When schools are built for economy...
the choice is modern concrete!

This is the new All Saints School at Etna, suburban Pittsburgh.

The unusual roof is composed of umbrella-like shells of concrete. The unique curvature of the shells gives great strength without thickness, permitting the roof load to be spread to widely-spaced columns. This gives more usable interior space as well as achieving big savings in materials.

To avoid large column footings often needed in poor soil, the same shell construction was used for the foundation! It's one more example of concrete's adaptability to special local conditions and economic requirements... showing just one of the many new ways concrete can provide attractive, interesting surroundings for students.

And concrete not only saves money at the start, but far into the future. Maintenance costs always stay low. Its rugged strength and excellent fire resistance give best protection against destructive forces of all kinds.

Every parent, teacher and student has a vital stake in the type of construction used in new school buildings. Insist on maximum use of durable concrete — the one completely versatile building material for new schools of every type, size and style.

PORTLAND CEMENT ASSOCIATION 425 Newhouse Building, Salt Lake City 11, Utah

A national organization to improve and extend the uses of concrete
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDITORIAL</td>
<td>3</td>
</tr>
<tr>
<td>WE'RE LOSING BY INCHES</td>
<td>3</td>
</tr>
<tr>
<td>NOTES AND QUOTES</td>
<td>7</td>
</tr>
<tr>
<td>UTAH CHAPTER A.I.A. COMMITTEES</td>
<td>10</td>
</tr>
<tr>
<td>FOR 1960</td>
<td></td>
</tr>
<tr>
<td>PLANS — A SUCCESS, BUILDING — A</td>
<td>12</td>
</tr>
<tr>
<td>FAILURE</td>
<td></td>
</tr>
<tr>
<td>AIED CONVENTION REPORTS</td>
<td>14</td>
</tr>
</tbody>
</table>

ARCHITECTURE UTAH STAFF

EDITOR:
JOHN W. SUGDEN

ASSOCIATE EDITOR:
FRED NEEDHAM

ADVERTISING MANAGER:
NATHAN WOOLLEY

EXECUTIVE SECRETARY:
DOLORES HILTON

CONTRIBUTORS:
DONALD BERGSMA

PHOTOGRAPHERS:
ROBERT MOHR
DAVID W. WINBURN

UTAH CHAPTER OFFICERS

PRESIDENT: ASHLEY CARPENTER
VICE PRESIDENT: NATHAN WOOLLEY
SECRETARY: JOHN W. SUGDEN
TREASURER: BRUCE R. DIXON

PUBLICAUTION UTAH CHAPTER
AMERICAN INSTITUTE OF ARCHITECTS
No. 2190
701 NEWHOUSE BLDG.
SALT LAKE CITY, UTAH
EL9-8180
Yours free... Electrical Advice

Our consultants are always ready to help you with electrical plans.

UTAH POWER & LIGHT CO.
EDITORIAL

HOW SHOULD IT BE MEASURED?

Periodically, the question of the proper system of weights and measures is re-examined. Dr. Teller (see accompanying article) demonstrates quite clearly the difficulties inherent in the English system of weights and measures and in particular he identifies the gross inconsistency between the scientific element of our country, which is on the metric system and the technical element (Architects-Engineers) which uses the English system.

Heretofore, the argument pressing for the adoption of the metric system has revolved around the obvious advantages which would accrue in the economic field due to the technical simplifications possible under this system. However, today the need for change is far more poignant. In our ideological struggle with the Soviet Union, we can no longer afford the luxury of a split system of measurement. Science and Engineering must be consistent if an ordered communication is to be achieved.

It is fair to ask what this has to do with Architecture. But an answer, any answer, is contingent upon those facts and observations gathered through the rather limited and purposefully distorted political releases from those sources within the Soviet sphere of influence. But one thing is certain; the published aim of the Soviet social system is to out-technique the Free World and this, it would seem, implies to out-build it as well. While it is true that the western world is far ahead in the field of material development and production, a history of even the last forty years shows the falacy in relying upon a continuance of this advantage. Past performance is no safeguard. If the Free World is to survive in its present form, a rigorous exploitation of the advantages present under this form needs to be carried out; and nothing can be overlooked.

