Wisconsin Architect is the official publication of the Wisconsin Chapter of the American Institute of Architects, published by the Wisconsin Architect, Inc.

ELLO BRINK, Executive Editor
David Radbil, Advertising Manager
John Reiss, Art Director

Subscription Rate: $5 per year. Individual copy 50c.
Address all matters pertaining to Editorial or Advertising to 785 North Jefferson Street
Milwaukee, Wisconsin 53202
Phone 272-4668

Wisconsin Architect, Inc.: Board of Directors: E. John Knapp, Chairman; Maynard W. Meyer, President; G. A. D. Schuett, Vice-Chairman and Secretary-Treasurer, 7255 West Appleton Ave., Milwaukee, Wis. 53216; Harry Bogner, Ronald Hansche, Willis C. Leenhouts.

Wisconsin Chapter American Institute of Architects: 3902 N. Mayfair Road, Milwaukee, Wis. 53222. Phone 464-4520. Executive Secretary, Mrs. Jane Richards.

Executive Committee: President, Sheldon Segel; Vice-President, Nathaniel W. Sample; Secretary-Treasurer, George A. D. Schuett, 7255 W. Appleton Ave., Milwaukee, Wis. 53216; ex-officio, Robert L. Yarbrough, John A. Findlay, Madison; E. William Johnson, Milwaukee; Mark A. Pfalmer, Milwaukee; Mark T. Purcell, Madison; Wayne Spangler, Rice Lake; Leonard J. Urban, Neenah; Richard P. Blake, Milwaukee; Richard E. Gustafson, Green Bay; James V. Hirsch, Hudson; Walker L. Patton, Madison; Leonard H. Reinhart, Oshkosh; Gary V. Zimmerman, Milwaukee.

Southeast Section Officers: President, Richard P. Blake; Vice-President, Richard J. Diedrich; Secretary-Treasurer, Thomas G. Meurer, 12740 Robinhood Street, Brookfield 53005.

Western Section Officers: President, Walker L. Patton; Vice-President, Richard C. Shutter; Secretary-Treasurer, David E. Lawson, 121 S. Pinckney Street, Madison 53703.

Northeast Section Officers: President, Richard E. Gustafson; Vice-President, Ronald Hansche; Secretary-Treasurer, Frank N. Carter, 707 Center Avenue, Sheboygan 53081.

Northern Section Officers: President, Wayne E. Spangler; Vice-President, James V. Hirsch; Secretary-Treasurer, William C. Roberts, 205 Clayton Street, Wausau 54401.

Wisconsin Architects Foundation: 4685 N. Wilshire Road, Milwaukee, Wisconsin 53211. Telephone 962-5844. Miss Dorothy Schweitzer, Executive Secretary.

Allen J. Strong, President; Harry Bogner, Vice-President; E. William Johnson, Secretary-Treasurer; Ralph H. Kloppenburg, Clinton Machon, Lawrence E. Bray, Julius S. Sandstedt, Fitzhugh Scott, William P. Wenzler.

index

6 The Students Speak
Students speak directly and without interpretation to the members of the Architectural Community.

8 Fire Rating Changes in Wisconsin
Proposed revisions to the Wisconsin Building Code will cause a considerable shake-up in the fire-rating status of many structural systems.

11 Wisconsin Architects Foundation
Plaudits for Women's Architectural League of Milwaukee and reports of Foundation activities.

16 Convention

20 Success in the 70's
Address by Hamilton Beatty, President of Austin International.

24 Awards Luncheon
Owners, Contractors and Architects honored for distinguished accomplishment in architecture.

27 Citations and Awards
Winners of the Annual Drafting Competition, recipients of Citation and Award of Merit.

28 Award Winning Display Booths
Pictured are six of the five display booths, that received awards for excellence of design.

29 Exhibitors Gallery
Architects and members of the Industry.

Wisconsin Architect is published monthly with the exception of July and August which is a combined issue.

Controlled Circulation
Postage . . . Paid at Milwaukee, Wis.
We look forward to the next decade as one of fruitful planning, designing, and building. And we at Best Block Company are always dedicated to be of complete service to the architect in his endeavors.

All the skill and expertise at our command will be gladly given to help build our country to the great goals to which we all aspire.

For the finest in concrete masonry consult with . . .

BEST BLOCK COMPANY
W140 N5998 LILLY ROAD
(MILWAUKEE)
BUTLER, WISCONSIN 53007
PHONE (414) 781-7200
Here are today's BIG THREE in the Construction Industry: Peters' Prestressed Giant TEE, Double TEE and Precast Double TEE Wall Panel. When you specify these and any other of the Precast-Prestressed Concrete Products made at our plant, you're working with units that assure maximum design versatility, construction economy, practical function, and high quality. Why not make the easiest pickup of your life, right now—your phone. Call us. Our line is direct. So is our ability and desire to serve you.

J. W. Peters & Sons, Inc.
Burlington, Wisconsin 53105

414/763-2401, Burlington 414/933-3374, Milwaukee
312/945-6367, Deerfield
The Students Speak...

Returning from the 21st convention of the Wisconsin Chapter A.I.A. where rumors about the student strike abounded. I spent an afternoon at the Students Union on campus at Milwaukee with some of the architectural students at UWM.

I came away from this meeting with a deep sense of frustration and the conviction that another report and another interpretation by an outsider or a member of the so-called "establishment" just wouldn't do.

...Continued from page 1...

We, architecture students involved in the nation-wide student strike, share the concern of our community and of many professional organizations that are questioning our country's continued involvement in the Indochinese War and the repression suffered at home. Because of the misleading public image presented by the mass media, we feel it is our obligation to clarify our position and present the real issues behind the strike.

News media sensationalism — to be expected if it has to "sell itself" — has exaggerated and even invented violence and distortion. In reacting only emotionally it has again overlooked the real educational value of the strike and has failed to evaluate the issues raised by protesters. The strike offered an opportunity for students to reassess their positions on national policies, to survey the developments of the war and to commit themselves to ending the war by those means which they felt were effective. Protesters have been categorized as being violent rioters, communists or at the least as being unpatriotic. Such categorization does not give due regard to the issues and persons involved, thereby allowing the public to avoid evaluating the problems because it has been conditioned to refuse anything labeled with such names.

The main issue of the recent strike was the military invasion of Cambodia without consultation or approval of the legislature. The emotional basis for the tremendous forces it gathered nation-wide was exploded by the senseless killings at Kent, Augusta, and Jackson. This and the other issues of the strike — unjustifiable U.S. involvement in Southeast Asia, a too powerful industrial-military complex, the draft, the admitted dishonesty of the administration in the presentation of facts, racism, the unjust court system, suppression of dissent, indiscriminate use of natural resources, and questions about the content of current education — boil down to a protest against the inhuman climate in this country that allows any one of these things to happen, and to a distrust of all institutions that wish to further that climate and preserve the status quo.

There is evidence of a major social change in this country.

I found the architectural students neither militant nor seeking an out, but, instead actively involved groping for answers to very difficult, complex and confusing questions.

It seems only natural, therefore, that the students should speak directly and without interpretation to the members of the architectural community. We extend an invitation to all students at the architectural school as individuals or groups as they may choose, to express their view in this column, which we hope will continue as a monthly feature of this magazine. Ed.

Increased attempts of the existing institutions to suppress dissent and the inability of dissenter to effectively communicate with them is made evident by larger and more violent protests. At the same time by frustrating otherwise non-committed persons it has mobilized forces that are willing to work seriously to bring about change in those institutions. The major obligation of all institutions and organizations is to anticipate this social change, which we call humanization, and to honestly reevaluate their position and activities in relationship to the real needs of people.

The School of Architecture at UWM did take this opportunity to begin a reevaluation of its activities. It did get involved in the strike, mostly in sympathy to the strikers, but "officially" because the downtown building wouldn't have been safe should there have been some sort of violent confrontation. The regular program was discontinued on Thursday, May 7. Students met again several days later in a meeting at the home of a faculty member, but moved to the "liberated" Student Union in order to identify with strikers. Every student was given the option of doing what he felt was "relevant" to the situation during the last weeks of the semester. Faculty members were available for those who wished to continue their projects. Other students felt that it was more relevant at this time to reevaluate the program of the School of Architecture. A series of seminars was initiated by them to discuss problems of communication outside the university community, what had been done during this first year of the school's existence, whether the curriculum needed changes, problems connected to moving into an old dormitory building on the main campus in fall and the development of a more effective relationship between the school and the whole university community with the school as an activity center for the campus.

The majority of students endorsed the school's education concept of developing an understanding of social problems in relationship to building rather than the training of "master builders." More options and an enriched program are needed to meet individual student's interests. Many students finally realized that learning is not only a classroom — but an individual and independent experience. They themselves would have to recognize and eliminate the...
Efficiencies in the program. Attempts were made to open up the communication barrier between the school and professionals in order to make those people who are involved a practical building and design experience available as information or training resources to students. Together they build concepts and practices that either thought or reevaluation. We will try to organize a seminar or sculpture and discussion program in which architects and students can be involved in the learning process together on a friendlier and more personal basis.

The seminar and discussion program of the School of Architecture that was developed during the last weeks of school did keep that school together, and kept many people involved that didn’t want to be active in the main student strike. On the other hand, it is unfortunate that the school isolated itself from the broader student initiated workshop program open to the whole university. In only talking about a public image it missed the opportunity of actually creating an image as a coordinator of activities concerning the whole student community. The workshops dealt with a much wider range of subject more important in view of the national situation. It included methods of protest, implementing changes, problems of communication, information about national policies and their results, social problems and organizations that deal with them and the role of education in preserving or changing our life style.

People wonder why our educational system has been attacked by strikers at the same time as they attacked U.S. foreign policy. The two are related. Schools for the most part train persons to become experts in a single field of study. The time element limits them to learning professional skills. They leave the university with little understanding of social problems. They have even less knowledge of skills or getting information about these problems or how to implement the changes that are necessary. They have become products trained to make products. U.S. foreign policy is a product — it seeks security of investments abroad and security of its position as the dominant world power. In order to have a worthwhile product however, there must be an understanding of “process.” In order for our educational system to be effective it must be “process” oriented. It is a training in problem solution — how to learn, where to get information, how to evaluate and make decisions and how to reevaluate and to make adjustments according to new information. What was the process by which our national foreign policy was determined? How much evaluation of the needs and desires of these people this nation seeks to “liberate” served as input to policy making? Was there an analysis of the “method of production” — military intervention — in achieving a satisfying product? What about the reevaluation of policy in terms of new information? The products of U.S. foreign policy have been military — not human. Until this country is educated in problem solution and in understanding human needs its products will be worthless and harmful.

