• **AN APPROACH TO URBAN DESIGN**
 by Morton Hoppenfeld

• **SUBSOIL AND FOUNDATION PROBLEMS IN THE WASHINGTON METROPOLITAN AREA**
 by James J. Schnabel
POTOMAC VALLEY CHAPTER OF MARYLAND
American Institute of Architects
Executive Secretary - JU 8-1125
EXECUTIVE COMMITTEE
JACK C. COHEN, President
THEODORE CROMAR, Jr., Vice President
DENNIS W. MADDEN, Secretary
JOHN E. MOORE, Treasurer
PAUL H. KEA, Director
STANLEY H. ARTHUR, Director
ANDREW MACINTIRE, Director
Potomac Valley Architect
Editor
Harold Lionel Esten, JU, 7-7789
Managing Editor
Joseph Dennison, RA, 6-1005
Editorial Assistant
Amalie Dobres, JU, 8-1125

NEXT REGULAR MEETING
12 Noon, February 7
Brook Farm Restaurant
7101 Brookeville Rd., Chevy Chase, Md.
MARCH MEETING
March 7, 1962

NEW FIRM
Terry Fred Horowitz, AIA, and Walter Seigel, AIA, two new members of the Potomac Valley Chapter of Maryland, announce the opening of an architectural firm to be known as Horowitz, Seigel, AIA, Associates, with offices located at 6406 Georgia Avenue, N.W., Washington, D. C. The telephone number is RA 3-7018.

NEW ADDRESS
John E. Moore, Treasurer of the Potomac Valley Chapter, AIA, has moved his office for the practice of Architecture to 7815 Old Georgetown Road, Bethesda, Md. The telephone number is 654-0350.

AWARDS
The firm of Cohen, Haft & Associates is the recipient of two awards in the recent competition program of the Washington Board of Trade. A residence for Dr. and Mrs. David Eden, in Bethesda, Md., and an office building on Spring Street in Silver Spring were the winning entries. A principal in the firm, Jack C. Cohen is the President of the Potomac Valley Chapter.

SCHOOL OF ARCHITECTURE FOR MARYLAND
by Andrew H. MacIntire, A.I.A.
Chairman, Education Committee

The possibility of a School of Architecture is being considered by officials of the University of Maryland. Our Chapter, for some years, has tried to interest the University in such consideration and has, through inter-Chapter contact, attempted to keep up our concern for such a school. Recently Mr. Russell B. Allen, Assistant Dean of the College of Engineering, for a third time is giving the matter further study. As a member of a Special Curricula Study Committee, should favorable conditions and support be deemed satisfactory, Dean Allen may recommend to the University Senate that a School of Architecture be established. Dean Allen seems convinced that such recommendation should be made and contacted the Chapter for supplementary data and "the Architects' support."
The Baltimore Chapter, the Washington-Metropolitan Chapter and our Chapter representatives met with Octagon representatives on several occasions, sometimes with Dean Allen, to prepare a report, specifically requested by the Dean, to be prepared by our Chapter. The report, however, was to show support by the Architects of Maryland. In order to obtain supplementary data for the report the Chapter Education Committee conducted a survey by letter and post cards to A.C.S.A. member colleges and universities.
The survey produced some interesting information:
There are 122 students from Maryland studying Architecture in 22 schools outside of Maryland.
West Virginia and Delaware, with no Architectural schools, have 36 and 17 students respectively.

There are 10 Maryland students at V.P.I., 10 at the University of Virginia, and 19 at Catholic University. Data on size and budgets of various schools was also obtained.

There are 175 Architectural offices in Maryland with an average of 4 persons per office, a total of 700 architectural workers.

There are 348 Registered Architects working and residing in Maryland (this does not include out-of-state registrations). Other survey data indicates that, prudently, 10 to 20 Architects per year are needed in Maryland to replace those who die or retire, and to satisfy increasing manpower need.

A school which could graduate 10 to 20 students per year would require an enrollment of 200 to 250. Potential enrollment initially would appear not unrealistic at 100, with growth anticipation to an ultimate of 200 to 250. Architects educated outside of Maryland tend to practice out of Maryland, a trend which could be curtailed by a School of Architecture in Maryland.

