio
1087 Weich, Peter J. (Weich, Blingham & Roberts) 503-505 American Trust Bldg., Middletown, Ohio
200 Weinberg, Joseph L. (Weinberg-Teare) 1206 Citizens Bldg., Cleveland 15
538 Weiny, Daniel W. (Board of Education) 270 E. State St., Columbus 15
1762 Weisberg, Leo, 904 S. Hague Ave., Columbus (4)
Weiskopf, Lawrence J., 123 N. LaSalle St., Chicago, Ill.
1053 Weitz, Roy W., 1541 Newman Ave., Cleveland (7)
1010 Welker, John K., 6111 West 79th St., Los Angeles 45, Calif.
852 Welker, Lehr E., 31 N. Summit St., Akron (8)
1311 Wells, William W. (McLaughlin & Keil) 500 Dominion Bldg., Lima
1349 Welty, Wilbert N., 11 W. Monument Bldg., Dayton 2
1356 Werking, Paul R., 2000 East Main St., Richmond, Ind.
1279 Werner, Melvin T., 45 5th Ave., Berea, Ohio
1373 Wertz, Wm. Chas., 1220 Madison Ave., Ft. Madison 2, Iowa
1227 Wheeler, John (Garfield, Harris, Robinson & Schafer) 1740 E. 12th St., Cleveland 14
508 Wheelock, H. Vernon (J. G. Turnbull) 2630 Chester Ave, Cleveland (14)
1804 Wherley, Richard C., 23318 Williams Ave., Euclid, Cleveland 23
1065 White, Dale Alfred, 2649 Public Square, Mt. Vernon
1625 White, Donald Frank (White & Griffin) 125 John R., 60 Broadway, Detroit (26) Mich.
436 White, Maxwell H., 801 Finance Bldg., Cleveland (15)
713 Whitehouse, Albert G., 3655 Linberg Way, Weinton (2)
1508 Whitmore, L. Damon, McEwen Rd., Box 315, Dayton 9
1318 Whitney, Franklin L., 3777 Glenwood Rd., Cleveland Heights (21) Ohio
519 Whittington, George F., 824 West Bank Ave., Winter Park, Fla.
1745 Widinger, Nelson G. (Euclid) 401 East 26th St., Cleveland 25

T H E O H I O
This is an amended roster as of August 10, 1950, and is not to be considered as being "official." The official list will be published in the near future in the Annual Report of the State Board of Examiners of Architects.

A R C H I T E C T

- **Z**
 - Zajack, Nicholas S., 305 Hippodrome Bldg., Cleveland (14)
 - Zauberg, Thomas G., 1121 Lexington Ave., Mansfield, Ohio
 - Zeller, Lloyd J. (Zeller and Hunter) 709 E. High St., Springfield (11) Ohio
 - Zetsche, Robert G., 19 Cushman Rd., White Plains, N. Y.
 - Zieve, John N., 1805 Knoxville Ave., Peoria (5) Ill.
 - Zimmerman, Ralph W., 9214 Sherbrooks Rd., Toledo (6)
 - Zuber, William J., 326 7th St., Jersey City 3, N. J.
 - Zwetschek, Erich H., 569 Rosemont Ave., Cincinnati 5
 - Zwerg, Peter, 372 E. Chase Ave., Worthington, Ohio

- **W**
 - Worden, Roy A., 312 W. Colfax, South Bend 7, Ind.
 - Winkler, Fred J., 920 W. Front St., Dayton 2, Ohio
 - Winstor, Arthur C., P. O. Box 500, Holland, Mich.
 - Winters, Paul C., 320 Pearl St., Cincinnati (15) Ohio.
 - Witkin, Israel, 1250 Lennox Ave., N. E., Massillon, Ohio
 - Woelke, Selma, 317 Stanton Ave., Akron (1)
 - Wondra, Donald S., 18951 Pasnow Ave., Euclid (19)
 - Wozniak, W. J., 1024 Dixie Terminal Bldg., Dayton (2)
 - Wubbena, Harry B. (Hannaford) 1024 Dixie Terminal Bldg., Dayton (2)
 - Wuehr, Erich F., 2972 Scranton Rd., Cleveland 15
 - Wunderlich, John, 1710 E. 12th St., Cleveland 11
 - Winamb, Edgar S., 1122 N. Dixie, Lake Worth, Fla.
 - Winds, Clifford B., 3811 Belmont Ave., Cincinnati 14
 - Wipf, Robert A., 1230 S. 14th St., Columbus 11
 - Winger, W. C., 317 W. Front St., Dayton 2, Ohio
 - Witters, Wilbur W. (Lorenz & Witters) 223 West First St., Dayton 2
 - Wittgenstein, John J., Jr. (Wittgenstein, Schrand & Wilkens) 8-106 Cincinnati Union Terminal, Cincinnati 3
 - Wittman, Winfield J., Jr., 1710 E. 12th St., Columbus (2)
 - Wittman, John J., Jr. (Wittgenstein, Schrand Wilkens) S-106 Cincinnati Union Terminal, Cincinnati 3
 - Witte, John Raymond, 529 Willis Ave., Youngstown Ohio

