New Suprafine™ Acoustical Ceilings

Armstrong introduces a remarkably high-style acoustical lay-in ceiling with exceptional design impact.

The tilelike appearance of Suprafine is created by a unique configuration of small-scale geometrics. The result is a sleek, sophisticated look, successfully disguising the ceiling's suspension system. That's because each Suprafine panel is precisely scored to incorporate its new narrow 9/16" grid.

But there's more to this ceiling than meets the eye. Suprafine provides fine acoustical control. Plus, 2'x2' tegular lay-in panels offer easy accessibility and low installation cost.

Available in three colors and five patterns (as shown in the interior and the four insets), Suprafine can help define the look of any space you design with a quality you get only from Armstrong.

For details on Suprafine acoustical ceilings, write Armstrong, Dept. 4INAM, Box 3001, Lancaster, PA 17604.
CONTENTS

Energy, Frugality, and Humanism
Sacrocto's architectural revolution. By John Pastier
56

Ingeniously Daylit Seaside Offices
In Ventura, Calif. Rasmussen & Ellinwood. By Janet Nairn
64

An Environment for Both Plants and People
Buchanan/Watson's greenhouse. By Michael J. C r osbie
68

Hoods that Draw in Light and Air
Richard Fleischman's TV facility. By Carleton Knight III
71

Problem-Solving Informed by Energy Concern
The Paul Partnership's senior center. By Allen Freeman
74

'Reverse Energy Problems' In a Fierce Climate
Hospital in Alaska. Architect: CRS. By Andrea O. Dean
76

Six from the Sixties
Where are the activists now? By James Shipisky
80

Corn Crib to Country Retreat
In Polo, Ill. Architect: Bauhs & Dring. By M. J. C.
88

Stylish Addition to an Old Farmhouse
Architect: Frederick Phillips. By Regan Young
90

Skeletal, Shakerlike Country House
In Occidental, Calif. Architect: Dutcher & Hanf. By M.J.C.
92

Facing Main Street in a Tiny Town
Wold Associates' bank, Milaca, Minn. By Joanna Baymiller
94

Spirited, Colorful Hydroelectric Revival
Fallasburg powerhouse. Restored by SOM. By M. J. C.
96

Events & Letters
6
6
114

News
9
Products
119

Books
101
Advertisers
128

Cover: CRS's Yukon-Kuskokwin Delta Regional Hospital, Bethel, Alaska (see page 76). Photograph ©Balthazar Korab.

Donald Canty, Editor in Chief; Carole J. Palmer, Art Director; Andrea Oppenheimer Dean, Senior Editor, Articles; Mary E. Osman, Hon. AIA, Senior Editor, Books; Allen Freeman, Managing Editor; Nora Richter Green, Assistant Managing Editor; Michael J. Crosbie, Associate Editor; Lynn Nesmith, Director of Research; Kathleen Vetter, Design Assistant; Robert Campbell, David Dillon, Carleton Knight III, John Pastier, and Marguerite Villecco, Contributing Editors. Michael J. Hanley, Publisher; Suzanne Maggi, Assistant to the Publisher; George T. Broskey, National Sales Manager; David S. Godfrey, General Manager; Jesse Sims, Production and Business Manager; Terry L. Longood, Circulation Manager.

ARCHITECTURE: The AJA Journal, publication number: ISSN0746-0554, official magazine of The American Institute of Architects, is published 12 times yearly by the AIA Service Corporation at 1735 New York Ave. N.W., Washington, D.C. 20006. Individual Subscriptions: U.S. and its possessions: $20 for one year, $42 for two years, $58 for three years. Canada: $32 for one year, $50 for two years, $68 for three years. Foreign: $50 for one year, $90 for two years. For special library and institutional requests, please contact circulation department. Single copies, $5 each (except for May and August issues, which are $10). Publisher reserves the right to refuse unqualified subscriptions. For subscriptions: write circulation department; for change of address; send circulation department both old and new addresses; allow eight weeks. Quotations on reprints of articles available. Microfilm copies available from University Microfilms, 300 N. Zeeb Road, Ann Arbor, Mich. 48106. Referenced in The Architectural Index, Architectural Periodicals Index, Art Index, Avery Index to Architectural Periodicals. Second class postage paid at Washington, D.C., and additional mailing offices. © 1984 by The American Institute of Architects. Opinions expressed by the editors and contributors are not necessarily those of AIA. vol. 73, no. 1.
STO exterior insulation systems

- the quality answer to efficient insulation that goes on the outside of the building where it belongs!

STO advantages are unequalled:

STO was the first to introduce exterior insulation as a building system, and STO has the longest experience in the industry.

Only STO’s coatings consist of 100% synthetic resin, no cement.

Only STO has Black Mastic, the special coating that protects the system carried below grade.

Only STO’s adhesives will secure insulation board to virtually any material.

Only STO’s exterior insulation systems with STO’s adhesives can meet all your exterior insulation needs!

STO prefabricated exterior insulation panel systems

Why Prefabricate?

CONTROL
CONTROL of Quality
CONTROL of Schedule
CONTROL of Cost

Prefabrication is the ultimate way to use STO exterior insulation systems:

The lightweight panels are easy to handle and erect ... even in winter.

The STO 100% synthetic resin coated systems, with no cement, are highly elastic and resist cracking, chipping, and damage in shipment and erection.

And STO’s superior products offer the best possible performance of exterior insulation systems.

STO chosen by:

AT&T
IBM
US Army Corps of Engineers
US Coast Guard
City Hall, New York City
General Foods
New York Telephone
Stoller Hotels
General Electric
The Stanley Works
US Navy

STO INDUSTRIES INCORPORATED
QUALITY LANE, BOX 219, RUTLAND, VERMONT 05701 / 802-778
EVENTS

Feb. 1-4: AIA Grassroots Meeting, Washington, D.C. Contact: Member/Components Affairs Department, at Institute headquarters, (202) 626-7353.

Feb. 6-9: Second International Modal Analysis Conference, Orlando. Contact: Mrs. Rae D’Amelio, Graduate and Continuing Studies Department, Union College, 1 Union Ave. Schenectady, N.Y. 12308.

Feb. 6-10: Course on Effective Project Management for Building Design and Construction, Department of Engineering, University of Wisconsin, Madison.

Feb. 7-10: Infra-Red Scanning Course, Burlington, Vt. (Repeat course, May 15-18.) Contact: The Infraspection Institute, Hullcrest Drive, Box 2292, Shelburne, Vt. 05482.

Feb. 12-15: Conference on Color and Imaging, Williamsburg, Va. Contact: Dr. Fred W. Billmeyer Jr., Inter-Society Color Council, c/o Department of Chemistry, Rensselaer Polytechnic Institute, Troy, N.Y. 12181.

Feb. 23: Seminar on Rehabilitation of Concrete and Masonry Buildings, Albany. (Repeat seminars, Mar. 21, Boston; Apr. 11, St. Louis; Apr. 18, Salt Lake City.) Contact: Education Department, American Concrete Institute, P.O. Box 19150, Detroit, Mich. 48219.

May 5-9: AIA Annual Convention, Phoenix.

May 9-13: Scandinavian Furniture Fair, Copenhagen. Contact: Scandinavian Furniture Fair, Cente Boulevard 5, DK-2300, Copenhagen S, Denmark.

LETTERS

Stanford Buildings: The article on Stanford University architecture in the November issue (page 78) surprised me by the omission of the Hoover Institution complex of three major buildings and two pavilions on the Stanford campus. Architect for the newest group of these buildings, Ernest J. Kump (then of Sprankle, Lynd & Sprague, Palo Alto) created a quiet oasis on campus of an interior courtyard containing a unique brick, undulating fountain. The courtyard and upper levels link the tower, the Herbert Hoover Memorial Building, and the Lou Henry Hoover Building.

The softening effect on the tower's concrete mass through the addition of redwood, plants, and brick can only be implied in a photograph (below). One of the two redwood pavilions houses an exhibit room with custom designed cases, above the institution's world-famous archives. The other pavilion houses a senior commons room for researchers, and below it is a multipurpose auditorium.

The Hoover Institution complex has evolved into a balanced, classical design that contains several hundred offices.

Rita Ricardo-Campbell
Senior Fellow, Hoover Institution
Stanford, Calif.

Pei's Search for a 'National' Expression

Apropos the September and November issues of ARCHITECTURE featuring I.M. Pei's Search for a 'National' Expression, I was disappointed that the following letter to me from I.M., dated January 1946, could be of interest to your readers, I.M.'s friends, and possibly even historians. When I showed it to I.M. a couple of months ago, he nearly fell off his chair and requested copies of it.

F.G. Roth, FAIA
Clemson, S.

Dear Fritz:

Since a month ago I have been a student again, and, believe me, the life of a student is wonderful! After a few sessions with Gropius, he was good enough to permit me to do a project of my own choosing. As you probably know, for some time I have been wondering about the process of searching for a regional or "national" expression in architecture. To my surprise Grop agrees with me that there is a definite reason for it and that though it will be very difficult, it will come as soon as modern architecture comes of age. My proposed project (not entirely hypothetical) is an art museum for the Shanghai Civic Center. The original structure was damaged beyond repair in 1937 by the Japanese. My problem is to find an architectural expression that will be truly Chinese without any resort to traditional Chinese architectural details and motifs as we know them. So far I have read practically all the books on the subject but they have little to offer. I am relying heavily on the coming sessions with me like Hudnut, Breuer, and Aalto. I hope something will jell soon!... Yours, I.M.

Correction: An editing error skewed the sense of a sentence in Jim Burns' article about Union Square in San Francisco (March '83, page 62). It was Skidmore, Owings & Merrill that worked with San Francisco Planning Director Allen Jacobs on the design of the Qantas Building.
Light... Years Ahead.

P2 Parabolume®... For Maximum Efficiency
First introduced in 1980, the super-low brightness P2 features an optical system that maximizes lighting distribution and efficiency while retaining the high visual comfort levels that are the trademark of quality lighting. Designed as an energy saver for the 80's, P2 has proven itself to be the most practical and reliable parabolic innovation since Columbia introduced the original Parabolume 18 years ago.

Columbia Lighting Inc
P.O. Box 2787
Spokane, WA 99220
(509) 924-7000

P3 Parabolume®... For Maximum Air Handling Performance
P3 Parabolume is high-technology lighting at its best. Combining the classic appearance of Columbia's 1965 original Parabolume with the advanced performance of P2 optics, the P3 is the latest in a long line of successful Columbia designs. P3 matches aesthetics with optimum performance. For more information on the P2 or P3 Parabolumes, contact your Columbia Lighting representative or write us.

Circle 4 on information card
How to tell a Curries door from a common door.

A Curries door is delivered on time.

For at Curries, we have special doors. Not special orders. No matter how many different sizes, gauges, types, grades, colors or configurations you ask for in a Curries door and frame order, you'll receive them together. In the same order. And on time.

Another way to tell a Curries door: Curries quality. It's built stronger on the inside—and outside. Of first class materials, with first class finishes.

So you can rest assured, whether pre-engineered or custom, your Curries hollow metal doors and frames will meet the most demanding specifications for exterior and interior use in commercial, industrial, institutional and educational building applications.

Contact your local Curries distributor. See first hand why Curries is the uncommon door. He's in the Yellow Pages under "DOORS" or "DOORS—Metal". Or see Sweet's 8.2 Cur.
The Institute

Board Adopts Budget Designed to Implement Direction '80s

At its December meeting in Washington, D.C., the AIA board of directors adopted a 1984 budget that is "designed to move us up into action key elements of the Institute's vision and tactical plans" for the decade set forth by Direction '80s. The board also acknowledged the "critical" need for the declining profitability and the new emphasis on regional, state, and local developments. The AIA national staff will be cut by 16 percent. At the same time, the board instructed the Institute to take more responsibility in such areas as educational and professional development, government affairs, publications, and AIAs committee work. The Institute is gathering and written by Allen Freeman, Nora Richter Greer, Michael J. Crosbie, and Lynn Nesmith.

AIA also supports designation of "wilderness in each region of our nation," because each has "important ecological resources." Therefore, regional planning is "essential." Successful planning of wilderness preservation for future generations will require a continuous search for areas with unique ecological or scenic features and of sufficient size to provide protection from external impact," says the policy statement.

The comprehensive forest management policy reflects a concern for a future supply of lumber for construction at "reasonable" prices and calls for the protection and enhancement of forest lands, both public and private. Through the policy, AIA recommends that "federal, state, and local government increase efforts and incentive programs to obtain a greater production of timber from private nonindustry commercial forests." It is these forests, AIA believes, that have the greatest potential for increasing the supply of lumber and pulpwood products.

The prime agricultural land policy states that "protecting agricultural land from its conversion for nonagricultural uses should be a priority of the nation's lawmakers and design professionals."

The National Agricultural Lands Study estimates that each year three million acres of farmland are converted to non-agricultural uses, and an additional three million acres are lost to soil erosion. In addition, the federal government has over the years encouraged the development of farm lands for suburban growth, energy production, and waste facilities. Therefore the Institute "supports a federal policy to coordinate government activities that affect the use of agricultural land."

The final land-use policy states that AIA "supports the general direction of the Surface Mining Control and Reclamation Act of 1977." AIA also recommends that "architects be involved in the planning and analysis of surface mining as it relates to land use and the environment" and requests that "adequate funds be appropriated by the federal government to aid the states in the reclamation of 'orphan' lands that have been strip mined and abandoned and now lack owners to take reclamation responsibility."

AIA's concern with surface mining is based on the fact that its effects can be on a "localized scale as well as on a vast regional basis. Uncontrolled byproducts of surface mining can cause erosion, devastate existing aquifers, and inject toxic substances into streams that will have a destructive influence on natural systems downstream."

The nonenvironmental policy that was adopted by the board covers architecture for health, saying that AIA's goal is to "achieve excellence and appropriateness of health care environments." AIA "advocates a comprehensive and nationally integrated approach to planning for health care delivery systems, services, and facilities; recognizes the need to contain the growth of health care costs but opposes any arbitrary limit or moratorium on capital expenditures for construction or the imposition of arbitrary standards to achieve costs control; advocates rational and coordinated regulation and supports continuance of the voluntary system for accreditation and uniformity of standards among the governmental and regulatory agencies of all levels; and advocates the involvement of architects in all aspects of health planning."

Also in the public policy area, the board took the following actions:

- approved an updated policy of the environmental aspects of the practice of architecture.
- reaffirmed the art-in-architecture and the urban growth policies.

continued on page 13
There is a fiber that keeps carpet looking so clean for so long, you'll think it was cleaning itself. It's called Zeftron ATX Nylon and it's made by Badische. Zeftron ATX fiber has a pentagonal 6-hole shape that's very different from anyone else's fiber. Different because, with one
hole directly in its center and the other five positioned around it, all light passing through the fiber is deflected, making soil virtually invisible.

The result? A fiber that hides soil better than any other fiber on the market. A carpet that stays cleaner-looking longer. So long, you'll think it was cleaning itself.

Specify Zeftron® Nylon
Not just the right color, the right carpet.
The technology to build you a better contract carpet.

Our major business is carpet fibers and yarns for contract carpeting. So we direct most of our research and development resources, as well as many of those of our $16 billion international parent company, BASF, into new technology to create better and more beautiful contract carpeting.

One number to put over 40 carpet mills within easy reach.

Dial (804) 887-6573, get the name of the Badische consultant nearest you and then see how easy carpet selection can be. You will receive the Badische Contract Carpet Guide which illustrates carpets, by traffic classification, from over 40 mills; help in finding the carpet engineered for your specific needs; help in making up carpet samples; help in writing up your carpet specification; and yarn pom chains for color selection. All for free.

An endurance test to ensure your carpet will endure.

Because no one wants complaints after the carpet is down, it must first be Badische Performance Certified. This means your carpet has undergone a series of rigorous tests that ensure it has been manufactured to the specifications for which the fiber and yarns were engineered. Once a carpet has been certified, that carpet will live up to what's expected of it in its traffic classification. If it didn't it wouldn't wear the Badische name.
Institute from page 9
proved the international practice public-policy, which consolidates the internal practice and international tax-reform policies.
proved amended policies on government procurement and federal design allience.
inserted the policies on urban re-creating, architecture for recreation, environmental laws and regulations, and seized education and research.
at the meeting the board also approved the violation to restore the Octagon, $100,000 implementation of the AIA Foundation's public membership program, and 0,000 for WETA-TV's series on architecture.
new officers were installed Dec. 9. Joining the new president, George M. Notter, FAIA, is R. Bruce Patty, FAIA, first vice president, Gaines B. Hall, FAIA, Theodore F. Mariani, FAIA, and Robert J. Dohlen, FAIA, as vice presidents. Ray H. Harmon, FAIA, and Henry W. Sirmer, FAIA, stay on respectively as secretary and treasurer.
new board members installed are, by order: Paul R. Neel, AIA, and Robert Odermatt, FAIA, California; William Herrin Jr., AIA, Gulf States; Almon Durkee, FAIA, Michigan; Leon Bridges, AIA, Middle Atlantic; G. W. Terry Rank, FAIA, New England; Kenneth D. Seeler, FAIA, New Jersey; Raymond Symders Jr., AIA, Northeast; Raymond Stainback Jr., FAIA, South Atlantic; Allen McCree, AIA, Texas. Susan Mergen is the new public director and Sandra Sticker is the new chairman of the Council of Architectural Component Committees.
President, Notter Plans Public Awareness Program
George M. Notter Jr., FAIA, could have any wish come true during his year as AIA's president it would be that the public learned of the infinite potential of architecture to enrich the life of man. Yet it is not surprising that the theme this year is "American Architecture: Its Public" and that many special activities will be directed to increase public awareness of architecture. "We are going to show the entire nation what we do, we are going to let them know that architecture is the very real basic decisions about our cities are going to look, and whether they will work, should be made by the people who are going to live in them," Notter hopes that the outcome of a better public/architect dialogue will be "the growth of a truly American architecture," and a "commitment to design excellence and quality of life."
Notter has asked AIA components to sponsor architectural events that will involve architects and people outside the profession. "This will help the public understand what people want and expect in the built environment," he says. Notter himself will try to promote interest in and understanding of architecture by talking with the editorial boards of the major newspapers in each city he visits. Other activities planned are monthly forums at Institute headquarters at which prominent public figures—from Congress, the Administration, and the media—will discuss public policy issues affecting architecture. And Notter will present presidential citations to individuals and groups who have "distinguished themselves by their concern for the quality of the built environment of their communities" and who have "heightened public awareness of the issues."
The AIA Foundation's public membership program is viewed by Notter as being "most important and the centerpiece" for the year's theme. Membership will be offered to "all who share our goal of a quality built environment and our belief in the central role of architecture in the nation's future." The hope is for 1,000 members this year: 100,000 in 10 years.
While Notter will be dedicating much of his time this year to outreach, it was a practice issue that first got him involved in AIA on the national level—revisions in fee schedules. Since then he has been president of the Boston Society of Architects and the Massachusetts State Association of Architects, director of the New England Regional Council, commissioner of design on the practice and design commission, and chairman of the life safety design task force. He represented the New England region on the AIA board and served on the finance and long-range planning committees and on the board of Production Systems for Architects and Engineers.
Notter received a B.A. and a M.Arch. from Harvard and is founding principal and now president and director of design of Anderson Notter Finegold Inc., Boston and Washington, D.C. The firm specializes in revitalization planning for urban areas, designing new structures compatible with historic environments, and recycling historic buildings. It has received three AIA honor awards for extended use and eight AIA regional design awards.

Ten to Receive Honorary AIA Membership in May
AIA has named eight men and two women honorary members of the Institute. Chosen for their "distinguished contributions to the architectural profession or its allied arts and sciences," the individuals will receive membership at AIA's annual convention in May. They are:
• Kathleen Davis, executive director of the Orange County Chapter/AIA and past president of the AIA Press's publications marketing/sales committee.
• James Marston Fitch, preservationist, teacher, and author, who is considered the father of formal historic preservation education and who founded the first such program in America at Columbia University 20 years ago;
• Mildred Friedman, design curator at the Walker Art Center in Minneapolis and editor of Design Quarterly, an international magazine for architecture, graphic design, and design theory;
• Gerald D. Hines, a Houston-based developer among whose projects are Johnson/Booright's Penzoil Place and Hellmuth, Obata & Kassabaum's Gallery, both in Houston;
• Lee Edward Koppelman, executive director of the Long Island regional planning board, New York's Suffolk County planning commission, and a member of the Long Island area development agency;
• U.S. Senator Daniel Patrick Moynihan (D.-N.Y.), author and chief sponsor of the Public Buildings Act of 1979, who has also been involved in the revitalization of Washington's Pennsylvania Avenue;
• Michael J. Pittas, director of the design arts program at the National Endowment for the Arts;
You can credit Haws for today's stylish and sturdy drinking fountains. We invented them. And we've been the leading developer of water dispensing equipment ever since.

We've expanded our line considerably since the first Haws Bubbler was patented in 1911. We offer a far greater selection, and our clear and concise catalogs make it easy for you to specify exactly what you need.

Look to Haws for precision engineered drinking fountains to meet any plumbing specifications. We're the Original. We're the Source. Haws.

Call or write us for more information.

HAWS DRINKING FAUCET COMPANY
P.O. Box 1999 Berkeley, CA 94701
(415) 525-5801 Telex: 33-6358

Circle 7 on information card
Mobil System
Design: Heinz Wirth, 1971
Installation: Pershing Park, Wash. DC
Architect: M. Paul Friedberg & Partners

Selected for its functional design and uncompromising attention to quality. From the Kroin Series of Park and Garden Furniture. Produced from synthetic coated steel.

Kroin Architectural Complements
14 Story Street
Cambridge, Massachusetts 02138
Telephone 617 492-4000
Telex 951650

Represented in:
Boston, Denver, Detroit, Los Angeles, Miami, New York City, Philadelphia, San Francisco, Seattle, Washington DC
Circle 78 on information card.
AIA Regional Reports Show A Mixed Economic Recovery

The economic climate for architects is mixed throughout the country, according to year-end AIA regional reports: Some regions are experiencing moderate recoveries, some continued sluggishness, others vigorous activity. Generally, there is prevailing optimism for 1984.

Regions reporting the healthiest economies are Texas, California, Florida/Caribbean, and Michigan. California is "experiencing major construction activity," due to the expanding electronics and aerospace industries and increased commercial activity. However, competition for work in that state is "fierce." Florida reports an "excellent development climate," spurred by the successes of large, high-tech corporations, but says that the state is experiencing more orderly growth. Michigan finds "most firms smaller, leaner, more productive," and, consequently, more healthy.

One region that is lagging behind in recovery is Pennsylvania, and the situation is most severe in the western part of the state. Throughout Pennsylvania manufacturing activity is slow, with no substantial increase and no overall recovery in sight.

Most other regions report erratic conditions. For example, the Central Region, which is made up of five states, reports that "specific areas have experienced good economic conditions, while others have experienced static or poor conditions." While activity is "experiencing an upward trend" in St. Louis and Kansas City, Oklahoma is having its lowest activity in 10 years. In the Gulf region, the New Orleans area seems to be the healthiest, with Mississippi having the "worst condition economically." Alabama, Arkansas, and Tennessee report they "are barely holding their own." In Illinois the medium to larger firms in large metropolitan areas are generally much healthier than the small firms located in less populous areas.

The Middle Atlantic region reports "meager pickings for most architects, with some pockets of activity," particularly the Washington, D.C., area. New England says conditions are "dependent upon the type of project and the area of construction." Ohio reports that the "economy is turning healthy in some areas and remaining quite strained in others."

Four areas seem to be in the middle of a moderate to strong rebound. The North Central region reports, "We are by no means back to the pre-recession economy, but most firms have work and are relatively enthusiastic about prospects in '84." New Jersey and the East Central and Western Mountain regions concur. New Jersey reports that the economy is still uncertain, but that the "decline in interest rates has started to help." This year is expected to be healthier. "Following the slow years of '81 and '82, there has begun a long, slow rebound during '83," reports the East Central. Reports the Western Mountain, "The year started out slowly but seems to have gained momentum in the third and fourth quarters. Firms in the region are generally optimistic and looking forward to slow but continued economic growth through early '84."

Issues of importance, other than economics, as related through the regional reports, are professional liability, competitive bidding for professional services, registration laws, state A/E procurement policies, and sales taxes on architectural services. Many regions expressed an increased interest in architecture by the public.

Awards

Six Buildings Recognized For Energy Conservation

Owens-Corning Fiberglas Corporation has presented six awards for "significant contributions" to energy conservation in government, institutional, industrial, and commercial buildings in its 12th annual awards program.

Burnstudio Architects of Raleigh, N.C., is the winner in the government category for the Chatham County Social Services Building, Pittsboro, N.C. Designed to blend with the neighboring farm structures, the facility resembles a large farm shed with its gabled 22-foot-high, standing-seam roof. In the 9,600-square-foot building 40 individual offices line both sides of the long, central corridor. Each office has residential-type heat pumps, operable windows, and ventilation fans. There is a central atrium as well as skylights, interior courtyards, and extensive souther exposure.