The “process” — each individual being able to act with an understanding of human needs as well as professional skills — is what education is about. Process can be learned while working on solutions of real problems in the “real world.” Students could avoid the frustrations of working on fake problems. They could independently determine which ones they thought were most important. Education would go beyond a limited space or time. Professionals and students would be in a better position to evaluate new and to reevaluate old concepts together.

In the process of evaluating what we hadn’t done we realized that we had isolated ourselves from people with practical experience. We have also realized that those people have made few channels open to us other than through employment. We want a commitment on both sides to end that situation. We also want a commitment of both to evaluate the current national situation; not as professional experts, but as human beings who can understand the needs of others as well as their own. We feel that the AIA should use its professional skills and political power to work for an immediate end to the war in Southeast Asia and a solution to social problems at home.

Bob Westphal
Gary Emerson
Philip Graupner
Fire Rating Changes in Wisconsin

Prepared by:
W. T. Collings, President
Collings Engineers, Inc.
Milwaukee, Wisconsin
Dr. Donald R. Buettner
Professor of Structural Engineering
University of Wisconsin — Milwaukee

Proposed revisions to the Wisconsin Building Code will cause a considerable shake-up in the fire-rating status of many structural systems. These revisions to Wisconsin Code IND 51.04 will probably be printed about the Fall of 1970 and become effective about the beginning of 1971. Architects practicing in Wisconsin should be aware of the nature of the changes and their effect on the rating status of particular systems and products. For example, the familiar pan-joist floor which rated three hours with a 2½-inch slab will now require a 6½-inch slab for the same three-hour rating with normal-weight concrete. Also, unless certain conditions are met, some prestressed systems formerly given a blanket four-hour rating will be hard pressed to achieve a two-hour rating without resorting to extra protective applications.

What Does the Hourly Rating Mean?

Before delving into the details of the new code changes, let us first briefly review the basis of establishing fire ratings.

As a measure of resistance to fire, the endurance or rating is expressed as the length of time a building element will withstand a standard test fire before failing in some way. “Failure” may be structural collapse, but it may also be excessive transmission of heat through an assembly so that it fails to be a satisfactory barrier against spread of fire.

In the earlier days of building codes, requirements for fire resistance were of the specification type, spelling out the details of acceptable construction based principally on experience and judgment. In recent years, more and more reliance has been placed on the results of standard fire tests. Ratings of many products and systems have been established directly by tests. Research testing has also been used as the basis for establishing or modifying code requirements of the detailed specification type, as well as for developing the engineering-science aspects of fire protection.

The accepted standard for testing is ASTM E119, “Standard Methods of Fire Tests of Building Construction and Materials.” According to this procedure, the specimen to be tested is placed on a test furnace which is fired so that the temperature below the surface follows a prescribed curve, reaching 1300° in ten minutes, 1700° in one hour, and 2000° in four hours. During the test, the specimen is loaded to its design or working load. Surface temperature is also measured at the top (unheated surface) of an assembly. If the average temperature of the unheated surface rises more than 250°, this constitutes an “end point” of the test by heat transmission. Structural collapse into the furnace also obviously is an “end point.” The length of time from the beginning of firing to a structural or heat-transmission end point is the rating of the specimen.

The hourly rating referred to in the codes means length of resistance to this standardized fire of ASTM E119. This has become the rating norm throughout the country. It is questionable whether this standard fire is a realistic representation of an actual fire likely to occur in a given building. However, it will probably continue to be the basis of endurance ratings for some time to come.

What Changes are Forthcoming?

The code will now provide for three methods of establishing the fire rating of building elements. In addition to the acceptance-test method and the modified standards method previously available, the code will now recognize a calculation method by which a rating may be determined using a rational design procedure.

(1) Rating by Test by Approved Laboratories (IND 51.043)

This is not a new rating method. However, changes recently made in ASTM E119, which is the basis of this rating method, will have a significant effect on the rating status of many products and systems. Underwriters’ Laboratories is now in the process of reevaluating their ratings previously established by tests, in the light of the new E119 provisions. Revised ratings are expected to be published about January of 1971, which is about the time the new Wisconsin Code provisions are expected to become effective.

The major change which requires all this reappraisal is the creation of two distinct ratings for each floor or roof assembly or member. Both a “restrained” and an “unrestrained” rating are to be established. “Restraint” refers to substantial resistance to longitudinal thermal expansion of a specimen subjected to fire. The presence or absence of substantial horizontal thrust caused by restraint against expansion has been known to be an important factor in determining the structural endurance of test assemblies. (The thrust generally serves as a beneficial prestressing force aiding the load-carrying capacity of the system.) Previous tests were generally conducted “restrained” according to the new standard. Now, it is also required that the unrestrained performance be evaluated. This can result in a substantial decrease in rating for some systems tested in an unrestrained manner.

Since two separate ratings will exist when the test method is employed, it will be necessary to determine which of the two conditions applies in a given situation in an actual structure. Presumably, the criterion for deciding whether restraint exists will be the guidelines in appendix of the latest version of ASTM E119 which contains definitions and tables outlining restrained and unrestrained conditions.

(2) Rating by Typical Examples of Fire-Resistive Standards (IND 51.044)

The revised code will contain tables illustrating standard of protection which may be used as a method of establishing fire ratings of structural elements. These are new tables and much more extensive than those in previous versions of the code and certain requirements are much more stringent than in the past.

For example, concrete will be classified according to three basic types of aggregates (calcaceous, siliceous, or lightweight). Types of construction include:

Structures without applied protection:
Ordinary reinforced concrete | poured-in-place and
Prestressed concrete | precast.
Masonry and reinforced concrete walls
Structures with direct applied protection (steel)
Structures with suspended or attached protection (concrete and steel)

Ordinary Reinforced Concrete: Requirements for concrete over will be similar to those of the past except for minor adjustments. However, minimum member dimensions will be required, with floor slab thicknesses being drastically increased to prevent heat transmission. For example, for four-hour rating, a column must have at least a 12-inch thickness and not less than 144 square inches of section. A normal-weight slab may not be less than 7 inches thick or a four-hour rating and 6½-inches for a three-hour rating except for roof construction under certain conditions. For normal pan-joist construction, these new minimum-dimension requirements make it virtually impossible to obtain a four-hour rating without applied protection because the minimum web width will be 8 inches and a 7-inch slab will be required. A three-hour rating for pan-joists without applied protection also appears impractical except possibly for roofs because of the 6½-inch slab required except where heat transmission requirements are waived.

Prestressed Concrete: These requirements are all new. Thicknesses of cover over steel (which are sufficient for the restrained condition and a simple span) are greater than for ordinary reinforcing because at high temperatures, restressing wire loses strength more rapidly than mild steel. Minimum member dimensions are also required. Minimum slab thicknesses are similar to those required for ordinary reinforced concrete because they are governed by heat transmission, but minimum web widths for beams and joists are even greater than for ordinary reinforced concrete.

Structures with Applied Protection: This portion of the code has been expanded from previous versions. Types of protection are divided into those applied directly to the structural member and those suspended or attached such as by furring.

3) Rating by Approved Method of Calculation (IND 51.045)

This is an entirely new rating method. The first two methods obviously do not cover all possible design conditions. There are many variables which influence the endurance which would result if a given structure could be subjected to the "standard fire" of ASTM E119. This calculation method allows for the application of engineering data and research in the rational calculation of fire endurance.

Calculation procedures are not spelled out in detail in the code. However, calculations are to be based on the time-temperature curve of ASTM E119, together with laboratory research data regarding thermal characteristics of the materials and proper evaluation of the effects of span type (simple or continuous) and degree of longitudinal restraint against expansion. The authors infer that the code will also require that floor assemblies meet the heat-transmission requirements of E119, that ultimate load capacity shall be at least 1.0 times the full design load during the endurance period, and that fires need not be assumed to exist simultaneously both above and below an assembly.

Strength of structural members exposed to fire is principally influenced by the temperature of critical portions or elements made of steel. As these elements heat up, a point is reached at which the steel strength is reduced enough to allow yielding of the heated area and eventual collapse at design load. The endurance of many floor or roof constructions of this sort can be computed using available data relating steel strength to temperature and temperature to endurance time for the given protecting materials by means of an ultimate-strength calculation.

Who Says We Need Three Hours?

No doubt these forthcoming code revisions represent an improvement and updating in establishing realistic hourly ratings of structural members in terms of resistance to an ASTM E119 fire. But this leaves unexplored the whole question of whether the hourly ratings required for given buildings are appropriate or not.

It is clear that a building with a high rating, say four hours, gives a sense of security. But this may be a false sense of security. In the United States, with our generally high level of required fire ratings (higher than most other countries), we also have a higher death rate from fires than any other country. The fact is that more people die from smoke inhalation and suffocation than from structural collapse. A building with a four-hour rating may be "unsafe" while a two-hour rated building with better ventilation may be far superior from a life-safety point of view.

But even from a purely structural point of view, required ratings are badly in need of review. As stated previously, although the "standard fire" of ASTM E119 is the accepted standard "yardstick" for rating or comparing behavior of members exposed to fire, it is questionable whether it realistically represents the effect of a real fire to be expected in a given building. The ASTM curve, adopted in 1918, was intended to represent a fire likely to occur in a burn-out of contents and structure of a brick bearing-wall building with wood floors typical of that day.

Since that time, some data have been obtained from large-scale burn-out tests in buildings and special test buildings which are indicative of temperatures representative of real fires. Figure No. 1, adapted from an article by L. G. Siegel, shows approximate temperatures measured in certain burn-out tests with various amounts of material (wood) available for combustion. Temperatures and durations were quite variable, but certain trends are clearly apparent: (a) early peaks somewhat above the ASTM curve are likely, (b) no real fire is likely to follow the continually-rising temperature pattern of the ASTM curve, and (c) a sustained period in excess of 1½ or 2 hours would require a very large amount of combustible material.

Obviously, many variables enter into the determination of probable fire intensity and duration. Before code changes involving any sophisticated system reflecting these variables can be made based on well-documented theory and experience, a great deal of testing and study will be required. But it is the authors' contention that those involved in building design should promote the development and use of rational methods for fire protective design.

The question of what hourly ratings should be required for various occupancies is now being reviewed by a code committee. This review is necessary and timely, especially because of the increased thicknesses of members and protective materials required by the new code provisions to

(Continued on page 42D)
SOME METHODS OF VERTICAL TRANSPORTATION ARE NOT AS GOOD AS OTHERS. LET US RECOMMEND THE BEST ANSWER TO YOUR PARTICULAR NEEDS AND PROBLEMS.

