Bishopric Board means low cost for up-keep

Here is a row of ten double houses erected by The Haddon-Browning Realty Co. in West Collingswood, N. J.

They all have stucco exteriors and the background for the stucco is Bishopric Board. The Haddon-Browning Co. designed these buildings to last and therefore used that most lasting background for stucco—Bishopric Board.

Note how Bishopric Board is constructed, as shown in illustration below. It does not require an expert to see why Bishopric Board is the most lasting background on the market for stucco finish.

Bishopric Board is made of creosoted lath, imbedded in Asphalt Mastic, on a background of heavy fibre-board.

When applied, the stucco is dovetailed into the lath, forming one solid piece. The dovetailed joint holds the stucco so that it can’t let go.

The fibre-board, Asphalt Mastic and creosoted lath give absolute protection against heat and cold, wind and weather. They form a combination that is water, vermin and sound proof.

Bishopric Board is held firmly to the frame. Stucco, with proper specifications—properly mixed and properly applied—will not crack and break away. It is absolutely dependable and adds years to the life of the building.

Let us prove every claim we make.

The Bishopric Manufacturing Co.
904 Este Ave. Cincinnati, O.

Write for our free book, "Built on the Wisdom of Ages," illustrating homes, apartments, factory and public buildings finished in stucco on Bishopric Board. It contains letters from architects, builders and users, and extracts from reports of scientific tests. It also gives full instructions for making a stucco mixture that will last. With this book we send free samples of Bishopric Board.

Write today, investigate for yourself.
THE BASILICA OF ST. PAOLA. ROME, ITALY
The Romance of Roofing Slate

Part I

By Howard Blaine Burton, B. Arch.

T was in France, up in the upper left-hand corner, where slate first began to serve man. On the banks of the Mayenne River, which appropriately gets its inspiration in the land of apples and bells, and flows in a southerly direction through the ancient provinces of Maine and Loire, now the departments of Mayenne and Maine-et-Loire, abode the discoverer, inventor, carrier and promoter of roofing slate.

He carried neither samples nor photographs, nor hand-picked chimen roofs dispersed at his headquarters, although it was the most prominent place in the country and, for he was the other than the Bishop of Angers. Although it was the most prominent place in the country, the most prominent place in the country, the most prominent place in the country, the Bishop of Angers.

The time was very early, in fact this one and a half "All Gaul was divided" had got of the Romans less than a hundred years earlier in the successful uprising of the Franks under Clovis. This chief then in 496 A.D. embraced Christianity and got things ready for St. Lezin, or, as he is known to the Romans, St. Licinus.

St. Lezin was not too busy with his ecclesiastical duties to notice the blue rock which protruded through the soil from Angers, north as far as Irelazel. He noted further that while it split unaided into thin slices, there was no further dislodgment. Subsequently forced to seek protection from the elements he upturned in a hurry a great slab of the stone and was sheltered by the first slate roof of record. And according to the legend there came a vision in which he was shown how to mine, work and use the newly found material, and forthwith he started his people at the new industry. He persuaded them that the new stone was lighter than thatch and would not burn; that they would not have to replace it through the wear of time; that it was easy to apply and very much better than anything else they could use. And it is to be further noted in passing that while St. Lezin lived in the sixth century, his arguments for slate roofing have to this day neither been improved upon nor changed one iota.

Continuing the legend, it is related that things did not go any too well. The thatchers objected to the innovation and started adverse propaganda helped by a series of accidents which manifested divine displeasure. Things were going badly for the Bishop until one day while standing near the quarry a great mass of rock became dislodged and was about to fall directly on the workers beneath. Some men, glad of an excuse to get out of the pit, and warned by the preliminary roar, were seeking safety denied their hapless companions, when St. Lezin arose, the legend says, raised his arms and spoke, "Rest, my friends; God is with us and no harm can come to us." At the same time he made the sign of the Cross and the
falling block, it is claimed, rested miraculously in mid air.

Although the slate from the Ardennes region over near Belgium has surpassed the Angers slate in economic importance, the latter quarries, now worked more than four hundred years by the one firm of Messrs Lariviere et Cie., and still one of the best of European slates, were for man, the birthplace of slate. It is amusing to consider beyond the ecclesiastical introduction of slate to man how in infancy his sterilized milk formula is mixed on the slate laboratory table; as a schoolboy he learns from a slate blackboard, and again as a man in industry his chemicals are contained in slate vats, his clothes are washed in slate tubs, his food preserved from taint on slate refrigerator shelves. His sanitary plumbing abounds in slate floors, slabs and wainscots and he lunches from a marbleized slate table top in the enameled restaurant. When the day is done he may walk up his garden path of slate and later, after a game of pool on the slate billiard table top (the only material known that will stay flat), turn on the electric light, the current for which reaches him through a slate switchboard. Then with slippers off he may recline in front of his slate mantel facing and watch the smoke ascend through the slate chimney cap.

A bit of England in New Jersey. The building and the slate roof happy and inseparable.

HOLMHILL LODGE, ROSELAND, N. J.

MICHAEL STILLMAN, ARCHITECT

Nor is this all. When it is all over, if a pauper his remains will lie on the slate slab of the morrow, or if a prince his dust will repose in the slate-lined sarcophagus, and while in the one case the commoner will plant a slate marker in the Potter’s field, in the other a slate memorial to his fame may be erected in the Town Hall.

Thus from the cradle to the grave, in business and pleasure, in useful and non-essential industries, in the acquiring and losing of fortune, body and soul, from dust to dust, slate is linked with man's life and work.
THE AMERICAN ARCHITECT

Just be remembered that even a small amount of calcium carbonate will render slate unfit for exposure and therefore useless for roofing.

Even with lime almost excluded, slate is a highly complex substance, for the rivers of the Cambrian period brought down whatever there was to come, although maleficent substances get in. The subsequent process of metamorphosis subdued them to inactivity by rearranging their atoms in entirely different mineral combinations — the iron oxide into colorless iron sulphate to give color to the red and purple slates; chlorite, for the green slates whether fading or weathering; inert carbonaceous matter in the dead sea organisms for the black slates. Moreover, the metamorphic process completely obliterated the granular character common to nearly all rock by compressing the crystals into flat scales and "rutile needles" so overlapped and interwoven as to create a veritable mineral fabric or felt while the accompanying heat continued exactly to the point where these scales — to borrow a ceramic term — vitrified with each other and the silica matrix, producing a substance whose absorption test for the frost to split is negative, or, to be exact, from .09 to .42 of 1 per cent.

The crystalline structure of slate is pronounced that ordinary roofing specimens balanced as the hand ring like metal when struck a sharp blow. Even the formless quarry waste when dropped on the dumps from a height makes a sound like the crashing of glassware.

Perhaps this is the place to answer that perennial inquiry. "Why do we have to get our slate from so few localities when it is so widely distributed?"

The answer is that it isn't.

It is shale, not true slate, which is so widely distributed. It looks very much like slate, splits up in layers and it is universally called slate, but it is not slate. First, because it usually has ingredients wrong for this use but yet of economic value, such as iron sulphide, useful in the manufacture of aluminum; lime carbonate for brick; bitumen for crude oil; iron oxide in excess for cheap paint; if calcareous, for Portland cement, not to mention the large percentage of carbon often found in the so-called coal delivered for fuel.

Second, even though possessed of the right ancestry, shale has never had a post-graduate course in metamorphosis. The cleavage of shale looks good, but is bad and is due to incipient disintegration, and when found near the surface shale can be broken up with the fingers. Slate, too, once had a similar stratification but the pressure obliterated it and caused an entirely new set of cleavages usually at an angle to the original
bedding. Sometimes the bedding became much folded, even overturned, yet the cleavage plans of the flat surfaces of the finished roofing slate pass straight through anticline, syncline and various original beddings which in the black slates occasions the ribbons and in the colored slates the mottlings.

In contrast with the natural product, how puny man’s efforts to make a roofing material seem! The pressure formed by the weight of perhaps miles of rock and millions of tons; the pressure generated heat to semi-liquification which made not glass but a self-reinforced fabric, even the tension members of which are non-absorptive; the factory, not of an acre or two, but an entire continent in cataclysmal upheaval; not a few weeks of drying or baking and then delivery, but many hundred thousand centuries in the making and nearly as many more in the uncovering ready for man.

But as the process of making slate was delicate it was successful in but few places. Carried too far it becomes schist as are the hills of Vermont adjoining the slate regions. Not far enough, it remains just one kind of shale as in Pennsylvania. Even in the slate belt itself, of two quarries within a few rods of each other, one may have been profitably operating for half a century while the other gives not even a successful prospect. Again, owing to the treacherous structure of the schistose, shale, quartzites, grits, limestone and other veins paralleling the slate, a slide may occur at any time burying the paying beds of slate in hopeless obliteration. The vein of slate may also become uncommercial after a single blast and the quarry worthless. Indeed the woods of Vermont are full of open quarry holes like wounds, now filled up with water, literally graves of somebody’s fortune and tears for his lost hopes.

Before going further it might be well to explain just what commercial roofing slate is. It is merely flat slices of rock having almost unbelievable qualities of splitting, of tough elasticity and which trimmed into rectangles, punched with two holes and nailed to the boarding of sloping roofs in rows, each row lapping the second one below by three inches.

Unlike the majority of building materials, “commercial slate” offers the advantage of being as cheap in cost as anything possessing the same durability.

The life of slate is not known. In Hartford, Avon stands the old Saxon Chapel covered in an eighth century with a slate roof. It stands today protected by the same slate, moss covered but good. For twelve centuries it has stood without complaint as to the past or misgivings as to the future. It is the same process of nature—metamorphism— that creates the slate of to-day and gives equal greater durability, and this durability is inherent in all slate of whatever color or cost.

Ingenuity, capital and favor of Nature gave in America greater variety than had our ancients precursors. We do not have to wait centuries to develop. Blacks we have from the shiny beds of Maine (but of uncanny toughness) to the warm sandy grays of Vermont. Reds, that grow brighter on exposure and substitute for shingle tile when the more expensive grade cannot be afforded. There is the little known room and the “Rustics” or grays with spots which weather beautifully but which are too white for most architectural purposes and appear more interesting in sample than assembled on the roof. Purples there are, some cold, unfading and unsociable; others warm, intimate and happy. Greens, too, some most too gray and white for most architectural use; but others of a green even down to the deep Ver. Antigue which appears green even against a bed of verdure. Combining both the green and the purple is the great group of mottled colors.

Personal architecture will stand the unconventional use of slate.

Most purpous
The weathering slates are a class entirely by themselves. For three-quarters of a century they were effectively concealed behind the nauseous word "fading." They comprise a large group of greens, grays, purples and mixed colors which in a few weeks or months acquire a century old appearance without the least sacrifice of lasting quality. No slate is more fascinating to work with, nor more satisfying in successful result and none more satisfying in one's early efforts. The color change is always warm and ranges from a faint transparent violet over the weathering purple to veritable calamine dipping for certain greens and grays. Others are almost too beautiful to use except for accent or sunshine.

One in particular has a double color effect. Ten thousand centuries ago nature painted the faces of its cleavage planes with pigments of rarest hues defying yet the government chemists to analyze or duplicate. Nature did more, antedating photography by a million years, she impregnated the stone itself with complex substances quite invisible, yet when exposed to the sun and developed in the rain and dew, print out in designs intricate as the frost but in colors of cadmium and madder.

By nature's benevolence the color change of this and all other weathering slates is utterly harmless to the structure of the slate and is on the harshest surface. Once formed, only concentrated chemicals or physical abrasion can alter or remove it. A satisfactory chemical explanation has not yet been made and may never be for the color is of crystalline nature similar to the red emerald or the yellow ruby. It is not iron oxide or any definite compound.

The quarry nomenclature has been purposely omitted, first for being out of place, second for being too often meaningless, strained and misleading.

The latter is a result of nearly a century isolation in the form of small operations independently carried on, content to sell for local use, with little or no advertising and with but a single end, that of producing the material in the easiest way. This in time confined slate operations to the easiest working rock which became known as "No. 1," and which instead of being textureful and interesting is more nearly the opposite like an asbestos shingle and thus began a whole vocabulary of terms having meanings totally unrelated to their use in architecture or even buildings. It is no small tribute to slate to have survived and to bear to-day its present relation to architecture.

The feeling of the old French roof is effective for semi-formal architecture and can be reproduced in modern slate.

THE CHATEAU AT BOZOCHES.
Fashion in Building Stone

The physical appearance of New York City, says Arlando Marine, in _Record and Guide_, has changed in many ways in the last fifty years, but in no other respect more than in the outward aspect of its principal buildings, due not only to the great changes that have taken place in the architecture, but also in great measure to a change in the character of the materials and in the style of the façades, the show walls, of the city's big business blocks, apartment houses, churches and other monumental buildings and its better-class private houses.

