Picnic Program

Smoke Prevention Convention

Condensation Problems

A. I. A. Report

Picnic Issue

Vol. 7 June, 1939 No. 6
Smoke Prevention Convention

At the last regular meeting of the Mayors Advisory Council your secretary was instructed to notify each association of the dates of the annual convention of the Smoke Prevention Association.

The 33rd Annual National Convention of the Smoke Prevention Association will be held in Milwaukee from June 15th to June 16th, inclusive, at the Schroeder Hotel. In view of the fact that tickets will be issued for this convention, kindly notify your secretary at your earliest convenience as to the number of tickets you will need. Admission is free.

Condensation Problems in Modern Buildings

By

L. V. Teesdale, Senior Engineer
Forest Products Laboratory, Forest Service
United States Department of Agriculture

(Continued from May Issue)

The use of relative humidity as a measure of the amount of water vapor present in a given atmosphere is not always satisfactory because this relationship varies with the temperature. Hence it is often more practical to use the vapor pressure of the water vapor for this purpose, since it is a direct measure of the amount of vapor present in the air. This property is commonly expressed in terms of inches of mercury or pounds per square inch.

Condensation will take place on a solid surface below the dewpoint temperature as, for example, the glass surface of a window. Condensation can also take place on materials permeable to vapor if the surface be below the dewpoint temperature.

If the adjacent surfaces in a comparatively confined space are at different temperatures, all below the dewpoint of the atmosphere in the space, the surface at the lowest temperature may, through condensation, reduce the dewpoint to its own temperature. The temperatures of the other adjacent surfaces will then be above the new dewpoint and therefore incapable of condensing moisture. Eventually, under these conditions, all of the condensation would be on the coldest surface.

Vapor may pass through a material composed of a single thickness of homogenous but permeable substance having one surface either above or below the dewpoint temperature of the atmosphere on the warm side and the other at a lower vapor pressure.

The movement of water vapor is largely independent of air movement and no general circulation of air is necessary to carry the vapor from its source to the condensing surface. Vapor actually moves by diffusion from points of high vapor pressure to zones of lower pressures.

Most building materials, including plaster, wood, concrete, most kinds of brick, and various building papers, are permeable to vapor. The rate of vapor movement from one point to another is more or less proportional to the difference in vapor pressure between the points and inversely proportional to the resistance of the interposed materials. Walls of conventional house construction are composed of a variety of materials varying in permeability. Also the temperature gradients through a wall drop step by step according to the thermal properties of the material and the difference in temperature between the warm interior and the cold exterior. Should the temperature at any point within the wall, as for example, at the inner face of the sheathing, fall below the dewpoint temperature of the room side of the wall condensation would take place at that point.

A house wall typical of many insulated forms of construction is illustrated in figure 2A. This wall has lath and plaster on the inside and sheathing, paper, and bevel siding on the outside. Fill insulation occupies the entire stud space. Indoor conditions are assumed to be: Temperature 70° F. and relative humidity 40 percent; the dewpoint for these conditions is 44° F. and the water vapor pressure 0.295 inch of mercury. Temperature gradients through the wall are shown in solid black for three outdoor temperatures, namely 20° F., 0° F., and -20° F. Actual gradients in any individual wall of this type may be expected to be very similar to these. Much work has been done on this subject by many agencies and the facts are well established. Much less work has been done on vapor movement through walls and associated phenomena and we are much less sure of our ground. However, currently collected data indicate that, under the assumed conditions (outside temperature 0° F.), the temperature of the inner face of the sheathing very largely controls the dewpoint within the entire stud space. It appears that condensation upon this face, which is well below the dewpoint of the atmosphere in the room, serves to lower the dewpoint within the stud space. Just how much lowering takes place we do not know for sure. It seems apparent, however, that at the boundary conditions the dewpoint temperature throughout the stud space would be the temperature of the inner face of the sheathing. The relative humidity gradient corresponding to the illustrated dewpoint gradient is shown as a dot and dash line in the figure.