Dover elevators are installed and maintained in Wisconsin by...

NORTHWESTERN ELEVATOR CO., INC.

2030 W. BENDER ROAD, MILWAUKEE, WIS. 53209
372-3510 Area Code 414 • Offices in MADISON and APPLETON
Laudits For WAL-Milwaukee

WAL-MILWAUKEE’S ability to raise money is always laudeworthy. Their success is predicated on the choice of functions for the purpose that invariably induces the mutual enjoyment of all the participants. Who could ask for a better formula? Also, the members are innovators. Who could think of a winter picnic and top it off with a lizard? Each year the activities are different, or maybe an idea previously used is given a new twist.

Added to the social aspect of fund-raising is an annual program of architectural education for the members dedicated to the splendid idea that a woman better informed and understanding of her husband's profession, makes for mutual awareness and appreciation of that part of their life together. This year they have been exposed to the relationship of the Architect to his environment and his political role in the community.

Last season's most ambitious undertaking was a Theater party involving a festive dinner in Bradley Hall at the new Performing Arts Center, and the rollicking version of Canterbury Tales in the music hall. The picnic idea has become tradition, at any time of year but never quite the same, and when an auction of articles donated by the members is involved, as well as a spirited auctioneer, it is lots of fun. Possibly one of WAL’s smoothest operations is a tour of a group of Chapter members’ homes — the catering and service are superb. This resume is only a sampling of their ventures begun some ten years ago.

WAL’s contributions this past year, resulting from their fund-raising, have been diversified in new and interesting directions:

• $1,000 has been given to the School of Architecture for augmenting the Slide Collection WAL instituted last year when they presented to Dean John W. Wade a sum of $3,000 for the purpose, the money coming from one-half the contributions to Wisconsin Architects Foundation which had been invested for a future purpose connected with the anticipated school.

• $200 was presented to The Octagon (AIA-Washington, D. C.) for an antique table in connection with the renovation of that historic building.

• Locally, in Milwaukee, WAL members have found particular respect for a neighborhood project WAICO (Walnut Improvement Council) in which a number of local architects are involved to aid in community improvement in the inner city. To this project WAL contributed $400.

• Of great interest to the Chapter membership should be the fact that WAL-MILWAUKEE is pioneering in providing $600 to Wisconsin Architects Foundation for the initial establishment of a year’s scholarship for a worthy female student at the School of Architecture. If no suitable recipient is available, the money is to be invested for that future purpose, and the fund will be added to from year to year.

All praise to WAL-MILWAUKEE, your Board of Directors, Committee Chairmen and members, and your President, Mrs. Charles Harper. What enterprises lie ahead? Cooperative interest by Chapter members will continue to be an essential element of any WAL group’s success, throughout the State and throughout the United States.

Final Tuition Grant Graduate

Of the 80 Wisconsin architectural students who received Tuition Grants from Wisconsin Architects Foundation, the final one to graduate, in the program’s tapering off, was Robert DeBruin of Appleton. Commencement exercises at the University of Detroit occurred on May 2nd, at which time this student received his B.A. Degree Cum Laude in Architecture, graduating first in his class of some 25 students, with an overall G.P.A. of 3.15/4.0. He had achieved all A’s during his final semester.

The School of Architecture at Detroit operates on a cooperative plan and on a tri-semester basis which means that Mr. DeBruin spent alternate 4-month periods working in an architect’s office as a part of his training. Since his graduation he has continued to work in that office while completing the final phase of his thesis, which, we understand, is entitled “Child Development School Systems.” A sample of his work, one of his design problems, will be published in the next issue.

Essentially all of the Foundation’s Grant students graduated with distinction. They are most carefully chosen in the first place for scholastic excellence, apparent potential, and particular financial need. Their grades were reported periodically by the schools attended and this gave credence to continuation from year-to-year of further grants. The Foundation’s secretary had each student visit her personally for actual acquaintance, briefing on the Foundation’s purposes, and, hopefully, encouraging their ultimate return to Wisconsin.

The Directors of the Foundation are giving full attention presently to the extension of student financial aid to take the form of Scholarships, the program to assist worthy students attending the School of Architecture at UWM.

Foundation Annual Meeting

Meeting held on May 22nd, and new members and officers will be reported in next issue.
Spancrete is compatible with most building systems

This is a Spancrete "Systems" Building...
The Parkview Apartments in Winchester, Massachusetts used 32½' Spancrete planks for the open spans and 8' lengths for the stair landings in this 320-unit, semicircular apartment. Carpeting, linoleum and other finishing materials were applied directly over the Spancrete. Precast concrete walls extend the full 30' depth of the building. The entire structural shell was precast and erected at the rate of one floor a week for eight weeks.

Architects: Williams & Paige Associates
Structural Engineer: Sopp-Finkas Engineers, Inc.

This is a Spancrete "Systems" Building...
This component "systems" building is called an "in-fill" project because new buildings can fill in areas once occupied by one or several buildings within a neighborhood. The entire neighborhood need not be raised. This 267-apartment complex of two, three and four story buildings are being erected for the Lowell, Massachusetts, Redevelopment Authority. Spancrete in 6' size with lengths to 23' are used in conjunction with precast stairs, stairwells, landings and window-wall panels.

Architect: Donald Stull Associates, Inc.

BUT this is Spancrete with conventional construction...
Here "The Yorker" Luxury Apartments of Eden, Minnesota shortened erection time by using 35' Spancrete planks for floor, ceiling and roof. The planks became an immediate work deck from which the structure bearing concrete blocks were placed. Scaffolding was unnecessary. Fewer trades were needed. Balconies were easily formed by planks with 4' cantilever.

Architect: Reese Ratz
Structural Engineer: Lloyd Darg

Before you build your next apartments, check these Spancrete features:
- Shorter construction time—Cuts interim financing...provides earlier income
- Eliminates forming—lower cost
- Fast all-weather erection
- Immediate work deck
- Sound insulation
- Fire resistance
Are you utilizing this man on your design team?

He is your trained All-weather Crete sales engineer. This specialist can assist you in planning the most economical roof drainage patterns utilizing All-weather Crete insulation. He can illustrate many successful types of plaza systems so that you may select the one design most appropriate for your building. He can provide your staff with scaled detail drawings illustrating the many roof deck and plaza system components adjacent to All-weather Crete such as drain types, membrane systems and wearing surfaces.

This man is also your trained All-weather Crete applicator who helps make your design come true. He is a highly specialized contractor licensed by Silbrico Corporation. This skill and selective licensing protects designers and owners alike with the assurance of expert All-weather Crete application and its exceptional performance for years to come.

Consider the importance of roof and plaza insulation . . . hidden from sight, covered by membranes and wearing surfaces, applied over every conceivable sub-strate, this insulation is asked to perform many functions. Contact your local AWC specialist to assist you. Use his special knowledge on your next building project. (There's no obligation, of course.) If you don't know his name, write us — we'll have him contact you.

SILBRICO CORPORATION
P.O. BOX 3653, MILWAUKEE, WISCONSIN 53217
PHONE (414) 352-2902
ENCHANTMENT IN COLOR FOR MASONRY.

MEDUSA CUSTOM COLOR

Add elegance to new homes with the use of Medusa Custom Colored Masonry Cement for colored mortar.

By specifying a colored mortar for your Home, Town House, or Apartment, you customize and personalize its architectural splendor. With little additional cost, you will appreciate your investment to its fullest.

Offer your clients new enchantment in color. Choose from a multitude of colors available in sample kits. Write for color brochure—Medusa Portland Cement Co., P. O. Box 5668, Cleveland, Ohio 44101.

Write for free sample kit containing six popular MCCMC colors.
SHEET METAL CONTRACTORS OF MILWAUKEE

Address: 7635 West Bluemound Road, Milwaukee 53213

Phone: 258-8177

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLENC, INC.</td>
<td>Milwaukee — 542-7251</td>
<td></td>
</tr>
<tr>
<td>AJAX METAL PRODUCTS</td>
<td>Milwaukee — 325-3970</td>
<td></td>
</tr>
<tr>
<td>AMERICAN FOUNDRY FURNACE CO. OF WIS., INC.</td>
<td>Milwaukee — 376-7971</td>
<td></td>
</tr>
<tr>
<td>ARCHITECTURAL WALL SYSTEMS</td>
<td>Milwaukee — 964-7550</td>
<td></td>
</tr>
<tr>
<td>ATLAS HTG. & SHEET METAL, INC.</td>
<td>Milwaukee — 347-7818</td>
<td></td>
</tr>
<tr>
<td>AVER HTG. & AIR CONDITIONING</td>
<td>Milwaukee — 562-0364</td>
<td></td>
</tr>
<tr>
<td>B & H INDUSTRIAL SHEET METAL WKS., INC.</td>
<td>Milwaukee — 675-4450</td>
<td></td>
</tr>
<tr>
<td>BADGER SHEET METAL CO.</td>
<td>Milwaukee — 933-4994</td>
<td></td>
</tr>
<tr>
<td>BADGER WISCONSIN HEATING CO.</td>
<td>Milwaukee — 325-5040</td>
<td></td>
</tr>
<tr>
<td>W. A. BENZ SHEET METAL PRODUCTS</td>
<td>Milwaukee — 781-6990</td>
<td></td>
</tr>
<tr>
<td>BERGHEIM COMPANY & HEATING CO., INC.</td>
<td>Milwaukee — 242-2770</td>
<td></td>
</tr>
<tr>
<td>BONDED HEATING CO., INC.</td>
<td>Milwaukee — 441-4144</td>
<td></td>
</tr>
<tr>
<td>BROZEK HEATING & SHEET METAL CORP.</td>
<td>Milwaukee — 462-8120</td>
<td></td>
</tr>
<tr>
<td>BUILDING SERVICE, INC.</td>
<td>Milwaukee — 445-1535</td>
<td></td>
</tr>
<tr>
<td>BUTTERS-FETTING CO., INC.</td>
<td>Milwaukee — 457-5780</td>
<td></td>
</tr>
<tr>
<td>CASEAR PLUMBING & HTG. CO., INC.</td>
<td>Milwaukee — 383-0493</td>
<td></td>
</tr>
<tr>
<td>CENTURY SHEET METAL WORKS, INC.</td>
<td>Milwaukee — 445-6790</td>
<td></td>
</tr>
<tr>
<td>E. A. CHRISTIANSEN ROOFING CO., INC.</td>
<td>Milwaukee — 457-0730</td>
<td></td>
</tr>
<tr>
<td>COMFORT CONTROL CORP.</td>
<td>Milwaukee — 356-9140</td>
<td></td>
</tr>
<tr>
<td>CONDITIONED AIR DESIGN, INC.</td>
<td>Franklin — 411-0850</td>
<td></td>
</tr>
<tr>
<td>CUSTOM HEATING & AIR CONDITIONING CO.</td>
<td>Milwaukee — 445-7800</td>
<td></td>
</tr>
<tr>
<td>DE GELLEKE CO., INC.</td>
<td>Milwaukee — 482-0315</td>
<td></td>
</tr>
<tr>
<td>DEMSHAR HEATING & SHEET METAL CO., INC.</td>
<td>Milwaukee — 445-8000</td>
<td></td>
</tr>
<tr>
<td>DEMPSEY HTG. & SHEET METAL, INC.</td>
<td>Milwaukee — 446-3084</td>
<td></td>
</tr>
<tr>
<td>DIEZ HEATING, INC.</td>
<td>Milwaukee — 781-8016</td>
<td></td>
</tr>
<tr>
<td>DOWNEY HEATING CO.</td>
<td>Milwaukee — 933-3132</td>
<td></td>
</tr>
<tr>
<td>DROEGKAMP FURNACE CO. BUTLER</td>
<td>Milwaukee — 781-8610</td>
<td></td>
</tr>
<tr>
<td>BOB G. ENGEL Co., INC.</td>
<td>Milwaukee — 485-4457</td>
<td></td>
</tr>
<tr>
<td>ESCHENBURG HEATING & SHEET METAL WORKS, INC.</td>
<td>Milwaukee — 562-0945</td>
<td></td>
</tr>
<tr>
<td>FORD SHEET METAL & HTG., INC.</td>
<td>Milwaukee — 325-1770</td>
<td></td>
</tr>
<tr>
<td>ALFRED GOETHEL SHEET METAL WORKS, INC.</td>
<td>Milwaukee — 873-1100</td>
<td></td>
</tr>
<tr>
<td>GOETHEL COMPANY, INC.</td>
<td>Milwaukee — 353-0185</td>
<td></td>
</tr>
<tr>
<td>JOHN J. GRUPE HTG. & SHEET METAL, INC.</td>
<td>Milwaukee — 457-1190</td>
<td></td>
</tr>
<tr>
<td>J. GROESCHEL & SON</td>
<td>Milwaukee — 873-8815</td>
<td></td>
</tr>
<tr>
<td>CROSS HEATING & AIR CONDITIONING, INC.</td>
<td>Milwaukee — 441-4409</td>
<td></td>
</tr>
<tr>
<td>PAUL J. GRUPE COMPANY</td>
<td>Milwaukee — 481-5400</td>
<td></td>
</tr>
</tbody>
</table>

