Dream creamery comes true in concrete

It's the world's most modern and efficient dairy food processing plant, the new home of the Challenge Cream and Butter Association at City of Commerce, California. Serving metropolitan Los Angeles, the facility totals 255,000 square feet.

A simple and economical structural system was made possible by use of prestressed, double-tee concrete roof members and precast tilt-up panels, flat and sculptured.

Efficiency of operation called for large, unobstructed production areas. Pretensioned "tees" met this need with clear spans of 40 to 80 feet and cantilevers up to 20 feet. The few interior supports and walls required are cast-in-place concrete.

Here again, concrete provided not only maximum economy and fast construction, but an aesthetically pleasing structure. Low maintenance costs and the high hygienic standards required in a dairy operation also influenced the selection of concrete for this plant.

Whatever the building, it can be built better with concrete.

PORTLAND CEMENT ASSOCIATION
735 North Water St., Milwaukee, Wisc. 53202
An organization of cement manufacturers to improve and extend the uses of portland cement and concrete
New! Different! Economical!

Complete Structural Systems
for built-up or exposed metal roofs

SPAN WIDTHS 40', 50', 60', 70' and 80'
BAY LENGTHS 25', 30', 40'
Other Combinations Available on Request

• DESIGNED FOR ALL LOADING REQUIREMENTS — BUILT-UP ROOF, EXPOSED METAL, CRANES, ETC.
• ROOFS MAY BE FLAT OR PITCHED
• LARGE BAYS POSSIBLE BY USING OUR CONTINUOUS, HEAVY GAUGE, CHANNEL PURLINS

Produced at Our New, Modern Factory in Brookfield, Wisconsin

R. H. SOMMER, INC. 19775 SOMMER DR.
WAUKESHA, WISCONSIN 53186 TELEPHONE (414) 782-3660
YOU NEED MAXIMUM FIRE PROTECTION

DuLITE®
DUWE PRECAST CONCRETE PRODUCTS, INC.
OSHKOSH, WISCONSIN

Underwriters' Laboratories, Inc.
LISTED
PRECAST CONCRETE UNIT
NOT OVER 10 SQ. FT.
ISSUE NO. 54953

FIRE RESISTANCE CLASSIFICATION
ROOF AND CEILING DESIGN NO. RC5 — 2 HR.

SPECIFY DUWE
THE INSULATING PRECAST CONCRETE SYSTEM with the
Two Hour Underwriters’ Fire Retardant Label!

No other types of building construction offer this two hour fire retardant value. Only DUWE offers you this extra protection and only DUWE offers you a lightweight insulating, acoustical concrete system which can be installed in all kinds of weather.

Specify DUWE, the Insulating Precast Concrete System!

DUWE
PRECAST CONCRETE PRODUCTS, INC., Box 1277, Oshkosh, Wisconsin
A customary social get-together with Honor Awards Jurors

Urban Matrix, one project by Stanley Tigerman, A.I.A.

Three projects by Curtis H. Green of Hammel, Green & Abrahamson, Inc., Architects

Three projects by Schafer, Flynn and van Dijk, Architects

Wisconsin Architects Foundation

A Century of Irish Architectural Drawing

Wisconsin Chapter, A.I.A., participates with exhibit in annual School Administration Convention

Revised Masonry and Concrete Code

What's happening in W.A.L.?

High performance weatherstripped steel window

News Notes

President's Report

Welcome

Basic steps to good resource planning

Our apology to Margaret Fish, well known art critic, for inadvertently omitting her by-line in the January 1968 article about John Reiss and Lois Ehlert in TWO DESIGNERS: A Résumé, page 12 through 14.
A customary, pleasant social get-together preceding a day of hard work for the Honor Awards Program Jurors

It has become customary for officers of the A.I.A., members of the Honor Awards Program committee and their wives to informally meet with the jurors of this yearly program, sponsored by the Wisconsin Chapter, A.I.A., at an informal dinner on the evening preceding the day of jurying.

It has become equally customary that three architects from other states are invited to jury the submissions of members of the Wisconsin Chapter, A.I.A.

This year, Mike Sielaff was chairman of the Program. He arranged a get-together for January 29, at the University Club of Milwaukee. The North Library large enough for a beautifully arranged dinner table seating twenty-six and also providing ample space for the customary cocktail-standing-visiting, provided a very pleasant atmosphere.

Two members of the jury, Peter van Dijk, partner of the Architectural firm of Schafer, Flynn and van Dijk Cleveland, Ohio, and Curtis H. Green of Hammel Green and Abrahamson, Architects and Engineers of Saint Paul, Minnesota, arrived in time for the party. The third juror, Stanley Tigerman of Chicago was not

Not to be mistaken for members of the Supreme Court, these are members of the Wisconsin Chapter, A.I.A., l. to r., seated: John P. Jacoby, immediate past-President; Robert L. Yarbro, Vice-President; Laurence E. Bray, President; Thomas L. Eschweiler, Secretary-Treasurer. (Standing) Shinji Yamamoto, State Architect; Ralph Culbertson, Head of the Bureau of Engineering; Curtis H. Green, juror; Richard Blake, member of this year’s Honor Awards committee; Mike Sielaff, chairman; Peter van Dijk, juror; and Honor Awards committee members, Robert F. Slater and Gregory F. Zielinski.
expected, preferring to arrive Tuesday morning, January 30 for the jurying.

Members of the committee for the Honor Awards were: Mike Sielaff, chairman; Richard Blake, Robert F. Slater and Gregory F. Zielinski.

The jurying took place at the University Club. Upon my request, this year's jurors brought with them three projects of their own choice for publication in the Wisconsin Architect magazine. The thought behind this request was the intent to give all members of the Wisconsin Chapter, A.I.A., and especially the members who submitted projects for this year's Honor Awards Program, an opportunity to acquaint themselves with the work of the men who judged their honor award entries. While these projects, as reproduced here, will not permit a study in depth, I hope it will serve as an insight, if ever so slight, into their design philosophy and consequentially their architecture.

The Honor Award winning projects will be published in the April issue of Wisconsin Architect.

Officers of the A.I.A., their wives, members of this year's Honor Awards Program and wives at the social get-together in the North Library of the University Club of Milwaukee, on January 29th, 1968, meeting informally with this year's jurors.
WOOD WINDOWS

CASEMENT · DOUBLE HUNG · AWNING

Unique features plus best materials and unusual care in manufacturing provide the ultimate in quality and extra convenience features.

SLIMSHADE

Pella Casements, Double Hung and Awning Windows offer this practical means of light control. Slimshades set inside the sash between glass panels. A winner in design.

PIVOT FIXED WINDOWS

Window sash rotates horizontally to bring outside glass for easy cleaning. In air conditioned buildings, Pella provides emergency ventilation should air conditioning system fail.

PELLA FOLDING DOORS AND PARTITIONS AVAILABLE IN THREE PANEL WIDTHS AND IN RICH, LUSH VENEERS TO COMPLIMENT ANY ROOM.

VER HALEN, INC.

Box 2980, 4700 North 124th Street, Milwaukee, Wisconsin 53218, Phone 463-7700
metal walls

by WISCONSIN BRIDGE & IRON CO.
One project: Urban matrix
by Stanley Tigerman, Architect of Chicago, Ill.; photographs by Orlando Cabanban
commissioned by Building Products and Supply Division, Reynolds Metals Company,
Richmond, Virginia

Urban ills are many and varied, this is obvious to anyone who has ever entered a metropolitan area. For the urban environment to become meaningful tomorrow, we must solve these problems today. At the present there are two approaches to satisfy the problems of the urban environment. The first is the "new town." Build a city in and of itself — start from scratch. In many ways this could be considered an artificial solution, for it turns its back on the problems of existing cities. It is also artificial in that the site selection is a-priori; it is not generated out of natural demands. The second approach is renewal and rehabilitation of existing cities — HUD's Demonstration Cities. While it is a more realistic approach, it is still shackled by existing zoning and transportation systems. The concept is valid now, but it is neglecting problems which will effect us in tomorrow's urban environment. URBAN MATRIX is a possible third approach. We link to, extend from, and expand upon the existing.