In the early days of New York the buildings were sombre in color and plain in architectural lines. Brown stone and red brick predominated along the streets and the severeness and lack of originality in the elevations of buildings, and a depressing sameness in their general appearance, made the city singularly unattractive. But this ugly, low-toned and monotonous three, four and five-story city has given place to one that is bright and cheerful, whose materials and in the style of the facades, the show walls, of the city's big business blocks, apartment houses, churches and other monumental buildings and its better-class private houses.

The advent of the “skyscraper” has had much to do with changing the appearance of the city. Built of light-colored materials, they have risen above the mass of low-lying and dingy blocks and dominated the whole color scheme, changing the skyline from its former stratified character to a more picturesque, sometimes slightly grotesque but always interesting and compelling irregularity. Early American architecture in cities was generally of a strictly utilitarian type. There was too much Queen Anne in the country and too little Stanford White in the city in the early days in New York.

Fashions in building stone as in other things may be said to move in cycles. These periods have succeeded each other, roughly speaking, at intervals of ten or fifteen years, and during the time under discussion nearly the whole range of available building stone has been covered until at the present time there is a return to the use of certain kinds of stone which were largely used a number of years ago, but which in successive periods were displaced in the esteem of architects as they turned to the use of some other kinds of building material.

The periods in which various building stones have held their own against other varieties have been established by chance more than by any concerted action of architects. The old favorite has been displaced and a new one set up when some leading architect has successfully used a particular stone with telling effect. Then would come a time when all were tired of it and almost simultaneously turned to some other variety.

It is interesting to remember that in the wide expanse of the country east of the Rocky Mountain there are comparatively few deposits of workable building stone. Ohio, Indiana and Kentucky produce probably 95 per cent of the free stone used in buildings throughout the entire country. The New England States are the granite field, while as to marbles Vermont, New York State and Georgia produce the white building and monument stock and Knoxville, Tenn., the colored stock, the light pinks and grays. Since the war the foreign supply represented by the French limestones and the Roman Travertine has been entirely cut off.

The result is that architects have been turning to the domestic fields and are finding the native stone very satisfactory. For one thing the local stone is adapted to the climate. One of the curious things about stone is the well-known fact that a stone cannot be used successfully east or west along the latitude in which it is quarried, but if laid in a colder climate is apt to disintegrate rapidly. Not all building stone quarried in a temperate zone can be used successfully in a more rigorous climate than in the one in which they are produced. Another interesting fact is that Vermont marble and Indiana limestone are practically of the same composition, each containing about 98 per cent of carbonate of lime. The Vermont marble can be polished while the Indiana limestone cannot. The Vermont marble was crystallized by heat and pressure in the process of formation, giving it texture which makes it susceptible to polish. This is not true of the limestone.

Previous to 1886 Connecticut brown and Ohio gray sandstones were largely used, but prior to that date back to 1850, considerable white marble was in use. In the period from 1886 to 1900 a very noticeable change came about in the style and color of stone, and this period is particularly marked with the use of red sandstone from Lake Superior, Lom- meadow and Maynard, Mass., as also from Scotland and England. Of the Scotch stones, the Murrah Hill Hotel is a notable example, while the Waldorf Astoria is built of the Lake Superior and Maynard stones. There were also used olive-colored sandstones from Nova Scotia. At the close of the period the limestone from the Bedford and other Indiana districts began coming in and it was marked also by the return to the use of white marbles.

The most notable examples of the use of marble toward the end of this period, were in the building of the Public Library, in which Carrere & Hastings made use of Vermont marble; the Stock Exchange, in which Geo. B. Post & Sons used Georgia marble and the Tiffany Building, for which the choice of the architects, McKim, Mead & White, fell upon South Dover, N. Y., marble. It is an interesting
fact that the South Dover marble comes from the quarry nearest to New York City.

In the period of 1900 to 1915 the taste of the architect and the public as directed by the leaders of the profession tended to the more widespread use of tinted marbles rather than to the white examples which have just been mentioned. The desire for color, for relief from the lack of warmth in white marbles, was met in the fine Knoxville, Tenn., varieties, which run to delicate pinks and grays, with peculiarly interesting veinings. Some of the prominent buildings erected from these marbles are the Morgan Library, of which McKim, Mead & White were architects; the Morgan Bank Building, Trowbridge & Livingston, architects; the New Haven Post Office, James Gamble Rogers, architect; the Morton F. Plant residence, Guy Lowell, architect, etc.

Also during this period (1900 to 1915) French limestone and Roman Travertine stones began to be used for special buildings. In the former a notable example is the Altman Stores, Fifth Avenue and Thirty-fourth Street, Trowbridge & Livingston, architects. Of the Roman Travertine stones, the Duvene Bros. Building, Fifth Avenue at Fifty-sixth Street, Horace Trombaur, architect, is a notable example. Roman Travertine was also used for the interior work of the Pennsylvania Station.

The distinguishing feature of the French limestone as compared with domestic limestone is its beautiful warm, yellow tone.

The distinguishing characteristic of the Roman Travertine stone is the warm, yellowish tone and the irregular perforations in the stone. This stone is evidently of a lava formation and is found in the vicinity of Mt. Vesuvius.

In designing the Kane residence, at Forty-ninth Street and Fifth Avenue, attempts were made to get a domestic stone that would approximate the appearance of the Roman Travertine. This stone was discovered in some of the Indiana quarries, the bottom cuts of which had never been thought of any value. Stanford White, who saw samples of these domestic Travertines, specified that they should be used in the Kane residence, and he also used the same stone in the Second National Bank Building, Twenty-eighth Street and Fifth Avenue.

But the dominant material of this period as a whole was Bedford or Indiana limestone.

Proper Recognition for Architectural Practice*

Visions of lack of appreciation of architecture by the public appear to haunt the minds of most architects of the present day.

Engineers by their energy and success, in gaining the public ear, are fast driving the modest, timid architects out of business. To offset this tendency we notice that many architects, in order to keep up with the procession, have added the title of engineer to that of architect for the purpose of impressing the public with their superior qualifications over and above that of the properly trained architects who make no claim to other professions. Architects and engineering are two separate and distinct professions, and it is given to but few men to master the intricate details of both, so that in most cases the assumption of the dual title is used for the sole purpose of gaining advantage over those who do not have the temerity to adopt such with little or no preparation.

The Massachusetts Institute of Technology makes the distinction between architecture and engineering and has separate courses for the training of students in each, as either is all that the man of average intellect can properly master with credit to himself. So that the mere adoption of a title without the necessary training properly to sustain it should at least be discouraged by all self-respecting architects.

However, we must cease worrying over our troubles and assert ourselves with energy in order to gain what we desire: a better and more extended appreciation of our profession as architects.

Some professions, such as the law, are held in less esteem than that of architecture, and if we would increase respect for our profession we must

*Extracts from an address by George Hancock, President North Dakota Architects' Association.
command it through our work and that will bring us the public recognition we so urgently need.

It is useless for us to look to the law courts for protection, as the lawyer is the only winner where such efforts are made, but as a reason for hope in the improvement of our chosen calling, we have only to look at the host of poorly paid teachers and clergy to learn that our lot is no harder than theirs, in the matter of lack of appreciation of the service they render to the public. It is well to think of others when disposed to complain of our lot.

If we would succeed better than they we must do better and nobler work, with our minds set more on achievement than on temporary financial success.

It is futile to complain that this is a commercial age, with but little public appreciation of art; such whining does no good and only indicates weakness. There is just as much artistic taste and feeling in the world to-day as in the days of Titian and Michael Angelo, and it is for us to satisfy this artistic taste and feeling if we would succeed in gaining for our profession the respect and recognition to which we believe the nobility of architecture is entitled.

During the past ten centuries architecture has come through many changes and developments. The eighth and ninth centuries gave us the unique creations of the Saxons; the tenth and eleventh centuries the solid honest Norman work that has so well stood the test of time, as evidenced at Winchester and Durham.

The twelfth and thirteenth centuries gave us the pure and graceful early French and English Gothic that so clearly expresses the aspirations of the people of those nations in the magnificent creations of Rheims and Amiens, Salisbury and Westminster, the like of which has never been seen before or since that age.

The fourteenth and fifteenth centuries gave us the geometrical and perpendicular styles, often referred to as the climax and full development of Gothic architecture in Europe. Such art and architecture as the people of those times produced should serve as a stimulant to greater efforts of the younger architects of our time. They had no examples to guide them and their work was the result of creative and imaginative concentration and skilful independent effort.

Shall we then, with all these beautiful examples before us and the numerous examples of the Renaissance of the sixteenth century, and the more recent productions of Jones and Wren and the revival of the Romanesque by Richardson and Hunt in this country, fail for the lack of making an effort to merit the recognition we so earnestly crave? No, we must attempt much even if we accomplish little, but as effort is the parent of results, we can expect no recognition by the public unless we command its attention.

By education and experience the architect of to-day should be better qualified to handle successfully building operations of all kinds than men not having such qualifications, but the public cannot appreciate this for the reason that the architects have not done their part in the instruction of the public to the point of appreciation of their service to their clients and to the public in general.

So far, along this line, our efforts have been limited to talking to ourselves through the medium of professional and trade journals, that seldom or never reach the eye of the general public, or prospective client.

Undue modesty on the part of the trained architect is doubtless the cause of this shyness and should be overcome by a much needed change in the method of bringing the client and architect together, on a better and fuller understanding of their relationship to each other, and to protect the public from the trickery of the fakir and charlatan who is ever ready to pluck the fruits of honest effort along all professional lines. The men who have fitted themselves by great expenditure of money and time to serve the public in an honest and skilful manner must have some protection against quacks who have no training in architecture and who do their work by proxy and only see the commission or money side of the profession.

The licensing of all architects is a reasonable solution of the problem that confronts the profession at this time, if we would be prepared to enjoy the goodly heritage which is the promise of the near future in architecture in this country.

As a final word to young men now entering upon their chosen profession I would say: Above all things, be prepared to meet and skilfully handle the problems with which you may be intrusted. And this can only be accomplished by constant study and earnest effort.
Woman's Work in War Times

THE extent to which the increasing employment of women in occupations heretofore filled by men may add new elements of danger against which mechanical provision should be made finds an application within architectural jurisdiction in the action of a coroner's jury in Chicago.

Following an inquest on the death of a man who was killed trying to board a hotel elevator after it had started, the jury has recommended to the city council, through the coroner, that an ordinance be passed compelling the installation of safety devices making it impossible to start the cars until the shaft doors are closed. This is understood to be compulsory in New York, but in Chicago it is optional, and is stated to be in effect in only 5 per cent of the buildings in which passenger elevators are used.

The elevator in which this accident occurred was operated by a girl, and the employment of elevator girls in place of men or boys was made the basis of the recommendation. At the same time attention was called to the fact that there have been nineteen elevator fatalities in Chicago since the beginning of the year, and forty-eight in 1917. The employment of girls is still too limited to account for any considerable proportion of these accidents, and the desirability of safe-guarding elevator operation in every way possible would seem to be a larger question than its relation to the sex of the operator.

While women may lack experience and familiarity with mechanical work, as compared with men, it seems extremely doubtful that their intelligence can prove inferior to that exhibited by many elevator men, or that they can have less apparent concern for the safety of passengers. Starting the elevator before the doors are closed is rather a common practice among the elevator men than an exception.

"Forget How Things Were Done Before We Entered Into This War"

No matter how hard it may be to teach an old dog new tricks, every man in this country, despite his age or the length of time he has been engaged in specific work, will need to learn to speed up his effort and often entirely change his methods if he is to keep pace with the feverish haste of these war times. Many, in their efforts to keep up the pace, will fall by the way, but many more will develop efficiency and capability of speed to an extent never before thought possible.

Numerous methods of the slow but sure sort, previously used and long tried, will have to be cast aside. As we run swiftly toward the goal of our endeavor, we shall read the necessity of adapting ourselves to the quickly moving current of these abnormal times.

In some of the Government departments in Washington are placards reading, "Forget how things were done before we entered into this war." To do this one must find the quickest way, the best method, and must realize how many are the changes in every field of endeavor calling for our readjustment. At no other time in the history of this country has the human mind been so taxed to the limit of its resourcefulness.

Limitations of age for service must now be removed. We retire our army and navy officers at the ages of 63 and 64, respectively, but we are now learning that men of these years with so long a period of service to their credit are among the most resourceful and the most willing to work under the new order of things.

The Government needs the benefit of every matured, experienced mind it can command. When the suggestion was made to forget how things were done before we entered into this war, it was doubtless because it was being learned that while a large resourcefulness was active among the younger men, their new methods often did not stand the test.
of actual application so well as those employed by
men of older and riper experience.

