Attention Architects

What you specify can either save or cost your clients hundreds of dollars for energy every year!

At today’s higher costs for fuel, it’s more important than ever to research energy efficiency. For example: did you know that a heating/cooling system with a heat pump costs about 25% more to operate in Wisconsin than a system with a high-efficiency gas furnace and electric central air conditioning?

Have you looked into the higher efficiency ratings of such new gas heating systems as: induced draft, heat transfer module, recuperative or condensing-type, or pulse combustion? Did you know that gas furnaces, boilers and water heaters now can be vented directly through a side wall, eliminating the need for a chimney?

When you check into all of the facts, you’ll find that high-efficiency gas furnaces and boilers are today’s best energy buy. So, before you specify any heating equipment, contact us for no-cost, personalized assistance. Harry Andrew at (414)-291-6953.

WISCONSIN GAS
Industrial Market Services
THE WISCONSIN ARCHITECT
WISCONSIN SOCIETY OF ARCHITECTS
AUGUST 1985

Articles

Introduction
Michael Utzinger

The Growing Role of SARUP in the Professions
Carl V. Patton

Which Way Is Out? Designing for Architectural Liability
Gerald D. Weisman

Limitation of Liability
Bob Greenstreet

SARUP & Community Development
Doug Ryhn & Bob Greenstreet

Air Quality & Building Design
Michael Utzinger

Competitions

Reynolds Aluminum Competition
Mark Klancic

National ACSA Energy & Design Competition
Michael McGuire

National Student Clay Tile Competition
Jihad Hirak & Rob Musgnug

Miami Ninth Street Mall
Kathy Keane & Michael McGuire

News

Society News

Marketplace

Photo Credit:
Residence, Door County
Michael Utzinger, Architect
Mark Heffron, Photographer
September 12, 13, 14

International Market Square's contract market and design conference, celebrating regionalism in interior design and architecture.

An exploration of midwestern creativity in its many forms and variations.

A wellspring of ideas.

Bring your own vision.
To participate, call or write:

International Market Square
275 Market Street
Minneapolis, MN 55405

612/338-6250
Finally, a faucet that turns heads. The new Finesse™ faucet with fashionable blade handles and our unique Multi-Swivel™ spout that directs water wherever you desire. In beautiful finishes for kitchens and bathrooms. For more details see the Yellow Pages, or send $2 for a catalog to Kohler Co., Dept. AY5, Kohler, Wisconsin 53044.
“ATTENTION ARCHITECTS!”
FOR YOUR NEXT PLUMBING
OR HEATING PROJECT, CONSULT
WITH YOUR LOCAL KOHLER DISTRIBUTOR
LISTED HERE.

APPLETON
Baker Manufacturing Co.
550 Hickory Farm Lane
Appleton, WI 54913
Telephone: (414) 734-9284

W. S. Patterson Co.
2100 W. College Ave.
P.O. Box 1177
Appleton, WI 54912
Telephone: (414) 739-3136

GREEN BAY
Murphy Supply Co.
1055 Lake St.
P.O. Box 19310
Green Bay, WI 54310-9310
Telephone: (414) 497-7004

MADISON
Automatic Temperature Supplies, Inc.
1023 E. Main St. (53703)
P.O. Box 1151 (53701)
Madison, WI
Telephone: (608) 257-3755

MILWAUKEE
Milwaukee P & H Supply Co.
1313 W. St. Paul Ave.
Milwaukee, WI 53233
Telephone: (414) 273-3600

United P & H Supply Co.
9947 W. Carmen Ave.
P.O. Box 25342
Milwaukee, WI 53225
Telephone: (414) 464-5100

RHINELANDER
W. S. Patterson Co. (Branch)
1672 Menominee Dr.
Rhinelander, WI 54501
Telephone: (715) 362-7824

WISCONSIN RAPIDS
W. S. Patterson Co. (Branch)
2111 Engel Road
Wisconsin Rapids, WI 54494
Telephone: (715) 421-1585

SHEBOYGAN
J. J. Koepsell Co.
A Kohler Registered Showroom
1010 S. 9th St.
Sheboygan, WI 53081
Telephone: (414) 457-3646
For the past three years the School of Architecture and Urban Planning has edited the August energy issue of THE WISCONSIN ARCHITECT. This year SARUP is again editing the August issue, however, the focus of this issue is the relationship between SARUP and the Profession. It is my privilege to serve as guest editor.

The task of the School of Architecture and Urban Planning is to provide teaching, research and community service at the highest possible level of quality. Articles and work presented in this issue attempt to outline the breadth of that activity. Recent SARUP activities in the professional arena have generated interest from members of the profession. The School's role has evolved over its fifteen year history. Dean Carl Patton begins this issue with a discussion of SARUP's growing role in the Profession.

Through a number of courses and programs, students gain valuable educational experience while providing a community service. Professors Doug Ryhn and Bob Greenstreet discuss two of these programs, the Small Towns Project and the Civic Miniatures Studio. These two projects are an example of how the School can be an ambassador for the Profession to the communities of Wisconsin.

A major activity of any professional school within the university is the act and dissemination of research pertinent to the Profession. Professors Gerald Weisman and Michael Utzinger discuss current research results which have an impact on the Profession. Gerald discusses approaches to designing for architectural legibility, an important issue in large, complex buildings. Michael outlines the problem of indoor air pollution and discusses some of the appropriate control strategies available to architects.

Architectural liability is a concern of any practicing architect. Bob Greenstreet, who is now the columnist covering legal issues for Progressive Architecture, discusses the concept of limitation of liability.

Students at SARUP have long been recognized for the excellence of their designs. This past school year four student projects have received awards in national design competitions. Three of the projects were completed in a competition studio under the direction of Professor Miriam Gusevich. With pride we present samples of their competition entries throughout this issue.

Faculty have been increasing their professional activity. In recent years faculty involvement has increased both in the number of projects and the number of practicing faculty. The work has received honors at both state and national level. Some of the recent work attempts to integrate new knowledge gained from research into architectural design. The residence illustrated on the cover was designed by Michael Utzinger to provide a high level of both energy efficiency and air quality. Some of the construction techniques employed in this residence to achieve these objectives are discussed in the air quality article.

It is hoped that this issue will both enhance the practicing architect's understanding of the role played by SARUP and generate a healthy dialog between profession and school as the relationships between the two continue to grow and change in the future.
The Growing Role of SARUP in the Professions

Carl V. Patton
Dean, School of Architecture & Urban Planning

The role of a school of architecture and urban planning has grown complex in recent years, with increasing expectations from the university, the professions and the community. The traditional activities of university faculty members have been defined as teaching, research and service. At one time, perhaps, these were separately identifiable areas, but over the years these roles have tended to blend together.

In order to excel at teaching, faculty must keep up to date in the field of architecture in general, as well as in their specialties. An important way in which to do this is through involvement in research and scholarly activities. This permits faculty both to remain abreast of developments in the field and to contribute to further development of our professions. At the same time, however, they must be involved in professional practice, in order to bring current real-world experiences into the classroom. Today's students expect, and have a right to receive, an education which is both academically rigorous as well as professionally relevant.

When the University of Wisconsin-Milwaukee architecture program was created in the late 1960s, the line between professional practice and academic scholarship was also more clearly drawn than it is today. Practitioners were on the "outside" of the School "looking in" while faculty were on the "inside looking out". Today, however, much of that has changed. During a typical year, as many as ten practitioners were hired as members of our design and planning faculty, bringing with them invaluable insights to both students and colleagues. In addition, many of our faculty are involved in professional practice and consulting, the value of which is clearly seen in the local, regional and national awards they have won for their work.

Moreover, as the School has matured, many of our graduates have become well-respected members of the professional community. Our alumni are in many ways the principal test of the School's long-term relationship to the professional community. Alumni are now in positions ranging from new draftspersons to principals in design firms. They are assuming leadership positions in the private and public sectors, and they are contributing to both the mainstream of traditional office practice and the increasingly important specializations of construction management, computer-aided design, facilities management and real estate development.

As the School has grown in size and quality, the links between teaching, research and practice have strengthened, and our relationship to the profession has evolved from a clear-cut division of practice versus scholarship to a creative melding of both viewpoints. This integration of practice and scholarship is evident at many levels.

As noted above, our faculty members have regularly been engaged in professional practice as members of firms, but also a limited number of real-world projects have been brought into the School. As the School's reputation has grown, we have been increasingly called on by numerous groups to provide assistance on a variety of topics ranging from advice about where to obtain a publication, through whether to hire an architect, to assistance with a community design project.