- **V**
 - Vliet, Wilbur W. (Hart, Iglesias, Wulfs) 312 West First St., Dayton 2
 - Vomacka, Edward, 1710 S. 14th St., Columbus 11
 - Vorhees, C. E., 320 Pearl St., Cincinnati (15) Ohio
 - Vorst, Arthur C., 512 W. Colfax, South Bend 7, Ind.
 - Voorhees, Clifford
 - Vorhis, Otis F., 528 W. Front St., Dayton 2, Ohio
 - Voris, John, 1250 Lennox Ave., N. E., Massillon, Ohio

- **U**
 - Ullman, Win. H., Jr., 320 Pearl St., Cincinnati (15) Ohio.
 - Ullman, Wilcox, R. E., 320 Pearl St., Cincinnati (15) Ohio
 - Utilman, Paul C.
 - Urquhart, W. H., 1024 Dixie Terminal Bldg., Dayton (2)
 - Usavage, William C., 321 W. Front St., Dayton 2, Ohio
 - Ullman, Winfield J., Jr., 1710 E. 12th St., Columbus 11

- **S**
 - Sauer, Robert, 529 Willis Ave., Youngstown Ohio
 - Saidel, William, 1250 Lennox Ave., N. E., Massillon, Ohio
 - Sandefur, W. H., 1250 Lennox Ave., N. E., Massillon, Ohio
 - Sandefur, W. H., 1250 Lennox Ave., N. E., Massillon, Ohio

- **R**
 - Reber, John, 1250 Lennox Ave., N. E., Massillon, Ohio
 - Reber, John, 1250 Lennox Ave., N. E., Massillon, Ohio

- **Q**
 - Quesnell, John, 1250 Lennox Ave., N. E., Massillon, Ohio

- **P**
 - Palmer, John, 1710 E. 12th St., Cleveland 11
 - Palermo, Harry, 320 Pearl St., Cincinnati (15) Ohio.
 - Paley, Harry, 320 Pearl St., Cincinnati (15) Ohio.
 - Paley, Harry, 320 Pearl St., Cincinnati (15) Ohio.

- **O**
 - Osgood, George, 320 Pearl St., Cincinnati (15) Ohio.
 - Oldham, Ralph, 320 Pearl St., Cincinnati (15) Ohio.
 - Oldham, Ralph, 320 Pearl St., Cincinnati (15) Ohio.

- **N**
 - Neale, W. D., 320 Pearl St., Cincinnati (15) Ohio.
 - Neale, W. D., 320 Pearl St., Cincinnati (15) Ohio.
 - Neale, W. D., 320 Pearl St., Cincinnati (15) Ohio.

- **M**
 - Mazzalupi, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Mazzalupi, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Mazzalupi, John, 320 Pearl St., Cincinnati (15) Ohio.

- **L**
 - Loomis, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Loomis, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Loomis, John, 320 Pearl St., Cincinnati (15) Ohio.

- **K**
 - Knudsen, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Knuens, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Knudsen, John, 320 Pearl St., Cincinnati (15) Ohio.

- **J**
 - Johnson, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Johnson, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Johnson, John, 320 Pearl St., Cincinnati (15) Ohio.

- **I**
 - Irwin, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Irwin, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Irwin, John, 320 Pearl St., Cincinnati (15) Ohio.

- **H**
 - Haas, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Haas, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Haas, John, 320 Pearl St., Cincinnati (15) Ohio.

- **G**
 - Glessner, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Glessner, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Glessner, John, 320 Pearl St., Cincinnati (15) Ohio.

- **F**
 - Fitch, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Fitch, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Fitch, John, 320 Pearl St., Cincinnati (15) Ohio.

- **E**
 - Eisenhauer, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Eisenhauer, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Eisenhauer, John, 320 Pearl St., Cincinnati (15) Ohio.

- **D**
 - Darby, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Darby, John, 320 Pearl St., Cincinnati (15) Ohio.
 - Darby, John, 320 Pearl St., Cincinnati (15) Ohio.