The great necessity for speed in every operation
and the conditions hampering transportation and
labor have compelled substitutes of materials to an
extent never before experienced. Here, if in any
branch of special Government service it not only
becomes necessary, it is imperative to "forget how
things were done before we entered into this war."

The usual routine of construction work, based on
the standardization of materials and methods must
be interrupted, and in order to gain the end desired,
preconceived methods must be cast aside and every
new suggestion that will bring quick and certain
gain must be brought into action.

Just what great good this new order of things will
accomplish can be ascertained only from the column
which we will add up at the end of the war, of the
certain, if few, gains which have accrued.

Memorial Oaks

THE memorial oaks that many cities will erect
in memory of their fallen sons does not present
a new idea in the commemoration of soldiers
who have given up their lives for their country.

The stately avenue at Concord which leads to the
site of "the rude bridge that arched the flood" is
bordered by a row of trees, each one intended as a
memorial to one of Concord's sons who gave up
his life, when as a "minute man" he took part in the
memorable conflict of mid-April, 1775.

This commemorative idea is one to be strongly
commended, and it is hoped that the example of the
cities which have already taken up this method of
memorial will be followed by many others.

It has been pointed out in these columns that
a very dignified opportunity to create memorials
was to be found in the town planning schemes now
being taken up all over this country. Can anyone
imagine a more impressive or lasting memorial than
a boulevard, along which are planted bordering

lines of oaks or elms, each with a bronze tablet bear-
ing the name of a native son, fallen in the defense
of his country.

Would a civil administration dare to treat so
beautiful a memorial with neglect, and have the
censure not alone of the relatives of the men thus
honored, but also of an entire community whose
greatest pride will be the part it shall have played
in this war and the sacrifices it shall have made in
carrying it to a successful conclusion?

Rehabilitating French Agriculture

A MERICA is helping France to rehabilitate her
agriculture, according to an interesting article
in one of the Paris papers, with a view to economiz-
ing in tonnage from this country. France does not
produce to-day anywhere near enough for her army
and civilian population, to say nothing of the food
for the large foreign armies fighting on her terri-
tory. For instance, 330,690,000 bushels of wheat
annually were necessary for the needs of the French
people before the war. At present France produces
scarcely more than 146,000,000 bushels. But by re-
storing to cultivation most of the lands abandoned
owing to labor scarcity, and by intensifying agricul-
tural production, France's acres are brought back
to normal again.

The American Red Cross, the American Com-
mittee for Devastated France, and the Civilian Com-
mittee are all co-operating in this task. During 1917
7500 acres were thus reclaimed, the proceeds of an
acre being 52 bushels of grain. Thirty mechanical
tractors were employed. To replace those so wan-
tonly destroyed by Germany, 7900 trees were
planted.

Not only will ocean tonnage be economized by
this cultivation of abandoned French fields, but
incidentally, comments the writer of the article, the
French farmers are getting acquainted with Ameri-
can agricultural methods, a distinct benefit which
will endure long after the war is over.
The American Architect

Hotel Expansion in Chicago

Chicago hotel operators are not awaiting the end of the war to provide for building expansion, even if the buildings cannot yet be erected. This is evidenced by two recent announcements.

The Congress Hotel Company has purchased for $300,000 the land for an addition to cost $1,500,000. The architects, Marshall & Fox, have prepared preliminary plans, features of which are a banquet hall hall, with seating capacity of 3500, and a roof garden, which it is said will be the finest in the country. The foundations of the addition will be built to carry twenty-one stories, but as long as the present building ordinance limiting the height of Chicago buildings to 200 ft. is in effect, it cannot be carried above sixteen stories. Construction is to be started immediately at the close of the war, or earlier, if possible.

The Moir Hotel Company, proprietors of the Morrison Hotel, have also secured land to provide for extensive additions to the present building, which contains 1000 rooms. This structure was erected about two years ago, in two sections, so as to permit continuous operation of the old hotel on the original ground, until the building which constitutes half of the present structure, on the new ground, should be ready for occupancy.

The contemplated annex to the Blackstone Hotel would doubtless have been under construction early enough to have been completed without interference from war conditions, if the undertaking had not been delayed by the holding up of a permit for building it to a height conforming to the main building, which is twenty-two stories, and the reluctance of the Drake Hotel Company to forego the building it to a height conforming to the main building ordinance limiting the height of Chicago buildings to twenty stories. The real reason is believed to be to facilitate distribution. The war demand for fuel will inevitably outstrip the possible output.

Our Fuel Problem

The United States Fuel Administration has issued a booklet of 64 pages, under date of August 1, 1918, entitled "Fuel Facts," wherein are set forth many brief and pertinent suggestions concerning the present coal situation. "Our Fuel Problem" is thus described:

The solution of the world's war problem must depend upon the solution of America's fuel problem. Fuel, the driving force of the war, must be available in quantities sufficient to insure victory. Without fuel the vast and intricate machinery of war industry must stop; railroad and steamship traffic will be clogged, and the steady progress of our armies will be halted. All of the great war machinery depends on fuel.

Now, in midsummer of the nation's second war year, it is certain that the nation's enormous demands for fuel cannot be fully met. Although seven hundred thousand miners work to the limit, and the transportation agencies of the country strain every nerve to facilitate distribution, the war demand for fuel will inevitably outstrip the possible output.

Every time a fifteen thousand-ton troopship carries American soldiers to the fighting front in France it consumes about three thousand tons of coal or 12,000 barrels of fuel oil. More than four million tons of coal are consumed in a year in transporting the supplies which must go forth in a continuous stream to maintain a single army. Our present shipbuilding program will demand fourteen million tons of coal merely to manufacture and transport the steel to be used in ship construction; and, in building eight million tons of vessels we will use nearly five tons of coal for every ton of shipping that leaves the ways. Every three-inch shell fired from an American gun in the war against autocracy represents eighty pounds of coal used in its manufac-
facture, and these shells are manufactured by the million.

With this enormous war demand added to the normal coal consumption of our railroads, industries and people, the United States is confronted with the necessity of supplying approximately 735,000,000 tons of coal during the coal year from April 1, 1918, to April 1, 1919. Of this amount about 100,000,000 net tons—a maximum year's production—come from the anthracite fields and will go largely to keep the people warm. The remaining 635,000,000 tons must come from the bituminous fields. The production of bituminous coal in 1917 was 554,000,000 tons—in 1916 it was a little more than 500,000,000. The gap between last year's production and this year's demands (at least 80,000,000 tons) must be bridged.

To Build Federal Power Stations

Chairman Sims of the House Interstate and Foreign Commerce Committee has introduced a bill carrying an appropriation of $200,000,000 for constructing and maintaining central power stations by the Government.

Explaining the need of the unusual measure on behalf of the Administration, Mr. Sims said: "We are facing a power shortage which is and for some time past has been acute and is hampering our program of essential war production. So this measure is introduced with the endorsement of the Administration and authorizes the President to erect super-power stations at the coal mines and at other points where he may deem them necessary or to extend financial aid to persons or corporations about to do so, and therefore designed to secure results of tremendous immediate and ultimate value to America. It has been most carefully prepared, has been considered in conferences attended by representatives of the Administration, by representatives of the great power companies and by economists who attack the problems presented from various viewpoints, and is endorsed by all of them.

"At present at least the four following pressing military needs are recognized: (1) Increased production of power available for war industries and shipyards. (2) Economy in the consumption of fuel. (3) Reduction in the railroad freight load, especially in the fuel load. (4) Increased production of metallurgical coke, toluol and ammoniacal liquor, all recovered from coal.

"In addition to war needs there is a widespread demand for increased production and adequate distribution of fuel, light, heat and power for cities, rural communities and industries, many not conveniently located as to existing or possible water power sites, which will continue and inevitably in- crease after the war when the country will return to normal conditions, and can and will compete for the trade of the world.

"The plan adopted to solve any one of these problems should primarily include conservation of transportation and increased production of coal products and power. The authority and application required for all these purposes are provided in the bill introduced."

Important Buildings Taken by Government

As previously announced, the Government has taken over the Grand Central Palace in New York and will convert it to hospital usage.

As a result of the general protest against the use of Battery Park as a site for a group of temporary office buildings, the Government has abandoned that project, but as there is necessity for office space, the Graphic Arts Building on Eighth Avenue, between Thirty-third and Thirty-fourth Streets, has been taken over, and all the present tenants will have to find other locations.

This twenty-two story building was completed less than two years ago. It was planned and constructed to house the printing industry. In addition to having the largest possible number of windows, the floors have been built to withstand the unusual loads and the vibration customary in structures where many large printing presses are in almost constant operation. Naturally the tenants of such a specially designed building have regarded their occupancy as practically permanent. The notice to vacate at a certain date gives time all too short and has created in many cases conditions which will practically cause a cessation of business.

There are few structures where space is available for these evicted tenants, and neither time, materials nor labor are accessible for the erecting of new ones. The magnitude of the Graphic Arts Building may be imagined when the statement is read that the Government expects to house 15,000 employees there when it takes possession.

Another prominent building said to be included in the list of structures now being considered by the Government for use as a reception hospital is the handsome structure built recently for the Yale Club. This is a twenty-two story building, with roof garden, kitchens, gymnasium and swimming pool, located at the northwest corner of Vanderbilt Avenue and Forty-fifth Street. The building possesses every possible requirement for adaptation to
THE AMERICAN ARCHITECT

hospital uses, and Federal officers recently went over the premises thoroughly with the view of taking it if necessary. The club management admits the interest of the Medical Department in this building, but at present is unable to confirm the report that it has formally been commandeered.

The modern office building owned by the United States Rubber Company, at the corner of Broadway and Fifty-seventh Street, also figures in the rumor involving military hospitals, but there has been no confirmation of the fact other than an acknowledgment of the canvass of the Federal officers and their acceptance of the structure if found desirable later.

Construction in Europe After the War

Investigations carried forward among the building trades in New York City show conclusively that projects totaling more than $5,000,000,000 will flow through the United States as a result of rebuilding in Europe after the close of the war. It is also reasonably certain that the greater part of this reconstruction will be carried on by organizations in this country. France is negotiating already for more than $150,000,000 outlay in the reconstruction of her devastated cities. Orders from both France and England are pouring into the National Lumber Manufacturers' Association, which reports that in one English city—Birmingham—10,000 houses of the frame type ought to be replaced at the earliest possible moment, the community needing from 10,000 to 20,000 more houses at once. The proposed rate of construction is to be 5000 houses a year, the entire program calling for nearly 2,000,000,000 feet of American timber, the town council is preparing to handle operations which will involve $6,250,000 annually.

Lumber Production in 1917

A total computed lumber cut for the United States in 1917 of 35,831,239,000 feet is announced by the Forest Service. This figure is based on reports received up to May 15, from 16,408 sawmills out of the 24,815 believed to have operated last year. It is estimated that the actual cut in 1917, on the basis of compiled figures, was approximately 10 per cent less than the production in 1916.

The falling off in lumber production during the last year is attributed principally to largely decreased private building operations, the scarcity of labor in connection with small operations, transportation difficulties, curtailment of demand on the part of wood-using industries, and a more or less general dislocation of lumber distribution through ordinary channels of trade. A considerable portion of the total quantity produced was utilized in meeting the exceptional demands for Government construction and other war emergency projects, including ship material.

The State of Washington was again the largest producer, with a lumber cut of 4,750,000,000 feet; Louisiana was second with 4,210,000,000 feet, and Oregon third with 2,585,000,000 feet, crowding into the fourth position Mississippi with a cut of 2,425,000,000 feet.

Southern yellow pine, with a total of 13,539,464,000 feet, forms 37.7 per cent of the total cut. Douglas fir, its nearest competitor, is credited with 5,385,000,000 feet. White oak and white pine are each credited with 2,250,000,000 feet.

The number of mills in operation reporting in 1917 was smaller than for the two preceding years. A comparison of the computed cut for 1917 with the total cut of the previous year in the larger producing regions shows a decrease of about 10 per cent in the Southern yellow pine group of States, a decrease of 23 per cent in the North Carolina pine group, and a decrease of 11 per cent in the Lake states. On the other hand there was an increase in production of 3 per cent in Oregon and Washington.

The Artistic Value of Darkness

In an article entitled “Adventuring in the Monumental,” printed in The Architect and Engineer of California, B. J. S. Cahill, architect, discussing the decorative value of darkness, stated, in part:

“Darkness and death are interchangeable terms just as light and life are. In a commemorative ceremonial service for those not too intimately concerned the sense of gloom is appropriate, as in a dark church with slow music and black hangings.