It can be argued that the most important single thing, scientifically and technologically speaking, which can be done in this race for the products of the human brain is to adopt the metric system of measurement. For, as man progresses at a rapidly accelerated pace the sum total of human knowledge

(Continued on Page 10)

WE'RE LOSING BY INCHES

A World-Famous Scientist Tells Why America Must Switch to the Metric System — And How We Should Go About It.

By DR. EDWARD TELLER, as Told to ALLEN BROWN, in “This Week Magazine”

Our nation has embarked on one of the most tremendous and inspiring — but dangerous — enterprises in history: We have set out to build an industrialized and lawful world free from war and free from economic misery. We are now so involved in this undertaking that unless we succeed, we may cease to exist. The danger of being overtaken by Russia in our accelerating contest for world leadership is very real.

In this most important contest, it seems inconceivable that we would allow ourselves to be hampered by a situation which has hurt us in the past, is hurting us today and will continue to hurt us in the future. But the fact is that the United States is out of step with most of the world in an immensely significant way: We measure things differently.

This at first may seem unimportant. But our clumsy system of measuring with inches, quarts, miles and pounds actually could hobble our international trade, slow down our technological development and lose for us the greatest contest in the history of the world — the contest for leadership of the world itself.

There is an obvious need for reform and the need is urgent.

Most of the world — including Russia — measures with the metric system, adopted by the French in 1791. Metric measurement is based on the meter, representing one ten-millionth of the distance between the earth’s equator and the pole. At present there is no measurement system available to us that is so simple, so clear and so universal.

Like our system of counting money, the metric system is a decimal system. All things are measured in simple multiples of ten. The metric system also recognizes natural relationships: It measures length by centimeters,
Utah Concrete’s Exciting New
VIEW-LITE DECORATIVE BLOCK

- For imaginative walls, screens
- For unusual interior effects
- For rich textural patterns
- For special decorative accents
- For low-cost modern treatment

Utah Concrete proudly presents this new and versatile decorative block — so stimulating to the architect, so economical to use, so attractively modern! View-Lite has innumerable application both interior and exterior in homes as well as commercial buildings. Besser vibrated, Autoclave steam-cured, View-Lite offers the durability and economy of the standard concrete block — plus a touch of unusual beauty and distinction!

Note: Only three patterns shown — choose from many more!
area by square centimeters and volume by cubic centimeters.

Russia adopted the metric system in 1927. The Soviet government then did away with their verssts and other absurd measurements that were as mysterious and unintelligible to the rest of the world as our inches and pounds are today. Since then, the trend toward the metric system has accelerated; China and Japan are adopting it, India is about to.

Who are the hold-outs for the foot, pound and quart? Such measurements are official only in the U. S., most of the British Commonwealth and Ireland.

By deciding to measure metrically with the rest of the world, Russia got hold of a weapon that is powerful because it is not secret. It helps Russia to understand and to be understood in a large part of the world. And it is helping Russia to forge ahead on three important fronts:

1. **Technological developments.** New technologies and the development of new weapons demanded the close cooperation of scientists and engineers. In Russia, scientists and engineers speak the same language. In America, they do not. When a measurement is used in a Russian laboratory, everyone knows that it is a metric measurement; there is no need to halt important work or interrupt a train of thought to translate from one system of measurement to another. But in this country, scientists use the metric system and engineers use the English system of inches, quarts and pounds. So American scientists and engineers are squandering valuable time and energy on the tedious chore of translating inches to centimeters. It is laborious and tiring, but the measurements must be defined or our scientists and engineers would be talking at cross-purposes.

2. **Education of scientists.** The simplicity of our decimal system of measuring money has meant a great deal to the economic strength of America. Every child knows that ten pennies make a dime and ten dimes make a dollar. From the time he is old enough to count, a U. S. youngster can have experience in finance. He can earn and spend money because he can understand it.

But when he first begins to be interested in science, the American youngster is faced with our confusing and forbidding methods of measuring length, volume, weights and temperatures.

We measure length by miles, area by acres and volume by gallons. There is no connection between these units. The ideas conveyed by the words we use to describe length and area do not suggest to a child the simple truth that by multiplying two lengths you get an area. Even if he thinks of nothing more in the world than simple distances, he must learn by rote that there are twelve inches in a foot, three feet in a yard, five and one-half yards in a rod, and for an almost unbelievable reason there are 5,280 feet in a mile.