Some inquiries are straightforward, and I or another faculty member can provide an answer. In other cases, I refer the inquirer to the WSA office for advice and counsel. In other cases, such as a non-profit organization seeking help with design concepts, we are sometimes able to accommodate them within a design studio when their project meets the educational needs of that studio. Other community services require specialized research talents of particular faculty or staff or require a concerted effort of time and personnel, and these larger-scale projects are undertaken through the School's Center for Architecture and Urban Planning Research (CAUPR).

As a unit in the University of Wisconsin System, the School of Architecture and Urban Planning is charged with the responsibility for research and public service as well as teaching. As such, our School has long been involved in conducting applied research for both public and private entities throughout the State and nationally. CAUPR serves as the vehicle through which we provide such services. Appropriate work has been defined to include that which cannot be provided satisfactorily by others, advances knowledge in the field, might be applicable to other settings, or which could benefit from the perspective that university researchers can bring.

We focus a great deal of our attention on relatively small projects that will spin off larger projects for the private sector. Several notable present efforts include our Indonesia Project through which we hope to open the Indonesian architectural market to Wisconsin firms, the New World City Planning and Design Competition where we will be providing the opportunity...
for Wisconsin firms to highlight their accomplishments and potential through a world-wide design competition managed through the School of Architecture and Urban Planning, and our Gerontology Project that is already being used by local service agencies involved with providing housing for older people. We continue to look for other such opportunities to market Wisconsin architecture and to highlight the value of the architectural profession.

CAUPR is essentially a self-supporting unit, and as such we must charge for our services. If no such fees were charged, the School - in fact almost all public universities - would conduct no research. We do not receive state funds for conducting research or service projects and must seek extramural funding to cover this aspect of our mission - just as all academic programs in architecture and in other disciplines seek outside support. It should also be noted that students are not used as free labor in these projects. They are compensated for their services at established University rates. Charging such fees is also good for the profession as it informs both public and private groups about the value and appropriate cost of architectural services.

The School of Architecture and Urban Planning has developed substantially during its brief fifteen year history through support from the WSA, WAF and the profession and through the efforts of a dedicated faculty and a talented student body. Our goal is to strengthen these relationships and to continue to improve the School during coming years as we face yet unknown challenges. We appreciate the opportunity to present selected faculty and student work through the annual editorship of an issue of THE WISCONSIN ARCHITECT. We hope the articles provide insight into the relationship among teaching, research and practice and service activities of the School of Architecture and Urban Planning and into our growing involvement with the professions.
Silicone Construction Sealants
do a better job...
in more jobs than one.

This versatile family of silicone construction sealants from General Electric is the ultimate in glazing, sealing and weatherproofing.

The Products

SILGLAZE® N
Translucent Glazing Sealant
The advanced technology silicone sealant for channel, stop and butt glazing, providing:
- Translucency
- Primerless adhesion
- 50-year durability
- ±50% joint movement capability
- 6-9 minute tooling time

GESIL® N
General Purpose Weatherproofing Sealant
The advanced technology, high-performance silicone sealant for shop glazing and curtainwall and perimeter sealing applications, delivering:
- A wide range of colors
- Primerless adhesion
- ±50% joint movement capability
- 6-9 minute tooling time
- 50-year durability

SILPRUF®
Weatherproofing Sealant
The architect's choice for joints up to an inch or more where long tooling time and the ability to withstand high joint movement are required, delivering:
- Excellent adhesion to a wide range of substrates
- ±50% joint movement capability
- 30 minute tooling time
- A wide range of colors

SCS 1000
Contractors Sealant
The general purpose glazing and sealing product with performance and price equal to competitive acetoxy sealants, offering:
- Primerless adhesion to glass and metal
- 3-5 minute tooling time
- ±25% joint movement capability
- Wide range of colors plus translucent

SCS 1200
Construction Sealant
The high strength construction sealant of choice for premium structural glazing applications, offering:
- A tensile strength of 450 psi
- 5-7 day cure time
- A wide range of colors, plus translucent
- FDA/USDA status

The Back-Up

When you make us your sealant supplier, you get the benefit of some important extras: Like technical know-how, Local availability. And quick delivery. To help you get the job done right...the first time...every time. For complete product information, contact us today.

When performance counts, count on GE Silicones.

S&S SALES CORPORATION
12030 West Silver Spring Road
Milwaukee, WI 53225
(414) 464-8550

AUTHORIZED DISTRIBUTOR
GENERAL ELECTRIC SILICONES
A Conservatory

Reynolds Aluminum Competition — Honorable Mention
Mark Klancic
Large, complex buildings such as hospitals, transportation facilities, and shopping centers present many challenges to the architects responsible for their design. Perhaps less clearly recognized are the challenges such complex environments present to the people who use them; not the least of these problems is knowing where one is within such buildings, finding one's way to desired destinations, and determining the location of means of egress.

The recent growth in architectural research, particularly that which examines the relationship between the built environment and the behavior of people, has brought an increased awareness of the problem of architectural legibility and the difficulties in spatial orientation and way finding experienced in many buildings. Research data indicate that such way finding problems constitute more than a mere inconvenience. Users' response to, satisfaction with, and even safety within a building may all be influenced by its legibility.

The design of more legible buildings has thus emerged as an important criterion for architectural design and a focus for architectural research. At UWM several current projects are exploring various aspects of this topic; these include the programming of a signage and directional system for a major medical center, design criteria for nursing homes whose residents suffer from problems in spatial orientation as a consequence of Alzheimer's Disease, and the development of a micro-computer based graphic simulation of way finding in buildings.

THE PREVALENCE AND COSTS OF DISORIENTATION

A recent literature review conducted by the author provides some sense of the prevalence and magnitude of problems in orientation and way finding across a range of building types. In the dozen empirical studies identified, sizeable minorities of building users — ranging from 10% to 23%, with a mean of approximately 17% — report way finding difficulties. These percentages may seem relatively modest until one recognizes the numbers of users potentially involved. In a study of the Dallas-Fort Worth Airport 12% of the travellers interviewed by University of Texas researcher Andrew Seidel characterized the terminal as confusing. Given that approximately 75,000 travellers move through this airport daily, upwards of 10,000 people per day may be experiencing problems in way finding. DF-W is also the airport immortalized several years ago in an Associated Press wire service story about a college professor who, upon becoming lost within the terminal building, began gibbering mathematical equations and tearing off his clothes.

Illegibility may exact costs from building users as well as staff and management. As a part of the planning and programming for a major hospital at the University of Michigan, Carperman, Grant and Simmons conducted a series of studies of way finding which won them a 1985 Progressive Architecture applied research award (see Further Reading). Their research indicates that the degree of difficulty visitors experienced in finding their way within the hospital was the single most important predictor of stress. More important with way finding questions, and at the Dallas-Fort Worth Airport airlines were forced to hire 34 "passenger service agents" to direct travellers within the terminal. Illegible settings may also influence consumers' attitudes; it has been suggested that one of the factors contributing to the limited patronage and resultant financial reverses of Detroit's riverfront Renaissance Center (Fig. 1) is the difficulty of finding one's way through its highly complex shopping concourse.

As the story of the unfortunate professor suggests, illegible environments can exact significant costs from both building occupants and operators. Staff time may be lost as a consequence of having to direct or even personally escort building users to destinations which they are unable to locate on their own. At one Canadian hospital, almost one third of staff members queried indicated that they were approached at least once per day.
than such variables as length of stay or desire for privacy.

Finally, in emergency situations which require rapid building evacuation, such as the several recent and widely publicized hotel fires in this country, the ability to effectively find one's way may have life or death consequences. In one fire incident, hotel guests mistakenly tried to gain access to a storage room, the appearance of which was identical to the adjacent exit. In a second hotel, people moved toward a central atrium, and thus toward the heart of the fire, assuming that elevators and fire stairs would be adjacent. Recent data from researchers in both the United States and Great Britain indicates that people in emergencies — rather than becoming panic stricken as the popular imagination would have it — behave as adaptively as possible given the information available. Since the architectural environment itself represents one important source of information, it is essential that buildings designed for public use provide guidance for safe and effective way finding.

A MODEL OF WAY FINDING BEHAVIOR

The determination of those forms of environmental information which facilitate way finding is a far from simple task. Because human behavior is exceedingly complex and influenced by so many factors, the architectural environment by itself cannot have totally predictable and unvarying effect. However, to the extent we understand something of the overall principles which govern the interaction of people with their environment — specifically the perceptual and cognitive mechanisms by which they take in and organize sensory and perceptual information — we can begin to model the way finding process and to formulate design guidelines for architectural legibility.