The amount of condensation that can develop within a wall depends upon the resistance of intervening materials to vapor diffusion, differences in vapor pressure, and time. Ordinary plaster and lath have comparatively low resistance. If the plaster is finished with paint the resistance is increased somewhat. High indoor vapor pressures are associated with high relative humidities and high temperatures. Low outdoor vapor pressures always exist at low temperatures, since even the saturated vapor pressures are low at low temperatures. Weather conditions are not static and the duration of critical conditions varies widely with the time of year and the severity of the weather. During long continued cold spells, such as the six weeks low temperature period in January and February, 1936, the condensation problem becomes acute, a large number of homes being affected. In the winter of 1937-38 there

1 Presented before Conference on Air Conditioning, University of Illinois, Urbana, III., March 8-9, 1939.
2 Maintained at Madison, Wisconsin, in cooperation with the University of Wisconsin.
It must be obvious that as close an approach to this ideal condition is desirable from the moisture standpoint, and our present tentative recommendations call for high vapor-resistance on the warm side of the wall, and low vapor-resistance on the cold side. These recommendations will doubtless be modified in detail as we learn more about the whole subject and especially about the extent to which rain driven under the siding by the wind is a factor.

Figure 3A shows the calculated temperature gradients through an uninsulated wall and 3B through a wall having $\frac{3}{4}$-inch fiber board sheathing in place of wood sheathing. As the heat loss through walls of those types is greater than through walls containing fill insulation, the sheathing temperatures are higher than those shown on figure 2A and consequently the vapor pressure differences are reduced accordingly. This in turn means that less condensation would occur at the same outside temperature in walls of these types than where fill insulation is used other factors being alike.

Tests have been made to determine the comparative vapor resistance of various papers and wall materials used in building construction. Samples were sealed in copper pans containing water and exposed in a room controlled at 80°F. and 30 percent relative humidity and weighed regularly for 90 days or more. The values obtained after the rate of loss became constant were calculated on a basis of grains of moisture lost per square foot per hour.

(Continued on page 6)
Activities of the Wisconsin Chapter
American Institute of Architects

Several monthly meetings of the Chapter were postponed to enable members to complete assignments of P. W. A. and other urgent work before the first of the year.

The Executive Committee during the interim, however, convened weekly to discuss and dispose of many problems pertaining to or concerning the welfare of the architects in our community.

The February meeting resulted in a combined group meeting of the Wisconsin Chapter, the State Architectural Association and the Producers' Council Club of Milwaukee. This first meeting, under the auspices of the Chapter, was the result of previous conferences which planned six group meetings, two to be sponsored by each of the member groups.

Chapter President Philipp opened the meeting by giving a general synopsis of the program and Chairman Sutherland of the Activities Committee introduced John L. Hamilton, F. A. I. A., of Chicago, who presented the architect's viewpoint in a pleasing and constructive manner. Mr. Kachel took advantage of this occasion to present numerous criticisms of the architect as seen through the eyes of the general contractor. Mr. Cleary made the statement that close cooperation between lending institutions and the architect would probably result in mutual advantage.

Several Executive Board meetings have been held during March concerning the feasibility of consolidating the Wisconsin and Madison Chapters. A delegation from the Madison group, upon the invitation of the Wisconsin Chapter visited Milwaukee, and in a round table discussion, concluded that a unity of action would result in a better solution of the architect's problem in the State of Wisconsin. This contemplated procedure is permissible according to the By-Laws of the Wisconsin Chapter, Article 8, Section 14, Paragraph (c):

"The Executive Committee, with the approval of the Institute Board, may organize one or more branch Chapters within its territory when it deems the interests of the Institute will be better served thereby."

It was the opinion at the meeting that the Madison Chapter would be represented by a recording secretary and by an additional Vice-President, and also the Madison group would have direct representation on the various committee assignments. This entire plan will be submitted to the Chapters for their approval and finally to the National Board for theirs.