These totally impractical measurements wipe out the basic natural connection between length, area and volume. They erect an artificial barrier that often diverts, blunts and frustrates a youngster’s interest in science.

The metric system is so straightforward that it can be understood by a child. As an example of how easily it works:

- 10 millimeters = 1 centimeter
- 10 centimeters = 1 decimeter
- 10 decimeters = 1 meter
- 10 meters = 1 decameter
- 10 decameters = 1 hectometer
- 10 hectometers = 1 kilometer

Young Russians who understand and use it from the time they learn to count have an obvious advantage. Metric arithmetic is a window through which students are induced to get their first glimpse of the simple orderliness of geometry. They are stimulated to look further. Their interest in science is aroused, and they soon are prepared to get acquainted with the puzzling facts of the universe in which we live.

3. **Business Development:** The English-speaking world so far has enjoyed a practical monopoly in world commerce. This is at an end. We are faced by a powerful competitor who has challenged us to an economic battle and who is going to come into his own in the next ten years!

In this economic battle, the metric system is like money in the bank.

Russian manufacturers and businessmen

(Continued on Page 6)
do not have to go into a whole new branch of learning to fill orders from customers in countries using the metric system. Americans must.

And it seems natural that industrial customers in a large part of the world will prefer to buy machines from a nation like Russia, which can supply replacements in a measure that the customer can understand, than from the United States, where orders must be translated from centimeters to inches.

The foreign customer is going to buy where it is easiest and most simple for him to buy, where there is no chance for error in translating the measurements of the things he orders.

But while Russia and other industrial nations of the world are enjoying these distinct and increasing advantages of the metric system, the U. S. stubbornly clings to a system of measurement that developed by chance.

The United States certainly will be using the metric system some day. The overwhelming forces of simplicity, easier communication and common sense will force us to adopt it. We are concerned about the education of our children, about the competition with Russia and about the problems of living with neighbors that only yesterday were strangers. Since we are concerned about these things, we surely will adopt the metric system.

The questions are when and how.

These are important questions. They can be answered only by a serious study such as that now being considered by Congress.

Three soft steps

It is obvious, however, that the United States cannot adopt the metric system overnight. It will take time. It must be done in gradual steps.

The first step would be to start teaching the metric units of measurement in the elementary schools. This could be done right away. Pupils could be told about inches and feet and pounds, but these should be presented as items of only transitory interest.

The second step might be to change the measurement of geographic distances. It would be simple to put up new road signs and print new maps giving distances in kilometers instead of in miles.

The third step might be to set a target date after which metric measurements would be used for all legal and governmental documents. This would provide an accumulating pressure toward general adoption of the system.

Then another target date might be set: At the end of perhaps five years, all government orders for materials could use the metric system in the specifications. This would literally force companies selling to the government to adopt metric measurements. Since the government is the biggest buyer in the nation, most companies would have to standardize.

The adoption would not be complete, of course, until we changed the measurement of the billions of nuts and bolts and other parts of our industrial complex. This vast undertaking probably would be accomplished in two stages: The changeover first would be proclaimed, leaving industry with strange-sounding dimensions. The three-inch bolt, for instance, would suddenly have a length of 7.62 centimeters. For the sake of convenience, industrialists eventually would change the size of this bolt to an even number of centimeters. Thus, sometime in the distant future, a changeover to the metric system probably would actually change the size of most of our machines.

Changeover Will Take 33 Years

It seems likely that a complete changeover to the metric system would take a full generation, 33 years. But these are the questions and the details that should be undertaken in an exhaustive governmental study.

This much is certain: The need for conversion to the metric system is urgent. The rate of conversion will depend only on the inertia of what I believe is the most inert thing in the world — the human mind. We simply must make up our minds to it and get used to it, because if in this battle between the inches and the centimeters we can make reason prevail, we will have a much greater chance to win the fight for our ideals.
NOTES AND QUOTES

A LETTER ON LICENSING

(From Office of Attorney General, Utah State Capitol Bldg.)

Frank E. Lees, Director
Registration Division
Department of Business Regulation
Building

Dr. Mr. Lees:

I have your letter of May 11, 1960, in which you submit three questions pertaining to an unlicensed individual performing architectural and engineering work. In substance you ask the following questions:

(1) May an unlicensed person draw plans and design a commercial building under the employment of a registered licensed professional engineer without being subject to the provisions of Chapter 3, Title 58, or Chapter 22, Title 58, Utah Code Annotated 1953?