This is an amended roster as of August 10, 1950, and is not to be considered as being "official." The official list will be published in the near future in the Annual Report of the State Board of Examiners of Architects.
where hose of such length will not reach the extreme portions of the story additional standpipes and hose shall be provided.

Where water supply is not available, standard chemical fire extinguishers shall be provided in the proportion of one (1) extinguisher to each two thousand (2,000) square feet of floor area or less.

Standard chemical fire extinguishers shall be provided in each story above the basement of grade A buildings in the proportion of one extinguisher to each two thousand (2,000) square feet of floor area, or less.

All fire extinguishers shall be prominently exposed to view and always accessible.

Sec. 12600-75a. Whenever any unprotected steel or mill construction is permitted under section 12600-1a of the General Code, such permissive construction shall be considered as meeting the requirements of sections 12600-73 and 12600-75 of the General Code, respectively, as such sections apply.

Sec. 12600-76a. The building regulations of the American Concrete Institute for reinforced concrete (ACI 318-41) shall be accepted as a standard in the construction of buildings.

Sec. 12600-76b. The June 23, 1949 specifications of the American Institute of Steel Construction shall be accepted as a standard in the construction of buildings.

Sec. 12600-76c. The National Design Specifications of Stress Grade Lumber and Its Fastenings of the National Lumber Manufacturers Association, revised 1948, shall be accepted as a standard in the construction of buildings.

Sec. 12600-78 Fire division walls and fireproof floors and ceilings shall be designed and constructed to meet the conditions of loading to which they may be subjected and materials and workmanship shall be in accordance with recognized standards of engineering practice.

Concentrated and uniform loads shall be so distributed to the points of support that the allowable unit stresses shall not be exceeded. The thickness of walls, floors and ceilings shall be increased when necessary to meet the conditions of loading to which they may be subjected.

For the purpose of computing stresses gross sectional area shall be considered as the length times the breadth (width) of the building unit as laid in the wall with no deduction for hollow spaces and the net area shall be considered as the actual area of solid material in compression.

Masonry units shall be uniform in size and free from imperfections or defects that interfere with the proper setting in the wall or that impair the strength, permanence or fire resistive qualities of the construction.

The average ultimate compressive strength of brick shall be not less than two thousand (2000) pounds per square inch.

The allowable working stress on brickwork laid in natural cement mortar or cement-lime mortar with not to exceed fifty (50) per cent of lime by volume of cement used shall not exceed one hundred and fifty (150) pounds per square inch.

The allowable working stress on brickwork laid in Portland cement mortar shall not exceed two hundred and fifty (250) pounds per square inch.

The average ultimate compressive strength of hollow tile laid with the cells vertical shall not be less than twelve hundred (1200) pounds per square inch of gross sectional area.

The average ultimate compressive strength of hollow tile laid with the cells horizontal shall be not less than seven hundred (700) pounds per square inch of gross sectional area.

The allowable working stress on hollow tile laid with the cells vertical shall not exceed one hundred and twenty (120) pounds per square inch of gross sectional area.
per square inch of gross area and when laid with the cells horizontal shall not exceed ninety (90) pounds per square inch of gross area.

Load bearing hollow clay tile shall be laid in mortar composed of one part Portland cement and three parts clean sharp sand to which may be added hydrated lime not to exceed fifteen (15) per cent of the volume of the cement used.

Concrete building units shall be standard load bearing concrete tile, or concrete hollow block.

The average ultimate compressive strength of concrete building units exposed to soil or weather shall be not less than one thousand (1000) pounds per square inch of gross area in compression and not less than fifteen hundred (1500) pounds per square inch of net area in compression.

The average ultimate compressive strength of concrete building units not exposed to soil or weather; or where protected by a suitable water proof covering material shall be not less than seven hundred (700) pounds per square inch of gross area in compression and one thousand (1000) pounds per square inch of net area in compression.

Concrete building units exposed to soil or weather and not protected by a suitable water proof covering material shall have an absorption of not to exceed ten (10) per cent by weight,

The allowable working stress on concrete building units having a gross compressive strength of one thousand (1000) pounds or more per square inch shall not exceed one hundred and twenty (120) pounds per square inch of gross area in compression and on concrete building units having a gross compressive strength of seven hundred (700) to one thousand (1000) pounds per square inch shall not exceed ninety (90) pounds per square inch of gross area in compression.

Load bearing concrete building units shall be laid in mortar composed of one part Portland cement and three parts clean sharp sand to which may be added hydrated lime not to exceed fifteen (15) per cent of the volume of the cement used.

Sec. 12600-78a. Steel joist construction shall meet the requirements of the standard specifications for steel construction, revised April 30, 1946, published by the Steel Joist Institute.