Lawrence W. Speck Associates, Austin, Tex., is the winner in the government design category for the Burnet Civic Center in Burnet, Tex. The complex will have passive and natural cooling methods to reduce the heavy cooling load required by the Texas climate. In addition, trees lining the east side will provide shading, and a deep arcade will shelter the south side from direct sun. City hall and council chambers line the north exposure, and the recreation center will stretch along the east side.
THE CHANGING MOODS OF STAINLESS STEEL

The prestige material in architecture...

Stainless steel has the unique ability to reflect or to diffuse light...to be pewter or mirror-like...soft or hard...elegant...high tech...rich...permanent...

As an accent, stainless steel can provide a crisp silvery line...a change of reflectance...a separation of materials...a subtle highlight or a bold statement...

The use of stainless steel as a major element or as an accent in aluminum curtain wall gives architects an economical and versatile way to express the changing moods of stainless steel.

Contact Cupples to discuss your curtain wall needs and to obtain our new brochure: "THE CHANGING MOODS OF STAINLESS STEEL".
Every successful executive material

Offices that contain executive material are just what you need to be successful. And you'll find all of the executive material you'll need in carpets made from Herculon Nouvelle carpet yarns.

Herculon Nouvelle, with its contemporary styling and inherent static, stain and soil resistance turns your board rooms into exciting rooms and your halls into halls of fame.

Hotels trying to attract executive material need to project an executive image. And carpets made from Herculon Nouvelle do just that.

Herculon Nouvelle combines beauty with durability and fashion with function. It can help you turn any ordinary room into a room fit for executive material.
Business needs Herculon Nouvelle.

Banks value their executive material. And that makes them the perfect place for carpets made from Herculon Nouvelle carpet yarns.

Herculon Nouvelle gives banks all they expect from an outstanding contract carpet yarn, including a great price. In fact, there isn't a better value anywhere in the market.

Restaurants need more than good food to be successful. It takes atmosphere. That's where Herculon Nouvelle comes in. With a highly fashionable carpet that resists soil, stains, mold and mildew. Easy on the eyes; easy to clean, too.

Specify Herculon Nouvelle. The contract fiber. Contact Collins & Aikman, Sanford Carpets (a division of Bigelow-Sanford Inc.), Dan River Carpets and Mohawk Carpets at the winter markets and put Herculon Nouvelle to work for you.
With Sunglas® Reflective Bronze, one of thirty solar control glasses by Ford.

When a versatile solar control glass was needed for the uniquely designed Arco Centre office complex in Long Beach, California, Ford Sunglas Reflective was chosen. The two fourteen-storey towers feature a four-side structural silicon glazing system which creates the striking visual effect of a continuous glass skin. The Arco complex contains 240,000 square feet of Sunglas Reflective, making it the largest building project of its type to feature this glazing system.
Reflective by Ford is the balanced solar glass that blocks up to 65% of the sun's heat. Available in a grey, bronze, or the popular green te which allows 40% more natural daylight than the closest competitor. Sunglas ve is part of Ford's Sunglas family—a family of rent solar control glasses with colors, visible transmissions and shading coefficients for vir­thy application. All Sunglas Reflective products backed by Ford's ten year coating warranty.

Whatever your vision, nobody outglasses Ford in quality, variety and availability of solar control glass. And that's a reality.

Owner: Norland Properties
Architect: The Luckman Partnership, Inc.
Contractor: Drinwiddie Construction Co.
Glazier: Olson Glass Co., Inc.
Glass: Sunglas® Reflective Bronze

Circle 16 on information card
NOMA Awards to Four

The National Organization of Minority Architects has honored four buildings in its 1983 design awards competition.

Three design excellence awards were presented to:
- Charles F. McAfee, FAIA, of Witchita, Kan., for the McKnight Art Center at the Edwin A. Ulrigh Museum of Art, Wichita State University. The facility is the Edwin A. Ulrigh Museum of Art, administrative office space and a 6,000-square-foot public art museum.
- Wendell Campbell Associates, Chicago, for the Genesis Convention Center, Gary, Ind. The multipurpose facility has an arena for sporting events, concerts and conventions, an exhibition hall, 11 meeting rooms, and administrative office space. The four corners are anchored by service core towers with toilet facilities, stairways, mechanical rooms, and service functions. The main arena can accommodate concerts, basketball games, or exhibits.
- The Leon Bridges Co., Baltimore, for renovation of the Baltimore Pennsylvania station. In the preservation of the station the functions were reorganized and directional signage and accessibility for the handicapped were improved. The original ironwork is used throughout the building as railings, elevator enclosures, etc.

The Leonard F. Sain Auditorium at Performing Arts addition, Kettering High School, Detroit, designed by Roy Margerum Architects, Detroit, was presented a design citation. The new win.

Sixteen projects were selected in the eighth annual design awards program sponsored by the U.S. Air Force in cooperation with AIA and the Society of American Military Engineers.

Completed buildings selected to receive honor awards are a dormitory at Lortie, Maine, Air Force Base by Elhennewig, Moore & Associates, Cambridge, Maine; and a commissary at the Los Angeles Station by Leidenfrost/Horowitz Associates, Toluca Lake, Calif. Also being honored is the Base Architectural Compatibility Program by the Tactical Air Command at Langley Air Force Base.

Merit award winners in the complete structure category are a hangar at Offutt Air Force Base, Neb., by Burns & McDonnell, Kansas City, Mo.; a dormitory alteration at Kelly Air Force Base, Tex., by Richard Armstrong, San Antonio, Tex.; the Wilford Hall Medical Center Total Energy Plant at Lackland Air Force Base, Tex., by Benham Blair & Associates and Page Southerland Page, Oklahoma City, Okla.; a filling station and base exchange at Eglint Air Force Base, Fla., by the Bullock Associates, Pensacola, Fla.; and a library expansion at the Air Force Academy, Colorado Springs, Colo., by Henningson, Durham & Richardson, Denver.

The Chapel Center at Lackland Air Force Base, Tex., designed by V. Aubrey Hallum, Fort Worth, Tex., received an honor award for "project concept." Merit award winners in the "project concept" category are a dining facility at Andrews Air Force Base, Md., by Cooper-Leck Partnership, Washington, D.C.; the Medical Training and Dining Facility at the Nashville Metro Airport by Bayer Edge Inc. and Gould Turner Group, both of Nashville; and the fire station at the McGhee-Tyson Airport, Knoxville, Tenn., by Barber & Murry, Knoxville.

"Project concept" receiving citations were a lodging facility at Bollier Air Force Base, Washington, D.C., by Cohen-Karydas & Associates, Washington, D.C.; a lodging facility at Hanscom Air Force Base, Mass., by R. Wendell Phillips Associates, Boston; a dormitory conversion project at F.E. Warren Air Force Base, Wyo., by the Davis Partnership, Denver; and a visiting officers quarters

continued on page
The Case for Steel Joists:

Deerwood Industrial Park Building

"When the client is a real estate development company you have to watch every penny. Because you know they'll be watching. We didn't want to compromise on strength, but we wanted the lightest, most economical construction possible. Steel joists were the obvious choice."

—Paul Hardaker, Engineer
Smith, Hardaker, Huddleston & Collins, Inc.

Strength, lightness, economy are just a few of the many strengths open-web steel joist construction offers you.

Steel joists help speed erection, give you space between floors to run electrical conduit and HVAC lines, and provide a solid platform for simultaneous subcontracting.

We've put together all the facts you need to specify steel joists in our Standard Specifications, Load Tables and Weight Tables for Steel Joists and Joist Girders. And for retrofitting, renovation, reconstruction and restoration of existing joist-supported structures we've gathered 50 years of steel joist specification tables into our 50-Year Steel Joist Digest. It includes all load capacities for steel joists published from 1928 to 1978.

Use the coupon below to bring your reference sources up to date.

Please send me copies of the current edition of Standard Specifications, Load Tables and Weight Tables, at $7.50 each including postage and handling. ($8.50 outside U.S.)

Please send me copies of the first edition 50-Year Steel Joist Digest, at $32.00 each including postage and handling. ($42.00 outside U.S.)

Total amount enclosed $________
(Payment must accompany order.)

83009

Steel Joist Institute
Station A
Myrtlewood Professional Building
48 Avenue North
Myrtle Beach, SC 29577

Name _______________________________________
Title _______________________________________
Firm _______________________________________
Address _______________________________________
City ___________________ State _______ Zip _______
Signature _____________________________________

Clip and mail to:
Steel Joist Institute
Station A
Myrtlewood Professional Building
48 Avenue North
Myrtle Beach, SC 29577
As Project Director for Seattle's new 28-story, 575-room Madison Hotel, Denny Onslow of the R.C. Hedreen Company needed to select a heating and cooling system. He wanted a self-contained system with zonal flexibility, a system that was energy efficient, practical to install and aesthetically pleasing. He knew that a standard packaged terminal heat pump would meet the first two requirements.

However, although standard heat pumps are often specified for single and even some multi-story projects, they present a problem that has plagued high-rise construction for years—winter condensate. In the past, the problem could only be solved by installing an expensive interior drain system or an unattractive exterior system to handle condensate runoff.

Onslow found that General Electric offers a more practical solution: the Zoneline® IV Packaged Terminal Heat Pump with ICR—Internal Condensate Removal. ICR minimizes winter condensate by redirecting it back into the room, producing a pleasant, humidifying effect.

The Zoneline IV Heat Pump, with the exclusive ICR option, provides zonal flexibility, energy efficiency and virtually eliminates the condensate problem. For these reasons, as well as his previous positive experience with Zoneline units, their ease of maintenance and GE product service, Denny Onslow selected the Zoneline IV with ICR for The Madison Hotel • Seattle.

Today, the hotel contains a heating and cooling system that combines state-of-the-art technology with solid-state electronics—electronics that make the Zoneline IV one of the most energy efficient and reliable units in the industry today. The Zoneline IV offers energy management interface, temperature limiting, freeze sentinel and a solid-state compressor protection circuit, to name just a few of its standard features. And simple styling, coupled with sophisticated electronic touch controls, makes the Zoneline IV with ICR a handsome addition to any room on any level.

To get the whole Zoneline story, write J.A. Michelsen, Manager Contract Marketing, General Electric, AP4-130, Louisville, KY 40225.

WE BRING GOOD THINGS TO LIFE.

GENERAL ELECTRIC

Circle 19 on information card
Atlanta Buildings Honored

Two Atlanta buildings, the AT&T Long-lines regional headquarters by Thompson, Ventulett, Stainback & Associates and the Communications Workers of America headquarters by Muldawer/Moultrie, have received energy design awards sponsored by the Georgia Association/AIA, Georgia Power Co., and the AIA Foundation.

The 440,000-square-foot AT&T Long-lines building, located on Peachtree Street near the new High Museum, is sited to allow maximum control of direct solar gain and employs passive and hybrid energy systems. These include sun control devices and reduced glass areas on the south elevation, office floors that minimize the depth of office areas from window walls, a computerized, photo cell control system that mixes natural and artificial light, and a heat recovery system from lights, computers, office machines, and operations equipment.

Natural lighting is the principal energy feature of the 17,000-square-foot communications building, located in a suburban setting in east Atlanta. South-facing window walls and a long atrium extending the entire east-west length of the building bring sunlight into all office spaces. South-facing glass is shaded by permanently fixed eyebrow sunscreens set for the summer angle. Cross ventilation is achieved through a continuous row of transoms above the atrium's glass exposures. Fans mounted high on the light scoops help to draw fresh air through the offices. The north, east, and west exposures are faced with a panel containing six inches of fiber glass wall insulation.

The awards are part of an ongoing cooperative project between the Georgia Association and the Georgia Power Co. to encourage energy-conscious design. Earlier, Georgia architects and the utility company's field personnel were surveyed in order to identify architects' problems when providing energy-conscious design. It was found that clients are unaware of the benefits of good energy design and are unwilling to pay for energy-conscious design services. Those surveyed also ranked high the need for simplified energy analysis tools and data. The design awards addressed the problem with clients and required actual energy use data in submissions, which will be made available to local designers. AIA Foundation says it is interested in developing similar projects with other AIA chapters and utilities.
Look closely at the construction of a Marvin Window, then compare it to other brands. We think you'll agree this is the way all windows should be built.

Here are a few details we'd like you to pay particular attention to:

- Double (or triple) glazing.
- Removable vinyl glazing stop.
- Fine-grained Ponderosa pine.
- Double weatherstripping.
- Concealed stainless steel hinge.

WHAT YOU SHOULD LOOK FOR THE NEXT TIME YOU'RE WINDOW SHOPPING

Marv-A-Gard is our exclusive maintenance-free exterior available on many styles of Marvin Windows. It's a precision-fit clad exterior that has a baked finish. So there's no exterior maintenance needed. But the very best thing about Marv-A-Gard is that there's a warm wood Marvin Window underneath.
DOUBLE OR TRIPLE GLAZING.

Marvin pioneered multiple glazed windows. The dead spaces between layers of glass greatly improve the window's insulating properties.

That's as important in warm climates as it is in places where the temperature drops below zero. After all, air conditioning costs are rising nearly as fast as heating costs.

WEATHERSTRIPPING DESIGNED TO MINIMIZE RAFTS.

All Marvin Windows are carefully weatherstripped to keep outside air outside. And many of our windows are double weatherstripped to virtually eliminate air infiltration.

EASY INSTALLATION.

Marvin Windows are made to order in nearly 1,500 sizes and shapes. We don't have to sell you what you need, you won't have to wait long to get it.

You can install it easily without a lot of unnecessary fillers, extenders and the like.

FAST DELIVERY.

Your Marvin dealer may have some of the more popular sizes and styles already in stock.

But if he doesn't have what you need, you won't have to wait long to get it. We can ship your windows within 10 days or less from the time we receive the order.

Compare that to the seven weeks other manufacturers may take.

For more information about Marvin Windows and a copy of our catalog, send us the coupon or call 1-800-346-5128 toll-free. In Minnesota, call 1-800-552-1167.

Send to: Marvin Windows
Warroad, MN 56763

Name __________
Company __________
Address __________
City __________ Zip __________
Phone __________
Research Funds Sought for Acid Rain, Indoor Pollution

AIA is asking the federal government to intensify research into the causes and effects of indoor air pollution and acid rain, the two clean air issues most related to the built environment.

In written testimony on indoor pollution submitted by former president Robert Broshar, FAIA, to a House subcommittee, the Institute said that although the ability to detect such pollutants as carbon monoxide, dust, and radon has increased, "progress may be inhibited by poorly focused research efforts or an unwillingness to deal with the implications" of health.

Indoor air quality research is being carried out by several federal agencies, AIA noted. One of these, the Department of Energy deals primarily with residential buildings and the relationship between energy conservation and indoor air quality. However, "DOE's tendency to focus on indoor air quality in residences has left the design community and policymakers with an inadequate understanding of the nature and extent of indoor air quality issues in occupational and other nonresidential settings," according to AIA's testimony.

In addition to research to determine levels of pollutants in residential as compared with nonresidential buildings, AIA called for research into the relationships between ventilation rates and indoor air quality and research into the development of flexible mechanical systems that can accommodate functional changes in building use.

In a subsequent hearing on the Senate side of the Capitol, Thomas A. Kamstra, AIA, testifying for the Institute on amendments to the Clean Air Act, said that the Environmental Protection Agency is the appropriate agency to coordinate research on indoor air pollution and make results available to the public. However, said Kamstra, "Unless EPA makes an aggressive attempt to inform building industry practitioners of its research results, the potential for widespread, practical application of its findings will be greatly diminished."

Concerning acid rain, Kamstra described its known effects on such building materials as reinforced concrete, wood, marble, limestone, and copper and other metals, but said there is "much yet to learn ... There is a need for continuing research." He also said AIA "finds merit in the federal-state relationship outlined in the amendments to the Clean Air Act because it allows states to tailor responses to local needs. However, he said, AIA "is sensitive to the need to assure that proposed state programs ... are rigorously reviewed to determine that the reduction targets will actually be met."

AIA approves of limiting pollutant reductions to sulfur dioxide only, Kamstra said, because not enough is known about nitrogen oxide to be certain that trade-offs would mitigate the most damaging form of acid rain.

U.S. Capitol Master Plan Meets Opposition in Hearing

At a House of Representatives subcommittee hearing on the U.S. Capitol master plan in November, AIA strongly endorsed the plan as written while others charged that it is too specific about future construction in the 240-acre area under jurisdiction of the architect of the Capitol.

The master plan was presented to Congress in September 1981 by Architect of the Capitol George M. White, FAIA (Oct. '81, page 19). Five years in preparation, the plan provides "a set of coherent and perceptive projections for the future development of the area," according to a summary contained in the proposal. "Projections for the future development of the hill result from the basic need for adequate work space, parking, and pedestrian access."

continued on page
TO THOSE ARCHITECTS AND ENGINEERS WHO UNDERSTAND THAT GOOD DESIGN IS NEVER A WASTE OF ENERGY.

ANNOUNCING THE 1983 OWENS-CORNING ENERGY CONSERVATION AWARDS.
IBM MANUFACTURING & DEVELOPMENT FACILITY
Charlotte, NC

To eliminate the need for large amounts of perimeter heating and cooling in this huge facility, the majority of work areas are concentrated in the building's interior. The perimeter corridors, pedestrian mall and internal "streets" provide circulation and buffer the work areas' energy demands, eliminating over 120,000 sq ft of exterior wall. This building achieves a 40 percent reduction in energy consumption over comparable IBM facilities built before 1973 when IBM began its energy conservation program.

Ray C. Hoover, AIA, Project Mgr., Thompson, Ventulett & Stainback, Inc.; Homer E. Anglin, Jr., Part-in-Charge, Brady & Anglin Consulting Engineers; Thomas W. Ventulett, III, FAIA, Principal, Thompson, Ventulett & Stainback, Inc.

CHATHAM COUNTY SOCIAL SERVICES BUILDING
Pittsboro, NC

Echoing the form and towers of the region's tobacco sheds, this building calls upon traditional strategies to control the interior climate. Fans in the roof monitors draw air through the building envelope to buffer the conditioned mini-house offices set along "streets" inside. These "houses" are complete with doors and windows, receive illumination from skylights in the roof "to create a very soft, friendly, humane environment."

Robert E. Hall, Dir., Chatham County Social Services; Dennis W. Carter, Mech. Eng./Energy Consultant, G.W. Francis Assoc., P.A.; Norma DeCamp Burns, AIA, Project Arch./Interior Design; Robert Paschal Burns, FAIA, Part., Burnstudio Architects, PA.
CULTURAL BUILDING
Canaan, CT

Combination greenhouse and education facility thwarts the notion that expanses of glass are inherently inefficient. Plants are kept alive by a bed heating system served by collectors which permit cooler air temperatures. The heavy thermal mass combined with phase-change heat storage containers and shading/insulating fins will provide an 80 percent energy reduction.

V. Watson, FAIA, Principal, Buchanan/Architects; Kenneth C. Mull, Principal, Mull Assoc., Mech. Eng.; George Buchanan, AIA, Principal, Buchanan/Watson Architects; Milton Johnston Jr., Pres., New Canaan Fire Center Assoc., Inc.

VER-HAWKEYE ARENA
University of Iowa

Revered out of an existing ravine, this 12,000-seat arena is a brilliant utilization of space to reduce the impact of a very large structure, while seizing upon the energy advantages inherent in stable ground temperatures. Bridging the ravine is a space truss with the roof hung below. Not only minimizes the volume of conditioned air, it gives the building a sense of spirit.

A. Kennon, FAIA, Design Principal/CRS; David H. Geiger, Principal, Geiger Berger Assoc., PC, Structural Engs.; R. E. Kettenman, P.E., Vice President/CRS.
VENTURA COASTAL CORPORATION BUILDING
Ventura, CA

Because electric lighting typically consumes more than 50 percent of the energy used in offices, this two-story building deals with the problem head on. Through the use of clerestories, light shelves, and highly reflective ceilings, daylight is directed throughout the building virtually eliminating the need for electric-light use during daylight hours. The incorporation of these lighting strategies has created a dramatic open interior with views of the ocean and mountains.

BURNET CIVIC CENTER
Burnet, TX

Prevailing breezes passing over a shallow creek help cool this unusually site-related building. Discriminative massing reflects its different climate control needs: the mechanically cooled city offices form a compact mass with heavy walls, while passively cooled recreation spaces sit out to catch breezes. Huge overhangs create temperate micro climates. "All the parts are put in the right places."

Lawrence W. Speck, Principal; Paul M. Lamb, Project Architect, Law W. Speck Assoc.

OWENS/Corning FIBERGLAS

1983 JURY
Vivian E. Loftness, Chairperson, VL Associates; George M. Notter, Jr., FAIA, Anderson Notter Finegold, Inc.; William Turnbull Jr., FAIA, MLTW/Turnbull Associates; Helmut Jahn, AIA, Murphy/Jahn; Larry W. Bickle, Ph.D., P.E., The Bickle Group; Barry L. Wasserman, FAIA; August Vercruysse, P.E., Daniel, Mann, Johnson & Mendenhall.
The National Trust for Historic Preservation has released a report, "Older and Historic Buildings and the Preservation Industry," that for the first time defines and quantifies the supply and demand of preservation, the extent of preservation efforts, and the economic and social effects of the work.

The study found that older and historic buildings make up more than 25 percent of the total U.S. building stock. It also stated that reconditioning or adapting older buildings usually costs about one-third less than new construction and that the annual investment committed to rehab efforts is more than $20 billion.

Other findings of the study:
- Private investment in historic rehabilitation projects has totaled $2.98 billion since 1977 when investment tax credits became available, hitting a high of $1.5 billion for FY 1983.
- Buildings constructed before 1900 are "naturally energy efficient," all pre-1940 buildings use less energy than new ones, and buildings constructed between 1940-59 are the least energy efficient.

The study also found that work on older and historic buildings continues to grow as a share of architects' work. By the end of 1979, 96 percent of all U.S. architects had done projects involving existing buildings. Also that year, approximately one-fifth of the total volume of the average firm's business was rehab work.
Naturalite, your single source for skylights.

You are successful because your structures are design oriented and because they work. We became America's largest skylight company for the very same reasons.

You can count on Naturalite to meet your aesthetic requirements. Equally important, Naturalite will gladly assist you from the design phase forward to insure enduring performance.

If you choose, Naturalite will work with you in determining proper illumination levels, taking into account such factors as activities, room sizes, and building orientation.

Naturalite will also help establish energy considerations through a computerized system which simulates local energy interactions. This data can then be interpreted into such facts as energy cost/savings and pay-back projections.

With Naturalite's Illuminometer system, daylight levels can be constantly monitored and artificial lighting automatically switched on or off, resulting in dramatic energy savings in many cases.

Finally, Naturalite can execute your design in acrylic, glass or polycarbonates. And, we are equipped to install larger custom applications almost anywhere.

See Sweets insert 7.8/Na or contact the factory. Specify Naturalite skylights. The only skylight source you really need.
How to accomplish a full day's work between nine and noon.

You don't need to tamper with your timepiece. What you do need are MASTERSPEC® 2 diskettes — compatible with virtually every type of computer or word processor.

With the MASTERSPEC 2 specification system, you cut down on cut-and-paste confusion and raw research. You eliminate costly duplication and overlaps. You avoid problems with contractors' substitutions, improve your legal liability and protect your professional reputation. Overall, MASTERSPEC 2 can cut your specification time in half.

And when you take the option of a diskette library, the time savings are even greater. MASTERSPEC 2 diskettes, along with your automated equipment, can cut the production side of specifying by 75%.

Available in both Arch/Struc/Civil and Mech/Elec editions, MASTERSPEC 2 contains comprehensive information on everything from furring strips to girders. It makes decisions easier by naming products and manufacturers. And since it's updated quarterly, you're always current on the latest technology and regulations.

Fill out your coupon and mail it today. Or call Leonard Bain, AIA, toll-free at 800/424-5080 for more information. He'll show you how to beat the clock, not work around it.

Cut specification time to the bone.

☐ I'm interested. Send the information on MASTERSPEC 2 diskettes.
☐ Please send me a brochure on MASTERSPEC 2.

Name

Firm

Address

City

State

Zip

AIA

Phone number

Mail to: PSEA Div., AIA/SC, 1735 New York Ave., NW, Washington, DC 20006

Circle 70 on information card
Once you start using VELUX roof windows, it's difficult to stop.

With over 40 years experience specializing in roof windows and working closely with architects around the world, we've learned a thing or two. In terms of design, function, ease of installation, weather tightness and the availability of a complete program of options, including special glazings, you could not ask for more. Economically priced from about $200 to $500, they conform to all major building codes and may be used in passive solar applications.