It is the intention of this project to illustrate a possible method by which man can expand center city. Research shows that a common denominator for the origin of most cities is proximity to water transportation. The water, which was once a city's life-line, has
how become an edge — a boundary. The city can grow on three sides. We have expanded center city vertically but find it rapidly reaches a saturation point. We have expanded peripherally until it can no longer be considered center anything, let alone center city. We have tried reclaiming land by means of earth-fill, but in doing this we destroy the social-economic prestige that is inherent in the edge. What, then is an answer? How can center city expand both significantly and efficiently?

We feel a valid approach is to build in the water, but at an incremented distance from the shore. After reaching this decision we established mandatory goals which the project had to meet in order to become a valid environment. First, each unit must have direct access to light and air. Secondly, it must be dense and establish a high ratio of open recreational space to enclosed floor area. Thirdly, it must develop an enclosed space that would satisfy human needs; a space that would be more than just a human filing cabinet.

The segmented tetrahedral form satisfies the light, air requirements; each face receives direct sunlight during the day. This phenomenon has far-reaching connotations.

Within the urban environment there has been, and perhaps always will be, a range of neighborhood desirability — the right and wrong side of the tracks. At the present, the parameter or range of values is quite great. All cities seem to have their own version of Harlem — Madison Avenue. Theoretically, if we could closely equate the desirability of real estate, we would eliminate some of the social unrest. If all neighborhoods possessed a diverse range of people differentiated by age, income, race, family size, etc., but all bonded together by some basic collective interest, we would have a unique neighborhood. Possibly this would eliminate financial and racial prejudice. Collectively, man will always have condescending attitudes, but within this diverse commune social structure it would be mutual.

The basic concept is to achieve a flexible, but dense, extension of the existing urban environment. The essence of a large metropolitan area is enclosure and transportation of man and goods. It is environment plus movement.

The structure for URBAN MATRIX is eighteen foot octagonal aluminum trusses. The core of the truss is for all utilities. Man and goods are transported in capsules which ride in any one of eight compartments in the truss. The movement of any given capsule is individually controlled by a master computer. The capsule programmed for a specific destination will take the most efficient route as dictated by movement of all other capsules in the system.

URBAN MATRIX is composed of 163 tetrahedral elements. The functional zoning within the structure is most flexible. Any given tetrahedron could be a total community — that is, it would have residential, commercial, communal and recreational functions, or if circumstances dictated, the entire tetrahedron could be designated one specific function. Just as neighborhoods vary in size, so it, too, is possible to have “neighborhoods” within URBAN MATRIX VARY IN SIZE. Adjacent tetrahedra could comprise a neigh-
borhood of specific flavor. It is our belief that if center city was expanded in the form of URBAN MATRIX, most of the floor area would be allocated to communal and commercial space. Communal space would include governmental, judicial, retail trade, etc., and any other functions in which people gather together in large numbers. Commercial functions would be a flexible office area or space now considered semi-public. We felt that thirty-three tetrahedra, or approximately twenty percent of the total, could be designated for residential use. Within these tetrahedra, 689,000 square feet of residential area is distributed over twenty-four floors; each floor having a height of nine feet. Duplex apartments are distributed linearly along the external faces. The internal area is allotted to convenience shopping; in effect, the net residential area is approximately 460,000 square feet. This will yield about five hundred apartments per tetrahedra.

The remaining floors in the residential tetrahedra serve communal, commercial and mechanical functions. The uppermost four floors, designated for communal functions, have a total gross of 450,000 square feet, and a floor height of eighteen feet. The next six floors, designated as commercial, have a total gross of 511,200 square feet, and a floor height of thirteen feet, six inches. The residential function falls directly below the commercial and covers twenty-four floors. The lowest eight floors are designated for computer controlled mechanical and electrical systems; gross area is 15,000 square feet.

The functional use of the remaining one hundred and thirty tetrahedra is divided between communal and commercial. The necessary mechanical support functions are again designated to the lowest eight floors and occupy 15,000 square feet in each tetrahedra. 698,000 square feet gross of communal space is distributed over the uppermost eight floors; floor-to-floor height is eighteen feet. 503,000 square feet gross of commercial function is distributed over the next eighteen floors; floor height is thirteen feet, six inches.

Floor areas for the total URBAN MATRIX according to function are:

<table>
<thead>
<tr>
<th>Function</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>22,737,000 sq ft</td>
</tr>
<tr>
<td>Commercial</td>
<td>82,259,600 sq ft</td>
</tr>
<tr>
<td>Communal</td>
<td>105,668,000 sq ft</td>
</tr>
</tbody>
</table>

Open area is provided by the buoyant sub-structure. The square pontoons of six-hundred, twelve-hundred and eighteen-hundred feet per side yield a total recreational open space area of 18,140,000 square feet or four hundred and fifteen acres. The sub-structure pontoons provide not only open space but also 88,200,000 gross square feet of floor area for light industrial usage. The buoyant sub-structure units are anchored to the water bottom by high-strength aluminum cable. For purposes of stability, a constant positive buoyancy is maintained through a wench mechanism in the substructure. This device will compensate for any rise or fall of water height. The concept of a buoyant substructure necessitates light-weight, high-strength, durable material used to maximum efficiency — aluminum. Of necessity, new high-strength extruded shapes will have to be developed, but it is possible to employ many standard products.

Anodized ribbed siding, in its many varieties, is employed for lightweight, easily maintained partitions. Extruded aluminum boxes are used to form internal trusses. Aluminum pan roof deck is used in the floor system. Drop ceiling is an aluminum, linear, acoustical system with corrugated and “V” crimp panels.

The above are just a few examples of ways in which aluminum was used to satisfy a critical weight-strength problem of URBAN MATRIX.

URBAN MATRIX, we feel, can be seen as a total environment. It is more than a human filing cabinet—it provides basic needs essential to man. Random stairs, penetrating successive floors, plus open balconies will give man an awareness of URBAN MATRIX at all times. We express mixed usage and the recognition of man's need for diverse environment. We provide open recreational area, land and water, for ninety percent of the water rights area which we use. It is difficult to find an urban area which satisfies any one, let alone all of these problems.
Saint Bede's Priory, sited on forty-three acres of farmland on a hill outside of Eau Claire, received national attention when it was awarded an A.I.A. Honor Award at the convention of the American Institute of Architects in June of 1967.

It was also selected for an award of excellence in design by the jury of the Minnesota Society of Architects Honor Awards Program. The jury commented: “The harmony of undisturbed nature and bold, simple, unmistakably man-made forms, is the project’s most rewarding and mature accomplishment. Capability for expansion is very well handled, and the Chapel interior is unusually distinguished — totally reliant on essence rather than of additives.”

The comments of the jury reflected the success of the architectural firm in designing a motherhouse and school for the Sisters of Saint Bede’s whose building program required a reflection of the Benedictine Spirit of ages past, yet wanted to embrace the contemporary world in the use of modern construction methods.

The familial grouping of buildings provides a convent for sixty sisters, administrative offices, an infirmary, an academy for one hundred and twenty-five girls, and a temporary chapel, seating two hundred and seventy.

The following three projects were the direct responsibility of Curtis H. Green, currently Board Chairman and Treasurer of the architectural firm of Hammel, Green and Abrahamson, Inc., of Saint Paul, Minnesota.
The program was to provide a Master Campus Plan for a small Baptist College of 1200 students, a seminary for 250. The seminary is the first phase of the Master Plan. It will provide a Chapel, Administration, Classrooms, Library and a Social Center for the graduate student.

The philosophy of Bethel Seminary is to provide a "community" feeling for the purpose of encouraging close faculty-student relationships that will best carry out the objectives of the school.

The suburban site, north of Saint Paul, Minnesota, with its heavily wooded rolling holls, surrounds a small spring-fed lake.

The design solution attempts to de-institutionalize the complex with a composition of small, varying sized buildings. Following the concept of building only in the valleys, and the series of small buildings, creates the feeling of a small community. The use of pitched roofs and simple exterior walls are used to unify and enrich the total complex.

The area of building is: 70,819 sq. ft. (Chapel and Social Services to be completed.)