Symbols

- **A**: Architectural Sheet Metal
- **B**: Fume and Dust Control Systems
- **C**: Residential Cooling
- **H**: Warm Air Heating Systems
- **I**: Industrial Sheet Metal
- **K**: Kitchen Equipment
- **M**: Sheet Metal Specialties
- **S**: Sheet Metal Buildings
- **V**: Commercial Ventilating and Cooling

14B
Wisconsin architect/june, 1970

PPG Performance Glass has made these 37 recent contributions to America the beautiful. (And America the comfortable.)

Architects all over the country are putting up more buildings that use beautiful PPG Performance Glass. The architects of the 37 projects shown below used a PPG Reflective Insulating Glass, for one or more of several reasons: openness, reflectivity, color, drama, visual comfort, or to keep out the heat and the cold.

The list is made up of Solarban installations only, and while it is by no means complete, it does offer a guide to a number of interesting projects in widely scattered locations. For further details, write or call Mr. D. C. Hegnes, Manager, Architectural Construction Service, PPG INDUSTRIES, One Gateway Center, Pittsburgh, Pa. 15222.

ALASKA: Anchorage
Architect: Manley and Mayer
PPG Glass: Solarban (2)

CALIFORNIA: Los Angeles
Jules Stein Eye Institute
PPG Glass: Solarban (3)

COLORADO: Denver
Denver Center
Architect: W. C. Muchow Assoc.
PPG Glass: Solarban (2)

FLORIDA: Clearwater
Pinellas County Courthouse
Architect: Anderson, Johnson, Henry and Parish
PPG Glass: Solarban (2)

FLORIDA: Cocoa Beach
Cape Canaveral Hospital
Architect: Stevens & Walton
PPG Glass: Solarban (3)

FLORIDA: Titusville
Brevard County Courthouse
PPG Glass: Solarban (3)

GEORGIA: Atlanta
Cities Service Building
Architect: Toombs, Amisano and Wells
PPG Glass: Solarban (3)

GEORGIA: Carrollton
West Georgia College
Architect: John W. Cherry
PPG Glass: Solarban (2)

ILLINOIS: Chicago
Hyatt O'Hare Hotel
Architect: John Portman & Assoc.
PPG Glass: Solarban (2)

ILLINOIS: Rockford
Downing Box Company
Architect: Larson & Darby
PPG Glass: Solarban Bronze (3)

ILLINOIS: South Chicago
Ardis Corporation
Architect: McCarthy-Hundrieser & Assoc., Inc.
PPG Glass: Solarban (2)

MARYLAND: Baltimore
Social Security Administrative Complex
Architect: Myer, Ayers & Saint
PPG Glass: Solarban Bronze (3)

MINNESOTA: Duluth
St. Luke's Hospital
Architect: Thomas J. Shefchik & Assoc., Inc.
PPG Glass: Solarban (2)

MINNESOTA: St. Paul
Pearson Candy Company
Architect: Cermi Associates, Inc.
PPG Glass: Solarban (23)

PENNSYLVANIA: Indiana
East Pike Elementary School
Architect: Robert T. Scheeren
PPG Glass: Solarban (3)

SOUTH DAKOTA: Sioux Falls
Airport
Architect: Fritzel, Kroeger, Griffin & Berg
PPG Glass: Solarban (2)

TENNESSEE: Bristol
Tri-Cities Airport
Architect: Anderson & Gilliam
PPG Glass: Solarban (3)

TENNESSEE: Cookeville
Cummins Engine Company
Architect: Walter E. Damuck
PPG Glass: Solarban (3)

TEXAS: Dallas
American Hospital Supply
Architect: Nelson, Ostrom, Baskin, Berman & Assoc.
PPG Glass: Solarban Bronze (3)

TEXAS: Houston
One Shell Plaza
Architect: Skidmore, Owings & Merrill and Wilson, Morris, Crain & Anderson
PPG Glass: Solarban Gray (3)

VIRGINIA: Fairfax
Fairfax County Governmental Center
Architect: Voisbeck, Voisbeck, Kendrick & Redinger
PPG Glass: Solarban Bronze (3)

VIRGINIA: Roanoke
Southwest Virginia Savings & Loan
Architect: Corsigliano, Motley & Shane
PPG Glass: Solarban (3)

MISSISSIPPI: Gulfport
Mississippi Power Company
Architect: Kinsey, Motley & Shane
PPG Glass: Solarban (3)

NEW JERSEY: Lawrenceville
Public Service of N.J.
Architect: Jules Stein Eye Institute
PPG Glass: Solarban (23)

OCTOBER: Wayne
Orban Office Building
Architect: Bernard Rottenzeid
PPG Glass: Solarban (23)

OHIO: Canton
Kent State University
Architect: Lawrence, Dykes, Goedenberger & Bower
PPG Glass: Solarban (3)

OKLAHOMA: Lawton
YMCA
Architect: James Marshall
PPG Glass: Solarban (2)

OKLAHOMA: Oklahoma City
Lincoln Plaza
Architect: Hallie Riek and Hester
PPG Glass: Solarban (2)

OKLAHOMA: Tulsa
Tradewinds Motel
Architect: Russell Magee
PPG Glass: Solarban (3)

OREGON: Portland
Esco Corporation
Architect: Wolff, Zimmer, Gunsul and Farsac
PPG Glass: Solarban (3)

PENNSYLVANIA: Allentown
Mack Truck
PPG Glass: Solarban (2)

PENNSYLVANIA: Beaver
Beaver Area High School
PPG Glass: Solarban (3)

WISCONSIN: Appleton
Wisconsin Wire Company
Architect: Birch Grish-Phillips, Inc.
PPG Glass: Solarban Bronze (3)

WISCONSIN: Madison
Ohio Products Company
Architect: Weiler, Strang, McMullin & Assoc.
PPG Glass: Solarban (2)

WISCONSIN: Milwaukee
South Milwaukee Public Library
Architect: Lasch & Hauger Inc.
PPG Glass: Solarban (3)

WISCONSIN: Racine
St. Luke’s Hospital
Architect: Hams M. Geyer
PPG Glass: Solarban (3)

PPG is Chemicals, Minerals, Fiber Glass, Paints and Glass. So far.
The twenty-first convention of the Wisconsin Chapter, A.I.A., was held on May 6, 7 and 8 at Lake Lawn Lodge, Delavan, Wisconsin. This year's professional program under its theme of 70 Plus turned its attention toward the profession itself, exploring what the future might hold for it. Change, growth, social needs and expanded services were the main topics.

For the first time this year, students of the new School of Architecture at UWM actively participated in the formulation of the convention program and were represented by student Paul Seifert. An event of significance in itself.

Karel Yasko, FAIA, with the U.S. General Services Administration, a former Wisconsinite, ably keynoted the convention. He reported on "operation breakthrough" and, although Kafkaesque images were evoked as he described the tedium involved, he insisted on an optimistic attitude. President of Austin International, Mr. Hamilton Beatty's thoughtful address highlighted the professional program and we are happy to reprint it in full in this issue. Seminars with Louis de Moll, F.A.I.A., of The Ballinger Company of Philadelphia, D. S. Hegnes, Vice President of Architectural and Construction Services of PPG Industries and Max Cardiff, Director of Design and Construction Division of IBM rounded out the program. Mr. Hegnes reported on research at PPG and its results for the industry. Mr. Cardiff showed a series of slides with the most impressive architecture one could envision. These structures were produced under IBM's philosophy by independent contract architects rather than "in-house" designers. Professor William Stumpf of the School of Architecture eloquently spoke for the need of a competent environment.

The fun and fellowship portion of the convention consisted of a Mardi Gras Carnival and the banquet. Banquet speaker Dr. Cleo Dawson, lecturer and popular psychologist, reportedly moved her listeners with an evangelistic fervor.

Following are convention candid photos.

Mr. and Mrs. William Blake. Mr. Blake is President of the Southeast Section of the Chapter.
The two sides of Reimar Frank. Mr. Recorder himself, working away with the tape recorder.