The Chapter's committees in meeting with Dean Allen were delighted to find in him a person who spoke the Architect's language. It was unnecessary to talk "quality school", "autonomous school", "strong Architectural Dean", etc., for we found in him a built-in awareness of what would constitute a good School of Architecture. Previously, in considering this matter of a school, a negative result was reached since a report, "Architects for the South", in 1950, reached a conclusion that no new Architectural Schools were deemed in 16 Southern States (including Maryland), as manpower needs were being met by existing schools. The data tables were updated in 1959 by N.C.A.R.B. and together they show that of the 16 states, Maryland is lagging, showing a decline comparatively in the number of Registered Architects, while almost all the other states show a gain.

Our report, we felt, showed need and potential, that our National Committee stands ready to aid in further study and that the Architects of Maryland were vigorously in favor of the establishment of a School of Architecture and would lend their support. The report is in the hands of the Faculty Study Committee which we hope will result in a strong recommendation to the University Senate.
AYRLAWN ELEMENTARY SCHOOL,
MONTGOMERY COUNTY, MARYLAND

The Ayrlawn Elementary School, now under construction, is located in the northeast corner of the North Bethesda Recreation Center. It is a 3.09 acre site acquired by the Board of Education from the Planning Commission. This "Park School" is designed to share its facilities with the Park and Planning Commission and the County Recreational Department. The school in turn will use the park playground facilities.

In addition to this requirement for dual use, certain features of the site had a great deal to do with determining the design. The area chosen was the site of a handsome group of farm buildings with many fine trees and landscaped areas. Local citizens were keenly interested in the project and naturally concerned with its effect on the park. They wanted a building that fitted in with its surroundings and which was sited to save the trees. Many of their houses were adjacent to the school site.

In early design studies, an effort was made to use one or more of the larger existing farm buildings as a part of the school plan. This proved to be impractical because of the odd shape and limited area of the site, and expense of remodeling required to meet county requirements. In the final plan, however, two of the small farm structures have been retained and most of the existing trees and shrubbery have not been disturbed.

The building now under construction will have 9 class rooms, one kindergarten, an all-purpose room, library, teacher's room and administrative offices. It also includes one room of approximate classroom size with separate toilet facilities which will be available to the general public through the Planning Commission's Park Permit office. It also may be made available for school use.

The existing silo, located on the west end of the building, which is engaged to the boiler room, is used for trash storage. The grain chute will be used for the boiler room chimney. The small octagonal building on the east is used for tool storage. The plan also provides for a future two-level wing at the west end of the site which will provide nine additional classrooms. A second kindergarten will be added adjacent to the present kindergarten on the east.

Construction is masonry bearing walls and piers supporting laminated beams over the classrooms. The pitched roof structure over the kindergarten is a standard light wood truss and the all-purpose room is spanned with tied laminated beams. Two and one half inch "Tectum" supported on bulb tees forms the roof deck. This material also provides the required thermal insulation and serves as an acoustical ceiling.

Finned tube radiation in under window cabinets and centrally conditioned outside air supplied through a corridor ceiling plenum provide heat and ventilation to most of the spaces. Air is returned through corridors. This system is supplemented in the kindergarten by hot water radiant heating in the floor.

The building was scheduled for completion on December 31, 1961. The contract price was $316,496.00.
AN APPROACH TO URBAN DESIGN
by Morton Hoppenfeld, Assoc. AIP, R.A.

Few would deny that we who live in cities generally do so in varying degrees of visual and social squalor. Over the years we have become dulled to the things we see about us, and probably fortunately so. Our innate quest for order, balance and harmony in our environment would leave us ill were it not for the build-up of a protective, selective vision which allows us to unconsciously filter our impressions of the city. Our perception of the world depends not only on sheer optical stimulation, but also upon the interest of the individual observer. Thus, in time we tend to see only what we want to—only what we need in order to subsist in our man-made urban environment. How many of us really see the city? Can we assume that the urban environment is in part a conditioner of urban society? Therefore, must we not all see it in a more positive way?

One of the many reasons our cities are so visually and emotionally unsatisfying is the uniformity and lack of differentiation in the city pattern. The essence of the city lies in the breadth of choice it can provide in all matters of fundamental concern. The urban life alone affords diversity and contrast which permits an anonymity, humane because it is not imposed. These characteristics are basic and exist best in cities of proper size and form. Inappropriate form results in a curtailment of range of choice. Every lack of differentiation in a city's physical pattern means a negation of choice and thus a negation of true urbanity. In a city of quality, each element, as in a mosaic, contributes to the splendor of the whole, without losing any of the luster of the individual tessara. In fact, the single piece can only assert its real significance within the context of the whole. How little of today's American city provokes positive response and rests at ease between the extreme conditions of chaos and utter boredom?