Sec. 12600-131a. Fire extinguishers of the kind, size, number, location and fire hazard as recommended by pamphlet number ten of the National Fire Protective Association of Boston, Massachusetts and published by the National Board of Fire Underwriters and dated August, 1950, shall be deemed to meet the provision of section 12600-154 of the General Code.

Section 3. This act is hereby declared to be an emergency measure necessary for the immediate preservation of the public peace, health and safety. The reason for such necessity lies in the fact that its enactment into law at the earliest possible time will facilitate the approved construction of public school buildings in Ohio. Therefore this act shall go into immediate effect.

Head Architectural Draftsman

In a small office where judgment, initiative and ability to act upon both will be rewarded. Practice is diversified and reaches into other states—residential, commercial and industrial.

Position requires good general experience in design, drafting, directing and training juniors. Age 35 - 46 preferred, formal education not mandatory. A good opportunity for a top-notch man who wants freedom and variety in his work. Columbus is a growing city with housing choices good. Working environment pleasant. We own our building at the edge of downtown area.

Address inquiries to Tully and Hobbs, Architects, 582 Oak Street, Columbus 15, Ohio. Present status, experience record and annual salary expected should be included in inquiry. References exchanged. All inquiries confidential.
For more than a Quarter of a Century, we have specialized in the Design and Manufacture of custom-made ornamental lighting fixtures of all types.

we also
Produce
GENUINE
BRONZE
Memorials
Portrait Tablets
Signs
Name Plates
Grilles

Write for Illustrated Folder.

The new deluxe
NIAGARA
“Fifty”
GAS-FIRED
WINTER AIR CONDITIONER

Occupies 1/3 Less Space [in cu. ft.] than Previous Niagara Furnaces of Equal Capacity

Here’s a truly modern Winter Air Conditioner — a beautifully modern, compact, streamlined unit with the same heating capacity as former larger Niagara units. Performance has been improved in the Deluxe Niagara 50 with a 3-speed blower, a larger capacity humidifier, a push-button lighter, and other refinements that provide better circulation of clean, humidified heated air for greater comfort. With this unit you are assured of low gas bills for which furnaces with the exclusive Niagara-made cast-iron heat exchanger have long been famous.

ARROWCRETE CORPORATION ANNOUNCES OPERATION IN NORTHERN OHIO TERRITORY

Mr. Stephen Stepanian, president of the Arrowcrete Corporation, 816 McKinley Ave., Columbus, Ohio, announces that his company has been named the exclusive manufacturer and distributor of FLEXICORE long-span, precast concrete roof and floor slabs for 27 counties throughout northeastern Ohio. At the same time it was announced by C. E. Haines, General Manager of Arrowcrete, that Mr. S. H. Stapleford will be the company’s representative for this new territory. FLEXICORE has been produced and sold by the Arrowcrete Corporation in the central and southeastern sections of Ohio for the past 4 years and this area will continue to be serviced by the firm.

COMMENTS ON THE OLD COURT HOUSE AT DAYTON
(See Article in July, 1951 Issue)

February 7, 1951

Mrs. Joseph W. Sharts
1230 Phillips Ave.
Dayton 10, Ohio

Dear Mrs. Sharts:

As a native of Dayton Ohio and as an architect with an abiding interest in the preservation of buildings of historical architectural significance, I am pleased to reply to your letter of January 29 concerning the old Montgomery County Court House which still stands at the northwest corner of Third and Main streets in Dayton.

I question whether any statement I might make as an individual would have the weight that a statement from a group such as the American Institute of Architects. That organization has a National Committee on the Preservation of Historical Monuments whose interest in this matter should be enlisted and whose expression of opinion would carry certain weight and influence.

I am therefore referring you to Mr. John Sullivan who was the 1950 President of the Dayton Chapter of the American Institute of Architects. I have his address as 419 3rd National Bank Bldg.

I am sending a copy of this letter to Mr. Sullivan and also Mr. Carl Britsch, President of the Architects Society of Ohio, 531 Nicholas Bldg., Toledo and Mr. John W. Richards, the Great Lakes Regional Director of the American Institute of Architects.

The old Court House is an example of Greek Revival style which should be preserved at all costs, in
Sell 7 to 10 year Shingle Protection!

META-KOTE
Wood Shingle Coating

Spray it on! Brush it on!

Not a paint, but a metal-base shingle coating that gives an extremely durable, weather-resistant surface that lasts for 7 to 10 years, according to enthusiastic owners of Meta-Koted homes. Toxic preservatives keep out rot and decay. Dealer inquiries invited. Write for card of 10 beautiful colors.