Central to such a model of way finding is the concept of an "environmental image" or "cognitive map" which people develop with time and experience in an environment. The concept of the cognitive map — coding distances and directions between important destinations — is likely most familiar to the design community through Kevin Lynch's classic treatise Image of the City. Because most buildings — like the cities studied by Lynch — cannot be perceived in their entirety from any one location at one time, way finding is facilitated by some form of mental image, allowing the storage in one's mind of that which is not immediately visible in the environment. Thus way finding must be conceptualized as a cognitive as well as a perceptual task, dependent upon what one knows as well as what one sees.

DESIGNING FOR ARCHITECTURAL LEGIBILITY

Thinking of way finding as a cognitive as well as a perceptual task facilitates a broader definition of the kinds of potentially salient environmental information which the designer can provide. The following discussion and guidelines are organized in terms of four such categories of information: (1) signs and numbers; (2) architectural differentiation; (3) perceptual access; and (4) plan configuration.

SIGNS While signs and numbers are clearly the most common and conscious forms of information for way finding in the architectural environment, the available research presents a rather mixed picture regarding their efficacy, particularly in relatively complex buildings. Data gathered by Michael O'Neill, a Doctoral Student in Architecture at UWM, indicate that even with the addition of signage way finding performance remains poorer in the most complex buildings with signage than in the simplest buildings without any such additional orientation information.

Thus in designing for architectural legibility one should view signage, maps, and directories as supplemental and supportive of other forms of way finding information.

The size and visual prominence of sign elements should vary in accordance with the importance of the information being conveyed.

Consider the utilization of "You are here" maps and bird's eye perspective drawings. There should be several points of correspondence between such maps or plans and the surrounding environment; what is at the top of the figure should be what one sees looking straight ahead.

ARCHITECTURAL DIFFERENTIATION

For many building users way finding is supported primarily by elements other than formal signs posted on walls. In a pilot study conducted by the author in a nursing home, 80% of the aids to way finding mentioned by building residents were distinctive elements or features of the setting itself — plants, a grandfather clock, the elevator — which contributed to
What's so different about this metering faucet?

It works!

The Bradley 90-75

Until Bradley designed the 90-75, savings from metering faucets seldom outweighed the headaches.

Faucets that turn off too quickly or stay on too long, sprays that either splash or dribble, maintenance that never seems to end — the Bradley 90-75 has eliminated these headaches once and for all. It works!

Unlike many faucet designs that severely restrict an orifice to vary their metering cycles, the 90-75 utilizes a generously sized bypass orifice and variable piston stroke. The orifice is protected from waterborne sediment by two filters; one at the stop and one within the cartridge. This unique configuration assures consistent timing — at water pressures from 20 to 100 psi.

All working parts, including the flow control, are contained in a compact cartridge. Because it's hidden inside the faucet, the cartridge can't be removed by vandals. Yet if maintenance is ever needed, a new cartridge can be popped into place in seconds — just about as easily as you'd change a flashlight battery.

The 90-75 keeps a reliable rose spray pattern, thanks to a unique self-cleaning feature. Every time the faucet is turned on, water pressure forces a rubber diaphragm inside the spray former to "flex" off any mineral deposits. So the nonsplash action stays nonsplash.

Easy to adjust, the 90-75 can be set for cycles from 5 to 20 seconds by turning a screw — without turning off the water.

And because it's so easy to activate, the 90-75 meets all barrier-free codes.

FOR MORE INFORMATION
CONTACT:
STICKLER & ASSOCIATES, INC.
333 NORTH 121ST STREET
MILWAUKEE, WI 53226
1 414 771-0400

Bradley Corporation
We get the job done better.

Bradley 90-75 is a trade name and not an ASHRAE designation.
Architectural legibility is enhanced by distinctive artwork, pieces of furniture, plants, and other unique items, all of which, if located at key decision points, can be the effective aids to way finding.

While color coding can be an effective orientation aid, one must make sure the meaning of the code is clearly communicated to building users.

Along with color, other design variables such as width and height of corridors, treatment of detail and materials can all contribute to architectural differentiation. Such architectural differentiation can occur at the scale of specific rooms or corridors, between wings or "regions" of a building, or between floors (Fig. 2).

PECEPTUAL ACCESS In those circumstances where it is possible to see through or out of a building the way finding task is typically simplified. Thus in Seidel's airport study the terminal is significantly easier to find one's way in by passengers deplaning at gates with direct perceptual access to the baggage claim area.

Views to the exterior at key decision points such as corridor intersections and elevator lobbies (Fig. 4) permit identification of one's present location by relating it to landmarks in the larger environment.

Attria and other forms of light wells can facilitate the way finding task by permitting perceptual access to key locations within the building.

PLAN CONFIGURATION Research indicates that it is easier to build a cognitive map and find one's way in some buildings than in others. A number of characteristics of floor plan configuration — symmetry, number of turns along a corridor system, ease of description — all appear to influence building legibility.

Thus in data gathered by the author in ten university classroom buildings, study participants reported becoming lost significantly less often in those buildings judged to have simpler and more legible floor plan configurations. The following guidelines focus on plan configuration.

The mental images which people construct of buildings consist of major paths or corridors and nodes at which such paths intersect. Such intersections should be designed as distinctive locations within the building.

Legibility is enhanced and way finding is facilitated when building plan configurations can be easily visualized and readily described; examples include "T", "L" or "I" shaped buildings. Right angle corridor intersections can be more readily noticed and remembered than oblique meetings of paths. Clarity of plan configuration is most important when a building provides little else in the way of signage, perceptual access, or architectural differentiation.

The conceptualization of spatial orientation and way finding as cognitive as well as perceptual tasks appears to have important implications for the problem of building evacuation in emergency conditions. The design of buildings in response to life safety requirements has traditionally been viewed as a purely technical task. So long as exit signs were appropriately located, and egress ways were of adequate size, it was assumed buildings could be promptly and safely evacuated.

Recent fire safety research, however, raises serious questions about a number of the assumptions which have governed traditional life safety design. It appears that people in emergency egress situations rely upon many of the same forms of information utilized for way finding under normal conditions. Thus, means of egress which are most visible, even if not necessarily the closest, are more likely to be utilized as are those routes which are most familiar and most frequently travelled. Exit marking may be far less important than previously assumed. Summary statistics from almost 400 incidents reviewed by University of Maryland fire engineer John Bryan, for example, indicate that in those buildings studied where signs were present, less than 8% of evacuees reported
Build in efficiency... with natural gas

Natural gas. It's clean and non-polluting. It's economical. It's more efficient than ever, thanks to today's technologically advanced heating systems. And prices are stabilizing. That means natural gas will continue to be America's best heating value, today—and in the future as well.

Your Wisconsin Power & Light representative will be happy to answer questions about natural gas pricing and supply, as well as building efficiency. Just call your local WP&L office.
seeing these exit markers. Designers cannot assume that “emergency only” egress systems, particularly if they are located in obscure corners of a building, will necessarily be used simply because they are there. Emergency exits are best located where people will see and come to know them as a part of their day to day commerce with a building.

FURTHER READING

Illustrations by Ahmad M. Hamzah

FIG. 4
For over 15 years the RayLite fleet of expanded Polystyrene products has won the "R" WARS battle in one of the harshest environments in the USA, the North Central States. Developed by Minnesota Diversified Products, Inc. of New Brighton, Rockford, MN, and Omaha, Neb., RayLite has demonstrated an unbeatable combination of quality, performance, and value! Now, for the first time, RayLite is available in the Central Midwest.

MANUFACTURED IN ILLINOIS

RayLite, which offers the highest "R" value per dollar of any commercial insulation, is now manufactured by our new facility in Peru, Illinois. Minnesota Diversified Products, Inc. boasts one of the largest foam manufacturing and warehousing facilities in America. This permits low cost, rapid turnaround of all RayLite Products. Minnesota Diversified Products, Inc. will also have available the CertiFoam line of extruded polystyrene, offering a 20% greater R-Value (R6.75° Mean) than the nearest competing extruded polystyrene product (R5, 75° Mean!).

AVAILABLE FOR LUMBERYARDS, DEALERS & DISTRIBUTORS

Your single source for all your insulation needs.

- RayLite
 - Expanded Polystyrene (Flat & Tapered)
- CertiFoam
 - Extruded Polystyrene
- CertiSheath
 - Exterior Sheathing
- The Foiler
 - Foil Faced Sheathing

MINNESOTA DIVERSIFIED PRODUCTS, INC.

New Brighton, Minnesota
1901 13th St. N.E.
612-633-6770
Instate: 800-752-4306
Outstate: 800-328-0854

Omaha, Nebraska
13606 Industrial Rd.
402-330-1700
Instate: 800-248-4417

Peru, Illinois
310 5th St.
815-224-3906
Instate: 800-332-9930
Outstate: 800-635-3081

A Subsidiary of Tex-Styrene, Inc.
Cartographic Library, Milwaukee

National ACSA Energy & Design Competition — Honorable Mention
Michael McGuire
ADVERTISERS!