(2) May an unlicensed person plan the erection of a commercial building or supervise the erection of a commercial building or supervise the erection for another after receiving, or with the intent to receive compensation or consideration, without complying with Chapter 3, Title 58, Utah Code Annotated 1953, or Chapter 22, Title 58, Utah Code Annotated 1953, as amended?

(3) Would the answer to question No. 1 above be the same if the unlicensed person associated with a licensed professional engineer in the drawing of plans and designs and the unlicensed person had a separate contract with the owner of the building covering the services to be performed and consideration therefor?

As to question (1), we feel an unlicensed person may draw plans and design a commercial building under the employment of a registered licensed professional engineer, providing that his activity does not extend into an area which a professional engineer could not logically invade. Substantiating this position, Section 58-22-21, U.C.A. 1953, as amended, sets out the exemptions under which an individual may perform engineering work without obtaining a certificate of registration. Subsection (d), which appears to be the only applicable exemption, states:

"This act shall not be construed to prevent or apply to

(d) The work of an employee or a subordinate of a person holding a certificate of registration under this act, or an employee of a person exempted from registration by this section; provided such work does not include responsible charge of design or supervision;"

Drawing a definite line of demarcation between the field of professional engineering and architecture is very difficult. Justice McDonough, in the case of Smith v. American Packing & Provision Co., 102 U. S. 351, 130 P. 2d 951, stated:

"* * * However, we do not say that professional engineers can make plans for all kinds of buildings or do whatever an architect can do, for clearly the entire field of architecture is not embraced within the field of professional engineering as defined by statute.

"As we interpret the statute for licensing of professional engineers, the field of professional engineering involves the making of plans, designs and the supervision of construction; but we believe such plans, designs and supervision must all relate to engineering problems, projects or undertakings. The making of plans and supervision of construction must be related to the engineering objectives to be accomplished. The statute does not contemplate that an engineer can make plans and designs and supervise the construction of any and every type of building. *

We feel that this language would prohibit an unlicensed employee of a professional engineer or a professional engineer from designing an entire commercial building or any other building unless the entire building and project were related closely to an engineering problem. That such a situation might exist seems highly improbable.

In answer to question (2), we answer in the negative, as Section 58-22-2, U.C.A. 1953, (Continued on Page 9)
GIVE YOUR CUSTOMERS THIS IMPORTANT EXTRA:

Kaiser Aluminum SHADE SCREENS
ON THE SUNNY SIDE OF THE HOUSE

To make a real hit with today's homebuyer, install new M-M Shade Screens on the sunny side of the house...regular M-M Screens on the other windows. M-M Shade Screens offer you BIG SELLING ADVANTAGES at mighty LOW COST. They do the work of old fashioned awnings—keep out hot, harsh sunlight, prevent fading of rugs and furnishings and KEEP HOMES 10 TO 15° COOLER—yet they are less expensive to buy and maintain...and more attractive. Both M-M shade and regular screens are all-aluminum—never rust, warp or sag...and never need painting. All-around aluminum frames mean permanent, positive protection against insects!

MORRISON-MERRILL & CO.
BUILDING MATERIAL DISTRIBUTORS
as amended, defines "professional engineering" as follows:

"The term 'practice of engineering,' within the meaning and intent of this act, shall mean the performance of any professional service or creative work requiring engineering education, training and experience, and the application of special knowledge of the mathematical, physical, and engineering sciences to such professional services or creative work as consultation, investigation, evaluation, planning, design, and supervision of construction for the purpose of assuring compliance with specifications and design, in connection with the utilization of the forces, energies, and materials of nature in the development, production, and functioning of engineering processes, apparatus, machines, equipment, facilities, buildings, structures, works, or utilities, or any combinations or aggregations thereof employed in or devoted to public or private enterprise or uses. The term 'practice of engineering' comprehends the practice of those branches of engineering, the pursuit of any of which affects the safety of life, health or property, or the public welfare. Said practice includes the doing of such architectural work as is incidental to the practice of engineering."