The construction costs were as follows:

- General Contract ... $1,510,440
- Mechanical Contract 299,750
- Electrical Contract .. 159,900
This Catholic girls college, operated by Sisters of the Order of Saint Benedict, considered in 1954 that maximum enrollment would be 500 students, an expansion of 200 students over the 1954 enrollment. By 1960 this figure was raised so the arts center is the first academic building of a new campus plan to serve 1000 students. The site is open, flat and to be landscaped.

As planning commenced it was realized that one theater-auditorium would be inadequate from both the quality of space as well as scheduling. The core of this building plan was then developed to contain one stage house serving the theater primarily. However, when the auditorium program requires a stage house, rather than the two lift stage area within the hall, a 20 ton sound isolating 53' x 22' door is raised to provide this common stage for the auditorium. The stage lifts are lowered for orchestra pit and/or seating.

The theater seating is also flexible by the use of seat wagons enabling movement from the proscenium arrangement to the thrust stage seating plan.

Acoustics in the auditorium have been considered by Mr. Stanislaw Skrowaczewski, conductor of the Minneapolis Symphony Orchestra, to be among the three best halls in U. S. A. in which they have played. Through the use of concealed burlap draperies, used as sound absorption in the auditorium, theater and rehearsal rooms, it is possible to tune the acoustics of the room to the needs of the type of performance.

Other facilities include the studios, library, music education, practice rooms, etc., for the music department; offices, classrooms, shops, dressing, make-up, etc., for the speech and drama department; the art gallery, classrooms, offices and six studios for the art department.

<table>
<thead>
<tr>
<th>Area</th>
<th>136,814 square feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>2,183,044 cubic feet</td>
</tr>
<tr>
<td>Cost</td>
<td>$2,734,500.00</td>
</tr>
<tr>
<td>Cost per square foot</td>
<td>19.99</td>
</tr>
<tr>
<td>Cost per cubic foot</td>
<td>1.24</td>
</tr>
</tbody>
</table>
Three projects:
by Schafer, Flynn and van Dijk, Architects of Cleveland

5 University School East Campus, Cleveland, Ohio

A new campus and building for a private school for boys, grades 9 through 12. The academic areas center on a large learning resources center, 117,000 sq. ft. The building is sited on the edge of a beautiful ravine in a deeply wooded area. In addition to the academic wing, the building contains a 500-seat auditorium, gymnasium, swimming pool, wrestling room, dining hall and student lounge. This project is now in the final design stage.

6 Blossom Music Center, Northhampton Township, Ohio

The Blossom Music Center, 40 miles from Cleveland and 10 miles from Akron, Ohio, is the summer home of the Cleveland Orchestra, due to open by July 19th, 1968.

The 520 acre site provides facilities for 15,000 people wanting to enjoy the summer concerts of the Cleveland Orchestra. On the sloping lawn, 11,500 people can be accommodated, 4,500 can be seated within the Pavilion.

The Pavilion has a fan-shaped plan and is covered by a shingle roof on wood deck on steel welded pipe trusses which rest on a sloping Cor-Ten arch which in turn rests on tapered Cor-Ten steel columns. The sloping side and rear wall is also covered with shingles. The peak of the roof is 95 feet above the stage. The rear wall is open from 13 feet at sides to 25 feet at the center in order to allow the people on the lawn to see and hear.
1 Erieview Plaza, Cleveland, Ohio

A 15-story office building containing 200,000 sq. ft. of net rental space. 40 ft. clear span from central core to wall with open corners at prime space. 5' 0" module.

Offices of Schafer, Flynn and Van Dijk, Architects, are located in 1 Erieview Plaza.

Photos by C. W. Ackerman, Cleveland
All ancillary facilities, such as locker rooms, rehearsal rooms, VIP dressing rooms are located under the stage and behind the Pavilion in a concrete bunker with a sod roof, but face open to the ravine. Orchestra parking and loading dock are also behind the Pavilion, screened by trees and earth mounds. Large public parking space is broken down into five lots, surrounded by a ring road in the woods.

Pedestrian and vehicular traffic is separated.
Now Is the Time —
for all good architects to come to the aid of the new School of Architecture at the University of Wisconsin-Milwaukee, through Wisconsin Architects Foundation.

The achievement of a facility for architectural education in Wisconsin is the fulfillment of a great need and a long hoped-for solution by the profession as a whole. The effort toward fruition involved members of Wisconsin Architects Foundation over a period of anxious years.

The School of Architecture is to become a reality at UWM in September of this year. Information from UWM indicates that 76 students are currently enrolled in what is designated as Pre-Architecture, coursework recommended by three faculty advisors. Also, there is an uncounted number of individuals who have indicated interest in enrollment when the school starts, the total number to be revealed upon registration.

At the time of writing, early February, personal interviews of selected candidates for Dean of the School of Architecture were in process.

Wisconsin Architects Foundation's commitment to UWM, published in the previous issue of WISCONSIN ARCHITECT, has entered the first step of implementation, that of the compilation of a brochure to facilitate the dissemination of information concerning the importance of the new school to potential students, to the profession of architecture, to the University itself, as well as to the State and its citizens, with due regard to cultural overtones. The brochure, along with personal contacts by the Directors of the Foundation and past presidents allied in the effort, will, it is hoped, bring about sizeable contributions so necessary to augmenting the funds to be supplied by the Wisconsin Legislature.

This article is directed to the Wisconsin Architects. Now that the goal of architectural education in Wisconsin has finally been achieved, much to the relief and gratitude of the profession, now is the time for the architects to show their enthusiastic appreciation by contributing to the School of Architecture at UWM through the Foundation. Wisconsin Architects Foundation is the heartline to the new School.

In December the Foundation received a sizable check from a State architect, labelled “For the New School.” Let this set a trend.

There are a number of Chapter members who have refused frankly to contribute to the Foundation’s interim program because Tuition Grants went out-of-state for Wisconsin students’ tuition easement, the majority of graduates having failed to return to Wisconsin to practice. Now is the time for these selfsame architects to consider the Foundation’s heartline.

Any contribution may be designated for direct assistance to the new School, or to the Scholarship Program to be established.

Memorials continue to be an important source of revenue for the Foundation. More Chapter members should come to realize that the medium of memorial is a most appropriate expression of sympathy employed consistently by thoughtful members of the profession as well as by organizations associated.
The exhibition of Irish architectural drawings that is currently on display in the Art History Gallery of the University of Wisconsin-Milwaukee furnishes a beautiful demonstration of the quality of architectural drawing during the eighteenth and early nineteenth centuries. Lent by various public and private collections in Ireland and England, including the National Library in Dublin, the drawings also illustrate both the stylistic development in architecture during the century from 1739 to 1839 and a wide range of subject matter. Public buildings, country houses, churches, garden structures, bridges, and schemes for interior decoration are included; while there are examples of Palladianism, Neo-classicism, the Greek Revival, and the castellar or Gothick mode. And the architects range from relatively little-known figures to such great names as Robert Adam, Sir William Chambers, and James Wyatt. Despite the title of the exhibition, it is by no means limited to architects whose careers lay largely in Ireland. A number of such architects, both native Irishmen and immigrants from England and the Continent, are represented. But included, too, are designs for commissions in Ireland by the leading English architects of the day. As a result, the exhibition provides a fascinating picture of architecture and architectural drawing in England and Ireland during a period when this art reached one of its heights.

The exhibition begins with the work of Richard Castle (or Cassels; c. 1690/5-1751), who was born in Germany, worked in London from 1725 to 1728, and spent the next twenty-three years of his life in Ireland as that country's leading architect. In London, he almost certainly came in contact with the Palladianism sponsored by the Earl of Burlington and his circle, and it is this style that he practiced in Ireland. Typical of this are his designs for Leinster House, Dublin, c. 1745, which is now the home of the Irish Parliament. As accomplished a design as many fine English houses of the period, it features the central pavilion with pediment and columns, the rusticated lower floor, the elaborate window treatment of the main floor, and the colonnaded forecourt galleries that are hall-marks of Burlingtonian Palladianism. An especially interesting aspect of this particular drawing is the flap over the...
center of the ground floor, allowing the architect to propose alternate treatments. In the end, the treatment shown here, rather than the doorway topped by a lunette illustrated on the original sheet, was used.