If we look for causes in today's plight, we find them numerous and complex. But let the buck stop here for the moment. Let me suggest that we architects, with few notable exceptions, have ignored the city. We have as a profession tended to develop our concepts of form in an aesthetic ether and applied them at random. Think hard and list your favorite twenty architects ('form givers'?). What proportion of their work—real or theoretical—has been truly in the realm of urban environment? Whatever the reasons, and there are many, the leaders of our profession have not had or sought the opportunity to build the city.

Think of your education, of the books and periodicals available. How many design problems addressed themselves to the city then and even today with the "new awareness"; how much has it changed?

I suggest that a part of the responsibility for the ugly American city rests here with us—the architects. I further suggest that if we are to rise to the challenge of the city building and rebuilding which lies before us, we must foster a new breed of designers humbly to address themselves to the problems of urbanity. This is not an easy task, since the problems are extremely complex and require continued thought and research. But only with the recognition of this complexity will progress begin.

In the development of an approach to the design of cities I think it important to call particular attention to two significant aspects of "Urban Design" which have had a substantial influence and will have even greater influence on the quality of newly developing or rebuilt urban America. Although these two aspects are basic, their pertinence remains relatively undiscovered and unrecognized. They are:

1. The process by which designs are developed and produced; and
2. The concept of appropriateness: the values expressed in and the reasoning of the design.

As part of a multi-faceted problem, the two are intimately related and dependent one upon the other.

Traditionally, any discussion on questions of urban design tends to avoid these two key issues since emphasis is ordinarily given by professional "designers" to the elements of "pure design": the abstract qualities of good or bad spaces, relationship of heights, quality of architecture and materials and the like (provided, of course, the maximum floor space is provided). This is not unusual, since it is in this realm that "designers" are typically trained and it is in this realm that the lay public is educated by mass and professional journals.

This almost singular concern for "pure design" (i.e., forms abstracted to large extent from total urban context) if left to dominate the urban design process has resulted, and will continue to result, in a product of questionable value relative to the great effort made.

I do not contend that a poor design in the abstract sense need or should be tolerated. The purpose of this exploration is not to diminish the quality of the end-product; on the contrary, it is to improve quality by extending the basis from which it is conceived and by which it is judged.

1. Process: A basic criteria of good urban design is the "likelihood of accomplishment": is the design such that it has in it the seeds of fulfillment? A good urban design must be consistent with the urban forces at work—the forces of social and political action and urban land economics. In short, a good solution demands a clear, precise and profound statement of the problem itself, and from that will the ideas emerge. This is not to suggest that such designs are therefore manifest for easy completion: often quite the opposite, a good design requires a good fight for its acceptance or dominance among competitors. But I do suggest that its "natural" situation will win out once it has been given the chance. It is here that the process by which the design was created and is promulgated comes into play.

If the problems have been clearly defined, needs and desires realistically and clearly appraised and a hierarchy of value established, then the design will have some chance of widespread acceptance. Nothing is more discouraging than the performance of a designer who expects his sensitive "arrangements of masses in space" and his exquisite arrangement of window mullions to carry the day against the hard facts of human needs and city function.

Acceptance of the criteria of naturalness and harmony in the hierarchy of urban requirements and forces, necessitates a process for developing designs which puts the designer in a position to understand and translate these forces. This requires that the designers seek the means and processes to put themselves in a position to understand the complex requirements of an urban design situation. Only few designs are prepared by a
team of urban planners with varied back-
grounds working together with develop-
ers and designers exposed to the prob-
lems and potentials of the total city.
Consequently, only a few designs are ef-
effectively used, and of those few only
part represent a net gain in terms of the
basic problem. The process of design
formulation has a profound effect on the
kind and quality of end-product as well
as on likelihood or desirability of accom-
plishment.