President of the Wisconsin Chapter, A.I.A., Sheldon Segel, Mrs. Reimar Frank and her husband sporting an intriguingly false beard.

George Schuett, Secretary-Treasurer of the Wisconsin Chapter, enjoying Mort Armour's reaction to the prize he just was handed by Dick Blake who looks most un-Japanese in his authentic kimono.

Karel Yasko at one of the seminars.

Professor William Stumpf.

Max Cardiff of IBM's Design and Engineering for the Real Estate and Construction Division.
President Segel, Mrs. Joseph Flad, Mrs. George Schuett, Vice-President of the Chapter, Nathaniel Sample and Mrs. Sheldon Seg at the banquet.

D. C. Hegnes, Vice-President of Architectural and Construction Services, PPG Industries.

Two happy construction workers. But kissing each other?

Karel Yasko was awarded two ladies legs that put his lungs to the task.
To dramatize the need for barrier-free architecture, wheelchairs were made available for a personal experience and test. Allen Strang, FAIA, dutifully helps his wife who normally is not in need of a wheelchair but seems in this instance to have hurt her ankle.
Success in the 70's

By Hamilton Beatty, President

Austin International

Where are architects going?

This question was posed, with ever-increasing frequency, all through the 60's, and provoked a wide variety of answers. Just as you would expect from certain quarters, the answers were gloomy, despairing, fatalistic: Architecture is a dying profession. Architects are obsolete. From other quarters the answers were more positive, more constructive in their reach.

Within your own organization — the AIA — each succeeding answer, be it inquiry, committee report, or other response, became increasingly realistic.

The earlier attempts to re-define the architects’ role have been criticized as defensive, short sighted, and confused as to purpose. The very fact that those attempts were made, brought forth criticism, and were followed by others, is the important point to keep in mind. They have been the visible, recorded history of the growing awareness within the profession that it is the profession itself which must first ask: “Where are architects going?” second, “Where do we want architects to go?” and thirdly, “What must we be doing to get there?”

This concern with the architects’ role is not confined to those in this room, the AIA, or the United States. It is of international magnitude.

Here are some headlines from Sydney, Australia. Are they from an architectural journal? No. they’re from The Financial Review.

First, a three article examination of the profession: Should architects again become master builders?
Architects’ “professionalism” is not enough in the modern building business. The new managerial view of space, time and architecture.

And then two more articles — these by the President of the New South Wales chapter of the Royal Australian Institute of Architects, who is also Dean of the Faculty of Architecture at Sydney University. Here is his headline: No, architects do not have their heads in the sand.

In Great Britain, the Sunday Times of London on February 1st devoted a full page to the architects’ dilemma under this banner: Architects on the edge of the precipice.

In France, Spain, Germany and Italy the same ferment exists and, of course, for the same reasons as right here at home.

Out of all this turmoil, questioning, analyzing, and public debate we can, I believe, accurately state the position of the architect at the end of the 1960’s.

The forces of society impinging on our profession are changing it without our overt action.

The architect finds himself further separated from the main stream of the total building process.

Legal barricades are no longer effective in protecting the architects’ role in the building of our environment nor are professional rear guard actions in maintaining the status quo.

So much for history — where we now stand. The real reason I am glad to be here today is to share with you my convictions about the opportunities which await us architect in the 1970’s and the steps I believe to be essential if we are to realize our full potential.

Obviously, I don’t believe architects are obsolete, nor that architecture is a dying profession. After all, I am an architect. I am opposed to the notion that the architect should be confined by self-imposed chains to an obsolete view of his role in society and hampered in the way he can make his vision, his professional training, and his leadership felt, sought, and forceful.

This means I must agree with those who wish to re-define the architect, to expand his vision, to have him think of himself as a truly vital member of the building team.

I do. All that is good, but only as mental preparation, as acceptance of needed change. We’ve got to go a lot farther, and I have some specific recommendations to pass on to you. I will outline them at the conclusion of this address.

As architects, we all know you cannot solve a problem unless you have been able to define what that problem is and write a clear concise program.

In analyzing our problem, it seems to me we must reckon with the forces that have been building up on three fronts:

1. Pressures within the profession itself
2. Pressures from a changing building technology
3. Pressures being exerted by a more knowledgeable, sophisticated client.

Let’s take a closer look at each of these.

First, the pressures from within the profession itself. And while we are about it, let’s be perfectly honest, the general in the 1970’s and the steps I believe to be essential if we are.

Traditionally, the architect has viewed himself in his historic role as the master builder, the leader and director of the building team.

Unfortunately, this once valid view is today a myth. In point of fact, on most of the building being carried out today the architect is neither the master builder nor the leader of the team.

There is not time today to examine all the reasons why this is so because they are the basis for all of the questioning, probing, searching of the sixties. Nor need we spend time trying to agree on how seriously the architects’ position has been reduced in importance.

Too often in the past, the reaction to these far-reaching changes has been purely defensive and defensive measures seldom contribute to positive and constructive solutions.

I believe it to be a fact that architects have been losing their former position of leadership. My travels over the past eight years have given me the opportunity to observe at first hand this condition on three continents. I also see little use in debating the point. I do, however, see every reason for addressing ourselves to this vital question:

Are we going to take part in the decisions which will really affect the future of us all — of society itself?
The greatest deficiency in the defensive attitudes of yesterday is that you cannot shun responsibility on the one hand and expect to retain recognition on the other. Among many reasons why the architects' role in the building process has diminished, surely a key one must be diminished acceptance of responsibility. Modern buildings have become so complex that it is physically, intellectually, and financially impossible for the individual architect, no matter how brilliant and professionally dedicated he may be, to provide the design, execution, and control that was still possible prior to World War I.

The essential economic realities of today's world have led (not forced) the designer, as a simple matter of self-protection, to shift responsibility for performance elsewhere. Surely it is axiomatic that professional recognition follows the shift of responsibility regardless of where it winds up.

This is unquestionably a bitter pill to swallow, but a defensive stance can't change the pill to a tonic, any more than it can transform myth into truth.

Now, let's look at the pressures which have been building up as a result of a rapidly changing building technology. One of the blessings of this country of ours is its productive capacity, its wealth of new products, new materials, new techniques. Someone is always coming up with a new "mousetrap," better, cheaper, quicker than the last. Well, different, anyway.

Such a wealth of new products and materials is certainly a boon to the average consumer but it's a mixed bag for the architect.

New materials extend the limits of artistic expression and new techniques liberate our designs from the structural restraints of the past, but keeping ahead of the avalanche of literature describing them is something else again. To employ them properly in our clients' interest we must know, not only their physical and economic characteristics, but their longevity and "wearability." For the professional architect working alone, the job is not only exhaustive, but impossible. In fact, there's really not even time to read the literature on manufactured products which bombards our office doors. I'm particularly tender on this subject since my name is on 48 state registration rosters which form the mailing lists most generally used.

New construction methods and techniques are also being introduced at an increasing rate. In the last decade alone we have witnessed dozens, if not hundreds of new construction methods and techniques for housing, office buildings, public facilities, even factories. We are all aware that the government is a partner in this exploration. Demonstration projects for new building techniques have become common place. The whole of the exploration program of new methods appears at times like something akin to a moon shot.

Where does all of this leave the architect, particularly the professional who is practicing alone? On the sidelines, most likely. An interested observer.

It doesn't require any exceptional talent as a soothsayer to predict the trends in the building industry. The rapid changes we are seeing in construction materials will continue to change the way in which we will use these materials. Similarly, the way in which we use the new materials is going to change the roles of various members of the construction team. This applies not only to us as architects, but to others as well.

I am speaking of industrialization of the building process — industrialized components, modular types of construction, consumer-oriented construction systems. Like it or not, building industrialization has become a fact of life. It is well advanced in Europe. Its development here is still fragmented and we are a long way from true standardization of components. Nor do I believe any great revolution is in the making. It is an evolutionary process that has already produced more industrialization than we care to admit. We are going to see more of it in the future. The traditional restraints to the concept of industrialization are giving way.

So much for the pressure from within the architectural profession itself and those from a rapidly changing technology. Now last, but certainly not least, there is the pressure that comes from the client.

Today's client bears little resemblance to yesterday's. Then he was very likely one man who needed a new facility. He had a rough idea of what he could spend, what he wanted, where and when he wanted it.

Today's client is seldom one man, but a whole battery of men who come to the conference table bearing slide rules, marketing data, cost analysis print-outs, production schedules, ad infinitum. They know to the penny what they can spend. And they have some rather precise ideas of exactly when they need the new facility.

The client has always been concerned with the completion of his building — within budget and on time. But with the changes that have been taking place in our economy of late, he is becoming more demanding as the pressures of the economy intensify. And he has a right to become more demanding. His investments are bigger. His operating costs are greater. Even his money is costing him more, notwithstanding the fact that it is often harder to come by.

Today's client doesn't live in a vacuum either. He is much more aware of changing technology and methods, oftentimes playing a major role in changing them. He is a member of this management group or that management group and he frequently turns up in the oddest places to discuss management principles and how to improve them.

What does it all mean? It means that he just isn't satisfied with the old ways of doing things. He thinks they cost too much. He thinks they take too long. Now, he wants to know exactly how much his building will cost, how long it will take, and how well it will function — all before construction begins. He also wants good architectural design. He wants his facility pleasantly integrated with the landscape. He likes good taste in interior furnishings and treatment. But he wants more than that. He is concerned about space, function and efficiency, and room to grow five and ten years hence.

He is interested in the total facility. This is the client whom architects in the 70's will be meeting — on industrial, school, and hospital boards.

This adds up to a healthy pressure, a pressure we must recognize.

Don't sell short the clients' interest in some of these
management techniques, particularly systems engineering.

I know the systems approach is being widely touted as an effective problem-solving technique for everything from space exploration to urban congestion. I know also of the debates over its application to tiicic space exploration to urban congestion. I know also of the early in systems analysis. These are usually stated in general terms. The real challenge is then to translate these general ideas into specific standards which will permit a comparison of two or more possible solutions and the selection of the best among them.

Several characteristics of the systems approach distinguish it from other problem-solving techniques. Among them are:

- A set of objectives for the system must be developed early in systems analysis. These are usually stated in general terms. The real challenge is then to translate these general ideas into specific standards which will permit a comparison of two or more possible solutions and the selection of the best among them.

- Problems are not solved piecemeal. The systems approach sees the facility as a total system in which all components contribute to a common purpose. It concerns itself with not only the parts of the system but with the interaction of the parts as well.