The META-KOTE Corp.
517 GARDNER BLDG. • TOLEDO, OHIO
Phone: Fairfax 3311

America's Finest
METAL TRIM

• Manufacturers of every type of metal trim necessary for building construction.
• Great new facilities, great new service, same high quality to serve you better.

METAL BASE
DADO MOULD
METAL CHAIR RAIL
BLACKBOARD TRIM
STEEL ACCESS PANELS
METAL CHALK TROUGH
METAL WINDOW STOOLS

Write Today for Full Information

Knapp
SANITARY METAL TRIM MARK
CINCINNATI 36, OHIO

America's Finest
METAL TRIM

The Pipe You Need for Corrosive Service

Knight-Ware acid proof pipe and fittings may be used wherever corrosive liquids and gases must be handled. This quality chemical stoneware is not just surface resistant but is physically tough and corrosion proof throughout its entire body. It is resistant to all acids and alkalies, hot or cold, in any concentration.®

In difficult installations special pieces may be required. These can be made of Knight-Ware at relatively low cost because no expensive molds are required in their manufacture. Knight-Ware is available in a varied of standard fittings and can be installed by any competent plumber.

Knight-Ware has found wide application for more than 40 years in the chemical processing industries, industrial laboratories, pharmaceutical plants and colleges and universities.

*Excepting hydrofluoric acid and hot caustics.

Write for Bulletin No. 5 for weights and dimensions of ball and spigot pipe and fittings.

MAURICE A. KNIGHT
5808 Kelly Ave., Akron 9

ARCHITECT

[August, 1951] 69
It is a Distinction to have been selected as Sub-Contractor on many of Ohio's Better Buildings for
FINISHING HARDWARE
ST. CHARLES CUSTOM KITCHENS
BARBER-COLMAN OVERDOORS
CARL D. Himes, INC.
ARCHITECTURAL BUILDING MATERIALS
317-319 S. MAIN DAYTON, OHIO
Phone Adams 2208

Gregory Stone Co. Inc.
CUT STONE OF ALL KINDS
MARBLE - GRANITE
TENNESSEE & PENNSYLVANIA
FLAG STONE
TA. 7455
1650 N. GETTYSBURG AVE.
DAYTON 7, OHIO

WEIFFENBACH
MARBLE & TILE CO.
Congoleum-Nairn & Armstrong
Linoleum Floors, Cove Base and
Cabinet Tops - Linowall and
Sealex Wall Covering
RUBBER, ASPHALT AND CORK TILE
TERRAZZO AND MAGNESITE TERRAZZO
FULTON 8179
1426 S. EUCLID AVENUE
DAYTON 8, OHIO

CHAS. H. SHOOK
INC.
General Contractors
FU. 2123
582 WEST 2nd STREET
DAYTON 1, OHIO

JOSEPH R. GEBHART
GENERAL CONTRACTOR
FU. 3512
318 E. 3rd ST.
DAYTON 2, OHIO

Dayton-Sur-Grip & Shore Co.
Kercher Street and Big 4 RR
MIAMISBURG, OHIO

Burch Construction Co.
SEWER and WATER INSTALLATION
ROAD BUILDING
BOX 772 DAYTON 1 TA. 7421

Artie A. Smith & Son
Specializing in
Heating & Sheet Metal
1412 N. Main St. - RA. 5911
DAYTON 5, OHIO

Certified Concrete
PRODUCED ONLY BY
READY MIXED CORP.
"BEST BY TEST"
20 KEOWEE ST.
DAYTON 2, OHIO
FU. 7141

HENRY STOCK & SON
GENERAL CONTRACTORS
MI. 8388
30 N. LUDLOW ST. DAYTON, OHIO

ADVANCE COAL, LUMBER
& SUPPLY CO.
ALL KINDS OF BUILDING MATERIAL
1307 N. GETTYSBURG AVE.
DAYTON 7, OHIO ME. 3581

LIEB-JACKSON CO.
CONTRACTORS - ENGINEERS
HEATING - PLUMBING - POWER
PIPE - BOILERS - PUMPS
COLUMBUS DAYTON

G. E. L Electric Co.
Electrical Wiring - Lighting Fixtures
FU. 8312
114 E. SECOND ST. DAYTON 2, OHIO

THE OHIO
Building Officials Foundation convention held in Toronto recently. The American Society of Building Officials also recognized the "need for immediate adoption of such emergency ordinances to make exceptions from existing building regulations and allied ordinances, governing the construction and maintenance of buildings and structures."

Copies of the ordinance, when completed, will be distributed to active members of the groups which participated in the Toronto meeting, to local building officials, the Office of Defense Mobilization and to all other federal, state and local agencies concerned with building regulations and allied ordinances.