October Issue: Health Care & Recreational Facilities, Computer Update
Deadline: 9-2-85

November Issue: Religious Architecture/Libraries/Museums
Deadline: 10-1-85

Contact: Nancy Baxter, Advertising Manager

THE WISCONSIN ARCHITECT, 321 S. Hamilton St., Madison, WI 53703 608-257-8477

PEACHTREE
THE INNOVATIVE LINE OF INSULATED DOORS.

PEACHTREE'S Prado: the new insulated swinging patio door that gives people exactly what they want and need today. People want classic beauty and quality manufacture. They want more insulation. More weathertightness. More security. PRADO is the only swinging patio door that provides all of these benefits. PRADO doors are available in two heights and three panel width in as many multiples as desired. They are beautiful additions to new houses and are your best choice for replacing worn sliding glass doors. Available options include Low E insulated glass and a choice of hardware.

PEACHTREE'S Avanti: insulated entry door system will deliver the savings and comfort people expect. Because Peachtree has engineered a solution to all the possible leaks around the door assuring a permanent, tight weather seal. Avanti is available in today's widest range of styles and options. You can't beat Peachtree's Avanti system.

PEACHTREE'S Chadeau: Here, for the first time, is an architecturally authentic French Door system with a unique difference, it is also an insulated door system. Chadeau doors feature two operating panels that swing in or out, luxuriously deep muntins, concealed deadbolt locks. Matching side lites and transoms are also available.

In addition, Chadeau ingeniously incorporates Peachtree's incomparable insulated panels, insulated glass and weathertight frame and threshold. Solid brass hardware, tinted or Low E glass are available options.

DISTRIBUTED BY
THE RADFORD COMPANY
OSHKOSH, MADISON & LA CROSSE
40 Wisconsin St. P.O Box 2688
SEND TO: Oshkosh, WI 54903

Please send information on the products I've checked:

☐ Prado Swinging Patio Door ☐ Avanti Entry System ☐ Chadeau French Door System

Name
Title
Firm
Address
City, State, Zip

"The Service Minded People"
Limitation of Liability

Bob Greenstreet
Associate Professor, School of Architecture & Urban Planning

"After reading reports of many such cases one is forced to the conclusion that, with few exceptions, those who find themselves at law are the stupid, the negligent, the dishonest and the unreasonable. The average architect, endowed with honesty and a fair degree of skill ... is not likely to become involved in litigation."

This quotation, taken from the years ago, would have appeared A general survey of prominent professions, becoming an increasingly dishonesty. They are more likely a that it is unlikely that oil claims are though statistics are hard to come A-A the development of liability concerning the design professions. Such confidence in the association of legal action and guilt or incompetence is by no means borne out by legal events within the past few years. Although statistics are hard to come by, the volume of reported cases involving design professionals has increased sufficiently to suggest that it is unlikely that all claims are based on stupidity, negligence or dishonesty. They are more likely a result of Architecture, like other professions, becoming an increasingly dangerous profession to practice with regard to the potential of legal action.

A general survey of prominent cases involving design professionals indicates a broad range of areas within practice where litigation has arisen, some which, a few years ago, would have appeared unlikely areas of vulnerability. However, the increased duty of care expected of design professionals to the level where 'reasonable' behavior has been raised to new heights of expected performance, has given rise to claims in some quite unexpected areas. For example, negligent specification of materials has become an area of concern recently, while approval of shop drawings has also resulted in legal action. In the most extreme cases, there are reports of the engineer who inspected the roof of the Hyatt Regency being enjoined in a law suit for the collapse of the skywalk, despite no inspection on his part of the faulty structure; similarly a firm of architects in Philadelphia are being sued for designing a shopping mall 'conducive to kid-napping' following a crime committed there.

Beyond these incidents, however, there is one area of concern which, when viewed in context, has increased in prominence and magnitude to the point where it may have serious impacts on the future of the design professions. In a study undertaken in Wisconsin over a 20 year period, it transpired that 23% of the cases taken to the Supreme Court concerned the question of limitation of liability. Similarly, a review of current literature and cases indicates nationally a considerable degree of debate and activity within this area, although no clear cut consensus of opinion has yet emerged to clarify the uncertainty that presently exists.

It is the purpose of this article, therefore, to explore the concept of liability limitation on a national basis, to review its development and current variations of interpretation, to assess its impact upon the design profession and to speculate as to further developments in this field.

A limitation period is expressed in statute form in each state, after the expiration of which no legal action can be brought by an aggrieved person. It was developed and expanded largely in the 1950's, as the doctrine of privity of contract was eroded to give the design professions some degree of protection from indefinite legal threat. As the statutes are enacted on a state-by-state basis, they vary considerably both in the time periods they specify and in the allocation of time for specific actions. For example, differing limitation periods may be specified for slander, bodily injury, property damage, etc. (although some actions may fall under two or more categories) and may vary in duration from 2 to 15 years, depending upon the state in which they are enacted.

Some states have enacted statutes of repose as opposed to statutes of limitation specifically for work undertaken by the design professions. The central difference lies in commencement of action; for the latter, an event establishes the date from when the time period for action begins; in a statute of repose, however, a specific date will activate the period, irrespective of any fault or action on the part of the designer. This may, of course, mean that the limitation period could have expired before building failure or damage have occurred, thus depriving the aggrieved party of a remedy. The potential problems of constitutionality here, the deprivation of the plaintiff's 'day in court' as opposed to the affording of some degree of legal protection to the design professional has led to a number of challenges to these statutes, and a number of interpretations as to their meaning and purpose. Although these cases have been decided in various states, they collectively provide a broad picture of the variation in interpretation which presently exists in relation to when the statutory period begins. If AIA contract documentation is
Improve concrete performance and lower costs with Fly Ash

It really works! Fly ash makes concrete stronger and more workable without costing you more. Fly ash is a pozzolan. It makes concrete stronger; it increases density and resistance to leaching, acid or alkali attack.

Powder-fine fly ash has lubricating effects. It makes concrete easier to pump, flow and finish. Fills forms completely. Gives you sharper, chip-resistant edges and fine details. Fly ash concrete takes less water, so it is more impervious.

And now, you can get the highly desirable fly ash produced from low-sulfur western coal! From our electric plant, Weston 3, in Wausau, Wisconsin. With all the high standards and careful control a facility offers...for the best fly ash available. Along with professional services offered by Contech, Inc., Minneapolis, our Fly Ash marketing agent. Fly Ash. Just what you need for better concrete at lower cost in foundations, garages, driveways, floors, walls, pools, roads.

Fly Ash concrete and more information available on request from your ready-mixed concrete suppliers. Or write WPSC for free Fly Ash Idea Kit.
used, provisions are included to establish the date at the end of the construction of the work upon certification of substantial completion although in some cases, legal action against the architect has been allowed where the limitation period has been deemed as beginning at the end of the professional relationship, which could include a period where the architect gives the client post-completion advice on problems arising from the construction. Architect providing continuing services on a number of projects are particularly ill-served by this ruling. Furthermore, some courts have accepted the Injury Rule as being applicable, establishing the construction of the limitation period as commensurate with the actual failure of the building, as would be the case in any third party injury case.

However, perhaps the most worrying development in this field for design professionals concerns the 'Discovery Rule'. Here the date of commencement is established at the time the plaintiff discovers, or should have discovered, the fault. The rationale for the rule lies in the complexity of building construction, the potential difficulties involved in determining faults which may be covered over or be underground and the potential time lag from completion to discovery. In such cases, by the time the plaintiff has realized the impact of the fault, in the absence of the Discovery Rule, he/she may be statutorily deprived of a remedy. The Discovery Rule allows for both fault and damage to be taken into consideration and has been used successfully in a number of states.

The implications of the Discovery Rule have a dramatic impact upon architectural practice. Buildings completed years previously may suddenly develop signs of failure. From this point, the client will have a statutorily set number of years in which to make a claim, thereby providing the architect with the prospect of virtually unlimited future liability. In the past, architects who insured against potential legal suits could allow coverage to lapse at the expiration of the statutory period related to each project; retiring professionals also could terminate the coverage after this period, confident of no further claims against them. With the emergence of the Discovery Rule, however, such time related protection may no longer exist, and architects may be faced with potential claims long after their retirement. This point is most forcibly brought home in an English case, where an architect is being sued 11 years after his death, and his estate, which supports his wife in old age, is under threat.