VELUX. The world leader in roof windows and skylights!
Energy resourcefulness requires maximum energy efficiency in a modern window system. MILCO quality & performance ensures the builder and renovator of excellence in design and construction with each and every thermal aluminum window system. MILCO maximizes energy efficiency and durability without sacrificing aesthetic value. These high performance thermal aluminum windows are guaranteed to suit all architectural specifications and are backed by a ten year warranty.

Check the Sweets General Building File Section 8.15/Mdw

Circle 31 on information card
Abstraction of architectural forms is the guiding principle behind the drawings of New Jersey artist Michael Insetta. In some drawings these forms simply become colored patterns; in others the appearance that of a city where buildings are layered one upon the other.

Always interested in architecture but not wanting to become an architect, Insetta instead adopted what he calls the "architectural language" and transformed it into art. In each drawing he explores color and form relationships and tries to show depth without using conventional perspective techniques. He likes to use black in every drawing, which he says "seems to make my drawings work." Although sometimes inspired by actual architectural blueprints, he usually starts with an abstract idea and, most recently, with only color selection. "The drawing kind of takes shape from there," he says. His emphasis now on primary colors, and his materials are most often colored pencils and plastic lead on mylar. Interestingly, until recently Insetta was a drafter in an architect's office, but he found that it negatively affected his drawings. "I've been trying to get out of stealing architectural details and into more abstract symbolism," Insetta says. Nora Richter Greer

The drawings top and right were produced from architectural blueprints and show Insetta's new interest in primary colors. Middle, one of his latest drawings is a composite of his previous work.
Schlage Makes The Only Interchangeable Core
You Can Install Without A Key.

When you specify Schlage interchangeable core locks for your buildings, you’re specifying unique ease and security for your customer. Available in a variety of designs, each lock features an interchangeable core that is easily removed with a control key. However, a new core may be inserted in the lock by hand—no key is necessary. That means far greater security and faster conversion than ever before possible. We use the word “unique” with precision. Schlage convenience stands alone.
‘18 years’ service and still counting. That’s the performance record of single-ply roofing of Hypalon.”

“Single-ply roofing membranes of Pont HYPALON synthetic rubber have been weathering everything under the sun for the past 18 years,” says John Breitenstein, Programs Manager. “That’s because HYPALON is a high-performance rubber with durability benefits that meet the most demanding roof requirements.”

A single-ply membrane of HYPALON is installed quickly and easily. Since it is thermoplastic when down, seams are as strong and flexible as the membrane. The membrane gradually cures in place to produce an integral, tough, strong elastomeric roofing surface.

Roofing membranes of HYPALON also offer:
- Reflective white color for energy efficiency.
- Resistance to flame propagation.
- Excellent resistance to oils, chemicals and pollutants.
- Excellent resistance to ozone and UV rays.
- Serviceability over a temperature range from -40°C (-40°F) to 93°C (200°F).
- Colorability for a range of aesthetic designs.

Specify HYPALON—made only by Du Pont—for durable, low-maintenance roofing membranes. Call toll free, 800-441-7111, ext. 44, for further information. Or for free literature, write: Du Pont Company, Room X-40097, Wilmington, DE 19898.

Du Pont manufactures HYPALON, not single-ply roofing membranes or systems.
"Practicality"

His buildings seem now timeless. By attention to all detail he achieved the design mastery he sought. And time has proven the superb, enduring, practicality of what he created.

The lesson was well taught. Rixson door pivots in Frank Lloyd Wright buildings provide more than obvious aesthetic advantages. Their mechanical superiority has, unnoticed, better protected countless doors and frames from the ravages of the years. There is no better means of door hanging than the Rixson pivot.*

*Rixson-Firemark
5700 West Belmont Avenue, Franklin Park, Illinois 60131
and Rexdale, Ontario — 312-671-5670
Circle 34 on information card
A Division of
CONRAC CORPORATION
This started out as an issue on energy, which, in large part, it still is. But in a larger sense it is an issue about attitudes toward architecture.

One such attitude is that buildings need to be efficient in their use of energy, as those on the pages immediately following eminently are. Another expressed in this issue is that, while architecture may not be able to “save the world,” it can serve some significantly humane purposes for specific individuals and communities.

A favorite contributor traces the evolution of this attitude and others in the careers and thoughts of a set of activist-architects of the ’60s.

Finally we present a portfolio of truly tiny works that exemplify the attitude that architectural quality is not determined by size. D.C.
in postwar years, when California maintained the largest architectural bureaucracy in the free world, it engendered a sweeping vision of the state government in Sacramento as towers a park (not unlike what Nelson Rockefeller subsequently reed in Albany).

unden the vision changed. The state began laying the groundwork for a pedestrian-scaled, socially diverse, mixed-use center occupied around the clock, where government buildings were to be good neighbors and exemplars of energy conservation and humane design. This phase, initiated in 1975 and only put on hold in 1983, is a milestone of imaginative governmental practice and may be Sacramento history's most remarkable chapter since the days of the gold rush, the Pony Express, and the first transcontinental railroad more than a century ago.

Despite a more than sixfold growth since the start of World War II, and a resulting metropolitan population of over a million, Sacramento manages to preserve a certain sleepy and provincial character. Its rapid growth has produced a highly suburbanized place, and postwar innercity rebuilding has not really strengthened its urban character. In the '50s and '60s, urban renewal traded much of its historic core for dull buildings scaled to serve the special needs of automobiles, and its main downtown shopping street was made into a landscaped and sculpted pedestrian mall in vain attempts at reversing its commercial decline. A grand plan for state buildings, more modest in scale than Albany's but still not very sympathetic to established urban patterns, had been drafted in 1960. Its partial implementation involved widespread housing demolition and the loss of 3,000 residents. Parking lots flourished in their place, and bulky, faceless high rises became the hallmark method of absorbing governmental growth. At one point, there was even legislative interest in a scheme that would have shifted the seat of government from the domed 1874 state capitol to a new office skyscraper.

Meanwhile, government building policy was rather haphazard. It seemed especially true in the late-'60s and early-'70s, when Ronald Reagan initiated a nondevelopmental policy whereby the state leased millions of square feet of office space in selectively built structures. He further ignored the capitol area in its planning in the name of economy and functional efficiency. (At one point, the state was leasing 2.1 million square feet of office space, accounting for 37 percent of its total, in scores of different Sacramento locations, at a cost estimated to be 25 percent higher than that of consolidated, government-owned buildings.) The earlier scheme calling for a governmental ghetto of massive buildings also was rejected because of its inappropriate symbolism and its detrimental effect on urban life and form.

Under Brown and Van der Ryn the state proposed to reintroduce residential structures into the governmental zone along with some ground floor commercial activity, and mix those uses at the relatively fine grain of quarter-block parcels. Existing housing would be made into good neighbors and exemplars of energy conservation and humane design. The lowered height would conserve winter sunlight and promote compatibility between adjoining office buildings.

As it turned out, he stayed for three years, serving as the state architect and as head of the newly formed office of appropriate technology. In that time he brought many fresh and talented people to work in the capital, including his deputy and successor, Barry Wasserman, FAIA, his future partners, architects Peter Calthorpe and Scott Matthews, architect and programmer Bobbie Sue Hood, AIA, and in a consulting role, urban designer John Kriken. Several recent Berkeley graduates came to staff various state and local agencies, and some of California's best architectural offices were commissioned to design state buildings.

Van der Ryn's first task was to update the capitol area plan that had languished during the previous eight years. Brown thought the new plan should aim to "create a human-scale society and a reinvigorated core that operates 24 hours a day, instead of just eight." In retrospect, Reagan's inactivity had inadvertently produced at least one benefit: It had suspended what was now deemed a misguided effort of building massive, anonymous single-use office blocks. Since there was no money in the current state budget for a new planning effort, Van der Ryn arranged for a team of his Berkeley students to live rent-free in state-owned apartments and do the initial work in return for academic credit.

What eventually emerged from this undertaking, and from related work done within the offices of the state architect and by the San Francisco office of Skidmore, Owings & Merrill, was a set of architectural and urban design policies for the government zone that would reverse both the monumentalism of the early-'60s and the minimalism that followed it. The Reagan policy of letting private owners provide public space was rejected on grounds of economy and functional efficiency. (At one point, the state was leasing 2.1 million square feet of office space, accounting for 37 percent of its total, in scores of different Sacramento locations, at a cost estimated to be 25 percent higher than that of consolidated, government-owned buildings.) The earlier scheme calling for a governmental ghetto of massive buildings also was rejected because of its inappropriate symbolism and its detrimental effect on urban life and form.

Under Brown and Van der Ryn the state proposed to reintroduce residential structures into the governmental zone along with some ground floor commercial activity, and mix those uses at the relatively fine grain of quarter-block parcels. Existing housing would be made into good neighbors and exemplars of energy conservation and humane design. The lowered height would conserve winter sunlight and promote compatibility between adjoining office buildings.

State-provided parking would be reduced with respect to number of employees and shifted to the periphery of the capitol area. Shuttle buses would link this parking to workplaces. Core area state offices would be located within a 10-minute walking radius from the capitol. Shuttle buses, greater use of public transportation, and the provision of housing within walking distance would further reduce the proportion of vehicles while increasing that of foot traffic. Pedestrian presence would also be encouraged by smaller buildings, limited to four stories, articulated to reduce their scale, and built up to the sidewalk to provide a continuous streetscape. The lowered height would conserve winter sunlight and promote compatibility between adjoining office and residential buildings. The eventual result of these measures would be a diversified, 24-hour-a-day community, where a decreased need for private transportation would enhance neighborhood character and conserve energy as well.

Energy efficiency would also be addressed more directly through architectural design. Van der Ryn initially hoped to reduce energy consumption by 90 percent in new state office buildings, and although this proved optimistic, the five Sacra-
mento offices built to date have been estimated through computer modeling to produce savings in the range of 56 to 70 percent. These economies are effected through a wide variety of means. Active solar systems provide domestic hot water, and in one case, primary space heating and cooling. Passive techniques are more prevalent, and they include daylighting, fixed and movable solar shading, selectively reduced glazing, underground and earth-covered construction, generous insulation, atria and courtyards, and use of heat stratification and thermal mass. Additionally, prominent open stairways and low building heights are meant to reduce elevator use.

Although unprecedented effort was directed toward energy conservation, that was just one of the state's priorities for new buildings. Urban design considerations, as already cited, were significant and integral with other goals, and there was also major emphasis on the quality of environment for workers and visitors. This last aspect, arising largely from the program formulations of Bobbie Sue Hood, was sometimes downplayed in presenting the building agenda. As Van der Ryn explains, "It was easier to say that we're going to build buildings which save money than to say that we're going to build humanly responsive state buildings. I think a lot of people would have opposed that because they believe that everyone who works for government is basically an incompetent and a malingerer, so that the last thing you want to do is provide a good human environment for them. It's kind of like punishment—we've come to believe that public buildings ought to look cheap and be dysfunctional from the human point of view."

In strong contrast to that outlook, the state architect's office instituted a policy of individually programming its office buildings according to intended occupancy, rather than using generalized space standards as had been the previous practice. It also adopted general goals for all buildings: a strong sense of entry, "crystal clear circulation," easy orientation for visitors, and such amenities as daylighting, higher than normal ceilings, smaller than normal open office bays, outside views, employee control over interior climate, access to atria or courtyards, and inclusion of small commercial establishments. All of this was to be achieved within moderate construction budgets. Wasserman calls these new measures "government with a smiling face." Many of them overlapped urban design and energy conservation objectives; Van der Ryn was convinced that "there is synergy between energy, frugality, and a good human environment."

Ambitious as it was, this vision of synergy was not confined to Sacramento or even to architecture and urban design. For most of the time that he was the state architect, Van der Ryn also headed the office of appropriate technology, the agency initiated by Jerry Brown and himself. In their eyes, "appropriate technology meant economical, self-sustaining, decentralized, small scale, accessible to ordinary people. Its acronym, OAT, fortuitously evoked many of the desired qualities: The plant is hardy, nourishing, and the symbol of a thrifty, independent-minded civilization.

Urban design objectives were pursued on two fronts. The office of the state architect (OSA) was able to build many of them into the programming and design of new state office buildings. A wider range come under the jurisdiction of the Capitol Area Development Authority (CADA), an agency that grew out of the updating of the capitol area plan and was staffed in part by people from OSA who had worked on that document. CADA functions resemble those of a redevelopment agency and include residential property management, rehabilitation of older dwellings, and initiation of new mixed-income housing construction.

Goals related to working conditions and quality of the interior environment were obviously OSA's province, as were many of those embracing energy. Innovatively programmed and designed buildings were the vehicle for these objectives. The Brown administration's building program was quite extensive, involving 15 projects statewide and a wide range of outside architects and structural talent. Eight are built and occupied, one is under construction, working drawings are complete for two, and schematics for four. The best place to evaluate the program is Roosevelt Park in central Sacramento, since three of the buildings adjoin it, a fourth is only two blocks away, and the first two new housing complexes developed in accordance with the new capitol area plan also adjoin the park. This vantage point also permits an assessment of several of the individual buildings as mutually interactive urban design elements.

No matter how well they were formulated, OSA's goals were merely words until the various buildings would embody them in tangible form. Thus, much of the state program's ultimate validity depended on the astute commissioning of architects for individual structures. For the pioneer project, the Gregory Basin Building, Van der Ryn felt that the people who would be
t, the variegated facade of the Gregory Bateson Building,

awtoothed skylight over central court. This page, court­
d of the Employment Development Department Building,

and building’s slanting display of solar collectors, right.

st responsive to his unprecedented and demanding require­
nts would be members of his own staff. The first in-house
ort, coordinated by a specialist in energy-efficient residential
ign, used conservation techniques inappropriate to offices

ad did not really address its urban context. Facing up to these
encies, Van der Ryn decided to abandon the scheme and
in afresh. A new team was brought to the task, produced an
emplary design, and got the program off to an auspicious start.
he design team’s principal members were Peter Calthorpe,
ott Matthews, and Bruce Corson. Because the building was
enn as a testing ground, it abounds with a diversity of ideas,
ms, and materials. It gained notoriety when defective damp­
prevented proper ventilation. Until identified and corrected,
problem caused major employee discomfort (see Sept. ’82,
ge 18).

he Bateson is the most satisfying of the new central Sacra­
ento buildings, especially when one is experiencing the 150x
-foot enclosed atrium space. It seems both a little odd and
y familiar, even comforting. Designer Calthorpe once said
climate control strategy follows a “biological paradigm,” and
some subtle way this shows in the esthetics of the space. Its
ments and proportions come together not in the cool, resolved
fashion of high art, but in an animatedly imperfect way that sug­
gests life itself.

As the first undertaking of an unprecedented program, it was
the repository for all the early aspirations, second thoughts, elation,
and frustrations of its creators—and it shows. Looking back
at the state program after four years away from Sacramento,
Van der Ryn finds the Bateson building “clearly the one with
the most soul, the one that is the richest and most coherent.”
Governor Brown, normally indifferent to physical surroundings,
paid it at least as strong a tribute. After seeing the completed
building, he claimed space in it for a second office.

There were three reasons for holding a design competition
for the second building, now known as the Employment Devel­
opment Department Building (EDD). It seemed a good mecha­
nism to select the program’s first outside architects, it could
educate the profession about energy-saving techniques and
benefits, and it could call public attention to the state’s new com­
nitment to humanly and environmentally responsive design.
Thus in 1977, OSA and the State Energy Resources Commis­
sion jointly sponsored a highly specific competition to design a
240,000-square-foot building on a one-and-a-half-block site. Six
finalists were chosen from among 42 entrants and paid to fur­
ter develop their schemes. When the jury reconvened two
months later to select the winner, there was intense debate and a
3-2 split vote.

The majority, enthusiastically led by the late William Caudill,
favored an abstractly conceived active solar scheme by Benham
Blair Affiliates (later renamed The Benham Group) of Oklahoma City. The minority, comprised of Van der Ryn and energy consultant Fred Dubin, preferred a more finely scaled, articulated passive solar design by the Berkeley firms of ELS Design Group and SOL-ARC. Van der Ryn recalls the event: "There was a very fine scheme by ELS. It was the most refined and worked-out concept, and perfectly fit the program. Then this big statement came in, and Bill Caudill did an incredible selling job on it. There was an idea there, but very poorly executed. It was a diagram made into a building, which unfortunately seems to happen often in competitions."

Once made public, the decision provoked controversy, but the process nevertheless proved beneficial. The ELS scheme was impressive enough to gain the firm a subsequent commission for the San Jose state building (with SOL-ARC), a design clearly descended from the competition entry. And the third place entrant, Sam Davis, AIA, later collaborated with MBT Associates on a Sacramento state office building that drew on the principles of his competition design. It might be said that the prime value of the competition lay in the runners-up.

As built, the competition winner departs from its original design. The EDD building was first presented as a large, soli collecting slab, windowless on its long, slanted south face an connected by tunnel to a pair of two-story subterranean build ings facing a depressed landscaped mall. The roof of one wo be a park, the other a site for privately built housing. OSA it sisted that the slab have south windows, since it rose six stor above ground and housed several hundred human beings. T lower portion was also redesigned when state-supplied water ta information proved inaccurate: The underground building h to be raised several feet and reduced to one story.

There is undeniable ingenuity in EDD's energy strategies (is the only active solar building in the state program) and ph cal planning, but spatial sensitivity and architectural refinements are in short supply. Even with added windows, the slab office are the least satisfying workspaces in completed downtown Sacramento buildings. A problematic outdoor space between slab's north side and an existing office block is an unresolved residue of the oddly literal minded decision to slope the enti building, front and back, rather than just the solar collectors themselves. These devices, composed of several hundred moveable reflectors and six long receiver pipes mounted on spindl outriggers, are the tail that wags the dog: Not only did they force the main building into an internally illogical form, but their visual domination of its principal facade makes it seem more an exercise in mechanical engineering than the work of architects.

The EDD's style, a slightly futuristic strain of 1960's brutali is regressive and inappropriate to the state building program's humanistic goals. Its depressed mall and rooftop park space a welcome and seem reasonably well used, but, like the slab, h undeveloped quality of a model blown up to full size.

In comparison with the EDD, the formidable named Calif ornia State Energy Resources Conservation and Development Com mission Building is clearly a better workplace and a more inviting piece of architecture. Yet the Energy building shares to some degree EDD's shortcomings in translating a promising set of ini tial design ideas to specific tangible form. Its design was initi ated by OSA and then given to Nacht & Lewis of Sacramento for final development. The exterior is highly articulated in pl
cross page, stepped massing of the Energy Resources building, central atrium shaded by translucent canopies. Above, scooped-out entrance at the corner of the Water Resources Control Board building; right, its L-shaped courtyard from an office.

The main structure is sectioned by stepped modular massing of the main facade, undulating bands of projected sunshades, and by a complex system of movable and fixed metal louvers. Its 130,000 square feet of office space wraps around a generous and similarly stepped central atrium spanned by two bridges and adjoined by a large public terrace and four smaller semiprivate decks. This space is conceptually akin to that of Herman Hertzberger's De Stijl Centraal Beheer office building in Appeldoorn, Holland, and is shaded by billowing translucent canopies recalling the tent structures of Frei Otto.

A nice sense of sheltered communality marks this central outdoor space, and a clearly modular concrete structural system gives visible discipline to the building's vigorous internal and external stepping. The preponderance of work spaces have good lighting and plentiful opportunities for inward and outward views. On the other hand, some of the building's design virtues remain conceptual. There is a prevailing grayness to the atrium space and a hardness of character arising from an oversupply of visible concrete surfaces. Due to a conflict between common sense and the city fire department, the atrium canopies spill cascades of rainwater into the space rather than onto the roof. Energy Commissioner Rusty Schweickart finds the building's operating policy somewhat rigid, pointing out that operable windows are screwed shut and external louvers cannot be adjusted even for the affected occupants, but only through the seasonal visits of maintenance staff armed with protractors. The same louvers create a busy appearance outside, and the floating concrete sunshades above them are incongruously heavy and too easily misaligned for structural elements. A well chosen paint color applied to these streamline moderne-like bands would improve the clarity and object quality of the exterior.

The fourth Sacramento building, by MBT Associates and Sam Davis, AIA, is the 160,000-square-foot Water Resources Control Board Building that faces the north side of Roosevelt Park. It respects the street line more consistently than the other state buildings, assuming an L-shape on an L-shaped lot and forming a similarly configured courtyard inside the block.

The outermost five feet of the building are devoted to fixed shading devices, exposed duct risers, and an expressed structural frame of steel clad in white stucco. (Originally planned as a concrete structure, it became steel in order to save about 2 percent on an already low construction cost. The penalty, of course, was the stucco, a finish that rarely looks totally convincing on modern structures.) Ductwork and metal sunscreens are painted a rich blue, as is a metal framed shedlike extension facing the courtyard.

The three corners of the block each have prominent entrances scooped out at 45-degree angles and leading to the court as well as the building. Paralleling two street directions, the court can thus serve as an alternate pedestrian path. A carefully worked out fenestration pattern and a narrow building cross section produce a high level of daylighting and relatively unimpeded views.

The Water Resources building is a handsome and accomplished piece of work. Its energy emphasis is revealed subtly. Where the EDD and Energy Commission buildings struggled visibly with the techniques of conservation, this building has tamed them and assimilated them within an overriding architectur-
Is a unique chapter in state history ending?

Architectural discipline. The most recent of the downtown Sacramento energy program efforts, it marks an advance in resource conserving design: it is a building that does not wear its Btus on its sleeve and proves that energy efficient structures need not look different from their stylish but less responsible architectural cohorts.

New state offices face two sides and a corner of Roosevelt Park. The south and east sides are fronted by new housing clusters, one of which is still under construction. Although privately built, they are products of the capitol area plan and of its offspring, the Capitol Area Development Commission. To bring new housing downtown, CADA offers developers free long-term land leases in exchange for a quota of affordable units and the assurance of energy efficient and passive solar design.

This element of the plan has been harder to implement than the office component. There is no single, sophisticated, non-profit client, construction standards are lower, and market factors and consumer preferences further complicate the process. Pursuit of this goal runs counter to many tenets of Sacramento's suburbanized culture, yet downtown housing is essential to success of the plan and the return of life to the heart of the city. So far, CADA has sponsored the rehabilitation of 211 downtown dwelling units, and 219 new ones have been built or are under construction.

Most of the new housing adjoins the park. To the south, Capitol Park Townhomes, 36 Dutch-gabled row house condominiums, have been completed on a 1.2-acre site. This passive solar design was originally conceived in the office of SOL-ARC, then passed to David Baker, AIA, when he left that office. It serves urban values by holding its block face, albeit with an oddly redundant front setback, but its two-story height and 31-unit-per-acre density both seem just a bit low for its context. With selling prices of $55,000 to $60,000, the units represented a distinct bargain for California urban housing. Since some of this economy has been achieved through design and construction compromises, the effort must be counted a mixed success.

East of the park, a more ambitious effort by Van der Ryn, Calthorpe, and Matthews is underway. Somerset Parkside includes a good diversity of forms and uses at a solid urban density of 43 units per acre. There are 26 low-income apartments, 81 affordable ($50,000-$80,000) condominiums, 115 parking spaces, a restaurant, convenience store, and three other retail units. Unfortunately, a planned day-care center was rejected by the developer and replaced with a Jacuzzi spa. (As Marie Antoinette might have said, let them take baths.) The planning of this mixture is thoughtful. Within a generally south facing alignment for solar efficiency, three-story housing units anchor the street frontages and two-story family town houses occupy the landscaped interior of the site. Parking is either below the buildings or beneath the shelter of solar hot-water collectors. Most of the commercial space faces the park, and housing on the north and south boundaries varies in form and scale in accordance with the institutional or older residential character of its adjoining streets. Here again, construction quality does not always do justice to the design, but Somerset Parkside is still an impressive response to the capitol area plan's demanding economic, social, energy, and urban design goals.

Because of their diversity, it is easy to think of these six downtown projects individually and thus overlook their place in the city pattern. This is a major consideration and the source of some paradox, in that the urban design aspects of these buildings are both laudable and somewhat disappointing. Their greatest accomplishment has been respecting the state program's urban goals: low to moderate height, a noninstitutional scale, solar access, pedestrian opportunity, and mixed and extended use. One might say that the plan has formulated the ingredients for an intelligent urban regionalism specific to Sacramento, and the new buildings have brought most of them into being. That may seem a simple thing, but it is difficult to achieve since it runs against the momentum of an ever suburbanizing society.

Where the buildings seem weak is in their specific physical form. They were quite correctly meant to look as though they were built by different hands, and they do, but with a bit too much variation from one building to another. The four sides of Roosevelt Park, for example, are bounded by four new buildings that each respond in good degree to the capitol area plan but have not all that much in common visually. Fortunately, the pedestrian-level experience is not as lively as it would be in a really thriving downtown. Much of this is due to the uneventful ground floors of institutional buildings and difficulties of providing commercial uses at street level. In fairness, it must be stressed that the plan has not yet been carried far enough cause the shifts in downtown activity that it seeks. Further construction of offices and housing, plus such related measures as building the light rail commuter system planned to serve downtown, are critical to the city core's success.