The Secretary will be pleased to hear from those Architects who are not at present members, but have a desire to associate themselves with the American Institute of Architects.

ALEXANDER H. BAUER
Secretary A. I. A.
Wisconsin Chapter
In behalf of the Kohler Co. I am pleased to invite the members of THE STATE ASSOCIATION OF WISCONSIN ARCHITECTS, THE WISCONSIN CHAPTER AND THE MADISON CHAPTER OF THE AMERICAN INSTITUTE OF ARCHITECTS and THE PRODUCERS COUNCIL CLUB OF WISCONSIN, to be our guests at a picnic to be held in Kohler Village, SATURDAY, JUNE 17, 1939.

— PROGRAM —

Arrival of guests before 2 P.M. at the General Offices of the Kohler Co.
A visit through Kohler Village, including Display of Products American Club Waelderhaus Demonstration House.
Games and entertainment at the grove south of Riverbend. Refreshments.
Dinner at Riverbend.

WALTER J. KOHLER
(Signed)

ROUTE FROM MILWAUKEE:

Take 141 from Milwaukee to the junction with 42 north of Pt. Washington. Take 42 through Sheboygan Falls and East to Kohler.

The bathroom used by children requires fixtures of sturdy construction and common-sense, functional design. Specify Kohler . . . your clients will bless your shrewd judgment for years to come.

Bathroom illustrated has new Kohler Cosmopolitan bath in corner design (recess also available) with lower sides; broad, level rim; wider and flatter bottom for improved safety. Three sizes; eight pastel shades, pure white, or black.

Shelf-space Gramercy lavatory of vitreous china has new wall-free towel bars to eliminate drilling into walls. Bolton elongated reverse trap closet completes this eminently sound and attractive home bathroom set . . . one of many colorful displays in the Kohler showroom. Kohler Co., Kohler, Wis.
Table 1.—Comparative resistance of various materials to vapor transmission

<table>
<thead>
<tr>
<th>Material</th>
<th>Loss in grains per sq. ft. per hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foil surfaced reflective insulation (double faced)</td>
<td>0.081 - 0.093</td>
</tr>
<tr>
<td>Roll roofing—smooth surface 40 to 65 lbs. per roll 108 sq. ft.</td>
<td>0.093 - 0.123</td>
</tr>
<tr>
<td>Asphalt impregnated and surface coated sheathing paper glossy surfaced—50 lbs. 500 sq. foot roll</td>
<td>0.153 - 0.555</td>
</tr>
<tr>
<td>35 lbs. 500 sq. foot roll</td>
<td>0.123 - 1.480</td>
</tr>
<tr>
<td>Duplex or laminated papers 30–30–30</td>
<td>0.990 - 1.850</td>
</tr>
<tr>
<td>Duplex or laminated papers 30–60–30</td>
<td>0.970 - 1.480</td>
</tr>
<tr>
<td>Duplex papers reinforced</td>
<td>0.970 - 1.480</td>
</tr>
<tr>
<td>Duplex paper coated with metal oxides</td>
<td>0.617 - 2.462</td>
</tr>
<tr>
<td>Insulation backup paper, treated</td>
<td>0.061 - 0.277</td>
</tr>
<tr>
<td>Gypsum lath with aluminum foil backing</td>
<td>14.20 - 14.80</td>
</tr>
<tr>
<td>Plaster — fiber board or gypsum lath</td>
<td>2.650 - 2.770</td>
</tr>
<tr>
<td>Plaster — 3 coats lead and oil</td>
<td>3.080 - 4.620</td>
</tr>
<tr>
<td>Plaster — 2 coats aluminum paint</td>
<td>20.950</td>
</tr>
<tr>
<td>Slaters felt</td>
<td>1.920 - 1.975</td>
</tr>
<tr>
<td>Plywood—1/4" Douglas fir. soy bean glue plain</td>
<td>3.080 - 4.620</td>
</tr>
</tbody>
</table>