Castle is also represented by two interior designs, the Palladian entrance hall at Leinster House and a lady's dressing room, possibly for Carton (County Kildare), with delightful rococo decorations. Again, his use of this style shows his awareness of English trends, for many of the Palladian houses of the 1740’s and ’50’s in England were decorated in a similar fashion. C-scrolls, S-scrolls, and lively curvilinear foliage abound here and remind us how different indeed were the interiors of these houses from their correct and sober fronts.

Palladianism and the rococo, exemplified by the work of Richard Castle, were supplanted in the last half of the eighteenth century by Neo-classicism, a change abundantly illustrated in the exhibition. Robert Adam (1728-1792) and Sir William Chambers (1723-1796) are the two leading figures in English Neo-classical architecture, and both are represented in the exhibition. Though neither was ever in Ireland, both sent over designs which were executed and both left a strong mark on Irish architecture of the period. Chambers is seen at his finest in the Casino at Marino which he designed originally in 1759, though it was not built until a decade later. This jewel-like building in the shape of a Greek cross with its correct Doric order and its swags, urns, and figures is characteristic of his work, which is Palladianism tempered by an elegant refinement.

Adam’s Neo-classicism is somewhat different. In his exteriors there is also a continuation of Palladianism, again refined and in his case attenuated, but his room shapes and his interior decoration show a much more substantial break from the style of the first half of the century. Ovals and rooms with apsed ends are common, and his decorative work is marked by a profusion of antique and certain other elements rendered
in a flat, elegant, and linear manner. He was at the height of his powers in the early-to-mid-1770s, and it is from this period that the four drawings for Headfort House (County Meath) come. In the interior elevation for the eating parlor, there are such classical forms as ruin paintings, grotesque and bas-relief panels, urns, swags, and medallions. The delicate, linear quality is everywhere, but especially in the small-scale patterns of the friezes, moldings, and cove of the ceiling. The chimney-piece uses a host of antique elements, again highly refined. The contrast between these drawings and Richard Castle’s rococo interior is a striking testimony to the change that had occurred.

This change is also noticeable in exteriors, though it is somewhat less pronounced. There are no exterior designs by Adam in the exhibition, but a number of the drawings reflect the influence of Adam and Neoclassicism. Among the English architects who matured a little later in the century than Adam and show the continued development of his kind of art was James Wyatt (1746-1813), who apparently had a great many Irish commissions, including Castlecoole (County Fermanagh). His design for the south front, dated 1790, makes an excellent comparison with Castle’s Leinster House façade. They are, of course, related, yet the newer design is characterized by a certain refinement and elegance that are lacking in the Palladian scheme. This is especially seen in the proportions of the main blocks and their central pavilions, as well as in the treatment of the windows and the colonnades. Where the Leinster House façade looks back to Palladio and sixteenth-century Italy, that of Castlecoole has a simpler, crisper late-eighteenth-century appearance.

The Adamesque influence on Wyatt can be seen in other drawings, too, as, for example, the mausoleum for Dartrey (County Monaghan) with its unusual capitals derived from Adam or from the ceiling for Lucan House (County Dublin), which is exceedingly close to typical Adam ceiling designs. These, or the sheet of four friezes, show how strong Adam’s influence was; it is primarily the nature of the rendering and the strength of the coloring that differentiate the two.

But Adam’s influence was to be found among Irish architects and craftsmen, as well, which is again demonstrated by the drawings in this exhibition. Thomas Cooley’s sketch for a mausoleum has Adamesque capitals and attenuated columns, a typical Adamesque frieze, and a general affinity to the Adam style. The chimney-piece designs by George Hill Darley likewise recall those of Adam; while the ceilings, wall elevations, and doorways of Michael Stapleton reflect the same influence. A comparison of the ceiling in Stapleton’s design for the ceiling and four walls of a room with Adam’s saloon ceiling for Headfort House shows the similarity of spirit as well as of details. These various Irish designs are also close to Wyatt, but ultimately the inspiration is Adam.

Chambers, too, had considerable influence. As with Adam, this is partially to be seen in terms of specific design sources; but in the long run Chambers’ most profound influence on Irish architecture was through his pupil, James Gandon (1743-1823), who was to become perhaps the greatest architect to work in Ireland. Born in London and trained under Chambers, he arrived in Dublin in 1781. From then, until his retirement in 1808, he built a series of public buildings that are among the ornaments of Dublin, as well as churches, houses, and public buildings outside the city. Designs for a number of these are included in the exhibition, including the portico for the Parliament House (now the Bank of Ireland), the Kings Inns, and the Four Courts. In the façade for the Four Courts (1785), we can see how Gandon took Chambers’ style and modified it through the influence of French Neoclassicism and, surprisingly, that of Sir Christopher Wren (especially in the drum). It is a highly effective composition, as also is the plan with its rotunda and four projecting court rooms.

Gandon not only provided Dublin with a series of distinguished classical buildings; he also left a heritage that continued long after his retirement. It is evident, for example, in the work of Francis Johnston (1760-1829), a native Irish architect who was responsible for a number of other Dublin landmarks, including the General Post Office and Nelson’s Pillar (the latter destroyed in 1966). The General Post Office (1814) shows the late-eighteenth-century tendencies modified in the early nineteenth century, while the design for Nelson’s Pillar (1808) illustrates the Greek Revival that was to characterize much of European and American architecture from about this date on. The Greek...
Doric column (without a base) and the Greek key frieze both clearly announce this new style.

While the various aspects of classical design dominated both English and Irish architecture during the entire period represented by the drawings in the exhibition, there was, from about 1750 on, a continuing interest in a revival of Gothic. Most of the time it was characterized by a gay, fanciful, and unauthentic manner, quite different from the more archaeological aspect of the classic revival. Similarly, the most frequent type of structure to be adorned in a medieval garb was the country house which could be decked out as a castle, a romantic manifestation of the desire for escape. In general, Gothick structures (it was often spelled this way at the time, an indication of the frivolous nature of the enterprise) were the relatively unusual products of architects known for their classical designs. Increasingly, however, Gothic designs came to play a larger role in the output of offices such as Wyatt's; and by the 1830's, Gothic was virtually the equal of Greek.

Typical of the papery, unarchaeological type of Gothic are the designs for Slane Castle (County Meath) by the English architect and landscape architect "Capability" Brown (1761-1783). The battlements, pointed-arched windows, quatrefoils, and the like all show a gesture toward medieval motifs, but the spirit and especially the symmetry are totally alien to the architecture of the middle ages. The same is true of the stables which Brown also designed for Slane. The stables were built, but not the house itself.

A succession of other designers were called in to try to please the patron in his search for Gothic castle. Among these was Gandon, whose drawings have much more of a castle air about them, though they still show a classical architect at work on a castellar house. The round arches of the lower floor, the rectangular windows, and the symmetry again give away the architect's classical training. In another drawing showing the basement and an outdoor stairway with grottoes and statues, all pretense at medievalism has been shrugged off. They are strong designs, but they are not really Gothic.

A more serious attempt at a Gothic house with a somewhat castellar appearance is furnished by another architect whose classical allegiance has also been demonstrated, namely Francis Johnston. But by now we are in the nineteenth century when more numerous and more relatively serious medieval castles were produced. Johnston's design for the east front and gate of St. Catherine's (County Dublin) of 1802 shows both Gothic details and a somewhat more Gothic character. While still a sham castle and hardly comparable in authenticity to his Nelson's Pillar in its Greek garb, it is considerably more picturesque than some of the earlier neo-medieval castles.

Just as the eighteenth-century Gothic revival represented an escape into the romantic past, so, too, the eighteenth century witnessed an escape into the far-away—chinoiserie. But the allusion to China was even more fanciful and even less authentic than the flirtation with Gothic. Interestingly, the exhibition contains one drawing that shows an attempt to unite the two, a garden temple for the grounds of Headfort House, designed in 1789 by Benjamin Eaton. It is actually neither Chinese nor Gothic, but a playful fantasy that recalls the light-hearted approach to both these styles and the delights that awaited a visitor to the gardens of England and Ireland in the eighteenth century.