Whether these necessary steps will be taken is not at all clear. In 1982, Governor Brown was succeeded by an outspoken conservative, George Deukmejian. Barry Wasserman survived more than a year into Deukmejian's administration, but has recently been replaced as state architect by Whitson Cox, FAIA. At the Cox seemed somewhat skeptical about the practicality of the building program. But, interviewed more recently, he said, "I..."
A healthy respect for Sim Van der Ryn's concepts. Cox praised the present architectural selection process as "fair and equitable" and said that he would have sought somewhat higher construction budgets for early buildings, based on their long-term energy economies and higher initial costs for equipment. He calls the urban design policies "a commendable experiment" but feels that the city is organizing quickly and that the plan has not acknowledged that with properly. He believes that it has created "suburban scale neighborhoods" and that there probably need to be higher office and housing densities in the future.

Whether such intensifications would enhance or undo the plan would depend on their degree. But such speculation might be academic, since the state building program is stalled. There seems to be agreement that it is cost effective for the state to build its own facilities, but there is no money now to construct projects that were put into the pipeline during Brown's administration. Buildings have been deleted from the 1983-84 state budget, and although Cox has reapplied for three in the 1984-85 budget, their fate is not certain. He hopes that new financing methods will prove the solution to current fiscal difficulties. Although the new state architect seems cautiously supportive of many of his predecessors' policies, it is clear that Governor Deukmejian's economic priorities do not favor the state building program, and that the spirit that once existed in the OSA has become more subdued. Looking back on the stirrings of a few years ago, Van der Ryn says "now it's all gone back to sleep again."

The state building program and the capitol area plan constitute a unique chapter in California's, and indeed the nation's, architectural history. The eight projects totaling over 1.5 million square feet have been built throughout the state. When compared to their postwar predecessors, they demonstrate a quantum improvement in both objectives and tangible results. They represent the first time that a major public office building effort has been based on something other than monumentalism or low initial costs. By stressing responsiveness to urban context, human needs, and energy concerns, and by recognizing the interrelatedness of these issues, the state program marks a breakthrough in public policy as well as in architecture.
The new headquarters office building for Ventura Coastal Corporation shows off more than impressive statistics of energy savings. It demonstrates that these can be achieved at no expense to either its visual image or its budget.

Rasmussen & Ellinwood focused the design concept on the integration of daylighting. Through manipulation of exterior and interior forms and materials the architect capitalized on the qualities of natural light, thereby creating a most pleasant human environment while minimizing the use of mechanical and electrical systems.

The architect succeeded in reducing energy requirements of the two-story, 32,000-gross-square-foot building to 20,700 Btus per square foot—only 47 percent of the maximum energy use permitted under California's nonresidential energy standards. Ventura Coastal Corporation—processor and marketer of lemons and private-label frozen lemonade concentrate—needed to consolidate its administrative offices, as they had grown to fill five different buildings and trailers on the company's prime 24-acre site in Ventura, Calif. The client sought any optimum working environment designed and constructed within the limits of a "standard" corporate budget. Client representatives were surprised and ecstatic with the structure's remarkable energy performance.

Scott Ellinwood, AIA, who was responsible for the design concept and energy conservation strategy, started with extensive computer analyses and model studies, which helped deter-

Ms. Nairn is a freelance writer in California who specializes in architecture and design.
The building's south side with eucalyptus trees that filter light and are pruned to allow views. Left, secondary stance on the building's north side. Section below illustrates energy conscious design features.

Everything from the best site to building orientation to interior footcandle levels to HVAC energy consumption.

The site is a grassy bluff above a freeway, next to processing facilities and farm lands. The building is long and narrow, bending in the middle to conform to property lines, with the major elevations oriented in general north/south directions. Stretching the building provided the greatest perimeter wall area on which light would hit and allowed for a straightforward double-loaded corridor so that no office would be more than 30 feet from the perimeter. A tall, thick hedgerow of eucalyptus trees on the freeway side was pruned to open up views to the Pacific Ocean and the Channel Islands. The lacy trees also filter low afternoon sunlight.

The major elevations are treated differently in order to appropriately control heat gain. The southern elevation is highly articulated with bands of alternating glass and sun devices (which wrap around the east and west ends). Two broad overhangs restrict direct penetration of light, thus minimizing glare and heat absorption. On each floor at a seven-foot height level, a narrow perimeter light shelf, with an open light slot, runs parallel to the facade. Below the light shelf, the glass is tinted green.

- Clerestory—clear glass, north-oriented—no direct insolation
- Package V.A.V. unit with visual screening
- 66°
- Linear diffuser
- Direct sunlight south sky
- Overhang restricts direct insulation, minimizing glare and heat gain
- Light shelf reflects direct insulation to interior
- Warm-toned finish—daylight reflection without glare
- Specular reflector at interior of light shelf directs daylight to interior above line-of-sight
- Highly reflective matte finish materials at exterior horizontal surfaces
Light shelves and a down-sloping ceiling.

to further filter light; above, transparent glass acts as a clerestory window.

Flush glazing runs the full floor-to-ceiling height along the northern elevation to maximize exposure of light in the morning, the only time the structure regularly requires heat. The window treatment is the same with see-through above green-tinted glass.

An additional large clerestory window at roof height is angled to the north to allow more light into the center portion of the interiors. The top surface of the interior portion of the light shelf is finished as a specular reflector to direct daylight onto the ceiling, above the workers' line-of-sight. The ceiling is sloped (from 12 feet at the building perimeter to nine feet at the center) and coated with highly reflective material. Vertical window blinds, hung near the windows, can be adjusted to control gl

Each work station has a task light, and ambient lighting is provided by standard partition-mounted indirect HID luminaries. These are automatically controlled by a system of photocells zoned according to location in the building.

Even though the building will almost always register a net heat gain, there will be north and shaded zones that will have long periods of net heat loss. Only a 52-ton capacity HVAC system was needed (in comparison to an 84-ton unit recommended under California Title 24 for a similar size, standard building in a comparable location). Variable air-volume, multi-zoned units with economizer cycles were installed. The equ
Natural lighting techniques including flush glazing with diffuser, top left; light shelf with specular reflector, bottom left; clerestory, bottom right; and skylit bridge in entrance court, top right. Above, entrance court.

Air cools with outside air if the return air from the building has a higher heat content. The economizer allows the refrigeration compressors to remain on-line until the heat in the exterior air falls below the level of the conditioned supply air. The space created in the bend of the building serves as a prominent entrance lobby, behind which is a skylit greenhouse/employee lounge. These areas are separated from the offices by glazing and radar-operated sliding doors for both climatic and acoustical reasons. Brick floors, stucco walls, and earth-filled planters provide a thermal mass. And a system of thermostatically controlled, motor operated louvers provides outside air for cooling. The solar heated air can be either released or reclaimed by the mechanical system and redistributed to other parts of the building.

This comprehensive and progressive energy approach has generated an architectural form with character and visual interest, fortunately not lost in the search for cost effectiveness. Conceived by the architect as a "pavilion in the trees," the building vaguely suggests the streamline moderne style so prominent in southern California buildings of the 1930s. The sweeping bands of overhangs, light shelves, and windows are its decoration, lending a presence that is instantly perceived from a passing car on the freeway below.

ARCHITECTURE/JANUARY 1984 67
Creating a controlled environment that is hospitable to both plants and people was a problem sensitively solved in this horticultural education facility at the New Canaan Nature Center in New Canaan, Conn. Buchanan/Watson Architects of Branford, Conn., (which won an Owens-Corning award for the design) combined a number of passive and active solar design strategies to serve a dual pedagogical purpose: to provide a setting for large groups of visitors to study plant life and to educate them about the building’s energy conscious design.

The building’s form is primarily the result of its greenhouse function, although George E. Buchanan, AIA, points out that the geometry relates to the 19th and early-20th century structures that populate the site. “The slopes recall the image of a barn,” says Buchanan, which is appropriate in this horsey Connecticut community. On its east end the building connects to an existing stuccoed garage with the use of a green painted steel canopy, which also marks its entrance. To the west an angled ramp (used for transporting equipment and plants to the mezzanine level) works with its canopy counterpart to visually anchor the buoyant building to the ground.

Being inside the building is like being outside, a quality that it shares with another famous New Canaan glass structure. Despite the reading of the volume from outside as one large space, inside there are a number of clearly defined nooks and niches of varying size. There are also a classroom, administrative offices, and other service spaces on the first level. A staircase that appears to float above a small fountain takes one up to the mezzanine level, which provides a commanding view of the greenhouse and its workings.

Donald Watson, FAIA, says that the study of how the Romans used the atrium for cooling and how the English replicated growing climates centuries later in their greenhouses led to a combination of techniques to accommodate the building’s human and botanical inhabitants. These historical examples demonstrate says Watson, “that the microclimate can be controlled by design to provide richly varied places for people and plants through the year.”

In terms of siting, the south-facing greenhouse is bermed on its north side, reducing temperature variations. In section, the triangular building’s axis neatly delineates the use of materia clear, double-glazed glass to the south; heavily insulated concrete block to the north. The concrete slab is also insulated. Enough radiant heat is admitted in winter to keep people comfortable. On especially cold and cloudy days there are back-up systems—a woodstove, fin-tube radiators, and “grow lights.”

In summer the greenhouse is cooled by opening windows the monitor at the building’s apex and at ground level for natural ventilation. Motorized shades limit the heat and over lighting of the summer sun (they are also used to minimize h loss in the winter). Hot air collected between glass and shad is exhausted by fans. Sufficient air circulation also alleviates excess moisture that rots leaves and roots.

A rootbed system is used to keep the plants warm. Water heated by solar panels in the monitor is pumped through co per tubes embedded beneath the plants, allowing a constant te perature to be maintained without heating the air—an important consideration in the summer. Temperatures throughout the building, from the monitor to underground, appear on digital readouts in a reception area console, which also displays graph material explaining the building’s energy design features. It it to the architect’s credit that this building not only works to se its varied functions well but also teaches by example, earnin its place in the sun.
East elevation

Across page and top, the greenhouse's south face from the northeast and southwest, respectively. Right, view of the east elevation with canopy that defines entrance. The terraced framing in the elevation and plan was later deleted.
Above, the greenhouse’s sunlit interior with temperature monitoring console at the right and the hovering staircase in center. Right, building section illustrating 16 of the greenhouse’s energy-conscious design strategies: (1) steel and glass greenhouse south wall; (2) solar collectors; (3) eutectic salts heat storage system, which converts from a solid to a liquid with the sun’s heat and at night transforms back into a solid, emitting heat through the chemical process; (4) ceiling fans; (5) roof monitor with operable windows for natural ventilation; (6) motorized sun shade; (7) insulated concrete slab; (8) rootbed heating; (9) grow lights; (10) woodstove; (11) insulated north wall; (12) insulation curtain; (13) automatic temperature controls; (14) energy efficient lighting; (15) roof water collector; (16) earth berms.
loods that Draw in Light and Air

an Ohio television facility. Architect: Richard Fleischman. By Carleton Knight III

that the Viacom Cablevision regional headquarters in Cleve­
land Heights, Ohio, turned out as well as it did is a tribute to
the magical talents of Richard Fleischman, FAIA. The Cleve­
designer was able to apply a little legerdemain to a project
it seemed to have more than its share of programmatic con­
aints, problems that under most circumstances would work
against design quality.
The $1.9 million budget was strict, and the site was complex—
oddly shaped four acres of expensive land at the edge of a
oded buffer dividing a shopping center from a residential area.
en there was the program. In addition to the requisite office
and administrative spaces, which had to be expandable, park­
g was required for 100 cars and under-cover storage was
eded for 75 service vehicles.
The garage, which takes up nearly one-half of the project’s
,000 square feet, was what required some sleight of hand. The
y insisted that the 75 trucks—minivans, pickups, and cherry
kers—be housed in a building, “not behind a stockade fence,”
roof profile gives building an extruded look, an appropriate
h-tech image. Right, the long garage.
Mirror glass sheathes most of Viacom, except for garage, left, where open louvers permit natural ventilation. Roof monitors, section, bring light to interior, bottom right.
Large garage designed as 'an illusion.'

Says the architect. An enclosed garage would require extensive, expensive, mechanical equipment to remove the exhaust gases, so Fleischman created what he describes as "the illusion of a building." Steel louvers line the sidewalls of the steel-trussed structure while quarter-circle monitors run the full 320-foot length of the two-level roof, designed to accommodate the big size trucks below.

While these roof monitors present an unusual and esthetically pleasing profile, they are primarily a significant passive energy device. Strategically located at the roof edge, they, in combination with the dual height interior and louvers, permit constant movement of air, and thus the exhaust is vented naturally.

Fleischman expanded on the unique roof of the garage for offices. "Rather than two opposing structures," he says, "the character and silhouette of each unit is homogeneous, forming single composition." The monitors in the two-story office sections are enlarged from the six foot height on the garage to 10 feet, and once again serve as a passive energy aid, albeit a different one. They act as receptors for light and heat, reducing the need for artificial illumination by filling the open office landscape with light. They also collect a significant amount of solar heat and distribute it throughout the office areas.

Further energy saving comes from the siting of the building and its highly efficient envelope. Mirror glass on the east and west cuts the direct sun load and is aided by the natural shield provided by the wooded surrounds. The structure is sheathed steel-covered, foam core insulated wall panels, while the monitors are covered with corrugated metal.

The steel is painted light gray, which tends to make the building recede. Notes Fleischman, "Its stark form, in contrasting color and texture, enhances the natural setting of trees." And at night, the building lit from within in the woods is a delight.

Viacom is proud of the building, showing it off to visitors as an example of what the company can do for a community if it is given the cable franchise. In an industry where most of the buildings to date resemble "concrete-block machine gun nests," one architect puts it, this is proving that quality design can be a powerful sales tool.

But best of all for Viacom was the almost magical price. Construction cost less than $44 a square foot. And that's no illusion.
Here is a little building that invites quiet description, words like pleasant, low-key, unpretentious, fitting. You'll find no architecture for art's sake, no witty allusions—but rather evidence of intelligent problem-solving, informed by daylighting technology and Swedish and Japanese vernacular architecture.

It is a social and crafts center for older people in Essex, Md. Typical of Baltimore's ethnic neighborhoods and close-in suburbs, Essex is a stable, working class community where succeeding generations rear their families near the parental hearth. So it is not surprising that many of the people who today use the Essex Dorsey Senior Center attended school in the very same structures. By all accounts, they like what was built for them.

When commissioned to design the center, The Paul Partnership of New York City was given the choice of adapting the pair of two-room, turn-of-the-century schoolhouses or starting from scratch. The architects enthusiastically embraced the concept of reuse, finding the existing 40x70-foot buildings set 30 feet apart "somewhat affectionate," according to Barbara Sandrisser, project designer. Their wood-frame, clear-span structures were sound, and she thought they "sat well" in the community of small, single-family houses with well-kept yards.

The straightforward concept of adapting the schools into a 13,000-square-foot center came quickly and intuitively, agree Sandrisser and Peter Paul, the firm's principal in charge, but refinements and red tape proved painstakingly protracted.

Primed by a design grant from the Department of Energy (a small construction grant came later) and a November 1970 DOE briefing in Denver on what was current in passive solar and energy-conscious design, the architects decided that the design of the L-shaped addition that links the schools would be daylight determined. Actually, the first DOE briefing was of limited help, says Paul, "because they were running what started out to be a heating-based program for buildings in the Southwest." More applicable help came later from a DOE-sponsored review panel held at the Robie house in Chicago where Paul and Sandrisser found designers from the Southeast with experience in design for natural ventilation who suggested using the U-shaped courtyard formed by the new wing—completely enclosed in the first scheme—as an air scoop. And William Lambert, critic for daylighting, was "enormously helpful," says Paul.

Sandrisser brought to the design a scholarly appreciation of Japanese and Swedish vernacular buildings, attempting to apply both cultures' "sophisticated, intuitive understanding of the uses of wood" and Japanese solutions for dealing with cooling ventilation, diffusing light, and reducing glare.

The architects decided to strip away two layers of siding from the schoolhouses and wrap them and the new construction in gray cedar clapboard of narrow width, approximating the schools' original skins. They found the old buildings to be oriented for natural daylighting and so retained fenestration patterns, replacing the wooden, double-hung windows with metal units of like dimensions. Also retained were the dormered entrance bays centered on the front of each school, which were converted into window bays. They repartitioned both building programming specific activities for each—crafts in one, administrative offices and meeting rooms in the other—and gave...
posite page and immediately above, the back of the center, with right-scooping new wing at right. Top left, the understated frontation; window bay was schoolhouse entrance. Top right, the multipurpose room with high light source and courtyard access.

Most of the new construction over to three large rooms, each by clerestories facing different directions. The entrance space es up from the south front to windows high on the north ill; the social gallery beyond is lit by east clerestories; and the multipurpose room at the rear reaches high with a south eented light scoop fitted with fixed louvers to admit direct sun and block harsh summer rays. The fourth major new ace, the courtyard, is accessible through sliding glass doors the long multipurpose room. Its rock garden is one of several dilly identifiable Japanese influences. Other are locally afed pendant lampshades and a sliding interior screen. The rock garden is one of the pleasant surprises tucked away the building, and it typifies the design's inward focus. Other evidence of introspection is a main entrance so understated at the front elevation of the center suffers somewhat of an entity crisis. In contrast, the virtually hidden rear entrance,acked only from the parking lot, is positioned in the building's ost appealingly composed set of facades.

Inside the center, one is first struck by the quality of natural ht that bathes the high, sloping ceilings from clerestories. Next served is a silent, humorous war of tastes: the architects' aus esthetic of white intersecting planes and minimal Japanese spired accoutrements versus the users' ideas of homely, literal decoration. The conflict was anticipated. Comments Sandrisser: "Most Japanese households, at least the ones I visited, were a marvelous combination of Japanese restraint and Japanese kitsch. This is true even in the 'traditional' Japanese house and in many public spaces." At Essex, it is best interpreted as a sign of acceptance by the seniors, confirming their apparent pride in the building.

Still to be determined is how well the seniors will use the built-in passive solar features. To that end, the architects insisted that behavioral variables be included in DOE's evaluation of the building. As Paul says, "It is all very well to put movable insulation in a commercial building, but if nobody moves it we are just going through an exercise in calculation. We think people will like being able to interact with the buildings yet people don't expect that in a public building." The architects are tak ing an active role in educating the users. Sandrisser is prepar ing a little tabloid supplement to the county department on aging's publication in an effort to acquaint the seniors with energy concepts.

But perhaps more important than energy savings is the psychological effect this building has on its users. Says Timothy Fagan, director of the department on aging: "This building influences how people feel about themselves, and you're talking about people that have identity problems because they are less valued by society. It is one thing to put up a conventional building to provide programmatic responses to that group. It is another to put up a building that has a message in it about life itself. People feel good about themselves in this space."
Solving ‘Reverse Energy Problems’

Hospital in Bethel, Alaska. Architect: Caudill Rowlett Scott. By Andrea O. Dean

Energy shortage or glut, the first design imperative for Caudill Rowlett Scott at the 95,000-square-foot, 50-bed Yukon-Kusokok-Delta Regional Hospital was to combat the unsparing climate of Bethel, Alaska, an eternally frozen, remote flood plain 60 miles from the Bering Sea. In fact, initial design was begun in the early ’70s before conservation became a popular concern.

Moreover, some commonly used energy saving approaches simply wouldn’t work here. For example, the architects ignored the accepted canon of orienting buildings toward the south for solar gain. The reasons are simple enough: Compass points are warped and mean little so close to the North Pole. Also, as design architect Jay Bauer, AIA, says, “It’s a nonsolar building in being designed as though there is no sun, and there virtually is none six months of the year.” The rule was the fewer and the smaller the openings the better.
"We treated the building like an igloo, like a cocoon," says Bauer. There are, for instance, tunneled entrances that act as vestibules to moderate biting winds and frigid air before they reach doorways, which always face away from the northwest wind to minimize snow drifts. North, origin of the wind, in Alaska, is only significant compass point, and the one to beware of. The continuous narrow strip of glazing, at Eskimo eye level, is its cue from native design, sunglasses this time. In the absence of transparent or tinted material, Eskimos used bone molded to the face with tiny viewing slits to reduce the amount of bright light from snow and sky hitting the retina.

Climate and the hospital’s location in tiny, remote Bethel (population 3,576) also determined its image. "We joked about at we really needed up there was an airstream trailer," says Bauer, "something the wind could blow around and under." The initial idea was to leave it silver-colored with bright accents—until someone realized this would make it visually vanish into the snow. As completed, the building gleams deep yellow and royal blue, a low, steel-framed, spaceship-like apparition on the tundra.

Design partner Paul Kennon, FAIA, talks of the image as conveying a sense of "pioneer futurism," which befits its function.

The hospital serves not only the inhabitants of Bethel but also a vast, sparsely populated catchment area. In each small village of the region are paraprofessionals with two-way radios linked to the hospital. If a patient needs to be brought in for treatment, a bush pilot is alerted, and "you feel this outpost character of the place," says Kennon. "It’s almost like a combat zone, but it also has the latest in technology." A geostationary satellite over Hawaii makes remote diagnosis possible at the Yukon-Kuskokwim Delta Regional Hospital by connecting it to a tertiary health care center in Fairbanks. Pioneer futurism indeed.

The building is single storied because "the whole context of the tundra plain is horizontal," says Kennon. More practically, elevators were neither technically practical nor feasible. The facility is organized around a central concourse containing public waiting and lounge areas. The genesis and logic of the plan go back to the obsolete hospital this new one replaced. During an initial charrette, Kennon and Bauer found that the townspeople had taken to using waiting areas of the existing hospital as places for public meetings and socializing, since Bethel had no others.

In response, CRS designed the main concourse of the new hospital to act as a community center, which it reportedly does. Punctuating it are interior courtyards for natural light and visual relief. Departments that are expected to grow are arranged outside the building’s central mass to allow for expansion without disrupting operations.
"It was a different kind of energy concern."

As a response to a "reverse energy problem," as Bauer calls the need to keep the 400-foot-deep permafrost from melting as the building from eventually sinking into it, the architects picked the building up off the tundra and insulated its underside to create a thermal break between it and the columns supporting it. Under the columns are H-shaped thermopiles, driven deep in the permafrost. They are surrounded by a tube of copper filled with freon, which extracts heat from the tundra through convection. Subfloor piping and other systems, which would normally be buried under the building, are suspended beneath it and are accessible.

Climate and the building’s remoteness also determined the choice of materials. "We had to select a building system that would adapt to the extensive need for insulation and wouldn't be torn apart by a 150-degree difference of temperature between
inside and out,” explains Bauer. “In a sense, it was a different kind of energy concern, trying to come up with a skin that could take tremendous stress.” A light, prefabricated steel frame and lip-on modules were selected for this and still another reason. Because there was virtually no construction labor force in Bethel, and the construction season was short, “we were forced to prefabrication and lengthened construction time,” explains Kennon. Building parts were prefabricated in Seattle and shipped by barge during the three short months of the year that the Kuskokwin River is navigable. This meant that thermopiles were driven in place and frozen one season, and not until the next could another piece of work be started.

Also prefabricated were the mechanical elements that are clipped on to the roof, which is, in turn, upside down and ballasted, says Bauer. “We put the roof underneath and the ballast over it. That way we insulated the roof rather than leaving it out in the cold.” There is a very large coping where the elevation comes up and curves over the top, then there’s a 40-degree slope instead of a sharp cant. The idea was to eliminate all areas where snow could build up.

“The whole operation was a delicate maneuver,” concludes Bauer. “Here we were bringing into a small community in far western Alaska a building whose value was probably 10 times that of everything else in the town. In the technology it offered, it was far-reaching, but also totally foreign. So, we felt we had to speak to the pioneer nature of the people and embrace their native culture, while still projecting an image of the future.”

According to reports, the Yukon-Kuskokwin Delta Hospital is the best place to be in Bethel.
Six from the ’60s
Where are the activists now? By James Shipsky

We thought we’d make the world a better place when we got out of the schools of architecture and began to practice. We believed opportunities existed out there. Now 15 years have gone by, and the world seems little improved. What became of our dreams? Here six of us look back on the ’60s, searching our stories for clues.

Mostly they’re stories about values, one way or another. We grew up in the ’50s, accepting the American dream: college, high-paying job, nice house, proper family, community status. But the ’60s lay waiting to challenge our consumer self-image.