Given this gruesome state of affairs, can the future hold any relief for design professionals in regard to future liability? An examination of the situation in England may give some indication of potential new developments. There, architectural liability has tended to develop in tandem with the United States over the past 20 years and, due to the nationally binding nature of major decisions, development in liability can be charted chronologically. The Limitation Acts 1939-80 provide a six year liability period in England during which time claims can be made; in 1972 a landmark case established this period as beginning when the failing foundations were installed and approved. This was overturned in 1976 by the same judge who introduced the concept of the Discovery Rule to the country, a decision which was reinforced and strengthened two years later by the highest court of appeal.

However, last year, a new ruling gave some hope to unrestricted liability by establishing the commencement of the statutory liability at the time when damage comes into existence, and not when it was discovered, much like the 'injury rule in the United States.' This has provided some degree of relief where the architect can establish that the fault occurred at or around the time of construction. It can be seen as something of a compromising decision, allowing a degree of timeliness for plaintiffs to pursue an action, but also providing a basis for defense for the architectural profession. In view of the current ascendency of the Discovery Rule in the United States and its potentially far-reaching impacts on designers, perhaps the limited relief granted by the Pirelli case may be argued successfully in the future in individual states.

However, beyond establishment of the injury rule as a potential means of limiting endless liability, it is possible that a 'long stop' remedy may be introduced. In Scotland, for example, the Prescription of Limitation (Scotland) Act 1973 provides a statutory period of 20 years for claims to be made. The period is lengthened considerably beyond the average six years found elsewhere, giving a generous period of time in which to bring suit, but at least provides the architect with a tangible indication of when that period expires. Similar provisions have recently been proposed by the Law Reform Committee in England, establishing a fifteen year long stop period, and are currently under consideration.
In conclusion, then, the issue of limitation of liability in the United States varies considerably in interpretation concerning commencement of limitation periods, although recent developments suggest that the Discovery Rule is becoming more popular in many states. Curtailment of the Discovery Rule to a less dramatic measure provided under the Injury Rule may provide some relief for design professionals if events in England are anything to go by, although 'long stop' measures may be more effective in ensuring a balance between protection for the architect and consideration of the plaintiff's rights in tort. States which are currently assessing this area of law may wish to consider positions taken both in other states and abroad in resolving this difficult and important issue.

NOTES
1. 'Design Professionals' is a generic term used here to refer to various parties in the construction process including architects, engineers, interior designers, etc. Malpractice cases have occurred in a number of individual cases in various professions, but reflect problems shared by all.

8. An informal review of cases reported in the bimonthly newsletter "Legal Briefs for the Construction Industry" (McGraw Hill, Inc.) reveals 13 of their noteworthy cases in the last year have concerned limitation of liability. Similarly, most new texts in the area have addressed the issue at some length.

9. AIA Document B141 Article 11.3 states that the period begins "not later than the relevant Date of Substantial Completion of the Work, and as to any acts or failures to act occurring after the relevant Date of Substantial Completion, not later than the date of issuance of the Joint Certificate for Payment". (Chase Architectural Associates v Meyers Corners Fire Dept. Inc. 427 N.Y.S. 2d 219 (N.Y. App. Div. 1984).

14. RIBA Journal (Dec.) 1982, Cecil R. 'Writing your Will to Defend your Estate from Eternal Liability.'

15. Supra note 7. A similar pattern of increased liability was established between key cases in England and Wisconsin over approximately the same time period. In other areas of liability (negligent specification, implied warranty of design, etc) similarities between the two countries is also striking.

20. However, the recent ruling in Billam & Ano v Cheltenham Borough Council has stated that the limitation period should not begin to run until the damage constitutes 'a danger to health and safety'. The case is likely to be appealed.
LOW COST COMPUTER AIDED DESIGN SYSTEMS STARTING UNDER $15,000 COMPLETE

Our support staff includes members experienced in architecture, interior design, and engineering. Comprehensive AutoCAD training classes are available. Call us for a free demonstration.

In the Milwaukee area call: (414) 785-9495
Outside of the Milwaukee area use our toll-free number 1-800-792-3504 Ext. 523

VER HALEN INC.
Madison Milwaukee Green Bay
800/362-6601 800/242-6212 800/242-1008

VER HALEN
Distributors Of
— Sunrooms
— Skylights
— Patio Doors
— Energy Tight Windows
— Window Replacements

This chart shows actual on-site weights. METPAR recently bowed to industry standard and went to 22ga for the face sheets of doors. The slight difference in weight is probably due to the heavier gauge of the oval crown which METPAR still uses as a mechanical interlock. Brand S uses a light gauge, folds it under and spot welds it in place.

Most specs call for 20ga full-length panels. Brand S literature says their panels are 22ga and that is what they supply for all. METPAR supplies 20ga on all panels over 36".

Both companies say they supply 18ga for floor braced pilasters, but it is unlikely that the oval crown difference could account for the weight discrepancy here.

We suggest you insist on METPAR if you want to get what you specify.
Baltimore: Inner Harbor Gateway

National Student Clay Tile Competition — 3rd Place
Jihad Hirak & Rob Musgnug
Since the inception of the School, the Department of Architecture has attempted to work with communities within Wisconsin on a variety of projects of a design-oriented nature. Whole studios have worked on schemes in Milwaukee and in surrounding towns and villages, and many individuals have completed theses and studies all around Wisconsin. However, two programs that have had longrunning success and are well-established in the curriculum are the Small Towns Project and the Civic Miniatures studio.

SMALL TOWNS PROJECT

The small towns project began in 1975 as a means of providing revitalization assistance to downtown businesses. Graduate architecture and urban planning students are selected for the project each year based upon their design abilities, maturity and personality and are paired with communities seeking assistance. The nature of the effort is generally to create alternative storefront sketches which are presented to merchants and eventually implemented, often by local student help and contractors.

Since the program began, over fifty students have spent summers living and working in twenty-five small towns in sixteen counties throughout Wisconsin. The first contacts in the community are usually with the county extension agent and some type of coordinating committee consisting of persons representing the business sector, the local government and various citizen groups. This is followed by meetings with individual merchants where details such as schedules and budgets are discussed as well as general design directions. Based upon these discussions as well as research into local history, the students are able to produce several alternative sketch designs which are presented for consideration. Typical of these are suggestions for the repair or replacement of pressed metal or wooden cornices, removal of inappropriate...
Commercial Development, Port Washington - Kyle Edwards and Scott Blank.

modernizing materials and signs and occasionally the substitution of a window or door more in keeping with the character of the building. The most frequent solution however is cleaning and painting to bring to the building and the street the desired effect through the careful use of color. Often ideas from several sketches are combined and at some point the store owner feels the design has reached the implementation stage.

The local bank often provides loan assistance, hardware stores and lumber yards supply most of the materials and contractors in the area provide the necessary skills.

Both the students and the small towns benefit through this field laboratory. The students, operating in a totally different environment from school, meet new people, are confronted with new problems that must be addressed in short periods of time and with very restricted budgets. In addition, most often the projects are implemented while the students are still in residence and very often a new and improved attitude about themselves that is reflected in a generally healthier economy.

CIVIC MINIATURES STUDIO

The studio, which is offered to both graduate and undergraduate students, concentrates on working with small Wisconsin towns and villages on a series of proposed or potential public projects. Typically, contact will be made with the Village Manager of a likely settlement to see if there is mutual interest in working together. If this proves positive, the Village Manager and other key members of the community - bank manager, planning official, police chief, for example - act as clients with whom the students work and to whom they ultimately present their schemes. The students derive enormous benefit from dealing with potentially 'real' client personalities, often with widely divergent demands and agendas than those of the design faculty. At the conclusion of the semester, the work is presented to the town residents in the form of an exhibition and, if possible, a booklet containing the work with the intention of providing a stimulus for discussion and decision-making with regard to future building plans that will hopefully affect and motivate further development within the community.

Last year, the studio worked with the Village of Saukville, where the students produced designs for gas stations, war memorials, libraries and banks. This year, we were approached by the Village Manager of Port Washington who heard of our involvement, and have just completed a semester of design work concentrating upon the lakefront area of the City. Each student was responsible for analysing the future needs of Port Washington in terms of potential building and designing three projects for consideration. Schemes submitted included hotels, condominiums, parks, health clubs and even an aquarium.

The student's work has been presented formally to the Planning Commission and the Rotary Club (who are actively pursuing one of the park projects, and hope to bring some of the ideas to fruition later this year) and will form the focus for a major exhibition later this year entitled 'Port Washington - Visions of the Future'.