“When Queen Victoria died I was in charge of a committee to decorate the old Mechanics Pavilion for a memorial service. Now, the public who attended came to express grief in a relative sense, which is really quite a different thing from the grief of a relative. A sense of solemnity had to be created. Those who remember the enormous spaciousness of the old pavilion, with its whitewashed posts and trusses and its huge high placed windows, will realize the difficulty of making this barn look solemn for a daylight service. But the newspaper reporters of the time agreed unanimously that this service was one of the most impressive things ever done in San Francisco. My part in this I achieved by darkening all the windows with innumerable rolls of black building paper tacked in place with wood
green stuff and allowed no artificial light on the aisles at all, so that these draperies were not made and purple draperies hung with heavy festoons of laths. I covered the open gallery rails with black allowed to be lighted. The effect was most impres­sive and when the 14,000 people who attended came in out of the bright sunlight to this dim cathedral they were silent and hushed in a way that was a revelation.

"Now in these instances darkness had a distinct artistic value to create awe in a large mass of hu­manity, whose sorrow was vicarious and collective rather than personal and intimate.

“When a few grief-stricken relatives or close friends are assembled the function of art is not needed to accentuate grief, but to alleviate it.

“Hence, cheerfulness and light are more suitable for occasions where grief is too real and poignant to be played upon by any art or artifice. Mauso­leums and mortuary buildings generally should not be gloomy. The appropriateness of flowers at a funeral is obvious, and as flowers themselves are born of light, the inference is clear.”

Steel War Requirements

The railroads of the country will consume the largest amounts of steel required by the Govern­ment, the War Industries Board has announced. Shipbuilding requirements come next, with the War Department's program third, and the Navy fourth.

To remedy the shortage of steel which is so acute that actual requirements cannot be met unless dra­stic action is taken by the steel producers and the Government, according to officials, the following measures were determined as urgent:

First, greater conversion of mills to the produc­tion of steel required in the war program. This will necessarily entail the elimination of many kinds of steel now being made for the non-war industries.

Second, increase in the coal supply, particularly bi-product coal, available for mills engaged in war work. Further curtailment of non-war industries, commandeering of hoarded coal, and diversion of bi-product coal from war industries that could use poorer grades may have to be resorted to if this situation is to be met. Shortage of this grade of coal is serious and declared to be the crux of the ad­mittedly alarming steel shortage.

Third, shutting off of further steel shipments to industries other than those engaged in meeting war needs. Steel Administrator Replogle vir­tually has cut off this supply, refusing even a pound of steel for other than war purposes. In ad­dition, where large stocks were obtained prior to the restrictions being placed on the lesser essential in­dustries, the Government may commandeer their stocks.

Fourth, more rigorous conservation in handling of steel in the mills is demanded of the steel in­dustry.

The Building Situation in New York

The New York Times in reviewing the condition in the building trade and the influence of such con­ditions on the country generally finds that there is a general building shortage of about 45 per cent.

This shortage, it is stated, has been produced through the commandeering by the Government of structures in New York, Philadelphia, Boston and other large centers. The shortage in New Yor has been estimated to be about 33 per cent.

Practically all of the buildings commandeered for war uses are those housing heavy machinery in which all structures are not adaptable. The type of buildings that could be used for this machine­work are already in heavy requisition by the Government for storage purposes, the general net result being that the trade looks for at least a partial relinquish­ment of restraint upon building construction within the near future, probably in the middle of winter.

Signs of the approach of a change in this re­spect were noticeable last week when confer­ence were held at the Biltmore regarding the applica­tion of recent rules to building materials and the fact that barges have recently been relinquished for work outside of Government requirements, thus of­fsetting the recent order promulgated shutting off supplies of sand, gravel and crushed stone from railroad cars. In Boston, Philadelphia, Newark and New York, and most of the Sound ports, it is pos­sible to obtain basic concrete ingredients and rough clay products by barge and scow, but until the ve­ recent past there has been such a demand for ha­bor bottoms that the whole building industry was threatened. It is due to a realization of this sit­u­ation and the retarding effect it would have upon the war program that arrangements were made to release more barges for the relief of railroads and to permit necessary building construction to pro­ceed, with moderation.

With practically no space of any kind, whether living, commercial, industrial or manufactur­ing, that recent order promulgated shutting off supplies of sand, gravel and crushed stone from railroad cars. In Boston, Philadelphia, Newark and New York, and most of the Sound ports, it is pos­sible to obtain basic concrete ingredients and rough clay products by barge and scow, but until the ve­ recent past there has been such a demand for ha­bor bottoms that the whole building industry was threatened. It is due to a realization of this sit­u­ation and the retarding effect it would have upon the war program that arrangements were made to release more barges for the relief of railroads and to permit necessary building construction to pro­ceed, with moderation.

With practically no space of any kind, whether living, commercial, industrial or manufactur­ing, that recent order promulgated shutting off supplies of sand, gravel and crushed stone from railroad cars. In Boston, Philadelphia, Newark and New York, and most of the Sound ports, it is pos­sible to obtain basic concrete ingredients and rough clay products by barge and scow, but until the ve­ recent past there has been such a demand for ha­bor bottoms that the whole building industry was threatened. It is due to a realization of this sit­u­ation and the retarding effect it would have upon the war program that arrangements were made to release more barges for the relief of railroads and to permit necessary building construction to pro­ceed, with moderation.

(Continued on page 321)
Suggestion for a War Memorial on Riverside Drive, New York

By DONN BARBER

As there will undoubtedly be a memorial erected on the part of the City of New York to commemorate the men who have served with valor in the world war, it is suggested that this memorial might properly take the form of a stadium to be erected as part of the improvement of Riverside Drive now already initiated by Grant's tomb.

This project could be made to bridge the Drive near the Tomb, and the improvement could be carried to the water's edge, utilizing the upper part of the composition for the more important war monuments, leading down through the stadium and concluding with a water gate. The stadium could be divided into two parts, north and south, to be treated as a memorial Valhalla, one side for the Army and one side for the Navy. In front of the stadium there could be an open court or plaza sufficient to afford maneuvering space for at least a division of troops. This space might also be used for pageants, concerts and open air meetings. Such a plaza would bridge the present tracks of the New York Central Railroad and lead down by easy flights of steps to a landing stage suitably designed as a water gate to provide a dignified place for the reception of distinguished guests of the nation.

In designing this stadium and dividing it into two parts, an opportunity will be afforded to introduce pylons, niches and other suitable features to commemorate the individual acts of heroism of distinguished men in the army and navy who have died in this war. In addition to supplying a memorial which a grateful city will necessarily want to erect, it must be borne in mind that New York, the largest city of the United States, and its principal port of entry, has never had an adequate and dignified place wherein to receive distinguished guests.
arriving on our shores from other countries. Further, since the adoption of a safer and saner celebration of the Fourth of July, our Memorial Day ceremonies and other events participated in largely by foreign-born citizens, there is a pressing need for some place of large seating capacity where these ceremonies may be held in a manner fitting the dignity of the occasion, and not as at present, scattered all over the city in make-shift and poorly constructed, unsightly reviewing stands.

The value of city areas for auditorium purposes has never been sufficiently considered. The war must surely cause New York to awake to its duty in commemorating the soldiers and sailors who have given their lives for the life of their country. It should build a memorial on a scale in keeping with the part it is taking in the war. This monument should be of a character in which architecture, sculpture, landscape gardening and the other arts could combine in a suitable memorial, erected by a patriotic and grateful people.

The accompanying drawings are purely suggestive. Architects will not need to be reminded that the opportunities for memorial tablets, commemorating specific acts of heroism by soldiers and sailors are, in this design, everywhere adaptable, nor that there are many locations where fountains, pools and cascades of running water could be decoratively placed.

A museum could also be planned, which, lighted from the rear wall, would be a fitting depository for trophies, flags and other mementos of the war.

GROUND PLAN
SUGGESTION FOR A WAR MEMORIAL ON RIVERSIDE DRIVE, NEW YORK
By DONN BARBER, ARCHITECT
Plate 81

BIRDS EYE VIEW

SUGGESTION FOR A WAR MEMORIAL ON RIVERSIDE DRIVE, NEW YORK

DONN BARBER, ARCHITECT
FORT SHELBY HOTEL, DETROIT, MICH.
RICHARD E. SCHMIDT, GARDEN & MARTIN, ARCHITECTS

(Floor plans not available)
FORT SHELBY HOTEL, DETROIT, MICH.

RICHARD E. SCHMIDT, GARDEN & MARTIN, ARCHITECTS
FORT SHELBY HOTEL, DETROIT, MICH.
RICHARD E. SCHMIDT, GARDEN & MARTIN, ARCHITECTS
FORT SHELBY HOTEL, DETROIT, MICH.

RICHARD E. SCHMIDT, GARDIN & MARTIN, ARCHITECTS
FORT SHELBY HOTEL, DETROIT, MICH.

RICHARD E. SCHMIDT, GARDEN & MARTIN, ARCHITECTS
Building Situation in New York

(Continued from page 320)

The financial situation considerably. Investigation shows that far-sighted building material men have been in close touch with the situation and the sharp shift in building material prices in anticipation of an early definite movement is considered significant.

General reflection of price changes may be expected in all cities along the Eastern seaboard as the demand for new construction increases, and relinquishment of money for necessary building construction pertaining directly to war work or industries catering directly to it, is of brighter prospect to-day than at any time since the world war began, and will continue to be so, according to the best opinion in the trade, as the certainty of ultimate victory abroad becomes more and more apparent. The casement may be expected only in activities intimately associated with the war-winning program.

Government Storage Warehouses to Cost $18,000,000

The estimated cost for storage warehouses and other construction to facilitate the speedy handling of materials for use of the Army already erected or under construction in the United States is about $18,000,000. When completed they will provide approximately 33,800,000 square feet of warehouse space.

To Acquire Power Plants

Serious interruption of shipbuilding and other war industry by shortage of electric power is shown in reports which members of the House prepared to use in urging immediate action on the Administration Bill introduced by Representative Sims of Tennessee providing for Government acquisition and construction of power plants.

Information in the possession of Representative Sims indicates that additional electric power capacity of about 285,000 kilowatts in four districts east of the Mississippi River must be provided at once. Government plans contemplate unification of all power plants where necessary for war purposes, treating under the authority sought, systems from which could be drawn power for any section where the shortage is particularly serious. The most serious power shortage exists in the Pittsburgh and Norfolk districts, but conditions around Philadelphia, Baltimore, and in Northern and Southern New Jersey are also considered grave.

Housing Projects Conducted by Department of Labor

The Department of Labor announces that it has under construction projects in forty-four industrial centers in the United States.

While every effort possible is being made to aid each community now suffering from a housing shortage, it has been found impossible, with only $100,000,000 appropriated by Congress to carry on this work, to give aid to all the communities entitled to consideration.

Museums of Comparative Architecture

That many very beautiful buildings are being remorselessly destroyed is of course one of the deplorable results of this war. But it is a cause for particular anxiety to know that many of them will pass into complete oblivion through the lack of any record of their existence.

The provision of photographs, measured drawings and replicas could be undertaken with valuable results as a means of preserving all desirable information regarding the buildings in the event of their destruction. If architecture is to be progressively better, it must profit from the result of past performance, and, since all structures are subject to decay, whether it be in the slow process of normal usage, or in the hastened ravage of war, means for their preservation should be considered.

I. T. Frary, in the current architectural press, has suggested that "museums of comparative architecture" be established in widely separated parts of the world, so far, one from the other, as practically to insure that all could not be destroyed simultaneously by any one great calamity.

An effort to provide such institutions would doubtless accomplish not only the immediate object, but would tend to arouse a greater interest among the people in the matter of worthwhile public buildings.

Fuel Supply for Cement Production Curtained

The United States Fuel Administration has issued an order curtailing the supply of fuel for the production of cement twenty-five per cent. Provision is made whereby cement manufacturers may make cement in excess of their seventy-five per cent allotment, if this excess production is required by the necessities of the Government.
Waste

“Extravagance costs blood, the blood of heroes,” says Lloyd-George. War savers are life savers. The sinews of war are gathered largely from thrift. The war perhaps can be won partly by stored-up resources. We must save out of the present products of labor. The British people had to learn, as we must learn, that goods and services must be saved by all. Saving must become a habit. For war is a battle of resources. Germany saves with efficiency because she saves scientifically. She conserves her resources.

To waste in these times is to fight on the side of the Kaiser.

Limitations Upon Storage of Coal by Industrial Plants

The tremendously increasing demand for coal for special war purposes in the eastern part of the country, particularly for the Navy and Transport Service is making it necessary to draw more heavily on the Eastern coal fields than was originally contemplated.

In order to decide how best to secure this coal for these purposes with the least disturbance of the coal supply moving to other industries, a meeting of all state fuel administrators east of the Mississippi and also the states of Minnesota, North Dakota and South Dakota was recently held in Washington.

At this meeting it was decided that to accomplish the desired result it would be necessary to limit the amount of coal storage which industrial plants would be allowed to accumulate and to fix a uniform amount for each state.