Do you remember the ’60s scene of architectural academia, that imaginary place where architects thought they wielded the power to remake the world? Soleri’s Teilhardian super-human shining in visionary cities; Archigram’s high-tech obsessions and radical space conceptions; metabolism, megastructures, Yona Friedman; Tange’s scheme for Tokyo Bay; C/J/W’s Free University of Berlin; theism and British new towns; Operation Breakthrough’s industrialized housing; Safdie’s Habitat and Kahn’s pure ideas; Design With Nature’s Dennis Oppenheim; Frank Gehry’s Gehry Partners; and Malcolm X; Timothy Leary dropping acid and Richard Alpert dropping his name; hippies hitchhiking to Haight-Ashbury or back to the land to utopian communes; women’s liberation; Kesey’s Cuckoo’s Nest and tripping Merry Pranksters; John Cage and Merce Cunningham; Dylan and Baez, the Beatles and Stones singing our deeper feelings. The Woodstock Nation entered the Age of Aquarius.

I was Howard Roark gone hippie: I tuned in, turned on, and dropped out as much as staying in school would let me. I grew long hair and a beard, wore bell-bottoms and boots, smoked grass and dropped acid, marched on Washington chanting Peace Now, and visited communes. I became a vegetarian and conscientious objector. I read Watts, Castenada, Huxley, Hesse, and the Whole Earth Catalog. My sense of self diffused: I was the roadside where litter was tossed; I was a column supporting a beam; I felt wood beams grasping each other in a well-crafted joint; I witnessed the world’s creation one morning at sunrise and danced on the beach saluting the sun. Weil’s Natural Mind assured me these realities weren’t in the drugs; the chemicals held no ideas; things seemed different because they were different, limited only by the scope of my mind.

My ’50s values went out the window. I didn’t want a Ford and a ranch house anymore. I wanted a whole life: worthwhile work, not just for money, integrating my values and life with earning a living. I’d live with an intentional community, not isolated in a nuclear family. I’d work for peace, explore inner space, and question authority.

My new values cast a negative light on the old rules of architectural practice: Make as much money as you can; don’t worry about the social systems that would produce and inhabit them.” I uncritically accepted the values underlying these grand and exciting ideas: I did want to make cities into comfortable places; I did want architecture that liberated the imagination.

Along came the energy of the Movement: young men burning draft cards or leaving for Canada; Martin Luther King Jr.; Mr. Shipsky, an architect and writer, is currently researching meaning and values in architectural education, practice, and the overall environment.

My new values invalidated my schooling. I wasn’t learning what to build, how to design, or how to build. I was learning to play the design-jury game. I could make it look good on paper, but would it be any good for people? I hadn’t the faintest idea. I had courses in construction theory: superficial, masculinized stuff. When I graduated I’d be unable to build, produce working drawings, direct construction workers. I was told I’d learn these practical matters during apprenticeship. But the school was the place for the theoretical, nonpractical. Accepting this, I looked forward to learning the craft during my apprenticeship. How disappointed I’d be.

And one thing for sure, I wasn’t learning to design and build metabolism, megastructures, new towns, industrialized housing, or ecological anything. I was frustrated, rebellious. Graduation interrupted this process of confusion. Out into the world I went as an apprentice, thinking to do something about building the new world, seeking firms using the new rules. Need I say, I never found one.

My first job was detailing a fake masonry roof, a wood shingled facade of plywood, braced from behind with skinny steel angles. Over 13 years I worked with many firms. Always the same story: old values, new firms. Always the same story: old rules. I did other things in between: photography, antiques, travel, writing, but was always drawn back to the scene.

I didn’t know how to learn what to build or how to build. Finally I saw what I desperately needed to learn how to build: the experience of building with my own hands; to smell fresh concrete and carry it, feeling its weight; to build a form and watch it blow out; to feel the symbolic power of pouring concrete; to build a steel beam tightly to a column; to smell the pungent cracking of an arc welder and to weld steel together; to fit pipes to tight chases; to cut wood and drive spikes to shape walnut with a razor-sharp chisel to feel the fluidness of 20-gauge sheet.

But I never learned what to build. No, and then came glimmers of hope: In ’77 a friend showed me A Pattern Language by Christopher Alexander, et al. But using the patterns in designs at firms where I worked, I aroused total resistance. In ’80 and ’82 I did Arcosanti workshops and in ’83 worked there as project coordinator. For_teen who the dreaming was real, but not good for my family life; we left.

What to do next? Seek other ’60s architects, hoping to find new ways to practice, to build that new world. Cambrige, Mass., was my starting point.
I've had incredible clients who supported those ideals. I'm committed to the reality that clients are ready to ride with you as long as you do a good job for them. That means dealing with the economics of it, the technology of it, but also the ideals. A client will follow those ideals as long as you're a good businessman. If you're simply an esoteric they'll ignore you.

Shipsky: Can you be more specific about your '60s values, and maybe about peers? Swain: One classmate I immediately think of is Ann Sawyer. I remember Ann 20 years ago looking at the stars of the class and saying, "I can never catch up." I watched her work in Cambridge awhile, then New York. Then she moved to Hawaii and built her own house, while she was pregnant. Her commitment to her '60s values is constantly growing. Her superb house uses catchment water and wind power; fruit trees surround it. She works as an architect doing projects totally committed to energy and resources. Hardly makes any money, but she has maintained her ideals. It's a beautiful and powerful feeling.

'We struggle with a client who wants to aircondition.'

And I watched one of her boyfriends who was considered the shining star of our educational experience. Now he does only development; not terribly high quality, but exceedingly profitable. He's lost any real concern for environmental issues. It's interesting watching the two of them, who liked each other a lot, and see the contrast between them now.

Shipsky: What if I had asked you in the '60s to list your values?

Swain: The other day I looked at a project I did in 1965. It was a floating device, requiring no outside energy. It was sail-driven, rising up and down with the tides. It allowed people to live without airconditioning or electricity. It was the tightest kind of space. One of the things I believe in is that space costs money. It requires materials, energy, time to create it. If a space is designed very efficiently, you can give people everything they need, built of materials responding appropriately to each need, functioning correctly, without wasting resources.

My father is an old Yankee boatbuilder. I remember when I was a kid, watching my father build boats. The hull was cedar without an ounce of caulking, the ribs white oak, the keel Georgia yellow pine, the deck teak, and the deckhouse mahogany. Each wood was purchased green at a very affordable rate, then weathered for two seasons in the salt air. It was all carefully planned. Then he'd use these beautiful woods, each in the exact place and exact quantity to create a proper boat.

There's an economy I committed to when I was very young. My father helped me to learn that. That economy hasn't changed; we apply it to every project. We struggle with a client who wants to aircondition, showing them how to create a home without it. We struggle with a client who wants a lot of square footage, even though they've got plenty of money. We sit down with them and show them all they need as a result of the program is 40 percent less area. And they learn to understand why that's necessary. Our commitment is, "Is it appropriate?"

We have an absolute limit to resources in our world. To consume every ounce of marble because somebody happens to like it doesn't make much sense. To consume all the oil we have doesn't make much sense. But we still have to feed and house the world, so we deal with these resources as effectively as we can. Twenty years ago I was committed to efficiency; now I understand the social, political, and economic factors in a much better way. I've become tempered in my thinking, but no less committed. Every person in this office, in his or her own way, is committed to these ideals; that's why they're here. Not because they want a job.

Our office has an absolute commitment to saving quality farmland. Farmland is the easiest place to put housing. It's already cleaned up; it's level and ready to use. You just come in with a bulldozer and put housing on it. There's no less a need for housing than there is for farmland. We try to find ways to keep as much as possible of the land in productivity, while still providing the housing. We don't always succeed, but we try.

Shipsky: What percentage of your clients say, "Sorry, but I want a 4,000-square-foot house, all airconditioned?"

Swain: None.

Shipsky: You must be incredibly persuasive!

Swain: Well, I say right at the beginning, "This is why you're hiring me. You've looked at my work; you've come to me for professional services. If this is what you want, hire us. If you don't want this, you'd be better off with another architect, and I'll help you find one." And I'll be better off not struggling through something I don't want to do. There have been times when I've been a little hungry because I've done that. In the five years since I started this business, I've only built the ones I believed in. Some were only bathrooms, some were houses. But now I'm getting $12 million projects. The clients have been remarkable in their willingness to go along with me, as long as I'm realistic about the economics of their business.

Shipsky: That's a positive message for...
students, or architects just starting their careers.

Swain: I think it's very real. In a world of shrinking resources, the values that are responsible to resources should be economically successful. Lots of people who have an honest desire for quality honestly want the right thing to happen, but are frequently caught up in a spiral that doesn't let them accomplish it. One of the roles of professionals today is to allow clients to realize their dreams. You take a client and say, "You need 120 units of housing to satisfy a market; you have a gorgeous piece of land that will sell those units. Let's not ruin the land. Let's develop it in a way that will change the market philosophy." Now we're building 120 condominiums on Lake Winnepasaukee that are totally different from anything the lake's ever seen. Our client is selling them off the stakes; we can't design them fast enough. No two are alike, and they're all within budget.

Shipsky: How were you able to keep down your design costs?

Swain: The contractor does all the working drawings and manages the budget. We do esthetic drawings and supervise his work.

Shipsky: There must be times when your values collide head-on with your client's.

Swain: Without exception.

Shipsky: What happens then?

Swain: We lose money. On one project we built the house into the site, used 12 inches of insulation, faced it south, gave it natural ventilation with air chambers beneath the building. Then the client said, "We're not sure we can live without air conditioning." I got them down to unit air conditioners in the office and bedroom, to be used on occasion. It was an honest compromise. We had to show them buildings, take them to naturally ventilated spaces. These little tours cost us money, but we're succeeding. We don't always win. On occasion we end up with a building with ducts installed, so that if we've really blown it, the client can install air conditioning. Most of our clients say, "If you promise to stick with us to straighten it out if it doesn't work, we'll give it a shot." Sometimes we blow it and we have to stick with it an extra two years to make it work. Or sometimes they get that 10 days of hot weather and say, "We know you don't want to do this, but we want an air conditioner." But then I know we've done everything in our power to take it as far as it will go, and I don't feel bad about it.

Shipsky: What were your values when you were a student?

Swain: I was brought up where the land and sea took care of you. My father built boats and my mother was a gardener. I spent my summers on the railroad. My father left school after the third grade to help support the family, but I was brought up where the world didn't have to be the Arizona strip, where my family owned a big old house on Martha's Vineyard. They planned to be married at the edge of a Gay Head cliff, then leap from the precipice to a reception on the beach below in a hang-glider. Tony had constructed of bamboo, polyethylene, duct tape, and hose clamps. I figured out how much it would cost and found it would be cheaper than Arizona, because the state school in Italy costs $25 a year. You had to study in Italian, so I took a summer course, packed my bag, and headed to Italy. When I went to Venice, I went home.

Before Venice I'd been a mediocre student. When I came back to Arizona for my degree, I made dean's list carrying one and a half times the normal workload. I realized my value system was supported by Italy; I wasn't wrong. The world didn't have to be the Arizona strip, nor did it have to be my mother's garden. It could be my own abilities, plus my education, ideals, energy, and belief in history, giving me the vision I needed.

Then I could produce my architecture.

Shipsky: What are your goals now?

Swain: I want to do a $500 million project. I don't believe my ideals are crazy. They're an honest commitment to participating in humanity, as opposed to wanting the world to accept my fantasies. I participate with my client, with my fellow workers, with the environment, and we produce a product. Those are my grand ideals, and I want to take them as far as they will go.

Shipsky: Are you familiar with Alexander's A Pattern Language?

Swain: No.

Shipsky: What changes do you see in those '60s values?

Swain: In the '60s we thought systems and technology could make anything possible. We seem to have backed away from that in recent years, away from extraterrestrial visions and living pods. Our values in the '60s were naive responses to complex problems. Our big challenge is to translate those naive beginnings to real values in the '80s.

I first met Tony Ferragamo at Rensselaer Polytechnic Institute, where he acquired a reputation for voicing his own content with the curriculum and faculty for his involvement with '60s issues, for being a colorful character. He and his friends shared a love for rambling through wild areas, driving jeeps, sailing catboats. They generated an air of barely containing energy. Tony had a construction of bamboo, polyethylene, duct tape, and hose clamps.

Shipsky: Tell me how you got into architecture.

Ferragamo: My grandparents were Italian immigrants who couldn't read or write or speak English. My grandfather worked on the railroad. My father left school after the third grade to help support the family. He wasn't big on buying me presents, but he gave me tools and taught me to build.
I began to see architecture as more than a trade.’

‘I began to see architecture as more than a trade.’
I am happier and more productive when trying to figure out how to provide more homes without polluting the ground-water, or trying to solve the problem of solid waste disposal.

Shipsky: Where do you see yourself in five, ten, twenty years?

Ferragamo: I hope I’m still in architecture. I hope I won’t have to work as hard. It wears you down, the constant strain; it sours your attitude. You can’t do good architecture if you have a bad attitude. Maybe I’ll get more involved with teaching. But I don’t know if I can leave this. It’s like an addiction.

I’d like to do one house a month, and one sizable project each year, with no pressure. Just sit down and enjoy each moment of it. Don’t get me wrong. I enjoy it now, but there must be a way to do it with less tears. That’s what I’d like to find. I didn’t know where I was going seven years ago and I ended up here. It’s kind of an adventure for me.

Joe Fama is the director of TPA (Troy Professional Assistance), a community design center in Troy, N.Y. Quoting from their brochure, “TPA provides design and planning services to low income people, neighborhood groups, and other nonprofit organizations who wish to improve their homes, buildings, and neighborhoods.”

Shipsky: Joe, what were your values like in the ’60s?

Fama: I had a sense of a new generation about to take over the country and maybe the world. My values were based on ideas of a redistribution of power and wealth in this country, participatory democracy, antimaterialism. I had and still have a healthy interest in anarchy.

Shipsky: How does your work differ from a conventional architectural practice?

Fama: We work directly with low income people, which I don’t believe private firms ever do. There is no owner or group of principals who acquire a profit. We have a very different office structure, there’s more of a collective atmosphere. More participation by the staff in decision-making.

Shipsky: What about your values today?

Fama: They haven’t changed much since the ’60s, but my sense of tactics is different. There is a whole different set of battles to be fought today. My age is different: I’m 35, not 20. Twenty-year-old people, even with the same philosophical frame-

work, react differently to things. The ’60s put the spotlight on 20-year-olds; the times called for a response only 20-year-olds could make with the required enthusiasm. Now we’re 35, and if the circumstances were the same, I don’t think we would be the leaders; I bet they’d be 20-year-olds.

Shipsky: What are your career goals?

Fama: That’s a tough one. Friends often ask me when I’m going to get out of what I’m doing and start doing something meaningful. I guess I don’t have any career goals, other than to respond to situations as they come up. I have no objective to broaden or expand what I’m doing.

Shipsky: Do the terms New Age, futures, networking apply to your work?

Fama: Our work is too street-level to plug into any broad theoretical framework. We just have problems to be solved.

Shipsky: What are some of your accomplishments since graduation?

Fama: A newspaper reporter once said that people like us exist by little wins and big losses. Here are some of our bigger little wins, since my graduation in ’71. Our Hoosic Street Bridge was built at about a third the size of the original proposal. We got funding and renovated a multiservice neighborhood center; spearheaded resistance to diverting funding from community development to urban renewal; did architectural work for hundreds of low income people and dozens of nonprofit organizations; and completed a 120-apartment, $3 million project.

Shipsky: Do you feel your classmates have managed to keep their ’60s values, or have they joined the establishment?

Fama: I’ve always been bothered by the way the ’60s were portrayed in the media. I don’t believe the ’60s were anywhere near as radical as the media led us to believe. I think the people who seem to have given up their ’60s values never had them to begin with. They turned out much the way I would have expected at that time. I think the people who were affected by those events have a good, healthy sense of skepticism toward authority. Those who over-reacted to the times came out with a sense of cynicism, which I think is unfortunate. My belief at the time would have been that they would join the establishment. Some of those people who did join the establishment now act surprised at the fact. But I think they are romanticizing and exaggerating the level of radicalism they espoused at the time, and I’m not really sure why they’re so stunned that they are now practicing a conventional brand of architecture.

I think some people were very positively affected by the events and thinking of the ’60s, and I think they carry that with them. I don’t think they’ve thrown it all out the window. What you think of the buildings they do and the projects they work on depends where you’re sitting.

Shipsky: How have your values evolved?

Fama: Energy conservation was an embryonic cause, at least to me, as I graduated. Now it’s probably the second most important consideration for us, after us. The women’s movement was not part of my overall thinking. There were a lot of personal insights that movement brought to light, that had to be addressed in all aspects of our work, and have become part of the principles on which we work.

Shipsky: Do you maintain some sort of academic, theoretical, ideological stance in your work?

Fama: Not really. The day-to-day grind issues don’t call forth those ideals for sharpening. They’re up there in some mental attic, still motivating us, but to be honest about it, they’re probably in need of a dusting and polishing.

Shipsky: Do you feel there is any hope of conventional architectural practice evolving to the point where it can “... release the skills, enthusiasm, and sense of commitment that many architects possess but cannot use in any satisfying way” (Malcolm MacEwen, Crisis in Architecture).

Fama: American architecture is part of the basic culture and economic system and you can’t beat the system unless you’re the person who makes the rules. Architects, quite obviously, and I’m glad, do make the rules. They are fated, therefore, to provide whatever services the rule-makers want. If you try to do anything else, you’re going to limit your clientele. There’s nothing wrong with that, but so one else will step in behind you to do design work on most buildings. Some architects try to respond to this challenge by trying to become one of the rule-makers. I have yet to see anyone who succeeded at this without becoming a clone of the kind of person they were trying to emulate.

I heard about Will Bruder when I was at Arcosanti. I saw a 10-year retrospective of his work at the Tempe Fine Arts Gallery, was enthusiastic about it, and looked forward to interviewing him. I met him when he brought his class of youthful designers to tour Arcosanti, talked at his New River, Ariz., studio, concrete, steel, and glass structure carefully fitted into the high desert.

Shipsky: I understand your degree is sculpture, not architecture, because...
wanted to avoid the stereotyped ideas of hool architecture.

Bruder: Not exactly; let me explain. My gree is in sculpture, but throughout my college years I was training myself to be an architect. As a child I was attracted to sculpture. I lived near my home. I had been attracted to sculpture in the art department, but that wasn't right. I didn't like the values of art-business America. Maybe that's tied to '60s thinking. It was '65. I wanted architecture. I had watched Frank Lloyd Wright's Greek church under construction near my home. I had been attracted to art and shop classes in high school. I applied to Illinois Institute of Technology and got a temporary job with William Wenzler, an architect in my home town, probably the most progressive of architects near my home. His office was very strong, there were good things happening there. Wright — I've been to over 250 Wright buildings. I read a lot, started my library when I was 18, spending a couple hundred dollars a month on books. Michael Johnson was a good influence. Soleri let me go through his notebooks and his sketchbooks. They have cast aluminum covers, and 400 pages ruled so you have this much to draw on and this much to write on. They're mind-boggling, like Da Vinci sketchbooks. Paolo is a mind.

Paul Schweikher was an influence; Michael made me aware of his work. Schweikher is a second generation modern master. Louis Kahn studied with him at Yale when Schweikher was doing pre-Kahn Kahn architecture. Then when I was working in Phoenix a blueprinter told me some guy from Pittsburgh was living up in Sedona and did unbelievable drawings. I was supervising a job in Flagstaff, so I drove through Oak Creek Canyon; I had no idea where Schweikher lived. I saw a building profile ahead and walked up to it: Schweikher's house. I've had a nice relationship with him for the past 11 years; I'm working on a book about him. I've seen work of his that he's never seen finished. It's architecture that just doesn't quit.

Goff — I've been to 75 percent of the Goff houses and done a lot of research on his work. Wright dumped all over the first Price scheme. Can you imagine designing a building and having Frank Lloyd Wright tell your client it's a piece of shit? And having to regroup? I mean that would be pretty devastating, a major setback. I think it was the turning point in Goff's career.

I went to Vancouver and spent four days overdosing on Arthur Erickson, met him, spent time in his studio. Tomorrow we're going to San Francisco. We went to Mexico City in June. Stayed at the Camino Real by Lagoretto. Met Augustin Hernandez — don't know if you've ever...
heard of him. (Jumps up to get a book.) Look at this, it's his studio! And look at this: a 28-foot-diameter dome, acrylic glued together with silicone. There's no framing in that sucker! This guy has been working for 30 years and been ignored by the American press. How can Hernandez exist in Mexico City and I don't know about it until three years ago? And I think I know a little bit. So I developed a friendship with him; he's coming to Arizona in the fall.

I have a client in Minnesota, so I went to the site for three days; went to Wright's Willey house, David Bennett's underground library. Up to Toronto for three days, had no business doing it, but I wanted to absorb it and meet Macy again, see all the new things. Flew to Buffalo to work with Bird Air on a fabric roof I'm doing, and because I was that far east, I flew to Pittsburgh to see Schweikher's Duquesne Building. Got in at 5 in the evening, opened my hotel window, and there it was on the horizon with all its monitors glowing. Walked over there at 9:30 and hung around till midnight.

Guess that's the way I like architecture. Shipsky: How much time do you devote to self-education?

Bruder: How much time is there? Right? It's a daily experience. I get a lot of publications, I read a lot. I want to know what's happening. Not to copy it, but to grow, to enjoy it. So again, what is that time?

Shipsky: How did you relate to what was going on in the '60s?

Bruder: Basically against the war, marched in a few demonstrations, marched in an open housing protest with Father Groppi in Wisconsin, stood up with Paolo at the federal building, when he went down for his weekly homage before that was real popular, marched in the first Earth Day.

I don't drink or smoke; I've never taken a drug in my life. How can you get higher than on life and architecture? Never was into the commune thing. Married Simon when I was 21 and we've been together 15 years. Got a Y deferment; don't know with my Midwest conservatism if I'd have had the guts to say screw it and go to Canada.

Shipsky: During the '60s did you think these experiences would affect your architectural career?

Bruder: In looking back on it I tend to see myself as having been more selfishly focused on doing architecture and building. I guess there was a certain individual rebel quality in the music of the times. You saw that you could be an individual, you didn't have to be part of the pack. I took that course. My parents encouraged me not to travel with the crowd. When I became an individual, and I think I'm an individual, I marched for open housing and against the war, worked with Soleri, let my hair grow. Then I wasn't the individual my parents had in mind. But I think they're proud of me.

My grandfather was a cabinetmaker and tinkerer; he had a workshop in the basement. I've got a lot of his tools.

Shipsky: How do you relate your work to Paolo's philosophy? I mean, wouldn't he condemn it?

Bruder: Oh yeah. He has not much interest in the individual building. That was evident way back in the '60s. If you'd ask him, "What do you think of Saarinens' art center?" he'd reply, "What should I think?" It's not very relative to reality and to life is what he thinks. There's a greater thing to be answered in his mind. Paolo's never been good with money or socializing; he's always been somewhat remote. I'd love to see any one of the arcologies out of the MIT book built. Let it be Paolo's concept, but let some big office do the details, finish, and finesse. Give Ben Thompson an arcology and say, "Detail the sucker!" and let the Rouse Co. build it. It would be dynamic! Paolo is a genius as an engineer and architect, but I think the social and political implications are where the problems lie. His mind works at a scale we can comprehend.

Shipsky: What's your advice for young people wanting to be architects?

Bruder: Gain knowledge in the craft of building, gain respect for the craftsman, know the limits and how to go beyond them. Work in the field at least a year. Construction: Dig ditches, pour concrete, pound nails. People come out with a degree and can't lay out a building—that's a crime. There's something wrong with a system that allows that to happen. Plug in a full year of travel: Canada, Mexico, ruins. Gain a design sense through a fine arts background: sculpture, printmaking, color, texture. Get the basics of two- and three-dimensional design. My art background is much richer than what I see them teaching in architectural design at the university here. And focus on people, world culture. But I don't believe a conventional architectural education will make or break an architect. There's a certain destiny; you're not going to be stifled. Your education should give you as many tools as you can get in that period. I don't see a masters or Ph.D. in architecture; your masters and Ph.D. are your first buildings.

Architects should be able to build anything they can draw.

Shipsky: Where do you go from here?

Bruder: Last fall I had the good fortune of going to Italy, where I saw Scarpa's cemetery. I shot 400 slides in two hours without a motor drive! I think it's the finest piece of architecture of the 20th century. It tells me there is a big beyond. I haven't reached any kind of potential yet. I learned a lot from the Italian experience, about buildings in relationship, in a landscape. I want to do groups of buildings, more innovative uses of materials, experiment more. Do some fresh thinking, use the scrap brick in the goddamn wall that's right there at the brick yard, use rammed earth, sod roofs, bigger things, and smaller things. I want to keep doing architecture, and do it better. I want to organize and simplify so I can do more owner/builder work. You know, I tell an owner/builder to build a curved wall and it's not nearly as hard as telling a contractor to build a curved wall.