In short, this exhibition of sixty-seven drawings, most of them beautifully rendered, illustrates both the high quality of architecture and architectural draftsmanship in England and Ireland during this hundred-year period and the evolution of architectural style. Ably selected by two Irish authorities on the subject, Dr. Maurice Craig and the Knight of Glin, the drawings are a delight to the eye as well as a case study of architectural history.

A Century of Irish Architectural Drawings, 1739-1839, is on exhibition at the Art History Gallery, University of Wisconsin-Milwaukee, from February 20 through March 13. The gallery, located in Mitchell Hall, Room 128, is open 9:30 to 4:30, Monday through Friday, and Tuesday evenings from 6:30 to 9:00 p.m.
Talk to an architect

Wisconsin Chapter, A.I.A., Participates With Exhibit In Annual School Administrators Convention

The Annual Convention of School Administrators, sponsored by Wisconsin Association of School Boards, Wisconsin Association of School Business Officials and Wisconsin Association of School District Administrators, was held at the Milwaukee Auditorium from January 24th through 26th.

The Wisconsin Chapter, A.I.A., participated with a four-booths space, designed by members of its School Committee under the chairmanship of Emil Korenic. The exhibit booth was equipped with slide projectors at both entrances, automatically showing approximately 180 slides of school buildings in Wisconsin, designed by Wisconsin architects. These slides were submitted upon request by members of the Wisconsin Chapter, A.I.A. The Chapter also requested volunteers from amongst its membership to be present at the exhibit for two-hour periods. Thirty-two architects responded. The theme of the exhibit was "Talk to an Architect."

The following firms assisted in the display: Furniture: Contract Interiors, Inc., of Madison; Carpeting: Wisconsin School Service; Partitions: Rowley and Schlimgen of Madison and DeGelleke Co. of Milwaukee; Lights: Llewellyn and Associates of New Berlin; Drapery: Mid-West Scenic and Stage Equipment Co. of Milwaukee; Signs: Wolff, Kubly, Hirsig of Madison.

Members of the Wisconsin Chapter, A.I.A., School Committee, who worked for over six months on this project were: Emil Korenic, chairman; William Losch, Dick Zeiner, John Knapp, Chet Lacheki, John Blassick, John Steinman and Clint Mochon.

It is hoped that the participation of the Wisconsin Chapter, A.I.A., will become an annual event.

Emil Korenic (center), chairman of the School Committee, Wisconsin Chapter, A.I.A., at the entrance of the A.I.A. exhibit with (l.) Dr. Merton Campbell, superintendent of Homestead High School, and Dale Davis of the Kettle Moraine area schools.

L. to r., John Blassick, School Committee member; seated, James Radtke, Mrs. Jean Rowe and Robert Heck, all members of the Marshfield Board of Education. Standing is Emil Korenic, chairman of the School Committee, Wisconsin Chapter, A.I.A. Signs related to school building were mounted throughout the exhibit area, intended to stimulate discussion.
The use of masonry bearing walls in structures of all types has been successful for many years. The 16-story Monadnock Building, built in Chicago in 1889-91, was a classic example of the use of unreinforced masonry construction.

Today, increased interest in masonry construction has brought the masonry section of the State Building Code under close study. The revised masonry and concrete section of the State Building Code places increased emphasis on the architectural and engineering professions. The submission of rational design and test data allows for greater freedom of concept and design technique.

Most of the concrete masonry construction to date has been of the unreinforced type. For example, let us consider the basic principles of the design of a simple one-story building, concrete masonry bearing walls.

Assume a building of the following dimensions: span 40 feet, length 80 feet, height 16 feet. The roof will be made up of prestressed double tees, spanning the 40 feet.

As a start, the building code, Section 53.09(8) of the Code, gives a table showing height to thickness ratios of 18. Within this limitation, the allowable stresses in Section 53.07 may be used. The table also states that cross-walls or pilasters are not required, except that pilasters when used for lateral stability of the wall shall be 16 in. minimum size. In this type of construction, the bearing walls must be capable of performance under the loads to which it will be subjected.

Sections 53.01, 53.07, and 53.09(h) of the State Building Code dealing with stability, allowable stresses and eccentric loadings must all be complied with.

The following outline is a guide for the wall design:

(A) Determine the required bearing length of the roof double tees on the top of the wall. The spacings of the stems of the double tee are less than four feet, therefore the code allows three courses of concrete brick to be used as a load distribution beam between the concentrated stem loads and the first course of hollow masonry. The required bearing length would depend on the allowable bearing stress either on the concrete brick or on the stems of the double tees.

(B) Although it is possible that the required wall thickness is determined by the required bearing length of the roof double tees, it is usually more economical to increase the bearing area under the stems by the use of plates, and determine the wall thickness on the basis of allowable height to thickness ratios and stability considerations.

Maintaining the height to thickness ratio of maximum value 18, a 12 in. thick wall would be suitable for the height of 16 feet.

(C) Determine the stresses in the first course of hollow masonry units below the distribution courses of concrete bricks. Assuming a 45 degree load distribution from the bearing of the double tee along the wall, the effective bearing area is now assumed to be equal to twice the distribution beam depth plus the width of the stem of the double tee, multiplied by the required bearing length of the double tee as determined in (A). The stresses on this area should not be greater than the allowable bearing stress for the hollow masonry unit.

(D) Determine the stresses at the base of the wall taking into account the effects of eccentric loading.

(E) Determine the stresses at mid-height of wall due to the combined loading effects of the horizontal wind load and the vertical dead load of the roof system and the wall. The wall is assumed to be laterally supported at the top and bottom. Allowable stresses may be increased by \(\frac{1}{3} \), but it is generally accepted that the tensile stresses in unreinforced concrete masonry should be zero.

(F) Determine the lateral stability of the wall against overturning. The horizontal wind load acting against the wall will cause the roof double tee to act as a strut between the walls. Thus there will be two walls that will resist the overturning effect of the wind. At this point it is possible that the overturning moment is greater than the righting moment due to the dead load of the roof system and the wall. There are several choices to provide stability. (1) Stiffen the wall with pilasters or crosswalls. (2) Use the roof double tees as a diaphragm and transfer the entire horizontal wind load into shear walls parallel to the double tees. Either the end walls or intermediate walls would be suitable. Welding the flange connectors of the double tees will provide the necessary shear transfer between the roof units, for connection between the shear wall and the double tee has been designed to allow for vertical movement of the roof units.
What's Happening in W.A.L.?

In addition to Study Sessions, the women's architectural league of Milwaukee does have its lighter side. The first party of the year was held on Saturday, January 27th, at South Hills Country Club. Having fun was the objective, but raising money for the Wisconsin Architects Foundation was the main purpose for this party. Bonnie Inman (Mrs. Robert) is the chairman of the “Special Projects” Committee this year and it is up to her and her committee members to come up with ideas and means of raising money for the Foundation. Her committee members are: Mrs. Eugene Carter, Mrs. William Carter, Mrs. Charles Harper, Mrs. Jerome Kovalski, Mrs. Norbert Knitter, Mrs. Russell Sandhoefer, Mrs. William Schommer, Mrs. Myron Sielaff, Mrs. Dale Wiars, and Mrs. Paul Yank.

Last summer, the idea of an outdoor-indoor winter party took form in an effort to offer something new. (This is becoming increasingly more difficult as the years go on — W.A.L. is reaching the ripe old age of ten years now.) January seemed like the ideal month for people to toboggan, ice skate, ski, snowmobile and, as an added attraction, sculpture ice! As all these plans jelled, choosing a fitting name for the party became imminent. After considerable thought “Snow Sköll” was agreed upon and advance publicity and art work shifted into high gear depicting snowmen, snowflakes — snow, snow, snow. Everyone was thinking positively! Everyone, that is, but Mother Nature herself.