The usual method of approach to many
of today's typical urban design prob-
lems has its roots in the theories and
process of architectural education, abet-
ted by the visiting jury system of judg-
ment. Where there is lacking a true
understanding of the problem or a really
adequate guide program, most designs
are focused toward a quick response; a
single bold statement often symmetrical
or at least two dimensionally balanced,
susceptible to rapid visual cognition and
generally photogenic. These are the cri-
terias which govern, in the one-shot de-
sign venture. How different this ap-
proach to the one which would attempt
to recognize organic growth patterns
and systems which may not be readily
perceptible in the traditional concept
of pure visual order. This design ap-
proach would consider total context
and the infinite (as opposed to the finite
nature of a building) nature of urban pat-
tern, the man's eye level views from ev-
ery point in preference to the bird's, the
processes of fragmentary city building,
the necessity for staged development
and occasional (sometimes even desir-
able) compromise from design idea along
the way, and the attempt at expression
of true community values. It is true that
these two approaches do not always con-
ict but usually they do.

In summary, it is the processes of de-
sign development which are basic to
good design as well as the individual
skill of a talented designer, the latter of
which should be an accepted con-
stant. The extent to which the design
process reflects real community objec-
tives; the extent to which the designers
attempt to clarify and state these objec-
tives both in verbal and design terms;
the extent to which the designers and
the design are flexible enough to adjust
to inevitable compromise and program
change; and the extent to which the de-
sign promulgated can withstand the
natural democratic forces of conflicting
interests and still be a work of urban
vitality; these are the measures of suc-
scessful urban design.

2. Appropriateness: Much has been
written lately by a few sensitive urban-
ites who decry the lack-luster of recent
renewal efforts. In most cases, life was
in effect "designed" out of the city.
Those very elements of vitality, activity
and variety which constitute the essence
of the city were the least considered. In
the strenuous quest for "architectonic
form" (compositional), the content tends
generally to diminish in importance and
in the end meaningless (out of context)
form becomes hollow. In earlier times
and often in the natural "undesigned"
city building process, the shape of the
container evolved slowly to reflect and
satisfy the organic content of the city.
The nature of urban content (life) and re-
sulting urban form in kind and quality
was an expression of the values of the
people involved, whereas, in the case of
"abstract urban design," values are ei-
ther consciously or unconsciously im-
posed upon a public not yet on the
scene. This is not always a conscious
case of architectural purity vs. social
requisites. Often social goals are
masked in architectural terms. It is not
unusual to find, upon putting a given
plan into its larger social and physical
context, that elements which seem logical
unto themselves take on a different
meaning in the larger relationship. When
design reflects a clear social attitude and
objective, it is on this basis that the de-
sign should be resolved before a quali-
tative judgment can be made on the di-
ensional aspects of urban design. Ur-
ban designs express important social and
cultural values, but "design" discussion
usually revolves about "function" (scale
of the street, traffic noise, open space,
etc.) or "formalism" (proportions, sym-
metry or asymmetry, "interesting
shapes," etc.). Thus, confused or con-
licting values result as a by-product of
spaced emphasis.

It is extremely important that urban de-
sign be recognized as an important,
though often obscured, expression of urban
values and as such will take on a
greater significance in city building. Real
community values can become the shap-
er of the container in this age of com-
plex social order only by conscious
effort.

We have generally thought of urban de-
sign only in terms of relatively small and
defined project areas (an easy exten-
sion of the design of a building). It must
be recognized that the design process
need include a simultaneous concern for
the urban qualities of whole metropoli-
tan areas and city sectors as well. This
is not to suggest that we can or should
attempt to fix a "design" for such areas
which by their very scale and complex
nature defy a formalistic or architectonic
approach. The designer is by training
and nature a "visualizer," one who can
see the product before it is consummat-
ed. In the countless daily enactment of
urban building processes (such as high-
way and road construction, street widen-
ing, sewer location, zoning and building
code enforcement and public housing lo-
cations) there must be design considera-
tions. Our cities have reached an order
so complex that few such decisions can
be made without far-reaching effect. In
each decision to build or tear down, the
question should be asked, "How does this
effect the quality of the city?". The ur-
ban designer is a critical link in the feed-
back process between physical elements
of the city and the city's basic civilizing
function and quality is his guide stick.

Who is an urban designer?
Which designers deserve or should seek
such a title? The basic requirement is to
be committed to the prospect that the
city is a positive expression of civilized
man and as such should be among his
greatest achievements. To be an urban
designer he must have a clear under-
standing of and a positive philosophical
attitude toward the values of urban life
and most important, the relationship be-
tween urban form and these values.

Good urban design results from a con-
stant search for "meaningful form" and
comes only through continuous involve-
ment and study of the highly complex or-
ganism we call "city". Through a con-
cert of "urban studies" we are rapidly
learning more about the city, but no
amount of formal training alone will suf-
fice. Qualification is the reward of com-
mitment and concern.