I want to do planning, more public work, learn more about solar. Learn more about Japan, China, and Eastern influences. Travel more. You think you know something, but you really don't know anything. I've got an awful lot to learn.

Elias Velonis is not an architect, he studied literature in the '60s. He has some fresh insights for architects. Six years ago he founded Heartwood, an owner/building school in western Massachusetts. I met Elias for lunch at Buckstreet Manor, an old resort hotel now part of Heartwood facilities.

Velonis: What is the architectural community's response to A Pattern Language? Shipsky: The ones I've asked have never heard of it.

Velonis: I'm so surprised it's lost. I think it's the greatest book on building and environmental planning ever produced. I've been using it four years now. The first time I tried it on a design class, everybody sat up! It's such rich material, it teaches itself. The response has been universally positive, except for a few architecture students. People come up to me after the class, almost with tears in their eyes, and say, "Now I know! I felt all that in my bones, but I didn't know how to say it."

Architects seem to have lost a real sense of what the people who use a place are going to go through. They're building monuments to themselves, or something flashy or the latest or most daring. But they're not building from the humble origins of what the needs are. I think architects say, "We're constrained by efficiency, economics, modular building practices, spec labor costs." So the work gets totally dis

continued on page 1
Small Victories

A collection of buildings that are far larger in quality than size, starting with a skillfully remodeled former corn crib
A corn crib, built by the Mendota Silo Co. in the 1930s, was the only structure left on a farm in Polo, Ill. Bauhs & Dring of Chicago transformed the crib into a country retreat, complete with a hot tub, large spaces for entertaining, and a cupola lookout. In its original form the corn crib comprised two semi-circular drying bins of precast block joined by a drive-through. The odd roof shape was the result of clearance needed for swiveling a conveyor chute from side to side, which filled a solid wall bin with small grain and a perforated wall bin with large grain needing more ventilation.

Architect William Bauhs says that the most important and difficult aspect of the project was preserving the quality of inside the crib admitted through the perforated wall. "The客户 came to me saying 'How are we going to plaster over that wall,'" says Bauhs, who convinced his client otherwise and then experimented with how to keep the weather out. Lining the wall with sheets of plexiglass and neoprene tubing didn't work. Close inspection of the block revealed that all the perforations were exactly the same size, and each had a drafted edge, necessary for removing the block from the form. "We used that drafted wedge in pieces of clear acrylic," says Bauhs, each measuring three inches by one-half inch. "My client got his father, who retired, to actually put them in the holes," Bauhs says—all 4,752 of them.

Because of the wall's southern exposure Bauhs placed the kitchen next to it but kept all the cabinets below counter height to let the sun shine through into the living and dining areas. The wood in the building is original and was steam cleaned, then spray varnished. Showing off the roof structure was an important consideration, says the architect, so spotlights were installed to illuminate it.
A spiral staircase from the main room is a loft that overlays the kitchen. The loft level has a bedroom and bath. A ladder takes you up into the glassed-in, skylit cupola. The light is operable for ventilation, its original function. The cupola’s wood floor was removed and replaced with a heavy sheet of clear acrylic. This allows the cupola to be used as a loft, while light passes through the floor to the levels below. Bauhs admits that walking around in the cupola can be a dizzying experience as you look down past your feet to the loft and kitchen below. “My wife won’t go up there,” he says.

If either end of the original drive-through is a window bay on the hot tub room, respectively. Each is glass-ended to allow a complete view out, while light passes through the floor to the levels below. Bauhs says that this was done so that the addition would mirror the proportions of the original drive-through. The addition was made from an old Napa Valley wine cask, remilled and varnished, still showing its stains from the red wine.

The roof of the tub room is a deck, accessible from the loft. An outside stair, which allows views of the surrounding countryside. Bauhs notes that the deck was elevated out of necessity. “When corn is in tassel you can’t see anything from the ground level, so you have to go up on the deck if you want to see the horizon.” Another pleasure of retreat in a cornfield.
Stylish Addition
To a Farmhouse

In a rural pocket near Chicago. Architect: Frederick Phillips. By Regan Young

"To me, the property and area are a very poetic statement of the Midwest," says architect Frederick Phillips, and it was this quality that he sought to retain and underscore in adding to and remodeling this old farmhouse. It is surrounded by farms though little more than half an hour from Chicago's Loop.

The program called for a new living room, entry, and bedroom, and for reshuffling existing spaces. Phillips saw his task as bringing order to a chaotic plan that had evolved over years of additions and changes, without losing the "unsought for spontaneity" that was the real charm of the house.

Exterior materials and roof forms are derivative of the original turn-of-the-century farmhouse and later additions. The living room is a square set at a 45 degree angle to the rest of the house and in section is an eastern extrusion of the master bedroom wing.

The addition is ruptured by several odd angles, the most significant of which is a wall that reflects light into a window behind an interior bookcase and continues out into the yard to become a free-standing wall, reminiscent of the way Wright placed low walls into the landscape to destroy the box. It also alludes to more contemporary work in its playfulness and wit.

At the front elevation the threat of future development across the road suggested a strip of high windows for privacy. Their configuration recalls Stanley Tigerman's Anti-Cruelty Society addition in Chicago.

The new living room is not connected on the interior to the new bedroom, which was added on the second story atop a flat roofed 1960s kitchen addition. On opposite ends of the house the two rooms are tied to one another and to the original by pitched roof lines. In the final solution, the gable of the new second story bedroom nestsles between the living room addition and the original portion of the house.

Phillips' use of round forms was meant to conjure up farm imagery. The cylinder of the front elevation, housing a spiral stair to the basement, acts as a pivot for the rotation of the addition and is a direct reference to silos and storage buildings.

The interior palette is stark, with white walls and hardwood flooring throughout. Phillips describes the clients as people who "haven't gotten bored with white. They're content to let the people and artwork become the interior variation." Lighting both natural and artificial, was given a lot of attention by the architect. In the living room, backlit shelves flank a metal fireplace set in a drywall partition. The high strip of windows, white walls, and track lighting all make the space very bright. This combined with the height of the gabled ceiling and the oversized mannered front window, makes a modestly sized room seem much bigger.

What makes this project so typically Midwestern is, first, its directness. "As you come around the curve of the walk, the house really presents itself," says Phillips. Second, the setting of a Midwest building is cornfield and sky, and Phillips recognizes that the vernacular response to the prairie context is contrast. By echoing the meter of the setting, Phillips has added a harmonious stanza to the property and area.
Cross page, the addition (right in photo) rotates join original structure; roof, the new work full ce with ocularadd second ory addition tucked back on cornice line; right, ean lines and white sur­ces distinguish living room, largest space of the addition; axonometric, far right, shows living room addition only with second ory addition still roofed.
"They always talked about it in terms of it being a barn," says William Dutcher, AIA, of the middle-aged couple for whom he designed this country house. That notion paired perfectly with the architect's intention that the house respond to the farm buildings that dot its rural setting, an hour's drive north of San Francisco. Dutcher, of Dutcher & Hanf Architects, Berkeley, says that corrugated metal roofs and natural wood siding are common to the area and the wood pole framing, besides being rustic, allowed swift construction.

Siting the house on the lot's corner against a cluster of trees freed the rest of the land for future garden and orchard. The front elevation, which faces south, received a generous supply of double-glazed windows, especially on the balconied second level. The exposed projecting roof frame can be covered with canvas for shade in the summer. In the winter, a wood burning stove provides heat for the heavily insulated house. Dutcher says that plans call for the carport/shop wing, now used for wood storage, eventually to be enclosed.

Inside, the skeletal theme is carried out with a clean, Shaker quality, reinforcing the farm esthetic. But the traditional roles of the two levels are reversed, the lower being private with sleep and work space and the upper being public with living and entertaining space. The result is a private realm with appropriately tighter, individualized spaces while the public realm is more open and scaled for entertaining. Dutcher says that the sense of being in an attic on the second level was intended. With the stairway cutout and the ample open end to the balcony, it resembles nothing so much as a hay loft, without which no barn would be complete. □

Left, view into the upper level living area from the balcony; bottom, looking back through the same space toward the balcony with stair cutout in foreground. Across page, top and left, the house as it overlooks the site, with back elevation, right.
The town of Milaca, Minn., population 2,500, lies in the heart of the Minnesota prairie, 70 miles north of the Twin Cities in a landscape punctuated by little more than telephone poles and barn silos. Like any number of small Midwestern towns, this one was built in the mid-1800s, during the logging era, when the nearby Rum River was a highway for timber traveling to the lumber mills downstream. Today, entering Milaca from the south, one sees a quiet hamlet with a residue of typically 19th century, two-story brick commercial buildings, little more than a two-block blink along the highway.

Thus the new Citizen's State Bank is somewhat of a surprise. "We wanted to be modern, but not in the extreme; we wanted to be new, but not that different," commented bank President Dallas Olson.

The response of the architects—The Wold Associates of St. Paul—was to take a sophisticated architectural vocabulary and chop it into small-town sentence structure. It's an effort that might be compared to playing a sonata with two fingers of one hand, a modest effort, and one with a pleasant melody. But one still has to ask if the architects' search for historical context, ornament, color, scale, urban form, and function has resulted in more than a well-integrated collage of allusions to historical and vernacular styles.

Located at the southeast boundary of the business district and at the intersection of two major streets, the bank's presence on this site is important. Its 7,400 square feet of space are housed in a two-story structure, its cube-like mass disguised behind a lively vocabulary of exterior elements and stage-set roof forms. References to half a dozen nearby buildings are evident: the sand colored city hall, the parapets of nearby industrial buildings, the curving corner mass of its closest neighbor. Each of the bank's elevations presents a different profile. To the south, it's a classically inspired evocation of Palladian formalism. To the east, its mimics nearby two-story brick buildings with their flat roofs and commercial-scale windows. At the corner it curves in a vaguely moderne gesture, to yet another period of architectural history, but in response to its neighbor. And to the west, low windows and a portico are oriented to drive-in customers.

The ordering element, and the building's most striking aspect is its clearly articulated massing into base, middle, and top, done in ceramic tile wainscoting with stucco walls and sheet metal coping and in a quintessentially postmodern palette of colors but one that blends with the surrounding architecture. It's as if this building went looking for a home and found it in Milaca.

Each of its two street entrances is treated as a signpost. At the corner, the exterior skin drops down over the doorway; the entrance will eventually house an instant cash machine. At the side, the entrance becomes a pavilion signaled by arched windows over a central door. This serves as the night depository.

Inside, functions are organized around the perimeter of the shell, leaving a two-story space lit by four centrally placed skylights. Bank officers' quarters are along one wall; tellers' counters along another. Second story space behind a wraparound balcony is used for a board room and employee lounge, as well as storage and mechanical equipment.

Ten percent of the $360,000 budget went to interior furnishings. Millwork for tellers counters was purchased used and refurbished. New floating customer counters were designed by the architects and built by local cabinetmakers in light oak with emerald green countertops.

One might call this building a credible attempt to give the client a good architectural citizen, a building that aspires to be the traditional forms of its setting and the noble aspirations that govern the art of architecture. It walks a narrow line in this effort, yet its collage of vernacular forms and fragments is unified by an overall rhythm and composition; it's greater than the sum of its parts.
Higher oil prices and a sense of civic pride prompted the town of Lowell, Mich., to revive and restore the derelict Fallasburg hydroelectric plant to once again supply power to the community. Built in 1903, the powerhouse was in continuous use until the 1960s, when it was boarded up and its dam used solely to regulate the water level of a reservoir. During 20 years of neglect, the building suffered extensive vandalism; doors, windows, and the original slate roof were destroyed.

Since the construction documents for the building could not be found, Skidmore, Owings & Merrill, Chicago, studied similar powerhouses in central Michigan as restoration models. SOM’s Robert Turner, AIA, senior architect for the project, says that while these studies were helpful, the building itself offered much information. Scratching off layers of paint both inside and outside revealed the original color scheme, including a delicate stenciled design just above the interior wainscots. A new stencil was cut by the architect. The walls, all poured concrete, were then patched, re-stuccoed, and painted.

The doors and windows were redesigned and rebuilt with the use of fragments found in the building. Turner says that when a cheap tarpaper roof was removed in preparation for a new slate roof, a hatch was found—the remnant of a cupola. A new cupola was designed according to old documents and now serves to ventilate the machine room. Turner says that documents of the period were also used as a guide in designing a new sign for the building. Since the site was overgrown with vegetation, SOM devised a landscaping scheme that would not only provide a setting for the powerhouse, but would also halt further deterioration of the embankment into the river.

Above, the powerhouse after SOM’s restoration and, left, before. Across page, the machine room with new brass railings and a coat of paint, complete with decorative stenciling.
Finally, a roof window

With the new Andersen® roof window, weathertightness and energy efficiency come first. Beauty is second nature.

Here's a roof window that stands up to years of freezing winters and scorching summers. That is so energy-efficient, it actually traps heat in winter, keeps heat out in summer. A roof window that is not just weathertight but virtually weatherproof, and opens three different ways. It even installs easier.

Introducing the new Andersen® roof window. A roof window design with features so far above and beyond all others, you'll decide it's the only roof window worth looking up to.

Here's why.

Opens three ways, not just one. Our roof window operating hardware is so advanced, it holds over 200 patents. Sounds complicated? Not so, because all three positions—awning, pivoting, and cleaning—operate simply, with a spring counterbalanced system that allows smooth, worry-free operation. Plus some exciting extras.

For instance, a weathertight design lets you leave the window open during light rain in the awning position. Our sash also pivots higher in the frame, allowing increased headroom in low ceilings. Spring tension holds the sash open on windy days and locks it in place for easy cleaning.

You can even adjust window balance and operating tension to match roof slopes from 9° to 80°. So you're assured smooth, perfect handling no matter where you install.

The Andersen roof window also locks with a key for security. And can be locked in a minimum ventilation position for a fourth opening possibility. Ask for a demonstration.

Announcing an insulating material so advanced, you can see through it. Our new High-Performance Insulating Glass has a transparent coating that greatly reduces heat loss and heat gain, allowing energy-efficiency that exceeds our triple-pane ratings.
Finally, a roof window as weathertight as a roof. Our weather-resistant Terratone™ color aluminum sash shield is contoured to direct ice, rain and snow away from the window opening. It also contacts with our seamless gasket weatherstripping around the entire frame, sealing weather out.

Our dry glazing system is specially designed for slope glazing, so it withstands years of wet and cold. A splash lip adds even further weather insurance. Closed, our roof window locks securely at four points (not just one or two).

And see how our special step flashing integrates the window with the roof itself, making it truly as weathertight as a roof.

With Andersen, installation isn't something you work at. The Andersen roof window comes ready to install. Four brackets help you position the window in the rough opening. Fix in place, slip the step flashing beneath the flexible weatherstripping and top off with shingles or tile. It's a quick installation job that's easy on construction timetables.

When you specify Andersen quality, there are no limits. Our new roof window includes so many advantages, they won't fit in a single ad. So look up your Andersen dealer in the Yellow Pages under "Windows". And ask for the new roof window that's worth looking up to.

Come home to quality. Come home to Andersen.

Come home to quality. Come home to Andersen.

Andersen® Windowwalls®
ANDERSEN CORPORATION
BAYPORT, MINNESOTA 55001

Circle 35 on information card
new sophistication for low-cost ceilings
panels suspended by shadow

USG Profile™ Ceiling Grid System

The new USG PROFILE grid is a neat, narrow, almost invisible "V." The void in the "V" profiles each panel with a deep shadow on all four sides. It's as though panels are suspended by shadow.

This new, sophisticated design looks expensive, but it's not. USG PROFILE grids are moderately priced; take standard, economical AURATONE® or ACoustone® 2 x 2 or 2 x 4 ft. panels with no special edges needed. For details, see your U.S.G. Representative or write us at 101 S. Wacker Dr., Chicago, IL 60606, Dept. A184u.

©1983 United States Gypsum

Circle 36 on information card
Vital Encyclopedia of Energy Design Data

By Donald Watson & Kenneth Labs. (McGraw-Hill, $29.95.)

This professional resource compacts a quarter century of writing into a single volume. It will be a vital office encyclopedia for a long time. After a pointed introduction with a portfolio of nine cases, the entry of more than 1000 terms, formulas, and references is handled with the appropriate application of slide rules; to the detailing of double roofs, thermal-sheltering, and complex wall assemblies. Part three contains "Climatic Data"—29 representative American climates, with bioclimatic analyses techniques, and national maps that plot comfort opportunities. Finally, an extensive bibliography in nine subject subsections concludes with an index that is too modest in its listings.

The focus is the American single-family use on a suburban or rural site—that most demanding building type in design and the most sensitive to the climatic sign variables discussed. This book is about the house of the noble savage, its splendid autonomy. It is about the practical and sensitive design responses the natural environment that offer increased comfort indoors and out with reduced fuel bills for the life of the structure. The avoidance of jazzy terms and glib words is indicative of a nonexclusive, nonelitist approach that goes well beyond the insulation/conservation and passive solar heated syndrome.

The no-nonsense introduction puts bioclimatic design on the line for the complete book. A brief portfolio of interesting architectural solutions in several stylistic modes and in a variety of climates underlines the fundamental idea that comfort does not prescribe style. In clear language the first half of the book is set out. The primary debt to Victor Olygay's 20-year-old classic, Design with Climate, is acknowledged, and the continuing aggregated streams of increasing knowledge are honored. In comparison to this new compendium the Olygay bioclimatic bible seems romantic, even mushy.

With 124 pages, the section on "Practices" is the heart of the book: 50 design strategies and passive thermal objectives related to eight winter and summer concepts. Design strategies range from detailing of window and door control to air infiltration through the appropriate application of a roof; to the detailing of double roofs, thermal-sheltering, and complex wall assemblies. Part three contains "Climatic Data"—29 representative American climates, with bioclimatic analyses techniques, and national maps that plot comfort opportunities. Finally, an extensive bibliography in nine subject subsections concludes with an index that is too modest in its listings.

The focus is the American single-family use on a suburban or rural site—that most demanding building type in design and the most sensitive to the climatic sign variables discussed. This book is about the house of the noble savage, its splendid autonomy. It is about the practical and sensitive design responses the natural environment that offer increased comfort indoors and out with reduced fuel bills for the life of the structure. The avoidance of jazzy terms and glib words is indicative of a nonexclusive, nonelitist approach that goes well beyond the insulation/conservation and passive solar heated syndrome.

The no-nonsense introduction puts bioclimatic design on the line for the complete book. A brief portfolio of interesting architectural solutions in several stylistic modes and in a variety of climates underlines the fundamental idea that comfort does not prescribe style. In clear language the primary debt to Victor Olygay's 20-year-old classic, Design with Climate, is acknowledged, and the continuing aggregated streams of increasing knowledge are honored. In comparison to this new compendium the Olygay bioclimatic bible seems romantic, even mushy.

A mature Watson and an intense Labs, as two lively authors, are not embarrassed by the wealth of recent information that they have ambitiously reduced to a tight reference with astute professional judgment. In addition to combing the spectrum of bioclimatic literature, the authors have synthesized design parametrics using computers to provide a unique design handbook. Everywhere there are conversion tables and definitions of terms that we thought we knew. But most impressive is a style and format flattering to the exigencies of most office practice. It encourages high performance building by being a high performance book. Architectural vignettes are in easily understood, bold, three-dimensional graphic form, and thermal and comfort strategies are quantified. The climatic rhythms of winter and summer are consistently addressed with great balance—it is a rare text that recognizes the overheated, the arid, and the humid in addition to the cold climates of the U.S.

Simple diagrams are used to key generic energy strategy in book's compilation of conservation design practices.

Building designers in other countries should not be too disappointed. Although there is no reference to design problems beyond the continental U.S., this full spectrum of American climates can characterize much of the rest of the world. The units of measure are in feet, inches, and the Btu. Only occasional metric and SI information is included, where they are the units of the original research. While some may assume that this is a book about "passive" design, that word is not to be found, even in the index. Neither is "snow," "selective surface," "Trombe wall," or "collector."

If there is criticism of the language in this wise and intensely informed treasure, it is that the words are tight, the shorthand quite short, making the book difficult to scan and challenging to base one's fantasies on. It does not belong on the coffee table or the bedside table. But as a handbook of accessible professionalism, the potence of this single source lies in its clarity of performance potentials for building beautifully. Jeffrey Cook, AIA

Mr. Cook, a prolific writer on energy conservation and other architectural concerns, is a professor in the department of planning, Arizona State University.

Here is a book about distortion in architecture. Distortion for illusionistic purposes, to enrich reality, space, and our perceptions—it is all done with mirrors. Pamela Heyne leads us through the history of mirrors, the use of mirrors in interiors, mirrors to expand the joys of dematerializing and make-believe, and on to the main body of the work, which deals with mirrors on exterior surfaces and the use of mirrors in solar technology.

Charles Moore has reminded of the uses continued on page 102
books from page 101
and pleasures of ambiguity, both in his writings and in his built designs. The use of unreality, fantasy, glaces à répétition, or vista mirrors with reflections and reflecting reflections, have become standard parts of the postmodernist bag of tricks. Few can resist the joys of escaping the reductive character of the International Style with its puritanical attitude about materials. The relaxed, not to say spaced-out, architectural taste of the 1970s offered room for hallucination and a serious preoccupation with narcissistic enjoyment. Accompanied by backward glances through history, the search for something new focused on the superficial. Superficial was not held to be a pejorative term, for it was a study of surfaces and what they could do to and for buildings.

Charles Gwathmey is quoted, in 1978: "I want people to know it is a mirror. There is no intent to fool. There is an intent to enrich." Susana Torre's reversed periscopes are avowed "to expand on as well as to provide the meaning of my architecture" and to make it possible to "realize what the circulation space actually is," rather than simply to be used in a decorative fashion. We rejoice with Bruno Taut that "in the distance shines the light." Or we may even agree with Frank Lloyd Wright that "the tendency toward the tawdry is present in any use of the mirror."

The final chapter on the solar mirror emphasizes the work of James Lambeth, with only a perfunctory bow to the many other recent designs for using mirrors for sun power. Heyne concludes with the modest statement that "yet, the mirror system just might play an increasingly visible role in the future as one form of solar energy." Her illustrations, 31 in color and many more in black and white, satisfactorily complement the text. The jacket photo by Norman McGrath showing the Citicorp Center, 1979, by Hugh Stubbins & Associates, is in itself a playful distortion that literally tips us to the ambiguities of Today's Architectural Mirror.

Sara Holmes Boutelle

Ms. Boutelle is founder/director of the Julia Morgan Association in Santa Cruz, Calif.

Movie Palaces: Renaissance and Reuse

More than 4,000 movie palaces were erected in this country between 1915 and 1945. They reflected Hollywood's "golden age" and surely contributed to fulfilling some basic social need. Michael J. Pitz, director of the National Endowment for the Arts' design arts program, under whose financial aegis this book was developed, says in the foreword that the palaces are as important today as when they were built. They are a unique building type, they provide a link with our past, and they can still function as "glorious spaces" for new uses.

Researched and written by Joseph Valerio of the University of Wisconsin-Milwaukee's school of architecture, and Daniel Friedman, a graduate of the school, the book begins with the social and economic history of the movie palace, discussing among other topics architectural style and movie palace architecture.

A subsequent section contains case histories of nationwide projects in the reuse of the palaces, ranging geographically from the Paramount Theatre in Oakland Calif., to the Roger L. Stevens Center in Winston-Salem, N.C. A final section or "Relighting the Marquee" gives planning guidelines for economic feasibility studies, project proposals, and other concrete and helpful information on making the old movie palace a vital part of the community. Reuse of the palaces is now a continued on page...
OMEGA, THE LIGHTING COMPANY,

are manufacturers of fine lighting equipment to complement the architectural interior.

Point source recessed and surface fixtures for Incandescent and High Intensity Discharge, designed for optimum performance with visual comfort...track lighting systems of internationally-renowned design...directional, decorative lighting systems offering the specifier the widest spectrum of choice within the same standards of excellence.

Specify Omega Lighting.
It's what the very best interior architecture deserves.
SUBJECT: A $20 MILLION COMMITMENT. We're proud to announce that American Olean has embarked on an important mission—the construction of a totally new, $20 million ceramic mosaics plant in Jackson, Tennessee. The plant will incorporate the most modern manufacturing technology available anywhere. And it will usher in a whole new era in ceramic mosaic tile production.

When completed, American Olean's Jackson facility will produce ten million square feet of ceramic mosaics each year. Not only will this satisfy current demand for the material, it will also insure that American Olean will keep pace with the increasing popularity of ceramic mosaics in the future.

The Jackson plant will also provide American Olean with the ability to create an entirely new, exciting and innovative line of ceramic mosaics—new colors, new textures and new sizes—to provide even more versatility to our ceramic mosaics line and to stimulate the imagination of tile specifiers, installers and users.

In the months ahead, we plan to share with you our progress on American Olean's new ceramic mosaics plant at Jackson. This project underscores our deep commitment to and confidence in the ceramic tile industry and its future.