When the day of the party arrived there was a gentle drizzle falling which washed away all traces of snow. A gray fog hung heavily in the air and the rink for ice skating became a pond. The snowmobiles stood by uselessly. Happily, though, the large blocks of ice, which Paul Yank and Jack Jennewine trucked to the country club first thing in the morning, did hold up in the mild 40 degree weather. The ice sculpting contest took place, in the afternoon, as scheduled. Many interesting shapes and forms emerged as the ice sculptors bravely “chopped” away. Mary and Ray Albright worked up a charming “Kissing Couple.” There were three separate “free form” figures, one done by Carrie and Dale Wiars, one by Sue and Jack Funk with their guest Jane Plotkin and one by Basil Lagopoulos, a guest. There was a Chess-Knight done by Ron Kjos, a guest, and the form of a woman done by Ron Kjos and Bob Inman with a little help from Bob’s wife. Talk about coincidence, Paul Yank and Jack Jennewine took first place for their team work in creating a headless, armless figure of a woman. Gary Zimmerman and Mike Sielaff won second place for their Owl. As a prize, the four winners each received an ice shaving tool and a free drink. The judging was done by all the people at the party — one ballot per person, of course!

Being an optimistic group of people, many of the party-goers had ice skates in their cars, “just in case some arctic air flowed through.” But since that never happened, it was fortunate there were many alternatives that were offered indoors, such as bowling, cards, checkers, chess and even Twister for the more agile individuals. Just plain socializing proved to be popular, too, and it was easy to see that everyone attending was having a good time.

After cocktails and a candlelight buffet supper, in the evening, a special silent auction was held to determine who would receive the attractive fountain created and donated by Paul Yank, sculptor, and the self-contained pump donated by Clifford Tice of Water Equipment Co. of West Allis. The fountain complete went to John Casey with a high bid of $51.50. He plans to use it at his summer home.

At this time the drawing for door prizes took place followed by a lively game of bingo. The many lovely door prizes were contributed by 33 local merchants and artists.
High Performance Weatherstripped Steel Window

Weatherstripped for Pressure Equalization

Water leakage and air infiltration are controlled by a specially developed closed-cell foam vinyl weatherstripping that is permanently bonded at the factory to the frame sections of the vinyl-clad windows.

The weatherstripping is applied continuously around the perimeter of the interior contact surfaces of each window to form a seal between the movable members, or vents, and the fixed frames. In addition to providing an air/water-tight seal, the foam vinyl weatherstripping offsets the vents slightly with respect to the frames to create an open pressure-equalization slot between the vent and the frame at the bottom of each vent or at other suitable locations.

With an open slot, the air pressure within the window chamber (the internal air space between the vent and frame sections) is virtually the same as the pressure outside the building. Any increase in wind pressure against the window is opposed by a similar pressure buildup within the window chamber. Consequently, any water that might penetrate the window chamber will drain freely to the outside through weep holes or slots in the sill . . . regardless of how hard the wind may be blowing.

When conventional windows are subject to driving wind and rain, a pressure differential builds up across the exterior contact surfaces between the vent and the frame. This tends to trap any water that might penetrate the window chamber and drive it on into the building. Water tends to build up in the sill space to a height approximating the wind pressure expressed in inches of water. A 50-miles-per-hour wind can drive water in the sill space of a conventional window to a height of an inch or more, thus requiring a sill depth of at least 11/4 inches to keep the water from spilling over into the interior. A wind velocity of 100 miles per hour would require a sill depth of five inches to avoid spillover. Such excessive sill depth is unnecessary with the weatherstripped, pressure-equalized steel windows.

As an added measure, direct water penetration of the window chamber is largely eliminated by weatherstripping vertical and certain horizontal exterior contact surfaces between vents and frames. Also, the lower edge of each vent overhangs the frame to serve as a baffle that prevents rain blowing directly into the pressure-equalization slot.

Pressure-equalization designs were formerly limited to weatherstripped aluminum windows because the close tolerances required for adequate sealing of the interior surfaces could not be readily achieved in non-weatherstripped windows fabricated by conventional processes. The foam vinyl weatherstripping developed by Ceco has sufficient thickness and resiliency to close any gaps and thereby achieve exceptional air tightness.

Performance Standards

Cecoclad pressure-equalization steel windows meet the following performance requirements:

1. Air Infiltration. No more than 0.25 cubic feet per minute per foot of crack length with ventilators closed and locked, and static air pressure of 6.24 pounds per square foot applied.

2. Water Resistance. No water leakage with static air pressure of 20 pounds per square foot applied to the window and the window's exterior face subjected to five gallons of water per hour per square foot of window area for a period of 15 minutes.

3. Structural Strength. No failure of locks, hinges, glass or other parts with static pressure of 40 pounds per square foot applied to the outside of the window.

The windows are coated with an impervious layer of polyvinyl chloride 6 to 10 mils thick. The plastisol cladding has been applied to windows used in more than 250 buildings in the United States and some foreign countries. Simulated aging tests lasting 10,000 hours have not reached the upper life of the coating. In tests where a steel plate, coated on one side with Cecoclad and left exposed on the reverse side, was subjected to salt spray corrosion, the cladding remained intact even after the steel had been completely eaten away on the unprotected side.

Weatherstripped steel windows are available in projected, classroom, casement, combination, inswinging casement, drop-head project-in, and top-hinged inswinging styles in 1 1/4-inch and 1 1/8-inch depths. Casement windows are also available in 1-inch depth and curtainwalls in 1 1/4, 1 1/8 and 2 1/8-inch depth. Cold formed subframes are available with the Cecoclad finish. The new windows are available in five standard colors — white, black, deep brown, light brown and gray. Other colors are available on special order.

For additional information on high performance weatherstripped steel windows, write The Ceco Corporation, General Offices, 5601 West 26th Street, Chicago, Illinois 60650.

A new breakthrough in steel window design — the weatherstripped high-performance window — has been announced by The Ceco Corporation, Chicago. With this development, architects can take full advantage of the narrow sight lines made possible by the strength of steel in a window impervious to corrosion and water and air infiltration.

The new window is a fundamental improvement of the basic steel window introduced in 1963 to eliminate maintenance and corrosion problems of traditional finishes. The Cecoclad windows are now available weatherstripped and with a "pressure-equalization" design that turns the wind pressure back on itself to eliminate leakage even in severe weather environments. The weatherstripping itself virtually eliminates air infiltration.

High-rise buildings are expected to be a primary application for the new weatherstripped steel windows because of the wind forces and driving rains encountered at upper floor levels. Steel windows are far less subject to deflection under heavy wind loads than aluminum windows, and permit substantial reductions in frame size for a given wind load.

The new windows have been tested with a simulated rainfall of eight inches per hour driven by winds up to 90 miles per hour without water leakage. Air infiltration is less than 0.25 cubic feet per minute per foot of sash perimeter with winds of 50 miles per hour.
Now the lifetime beauty and prestige of stainless steel... at a truly competitive price

Stuart's Department Store, Sunrise Shopping Center, Lowell, Massachusetts, has 1700 square feet of storefront framed with USS ULTIMET Stainless Steel Wall Framing. It uses 5½-inch mullions for the 19-foot vertical span. The lobby is also enclosed with USS ULTIMET framing. There are eight USS ULTIMET Stainless Steel Narrow Stile Swinging Doors.
Owner: DeMoulas Realty Company, Lowell, Massachusetts
Architect: Eugene Weisberg, A.I.A., Lowell, Massachusetts
General Contractor: Psinos Construction Company, Dracut, Massachusetts
Curtainwall Fabricator-Erector: Lawrence Plate & Window Glass Company, 417 Canal Street, Lawrence, Massachusetts

The handsome lobby and entrance doors—as well as the storefront—of Stuart's Department Store, Lowell, Massachusetts, are designed and built with a completely new kind of stainless steel framing product—USS ULTIMET. Owner-realtor T. A. DeMoulas and architect Eugene Weisberg chose USS ULTIMET Stainless Steel instead of aluminum because USS ULTIMET wall framing "is better looking, more durable, yet costs about the same."

USS ULTIMET framing is first-quality stainless steel throughout, so its attractive finish will last a lifetime with no maintenance other than normal cleaning. It resists scuffs and dents, won't fade or discolor, and USS ULTIMET framing greatly enhances the beauty of other building materials. There are no exposed fasteners to become unsightly—just a clean, uncomplicated attractive installation. And the best part is, it's competitive!