- The systems approach requires teamwork. Because the facility is viewed as a total system with many complex and interesting parts, specialists from a wide variety of professional disciplines must be formed into a functioning team. And someone knowledgeable must head this team.

There is an urgent demand for this type of approach to aid the client in determining those courses of action that will result in the best environment for a given investment. And make no mistake, your client is aware of the approach and what it can do for him.

At the expense of being obvious, let's take a look for a moment at the traditional vs. the systems approach as it would apply to an expansion of an industrial plant, for example.

In an inadequate industrial plant, the symptoms of strangulation most easily recognizable are such obvious things as lack of space and need to replace worn-out and outmoded equipment.

The traditional approach would be to take the existing operation and lay it out in such a way that there is room to operate. This includes planning for new machines and equipment. The needs thus established are translated into square feet of space. If there is room for expansion on the property, then is the accepted answer because it is obvious. If there is no such room, then a new facility must be considered. That is also obvious.

The instructions governing the design of the new plant or the expansion of the old are fairly simple. These include area required and general specifications as to ceiling height, floor loadings, illumination levels, heating, ventilation and other utility requirements. The desired layout complete with specifications for needed storage space, work space, traffic aisles, etc., are relatively easy to transmit.

The process is furnished by the client, and the architect is neither requested nor authorized to investigate this. As a general rule, he is not qualified to do so because he is a specialist in building design, not in process planning.

Perhaps the architect will detect that certain rearrangements of the process will simplify the building design and provide the opportunity to reduce building cost. If this can be accomplished without imposing unacceptable constraints on the process, it is a gain to the client, and the architect has performed a service beyond his basic assignment. If the suggested rearrangement also happens to improve the process, it is a fortunate accident, because the assignment. If the suggested rearrangement also happens to the process.

Under the systems approach, on the other hand, a distinction is made between the building and the process which it houses. The process is a system. The building is neither a system nor, ordinarily, a component of the system. It does furnish an environment in which the process operates. It serves the process by providing shelter from the elements by manufacturing the desired climate through heating, ventilating and air conditioning, and by providing light, power and other ancillary services.

The environment provided by the building can be benign, neutral, or hostile to the process. A benign environment permits the process to function at top efficiency. A hostile environment imposes constraints that can seriously impair the functioning of the system.

Consequently, the system engineer is completely aware of the importance of a building with the attributes necessary to a good environment for the process. However, before he can determine what these attributes must be, he needs to understand fully the demands of the process to be housed.

I won't go into all of the details of how the systems engineer pursues the information he needs. I will simply say that the approach requires a study of the entire problem before direct action is taken with respect to the facility itself.

Let me emphasize one thing. The procedure outlined here appears to imply that the systems man must be an expert in all of the functional areas involved in the process. Not so. He is a generalist. He equips himself with some understanding of all of the activities with which he has to deal, but he relies upon the contributions of specialists in each type of activity in the analysis. Hence, it is a genuine team approach to the problem.

What are the advantages to the client?

To put it simply, the approach offers significant benefits to him in that it organizes data in a way that presents him with a clearer idea of the choices open to him and a better method of measuring results against both expectations and objectives.

The complexity of modern society is such that decisions affecting the future of us all can no longer be based only on sheer intuition. The systems approach is a method that holds out great promise of regaining for the architect his former position as leader in the building process — if he will understand that the process is what shapes, requires and brings forth the building AND if he is willing to seek the knowledge and experience that is needed to put him in the mainstream of business, industrial, and social activity.
Kohler sets you free with "Walls'n All."

Kohler's bold new line of fiberglass bathing modules gives you exciting design and construction freedom. Freedom from the conventional. From seams, crevices, grout, and clutter. Freedom to create superb bathing environments for your home-buying customers combining one-piece, sculptured elegance with outstanding practicality and economy. To be bold with the look and shape of things to come.
Tobago
Kohler's 48" x 36" shower cove with built-in seat. Both Tobago and Trinidad modules have 75" walls, may be equipped with shower doors.

“Walls’n All” bathing module
Trinidad
Kohler's 36" x 34" shower cove. Has a six-inch high fluted front panel. Two spacious corner ledges accommodate soaps and toiletries.

Barbados
Kohler's 5' tub/shower. Its 15-inch fluted apron has a flat rim for seating or for shower-door installation. Two ledges are conveniently placed for bathing and showering toiletries.

Traditional Kohler quality. Modules are tough, sturdy, durable, yet easily moved by two men... quickly and inexpensively installed.

Enduring beauty. The deep lustrous gel coat finish resists chipping and staining, cleans in seconds. Is pleasantly warm to the touch.

All "Walls 'n All" modules are available in White, Harvest Gold, Avocado, and New Orleans Blue. In Mexican Sand after July 1, 1970.
CONSULT WITH YOUR LOCAL KOHLER DISTRIBUTOR LISTED HERE!

MADISON AND JANESVILLE
Automatic Temperature Supplies, Inc.
523 E. Main St., Madison — Phone: 1-608-257-3755
Hiway 51 South, Janesville — Phone: 1-608-754-8106

GREEN BAY
Murphy Supply Co., Inc.
228 S. Washington St.
Phone: 1-414-432-3378

RACINE
Thomas Supply Co.
1430 Ninth St.
Phone: 1-414-633-8289

APPLETON
Baker Manufacturing Co.
3030 W. Wisconsin Ave.
Phone: 1-414-734-9284

OSHKOSH
Lakeland Plumbing Supply, Inc.
1565 Harrison St.
Phone: 1-414-231-3860

EAU CLAIRE
W. H. Hobbs Supply Co.
P. O. Box 188
Phone: 1-715-835-5151

MILWAUKEE
Milwaukee Plumbing & Heating Supply Co.
1313 W. St. Paul Ave.
Phone: 1-414-273-3600

Wisconsin Plumbing & Heating Supply Co.
822 S. 2nd St.
Phone: 1-414-645-3214

United Plumbing & Heating Supply Co.
9947 W. Carmen Ave.
Phone: 1-414-464-5100

Crichton Corp.
1114 N. 4th St.
Phone: 1-414-276-8950

H. W. Theis Co.
3595 N. 127th St.
Phone: 1-414-781-5260

Builders Plumbing Supply Co., Inc.
2836 S. 16th St.
Phone: 1-414-383-0786

SHEBOYGAN
J. J. Koepsell Co.
1010 S. 9th St.
Phone: 1-414-457-3646

WISCONSIN RAPIDS
Mid-State Supply, Inc.
71 Love St.
Phone: 1-715-423-6730
Which brings us to the really important question: Why do we, as architects, exist at all? How many of us as students gazed out of the classroom window on a lovely spring day such as this and daydreamed about how we were going to reshape the places in which we live, work, and play? Didn't we envision ourselves as being involved with the total scheme of things? Didn't we ponder the growing complexity of our modern society and believe that we could participate in, or indeed shape, the decisions that would affect the future of us all?

I think many of us did. But somewhere between that nostalgic afternoon and today, we developed a rather severe case of myopia.

We lost sight of the total picture, the broader needs of our client, and if you will, society. Somehow our view got narrowed down to an attitude that could only be self-limiting. We began quibbling over our role in the building process. And when the pressures for change began to build we spun a neat little web of rules, regulations and restrictions that has done little more than perpetuate a myth we created.

So why do we, as architects, exist? I think it is to help do the job we all dreamed about that spring day so long ago. To help reshape the places in which we all live and work and play. To help improve those things which shape our physical environment.

Isn't it really important to get the job done? After all, it is an enormous job and getting bigger all the time. Does it really matter where we fit into the scheme of things, particularly when we face a very real risk of not fitting at all if we don't meet the demands being asked of us?

I think the prevailing mood to redefine the architect, to expand his vision, to prepare him to begin to think of himself in larger terms is a move in the right direction.

But something distresses me. Will the young architectural student who gazes out of his classroom window on this spring day, with a dream like ours find himself a few years hence hamstrung by a myriad of outdated rules, regulations and restrictions that have done little more than perpetuate a myth we created.

The answer to that question is certain to be yes if we don't do something more, and soon.

Here's where I would like to get down to some specifics— the nitty-gritty, if you will.

It's all well and good to talk of those things we would like to do to improve our lot. But it seems to me that we have been doing a lot of talking for some time now. I think it is time to talk of things we ought not to be doing as well.

It is no longer good enough to give one's client cost estimates arrived at by dividing the costs of the last three projects by their total square feet. Today's clients are far too sophisticated for that. It may be done once or twice perhaps but chances are the client will go elsewhere for his next project. Moreover, by preparing our estimates in this fashion, we are undermining the high standards of our profession.

It is no longer good enough to embrace successive waves of design cliches—be they hyperbolic paraboloids or modern mini-mansards. Let's face it, we are simply passing along artistically shrouded snow-jobs.

It is no longer good enough to cling to the unrealistic notion that "supervision" (really de post facto inspection) really helps the architect to assume leadership in the building sequence. I don't think there is really any need to elaborate on this point. History speaks for itself.

It is no longer good enough to avoid responsibility by withdrawing into a professional Land of Oz. If we want recognition, we must accept the responsibility that leads to it.

It is no longer good enough to argue and bicker among ourselves. We must act.

And here are my specific recommendations for success in the 70's.

Architects must:

- Encourage participation by architects in all of the activities that make up the building process — analysis, design and manufacture of components, systems leadership, prefabrication, construction, cost control, efficient progress scheduling. If we hope to regain a position of leadership, we must step outside our ivory towers and find out how others do their jobs. The task of rebuilding America is far larger than one man. It will take many — from a broad spectrum of disciplines, some of which are now in the making, still others which are now unknown. It will take a team. And someone will be called upon to lead the team. Whoever that someone is will most surely know something about every aspect of the building process.

Architects must:

- Rewrite the basis for architectural registration, especially the experience requirements—now usually calling exclusively for a term of years in an architect's office. This seems, to me, to do disservice both to the aspiring registrant and to the profession since it really means that architectural offices get their own "stuff" back — not new input. The new registrant misses experiences which would broaden his capabilities and the outreach of the profession. I think it entirely possible, for example, that two years in the office of a mobile home manufacturer might bring an architect's office more fresh ideas with respect to housing than the present requirement of two years or so in an architect's office.

If we expect to grow in the 70's and beyond, we must liberate ourselves from those attitudes which are self-limiting. It is obvious that the search for new ideas is going on at a brisk pace, particularly in housing. It seems equally as obvious to me that the search will continue — with or without us.