George E. Strehan, correlator of the Basic Building Code, is directing operations of the new Structural Bureau of the BOF and coordinating the activities of the Code Changes Committee and the Materials Approval Committee of the BOCA.

BOOKLET OF PREFINISHED WALL PANELS

The U. S. Commerce Department's Commodity Standards Division has just issued a new commercial-standard booklet covering prefinished wall panels, one of the newer popular materials for interior walls and ceilings.

This commercial standard was prepared and proposed by the Prefinished Wallpanel Council, the national association of the industry, to establish definite criteria of physical requirements that should be possessed by this material.

Now for the first time, there is a uniform basis on which performance guarantees may be made by the manufacturers for the guidance and assurance of the property owner, the architect and the builder.

The new standard provides minimum specifications for prefinished wall panels and covers in detail the physical requirements and tests for strength, water absorption, linear expansion, hardness and resistance to light, heat, humidity, acid, alkali and staining. It sets forth the standard commercial sizes and tolerances for this material.

This material has many industrial, commercial and institutional applications and the Prefinished Wallpanel Council reports a constantly growing demand for this material, which is readily available in a wide variety of colors and finishes.

The Dox System of constructing floors and roofs makes possible the completion of an entire area in less time than is required to place forms in ordinary construction.

The Dox System saves materials, simplifies cost estimates, eliminates bad weather holdups, conforms with all standard building practices. These are but a few of the many construction advantages offered by the Dox System.

For details, call or write

The CLEVELAND BUILDERS SUPPLY Co.

MARION BLDG. • MAin 1-4300
MODERNFOLD DOORS IN SCHOOLS

The fact that the high birth rate of the early forties is making itself felt is not new to school administrators. The present day lack of space makes the administrative problem a difficult one. Requests for additional accommodations meet resistance from school boards facing today's seemingly high construction costs.

Some schools are meeting "the bulge," providing better group control, and making more effective use of classroom space through use of a "movable door." These units, called Modernfold doors, operate like an accordion in opening and closing. Thus a single room may be converted into two classrooms in a matter of seconds. Effective group or single classroom facilities can be quickly provided whenever needed.

Construction of the Modernfold door is sound. A metal frame serves as a foundation for flame-resistant and washable vinyl coated fabrics. This construction serves well both as a physical and a sound barrier for most classrooms. Where extra sound reduction is required, the doors can be equipped with sound insulation materials.

Experience has proved that the cost of installing Modernfold is lower than that for permanent walls. It should be noted that this type offers greater flexibility, because it can be quickly folded against the wall when full use of the area is desired. Maintenance of the unit is simple... an occasional lubrication of track being the only requirement. The special treated finish makes the task of removing finger marks, dirt or ink an easy one. A mild soap and water bath is said to restore the unit to a new-like appearance.

D. J. SACK
PAINTING AND INTERIOR DECORATING
We are especially interested in working with Architects
807 E. 157th St. Cleveland 10, O. PO. 1-5446

MARK SWISHER, INC.
GENERAL CONTRACTORS
INDUSTRIAL — COMMERCIAL — GENERAL
Tower 1-6630
1600 EAST 25th ST. CLEVELAND, OHIO

WE REPAIR ANY MAKE
TRANSIT OR LEVEL
Prompt reliable service
Surveying Instrument Co., Inc.
118 St. Clair Ave., N.E. MA. 1-6170
SALES — RENTALS

John M. Peters Construction Co.
CONTRACTORS — ENGINEERS
INDUSTRIAL — COMMERCIAL — GENERAL
27 Years Experience
3971 Jennings Rd. Cleveland, 0. SH. 1-7400

We're Looking forward to
Seeing You at the
Corner of Broad and High
October 17-18-19

FRANK D. LATANICK
Watrous
Adjustable Flush Valves
Soap Dispensers
1200 W. 9th St. Cleveland CH. 1-2045

The Geo. Rackle & Sons Co.
LARGE QUANTITY BUILDERS SUPPLIES
LIGHTWEIGHT CONCRETE — ROOF
AND FLOOR SLABS — CAST STONE
Vulcan 3-4747 CLEVELAND, OHIO

Becker-Seidel-Clark, Inc.
HEATING, PLUMBING AND POWER
PIPING CONTRACTORS
3625 Prospect Ave. Cleveland, Ohio

The PARKER ELECTRIC Co.
ELECTRICAL CONSTRUCTION
Enidict 1-4170
4502 Prospect Ave. Cleveland, Ohio