For your next design, look into good-looking, cost-saving USS ULTIMET Stainless Steel Wall Framing. Write for our design booklets, ADUSS 88-2932 and 88-2709, United States Steel, P.O. Box 86 (USS 5251), Pittsburgh, Pennsylvania 15230—or contact a USS Architectural Products Representative through the nearest USS Construction Marketing or Sales Office. USS and ULTIMET are registered trademarks of United States Steel.
A.I.A. National Convention

A unique plan to hold its 1968 annual convention in two cities was announced by Robert L. Durham, AIA, president of The American Institute of Architects. The convention will be held in Portland, Oregon, and Honolulu, Hawaii, marking the first time in its 110-year history that AIA has held its national convention in either of those cities.

From June 23 until mid-morning June 27, the convention will be held at the Memorial Coliseum in Portland. The meeting will then be recessed and delegates will board planes for Hawaii. The convention will reconvene on the morning of June 28 at the Ilikai Hotel in Honolulu and continue through June 29. Many of those not attending the Hawaii portion of the convention will tour the Northwest.

More than 3,500 architects and associates, exhibitors and family members are expected to attend. The convention theme is “M.A.N.,” signifying Man, Architecture and Nature. Sessions will be devoted to the problems of man and his living conditions in the central cities and suburbia. Other sessions will cover the working aspects of the trends of the future of the architectural profession in America. A comprehensive view will also be taken of man, architecture and urban design planning as related to natural resources of the nation.

Serving as national convention chairman is Robert Martin, AIA, of Lincoln City, Oregon. David Pugh, AIA, of Skidmore, Owings and Merrill, is chairman for the Portland portion of the convention. Paul D. Jones, AIA, of Lemmon, Freeth, Haines and Jones, is chairman for the Honolulu portion of the convention.

A.I.A. Names Top Architectural Critics of the Year

Lewis Mumford, of Amenia, New York, and George McCue, of St. Louis, have been named the winners of The American Institute of Architects’ newly established and only awards for architectural critics. Mr. Mumford, constructive critic of man’s environment since the 1920’s, is the recipient of The Institute’s Architectural Critic’s Medal, awarded on the basis of a distinguished career devoted to architectural criticism. Mr. McCue, art and urban critic for the St. Louis “Post-Dispatch,” received the Architectural Critic’s Citation, awarded on the basis of excellence in a single work in the same area. Both are honorary members of The Institute.

Mumford, 72, is an honorary member of leading architectural and town planning institutes in the English-speaking world. He was born on Long Island, and has lectured on architecture at Harvard, Princeton, Dartmouth, Yale, Columbia, the University of Pennsylvania, and North Carolina State College, in addition to writing numerous books and articles. He has served as consultant on planning to the City and County Park Board of Honolulu, to Stanford University, and to the United Nations.

Among his honors and awards are the 1964 Presidential Medal of Freedom, the nation’s highest civilian honor to those who represent creative excellence in the fields of public affairs, the arts, and science, the Royal Gold Medal for 1961, awarded by Queen Elizabeth II on the recommendation of the Royal Institute of British Architects, and an AIA citation for one of his books, “The City in History,” published by Harcourt, Brace & World, 1961, which also received the National Book Award.

McCue, 57, art and urban design critic for the St. Louis “Post-Dispatch” for more than a decade, was born in Lipscomb, Texas. He was awarded the Critic’s Citation for a series of articles written to increase the public’s visual perception of the St. Louis environment. A frequent lecturer and contributor to professional journals, he won first prize in the newspaper category of the AIA Journalism competition in 1958 and 1959, and second prize the following year. He was awarded citations by the College Art Association in 1958 and 1966.

The five-man jury for the awards, which were established by AIA in August, 1967, was unanimous in its selection after reviewing 38 submissions. Members were: Dr. Frank Stanton, CBS president; David Brinkley, NBC news commentator; I. W. Cole, dean, Medill School of Journalism, Francis P. Gassner, AIA, of Memphis who is chairman of the AIA Committee on Esthetics, and Philip J. Meathe, AIA, of Detroit who is Michigan Region director and chairman of the AIA Public Relations Committee.

The Architectural Critic’s Medal and Critic’s Citation will be presented to the recipients during the annual AIA convention in Portland, Oregon, June 23-26, 1968.

Conference on Campus Planning

The School of Architecture, Washington University, St. Louis, Missouri 63130, will hold a Continuing-Education-for-Architects Conference on Campus Planning, April 25, 26 and 27, 1968.

Several outstanding campus case studies will be presented and discussed. Mr. Walter Netsch will present the Chicago Circle Campus. Mr. Ben Weese will present the Forest Park Campus in St. Louis. and Mr. Gyo Obata will present the Southern Illinois Univer-

(Continued on page 34)
Just a few comments this month on the organizational procedures of the Wisconsin A.I.A. Four sectional officers, the state primary officer, our regional director and one interested observer attended the annual A.I.A. grassroots meeting in St. Louis. Certainly a worthwhile and busy 3 days — everyone should attend one of these sessions sometime in their A.I.A. career — I believe you would both better understand and appreciate the A.I.A.

1968 committee chairman appointments have all been finalized and accepted. Remember this is the backbone of our organization and each chairman is empowered to draw from membership ranks to form his committee. If anyone has particular interests — please let them be known.

We invited members of the W.S.P.E. as our guests at the last executive committee meeting as part of a program to get better acquainted with other professional and business societies. Carl Gauswitz attended as our A.I.A.-W.S.P.E. chairman and we look for a lot of good activities beneficial to both groups.

We heard a good deal about the HUD endorsed “TURNKEY” operations throughout the nation! This appears to be a very controversial issue in all architectural circles with the question of ethics of unpaid sketches versus the concept of “comprehensive services.” This is an area that may be a very good subject for a “workshop.”

The public relations committee under John Knapp’s chairmanship has received a $1200 federal grant to help pay for circulating the “honor awards” displays throughout the state. You will be hearing more about this event and when it will be available in your area.

Great new health-care packages: Bradpack pre-assembled wash centers! When patients or staff use foot-operated Bradpack wash centers, hands need never touch soiled faucets after washing. What’s more, Bradpacks come with all necessary convenience features in coordinated design: lavatory, foot control, operating mechanism, temperature selector, dispensers, light. Plus many optional accessories. Use Bradpacks in hospitals, nursing homes, clinics, institutions. Choice of two models, both in stainless steel: lav section only, or full length unit. Alternate design with wrist blade operation available for wheelchair patients. See your Bradley representative. And write today for latest literature.

Bradley Washfountain Co., 9175 Fountain Blvd., Menomonee Falls, Wis. 53051.

Represented by:
J. R. PETLEY CO., 759 N. Milwaukee Street, Milwaukee, Wis. 53202
S. H. BARTLETT CO., 6524 N. Walker Street, Minneapolis, Minn. 55426

67-263-R2
Paul F. Schmitter
BORN: November 12, 1934
RESIDES: Brookfield, Wisconsin
FIRM: P. F. Schmitter, Architect, Brookfield
DEGREE: University of Illinois — B. of Arch.
Advanced from Professional Associate

Alvin P. Wenzel
BORN: December 27, 1918
RESIDES: Waukesha, Wisconsin
FIRM: Wenzel-Zoller-Gunn, Inc., Elm Grove, Wisconsin
DEGREE: University of Illinois — B. of Arch.
Advanced from Professional Associate

Rudolph Zemanovic
BORN: May 23, 1932
RESIDES: Milwaukee, Wisconsin
FIRM: Architects Planners, Inc., Milwaukee
DEGREE: Chicago Tech — B. of Arch.
Advanced from Professional Associate

Walter E. Zoller
BORN: August 31, 1924
RESIDES: Elm Grove, Wisconsin
FIRM: Wenzel-Zoller-Gunn, Inc., Elm Grove, Wisconsin
DEGREE: University of Illinois — B. of Arch.
Advanced from Professional Associate

Some people don't know where to stop... or even care. Century Guard Rail prevents damage to buildings, walks, lawns and shrubs from poorly parked or carelessly driven vehicles. Guard Rail provides excellent "in-out" traffic control and maximum use of parking facilities around motels, restaurants, student dormitories, "drive-ins" and other parking areas. Rail sections are formed from semi-spring steel to safety cushion all impacts and assure maximum durability. Choice of curved terminal sections or gracefully curved and flared terminal end wings enhance appearance. Materials can be purchased separately or completely installed by expert Century erection crews from your nearby Century office.