Finally, Architects must rewrite the curriculum for architectural education. Let's not continue the narrowness of the past. Perhaps the time has come when we should be asking ourselves what we are really trying to achieve with today's architectural education. Is there too much emphasis on bricks and mortar and how we can shape them and not enough on people and how their environment shapes their lives? Let's take another look at liberal arts and other disciplines, particularly the social sciences. I said earlier that the systems engineer concerns himself first with the process, the thing to be housed by the building. Perhaps what we need now is a "systems architect" — someone who concerns himself first with people and how they live and work and play.

So, as we go into the 70's, we need to turn our view outward. The 60's were a time of introspection — a bit of soul-searching, if you will. But let's let it end there. Let it be the recorded history of a profession that felt duty bound to be among the first to ask: Where are architects going?

And, having found the answer to that question, let history also record that it was the profession also that took the first steps toward meeting the challenges — and the opportunities — that lie ahead.
awards luncheon

The Honor Awards Luncheon, held yearly at the Wisconsin Chapter, A.I.A. convention, highlights the program. Owners, contractors and architects receive certificates for "distinguished accomplishment in architecture."

William Johnson, Richard Hunzinger and Wendell Isley.

Earth and Space Science Complex - Phase 1. Architects Johnson-Wagner-Isley and Widen, Inc.

Len Widen, Dr. Robert Ragotzkie, Harold Poast and Ralph Culbertson.
Bob Freigang, Mike Sielaff and Gil Freigang.

North Shore Residence, Architects
Office of Fitzhugh Scott, Inc.

Joe Starck, Mike Meyer and Don Ozenga.

Grace-Holy Innocents' Episcopal
Church, Architects Maynard W.
Meyer and Associates.

Robert Hackner and Frank Grover.

Mullen Homes, Architects Hackner,
Schroeder, Roslansky and Associates.
Southeast Wisconsin Telephone Central Office Building John J. Flad and Associates, Architects.

Marshfield Senior High School Building, John J. Flad and Associates, Architects.

Mr. R. J. Trumbull, Anthony Grignano and Thomas K. Nisbet.

Emil Korenic, Bruce Abbott and Marvin Davis.

Mr. and Mrs. Thomas W. Bertz, Mr. Bertz, legal counsel for the Wisconsin Chapter, A.I.A. was honored by a citation which reads: "In recognition of his engrossment in the ramifications of Law and Legislature affecting the Architectural Profession. His selfless devotion and dedication have significantly contributed to the achievement of a vanguard position for the Profession. In exercising perception he has successfully explored concepts to enhance the Professional image."

Guido Brink, painter and sculptor received an Award of Merit, which reads: "For outstanding work in painting, ornamental slab glass and metal sculpture. He is an artist of great sensitivity, who, in exploring the techniques of modern computerized metal fabrication, has evolved a new art form."
Award winning display booths
at the Wisconsin Chapter, A.I.A. Convention

Not shown here of the ten booth display awards are:
Johnson Service Company; John Buhler Co., Inc.; Texas
Instruments, Inc., Wisconsin Face Brick & Supply and
Gagnon Clay Products Co.

Dick Williams, Mrs. Sheldon Segel and Art Meyer in the
Pipkorn Corp. booth

Wally Lenz with John Jacoby in the Butler Tile Sales,
Inc., booth

Mike Raeb, Ed Verhalen, Sr., Bud Rosier and Jim Hopkins
in the Verhalen, Inc., booth

Samco display area

Roy Shevchik, Bob Klaau, Chuck Harper (behind the window)
Mort Armour and Norm Armour with a friend.
Exhibitors gallery

Milwaukee Area Bureau for Lathing and Plastering Booth
Al Krueger, Art Andersen, Mrs. Charles Dennison and Walter Fischer

L. Harold Peters, Nick Nicholson, and Jack Bergstrom

Structural Products Corp. Booth
J. D. Schoepke with Warren Dannaher

PPG Industries Booth
L. Wayne Sieth with Frank Zmrhal

Portland Cement Association Booth
L. Page Johnson with Lowell Yerex

Wisconsin Gas Company Booth
L. Bill Johnson with Kurt Aleithe

Wisconsin architect/june, 1970
U.S. Plywood Booth
L. John Marcouiller with Steve Schmidt

Bradley Washfountain Booth
L. Bob Botz, Jim Detienne, and Mel Tates

Halquist Stone Co. Booth
L. Fred Byron, Bill Lapp, and Bill Johnson

Wisconsin Precast Prestressed Concrete Association Booth

Dave Booth
L. Dick Hagen with balloon and funmakers
General Contractor: C. G. Schmidt Inc.
We are pleased to announce the relocation of our Showroom and Warehouse to 180 N. Jefferson Street, Milwaukee, Wisconsin.

We designed our facilities the way we design interiors for our clients. All aspects of function, line and design were considered to achieve a harmonious interior. The areas were designed to accommodate the people and job functions they perform. Designed for efficiency as well as aesthetics, these areas become working showrooms.

We invite you to come and view the many types of interiors we have on display. The forty five professionally trained employees, plus our new facilities make Forrer Business Interiors specialists in designing and installing office interiors.

FORRER BUSINESS INTERIORS INC.
180 NORTH JEFFERSON STREET / MILWAUKEE, WISCONSIN
(414) 271-8140
Consultants in Office Planning and Furnishing
Another V-LOK® job that gave the architect freedom, the contractor time, and the builder savings

The better architects, contractors and builders understand the advantages of V-LOK the more they specify its use.

For example, no framing system gives the architect the freedom of design as does this versatile system. Contractors find they can cut days off construction time with interlocking, self-aligning V-LOK. But, best of all, builders save in overall costs, and the building is available for occupancy sooner.

If you are not aware of the definite benefits of V-LOK why not write for design manual. Or call nearest Structural Products Corporation Office. We think you'll find it the best thing you did today.

A sledge is all that is needed to set girders and purlins.

With V-LOK, buildings go up fast with minimum labor.

3725 North 126th Street Brookfield, Wisconsin 53005 — 1017 North Jackson Street Green Bay, Wisconsin 54305
From this moment on his formula calls for 15,000 quarts per day...

From the first breath of life, each of us breathes about 15,000 quarts of air per day. Air...that vital mixture of oxygen and nitrogen, is no longer taken for granted.

Today, most people are aware that air is one of the world's most precious resources. Keeping smoke and other pollutants out of the atmosphere is vital to everyone.

Hundreds of Wisconsin industries have converted from smoke-producing fuels to natural gas, the cleanest burning of all combustible fuels. Natural gas is helping to keep Wisconsin air healthful and enjoyable.

WISCONSIN GAS COMPANY
Milwaukee, Wisconsin
Best shape building material’s ever been in

... and you can get it faster from any of these members of the Wisconsin Precast-Prestressed Concrete Association

Concrete Research, Inc.
P.O. Box 491
Waukesha 53186, Telephone 414-542-8061
Dwinn Precast Concrete Products, Inc.
P.O. Box 1277
Oshkosh 54901, Telephone 414-231-3980
Eau Claire Prestress, Inc.
1061 Menomonie St.
Eau Claire 54701, Telephone 715-835-5146
Hufschmidt Engineering Co.
P.O. Box 209
Sussex 53089, Telephone 414-781-9700

F. Hurlbut Co.
P.O. Box 9
Green Bay 54305, Telephone 414-432-7731
Mid-States Concrete Products Co.
Box 809
Beloit 53511, Telephone 615-389-2277
J. W. Peters & Sons, Inc.
P.O. Box 160
Burlington 53105, Telephone 414-763-2401
Pre-Cast Concrete Products, Inc.
Route 1, Box 192-A, Lien Road
Madison 53714, Telephone 608-249-0156

Prestressed Concrete Products Corp.
P.O. Box 7
Verona 53593, Telephone 608-845-6431
Spancrete Industries, Inc.
10919 W. Blue Mound Rd.
Milwaukee 53226, Telephone 414-298-4110
1120 N. Bluemound Drive
Appleton 54910, Telephone 414-734-5641
Wisconsin Valley Concrete Products Co.
P.O. Box 680
Wisconsin Rapids 54494, Telephone 715-423-7500
LOCAL Manufacturers of Laminated Panels That Are

... COLOR FAST
... WEATHER RESISTANT
... MAINTENANCE FREE
... LIGHTWEIGHT
... EASILY INSTALLED
... PERMANENT
... ENGINEERED FOR QUALITY

PANEL FACES
GLASWELD
28 GA. PORCELAIN
HEAVY GA. PORCELAIN
TUFF-LITE AGGREGATE
CERAMIC TILE
DURACRON ENAMEL
SPANDREL GLASS

Specialists in Architectural Building Panels
120 NORTH MILWAUKEE STREET
MILWAUKEE, WISCONSIN 53201
Phone 414/271-4724
It's three in a row for TOTAL ELECTRIC at Oak Creek-Franklin School District #1

After its experiences with two all-electric schools, the Oak Creek-Franklin Joint School District #1 is preparing to begin construction of a third total-electric school.

A Total-Electric school eliminates expensive first-cost items like large boiler rooms, bulky fuel tanks and unsightly smokestacks which, incidentally, add to the air pollution problem. Total-Electric requires less supervision and minimizes maintenance costs. And, of most importance, an electric heat recovery system results in lower operating costs than other fuels. Architects and engineers are finding that forward-thinking school boards are receptive to the Total-Electric concept.

For more information and performance records of Total-Electric schools in this area, call us. We'll prove it to you!

Total-Electric Cedar Hills Elementary School, Oak Creek, Wisconsin

Wisconsin Electric POWER COMPANY

SELZER-ORNST COMPANY

BUILDING CONSTRUCTION

“Our Personal Supervision Assures Your Satisfaction”

6222 W. State St.
Milwaukee, Wisconsin
Phone 258-9900

CONRAD PICKEL STUDIO, INC.
21415 W. GREENFIELD AVENUE
NEW BERLIN, WISCONSIN 53151

DESIGNERS AND CRAFTSMEN OF STAINED AND FACETED GLASS
WINDOWS, MOSAICS AND CARVINGS

10 miles west of Milwaukee Telephone: 414-547-6862
BE AS IMAGINATIVE AS YOU LIKE.
WE CAN SUPPLY THESE AND OTHER
DECORATIVE BLOCK TO HELP YOU
EXPRESS YOUR CREATIVITY WITH
ELEGANCE, TEXTURE, AND
CHARACTER. STOP IN AND INSPECT
THE EXPOSED MASONRY INTERIORS
USED IN OUR NEW OFFICES. WE ARE
SOLD ON THE SMARTNESS, ECONOMY,
AND VERSATILITY OF DECORATIVE
EXPOSED MASONRY. WE THINK YOU,
TOO, WILL SEE ITS UNLIMITED
POSSIBILITIES.