United States Fuel Administrator Garfield announced the basic policy of the Fuel Administration as to storage as follows:

“Coal in excess of that required for current operations shall be delivered to plants not on the preference list of the War Industries Board only when it is not in demand for use before April 1, 1919, by consumers on said list, namely, railroads, the Federal Government, states, counties, public utilities, retail dealers, or manufacturing plants on the preference list.

“In carrying out this policy, allowance shall be made for differences in distance from the mines and for differences in transportation conditions which may require more or less storage at the beginning of winter to insure uninterrupted operation until the following spring.”

The Springfield Memorial Building

A feature of the Illinois Centennial this Fall was to have been the laying of the cornerstone of the Centennial Memorial Building at Springfield, the state capital, plans for which are under the direction of Supervising Architect Edgar Martin. A war conditions have prevented starting construction of the building, a substitute ceremony will be held there on Oct. 6, which will at least serve to link this building in association with the celebration of the anniversary which was the inspiration for its projection and to fix its significance and date in the future history of the state.

The architectural interest naturally attaching to a monumental building of this character and association is enhanced by the fact that it is the first notable project undertaken by the state of Illinois with the co-operation of two state boards of advisory character, on both of which the architectural profession in Illinois is strongly represented. These are the Board of Parks and Buildings Advisors, two of the five members of which are architects, George W. Maher and Frank E. Davidson, and the Board of Art Advisors, the architect members of which are Martin Roche and Irving K. Pond. The two boards have adopted the plan of holding joint sessions as being conducive to progress and harmonious understanding.

The present policy of the state government is not only to avail itself of the advisory service of architects in matters relating to their profession, but also to consult with the architectural organizations, the Illinois Chapter, A. I. A., and the Illinois Society of Architects, and obtain from them lists of architects from which the selections may be made for appointment.

To Regulate Steel Used for Building Upkeep

The War Industries Board has issued the regulation desired in certain branches of the trade whereby steel for the upkeep of buildings and various facilities can be furnished under the preference list. The interpretation covers steel for the upkeep of light, heat, sanitation and power facilities. It appears that the War Industries Board has felt that this was included in the last item in the general preference list, “public utilities.” Under the new ruling, the preference list covers steel needed to maintain these facilities in private and public buildings.
The Use of Magnesite in Building Construction

In Three Parts—Part I

The independence of the United States in things material has been a matter of very rapid growth during the past four years. Some of these developments are of great importance to architecture and the building industry. This has been brought about by locating the sources of supply of many raw materials and providing the means of producing them for manufacturing into finished products. In many instances the methods of manufacture have been perfected in foreign countries and here, subject to such changes as the nature of the native material demands. The production of magnesite is one of the most important of these economical developments, not only to the building industry, but also for its important function in the production of steel.

The use of magnesite in the building art is confined to its employment in finishing floors and walls, exterior stucco, insulating pipe covering, fire-retarding paint and other minor purposes. Its other uses are in the form of refractory products for lining blast and open-hearth furnaces used in the production of steel, crucibles and other high temperature resisting articles; as magnesium sulphite for the digestion and whitening of wood pulp for paper; for the manufacture of carbon dioxide; as
an absorbent in the manufacture of dynamite and an adulterant in paint; as a preventative of scale in boilers when sulphurous waters are used; and as refined magnesia salts used for medicinal and toilet purposes. It is apparent from these many and important uses that the development of this industry is an important source of wealth to this country.

Prior to 1914 the sources of supply were found in Austria, Greece, India and Canada, and to a limited extent in the Pacific Coast states. The amount of magnesite produced in and imported into this country, 1912-1916, is given in the table taken from the U. S. Geological Bulletin No. 666-BB, 1917.

MAGNESITE PRODUCED IN AND IMPORTED INTO THE UNITED STATES, 1912-1916, IN TONS OF 2,000 POUNDS

<table>
<thead>
<tr>
<th>Year</th>
<th>Domestic Production, Raw</th>
<th>Imports for “Consumption”</th>
<th>Total Consumption Calculated as Calcined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Raw</td>
<td>Calcined</td>
</tr>
<tr>
<td>1912</td>
<td>10,512</td>
<td>17,905</td>
<td>125,252</td>
</tr>
<tr>
<td>1913</td>
<td>9,632</td>
<td>13,240</td>
<td>157,994</td>
</tr>
<tr>
<td>1914</td>
<td>11,293</td>
<td>13,354</td>
<td>121,817</td>
</tr>
<tr>
<td>1915</td>
<td>30,499</td>
<td>49,765</td>
<td>26,574</td>
</tr>
<tr>
<td>1916</td>
<td>158,759</td>
<td>73,343</td>
<td>9,270</td>
</tr>
</tbody>
</table>

The production of raw magnesite in the United States for the six months ending June 30, 1918, is 93,700 tons, and it is estimated that the production for the entire year will amount to 225,000 tons. The production for 1917 was 316,000 tons. Of this year’s production approximately one-half was produced in California and the balance in Washington. The falling off of production in 1918 can be attributed to the almost entire stoppage of building...
in India. Vertical kilns are used.

construction and the cheaper freight rates from Canadian sources. The Canadian magnesite is sale only for refractory purposes and is imported for use in our Eastern steel mills. The Canadian producer also has the advantage of cheaper labor and a much lower freight rate.

The sources of supply, other than our own, are indicated in the table taken from the Mineral Resources of the United States, calendar year 1914—Part II, page 583, U. S. Geological Survey:

<table>
<thead>
<tr>
<th>Country</th>
<th>1912</th>
<th>1913</th>
<th>1914</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe:</td>
<td>99,104</td>
<td>163,718</td>
<td>134,280</td>
</tr>
<tr>
<td>Austria-Hungary</td>
<td>25</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>589</td>
<td>2,412</td>
<td>2,778</td>
</tr>
<tr>
<td>Germany</td>
<td>114</td>
<td>1,905</td>
<td>2,222</td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>4,640</td>
<td>4,308</td>
<td>4,191</td>
</tr>
<tr>
<td>Norway</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom:</td>
<td>61</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America:</td>
<td>234</td>
<td>350</td>
<td>404</td>
</tr>
<tr>
<td>Canada</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Indies, British</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102,938</td>
<td>172,994</td>
<td>164,747</td>
</tr>
</tbody>
</table>

The mines of California were limited in their output principally to the requirements of the Western states. The freight from the mines to the Eastern markets amounts to about $16 per ton, the raw material then costing the consumer from $18 to $25 per ton. The added expense of calcining and the resulting loss of weight made the minimum cost, even to large users, very much higher than formerly. The magnesite formerly imported from Austria, Greece, Holland or Norway was mined with cheaper labor, and with perhaps better port facilities and an ocean rate of perhaps only $1.50

Fig. 4. In California. Constructing a crushing and calcining plant. At the left is the upper end of an 85-foot long rotary kiln.
or $2.00 per ton. For these reasons the foreign magnesite was used at one time in preference to the better grade of domestic production and prevented the development of the California mines. On the resumption of peaceful commercial relations the production of the native material will, for a time, be protected by the high water rates that will prevail. The increase in American bottoms may enable shipments from California by way of the Panama Canal with reasonable freight charges. If water rates to Greece and India become cheaper, and we have water and rail rates more costly in this country, it may be necessary to provide some means of protection to enable our native producers to supply our own needs. This industry is of such importance and is such a necessity to the steel, copper and building industry that it must be kept as a business asset and an item of economic importance.

Since 1914 we have practically been compelled to rely on our own resources. The result has been that the Western mines and calcining works have been brought to a production ability that can produce at this time more than the demand. We are amply able, when building operations resume their normal condition, to fill all demands for this material that may arise and this is one result of the stopping of importations of this material.

The presence of iron in the Austrian magnesite makes it especially adapted for refractory uses.
While the more pure Greek and California product is more suitable for plastic purposes. We have iron this country which is added to the native material and the result is a refractory material equal to white massive material, rarely showing any crystalline structure, and in its most common massive form it is entirely devoid of cleavage or regular partings. It has a conchoidal fracture, showing a

Fig. 8. In California. Installing an 85-foot oil burning rotary kiln for calcining the ore. Its size is evidenced by comparing with the men.

Fig. 9. In California. Installing a belt conveyor in a pit.

The mineral magnesite is essentially the normal carbonate of magnesium, expressed chemically by the formula MgCO₃. It usually occurs as a dense smooth white opaque surface, resembling broken porcelain. Less pure varieties may be stained and colored or have a coarser granular structure.

According to Dana, magnesite has a specific gravity of 3 to 3.12. Therefore, a cubic foot of solid mineral weighs about 150 pounds. It is rated as 3½ to 4½ in the scale of hardness. The theoretically pure mineral contains 52.4 per cent carbon dioxide (CO₂) and 47.6 per cent of magnesium oxide (MgO). As the mineral occurs in nature it includes various proportions of clay, lime, silica, or serpentine, and to a greater or less extent the oxides of iron.

In 1853 Stanislaus T. Sorel discovered that a mixture of zinc oxide (ZnO) and zinc chloride (ZnCl₂) formed an extremely hard cement to which was given the name of Sorel cement. This mixture is not in general use and the name of Sorel cement is generally understood to mean a cement formed by a mixture of magnesium oxide (MgO) and magnesium chloride (MgCl₂).

Magnesite, after being quarried or mined, is broken into medium-sized lumps and calcined in vertical or rotary kilns to drive off the carbon dioxide. The weight of the carbon dioxide driven

327
off is theoretically equal to one-half the weight of the magnesite introduced, but owing to loss due to over-burning and under-burning, and to a small amount of water usually present, about two and one-third tons of natural magnesite are required to produce one ton of the finished magnesium oxide. The temperature of calcination is of great importance. If the magnesite be heated at a moderate temperature, considerably below that required for fusion, the dissociation of the magnesium carbonate into magnesium oxide and carbon dioxide may be fairly complete. The residual product is not inert to recombination as in the case when it is calcined at a much higher temperature. In practice this more moderate heating for the production of caustic calcined magnesite is so conducted that from 3 to 8 per cent of the carbon dioxide is left combined with the residue. The calcined product then partakes somewhat of the properties of caustic lime, and like lime, the magnesium oxide is susceptible to reaction with water and with carbon dioxide of the air. In this form it readily combines with certain other reagents, such as magnesium chloride, and it is upon this latter fact that its important use as magnesia cement is based.

It has been shown that carefully prepared and purified magnesite (MgCO₃) gives off all its carbon dioxide when treated at 950 deg. F. The conditions are somewhat different in the case of the natural mineral, and it is customary to calcine magnesite intended for cement at a temperature between 1300 and 1700 deg. F. The exact temperature depending largely on the amount and nature of impurities present. It is chiefly the iron oxide that governs the burning, a large iron content requiring a low temperature and a low iron content a high temperature.

When the calcining is carried on at a much higher temperature, 2700 to 3100 deg. F., essentially all shrinkage due to the calcining is then taken and the product resulting is a very dense, fire-resistant and chemically inactive substance. It will not slake upon ordinary exposure as lime and caustic magnesia do, nor will it combine with chemical for use as cement. The value of this refractory material depends not only on its resistance to the corrosive action of heat and metallic slags, but also on the permanence of the forms in which it is placed into the furnace. This permanence is due to a natural bonding which tends to make the loose crushed material cling together under furnace heat and thus makes brick forms moulded from it most durable.
THE AMERICAN ARCHITECT

durable. Bricks and granular furnace bottoms made of magnesite that lacks this bond break, and the magnesite floats off on the fluid molten metal and is lost in the slag. Thus, though magnesite that contains a small percentage of iron may be somewhat less resistant to extreme heat than a purer form, the slight fusibility given to the material by the iron tends to hold it in place. For this reason, in part, a type of magnesite so far found only in Austria-Hungary and Canada has been the principal source of the refractory magnesia used in this country. The fact that this dead-burned magnesia is more important commercially than the caustic calcined magnesia has militated against a standardization of the latter.

The calcined magnesite is finely ground; a fineness such that not more than 10 per cent or less will be retained on a 120-mesh sieve is considered desirable. Grinding is best done with millstones, though tube mills have been used.

Since the importation of magnesium chloride has been stopped, its production in this country has been greatly enlarged. This is mainly a by-product in the manufacture of other substances. At salt works it is made from the bittern water or refuse left in the evaporating pans after the salt has crystallized out. Most of that which is produced in this country is made in Michigan and California. In combination magnesia cement has been analyzed by several chemists and the material appears to be constituted as MgCl₂·5MgO·10H₂O. The amount of H₂O or water of crystallization will vary with the age of the mass and the temperature conditions. In preparing magnesia cement it is customary to combine the materials by first mixing the magnesium oxide and dry aggregate thoroughly and then adding the magnesium chloride in the form of a solution. A solution of almost any strength will produce setting and a slight set may sometimes be obtained with water alone, but a solution having a density of about 20 deg. Baume (Sp. Gr. 1.16) is generally used. Some manufacturers make a semi-fluid mix of the cement and the solution and then add the aggregate. The magnesium oxide and magnesium chloride may be combined in dry form in any proportion desired, the resulting mix requiring only the addition of water and the aggregate. This method has proved to be very unsatisfactory and its use is abandoned. The preference is that the magnesium chloride be used as a liquid. It is sold in the form of a concentrated solution and reduced to the desired density.