AMERICAN OLEAN
American Olean Tile Company, Executive Offices, 3079 Cannon Avenue, Lansdale, PA 19446-0271
Circle 40 on information card
books from page 102

...test idea," and this book will be sin-
larly helpful to those who envision the
place as a place for cultural facilities,
commercial investment, and instigator of
downtown renewal.

**Vertical Transportation: Elevators and
Escalators.** Second edition. George R.
Strakosch. (Wiley, $49.95.)

Almost any person, whether lay or
professional, has some horror story to tell
out riding an elevator. My own involved
lining up the inclined leg of Saarinen's
Louis Arch in a jerky, cramped cap-
ning up the inclined leg of Saarinen's

To avoid such unpleasant encounters,
George Strakosch has written this book
to those whose business it is to design
ators. His experience,
hich includes more than 30 years with
the Otis Elevator Co. and more recently
associate in a leading consulting firm,
s enabled him to put together a com-
prehensive volume on the subject. This
early expanded version of an edition
published in 1967 is part descriptive and
technical. It is generally well illus-

strated and its lack of a need for
large department stores because of its own
marketing facilities and its lack of tour-
ism itself.

Tobriner seeks answers to some puz-
ling questions, such as how this city on
the outer boundaries of Europe achieved
its beauty, how the "highly sophisticated"
ar chitecture, arranged on an Italian plan,
was adopted by a city then under Spain's
rule; and who was responsible for the
city plan and the creation of the harmoni-
ous baroque buildings. The questions, for
Tobriner, are related to the city's form.
And his book is about the physical his-
tory of Noto "as a manifestation of the
economic, political, and social life of
Noto." Thus, he probes into the politics of
planning for the city's recovery after
the devastating earthquake, its search for
a new site, the changes in the city's plan,
upper and middle class housing, and the
role of the clergy and the aristocracy in
rebuilding the city.

Architects will be intrigued by To-
briner's account of the designers of the
new city. For example, Rosario Gagliardi,
one of Noto's three most important ar-
chitects, never went to Rome or Naples.
From the printed page he "absorbed new
trends with sophistication." He kept up.
"With his prodigious talent for lively
facades, exquisite decoration, and con-
tant decorum, he provided a hybrid Sicil-
ian baroque, an amalgam of Renaissance
plans and order, baroque massing, Sicil-
ian decoration, and his own exquisite
sensibility." Noto is "noteworthy as a vis-
ually successful environment" because of
Gagliardi's "vivid style and his sensitivity
in responding to urban context." □
Quarterly newsletter features:

- mailing list?
- brief description of
- question and answer
- provide literature and other items of interest.

To receive your copy, write:

Morton Chemical Division
Mkt. Comm-AIA,
101 Carnegie Center, Princeton, NJ 08650

MORTON THIOKOL, INC.

Morton Chemical Division

6 from the '60s from page 86

associated from the people who have to live with it. So we get ... shopping malls. Ghastly things, where people have to live there, and fathers sometimes too, and experience that deadly world. It just wipes you out. There is universal assent in all my classes, especially after I've presented the Patterns, that it's a rootless, alienating environment that we have to live with. There's a feeling it has to be this way, there's no other way, cities and suburbs have to look that way. We produce houses and offices like commodities. There's no sense of an enduring, cultural feeling there. Just slap it up! We don't have a real culture. Everybody got mobile; everybody knows too much and not enough; money has become king; everybody's been displaced; we don't have a sense of place. Why not housing as a commodity?

Modern architecture is doing this all over the world. Even the third world is gobbling it up. They think, "That's it!" and move away from the real patterns they had that worked. The Greeks are destroying their heaven with steel and reinforced concrete. Everything straight, hard, deadly, no intimacy. They used to handle the stones, plaster, whitewash. Our environment is deadly, life-draining, uncaring, all for short-term gains. I'm exaggerating, and it's easy to speak in generalities. There's some good work too, places that stop you in your tracks.

Shipsky: So what do you suggest?

Velonis: There's no reason for developments to look the way they do. There are lots of architects with talent. People consider architects the leaders in creating our environment. You don't have to stay with conventional concepts. That's what the Patterns so elegantly discard. There are a lot of clues in the Patterns for making our environment an inspiring, health-giving place that creates life, that feeds life back into us. I see architecture as one of the most powerful forces we've got. The architect is a therapist, a teacher who can show people how life is affected by environment.

I think the Patterns present a real challenge to the idealists of the '60s, in showing us how we might get along better on the world. Alexander bases the Patterns on what works ecologically in terms of the whole culture.

Shipsky: Have you found problems using the Patterns?

Velonis: Using them takes more time. We have a joke around here about the timelessness of work. One house we built, with alcoves and a crinkled edge, had 18 corners on the foundation. The guys driving the concrete truck laughed at us. But owner/builders are willing to take extra time. There has to be a lot more planning than Alexander lets on. It's great to keep away from paper as long as possible, but to avoid mistakes, plan sequences, etc., you have to plan in advance.

Shipsky: How do you see the future for the '60s generation, and for yourself and Heartwood?

Velonis: I'm always bumping into the mainstream; I can't fit in; it makes it too hard to be creative, to be true to the values I found in the '60s. In the '70s we educated ourselves: spiritually, other cultures, religions, economic alternatives, a real broadening. It required most of the '70s to overcome the naivete of the '60s. In the '80s we need to manifest, put in roots, make a difference. I'm thinking of videotapes on construction techniques for the third world. And I'm hoping to use the Patterns in a hospital for the disturbed.

Postscript: This isn't the end of the story because it isn't the whole story. I think there are men and women practicing architecture in new ways, realizing '60s values I think many architects, like myself, want to work with a group making a city or town a good place to be; who want to help students experience and learn good craftsmanship; who are designing and building for the future; who are using Pattern Language; who are building in harmony with nature; who believe the function of architecture is illumination. I'd like to hear from you. Please contact the author, in care of the editor. □
Thermasote® R/31 Plus*

Nailbase

Roof Insulation System

Lightweight, versatile, super-insulating nailbase panels
No asbestos/no urea formaldehyde additives
Retrofit: apply Thermasote® over old roofs
New construction: apply Thermasote® over any roof deck

For full details, call (609) 883-3300, or write
Thermasote Company
P.O. Box 7240
Trenton, NJ 08628-0240

*system combines 4" Thermasote® (R-24), 2½" Homasote
Ply® Roof Deck (R-6) and finish roofing.

Exposed beam
Laminated wood roof deck
4" thick nailbase Thermasote®
Roof shingles
Letters from page 6

Design and Quality of Life: In recent months architects have made public their renewed commitment to the quality of American life. At the heart of this commitment is a realization that people—human beings—our clients—must be served by the built environment and (2) educated to appreciate the built environment as vital concerns of today's professionals. These sentiments were reiterated at AIA's convention in New Orleans at a gold medal forum in which six renowned architectural practitioners, critics, and scholars stressed the need for people-oriented approaches to design and for approaches educating the public to the problems and concerns faced by the designers of the built environment.

While these commitments seem highly appropriate to a profession that is beleaguered on the one hand by its own sense of purpose in society and on the other hand by a society that is ill prepared to understand the meaning and value of the built environment, pure commitment is inadequate in effecting change. What is needed are methodologies for carrying out our humanistic concerns. If we are to improve the responsiveness of design in addressing human needs, we need to acquire an understanding of behavioral patterns and to develop the means for accommodating those patterns. If we are to improve public awareness of quality design, we must investigate the prevailing cognitive processes in relation to the environment and then intercede into those processes.

In short, the commitments that are being articulated by architectural professionals call for behavioral and perceptual methodologies in design. Yet little systematic research seems to be taking place that would lead to the development of these methodologies. According to AIA's Architectural Research Council, neither social scientists nor the traditional architectural education has afforded the practitioner with the knowledge and skills that are required to address those very issues that seem most vital to the profession.

What seems odd is the council's own lack of concern for helping the practitioner to pursue humanistic issues in design. The Architectural Research Council was formulated by AIA in order to address the most pressing problems encountered in architectural practice and design. It is one of the principal media through which AIA attempts to improve the state of the art in design. Certainly great numbers of architects who espouse a commitment to humanism in design are clearly without the wherewithall to pursue that commitment, yet a review of the “1983 Architectural Research Priorities” recently published by the council indicates that the development of people-oriented methodologies in design is not among the council's major concerns.

The council has identified 25 areas of concern: 24 of those categories pertain to technological problems encountered in design—building codes, energy conservation and design, cost effectiveness, preservation and reuse of buildings, and life-saving elements in building design. Only one category pertains to human behavior, and that one is limited to behavior in specialized facilities.

It seems extraordinary that the council has elected to devote most of its attention to the technological function of buildings while paying only cursory attention to the effect of those technological functions on the quality of human life. It seems even more extraordinary that architects continue to make commitments to the quality of life while taking little, if any, concrete action to systematically find out what constitutes quality of life for divergent segments of American society. Year after year, we as a profession continue to rely on our intuition to solve behavioral and perceptual problems at a time when rapid changes in life styles are jarring our traditional understandings about human behavior and about the meaning and values inherent in built form.

Our continued reliance on intuition to human values and our increasing obsession with the technological is nowhere more concisely illustrated than by the Architectural Research Council's 25 research priorities.

I am disappointed by the council's lack of concern for behavioral and perceptual issues in design and by the general lack of action-based initiative on the part of an architectural profession that persists in declaring its commitment to humanism in design while ignoring opportunities for concretely pursuing that commitment. I am hoping that other AIA members feel as I do and will join me in insisting that the AIA membership follow up its humanistic espousals with meaningful action.

Sharon E. Sutton, AIA
Cincinnati

Earle W. Kennett, research administrator for the AIA Foundation, replies: Sharon Sutton's concern about the lack of sufficient research on behavioral and perceptual issues in design is valid. Architectural design will always be based to a degree on the designer's intuition, but we would be negligent as a profession if we did not support the use of reliable empirical research to expand our body of knowledge on behavioral and perceptual issues to provide our intuitive decisions with a more solid foundation.

The Architectural Research Council's 1983 research priorities include research to quantify the benefits of "good design", and research to quantify exactly what makes the quality of life good in some communities and poor in others. While recognizing that these research questions can be extremely difficult because of the many subjective factors involved, the council believed that these questions are too important not to be asked. Moreover, the behavioral and social sciences have matured sufficiently to be capable of helping us take a step or two in the direction of finding answers.

A third council priority for 1983 has been, as noted by Sharon Sutton, research on the psychological and sociological design requirements of health care patients, the elderly, the developmentally disabled, and other special groups whose requirements are often beyond the general experience and intuition of practicing design professionals.

Are these three—out of 25 research priorities—enough? Previous lists of architectural research needs have tended to be long "wish lists" that included every valid need regardless of the limited financial and human resources available for architectural research. A primary value of the council's list is that it was developed through a series of difficult choices among the hundreds of valid research needs to identify those that practicing architects consider priorities in a time of limited resources. The council, which is composed of representatives of AIA's 14 major committees on practice, design, and professional development, based its choices on a careful ranking of these committees' grassroots concerns. Thus, the council gave attention to the full range of humanistic, aesthetic, technological, cost, and related issues that affect architecture.

The need to set priorities led to the council's final list of the profession's 25 most urgent research topics. AIA members are urged to communicate their research needs to these committees for consideration in the process of developing a list of research priorities for 1984.

The Man Who Drove One: In connection with "Bucky" Fuller's Dymaxion Car, we may make a minor historical correction (see August, page 21). It was not an attraction in the 1933 Chicago World's Fair, as stated, but it was displayed in the Crystal House in the 1933 Chicago World's Fair as a part of this house designed by George Fred Keck—William Keck, Architects. I had the pleasure of driving it around (at a slow pace!) at that time.

William Keck, FAIA
Chicago
WHY DERBIGUM MAY BE YOUR SINGLE BEST CHOICE IN SINGLE-PLY ROOFS.

Most single-ply roofs have built a reputation on how easily they go down. The Derbigum™ roof system, though, long ago built its reputation on how well it stands up.

THE STRENGTHS OF BUR IN A SINGLE-PLY

Derbigum™ is a unique commercial roofing system that combines the strengths of traditional, asphalt, built-up roofing with the ease and low-cost installation of a single-ply. This patented system is a bitumen modified with polypropylene, to slow the aging process and increase roof life. And, like proven, built-up roofs, it's made with reinforcing mats for greater strength. All in a single-ply.

In addition, Derbigum’s built-in adhesive layer ensures easy, torch-on application, high-strength bonding and a smooth, finished surface. Derbigum will excel on virtually any kind of roof—dome, barrel, peaked and flat decks. In new as well as re-roof applications.

16 YEARS PROVEN PERFORMANCE

With all this going for it, it's small wonder that Derbigum is one of the world's best-proven, single-ply roofs. With over 1.6 billion square feet installed since 1967. On roofs all over the world. In virtually every kind of climate. Since it was first introduced in the United States, there have been no known product failures.

40 YEARS OF ROOFING EXPERIENCE

Owens-Corning knows that Derbigum roof systems are called upon to endure torturing extremes. Driving winds, ice, snow and roof temperature variations of over 100 degrees in a single day can be expected on a commercial roof.

That's why we have invested over 40 years and hundreds of millions of dollars in providing the highest quality, state-of-the-art roofing asphalts, membranes and insulations.

So that when you specify Derbigum, you've singled out a single-ply roof you can rely on.

For more information, contact your Owens-Corning sales representative. Or write B. T. B. Meeks, Owens-Corning Fiberglas® Corp., Fiberglas Tower, Toledo, Ohio 43659.

THE TOP ROOF FOR ANY BOTTOM LINE
DEATHS

Henry L. Willet: With more than 10,000 windows around the world and over 100 employees, the Willet Stained Glass Studios in suburban Philadelphia is the largest such works in the world. Willet windows are installed in New York City's St. John the Divine, the Washington National Cathedral, and the Chapel Center at the U.N. Henry Lee Willet, Hon. AIA, who died Sept. 29 at the age of 83, learned the art from his father. Educated at Princeton and the Wharton School at the University of Pennsylvania, he spent years researching in Europe before taking over the firm as president in 1930. He became chairman of its board 35 years later when his son succeeded him as president. He was credited with a major role in stained glass innovations, including the development of techniques using cements and epoxy in place of lead and use of new types of glass.

James M. Hunter, FAIA, Boulder, Colo.
David Kammeraad, Columbia, Mo.
Daniel D. Merrill, Tryon, N.C.
Harold M. Neal, Cornwells Heights, Pa.
George H. Riggs Jr., Silver Spring, Md.
Robert Stanton, FAIA, Carmel, Calif.
George V. Whisenand, Honolulu

BRIEFS

Parking Lot Design Competition.
The city of Columbus, Ind., and the Irwin Sweeney Miller Foundation announce a competition for the design of a 200-car parking lot in downtown Columbus. The competition is open to all registered architects and landscape architects in the U.S. All entries are due April 1, 1984. For registration contact: Theodore Lieberman, AIA, Lieberman Ellis Melting, Architects and Planners, 330 West 42nd St., New York, N.Y. 10036.

Seattle Museum Competition Awards.
The Seattle Chapter/AIA and Blueprint for Architecture have selected four winning concepts in a design competition for a downtown Seattle art museum. Awards were presented to Stanford Wyatt; Keith Beckly, Jeffrey Bishop, Dennis Evans, Nancy Mee, and Jim Olson; Dale Jorgensen and Luke Gjurascic; and Jochman/Kundig Partnership.

Energy Systems Catalog.
Ecotech's 72-page energy systems catalog/sourcebook with articles, energy savings suggestions, and listings of energy products is available from Bob Gilbert, Ecotech, P.O. Box 9649, Washington, D.C. 20016.

SGF Traveling Fellowship Awarded.
Georgia Tech student Henry Bradley Methvin of McDonough, Ga., was selected the 1982-83 SGF prize winner for the project design of the World Bibliographic Center in Chicago. He was awarded a bronze-cast sculpture by Arnoldo Pomodoro and a $6,000 travel fellowship.

Steel Construction Publication.
The American Institute of Steel Construction is offering a 84-page booklet, "Torsional Analysis of Steel Members," to assist with computation required for complete analysis of effects of torsional loading on structural members. The publication is available for $16 from the American Institute of Steel Construction, Wrigley Building, 400 N. Michigan Ave, Chicago, Ill. 60611.

Minnesota Society Gold Medal.
Robert G. Cerney, FAIA, has been awarded the Minnesota Society/AIA gold medal for "outstanding service to the public and the profession." Cerney, now retired, practiced in Minneapolis and taught architecture at the University of Minnesota for 40 years. Among Cerney's designs are the Metropolitan Stadium, the Minneapolis-St. Paul Airport, and the school of architecture at the university.

Briefs continued on page 111.

G R A N I T E
R O C K
O F
A G E S

A company with the resources to supply premium granites for contracts of any size. Granites in ten select colors and any finish you desire. Please contact us for our free brochure, actual samples or quotations on your next project.

Rock of Ages Building Granite Corp.
McGuire St., Concord, NH 03301
Toll-free: 800-445-7050
in N.H. (603) 224-5325

110 ARCHITECTURE/JANUARY 1984
Circle 46 on information card

skylighting with
VENTARAMA®

Cutaway view of NEW LO-DOME™

FEATURES:
• Copper flashing
• Insulated dome, clear, bronze or white
• Manual, pole or motorized operator

Give your home a light and airy atmosphere with VENTARAMA Skylights. VENTARAMA has 33 years' experience making skylit homes not only beautiful but problem free.

Easy-to-use screen/storm panel system, silent motorization and pole or hand-crank operator will give years of e-carefree service.

VENTARAMA® SKYLIGHT CORPORATION
140 Cantiague Rock Road, Hicksville, N.Y. 11801 (516) 931-0:
Circle 47 on information card
A room with a View...

Thermal barriers throughout (including doors and windows), wider insulated double glass areas, minimum live load 30PSF, wind load 25PSF, totally self-supporting...and that's only the beginning. This structurally superior modular aluminum construction accommodates commercial and residential applications of span and geometric configuration limited only by your creativity. The ITB affords quick installation and lowest on-site costs.

Glazing can be specified as clear tempered insulated glass, tinted glass, reflective, laminated or special purpose glass to suit your particular application and local building code requirement.

Send us your specification and our design staff will respond with both quotation and suggestions, if requested, within several days of receipt.

We'll even provide on-site construction supervision, if needed— but supervision should not be necessary except for the most complex of geometries.

FLOREX ITB

ENGLISH GREENHOUSE PRODUCTS CORPORATION 11th & Linden Streets, Camden, New Jersey 08102
A Mallinson-Denny Company in The Brooke Bond Group
Call Toll Free 1-800-223-0867/In N.J. call 609-966-6161
Circle 48 on information card
THE BRIGHTTEST OUTLOOK IN ARCHITECTURAL PRODUCTS.

ARCO Metals Company
Amarlite

Circle 49 on information card
Today's smaller homes demand smarter closets.

Closet Maid products double, even triple closet storage capacity in the same space. And their popularity gives your homes an added sales appeal. Call for details. Closet Maid products are available at fine home centers and big box stores. Call us now! See our Booth #4140 at the NAHB Show, Jan. 21-24.

Circle 50 on information card
Furnishings

A resources for design and objects of design. By Nora Richter Greer

Architect Emilio Ambasz once said, "We create objects not only because we hope to satisfy the pragmatic needs of man, but mainly because we need to satisfy the demands of our passions and imagination." The task, he said, was to "give poetic form to the pragmatic." And that is exactly what he and co-designer Giancarlo Piretti have achieved in both the Lumb-r Chair (2) and the Oseris lighting system (4), which were developed in their industrial design studio in Bologna, Italy. The chair is reminiscent of simple wooden school chairs, although in this case a piece of the back has been scooped out and the mass of the legs has been exaggerated. A desire for simplicity is also evident in the lighting system, whose design emphasizes the light function and versatility.

Ambasz's design philosophy is also reflected in the rest of the furnishings we show this month. The Genni chaise lounge (1) is an uncomplicated, streamlined image. Designed in 1935 but only recently manufactured by the Italian firm Zanotta, the lounge's steel springs support the polyurethane upholstered seat; frames are chromium plated or lacquered steel. Krueger's Computer Continuous work stations (3) have a uncluttered, uncomplicated appearance due to a column-and-beam infrastructure that provides a solid load-bearing support and also channels telephone, power, and data lines. The work surfaces come in a variety of shapes (rectangular, square, triangular, circular, semicircular) and can be connected in 45-, 60-, or 90-degree angles. Finish are black or sand laminate or oak veneer; edges are solid hardwood. Krueger also offers the DataBord series, one component of which is a worktable with adjustable height (5). Also in the series are a terminal table, typist table with casters, print stand, and attachable rectangular and triangular work surfaces.

The Worden Co.'s H.E.L. Multi-Chair (6) is also a lesson in simplicity. The design features a wooden frame (available in four natural wood finishes and eight lacquers) with a gracefully shaped seat (offered in hundreds of textiles and eight leathers).
SOLUTION:

The design called for a cladding that could stay flat when applied with channel clips to a steel stud backdrop. It had to be formable and also accept a durable painted surface.

The solution was Alucobond® material.

Flatness: Alucobond aluminum composite material does not oil-can. It remains visually flat with virtually no substructure support.

Formability: It can be curved to a bending radius of fifteen times the material thickness.

Surface Durability: A custom thermoset cured Duranar® 200 finish was applied to provide protection against chalking, weathering, and chemical attack.

More information: Alucobond material

Project: Orchard Falls at Greenwood Plaza, Englewood, CO.

is available from Consolidated Aluminum, a leading developer and producer of composite materials for specific needs. For technical data and specifications, see our catalog in the General Building File, section 7.5/ALu. For information contact National Sales and Marketing Manager, Carla Lane, at (314) 851-2346.

Consolidated Aluminum, Composite Material Division, 11960 Westline Industrial Drive, St. Louis, Missouri, 63141. Alucobond is a registered trademark of Consolidated Aluminum for its composite material.
How Laminated Glass handles noisy neighbors at Crystal City.

To keep noisy neighbors like cars, trains—and 150 jet takeoffs from nearby Washington D.C. National Airport—from disturbing Crystal City tenants, laminated glass with a Saflex® polyvinyl butyral interlayer by Monsanto was the ideal, cost-efficient solution.

Tests identified peak dBA levels of 76-79 at Crystal City. Design criteria called for an STC performance of 37-40. The final configuration for 55,000 sq. ft. of windows is detailed in the illustration:

And laminated glass was more cost-effective than other sound control glass configurations. According to J. Scott Ogden, vice president of Charles E. Smith Building Corporation, "We found that laminated glass was the most cost-effective way to solve the sound problem. We got the best design at an economical cost and solved the problem without overkill."

So, while the jets and trains haul people all over the world, Crystal City tenants can enjoy a peaceful, quiet world of their own.

If you need to quiet noisy neighbors too, write us for a list of suppliers. Monsanto Polymer Products Company, Dept. 804, 80 N. Lindbergh Blvd., St. Louis, Missouri 63167.

SAFLEX® PLASTIC INTERLAYER BY Monsanto

Circle 53 on information card
Wilsonart’s Primeline collection of tambours for residential and commercial installations consists of high-pressure decorative laminates in five vertical and grid grooved patterns and a choice of solid colors, brushed and polished metallic finishes, and natural woods. The backplate in the row of public telephones (1) is the Nepal teak woodgrain laminate. (Circle 161 on information card.)

The Circlet glass block (2) by Forms + Surfaces has a ring pressed into the inner face of the block to create a partially transparent pattern with a three-dimensional appearance. The blocks measure five inches square and are available with a standard white rim or eight colored rims. (Circle 162.)

The Regional Center of the Crippled Children’s Society (3) in Long Beach, Calif., designed by S. M. Stoshitch, AIA, has a Temcor Crystogon geodesic dome over its therapeutic swimming pool to provide solar control and natural lighting. The space truss roofing system, constructed of aluminum extrusions, stainless steel and aluminum fasteners, and extruded silicone rubber gaskets and sealant, is fully triangulated to prevent panel distortion and includes an integral condensate drainage control system. (Circle 163.) continued on page 120
Residential Skylights.
Aluminum framed skylights have white, black, or bronze baked enamel finishes with single, double, or triple glass or acrylic glazing. Available in square, triangular, and circular shapes in flat and pyramidal configurations, plus custom designs, the units can be fitted with manual operable or electrically rolled vents. The insulated glass segmented barrel vault (right) runs the length of the house. (O’Keefe’s Inc., San Francisco. Circle 191 on information card.)

Computer Terminal Turntable.
System 2Plus terminal turntable, available in 18x18- and 18x27-inch sizes to accommodate most standard hardware, rotates 355 degrees to enable sharing in side-to-side or back-to-back work areas. The turntable has a cable access hole with grommet, T-molded edges and is available with oak, walnut, putty, or gray laminates. (Panels Concepts, Santa Ana, Calif. Circle 180 on information card.)