The studio has been remarkably successful in the past in providing both a valuable opportunity for the students to develop skills of client management and realworld design on one hand, and generating numerous ideas for future development for small towns on the other. We hope to continue this work in the future (the studio runs in the Spring semester of each year), and would be happy to work with any small town or village who would like to participate in the experience.
Air Quality & Building Design

Michael Utzinger
Assistant Professor, School of Architecture & Urban Planning

Ask an architect to describe the most cost effective method to conserve energy in an existing residence and the response will likely be to reduce heat loss via infiltration by caulking and weatherstripping. An engineer in Naperville, Illinois did just that. He so successfully reduced infiltration that carbon monoxide from his kitchen stove and furnace killed him. Effects of indoor air pollution typically are not as immediate. However, many recent studies of both commercial and residential buildings indicate pollution levels which exceed acceptable outdoor minimums. The study of indoor air quality is relatively new, and consensus on acceptable pollution exposure levels has not been reached. With an understanding of the problem, an architect can design buildings which minimize or avoid some problems of indoor air pollution.

To solve the problem, one must understand both air pollution sources in buildings and methods used to control pollution levels. Pollution sources can be divided into two groups: those generated within a building and those occurring outside which enter as "fresh air." Pollutants generated within buildings include: formaldehyde, commonly contained in many building products; radon, found in construction materials, the ground and water; biological aerosols; combustion products including carbon monoxide, aromatic hydrocarbons (wood fuels) and nitrogen oxides; asbestos; and cigarette smoke. Pollutants entering the building from outside include: sulfur oxides from combustion; industrial emissions including cadmium, calcium, chlorine and silicon; automobile emissions including carbon monoxide, lead and manganese; pollens; and ozone. Any or all of these pollutants as well as others not mentioned may be present in a building. Richard Wadden and Peter Scheff provide an excellent review of the sources of pollutants and studies of health risks due to exposure in their book, Indoor Air Pollution. Pollution control methods depend on the source of the pollutant.

Pollutants are measured by their concentration, defined as the amount of pollutant per unit volume of air. Indoor concentration levels of pollutants entering the building from outside depend on the outdoor concentrations and filtration. Outdoor concentrations can be a function of microclimatic conditions and location of intake vents. These issues are discussed later. If outdoor pollutant levels are unsafe, filtration of the incoming air is required.

Indoor pollution sources enter the air as products of combustion, respiration, or outgassing from materials. The rate of addition to the air may be constant (emission of radon) or intermittent (operation of a gas stove). Concentration levels depend on the rate of addition to the air and rate of removal via ventilation or recirculation through filters. Pollutants can be controlled at their source by behavioral adjustment, source removal, specification and detailing. Behavioral adjustment is achieved through regulations such as non-smoking zones. Source removal would include modifications to existing buildings such as the removal of asbestos. Nonpolluting building materials or equipment can be specified (e.g., use of electric rather than gas stove). Detailing can reduce pollutant generation. For example, plastic vapor barriers placed between the earth and building restrict radon emission from the ground into the building. Once pollutants are in the air, control is through air filtration or dilution. If pollution concentrations are high, recirculated air must be filtered. The most common method used to control indoor air pollution is dilution via ventilation with fresh or filtered air. Doubling the ventilation rate halves the concentration of indoor pollutants. A major conflict arises between reducing ventilation to save energy and increasing ventilation to achieve a healthy building.

What is a minimum acceptable ventilation rate? Most code ventilation requirements are based on building type, occupant levels or specific industrial exposure standards. Many of the pollution sources presently being studied such as acceptable radon concentrations, are not addressed by codes. While many occupancy types require minimum ventilation rates, the requirements for residences in most codes are an operable window in each habitable room. Who opens their windows during winter? Ventilation rates can be specified according to the number of occupants, volume of the space, or use of the space. There is wide variation of opinion as to the appropriate minimum ventilation rate per occupant. Values range from 5 to 35 cfm per person. All researchers agree that higher ventilation rates are required when smoking is permitted. This author has used recommendations of the Nordic Standards which require 10 cfm per person if smoking is not permitted and 20 cfm per person if smoking is permitted. To reduce concentrations of building generated toxics, such as formaldehyde, most researchers recommend a minimum ventilation rate of 1/2 air change per hour during building occupancy. These
recommendations are tentative, as experimental data is limited and health risks are not well known. However, if either method would require a higher minimum ventilation rate than required by the code, the architect should seriously consider using those values rather than smaller values specified by code.

New energy efficient residences present specific problems. Buildings designed to be energy efficient will have very low infiltration rates. Typical construction might result in infiltration rates of ¼ air change per hour. Some construction techniques will result in much lower infiltration rates. Mechanical ventilation is required to maintain health. Why, one might ask, should houses be tightened only to require mechanical ventilation? Infiltration rates in residential buildings will be approximately proportional to the square of the wind speed. Thus a house designed to have an infiltration rate of ½ air changes per hour in a 5 mph wind would have an infiltration rate of 2 air changes per hour in a 10 mph wind. The infiltration rate might be dangerously low during calm weather. To achieve a high infiltration rate, the architect would forgo all sealants around windows and doors and specify windows with higher infiltration rates. One might be moved to ask why a house with large infiltration rate is insulated, especially since the risk of condensation damage is greatly increased. The point here is that if you want energy efficiency and a healthy residence, a mechanical ventilation system with heat recovery is required. As the codes do not require mechanical ventilation, the architect should educate the client to the issues of indoor air quality and ventilation.

Figure 1 illustrates a construction process used by this author to limit both infiltration and condensation in a new residence. By constructing the entire exterior shell before constructing interior partitions and finishes, all openings in the skin could be sealed and inspected. This construction method also permitted inspection of the vapor barrier prior to interior construction. Maintaining all electric wiring, plumbing and ductwork inside the vapor barrier reduces the risk of both condensation and infiltration. The calculated infiltration rate of this residence is ¼ air change per hour in a 15 mph wind, and ½0 air change per hour in a 5 mph wind. To insure a healthy indoor environment, a ventilation system including an air-to-air heat exchanger was installed in the residence. The fans were sized to provide a ventilation rate of ½ air change per hour. The heat exchanger can recover roughly 75% of the potential heat lost due to ventilation. The annual heating load is estimated to be 20 million Btu (equivalent to 200 therms or 6000 kwhr). The resi-
dence is presently being monitored to determine whether it really is a healthy, energy efficient building.

The problems of indoor air pollution extend beyond the requirements of removal of indoor based sources via ventilation or recirculation through filters. The architect would be wise to consider the outdoor air quality of a proposed building site; the appropriate location of fresh air supply and spent air exhaust; and the potential for unplanned transport of air within the building. Reyner Banham, in his book The Architecture of the Well Tempered Environment, notes that early building ventilation systems were designed to filter polluted outdoor air before distribution throughout the building. Location of supply and exhaust grilles can have a major influence on air quality within a building. In urban settings, air quality near the street or alley is often poor, due to higher concentrations of pollutants from automobiles. Locating a supply duct near ground level adjacent to an alley will insure the use of polluted air to ventilate the building. Improper exhaust or smokestack locations can lead to the development of polluted eddies of air located near the building. If air intakes are located next to polluted eddies, the supply air will contain higher levels of pollution. Most codes provide little more than a minimum prescribed distance between inlet and exhaust grilles. Distance alone is not enough to insure exhaust air will not be readmitted into the ventilation system. For an introduction to microclimate pollution problems, the reader is referred to T.R. Oke's book, Boundary Layer Climates.

Air can move through buildings in a variety of ways: through the HVAC ducts; driven by wind through cracks and openings in the skin; and from lower floors to upper floors through stairwells, elevator shafts and other vertical shafts, driven by the stack effect. Any or all of these effects can combine to move air through a building in ways never envisaged by the architect or mechanical engineer. One must understand that a room is a duct enlargement, complicated by the many openings by which air may enter or leave. A sad example of reduction of air quality due to unintentional air flow in a building is the case of the John Hancock Building in Chicago, reported in the June 1984 issue of Chicago Lawyer.

The John Hancock building was conceived as a mini city, with a shopping mall at the entry levels, offices in the lower half of the tower, and apartments in the upper half. The apartments are constructed with kitchen and bath exhaust fans. Fresh air is supplied through the hall and enters apartments under the door, a decision made during construction. A parking garage which serves the apartments occupies the floors between the shopping area and the offices. Due to the great height of the tower (nearly 100 stories), the stack effect exerts a tremendous pressure up the elevator shaft. Thus air from the parking garage enters the apartments via the elevator shaft and hall. To make matters worse, ventilating fans supplying air to the apartments were routinely shut off at night to save money. Thus much of the 'fresh' air supplied to the apartments first ventilates the parking garage, picking up carbon monoxide, lead, and other toxic gases. The problem should be viewed as a design flaw exacerbated by building mismanagement. The inclusion of a parking garage within any building requires great care and forethought to insure that fouled air from the garage will not enter the building. This is not an easy task considering that the path people take from a parking garage into their office or home is a very large duct with randomly opening and closing dampers.