The application of this material in the making of floors and as exterior stucco will be described in the following parts.

Federal Employment Service

THE Division of Engineering of the United States Employment Service, recently instituted, gives its July record as follows: 468 applications for help were received from employers, 1314 applications for positions; forwarded 1063 applications and actually placed 483 men in positions. This branch of the Government Employment Service is intended to serve as a clearing house for the employment of Government engineers, although it may extend to private work in the future. It is urged by the division that engineers register, either through the local branch of the United States Employment Service or through the Division of Engineering at Chicago. This latter division is in charge of A. H. Krom, 29 South La Salle Street, Chicago.
Relocate the Factories

THOUGHTFUL men are looking forward to a reorganization of industrial, social and economic conditions in this country and throughout the world when a treaty of peace has been signed that shall bring the war to an end. Vast armies and navies are then to be demobilized and the soldiers and sailors of which they are comprised returned as quickly as possible to peaceful pursuits. The reabsorption into productive industries of four million men or more drilled in the arts of war must in some way be accomplished. At the same time millions of employees in great munition plants and other industries, engaged chiefly in producing the necessities of war, will have to be diverted to the production of the things needed in times of peace. The problem is how this may be done in a way that shall be reasonably satisfactory to the workers of the country, and at the same time shall not lead to an interim of stagnation of production and business. The transition must not be left to chance.

Comprehensive plans of reconstruction should be formulated at once, writes C. C. McChord, member of Interstate Commerce Commission, and of Railroad Wage Commission, in the Engineering News-Record.

Workmen who have had opportunity to enjoy life as the result of adequate pay are not going to consent, if they can avoid it, to any reduction in their wage scale unless there are compensating benefits. It is equally certain that the era of extremely high prices for the necessities of life will not continue during times of peace. The great class of non-producers represented by clerks in offices and stores, salaried men in every calling, employees of public utilities and the like, cannot long continue to pay ever-increasing living costs unless they too receive further increases in rates of pay.

What is needed in this country is a wider diffusion of manufacturing industries and the local supply of the necessities of life. There are many considerations that dictate a relocation of our manufacturing industries. It costs more to do business in a city than in the country. Land values and costs of construction of plants, taxes, etc., constitute charges that must be met from earnings. It also costs more to live in a city than in the country. A lower wage payment in the country than in the city would enable the workman to secure more comforts of life, to clothe his family better, and educate them more adequately. If the factory is located near the raw product there is saving in transportation costs which will be reflected in net earnings.

If wage scales are to be readjusted downward to meet conditions in times of peace, the wider diffusion of factories presents an alluring way out. What the workman desires, and what he has the right to demand, is opportunity to live in comfort. Reduction in the rate of his daily wage means, as he now sees it, lessened opportunity to secure to himself and his family those necessities which go to make comfort in daily life. In almost any country town of 1500 or more population in the Middle West or the South there is opportunity to live better and enjoy more of the real comforts of life, at materially lower wages than would secure even an approach to the same state of livelihood in any congested manufacturing center. In the country there are pure air and sunlight. The surroundings are clean, sanitary and moral. In such an atmosphere a workman can easily rear a family of sturdy boys and girls, and live a life of peace and happiness impossible for him to live in the crowded and unwholesome conditions of congested centers. In the country he is afforded opportunity to buy products of the soil first hand for his table at reasonable prices, and the admirable schools and religious institutions now in existence everywhere insure to his children every chance to lay the foundation of good citizenship.

There is hardly a town of 1000 population or more in the Middle West that from 1875 to 1895 did not endeavor to obtain, and succeed in obtaining, manufacturing industries. Many of these factories proved to be failures. Not all were properly located, but most of them should have survived and would have done so but for influences that made success impossible. Among the chief of these was the fact that the railroads favored certain manufacturing centers in the way of facilities and rates, Preferment to long hauls in large lots, the granting of rebates to large shippers, the levying of excessive rates against certain localities to make up for the meagerness of returns where keener competition forced the rates down, the killing off by the railroads of inland water traffic—all these conditions rendered it impossible for the factory in the small town to compete with that in the larger and more favored city. Hence it came about that the larger part of our manufacturing is done in the cities.

The railroads, therefore, must play an important part in the readjustment that must be made in our industrial and economic conditions. Thoughtful study should be given to the equalization of rates for freight transportation. Transportation by boat on our rivers and coast lines should be encouraged to relieve rail carriers at congested cities and ports. Rates should be made and facilities provided so that each port of the United States shall receive its share of traffic under the most economical transportation conditions.

330
Another Development in Concrete

The Atlas Portland Cement Co., 20 Broad Street, New York, has issued another of its attractive books on one of the newer aspects of concrete usage. It is entitled "Cast Stone," and without doubt its contents will prove something of a revelation to a great many men in the architectural profession and other branches of the building industry as well.

There is no question but that the profession has ignored many of the possibilities of concrete, and among other things it has been blinded to the possible beauties of cast stone. One thing which may have prejudiced the architect against this material is the fact that it appeals to him often as being an imitation. The booklet under discussion deals of cast stone, not as an imitation, but as a synthetic product, and states:

"This is an age of analysis and synthesis. We are constantly analyzing natural substances, breaking them up into their constituent elements, and producing the original substances in the laboratory by a synthetic process—by gathering similar elements and combining them. In this process we may, by changing the proportions or adding new elements, procure in the synthetic product new qualities or augment such qualities as we wish accentuated for specific reasons."

The completeness and harmony of the relationship of this manufactured product to the more natural materials with which it is often used is very adequately and beautifully exemplified in the photographic illustrations found throughout the booklet. A fact, this photographic material, which constitutes the major portion of the book, is really the greatest argument in favor of the product, showing, as it does, by actual reproduction what can be achieved in this medium. There seem to be few purposes architecturally for which this cast stone cannot be used. We are shown examples of monumental, utilitarian and purely ornamental and decorative uses of the material, and in each case it fits well into its surroundings.

As it is pointed out in this monograph, cast stone as in addition to the advantage of being temporarily plastic a color and texture control which are worthy of note. It has also a charm unique to itself, and makes possible an expression which would be difficult to obtain in any other medium.

The exposition of the theme which this company has developed is thoroughly worth-while and should be of very genuine interest to the architect.

Water Flow Meters

In Bulletin No. 46501B, the General Electric Company, Schenectady, N. Y., describes its various types of flow meters for measuring steam, water, air, oil and gas. It is stated that G-E flow meters provide a means for accurately measuring the total flow of these substances through pipes or closed conduits, thus furnishing information of great value in the economical management of any manufacturing industry or central station. The needs of various classes of service are met by these meters. The types are: an indicating, recording meter, a graphic recording meter, an indicating meter for permanent installation and a portable indicating test meter.

The services to which these meters can be put are described in detail in this bulletin, as are the principles of operation of the different types. There is interesting illustration, in sectional and other construction drawings, of the mechanism of this instrument, and there are a great many photographs of the different sorts of installations. Price lists are given of all types and parts in all sizes and capacities. This bulletin and many others dealing with the products of this company will be sent, upon request, to those interested in these subjects.

Protective Lighting

The Edison Lamp Works of the General Electric Company, which has its general office at Harrison, N. J., has issued a bulletin—No. 43412—dealing with the uses of Edison Mazda lamps for protective lighting. The general principles involved in protective lighting, the apparatus which has previously been available, and that which is being developed, and the actual lighting units required for various purposes are all described fully, the whole consti-
tuting a most interesting discussion of a vital topic.

Another current bulletin issued by this organiza-
tion is No. 4341, which takes up the subject of
show-window and show-case lighting with Edison
Mazda lamps. A great many reflectors of different
types have been developed for these purposes, all
of which are illustrated in this bulletin.

Stucco Houses for Industrial
Workers

The Truscon Steel Company, Youngstown, Ohio,
has published a booklet entitled "Permanent Homes
Make Permanent Workers." This discussion first
takes up some of the general problems involved in
present industrial conditions, makes a comparison of
English and American housing developments, and
then elaborates on the use of stucco on Hy-rib
metal lath for housing purposes. Various factors
are quoted as demonstrating the peculiar value of
this sort of construction for housing, including the
fact that, after all, stucco on metal lath costs little
more than any other desirable types of construc-
tion; that it is fire resisting, is readily available,
both as to materials and labor; while the special ad-
vantages of the lath itself are that "the ribs of
Hy-rib keep the lath surface away from the studs,
so that no furring strips are necessary. The ribs
also give exceptional stiffness to this metal lath, so
that the studs can readily be spaced 24 inches and
more."

Detailed information is given about "How to
Build a Hy-Rib Stucco House," followed by con-
struction drawings in section, and a number of
valuable floor plans for small dwellings.

This book is typical of a great mass of exceed-
ingly valuable information on this important sub-
ject, which is constantly being presented to the
architectural and building public. It is to be hoped
that the architect is availing himself of it.

Rigidity of Reinforced Concrete

In the August issue of Concrete in Architec-
ture and Engineering, published by the Portland Cem-
ment Association, offices in all principal cities, further evi-
dence of the extreme rigidity of concrete building
is given. Concrete buildings in territories sub-
ject to earthquakes have been advocated for some time
and many circumstances have pointed to the advis-
bility of their use. Threatened overturning from
undermining, due to flood, is an occurrence mo-
rel rare, and perhaps for that reason more interestin
A photograph is shown in the bulletin of the buil-
ding under discussion, which is a reinforced concre-
te power house, situated on a barge canal in New York
State. The power house rested on a pile foundation
and during the summer of 1916 an unprecedent-
ted flood in an adjacent stream caused undermining
the piles and foundation. The greatest vertical
movement of the building was about 10 ft., with
this took place in ten to fifteen minutes, as estimated
by various observers. An examination of the build-
ing made after the movement had terminated show-
that the power house was in perfect condition and
no cracks were apparent in the concrete. Not
a pane of glass was broken.

The remainder of the bulletin is given over to
consideration of various timely subjects in their
relation to concrete. The subject of industrial hous-
ing and the war is treated in a leading article, fol-
lowed by a discussion of coal storage in concrete
pockets. Photographs are shown of the world's
biggest sheep shed, at Denver, Col., which is be-
of reinforced concrete.
Picturesque San Francisco Apartments
Deadened with

CABOT'S QUILT

Every apartment-house should be sound-proofed. It makes them rent better and they stay rented. Quilt is the one deadener that has the power of breaking up and absorbing the sound-waves. It is ten times more efficient than even the best felts. Quilt is rot-, moth- and vermin-proof and fire-resistant.

Full information sent on request

1133 Broadway, NEW YORK
24 West Kinzie St., CHICAGO
Cabot's Shingle Stains, Old Virginia, White and Tints, Stucco and Brick Stains, Conservo Wood Preservative, Waterproofings, etc.

WINSLOW WINDOW

(AUSTRAL BALANCE)

Solid rolled steel
Welded throughout
Admits more light
Ventilates without drafts
Makes awnings unnecessary

Send for Catalogue

Winslow Bros. Company
Main Office and Works: 4600-4700
W. Harrison Street, Chicago

It Costs No More to Use

WATERLOO REGISTERS

Than Other Kinds

But occupants of homes where these registers are used have the satisfaction of knowing that theirs are the very best.

We manufacture all kinds and sizes of registers, including Duplex Pipeless Registers and Adjustable Ventilators. Also Everlasting Cast Iron Smoke Pipe and Coal Chutes.

Ask for our latest Catalog.

The Waterloo Register Company
WATERLOO, IOWA

"Firmly seated
and there to stay."

Actual Size

222

The capping of No. 222 Molding is firmly secured to the base by a Spring Clip, No. 223, easily applied. These should be used at intervals of about 18 inches.

On your next job refer to your Bulletin 101
and place your order with your jobber.

National Metal Molding Co.
1111 FULTON BUILDING
PITTSBURGH

Atlanta
Chicago
Detroit
Philadelphia
San Francisco

Boston
Dallas
Los Angeles
Portland
Seattle

Buffalo
Denver
New York
Salt Lake City

Havana
Manila

Canadian Distributors—Canadian General Electric Co., Limited

ALABAMA
Sheffield, Ala.—The Chamber of Commerce is contemplating the construction of a building costing approximately $30,000. J. C. Harris, chairman building committee.

CALIFORNIA
Azusa, Cal.—I. Dingle, manager, Owl Fumigating Company, plans to build factory. Cost between $100,000 and $150,000.