How do we distinguish an authentic ur-
ban designer from one self-proclaimed?
In many ways:
He is learned and sophisticated but still
retains an open mind.
He is equally at home with the problems
of traffic and real estate as those of
group living patterns.
He is sympathetic to all human needs
however mundane they seem, and relies
on available scientific knowledge and
techniques as well as a keen common
sense.
He recognizes the necessity of team ef-
fort and perseverance.
He knows the historic nature of cities and
(continued on page 8)
SUBSOIL & FOUNDATION PROBLEMS IN THE METROPOLITAN WASHINGTON AREA

by James J. Schnabel

In the metropolitan Washington area it is not unusual for the excavation of a building foundation to be cause of alarm for the architect, engineer and builder. The digging may have revealed a number of subsoil problems including soft and loose soil, fill ground, water, or hard rock. These latent conditions can produce headaches and increased costs for proper corrective action.

It is a widely known fact that there is a great variation in subsoil conditions in the Washington area over relatively short distances. There are geologic reasons for these great variations. Washington is situated at the border of the oldest rock of the earth’s crust and sedimentary soils of the coastal plain. Rock Creek and the Montgomery County-Peace County boundary may be considered the dividing line between the disintegrated rock soils and the coastal plains soils.

Soils to the west or in lower Montgomery County and Northwest Washington are generally formed by the disintegration of various extremely old rock formations. These soils are all underlain by rock at depths varying from the surface to as much as 77 feet at the National Institutes of Health. In some areas — and Wheaton is a typical example — these disintegrated soils are extremely soft. The presence of soft soils in Montgomery County is usually coupled with high groundwater, or stream valley deposits washed in from surrounding higher ground.

Wheaton Plaza Shopping Center is a good example of subsoil variation in the area of one shopping center. The Woodward & Lothrop store was constructed first and required a mat foundation due to underlying soft sandy silt and clayey silt soils. Montgomery Ward, at the opposite end of the mall, is founded on solid rock at the basement floor level. The recently opened eight-story office building is founded on caissons drilled to rock at an average depth of 12 feet below grade.

Prince Georges County can also produce some surprising variations and extremely soft soils. The general geologic pattern in this County covers about 110 million years and consists of various layers of clay, sand, and gravel deposited mainly by the ocean, or great rivers from the west. Below these layers the rock of Montgomery County is present. Several strata formed in geologically recent times (15 million years ago) are generally soft and should be avoided for building foundations. One sandy silt strata at the proposed Sultland High School site was drilled to a depth of 150 feet without locating appreciably denser soil. The school was relocated to a nearby sand and gravel strata to avoid extremely costly special foundations.

Large areas of Prince Georges County are also within river and stream valleys that are underlain by silt, sand and gravel alluvial deposits. These soils are generally irregular but possess one similar characteristic — water. Sites in these areas should be carefully checked to avoid soft soils and water problems.

Downtown Washington affords an excellent example of non-uniformity in subsoil conditions. The recently completed office building at 801 15th Street is founded on 14-inch bearing piles driven to rock about 48 feet below street grade. A new office building under construction one half block north is founded on spread footings designed for 8000 pounds per square foot soil bearing pressure. The Hill Building directly across the street is also founded on spread footings designed for the same bearing pressure. These variations are caused by geologic factors and streams that ran through downtown Washington many years ago.

Certain clays found from Alexandria, Virginia to Laurel, Maryland create special problems for the designer. These clays are subject to substantial shrinkage upon loss of moisture and have been the cause of settlement and movement of hundreds of buildings in Northeast Washington. A two-story masonry apartment on Trinidad Avenue, N.E., moved laterally with openings as much as 1/2 inches in width in front and rear walls. With the proper investigation and analysis of subsoil conditions the engineer can prevent or limit damage due to clay shrinkage.

Landslides can also plague the architect, and ruin the cost feasibility of certain projects. It is a characteristic of certain clays in this area to lose strength when the weight of overlying soils are removed, and when exposed to moisture. These soils can be cut at relatively steep slopes but after several years, and generally heavy rains, landslides will occur. The landslides found along the Baltimore-Washington Parkway are in this category. Other slides occur due to cuts being made too steep coupled generally with clay soil and water at the toe of the slope. The spectacular slide of July 1958 which dropped the backyards of three homes on Longview Drive, Alexandria, is believed due to these causes.