D. W. RANKIN, INC.
GENERAL CONTRACTOR
1836 Euclid Ave. Cleveland, O. PR. 1-3825

[August, 1951]
INDEX OF ADVERTISERS

Advance Coal, Lumber & Supply Co. 70
The Akron Mirror & Glass Co. 60
The Akron Sales & Doss Co. 71
Allied Oil Co., Inc. 72
American Radiator & Standard Sanitary Corp. 6
Armco Drawings & Metal Products, Inc 30
Arrowcile Corporation 31
Art Iron & Wire Works, Inc. 61
Arterial Ornamental Iron Co. 56
The Armstong Fire Escape & Iron Co. 66
Askne Supply Co. 50
Avery Air Conditioning 71
The Balfour-Forest Corp. 28
Becker-Seidel-Clark, Inc. 72
Geo. Behm & Sons Co. 60
Blumber Sign Co. 77
The Bolton Pratt Co. 60
Bryant Heater 79
The Buckeye Boiler Company 74
Buckeye Refrigeration Co. 74
Burch Construction Co. 70
Canton Elevator & Mfg. Co. 68
Canton Stoker Corp. 57
The Capital Elevator & Mfg. Co. 74
The Cincinnati Drafting Supply Co. 74
Cincinnati Iron Fence Co., Inc. 70
Cinder Products, Inc. 70
City Blue 64
The Claycraft Co. 62
The Cleveland Builders Supply Co. 71
The Cleveland Lumber & Door Co. 75
The Cleveland Quarries Co. 75
Cleveland Wholesale 34
The Collinswood Shale Brick & Supply Co. 67
Connerly Pipe Mfrs. of Ohio 76
Conditionaire, Inc. 64
Crawford Door Co. 13
The Davis Plywood Corp. 57
The Davis & Siehl Co. 58
Dayton-Sur-Grip and Share 70
Donley Bros. 40
The Dunbar Co. 54
East Ohio Gas Co. 16
Einheit Electric Construction Co. 63
Enterprise Electric Co. 65
Fireproof Construction, Inc. 74
"Bob" L. Fisher 71
The Forest City Foundries Co. 68
Framing Systems, Inc. 22
Franklin Blueprint & Supply Co. 24
Frigidaire Sales Corp. 17
Joseph R. Gehbhart 70
G.E. Electric Co. 70
Gem City Blue Print & Supply Co. 61
Gilders Points 18
The Graham Co. 73
Gregory Stone Co., Inc. 57
H. Horton Hall Co. 67
Hammond-Parker Fuel & Supply Co. 74
The Edward R. Hart Co. 74
The Charles Hans Co. 72
Hess Blue Print, Inc. 70
Carl D. Hines, Inc. 70
Calvin G. Hausefeld 50
Hygiene Products Co. 74
The Ideal Builders Supply & Fuel Co. 72
George J. Igel & Co., Inc. 74
Inland Wool Insulation Corp. 66
The Interior Marble & Tile Co. 76
Irvin & Company, Inc. 23
The Irvin, Jewett & Vinson Co. 70
K. and J. Jacobs Co., Inc. 58
The Janson Industries 56
John Company 72
D. M. Keeney Co. 67
The Kennedy Company 72
Knapp Bros. Mfg. Co. 69
Maurice A. Knight 69
The Kotoe-Carlsen Co. 65
The Kramer Bros. Foundry Co. 55
The Kuhlman Builders Supply & Brick Co. 61
P. D. Latanich 72
Libby-Owens-Ford Glass Company 24
Liberty Printcraft Co. 68
Lieb-Jackson Co. 70
The Geo. F. Little Inc. 51
The Losch & Green Construction Co. 55
Lottridge, Incorporated 62
Ross Lottridge Co. 72
Tunbridge, Inc. 74
A. H. Lumm Co. 61
Macomber, Inc. 75
The R. C. Mahar Company 75

rubber Designed and installed by our experts in hotels, hospitals, institutions, schools, business establishments.
tile floors asphalt plastic cork

Sterling & Welch contract sales division, Sterling Lindner Davis

This is IT!
... the Garage Door of the Century

BY Graham

The custom-styled flush-type sectional door tailored to the architecture of your particular houses. Also conventional panel-type sectional doors.

Sole Distributor for the "SCIENTIFIC" electric remote control door operator.

The Graham Co.

6901 Carnegie EX. 1-0443
CLEVELAND, OHIO

The SIGN of a trouble-free electrical installation

Over a third of a century of electrical "Know-How!"

CALL US FOR ESTIMATES...

6001 Carnegie EX. 1-0540
CLEVELAND, OHIO

A BETTER JOB

BY

THE SUPERIOR LITE CO.