Chico, Cal.—Plans have been prepared by Chester Cole, Architect of Chico, for a two-story frame detention home, to be built at Oroville for Butte County, at a cost of $20,000.

Fresno, Cal.—Rosenberg Brothers are contemplating the construction of a power plant at their fruit packing plant on Cherry Avenue, to cost about $10,000.

MARE ISLAND, CAL.—The Government has authorized some extensive new construction work at Mare Island. Plans have been prepared for a structural shop, 300 x 700 feet, and a machine shop, 150 x 215, the two buildings to cost close to a million and a half dollars. Plans have also been finished and bids taken for two frame dormitories. Geo. W. Kelham, Architect, San Francisco.

OAKLAND, CAL.—Messrs. Reed and Corlett, Oakland Architects, are preparing plans for three manual training buildings for the Oakland Board of Education.

SAN DIEGO, CAL.—A. C. Martin, 430 Higgins Building, Los Angeles, has prepared plans for a one-story Class "A" theater building, 60 x 120, to be erected at Eighth Street and Broadway, San Diego.

SAN FRANCISCO, CAL.—J. R. Miller, Lick Building, San Francisco, has completed plans for a one-story brick emergency hospital building to be erected at the new Alameda plant of the Bethlehem Shipbuilding Corporation; also plans for a two-story and basement brick service building to be erected at the Bethlehem Alameda plant, and a one-story frame cafeteria, the two to cost $100,000. The cafeteria will accommodate 1500 men at one time.

SAN FRANCISCO, CAL.—Albert Schroepfer, Nevada Bank Building, San Francisco, has prepared plans for a four-story and basement brick apartment house to be built on Sutter and Jones streets, for Louis Stoff, cost $45,000.

San Francisco, Cal.—George W. McCrea, First Nation Bank Building, Oakland, has prepared plans for extensive alterations to the residence of Carter of W. K. Grace & Company, on Vallejo Street, between Scott and Devisadero, San Francisco. The improvements are expected to cost $20,000.

San Francisco, Cal.—The California Bible College has purchased the southeast corner of Gough and Geary streets, San Francisco, and will convert the building on the site into class-rooms. After the war a $50,000 college will be constructed, according to Dr. D. A. Russell, dean of the institution.

San Francisco, Cal.—Willis Polk, San Francisco, is preparing plans for a million dollar residence for Col. D. C. Jackling at Hillsboro, San Mateo County, Cal.

San Francisco, Cal.—Leo J. Devlin, Pacific Building, San Francisco, has completed plans for a four-story brick warehouse at Kansas and Alameda streets, San Francisco, and will house the factory of the Pacific Cereal Company's new factory, to be erected at Fourth and Lewis streets, San Jose. J. S. Bogart, Mills Building, is the contractor.

Stockton, Cal.—J. M. Kroyer is contemplating the construction of a large tractor factory here, and organization of $5,600,000 corporation is to be formed.

BUILDING NEWS
To be of value this matter must be printed in the number immediately following its receipt, which makes it impossible for us to verify it at all. Our sources of information are believed to be reliable, but we cannot guarantee the correctness of all items. Parties in charge of proposed work are requested to send us information concerning it as early as possible; also corrections of any errors discovered.

WINTERS, CAL.—Henry Sher mund, Mills Building, San Francisco, is completing working drawings for a $30,000 country house and outbuildings at Winters, Yolo County, for J. S. Sparks.

WOODLAND, CAL.—W. H. Weeks, Architect, San Francisco, has completed plans for the remodeling of the Byrns Hotel, at an approximate cost of $35,000.

COLORADO
STERLING, Col.—The Colorado Power Company is reported to be considering the construction of a large steam-driven electric power plant, to cost about $150,000, on a site recently acquired in Sterling.

CONNECTICUT
BRIDGEPORT, Conn.—Plans are being prepared for Locomobile Company of America, Main Street, for two five-story brick factories, concrete foundation to cost approximately $1,000,000.

STAMFORD, Conn.—Yale & Towne Mfg. Company, 548 Pacific Street, is contemplating the construction of six-story, 88 x 200 ft., reinforced concrete factory to cost approximately $200,000. J. A. Horne, general manager.

WATERBURY, Conn.—Waterbury Housing Company plans to build a group of two and one-half-story houses, for workmen on Sylvan Avenue and Cook Street. Cost will not exceed $1,000,000.

DISTRICT OF COLUMBIA
WASHINGTON, D. C.—International Association of Machinists, Ninth Street and Massachusetts Avenue, purchased site on Ninth Street, N. W., and Mt. Vernon Place and plans to build five-story building, costing $125,000. W. H. Johnson, president.

WASHINGTON, D. C.—Plans have been prepared for the construction of an apartment building for John W. Lewis, 2004 Eleventh Street to cost $165,000. Address I. T. Hatton, 506 Fifth Street, N. W.

FLORIDA
JACKSONVILLE, Fla.—S. B. Hubbard, 32 West Bay Street, plans to rebuild. About $75,000.

GEORGIA
ATLANTA, Ga.—The Government contemplates the expenditure of about $5,000,000 for the enlargement of Camp Hancock.

CHAMBLEE, Ga.—Cantonment Division, War Department, Washington, D. C., is contemplating enlarging Camp Gordon, to cost approximately $1,250,000.

CORDELE, Ga.—The Southern Cotton Oil Company will construct a peanut grading and shelling plant to cost approximately $50,000.

ILLINOIS
BENTON, Ill.—Illinois Central Railway Company, 135 East Eleventh Place, Chicago, had plans prepared by F. R. Judd, Architect, building one-story, 30 x 150 ft. freight house. About $30,000. A. D. Baldwin, chief engineer.

DECATURE, Ill.—American Hominy Company, 719 North Union Street, plans to build six-story mill.

INDIANA
BOONVILLE, Ind.—The Graham Valve Company, Boonville, Ind., has taken bids for the erection of a one-story factory, 50 x 235 ft. A two-story office building will also be constructed.

FORT WAYNE, Ind.—The Noble Motor Truck Corporation, Fort Wayne, Ind., has had plans prepared for a new factory, 100 x 192 ft., to be erected immediately.

INDIANAPOLIS, Ind.—A one-story boiler plant, 40 x 60 ft., to cost about $14,000 will be erected by the Bemis Indianapolis Bag Company, Barth Avenue, Indianapolis.
Industries builds in concrete and stucco

Throughout America industry is speeding up to provide the sinews of war. It is demanding permanent, fireproof, repairless reinforced concrete for its buildings because, in the long run, that is the cheapest and most efficient construction.

Industrial warehouses and factories of reinforced concrete are quickly built, carry heavy loads, are sanitary and take low insurance rates.

Industrial houses of concrete or stucco are cheap and quick to build, semi or completely fireproof, permanent, clean, healthful and give the comfort and protection that workmen need. They can be made very beautiful architecturally.

Concrete plant roadways speed up transportation and reduce costs. They are quickly and easily built and last for years with practically no repairs. Cheaper to maintain than any other permanent road.

We will gladly co-operate with architects in the planning of concrete or stucco constructions of any kind. The three books—"Concrete in Factory Construction," "Industrial Houses of Concrete and Stucco" and "Concrete Plant Roadways"—should be in every architect's personal library. Use the coupon below.

The Atlas Portland Cement Co.
Member of the Portland Cement Association
New York Chicago Philadelphia Boston St. Louis Minneapolis Des Moines Dayton Savannah

The Atlas Portland Cement Co., 30 Broad Street, New York, or Corn Exchange Bank Building, Chicago
Please send me your illustrated books, "Reinforced Concrete in Factory Construction," "Industrial Houses of Concrete and Stucco," "Industrial Plant Roadways." (Check any or all the booklets—whichever you wish.) Write name and address plainly below.
The Student's Edition of the Georgian Period Is of Great Benefit to Architectural Draftsmen and Students

From this Portfolio, the Student can acquire a keen insight into the principles and details of the Georgian Architecture of the United States.

There are few matters of greater importance to the Architectural Designer in this country, than a thorough acquaintance with the Colonial.

There are no other sources of information regarding Colonial Architecture comparable in value to our monumental work, The Georgian Period, edited by Wm. Rotch Ware.

From the great mass of material in this parent work, there have been taken, to form the Student's Edition of the Georgian Period—

One hundred (100) plates of illustrations, size of page 10" x 14½". These are perspectives, elevations, details, etc., reproducing many of the best examples in the larger work.

The drawings are measured with the greatest care and, to the Student as well as the practising Architect, are illuminating and educational to a very high degree.

Twenty-four (24) pages of illustrated text, of high value, are also included in the Student's Edition.

Price of Portfolio (transportation charges prepaid), $15

(Our Special Payment plan makes it easy for the draftsman or beginner to acquire this invaluable work. Write for particulars.)

U. P. C. BOOK COMPANY, Inc.
Successor to The American Architect Book Dept.
241-249 West 39th Street
New York
The Reliable Hose for Better Service

There's nothing which is of more vital importance in a community's equipment than good Fire Hose.

Forty years of continuous satisfactory service has won for Eureka Paragon Red Cross three reliable brands of Fire Hose, a reputation of absolute reliability.

Through the special construction of the inner tube and the carefully woven jackets acting in conformity to each other, they withstand high pressure and remain uniform under temperature and weather changes.

Their reliability is backed by the United States Rubber Company, the world's largest rubber manufacturer.

United States Rubber Company
Mechanical Goods Division
Eureka Fire Hose Department
P. O. Box 1330
NEW YORK

Every consideration, from comfort to coal conservation, demands the specification of dependably operative venting valves; because no steam heating system can be fully efficient without them.

HOFFMAN VENTING VALVES
For Every Service
are dependably operative. Architects who specify them are providing both for comfort and for economy of fuel.

HOFFMAN SPECIALTY CO.
128 North Wells Street, Chicago

NEW YORK
512 Fifth Avenue

LOS ANGELES
215 West 7th Street
KOKOMO, IND.—St. Louis & Western Railroad, Franklin, Ind., having plans prepared for one- and two-story, 32 x 200 ft. freight depot. About $80,000.

NEW CASTLE, Ind.—Asylum to cost $63,000, one story, has been designed by Architect Herbert Politz, 1406 Lempke Annex, Indianapolis, Ind. Owner Indiana Epileptic Village, Dr. W. C. Van Nuyse, superintendent, New Castle.

IOWA

ARCADIA, IOWA.—Brick church is to be built at a cost of $60,000.

BELMONT, IOWA.—A new corporation, to be known as the Iowa Valley Sugar Company, contemplates the construction of a sugar plant here to cost approximately $1,100,000.

DES MOINES, I.A.—The Woman's Missionary Society of this city is contemplating the construction of a deaconess home to cost approximately $100,000.

MERIDEN, IOWA.—Bank to cost $12,000, one story and basement, 25 x 52, was designed by Lytle Company, Masonic Building, Sioux City, Iowa. Owner Meriden State Bank, care of Robert Gracie, Cherokee.

KANSAS

INDEPENDENCE, KAN.—Bank and office building to cost $150,000, six stories and basement, 70 x 140. Architects Wessy & Alford, Chicago, Ill. Owner Commercial National Bank, Geo. T. Guernary, president, Independence. Drawing plans; bids will not be taken until after war.

PRATT, KAN.—Plans have been prepared for the construction of a school building. Estimated cost $110,000. W. E. Hulse & Company, Hutchinson, Kan., Architects.

KENTUCKY

LOUISVILLE, KY.—Plans have been prepared for the construction of a warehouse, copper shop and dry cleaning room, brick mill construction. Estimated cost, $75,000. Brinton B. Davis, Starks Building, Architect.

LOUISIANA

NEW ORLEANS, LA.—Central Baptist congregation plans to build addition. About $50,000. Address W. A. Jordan, 4138 Cleveland Street.

MARYLAND

ANNAPOLIS, MD.—Bureau Yards & Docks, Navy Department, Washington, D. C., is contemplating the construction of an addition to Arsenal Quarters, Spec. 3340, to cost approximately $60,000.

MASSACHUSETTS

SHERBORN, MASS.—Plans, it is reported, have been prepared for the construction of a large power plant, to cost about $70,000, at the Sherburne Reformatory for Women. Mrs. Jessie D. Hodder is superintendent.

MICHIGAN

GRAND RAPIDS, MICH.—A picric acid plant will be established by the Government in Grand Rapids at a cost of $6,000,000.

HIGHLAND PARK, MICH.—Architects Van Leyen & Schilling, 1115 Union Trust Building, Detroit, Mich., completed plans for remodeling residence into library. Owner Village of Highland Park, Delmer C. Gowing, deputy clerk. Two stories, $10,000.