Although a definition of indoor air quality has not been reached, the conscientious architect, with adequate forethought and common sense should be able to design buildings will be viewed as 'healthy' rather than 'sick'.
Glass Blocks
Quality Glass Products since 1900

We carry a wide variety of designs. In addition to our standard glass block selection (partial sampling shown in pictures 1 & 2), we also offer a selection of European Design glass blocks (partial sampling shown in pictures 3 & 4). All of our glass blocks are available in clear glass and some are also available in goldtone.

A & A Distributors
815 S. Pioneer Rd.
Fond du Lac, WI 54935
414-921-1222

Milwaukee Glass Block
2300 W. Lincoln Ave.
Milwaukee, WI 53215
414-647-2300

Pella’s new Type E System stands for Energy Savings.

Summer and winter, night and day, Pella’s new Type E System saves you more energy and keeps you more comfortable than triple glass.

Pella Window Co., Inc.
3416 Pennsylvania Avenue
Dubuque, IA 52001
319/557-1192

Pella Window Co., Inc.
4010 Mormon Coulee Rd.
La Crosse, WI 54601
608/788-7313

Stop Wasting Energy!
Control Pool Room Humidity

Finally! A sensible way to control Pool Room Humidity while reducing operating costs.

Desert Aire Does It All!
- Reduces Operating Costs Up to 75%
- Controls Damaging Humidity while Heating Pool Room
- Saves Money
- Uses No Gas or Oil
- Models to Suit All Needs

Don’t throw Money Out the Window!

Desert Aire Corp.
Dept. DA
5633 W. Florist
Milwaukee, WI 53218
1-414-462-4143
From left (front row) Marines, Hackl, Busby, Hallenbeck, (back row) Alford, Brewer, Dinsmore, Lawson.

LAWSON ELECTED AIA VICE PRESIDENT

Dave Lawson, FAIA, of Madison, has been elected one of three national Vice Presidents of the American Institute of Architects. Lawson, currently serving on the AIA Board of Directors representing the North Central Region, will serve as a national Vice President with A. Notley Alford, FAIA, Dayton, Ohio; and Ben Brewer, Jr., FAIA, of Houston, Texas, for 1986.

All three national Vice Presidents were elected at the 1985 AIA National Convention. Don Hackl, FAIA, of Chicago was elected the new First Vice President/President Elect of the AIA. Don will become AIA President in 1987. John Busby, FAIA, of Atlanta, the current First Vice President of the AIA will assume the office of presidency of the AIA in December of 1985.

Harry Hallenbeck, FAIA, San Diego, was elected to a two year term as Treasurer and Phil Dinsmore, Tucson, Arizona continues in his two year term as Secretary of the AIA.

WISCONSIN ARCHITECTS FOUNDATION AWARDS GRANTS

$3,500 in scholarship funding was awarded to students at UW-M School of Architecture and Urban Planning by the Wisconsin Architects Foundation this past year. The Wisconsin Architects Foundation has awarded in excess of $80,000 in scholarships to students during the last 30 years. The Board of Directors of the Wisconsin Architects Foundation publically thanks its many supporters and looks forward to continuing to provide scholarship support to students pursuing careers in architecture.

Pictured with this article are three of the six scholarship recipients from this past year. The young guy pictured with the silly smile on his face is WSA Executive Director, Eric Englund.
OUR CUSTOMERS
ARE OUR WARMEST FRIENDS!

HydRadiant
The Heating System that Makes More Sense!

Warm water flowing through EPDM tubes embedded within GYP-CRETE Floor Underlayment forms a system unmatched for its clean, fuel efficient, costs-saving benefits in today's living and working spaces.

WISCONSIN BRICK & BLOCK CORPORATION

Distributors of:

- **astra-glaze**
 - glazed masonry units

- W. R. MEADOWS
 - American Clean Tile

Seal Tight

Serving Southern Wisconsin Architectural Needs For 80 Years.

Brick — Block — Pavers — Stone

2840 UNIVERSITY AVENUE

MADISON, WI 53705

(608) 238-2636

Heat Reclamation
Industrial Ventilation
Energy Conservation
Heat Transfer
Air Balancing
Heating, Cooling & Humidification
Architectural Sheet Metal
Pollution Control
Fire Dampers
High Pressure Systems
Low Pressure Systems
Solar Energy Space Heating Systems
Solar Energy Water Heating Systems

WORKING EFFECTIVELY TO MEET THE ENERGY CHALLENGE

"EVERYTHING WE DO TOUCHES YOUR LIFE"

SHEET METAL CONTRACTORS OF MILWAUKEE

SUITE 200, 2515 NORTH 124TH STREET

BROOKFIELD, WI 53005

(414) 784-6889

Our Technical Manuals and Specification Manuals can help you.
SOUTHWEST CHAPTER'S 1985 HIGH SCHOOL DESIGN COMPETITION

The WSA Southwest Chapter has once again sponsored its annual High School Design Competition. Participating in the 1985 program were 31 students from 9 southwest Wisconsin high schools. The design program, written by Solner and Associates of Madison, entitled "A Tribute To Frank Lloyd Wright" encouraged the design of a landmark for a hypothetical park in the Spring Green, Wisconsin area. Students had the opportunity to work with architectural advisors throughout the 6 week competition.

The 31 entries were judged on the basis of design concept, creativity and presentation technique by three distinguished judges; Robert Groves, Jack Klund, and E. Edward Linville. The awards ceremony was held at the First Unitarian Society, designed by Frank Lloyd Wright where Reverend Max Goebler welcomed the group. Guest speaker Gordon Orr, FAIA gave a special presentation entitled "The Frank Lloyd Wright Legacy." Awards for the winning entries were presented by Joan Bouril, chairperson of the event. Contributors for the awards included The Wisconsin Architects Foundation, Master Blue Print of Madison, and The Spring Green Restaurant.

GUIDANCE IN PLANNING NEW PUBLIC LIBRARY BUILDINGS

The enormous investment of time and human and financial resources involved in building a new public library demands that the leaders of the project plan carefully to make the best use of their resources. PLANNING THE SMALL PUBLIC LIBRARY BUILDING introduces librarians and library trustees to the complex process of planning, designing, and constructing a new library facility. It includes an excellent discussion on selecting architects on the basis of competence and qualification... not fee. This booklet is authored by Anders C. Dahlgren, the consultant for Public Library Construction and Planning at the Wisconsin Division for Library Services. A copy of this fine publication is available through the WSA office or can be ordered from the American Library Association in Chicago.

PEOPLE AND PLACES

WIDEN ASSOCIATES LTD., a new architecture and planning firm in the Milwaukee area recently opened their offices at 7124 West Center Street. Heading the firm as president is Leonard A. Widen, AIA who has been a registered architect in Wisconsin for the past 29 years.
Unific Systems Incorporated

Computer Systems For Professionals

We support the following software for Architects and Consulting Engineers:

- **AEPEX** — Timberline project management accounting and bookkeeping.
- **AUTO CAD** — Micro-computer aided drafting packages.
- **MEGA CADD** — 3D Design tool for unlimited perspective, isometric, and orthographic views.
- **PRIMAVERA** — Project management/scheduling software.

Unific Systems provides detailed training and support to help insure our clients complete satisfaction. For more information concerning Unific Systems computer services, contact:

Gregg Plummer
210 N. Bassett St., Madison, WI 53703 • 608-258-7075

SPACE EFFICIENT STORAGE SYSTEMS

Uses and Applications

Sani-Shelf Shelving has multiple applications in all residential and commercial buildings. For example:

- Clothes Closets
- Linen Closets
- Pantries
- Basements
- Utility Rooms
- Garages
- Motels — Hotels
- Nursing Homes
- College Dormitories
- Hospitals

Overall Product

Available in two colors, Bright White and Dark Brown. The epoxy hard nonporous durable surface is non absorbent, will not yellow or become sticky.

Sani-Shelf system is complete with four widths of linen or storage shelving, two widths of shelf and rod (for clothes hangers) and two widths for shoe racks.

Code Acceptability, Certification

GEIS BUILDING PRODUCTS

20520 Enterprise Avenue, Brookfield, Wisconsin 53005 414/784-4250

The Wisconsin Architect 8/85
INDONESIA HERE THEY COME

The University of Wisconsin — Milwaukee School of Architecture and Urban Planning (UWM-SARUP) has been selected to participate in an innovative cooperative architectural program in Indonesia. Seven UWM-SARUP professors will serve as consultants on a rotating basis for 2½ years. In exchange, several master’s and doctoral candidates will attend UWM-SARUP during the same time.