Also substantiating our negative answer to your second question is Section 58-3-6, defining the practice of architecture in the following language:

"Any person shall be regarded as practicing architecture within the meaning of the provisions of this title who shall plan or supervise the erection, enlargement or alteration of any building for another after having received, or with the intent to receive therefor, either directly or indirectly, any fee, compensation or other pecuniary benefit or consideration; or who shall hold himself out by means of signs, cards, advertisements or otherwise as an architect * * *

It appears from these statutes that a person planning or supervising the erection for another is practicing architecture or practicing engineering and, therefore, must be registered.

We answer question (3) in the negative if the unlicensed individual is not actually an employee or subordinate and is merely associating a professional engineer in an effort to obviate the statute requiring registration. In any event, we contend that the unlicensed associate could draw plans or designs only as they pertain to the work that a licensed, professional engineer could do under our statutes; and that if the unlicensed individual actually was an employee or subordinate of the professional engineer and attempted to invade the area covered by an architect, it would nevertheless be an infrac tion of the law. Further language from the case of Smith v. American Packing & Provision Co. helps make this demarcation between the fields of architecture and engineering more clear:

"There can be no successful engineering achievements without plans, designs, specifications, methods of construction, and proper supervision; but this fact does not mean that professional engineers should be permitted to go beyond the field of engineering and make plans and designs for every kind of building or structure. While it is not practicable to draw a line of demarcation between the field of professional engineering and architecture, the statutes indicate that the plans, designs and supervision by professional engineer should be essential phases of the development and accomplishment of an actual engineering problem or project or other engineering undertaking.

The real criterion for determining if a licensed professional engineer must also have a license as an architect, is not whether some service he performs might be performed lawfully by an architect, but whether such functions are necessarily embraced within the scope of engineering covered by his license. The issuance of a license in one field is not to be employed as a stepping stone to a part of such other field, unless the functions of such other field performed by the licensee are necessarily embraced within the scope of the activities authorized by the license."
A LETTER ON LICENSING

(Continued From Page 9)

That the unlicensed person had a separate contract with the owner of the building, covering the services to be performed, appears to be evidence of an attempt to circumvent the licensing statute, which cannot be condoned. The purpose of the statute is to safeguard life, health and property and promote the public welfare, and unless control and supervision is actually maintained over the employee or subordinate, the exemption would be null and void as to the unlicensed individual.

The crux of the problems presented by your questions is determining the line between engineering and architecture and whether or not an unlicensed person by associating with a licensed engineer comes under an exemption making it unnecessary to comply with licensing requirements.

If you desire further information, kindly advise us.

Very truly yours,
CLARENCE J. FROST
Assistant
Attorney General

HOW SHOULD IT BE MEASURED?

(Continued From 3)

increases in astronomical proportions. A practice in some other field or even in prognostication of the number of calculations which mankind will be making in the next ten years borders on the limits of comprehension.

To change is a must. But how can this change be accomplished? Dr. Teller believes in patient education, a quiet revolution from the ground up. This is the method if time permits. Without time, however, other procedures become necessary.

The last ten years have forced upon the Scientist, the Architect, and the Engineer a necessary flexibility to deal with rapid changes in systems modules and materials which has been heretofore unknown. These professionals are trained to accept the difficulties in orientation which such a change would incur. A change is required, and it is required now. Each day's wait compounds the problem and slows the enterprise; meanwhile, time runs out.

UTAH CHAPTER A.I.A.
COMMITTEES FOR 1960

Standing Vertical Committees
Chapter Affairs Committee
LEE KNELL, Chairman
Preservation of Historic Buildings Committee
JOHN CLAWSON, Chairman
Public Relations Committee
NATE WOOLLEY, Chairman
All executive committee is the
School Buildings Committee
KEITH WILCOX, Chairman

Special Committees
Standing Vertical Committee
Producers Council Representative
FRED NEEDHAM
Architecture Utah Committee
President Appoints
Special Committees
GEORGIUS Y. CANNON and
ROGER BAILEY
City and Community Planning Committee
DEAN GUSTAVSON, Chairman
Nuclear Effects Committee
DEAN GUSTAVSON, Chairman
Unauthorized Practice Committee
LLOYD SNEDAKER, Chairman
Uniform Practice Committee
WILLIAM J. MONROE, Chairman
NEW TREATMENT FOR PRE-CAST TREADS
STAIR RAIL MOUNTINGS WITH BUILT-IN STEEL ANCHOR ASSEMBLY