INDUSTRIAL • COMMERCIAL • RESIDENTIAL ELECTRICIANS

LIGHTING FIXTURES

EST. 1915

[August, 1951] 73
A BACHELOR... claimed a dependent child in his Income Tax return. The Income Tax Bureau returned it with a notation, THUS:
"THIS MUST BE A STENOGRAPHIC ERROR." The bachelor returned it with this reply: "YOU'RE TELLING ME!"

If YOU like a supply or consulting service that doesn't make errors (often!) call in John Lee, OFTEN.
WE ARE CONSULTANTS AND DISTRIBUTORS FOR

Cost Saving, Quality Products Only

SHADELITE Aluminum Marquees ELECTRIGLAS Radiant Panel Heating ALUMINUM Foil Insulation ALUMINUM Windows and Accessories PACKAGED Kitchenettes ALUMINUM Garage Doors ALUMINUM Entrances

1001 METAL BUILDING SPECIALTIES

AT THE CONVENTION... Booth 74 WILL BE THE MOST INTERESTING SPOT IN TOWN!

THE OHIO
INSULATED METAL WALLS
for INDUSTRIAL and COMMERCIAL BUILDINGS
ALUMINUM, STAINLESS or GALVANIZED STEEL

The Power Plant illustrated below is further evidence of a design trend and the prominent place Insulated Metal Walls occupy in present day construction. It is typical of fourteen structures, including two complete industrial plants, presently under construction—and dozens of others in the planning stage.

The exterior wall surfaces of this building are Stainless Steel throughout. Permanent, firesafe material requiring no maintenance whatsoever. Mahon Insulated Metal Walls are available in three distinct exterior patterns as shown at left. Walls may be erected up to 50 feet in height without horizontal joints. Thermal properties are excellent—insulation provides an overall "U" Factor equivalent to that of a conventional 16" masonry wall. Mahon Insulated Metal Walls, together with a Mahon Steel Deck Roof, provide the ultimate in economy, permanence, and firesafety in modern construction. See Sweet's Files for complete information, or write for Catalog No. B-52-B.

THE R. C. MAHON COMPANY
Detroit 34, Mich. • Chicago 4, Ill. • Representatives in Principal Cities
Manufacturers of Insulated Metal Walls; Steel Deck for Roofs, Floor and Partitions; Rolling Steel Doors, Grilles, and Underwriters' Labeled Rolling Steel Doors and Fire Shutters.

ARCHITECT

[August, 1951] 75
<table>
<thead>
<tr>
<th>Obsolete Size Designation</th>
<th>Star Bar Number</th>
<th>Area Sq. Inches</th>
<th>Perimeter Inches</th>
<th>Weight Lbs. Per Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>3</td>
<td>.11</td>
<td>1.178</td>
<td>.376</td>
</tr>
<tr>
<td>1/2"</td>
<td>4</td>
<td>.20</td>
<td>1.571</td>
<td>.668</td>
</tr>
<tr>
<td>5/8"</td>
<td>5</td>
<td>.31</td>
<td>1.963</td>
<td>1.043</td>
</tr>
<tr>
<td>3/4"</td>
<td>6</td>
<td>.44</td>
<td>2.356</td>
<td>1.502</td>
</tr>
<tr>
<td>7/8"</td>
<td>7</td>
<td>.60</td>
<td>2.749</td>
<td>2.044</td>
</tr>
<tr>
<td>1"</td>
<td>8</td>
<td>.79</td>
<td>3.142</td>
<td>2.670</td>
</tr>
<tr>
<td>1"</td>
<td>9</td>
<td>1.00</td>
<td>3.544</td>
<td>3.400</td>
</tr>
<tr>
<td>1-1/8"</td>
<td>10</td>
<td>1.27</td>
<td>3.990</td>
<td>4.303</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>11</td>
<td>1.56</td>
<td>4.430</td>
<td>5.313</td>
</tr>
</tbody>
</table>

*Bar numbers denote nominal diameters of round bars in eighths of an inch. Bars 9 • 10 • 11 are equivalent to the obsolete 1 • 1¼ • 1½ square bars. No. 2 is ¼" plain round.

Meet standard ASTM, A16 or Federal QQB-71a specifications of latest revision. HOOKLESS BARS—HIGHEST DESIGN STRESSES—INTENSION—LESS CRACKS IN CONCRETE—SIMPLIFIED PLACING—LOWER COST.

A305 REINFORCING BARS

POLLAK STEEL
BOND-PLUS

The Pollak Steel Co.
CINCINNATI 2, OHIO
MILLS, MARION, OHIO

ASTM A16-35
ASTM A305-49