Congratulations to UWM-SARUP Dean Carl Patton for his outstanding efforts in obtaining the award of this project. The program is supported through funds from the World Bank and total contributions to the program will be in the range of $250,000 - $300,000.

Doug Ryhn, of WISCONSIN ARCHITECT Editorial Board fame, will be the first UWM-SARUP member to leave for Indonesia.

MEMBERSHIP ACTION

CLARKE, RONALD A, was approved for AIA Membership in the Northeast Wisconsin Chapter.
GROFF, JAMES J, was approved for AIA Membership in the Northeast Wisconsin Chapter.
KEGLER, GARY D, was approved for AIA Membership in the Northeast Wisconsin Chapter.
KRETCHMER, GARY A, was approved for AIA Membership in the Southeast Wisconsin Chapter.
SCHMIDT, PHILIP A, was approved for AIA Membership in the Southwest Wisconsin Chapter.
LUCE, RICHARD, was approved for Associate Membership in the Northeast Wisconsin Chapter.
MCMASTERS, DONALD W, was approved for AIA Membership in the Southeast Wisconsin Chapter.
WELLS, EUGENE, was approved for AIA Membership in the Southwest Wisconsin Chapter.

He is upgrading from Associate Membership.

BECKER, DANIEL, was approved for AIA Membership in the Southeast Wisconsin Chapter.
RISLEY, BRUCE, was approved for Student Membership in the Southeast Wisconsin Chapter.
ROTHERMEL, CECIL J, was approved for AIA Membership in the Southeast Wisconsin Chapter.

He has transferred in from Illinois.
Seeking an Associate or Looking for a New Position?

Try the WSA Job Bank

If you are looking for a new position or seeking an associate, the WSA Job Bank can help you. There is no charge for using the service.

If you have any questions or need more information about the service, call Sandra at the WSA office (Madison - 257-8477; Wisconsin - 1-800-362-3912.

Design any outdoor area with the texture, pattern, color and human scale of WeatherSpec Interlocking Concrete Pavers. Our exclusive WeatherSpec severe weather grade pavers are second to none in quality or aesthetics.

Appleton
Fond du Lac
Waupun
West Bend

BEND INDUSTRIES INC.
Marketing Department
P.O. Box 178
West Bend, WI 53095

Chicago 312-203-7556
Milwaukee Metro 414-273-2702
Wisconsin 414-734-5557

PBBS EQUIPMENT CORPORATION
5401 N Park Dr.
Butler, WI 53007

MADISON (608)249-6604
GREEN BAY (414)494-3675
STEVENS POINT (715)344-7310

We protect what you treasure most.
The most trusted security systems since 1968.
The INTER-CO SM-12-25 is a small photovoltaic module with 2.7 watts peak output. The module is excellent for small electrical requirements. Converting sunlight directly into electrical energy, the SM-12-25 will recharge or maintain a charge on storage batteries for powering such devices as refrigeration units, amplifiers, radios, fluorescent lights or portable communications equipment. Typical commercial applications also include operation of remote telemetry units, security sensors and navigation aids. The SM-12-25 may be used standing alone with either 6 or 12-volt capability, but multiple SM-12-25's may be interconnected through INTO-CO'S MASTER FRAME design to provide greatly increased current or voltage tailored to your system requirements. For additional information write: Byron Technologies, P.O. Box 547, Old Greenwich, CT 06870.

Five new product line catalogs are available from Bradley Corp. that detail the firm's broad family of Washfountains, showers, metering faucets, modular wash centers, security fixtures and accessories, emergency fixtures and washroom accessories. To obtain free copies of the catalogs, contact Bradley Corp., P.O. Box 309, 9101 Fountain Blvd., Menomonee Falls, WI 53051 414-251-6000.

Roof vents made of EPS of foam from Poly-Foam, Inc. are an easy, inexpensive solution to winter roof ice damming above the eaves. The Proper-Vent uses natural convection to provide positive air flow from soffit to attic. Proper ventilation keeps the roof cold and reduces the temperature differential at the soffit. Equalizing the temperature of the overhang with the rest of the roof virtually eliminates ice damming. The pre-formed 4' ProperVents are available in 2 sizes for 16” or 24” on center rafters. They may be installed on both old and new construction. For a free brochure, call or write Poly-Foam, Inc., 116 Pine St., Box 101, Lester Prairie, MN 55354, 612-395-2551.

Roof vents mode of EPS of foam from Poly-Foam, Inc. are an easy, inexpensive solution to winter roof ice damming above the eaves. The Proper-Vent uses natural convection to provide positive air flow from soffit to attic. Proper ventilation keeps the roof cold and reduces the temperature differential at the soffit. Equalizing the temperature of the overhang with the rest of the roof virtually eliminates ice damming. The pre-formed 4' ProperVents are available in 2 sizes for 16” or 24” on center rafters. They may be installed on both old and new construction. For a free brochure, call or write Poly-Foam, Inc., 116 Pine St., Box 101, Lester Prairie, MN 55354, 612-395-2551.

The Wisconsin Architect 8:85
PROFESSIONAL SERVICE DIRECTORY

STS Consultants Ltd.
540 Lambeau St., Green Bay, WI 54303 • (414) 494-9656
9055 N. 51st St., Milwaukee, WI 53223 • (414) 354-1100

Consulting Engineers
• Subsurface Exploration
• Foundation Analysis
• Laboratory Testing
• Construction Monitoring

THOMAS H. JAESCHKE & ASSOCIATES, INC.
4085 N. 137th Street
Brookfield, Wis. 53005 • (414) 781-6564

CONSULTANTS — DESIGNERS
FOOD SERVICE SYSTEMS & EQUIPMENT

DOLAN & DUSTIN, INC.
CONSULTING ENGINEERS
2286 N. PROSPECT AVENUE
MILWAUKEE, WIS. 53202
(414) 276-5502

GEORGE E. DOLAN, PE
ROGER A. NASS, PE
GERALD BRAUN, PE

CONSULTING ENGINEERS ASSOCIATES INC.
Structural Municipal Environmental
6415 West Capitol Drive Milwaukee, Wisconsin 53216 • 414-461-6900

Decorative and Ornamental Plastering
Unlimited styles in decorative hand textures for walls and/or ceilings
Ornamental plaster cornice, centerpieces, columns, etc.
New applications, repairs and restorations
KARL E. BUSCHMANN CO.

C & R MODEL CO.
Quality Models to enhance your presentation
20 years experience
Proposed Facilities • Study Models • Exhibits Engineering Aids • Legal • Zoning
Ron Behnke, 3058 One, Box 49, Borneveld, Wl 53507
608-924-9505

American Surveying Company, Inc.
11931 Hwy. “K”
Franksville, Wisconsin 53126
Providing Preliminary Architectural Surveys
Pete L. Bailey, R.L.S.
President (414) 835-4774

Wisconsin TESTING LABORATORIES
Geotechnical Engineers
Soil Borings Materials Testing & Inspection
Menomonie Falls, WI 53051 • (414) 252-3300

ORLANDINI STUDIOS, Ltd.
DECORATIVE PLASTER SUPPLY CO.
ARCHITECTURAL ORNAMENT SUPPLY — INSTALL — RESTORE
633 W. Virginia St
Milwaukee, Wis. 53204

ARNOLD AND O'SHERIDAN, INC.
CONSULTING ENGINEERS
Structural Mechanical Civil
629-371-3561
815 FORWARD DRIVE MADISON, WIS. 53711
414-797-9700
2505 N. 124TH BROOKFIELD, WIS. 53005

Holland & Kurtz inc.
Consulting Engineers
HEATING • VENTILATION • AIR CONDITIONING
PLUMBING • FIRE PROTECTION
6619 W. Capitol Drive • Milwaukee, Wisconsin 53216
(414) 463-1600

Architects:
When You Write Advertisers . . .
Say That You Saw It In
The Wisconsin Architect
It Will Help Us Help You.

brick & block, inc.
Glazed Tile, Spectraglaze,
• Quality Face Brick

Glen Gery — Hanley — Midland — Ochs — Richtex
Insulation, Cements, Block, Fireplaces & Access.
Superior Zero Clearance Fireplaces
5402 Lien Road Madison, Wisc. 53704
Contact: Joe Goodwin (608) 241-3844

For Service . . .
CALL: 1-(414)-272-1255

The Wisconsin Architect 8/85
A WARM VIEW . . .

THROUGH REVIVED WINDOWS!

... State Capital Window Renovation Project.

Remodeling & Renovations

BACHMANN CONSTRUCTION COMPANY INC.

4622 Femrite Dr., Madison, WI 53716 • 608/222-8869