ABOVE TRIM AVAILABLE FOR ALL BLUMCRAFT POSTS

BLUMCRAFT OF PITTSBURG

SEND FOR COMPLETE GENERAL CATALOG OF ALUMINUM RAILINGS AND GRILL

COPYRIGHT 1960 BY BLUMCRAFT OF PITTSBURG • • 440 MELWOOD ST., PITTSBURGH 13, PENNSYLVANIA
PERMANENT DISPLAY, ARCHITECTS BUILDING, 101 PARK AVENUE, NEW YORK
Scarcely Aware of It, Many of Today's Best Architects, by Default, Are Sacrificing Excellence for Expedience

PLANS — A SUCCESS,
BUILDING — A FAILURE

By BENJAMIN B. LORING,
President, Seaporcel Metals, Inc.

Reprinted from Architectural Record Magazine

In the midst of an era of building construction that is at an all-time high, certain standards of architectural practice are at an all-time low.

Everywhere you look, architects are using the multitude of new materials to create designs that are fresh and crisp and bold and utilitarian as they have never been before. Design, at last, is no longer the afterthought, it is the first thought.

For architects, this development is a bonanza . . . and a booby-trap. The pressure created by the new materials is enormous. Today, creative architects must be familiar with materials that may not have existed five years ago. Wise architects ease this pressure. They take advantage of the extensive design consultation services offered by reputable manufacturers of these new materials.

But, so many more architects take the easy way out. They transfer the burden of knowing these new materials to the builders, the financiers and the contractors.

Thus, at the height of the building boom, these architects are getting short-changed every day of the week. Architects spend untold hours arriving at the precise specifications which will provide the most effective means to build within the design framework they have conceived.

The plans are then turned over to the builders, the financiers and the contractors. The specifications become a battleground for warring generals.

Builders stay up nights devising ways to get around the specifications. Financiers scheme to cut costs. Contractors appear to meet specifications without actually doing so. The specifications are no longer standards of minimum acceptance, but are like rules at school; to be broken, if possible, when the inspectors aren’t looking.

What Architects Can Do

Forward-thinking architects can stop rapid deterioration. They can pay more attention to follow-through . . . to making sure that what they specify is what they get.

And they can help. Every reputable manufacturer offers help to architects in determining specifications. But the architect, alone, must be the ones to see that the specifications are met.

With such help, they do not have to compromise their standards because of unfamiliarity, understandable though it may be. They do not have to close one eye to their client's best future interest — for the sake of the present. In short, they do not have to question anyone else to see if their specifications have been met, to the letter and to the spirit . . . because they have seen to it themselves by personal follow-through.

Architects should not abandon procurements as the responsibility of others. In days past, every conscientious architect insisted that his purchasing specifications be followed. He would not settle for one one-thousandth less.

Today's architects, if they choose, can do the same. In fact, they can be more forceful than ever. Architects can make sure that every product they have taken the pains to study . . . and to specify by name, is actually used. Their hours of deliberate, careful analysis can justify no other procedure.

Then, and only then, can architects know, without qualification, that their completed building will face the test of time and use and function as they have designed it to do . . . with the products they have specified . . . because the plans were a success and so, indeed, is the building.
You have probably heard and read much about Spectra-Glaze — and perhaps wished that you could utilize this very practical, beautiful, and low-cost material in your plans. Glazed Concrete Products’ new Ogden plant has completed test runs and is producing Spectra-Glaze Masonry Units in all-modular design, in a rainbow of colors and in sufficient volume for speedy delivery. Call on us at any time we can be of assistance — and please accept this as a personal invitation to see the Ogden plant in operation at any time.

SEE SWEET’S CATALOGUE 4g/Bu FOR DETAILS
or contact

GLAZED CONCRETE PRODUCTS, Inc.
Authorized Manufacturing Licensee for Utah, Idaho and Colorado

Phone EXport 9-1101 • 105 17th Street • Ogden, Utah
The seventh annual convention of the American Institute of Exterior Decorators met last month in Baxter Springs, Kansas, for the purpose of electing new officers for the coming year and hearing the reports of the various committees established last year. The 1600 delegates and alternates from 50 states were treated to six days of speeches, which prevailed marked this convention as their most successful to date.