Recent foundation engineering and construction techniques have allowed the construction of special foundations at moderate cost, and on occasion at less cost than conventional foundations. The drilled pier or caisson foundation is a recent development in foundation construction. The drilled pier is a mechanically drilled hole into the earth which is enlarged at the bottom to satisfactory bearing area, and concreted. These piers are ideally suited for certain soil conditions in this area as the soil at the bottom of the pier must be capable of standing unsupported while being enlarged. The use of drilled piers to rock and stiff clays is common practice in foundation construction in the Washington area. Treated creosoted timber piles are also becoming frequently used for small structures requiring special foundations. These piles are usually driven in areas in which drilled piers are impractical due to subsoil conditions.

The development of earth-moving and compaction equipment has made the construction of buildings on controlled fills possible. Compaction of sand and gravel soils in earth fills with modern equipment can produce a denser mixture than is usually found in nature, providing little or no silt or clay is present. This technique has been used at New Haven, Connecticut to produce over 180 acres of industrial property from swamp waste land. Buildings constructed on the fill at New Haven will be on conventional spread footings designed for 4000 pounds per square foot bearing pressure. The same method is being applied at the Capitol Gateway Plaza Shopping Center under development at the Baltimore-Washington Parkway and Defense Highway, except that a maximum allowable soil pressure of 3000 pounds per square foot is being used.

Improved methods of sampling and testing soils and the use of soil mechanics has removed much of the guess work from foundation engineering. Strength and settlement characteristics can be determined in the laboratory from undisturbed tube samples of the
natural strata. Shrinkage potential and estimates of total shrinkage can be determined from tests on samples from suspected clays. The possibility of landslides and corrective action can be determined by test borings and strength tests on undisturbed samples. Natural density of soils under proposed foundations may be measured by undisturbed sampling techniques instead of being estimated by the usual sampler blow method. Recent developments in nuclear and photographic technology will make the measurement of soil density and actual strip photographs of subsoil strata possible. Observations of settlement of finished structures are also being made by forward thinking firms to increase our knowledge of the reaction of soils to building foundation loads.

The architect, engineer, and builder generally recognize the need for a proper subsoil investigation and foundation analysis for major building structures. However, many owners are still reluctant to spend additional funds for a subsoil investigation, or the special soil analysis that may be required for the particular site. In this way building foundations will progress from the realm of guess work to sound engineering practice. This is a dangerous approach that can result in one or more latent subsoil problems. We should insist that proper subsoil investigation data be provided by a reliable firm for use by the architect and structural engineer in design, and the builder during construction.

For those interested in detailed study of soil characteristics of the area, or those who appreciate beautiful cartography, this map is available from the U.S. Geological Survey. It is approximately 40" x 40" in size.
AN APPROACH TO URBAN DESIGN
(continued from page 5)

their lessons and respects the values of previous generations without being servile to antiquity.
With each assignment, he intellectually and emotionally extends his given site to seek out and comprehend the vital inter-relationship between his site and all its effects.
He understands the kinesthetic nature of experiencing a city and its parts.
He will reach for that delicate balance between internal programmatic needs and the needs of a larger environment.
This designer recognizes that the city is not made of buildings alone, but that they are an integral part of generally more important open spaces that often long outlive the structures about them.
He can sense the many systems of open spaces, the kinds and hierarchies of street, square, circle, and park.
The urban designer has the sense of humility to design appropriate buildings that will blend to become background to one more deserving of the foreground.
He does not shoot his cannon to kill the fly. This designer understands that buildings only seldom appear in a space—but more often join with others to create a space.
Finally, the truly great urban designer can rise to that wonderfully rare opportunity of building on the special site, that special building which demands all his creative resources to make significant architectural and urban form.
When we as a culture produce more such designers, then we will have more beautiful and livable cities. It is not necessary or probable that all designers become urban designers. But for those who so choose, let them begin with the same desire to learn that distinguished the youthful approach to their basic design discipline.

*For a provocative discussion of this theme see "The City and the Arts" by Edward Sellar Dae-dalus. Winter 1960.

Edwin Bateman Morris, FAIA
Norwood, built in 1783, is now the residence of architect George Riggs, AIA, of Clas and Riggs.