2 coats asphalt paint 2 coats aluminum paint
1/2" 5-ply Douglas fir 1/4" 3-ply Douglas fir, art. resin glue
1/2" 5-ply Douglas fir, art. resin glue
Insulating lath and sheathing—board type
Insulating sheathing, surface coated—
3/16 compressed fiber board
1" Insulating cork blocks
1/2" and 1" blanket insulation between coated papers

This is only a partial list of the materials tested up to the present time, and as the tests are incomplete, it will be subject to change as required with further work. Many of the materials have been tested under actual exposure conditions in laboratory test-house wall panels.

Figure 4 shows the moisture content of the sheathing in 3 test wall panels, differing only in type of vapor barrier used. These walls were of conventional frame construction, lath and plaster, stud space filled with rock wool, wood sheathing, asphalt impregnated and surface...
• FOR RESIDENTIAL, PUBLIC BUILDING OR COMMERCIAL USE . . .

WE MANUFACTURE FLOORING

of

MAPLE, BEECH, BIRCH AND WISCONSIN OAK

in

STRIP, HERRINGBONE AND ASSEMBLED BLOCK FORM

• We can furnish the above stock treated for moisture resistance if desired.

OUR MAPLE, BEECH and BIRCH flooring is guaranteed MFMA (Maple Flooring Manufacturers Association) grade and manufacture.

We are ready and anxious to give what advice we can in flooring problems to any architect who addresses us:

HOLT HARDWOOD COMPANY OCONTO, WISCONSIN

coated sheathing paper and siding. Panel No. 1 had a vapor barrier made of aluminum foil mounted on paper: No. 2, asphalt impregnated and surface coated sheathing paper weighing 50 pounds per roll of 500 square feet; and No. 3 had no special barrier. Starting about November 1 the sheathing shows a gradual increase in moisture content for each type, fastest where no barrier is used. Even with a barrier there is a definite pickup until in the case of No. 2 a moisture content of about 17 percent is reached, indicating that the inflow of water vapor exceeds the outflow until a certain balance is obtained. After that time conditions were nearly static until the outside weather conditions moderated and then the outflow exceeded the inflow.

(Continued in July Issue)
Milcor Roof Deck offers all the advantages of steel... plus speedy erection and low, over-all costs

...and that means long-run satisfaction of your clients

Where safety, permanence, and long-time economy are factors to be considered in your roof specifications, Milcor Steel Roof Deck offers you a practical, versatile material to help you do the best job for your clients.

This Milcor product — steadily growing in use on large and small buildings of all types — combines the permanence and fire-safety of steel with special Milcor construction features, for economy and speed in erection, and economy in maintenance.

Jobs go through on fast schedules with Milcor Deck. It is light in weight, easy to handle, and requires relatively lighter and less costly supporting structure. Easily attached — with clips or welding — to any structural member. Unique offset enables the erector to nest the sections in an amazingly short time, with the plates firmly interlocked.

Adaptable to any type of construction and to real insulation, with standard types of insulation board. Smooth deck provides a clean-cut appearance and longer life for roof covering. The roof stands for years as a tribute to your sound judgment in specifying Milcor.

Write today for your free copy of the Milcor Roof Deck Bulletin.

Milcor here uses the word "system" in its true sense — not to signify a limited, inflexible setup applicable only under certain conditions, but to represent a range of individual products, types, weights, metals, etc., that complete, coordinated metal backbone can be designed to suit any condition of fireproof construction — all with Milcor products engineered to work together.

Milcor Steel Company
MILWAUKEE, WISCONSIN CANTON, OHIO
CHICAGO, ILL., KANSAS CITY, MO., LA CROSSE, WIS., ATLANTA, GA.,
NEW YORK, N.Y., ROCHESTER, N.Y., BOSTON, WIS., BALTIMORE, MD.
Sawes Offices: Minneapolis, Minn., Little Rock, Ark., Dallas, Tex.,