Phone for FREE estimate — no obligation

Century Fence Company
1331 LINCOLN AVE., WAUKESHA, WIS. 53186
The ORIGINAL —
BURGESS-MANNING
RADIANT
CEILINGS
HEATING . . . COOLING
Grid Type and Modular
DISTRIBUTED AND INSTALLED
BY WISCONSIN'S PIONEER
RADIANT CEILING
CONTRACTOR
Exclusive Wisconsin Distributors
Since 1946 . . .
DeGELLEKE
Company, Inc.
4040 N. 126TH STREET
BROOKFIELD, WIS. 53005
(414) 781-5300

NOTES OF THE MONTH
Continued from page 31
City Campus at Edwardsville, Illinois.

Dr. Joseph P. Cosand, President of the Junior College District of St. Louis — St. Louis County, Missouri, nationally known college administrator, will address the conference.

Mr. Vladimir Bazjanac of Hellmuth, Obata & Kassabaum will discuss Movement Systems in Educational Buildings and Mr. Charles B. Thomsen of Caudill, Rowlett and Scott will discuss Computer Modeling in Campus Design.

Acting Dean George Anselevicius, Associate Professor Oscar Newman, Professor Buford Pickens, and Assistant Dean Robert Vickery of the Washington University School of Architecture will discuss various trends and phases of campus planning.

Professor Robert Boguslaw of the Department of Sociology at Washington University, Professor Roger Montgomery of the Department of Architecture at the University of California, and George Talbot of the Department of Anthropology at Washington University will participate in evaluating some of the projects presented.

Architects and planners who wish to attend are invited to request details from Associate Professor Robert C. Oswald.

Robert Yarbro, Vice-President of the Wisconsin Chapter, A.I.A., has been elected 1968 president of the Oshkosh Area Chamber of Commerce at the election held by the chamber's board of directors.

A century of Irish Architecture Drawings (1739-1839) exhibition can be viewed from February 28 through March 13 at the Gallery of the Art History Department of UWM, Mitchell Hall 128. Open Mon.-Fri.: 9:30 a.m.-4:30 p.m., Tues.: 6-9 p.m.

F. H. LAWSON CO.
Known for Quality Since 1816
• BATHROOM CABINETS
• ACCESSORIES
• HOSPITAL GRAB BARS
Chrome and Stainless Steel
Meets Federal Specs. for Hospital Grab Bars

3450-56
Golden Cameo®
One-Piece Body
Bonderized Body

NOVOTNY, INC.
Manufacturers Representative
9137 W. Lisbon Ave.
Milwaukee, Wis.
Phone 464-6510 Write for Catalogue
Over 2,560 different sizes of buildings available for both commercial and industrial uses! Star Buildings provide more space at less cost than most any other method of construction. Their unobstructed floor space is ideal for the display of automobiles, tractors, furniture or appliances. Star Buildings are attractive and eye-appealing, too, for each can be custom-designed to combine the sheer clean lines of steel with glass, stone, brick or tile for a modernistic appearance. And, would you believe that buildings like these can be built in weeks . . . even days? It's true! For complete information and a solution to your building problem, call today!

STEEL LINE BUILDERS, INC.
16601 W. Dakota St. • New Berlin, Wisconsin 53151 • Phone: 786-3520
There are 3 vital reasons why imaginative architectural design takes shape when Belden Brick is used:
Belden provides more distinctive colors. More exclusive textures. More adaptable sizes. Over 200 variations of brick to free the imagination of the creative architect.

Your nearest Belden Dealer will gladly show you the facts in the form of samples and our new 4 color brochure, or write us at P. O. Box 910, Canton, Ohio 44701.
Is your community ready to double in size in the next 33 years? Where will twice as many residences, schools, highways, airports, factories, and other facilities be located? Where will you get — and store — twice the amount of domestic water, energy, and other vital resources? These needs will soar because our Nation’s population is expected to double by the year 2000. There will be as much new construction in the next 33 years as there has been since Columbus reached the New World in 1492. The current demand is for more than 1 million new homes in America each year. Population is shifting, too — away from the farm, et back to the country for open space and recreation. These and many other changing needs are creating an awareness that Americans must plan carefully for the orderly use, development, and conservation of human and natural resources. The question is no longer “why plan?” but rather “how do we plan?” and “what do we develop?”

The Soil Conservation Service — with 31 years of experience in helping landowners plan proper land use and treatment — has an active role in community planning and development.

After all, the planning principles and steps are exactly the same whether the objective is to help heal a hillside gully . . . develop a farm or ranch conservation plan . . . solve a group water-management problem . . . plan a watershed project . . . or help design effective use and development of an entire community’s land, water, and related resources.

Here are 10 basic steps that SCS and other agencies and groups use every day in effective resource planning and development:

1. **Let the people know**

There is no substitute for an informed public. It is wasted effort to plan and then attempt to sell the solution to a problem people do not know or believe they have. These are plans that just collect dust on a shelf.

A good information program — set up early and carried throughout the planning process — is essential. Through it, people are made aware of the resource needs or potentials. Then they are more likely to be active in supporting or helping plan for the wise use and care of their resources.

The information program must reflect the impact of the problem on the entire community or region and not just the field or spot involved.

2. **Make an inventory**

To work toward meeting the goals, conceived in step 3, many resource facts are needed. SCS can help obtain certain basic data such as soil surveys or watershed studies. Natural resource data from other agencies or groups also may be needed as a basis for long-range, multiple-use decisions.

How detailed and immediate the inventory must be depends upon the needs and aims of the cooperators. You don’t dump the whole load of hay when only one cow comes up to feed.

(Continued Next Month)
We've got the education. May we apply for your next job opening? Here is our report card in the subjects that interest you.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Grade</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility (Financial)</td>
<td>A</td>
<td>Open letter of credit, able to obtain performance bonds of any age!</td>
</tr>
<tr>
<td>Ability to get the job done.</td>
<td>A</td>
<td>170 people ready to go!</td>
</tr>
<tr>
<td>Completing assignments</td>
<td>A</td>
<td>Never once missed a completion date.</td>
</tr>
<tr>
<td>Quality of Work</td>
<td>A</td>
<td>Always installs a job properly... never just "throws one in."</td>
</tr>
<tr>
<td>Mathematics</td>
<td>A</td>
<td>Figures always based on fact, experience and knowledge of the business....</td>
</tr>
</tbody>
</table>

That's Andrae Electric's record. May we apply for your next job?

Andrae ELECTRIC COMPANY
Milwaukee and Waukesha
Phone: 933-6970 — Milwaukee
Phone: 542-2561 — Waukesha
You can depend on the “fit” of VPI cove and straight base. Its dimensional stability is guaranteed. (See VPI’s installation instructions.) VPI offers a wide selection: Ten beautifully clear decorator colors... cove base ½” and .080” gauges... 2½”, 4” and 6” heights... straight base 4” height... 48” lengths and 120’ rolls... plus preformed cove and straight base outside corners and stringer material.

Play it safe. See Sweets Architectural file or write for samples and specifications.

One of the nation’s pioneer producers of solid vinyl flooring
METAL ROOFS IT BEST

International Arrivals Building, Kennedy International Airport, New York
Architects: Skidmore, Owings & Merrill, Chicago, Ill.

• METAL LASTS FOR ALL TIME!
• METAL MEANS MINIMUM MAINTENANCE!
• METAL IS BEAUTY!
• METAL STANDS FOR TOTAL ECONOMY!

TOP YOUR BUILDING WITH QUALITY METAL

STAINLESS STEEL • GALVANIZED STEEL • COPPER • TERNE • ALUMINUM • LEAD

SHEET METAL CONTRACTORS INDUSTRY OF MILWAUKEE

CALL US FOR THE NAME OF A COMPETENT CONTRACTOR