CAMP SPRINGS AREA HIGH SCHOOL

The Camp Springs area High School is being designed for the Prince Georges County Board of Education. It is the first air conditioned school being planned in this county. The program calls for the design of the first forty-three (43) classroom unit of a sixty-seven (67) classroom high school. All rooms are to be air conditioned except gymnasium facilities.
Rectangular shaped classrooms have been oriented with the short wall on the exterior. Classroom fenestration has been reduced to provide narrow vertical strips of glass at each end of exterior walls.

To provide relief from the large areas of solid exterior surfaces the lobby, entrances and exterior circulation areas are designed to be as open as possible. In addition certain areas of the building will be pierced to provide small landscaped interior courts.
It is expected that the economies inherent in compact design will offset the cost of air conditioning equipment and that reduction of exterior wall surface and fenestrated areas will reduce operating expenses when compared with conventional non-air-conditioned open plan schemes.

Washington Retreat House for Women
(Diane & Lawrence, Associate Architects)
Combined Consultant Services, Inc.
Fallout Radiological Survey and Protection Design
Consultation on Construction
3607 Kanawha St., N.W., Washington 15, D. C. 363-4884 335-8177

Foundation Test Service, Inc.
James J. Schubbel, President
Test Borings — Auger Borings
Rock Core Drilling — Soil Testing
1908 Sunderland Pl., N.W., Washington 6, D. C. CO 5-3766

Joseph P. Sullivan
Estimating and Cost Analysis
Government and Private Projects
10002 Edward Ave., Bethesda 14, Md. EM 5-6864

Granger & Oliver
Test Borings
10400 Montgomery Ave., Kensington, Md. 946-3313

Sterling Maddox & Associates
Surveyors and Site Planners
Plane and Geodetic Surveys
Aerial Topographic Maps
4924 Hampden Ln., Bethesda, Md. OL 4-0960

Shepherd, Worthington & Prescott, Inc.
Civil Engineers - Land Surveyors
Land Planners
8226 Fenton Street Silver Spring, Md. JUniper 5-8840

Acoustical Engineers, Inc.
Polysonics, Inc.
CONSULTING ENGINEERS
Noise Measurements and Control
Building and Auditorium Design
1816 Jefferson Pl., N.W., Washington & D. C. FE 8-2345
Bart Spano, Dir. D. C. Registered P.E.

Thomas G. Oyster and Associates, Inc.
Civil Engineers and Land Surveyors
2419 Reedie Drive Wheaton, Maryland
LOCkwood 5-1888
Mailed to all architects and allied organizations in National Capital Region and Baltimore Area and to local and national government officials—over 1500 circulation and growing.

Barber & Ross Company, Inc.
Aluminum Windows & Doors, Millwork, Builders' Hardware, Structural Steel, Manufactured Homes, Major Appliances and Kitchen Cabinets
2323 4th St., N.E., Washington 2, D.C.
DE 2-0501

BURGESS - MANNING
Radiant Panel Heating
Radiant Panel Cooling
Acoustical Control
HAMPShIRE
4626 Annapolis Rd.
Bladensburg, Md. UN 4-0300

Executive Interiors
WHOLESALE TO THE TRADE ONLY
Showroom Displays of
Herman Miller - Robert John - Monarch Imperial - Alma - All Steel - Accessories
1015 - 12th St., N.W. Washington 5, D.C.
DI. 7-4321

Revere Furniture & Equipment Co.
From Blueprint to Finished Interior Design
Staff of 5 Professional Designers, AID, NSID
507 Eighth St., S.E. - Washington 3, D.C.
Lincoln 6-9200

James A. Cassidy Company, Inc.
BUILDING PRODUCTS
Windows and Curtain Wall
by
General Bronze — Artex — Winco
Modernfold Partitions
Arcadia Doors
Brown Sun Controls
Dahlstrom Elevator Entrances and Cabs
Custom Convector Enclosures
and
Other Building Specialties
Eighth and Lawrence, N.E.
Washington 17, D.C.
Lawrence 9-5400
OUR THIRTIETH YEAR

we are pleased to offer architects technical assistance on gas air conditioning and the many other applications of natural gas to residential, commercial and industrial uses.

Gas Light Company
Call our Technical Services Manager,
Sterling 3-5225, Ext. 8183
NEXT MONTH

- URBAN RENEWAL

Joseph Watterson, Editor
A.I.A. Journal
1735 New York Ave., N.W.
Washington, D. C.