Building Board.
Asbestos-free Ultra-Board, designed for ceiling lining, insulation panels, partitions, soffits, and infill panels, is made of cement bonded with cellulose and organic fibers. It is available in 4x8- and 4x10-foot sheets in four thicknesses. (Brit-Am, Middlesex, N.J. Circle 181 on information card.)

Spectra workstation system by BruningCAD includes a 19-inch color monitor mounted on a movable arm above the work surface, a modular keyboard, a dual disc drive, a rollaway computer pod, and a disc storage drawer. The system is compatible with all BruningCAD systems and is expandable into large networks. (BruningCAD, Tulsa, Okla. Circle 174 on information card.)

Therm-Impac insulated panels are constructed with an expanded polystyrene core and steel wire trusses on both facings. A plaster finish is applied to the inside and outside and a finishing stain is applied to the exterior. Panels are designed to accept a number of exterior surfacings including thin brick veneer, tile, and sand finishes can be applied either on-site or before installation. (Covington Technologies, Irvine, Calif. Circle 186 on information card.)

Computer System.

Radiant Ceiling System.
SunComfort radiant heating panels are constructed of 5/8-inch fire rated gypsum board with embedded heating cables and are installed as part of a gypsum drywall ceiling. Panels, available in four sizes, are controlled by standard line or low voltage wall thermostats. (Aztech International, Albuquerque, N.M. Circle 18 on information card.)

Skylight Blinds.
Skyblind by APC Corporation, made of metallic coated fabric, is designed to reflect light and heat and insulate against heat loss. It can be installed inside the skylight frame, below the skylight, or at a ceiling level. (APC Corporation, Hawthorne, N.J. Circle 172 on information card.)

Structural Infill Panels.
System 2Plus terminal turntable, available in 18x18- and 18x27-inch sizes to accommodate most standard hardware, rotates 355 degrees to enable sharing in side-to-side or back-to-back work areas. The turntable has a cable access hole with grommet, T-molded edges and is available with oak, walnut, putty, or gray laminates. (Panels Concepts, Santa Ana, Calif. Circle 180 on information card.)

Questions About Your Subscription
To insure fast service on inquiries concerning your AIA JOURNAL subscription, please include the address label from the most recent issue received.

Change of Address
Eight weeks' notice required for change of address. Include address label from most recent issue and new address information in space provided below.

NEW SUBSCRIPTION
☐ Please check here if you wish subscription rate information.

Name ________________________________
Address----------------------------------
City--------------------State__ Zip________
MAIL TO:
AIA JOURNAL
Circulation Dept.
1735 New York Ave., N.W.
Washington, D.C. 20006

Circle 34 on information card
Move graphic elements between windows from any scale to any scale

Black on white screen for comfortable daylight viewing

Automatic screen grid, drawing grid & dimensions to architectural scale

Bundle & un bundle symbols to create and modify your own office library

Massive storage capacity for drawings & graphic libraries

Call or send drawings and data from one GRAPH/NET to any other GRAPH/NET or network to a VAX

Plus Optimization, Perspective, Data Management

GRAPH/NET—Draw Your Own Conclusions!

Drafting System for Under $30,000 Total System for Under $60,000

We asked the architects with the most experience in Computer Integrated Design* to spec their dream system. Full spectrum GRAPH/NET is working for them and is ready for you.

We combined an advanced microcomputer of incredible power and storage capacity in an easy-to-use workstation with software based on 14 years of continuous architectural design experience using computer graphics.

GRAPH/NET does it all: space planning, layout optimization, interior design, equipment planning, layered working drawings, specs, and 3-D perspective simulations.

It's the beginning of a new era. GRAPHIC HORIZONS is committed to bring you Computer Integrated Design* that will maintain GRAPH/NET as the easiest to use and most cost-effective CID* System in the world.

Give your team the chance to improve their productivity. For less than the annual cost of adding an average draftsman you get more ideas, response, production, economy.

GRAPH/NET is a "personal mainframe." Just plug it in, no special requirements. It has a bright, clear CRT screen, an accurate digitizing tablet, very large 1 megabyte memory, enormous 24 megabyte storage, and an accurate, quick printer plotter.

Move into the twentieth century at last. Add one to a small office or connect 100 to network ideas, graphics, data, experience.

*For all the details, write or call:
GRAPHIC HORIZONS INC.
Box 312, Cambridge, MA
617-396-0075 09238

Circle 56 on information card

*Computer: Integrated Design is a copyright of Graphic Horizons, Inc.
Ceco puts out fire doors to meet every label requirement.

The high performance door people

Ceco has the fire door you're looking for. In fact, we can draw from thousands of attractive door and frame combinations to meet all your Underwriters' label requirements.

Ceco has been designing, building and testing steel doors for over 30 years. So we know what it takes to meet all the nationally recognized building standards—including those on fire protection.

But with Ceco doors you also get fast, simple installation, added building security, a complete selection of attractive builders hardware, plus the lasting beauty of Ceco's Colorstyle finishes. That's performance. Steel doors to meet every esthetic and functional need.

So when you need information on fire doors, security, hardware, or installation, your Ceco high performance door specialist is a good guy to know. See us in Sweet's. Or write: The Ceco Corporation, 1400 Kensington Road, Oak Brook, IL 60521.

CECO
"The door people"™

Circle 57 on information card
esumé des Articles Principaux

California’s “Humane” State Offices.

Ventura Coastal Corp. Buildings.
Page 64: Le bâtiment principal abritant les bureaux de la firme Ventura Coastal Corporation à Ventura, Calif., montre comment il est possible d’optimiser l’énergie sans dommage pour l’esthétique et pour le coût global. Grâce à l’utilisation particulière des formes et des matériaux à l’extérieur comme à l’intérieur du bâtiment, les architectes musunen et Ellingwood ont pu diminuer de façon importante la consommation d’énergie en recourant aux propriétés de la lumière naturelle.

Désert de l’Ecole d’Horticulture.
Page 68: Le Centre éducatif de Newnan, Conn., consacré à la nature, a construit récemment selon les plans d’architectes Buchanan/Watson. La condition du Centre fait appel à une utilisation tantôt active, tantôt passive, du soleil; c’est ainsi que l’eau, chauffée par le soleil, passe dans les parterres, favorisant le développement des plantes à la lumière; des écrans tamisent la lumière pour diminuer la chaleur solaire; la ventilation s’effectue naturellement, et des accotements de terre ont été anéanés: ces positifs conviennent fort bien à l’environnement végétal, comme aux humains.

Siège de la Compagnie de Télévision.
Page 71: Dessiné par l’architecte de Cleveland, Richard Fleischman, ce bâtiment abrite les locaux de direction et de production d’une compagnie de télévision par câble, ainsi que 75 véhicules de service. La moitié de la superficie totale, de 11,000 pieds carrés, est prise par le garage. La ventilation naturelle est assurée par des ouvertures au niveau du toit où sont disposées des lattes amovibles incurvées, qui réduisent notablement le coût des équipements mécaniques. Ces mêmes ouvertures permettent le chauffage et la climatisation des bureaux.

Essex Dorsey Senior Center.
Page 74: Ce bâtiment sans prétention, situé dans une banlieue ouvrière à l’Est de la ville de Baltimore, est un centre destiné aux personnes âgées: il propose, sur 13,000 pieds carrés, des lieux d’activités sociales et récréatives. La firme Paul Partnership, à partir de deux écoles abritant deux salles de classe chacune, vieilles de 80 ans, a construit entre elles un bâtiment qui les relie; on a ajouté d’autre part une aile à l’arrière.

L'Hôpital Yukon-Kuskokwin.
Page 76: Dessiné par Caudill Rowlett Scott, cet hôpital de 95,000 pieds carrés est situé à Bethel, Alaska. Sa forme aérodynamique permet au vent de l’effleurer et d’éviter la formation des congères. La technique de construction, qui utilise des éléments d’acier préfabriqués adaptés à la structure métallique, a été choisie pour sa rapidité de montage et pour sa bonne résistance aux variations des températures intérieures et extérieures.

Six regards sur les années 60.
Page 80: L’écrivain James Shipsky, qui a reçu son éducation d’architecte au cours des années 60, s’interroge sur les expériences durant cette période; il mesure leur influence sur ses propres conceptions de l’architecture et montre qu’il est demeuré, dans une bonne mesure, fidèle à ses idéaux. Shipsky a interrogé cinq autres architectes venus du même horizon sur leurs conceptions d’aujourd’hui et d’hier.

Corn Crib Country Retreat.
Page 88: Un entrepôt à maïs, situé sur une ferme d’Illinois, construit dans les années 30, a été transformé en une maison de retraite par les Architectes Bauhs & Dring de Chicago. Le bois de la structure d’origine a été nettoyé et revêtu de peinture; la coupole est devenue un observatoire. On a ajouté une salle où l’on a placé un tub pour les bains chauds.

La Résidence Donald.
Page 90: Une vieille ferme située dans les environs de Chicago a été redessinée par l’architecte Frederick Phillips de Chicago. Une salle à manger a été ajoutée au premier niveau, faisant un angle de 45 degrés avec la structure d’origine. Au deuxième niveau, on a ajouté une chambre.

Maison de campagne californienne.
Page 92: Dutcher & Hanf, Architectes de Berkeley, Calif., ont dessiné cette maison pour un couple d’âge moyen qui suit page 124

To get more for your pour, get some concrete advice.

Now you can learn how to get all kinds of beautiful concrete finishes while avoiding all kinds of problems. Simpson’s architectural guide to predictable concrete finishes fills you in on everything from quality control pitfalls, to choosing the proper panel for a special finish. To get a copy, fill out the coupon and send it in. Consistency is our commitment.

□ Yes. Show me how to get the most beautiful finishes on my concrete forming projects.

Name ____________________________
Title ____________________________
Company ____________________________
Address ____________________________
City ____________________________ State ____________ Zip ____________

Mail to: Simpson Timber Company
Panel Products Marketing
Third and Franklin
Shelton, WA 98584

FormGuard Concrete Forming Panels

Simpson

AC

Circle 58 on information card
Résumé début de liste page 123

envisageait de lui donner l’allure d’une grange. A l’intérieur, le premier niveau est consacré aux pièces de séjour et de détente, tandis que les pièces de réception se trouvent au second niveau. Le dernier niveau offre un bon exemple de parti que l’on peut tirer d’une telle structure.

La Banque Citizen.
Page 94: Cette banque, située dans la petite ville de Milaca, Minn., a été conçue par le Bureau Wold Associates à Saint Paul. Bien que la ville ne soit guère riche en immeubles remarquables sur le plan architectural, la banque a bien su s’intégrer à l’environnement: les quatre façades trouvent chacune leur équilibre avec le paysage architectural environnant. L’ensemble tient son unité des éléments communs de la base, du niveau intermédiaire et du toit.

Centrale électrique de Fallasburg.
Page 96: Après une interruption d’activité dans les années 60 après plus d’un demi-siècle de services, cette centrale hydroélectrique de Lowell, Mich., fonctionne à nouveau grâce à Skidmore, Owings & Merrill, Chicago. Ce travail a supposé la restauration des bâtiments, la remise en état des stucs et la peinture des surfaces intérieures et extérieures avec des tons qui s’inspirent des couleurs originelles découvertes après décapage.

Resúmenes de Artículos Principales

Oficinas “humanas” de California.
Página 56: En 1975, el estado de California comenzó a echar los cimientos para la construcción de un centro de escala peatonal y socialmente diverso en la ciudad capital de Sacramento donde los edificios gubernamentales habían de ser ejemplos de conservación de energía y diseño humano. El programa se realizó bajo la dirección de dos arquitectos estatales, Sim Van der Ryn y su sucesor, Barry Wasserman, FAIA. Ahora, están concluidos en la zona de la capital cuatro edificios de oficinas estatales y cuatro más en otras localidades del estado.

Ventura Coastal Corp. Building.
Página 64: El edificio de la sede de la Ventura Coastal Corporation en Ventura, California, demuestra que pueden obtenerse ahorros en la energía sin sacrificar la imagen visual o el presupuesto. Mediante la manipulación de las formas y materiales exteriores e interiores, Rasmussen & Ellinwood Architects redujeron notablemente las necesidades de energía.

Edificio de formación hortícola.
Página 68: Esta nueva instalación docente en el Centro de Ciencias Naturales de New Canaan, Conn., fue diseñada por empresa de arquitectos Buchanan/Watson. El edificio combina cierto número de estrategias de diseño solar activas y pasivas—tales como calentamiento del suelo donde crecen las plantas con agua calentada por la energía solar, pantallas de sombra para reducir el calor, ventilación natural y zanjas de saneamiento de la tierra—para proporcionar un ambiente apropiado tanto para las plantas como para las personas.

Sede de Viacom Cablevision.
Página 71: Este edificio, diseñado por el arquitecto de Cleveland Richard Fleischman, alberga las oficinas administrativas y de producción de una empresa de televisión por cable y más de 75 vehículos de servicio. La ventilación natural se consigue con controles curvos de celosías en el techo, reduciendo así el costo de los sistemas mecánicos. En los espacios de oficina los controles de celosía también proporcionan calor y luz.

Essex Dorsey Senior Center.
Página 74: Este edificio funcional en una comunidad suburbana de la clase trabajadora en la zona oriental de Baltimore.

CONTROLLER/BUSINESS MANAGER

Position open at Mid-Town New York City Architectural Firm of 45 people. The work of the firm consists of residential, commercial, and hotel design, in-house construction management and real estate development.

This is a growth position working directly with the principals on all financial matters. Familiarity with architectural firms is not a requirement. Applicant should be aggressive, open minded and willing to take on new responsibilities.

Please send resume to:

Stephen B. Jacobs & Associates
677 Fifth Avenue, 7th Floor
New York, New York 10022
Attn: Mr. Gerald Hallissy, A.I.A.

GET TWICE THE INSULATION EFFECTIVENESS WITH ENERMASTE ROLLING DOORS

Compare for yourself and get:
1. Twice the insulation
2. Insulation 1-1/2 inches deep
3. A 13/16" Thermal break
4. Insulation with the highest (R) resistance factor
5. No gaps or voids inside the slat
6. Two faces of galvanized steel to protect the insulation

Atlas Door Corp.
116 Truman Drive, Edison, New Jersey 08817
(201) 572-5700 Telex No. 710-480-656
un centro social y artesanal de 13,000
es cuadrados para personas de edad.

dos arquitectos, The Paul Partnership,
menzaron con un par de escuelas de
habitaciones, construidas hace 80
anos, las unieron con una nueva con-
succión y les añadieron una nueva ala
a la parte posterior. Entre las influencias
al diseñan figuran la arquitectura ver-
cula sueca y japonesa y la disposición
luz natural en la nueva construcción.

Hospital Yukon-Kiskokwin.

Página 76: Este hospital de 95,000 pie-
s cuadrados, diseñado por Caudill Rowlett
ott, está situado en Bethel, Alaska. Su
forma aerodínamica permite al viento
asar a su alrededor, evitando acumu-
lo en mar. Esta situado en Bethel, Alaska. Su

Residencia de Donald.

Página 91: Una vieja casa de campo en
las afueras de la zona metropolitana de
Chicago fue reconstruida por el arquitecto
Chicago Frederick Phillips. La adición
contiene una sala de estar en el primer
pis o, con r e specto a la estructura original. La

Casa de campo de California.

Página 92: Dutcher & Hanf Architects of
Berkeley, Calif., diseñó esta vivienda para
un matrimonio en su edad intermedia que
la concibió como un granero. El interior
presenta un primer piso tratado como
espace privado mientras que el segundo
piso recibió las funciones públicas, per-
mitindo que las funciones del piso
superior aprovecharan las características
de granero del edificio.

Citizen's Bank.

Página 94: Este banco en la pequeña
localidad de Milaca, Minn., fue diseñado
por Wold Associates, St. Paul. Aunque la
localidad no tiene muchos edificios de
significado arquitectónico, el banco con-
s cuerda con su contexto en una forma
que forma, que forma, que forma equitativa e inteligente, cada una de sus
cuatro fachadas hace un gesto contextual,

Planta hidroeléctrica de Fallasburg.

Página 96: Esta planta hidroeléctrica de
Lowell, Mich., abandonada en los años
sesenta después de más de medio siglo
de servicio, fue restaurada a su función
original por Skidmore, Owings, & Merrill,
de Chicago. Las obras incluyeron repa-
ición, reestucado y pintura del interior
y exterior en colores basados en los en-
contrados después de quitar capas de
pintura. Se añadió un tejado nuevo de
pizarra, una cubierta nueva y se instalaron
nuevas puertas y ventanas. □
The federal marketplace? For architects and engineers, it's more competitive than ever before. It's also still the single largest market for A/E services in the nation, despite budget cutbacks and agency reorganizations. And for firms who want to carve a niche in that market, there's only one place to be in 1984: The 12th Annual Federal Programs Conference, sponsored by the six national professional societies who make up COFPAES, the Committee on Federal Procurement of A/E Services.

A great many factors figure in a successful approach to the federal market. This conference will spotlight them all, and focus on what may be the most critical new factor in the Brooks Bill era: design excellence. You'll learn what design excellence means in federal A/E procurement—and you'll discover exactly what it's worth in the competitive quest for the shortlist.

You'll also meet and hear from the federal decision makers on the most important issues in A/E procurement today, including negotiation, grant regulations, small-business set-asides and such key trouble spots as filing protests and appeals, surviving audits and handling change orders. In a pair of special sessions, you'll balance A/E success stories against the pitfalls of doing business with the government. And you'll preview the most promising national and international markets for 1984 and beyond—energy and environment, surveying and mapping, transportation, public buildings and defense.

The 12th Annual Federal Programs Conference. It's an opportunity to learn first hand what you and your firm need to know about marketing your services to the federal government. Is that an opportunity you can afford to miss?

Sponsored by the Committee on Federal Procurement of A/E Services
American Congress on Surveying and Mapping
American Consulting Engineers Council
American Institute of Architects
American Society of Civil Engineers
ARTBA Planning and Design Division
National Society of Professional Engineers

Annual COFPAES Federal Programs Conference
Design Excellence Through Procurement
March 7-9, 1984/The J.W. Marriott at National Place/Washington, D.C

☐ Please register me now for the 12th Annual COFPAES Federal Programs Conference. My registration fee of $250 is enclosed.
☐ Please send me a detailed conference program and hotel registration form.

Name ________________________________
Firm ________________________________
Address ________________________________
City __________________ State ______ ZIP ______

Mail to: COFPAES
The American Institute of Architects
1735 New York Avenue, N.W.
Washington, D.C. 20006
Attention: Government Affairs

*The registration fee of $250 will cover all official receptions, breakfasts, luncheons, coffee breaks, handout materials and general conference expenses. Please make your check payable to COFPAES/AIA.
Cut your specifying time in half.

MASTERSPEC® 2 for Architects. Prepared by professional specifiers and reviewed by an AIA Committee of experts. This is the system designed for your needs. It raises your specs to the highest standard of practice and follows the CSI format. It means the end of long hours of repetitive research and technical writing. And it protects you from "errors and omissions" and contractors' substitutions. It's updated quarterly, so you're always current with the latest standards and technology. Available in hard copy with the option for addition of computer diskettes. Cut out the coupon and cut your specifying time in half. Or call Leonard Bain, AIA, toll free, at 800-424-5080.

Cut here.

MASTERSPEC 2
From PSAE Div., AIA/SC,
1735 New York Avenue, N.W.,
Washington, D.C. 20006

Name _______________________
Title _______________ Firm _______
No. of employees ____________ Phone _____________
Address _______________________
City _______________ State ______ Zip _______

1-800-424-5080
ADVERTISERS

Michael J. Hanley
Publisher
George T. Broskey
National Sales Manager
James A. Anderson
Western Manager
Jesse Sims
Manager, Production and Business
1735 New York Ave. N.W.
Washington, D.C. 20006
(202) 626-7484
Suzanne Maggi
Assistant to the Publisher

ADVERTISING SALES OFFICES

Atlanta (201) 729-4937
Thomas R. Crow
46 Main Street
Sparta, N.J. 07871

California (707) 762-6042
James A. Anderson
210 Vallejo, Suite B
Petaluma, Calif. 94952

Chicago (312) 663-4116
James A. Anderson, Western Manager
Lisa Laidlaw
53 West Jackson Boulevard, #1201
Chicago, Ill. 60604

New England/New York State
(617) 632-8185
Robert L. Tagen
87 State Road West
Westminster, Mass. 01473

New York City (212) 697-3415
Jeanne S. Cohen
485 Fifth Avenue, Suite #1042
New York, N.Y. 10017

Ohio (212) 729-4937
Thomas R. Crow
46 Main Street
Sparta, N.J. 07871

Pacific Northwest (206) 621-1031
(Washington, Oregon)
James A. Anderson
151 Yesler Way, Suite 317
Seattle, Wash. 98104

Philadelphia (215) 639-3731
George T. Broskey
3 Neshaminy Interplex, #301
Trevose, Pa. 19047

Pittsburgh (215) 639-3731
George T. Broskey
3 Neshaminy Interplex, #301
Trevose, Pa. 19047

St. Louis (314) 569-3210
Richard D. Grater
1466 Summerhaven
St. Louis, Mo. 63146

Washington, D.C. (202) 626-7471
1735 New York Ave. N.W.
Washington, D.C. 20006

Circle No. Page No.
49 Amarlite 112
 Cargill, Wilson & Acree
 Inc./Adv.
40 American Olean Tile
 Ketchum Adv.
35 Anderson Corp.
 Campbell-Mithun, Inc.
 Armstrong
 Cov. 2-p. 1
60 Atlas Door Corp.
 American Adgroup
6 Bilsche Corp.
 Compton Adv., Inc.
67 Badische Corp.
 Compton Adv., Inc.
2 B.W.N. Industries
 Cabot, Samuel, Inc.
 Donald W. Gardner Adv., Inc.
57 Ceco Corp.
 Grant/Jacoby, Inc.
43 City of Elizabeth, New Jersey
 Louis Benito Adv.
50 Clairson Int'l.
 Columbia Lighting, Inc.
52 Consolidated Aluminum
 Corp.
 Weitzman Dym & Assoc., Inc.
9 Cuppies Products,
 Div. H. H. Robertson
5 Curries Manufacturing, Inc.
 Colle & McVoy
10 Detex Corp.
 Zylke & Affiliates, Inc.
20 -21 Dover Corp.
 John Malmo Adv.
33 DuPont Co.: Hylapal
 NW Ayer Inc.
27 Edward Engineering Corp.
 Seymour Charles
48 English Greenhouse Products
 Corp.
 Lewis Adv. Agency
29 Everman Corp.
 Jane Schlansker
 Jane Schlansker & Co.
 Jane Schlansker & Co.
62 Norton Industrial Plastics
 R. W. Gardner Adv., Inc.
45 Owens-Corning Fiberglas
 Corp.
 Olgy & Mather, Adv.
34 Rixson-Firemark Div.
 The Delos Co., Ltd.
18 Rock of Ages
 Rock of Ages Building Granite
 Corp.
32 Schlage Lock Co.
 B. J. Stewart Adv.
65 Sculpture Placement
 Co.
37 Simplex Ceiling Corp.
 Leschin Assoc.
58 Simpson Timber Co.
 Sharp Hartwig Adv.
15 Sloan Valve Co.
 Marsteller, Inc.
18 Steel Joist Institute
 Batz Hodgson Neuwoehner Inc.
 Stephen B. Jacobs & Assoc
123 STO Industries, Inc.
51 Sun System Solar Greenhouses
 Nephews Adv. Inc.
41 Thetford Wastewater Treatment
 Systems, Div. of Thetford
 Corp.
36 United States Gypsum
 Marstrat
30 Velux Roof Windows
 Velux-America Inc.
47 Ventarama Skylight Corp.
 Channel Agency, Inc.
54 West Palm Beach Flagler Drive
 Waterfront Design Competition.
Announcing a new work by

J. Seward Johnson, Jr.

For brochure and information contact:
SCULPTURE PLACEMENT
P.O. Box 9709 • Washington, D.C. 20016 • 202-362-9310
LIFESIZE FIGURES PRODUCED IN LIMITED EDITIONS OF SEVEN OR LESS

Circle 65 on information card
When it comes to wood stains, most people want the best. Trouble is...you won't know which is the best until after you use it. Now, most good stains protect wood. They repel water. And hold their color against the elements. But which stain does all that the longest? The answer is Cabot's. You see, Cabot's Stains penetrate deeper. And deeper penetration means longer protection. Cabot's Stains...better protection because they penetrate deeper. It's that simple. For further information on Cabot's wood stains write Samuel Cabot Inc., One Union Street, Dept. 145, Boston, MA 02108; or 442 Valley Drive, Dept. 145, Brisbane, CA 94005.

Sweet's Byline: Call toll-free 1-800-447-1982.