Consult with us on your next project

FALLS BLOCK & SUPPLY CO.

N91 W17174 APPLETON AVENUE MENOMONEE FALLS, WISCONSIN
PHONE: 251-8330
MANUFACTURERS OF CONCRETE PRODUCTS
LONDON FOG SPEAKS FOR THE "HOUSE OF COMMONS" FROM ILLINOIS BRICK

Irving Kupferberg residence, Glencoe, Illinois

London Fog, a rich new blend of hand-molded common brick, expresses the character and appearance of older reclaimed brick. Irregular or "molded" front and end surfaces. Interesting variations of color are captured with unique flashing methods. All developed from I B's skills in molding brick.

London Fog can bring design flexibility to your next project. Inside for touches of warmth . . . enduring beauty. Outside for the interesting variety of textures achieved with wood, other common brick or steel, or, to complement any landscape. Inside and out for design continuity. London Fog distinguishes the "house of commons" from Illinois Brick.

Other popular brick styles include Lincoln Homespun, Cloister Black, Architectural Commons, Smooth Buff and many others. Call or write for information.

WESTERN BRICK COMPANY
DANVILLE, ILLINOIS DIVISION OF

ILLINOIS BRICK COMPANY
228 NO. LA SALLE, CHICAGO, ILL 60601-372-8727
You can go fishing too if D. G. Beyer, Inc. is the general contractor on your job!

1701 N. Mayfair Road
Milwaukee, Wisconsin 53226
YOU'RE IN good company WITH ARCHITECTURAL BUILDING PRODUCTS INC.

For 13 years we have been happy to be of service to the architect with top name quality products that can be depended upon. Therefore consult with us on your future projects.

ROY SIMMONS, General Manager

<table>
<thead>
<tr>
<th>Milwaukee</th>
<th>Green Bay</th>
<th>Madison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom O'Day</td>
<td>Carl Groonwald</td>
<td>Ed Hennig</td>
</tr>
<tr>
<td>Dick Nelson</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEW SCORED SERIES Glazed Masonry Units offers a WIDE CHOICE OF SCALE at lowest cost

Additional patterns, unique to SCORED SPECTRA-GLAZE® Units are available...or create your own.

For the first time, using SPECTRA-GLAZE® scored block, you can reduce scale (usually desirable in confined areas) while utilizing the economy of large masonry units...

Units are provided scored, to the job site, and the scored joints are filled on the job to match the head and bed joints.

SGM CORPORATION
9326 South Anthony Avenue,
Chicago, Illinois 60617
312/731-6010

ZENITH GLAZED PRODUCTS COMPANY
Osseo, Box 367, Minnesota 55369
Minneapolis: 612/425-4111
Omaha: 402/345-3424
CHOICE OF SCALE & PATTERN with new scored faces...

plus the economy of 8x16 units*

Scored SPECTRA-GLAZE® units, used vertically or horizontally, provide the most practical if not the only means of achieving certain patterns for special effects in scale and design.

Note: Scored joints are grouted after installation.

*In a wide range of colors
MA-CON
Construction Corp.
6840 North Sidney Place
Milwaukee, Wisconsin
Phone 352-5050

GENERAL CONTRACTORS
CONCRETE • MASONRY
CARPENTRY

Ver Halen, inc.
VER HALEN, INC.
EST. 1911

CONTRACTORS
DISTRIBUTORS OF BUILDING PRODUCTS

Quality Products Plus Expert Craftsmanship
Equals Satisfied Customers

Acoustical Ceilings
Sound Control—Air Distribution—Illumination
Partition Systems
Movable—Demountable—Permanent
Wood—Steel—Glass—Aluminum
Plastic Laminate—Various Finishes
Floating Floor Systems
Raised Access and Data Floors
Fello Wood Sliding Glass Doors
For Weather/Safety Installations
Fello Wood Windows
Awning—Casement—Double Hung—Pivot Fixed
Sliding Shades—Rollscreens
For Residential and Commercial Buildings
Fello Wood Folding Doors and Partitions
For Flexible Space Dividers

Branch Office
704 Lombardi Avenue
Green Bay, Wis. 54305
(414) 435-3791

General Office
P.O. Box 8230
4700 N. 124th St.
Milwaukee, Wis. 53225
(414) 463-7700

Branch Office
5502 University Ave.
Madison, Wis. 53705
(608) 238-0241

Changing Milwaukee’s Skyline for 48 Years
1922-1970

• Commercial
• Industrial
• Institutional

NICE TO HAVE SEEN YOU
AND TO HAVE BEEN WITH
YOU AT YOUR
AIA CONVENTION.
WE ENJOYED YOUR HOSPITALITY.

Milwaukee Chapter —
The Producers’ Council, Inc.
National Organization of Manufacturers of Building Materials and Equipment

wiscosin architect/june, 1970
obtain the currently required ratings for many systems. It is to be hoped that the committee will complete its work speedily, but that it will also take advantage of all the latest research in that field.

Meanwhile, we submit that all persons involved in the design of buildings should think in terms of a future "rational" method so that a practical realistic approach to fire protective design will be evolved. The authors believe that with a concentrated effort in research, a method can be developed, perhaps requiring use of digital computers, which will enable architects and engineers to design buildings for "fire" loads using principles of mechanics and thermodynamics in the same general manner in which buildings are now designed for "gravity" loads using principles of mechanics and a knowledge of material properties.

Addendum

Queries regarding the Best Block Company advertisement on the Monowall in the Washington High School addition, in the April issue of Wisconsin Architect, the following information is pertinent.

The General Contractor on the project is Becker Construction Co., Inc., 12315 W. Fairview Ave., Milwaukee; the Masonry Contractor is Knuth Masonry Inc., 2315 S. 170th Street, New Berlin; the Plaster Contractor is Michael Eglinski, Jr. and Sons, 3225-15th Place, Milwaukee.

Monowall costs less because it is possible to lay up more than double the normal units per day. Monowall can give you complete natural beauty and can be finished with plaster, wood paneling, tile, drywall or any appropriate material that the architect desires.

NEW!
WOOD FRAMED
BATHROOM CABINETS
Provide That Decorator Touch
Complete Line of
ACCESSORIES MIRRORS
HEAVY DUTY GRAB BARS

NOVOTNY, INC.
Manufacturers Representative
7850 W. Appleton Ave. — P.O. Box 8348
Milwaukee, Wis. 53225
Phone 464-6510 Write for Catalogue

In a world noted for artificiality, these three words have lost their meaning — EXCEPT to the members of the Associated General Contractors of Greater Milwaukee, on that you can rely!

Skill, Integrity, Responsibility are practiced by the following reliable general contractors —

BAUER CONSTRUCTION CO., INC.
BECKER CONSTRUCTION CO., INC.
BELL-REICHL, INC.
BENTLEY, THOS. H. & SON, INC.
BERGHAMMER CORP.
BEYER, D. G., INC.
DAHLMAN CONSTRUCTION CO.
THE DRUML COMPANY, INC.
GAHAN & SONS CONSTRUCTION CO., INC.
GILLEN, EDW. E. CO.
GUENTHER, A. & SONS CO.
HEINEN, A. J., INC.
HUFSCHEIDT ENGINEERING CO.
HUNZINGER CONSTRUCTION CO.
JOSEPH P. JANSSEN CO.
JOHN, T. V. & SON, INC.
KLUG & SMITH CO.
KOTZE CONSTRUCTION CO. INC.
KNUTH MASONRY, INC.
LUPINSKI, INC.
MADSEN, ORVILLE E. & SON CO.
NELSON INC. OF WIS.
O'BRIEN & BRAUER CONSTRUCTION, INC.
PETERS CONSTRUCTION CO.
SCHMIDT, C. G., INC.
SCHMITT, H. & SON, INC.
SELZER-ORNST CO.
SIDERITS CONSTRUCTION CO.
SIESEL CONSTRUCTION CO.
STEIGERWALD CONSTRUCTION, INC.
STEVENS CONSTRUCTION CORP.
SYRING CONSTRUCTION COMPANY INC.
TUBESING CONSTRUCTION CO., INC.
VOSS-HRDICKA CO.
W & B CORP.
WOERFEL CORP.

Associated General Contractors of Greater Milwaukee, Inc.
2733 West Wisconsin Avenue
Milwaukee, Wis. 53208
Phone 414-933-7661
We feel it apropos to compare our company to crystal, the material which symbolizes our fifteenth anniversary in the architectural window materials field.

Like crystal, our future is bright and clear. To assure this future, we'll continue to offer you the very best in service, materials, bright imaginative ideas, and prices.

Of course, our success could not have been possible without your support. We thank you, and anticipate a bright future with crystal clear associations and friendships.

W/S BUILDERS' SPECIALTIES, Inc.
5016 West Burleigh St. Milwaukee, Wis. 53210
3310 University Ave. Madison, Wis. 53705
(414) 871-8040 (608) 233-6462

WINDOWS • CURTAINWALL • PANELS • SLIDING DOORS • HOLLOW METAL

STRUCTURAL STEEL WELDMENTS CUSTOM MACHINERY

The Lakeside Service is complete . . .
What can we do for you?

LAKESIDE BRIDGE & STEEL CO.
5300 N. 33rd STREET
MILWAUKEE, WISCONSIN 53209
462-5900 AREA CODE 414
Save Space, Weight, And Time.
Cut Costs With Lightweight Steel Framing Construction

Framing systems constructed of lightweight, steel studs provide advantages and economies for a wide range of both interior and exterior walls, loadbearing and non-load-bearing. Available in a variety of widths, gauges, and styles, lightweight framing studs allow assemblies that can meet the requirements of any given condition without the wasted effort of overdesigning.

By utilizing gypsum plaster on the interior walls and ceilings, and portland cement plaster on the exterior, you get quality construction at significant savings. The many varieties of interior and exterior textures and colors available offer you individualized creative license not available from substitute materials.

Lightweight framing often permits substantial reductions in footings, foundations, and structural requirements which cuts costs without sacrificing quality. Because the walls are generally thinner than other types, you also get more usable floor space into your design. Speed of construction often contributes to quicker occupancy, too.

The versatility and economy of steel stud construction are just two of the benefits you enjoy when you specify genuine lath and plaster construction.

Get the whole story! Consult your lathing and plastering contractor, or call the Bureau.

Specify genuine lath and PLASTER
it lasts

MILWAUKEE AREA BUREAU FOR LATHING AND PLASTERING
3274 N. 77th Street, Milwaukee, Wisconsin 53222 • Call A. T. Krueger at 442-4650