The expected battle between the northern colonials and the southern Victorians was abated before the start of the convention when the western delegates agreed in caucus to support for the vice-presidency a mission style delegate from the east who was known to be sympathetic to any and all styles. It was on this note of harmony that the convention opened to write and approve the platform. After two days of lengthy debates, threatened walkouts and several floor fights, the platform was unanimously approved with the four major points as follows:

1. To continue the publicity drive in all communication media until national acceptance of the "Early Halloween Style" was realized,
2. To establish in the minds of the American public the importance of AIED as a deterrent to mental illness,
3. To gain complete control of Sweet's Catalogue by 1964,
4. To refrain from accepting as clients the owners of Chinese Ranch Style houses until Red China was seated in the United Nations.

The third day of the convention the keynote address was delivered by Mr. Grimm of Mother Goose Homes, Inc., who detailed how his interest in the AIED originated. He told the convention delegates that one day while on his rounds as a vacuum cleaner salesman he noticed the aesthetic beauty of a pink vacuum cleaner hose draped over a wrought iron porch railing and was converted to the noble cause of exterior decorating forthwith. Mr. Grimm spoke with great eloquence and with such sincere devotion the delegates cheered and paraded for thirty minutes. In the confusion, which at times reached near hysteria proportions, the delegates forgot that he was the keynoter and elected him president for the coming year.

This unexpected action put the convention two days ahead of schedule and the temporary chairman wisely used this time to allow lobbyists from the building trades to lecture on and display their new products developed since the last convention. This proved to be of immense interest and several products were received with standing ovations. Notable were pre-fab Gothic turrets, Dutch Colonial columns in polyethylene, reinforced concrete acanthus leaves and a do-it-yourself garden fountain water nymph carving set. However, the unquestionable attraction of the two days was the Porcelain Enamel Gazebo Corporation with their 21 styles in 6 sizes and 1322 colorizer shades. At one point during the display of these gazebos an ardent Elizabethan Half Timber proponent became so enthusiastic he dropped his state standard on a Creole Style delegate from Montana and lacerated her forehead.

The products display now completed, the convention was back on schedule once again and the delegates elected to the rigged vice-presidential slot the previously mentioned candidate from the east. He pledged his support to the platform and promised an unre-
lent a campaign against the foul and rude work of the AIA and AID and further to raise the standards of American housing to equal that of the Detroit automobile designers. His state delegation, waving chromium mailboxes fashioned from old Buick grilles, led a short and orderly parade.

The reports of the research committee and the legal committee consumed the fifth day. The research committee chairman, a shingle style delegate from Alabama, reported on the trend toward padded chintz facias and formica-ized marble. He stated that information from impartial surveys showed great potential for leaded glass downspouts. Mr. Miller of the legal department proudly proclaimed success in the two-year battle against the ordinance in San Francisco which required doves to be housed in all dovecotes, but warned the delegates that amusement parks such as Disneyland were copying the best work of the members of the AIED without due credit being given them.

On the final day of the convention a letter from the Honorable Senator from Ohio was read thanking the AIED for their support of his bill now in Congress to have the Capitol dome painted magenta. This was followed by a slide show of the work of Mr. Hiawatha who was then installed as a Fellow of the AIED. Applause and laughter greeted each of his lovely new residences (see cut) and many wept. The convention then adjourned singing "We'll Build a Bungalow Big Enough for Two Spanish Balconies."

AIED Design Medal was awarded to Mr. Hiawatha of Estes, California, for his latest residence design. The jury said we like this plan because it has unity of form, clarity of expression, and laughter-provoking visual experience.
WATCH FOR NEXT ISSUE SOMETHING NEW
continues the fine Scandinavian craft approach to design in this new chair by Folke Ohlsson. The sculptural slatted back, precise shaping of each wood piece, and the over-all scale and proportion achieve the simplicity and beauty that relate integrally to American architecture.

3096 highland drive, salt lake city

CLARK LEAMING
BUILDING COSTS ARE LOWER WITH BRICK

MAINTENANCE COSTS ARE LOWER WITH BRICK

Whatever you're building—homes, schools, churches or commercial buildings, only brick has all the advantages of economical, durable construction. Brick is not only low in initial cost, but is practically free of maintenance costs. Brick offers outstanding protection against the elements... it's fire-safe and permanent. Available in many new color shades, that will harmonize in any architectural plan.