MINNESOTA

KENNEDY, MINN.—Munition plant is to be built under government supervision for Studebaker Corporation 2035 S Michigan Avenue, Chicago. $1,000,000.

MINNEAPOLIS, MINN.—Thos. Wirth, superintendent of parks, plans $10,000 bath house.

ST. PAUL, MINN.—Plans will be prepared for a big gymnasium costing $25,000 at the aviation mechanical school in St. Paul.

MISSOURI

MEXICO, Mo.—Hospital: $65,000. Three- and four-story, 40 x 120, Architect Beek & Elliott, Morris Building. Owner Audrain County Hospital, J. M. Dry, chairman, Vandalia, Mo. Architect will take bids about Sept. 15; drawing plans.

ST. LOUIS, MO.—An effort is being made by E. Gengenbach, Industrial Commissioner for the Chamber of Commerce, St. Louis, to get the American Locomotive Company, Alexander Fletcher, president, of New York, to erect their proposed $13,000,000 factory in that city.

ST. LOUIS, Mo.—The American Car & Foundry Company, St. Louis, Mo., will build a two-story machine and pattern shop to cost about $250,000. Brussel & Virtue, Wright Building, are the architects and engineers.

MONTANA

BUTTE, MONT.—Y. M. C. A. plans to build new building. About $190,000. Address E. L. Mogge.

NEBRASKA

ADAMS, NEB.—Final plans are completed for building plant of Owner, First National Bank. Architects, Tyler & Brandt, 518 Richards Building, Lincoln. One-story, 27 x 60. $14,000.

LINCOLN, NEB.—A building will go up at Elevation and O streets, Lincoln, to cost $250,000. Six stories 75 x 142 ft.

NEW JERSEY

NEWARK, N. J.—A machine shop, forge shop, electrical and other departments will be installed in connection with the new vocational school to be built by the Board of Education in Newark. The proposed building will be 250 x 250 ft. and will cost about $500,000.

NEW MEXICO

ROSSELW, N. M.—The Southern Pacific Company contemplates the erection of new shops in Roswell, to cost between $75,000 and $100,000. W. Hood is chief engineer.

NEW YORK

BROOKLYN, N. Y.—Church costing $65,000, five stories, has been planned by Architects Helmle & Betz, 190 Montague Street. Owner Baptist Church of the Redeemer, East Eighteenth Street & Cortelyou Road, H. F. Perry, 2804 Newkirk Avenue.

BROOKLYN, N. Y.—Annie Erfarkin, 203 Sand Street has retained Architect A. Brook, 213 Montague Street, to design a garage costing $35,000, one story, 30 x 50.

BROOKLYN, N. Y.—Architect Chas. F. Cannella, 115 Herkimer Street, has plans drawn for a garage costing $200, one story, 100 x 100. Owner Kalmen Res 77 Gerry Street.
DETACHED DWELLINGS
Country and Suburban
PART II

We call attention to this excellent collection of illustrations, embodying some of the best modern architectural studies obtainable, feeling confident that it will meet the requirements of architects and builders who specialize in this branch of work.

The volume "Detached Dwellings" contains 200 illustrations of Country and Suburban Houses and surroundings, accompanied by detail drawings of floor plans, etc. In addition, we present in the book the following articles:

"The House and Its Environment."
"The Art and Practice of Consistent Forms of Decorative Treatment."
"The English Derived Treatment of the Small American Dwelling."
"The Architect and His Client."

Interiors add to the value of the "Detached Dwellings" volume, and we earnestly recommend it to those interested as a well-rounded, comprehensive exhibit of the work of men who do things well. "Detached Dwellings" will be sent, carriage prepaid, upon receipt of $5.00, subject to return if desired, after five days' inspection. 140 pages. Size, 9 inches x 12 inches. Cloth Binding.

U. P. C. Book Company, Inc.
Successor to
American Architect Book Dept.

243-249 West 39th Street
New York

VENUS PENCILS

For Solid Value!

VENUS Pencils represent the maximum of efficiency to the user.

They are matchless for smoothness, fine workmanship, and non-smudguing, non-crumbling qualities.

17 black degrees
with or without eraser tips
6B softest to 9H hardest
and hard and medium copying —all perfect!

FREE! (Except packing and postage)

SEND 6c. in stamps to cover actual cost of packing and postage and we’ll send Five solid length VENUS Pencils and VENUS ERASER for trial.

American Lead Pencil Co.
228 Fifth Avenue, NEW YORK
Brooklyn, N. Y.—Levy Bros. Realty Company, 169 Main Street, having plans prepared by T. W. Lamb, Architect, 644 Eighth Avenue, New York City, for three-story, 117 x 180 ft. brick theater on Lincoln Place and Bedford Avenue, $40,000.

Brooklyn, N. Y.—C. B. J. Snyder, Architect, New York Board of Education, Fifty-ninth Street and Park Avenue, has plans for a $450,000 school, three stories, brick, 143 x 145 ft. at Neptune Avenue and West Seventeenth Street, Brooklyn.

Brooklyn, N. Y.—A five-story brick school, 125 x 197 ft., will be erected at N. Fifth Street and Driggs Avenue, Brooklyn, at a cost of $600,000. Plans are being prepared by C. B. J. Snyder, Fifty-ninth Street and Park Avenue, New York, Board of Education Building.

Brooklyn, N. Y.—Columbia Machine Works plans a one-story brick factory, 80 x 161 ft., on Euclid and Atlantic avenues, to cost $50,000.

Brooklyn, N. Y.—Baptist Church of the Redeemer will erect a five-story brick building at Ocean Avenue and Cortelyou Road, to cost $65,000.

Brooklyn, N. Y.—James Bora proposes the construction of two four-story brick stores and seven-family structures, one 29 x 50 ft. and the other 20 x 89 ft., to cost $45,000, at Ovington and Fourteenth avenues.

Brooklyn, N. Y.—Standard Oil Company has plans for a one-story, 109 x 114 ft. building, to cost $25,000, at Second Street and Gowanus Canal.

New York City, N. Y.—The Cantonton Division, War Department, is planning to build an extension to the Greenbush Armory, to cost about $300,000.

New York City, N. Y.—The Jewish Welfare Board will build a $12,000 soldiers and sailors welfare building in Seward Park, Canal and Essex streets, N. Y., 60 x 90 ft., to be used as the Jewish Hospital.

Fort Jervis, N. Y.—Board of Education having plans prepared by W. T. Towner, Architect, 200 Morning-side Avenue, New York, for a one-story brick and limestone school, costing $80,000. J. Gillander, chairman.

Rochester, N. Y.—Church and parish house to cost $75,000 has been designed. One story, 40 x 80. Architects Foster & Gade, 132 Sibley Block. Owner St. John's Mission, Dr. John K. Burleson, care of St. Paul's Episcopal Church, East Avenue corner Vick Park.

Ohio

Alliance, Ohio.—Loyal Order of Moose soon lets contract building two-story, 50 x 70 ft., brick and steel building, for a parlor club on South Main Street. About $50,000.

Barberton, Ohio.—Peoples' Savings & Banking Company having plans prepared by Harper & Bliss, Architects, Nantucket Building, Akron, for two-story, 40 x 100 ft. bank, costing $30,000.

Buckeye, Ohio.—Board of Education, Scott Township, R. F. D., Caledonia, plans to build two-story, reinforced concrete, brick and steel school, costing $50,000. W. Unger, F. O. Block, Architect.

Cincinnati, Ohio.—The John H. McGowan Company will erect an addition at 84 Central Avenue to cost $40,000.

Cincinnati, Ohio.—The Herschade Hall Clock Company will make improvements at McMillan and Essex streets to cost $25,000.

Cincinnati, Ohio.—The P. W. Drackett Sons Company plans improvements on Spring Grove Avenue near Chickering Street, at a cost of $15,000.

Cleveland, Ohio.—Emile M. Uhrich, 1900 Euclid Avenue, Cleveland, has designed a church, 100 x 125 ft. for Rev. J. F. Farrelly of the St. Elizabeth Catholic Church, $170,000.

Cleveland, Ohio.—Preliminary plans are completed for a criminal building costing $1,250,000. Owner, Cuyahoga County. Architect, William S. Lougee, 506 Marshall Building.

Cleveland, Ohio.—Water works plant to cost $750,000 is contemplated. Owner, City of Lakewood.

Cleveland, Ohio.—Architect preparing sketches for an $800,000 club house. Location, mouth of Rocky River and West Seventeenth Street in Twenty-third Street. Owner, Aluminum Castings Company, E. L. Alanye, president and manager, J. H. Williams, consulting engineer, 6210 Carnegie Avenue. Plans now ready for one-story, 150 x 70 ft.

Cleveland, Ohio.—Cleveland School of Art, Magnolia Drive and Juniper Road, will erect a 60 x 75 ft. brick and steel school at a cost of $60,000. Hubbell Bennes, 4500 Euclid Avenue, Architect.

Cleveland, Ohio.—U. S. Tool Company, 3160 West 106th Street, plans to build two-story factory. $50,000.

Cleveland, Ohio.—Western Machine Products Company plans to build two-story factory, 90 x 150 ft., x 55 ft. brick, steel and reinforced concrete factory, $30,000.

Lakewood, Ohio.—St. John's Episcopal congregation, plans improvements on Harvard Avenue and East 10th Street, plans to erect a new church, one and a half-story, brick and stone church on Clifton Boulevard, costing $100,000.

Lakewood, Ohio.—Mathews Company, Rocky River, plans improvements at East Thirty-fifth Street and Vine Street to cost $60,000.

Maumee, Ohio.—Village having plans prepared by Bates & Gamble, Architects, 601 E. Close Building Toledo, for two-story, 60 x 180 ft. brick and stone high school, concrete foundation. Costing $100,000.

Portsmouth, Ohio.—Hospital is proposed to cost $100,000. Three stories and basement. Architect Schmitz, Garden & Martin, 104 S. Michigan Avenue, Chicago. Owner Dr. A. H. Schirman, Portsmouth.

Rocky River, Ohio.—Cleveland Yacht Club, 64 Rockefeller Building, Cleveland, having plans prepared for two-story, 75 x 90 ft. club house. About $50,000 to $75,000.

Sandsbury, Ohio.—Erection of a general car shop here has been decided upon by the Baltimore & Ohio and New York Central railroads. An expenditure of $168,000 for the purpose has been made by the United States railroad administration.

Toledo, Ohio.—Fifty additional acres have been acquired by the Air Nitrate Corporation for its Toledo plant.

Toledo, Ohio.—Architects Mills, Rhines, Ballman & Nordhoff, Ohio Building, will draw plans for the $200,000 auto training school on Toledo University grounds.

Warren, Ohio.—Eric Railroad, Sweetland Building, Cleveland, proposes building reinforced concrete elevator building, freight house, R. S. Parsons, 50 Church Street New York City, chief engineer. $60,000.

Wolloughby, Ohio.—J. H. R. Products Company plans to rebuild one-story, 90 x 190 ft. reinforced concrete, brick and steel factory. $30,000.

Pennsylvania

Chester, Pa.—Bissell & Sinkler, Philadelphia, Architects have plans in progress for workmen's houses to go up for the Sun Shipbuilding Company in Chester Two stories, brick.

Latrobe, Pa.—Latrobe Hospital Association plans to build four-story, 21 x 65 ft., reinforced concrete and steel.

THE AMERICAN ARCHITECT Vol. CXIV, No. 222
For elevators, dredges, lumbering, mining, oil-well drilling, suspension bridges, stump-pulling, cranes, derricks, ships' rigging and every other form of wire rope use.

Ask for illustrated catalogue

American Steel & Wire Company
Chicago New York Cleveland Pittsburgh Worcester Denver
Export Representatives: U. S. Steel Products Co., New York
Pacific Coast Representatives: U. S. Steel Products Co.
San Francisco Los Angeles Portland Seattle

POMEROY FIRE RETARDANT WINDOWS
Not Made to Meet a Price, But To Set a Standard of Service
Send for our literature on Windows and Partitions

S. H. POMEROY COMPANY, Incorporated
30 East 42nd St. NEW YORK

APOLLO-KEYSTONE Copper Steel Galvanized Sheets
Highest in quality and resistance to rust. Unequaled for Building Construction, Roofing, Siding, Spouting, and all forms of exposed sheet metal work.
We manufacture a complete line of Sheet and Tin Mill Products of every description, including Blanks and Galvanized sheets, Corrugated and Formed Sheets, Roofing Tin Plates, Briquets Tin Plates, etc. Write for full information.

AMERICAN SHEET AND TIN PLATE COMPANY, Pittsburgh, Pa.

SIGNET FLOOR DRAIN
Even though all the water in the trap should dry out, removing the water seal, the trap valve will still positively prevent the return of sewage or gas or germs. Write us for the circular.

CRAMPTON-FARLEY BRASS CO.
KANSAS CITY, MO.

Convenient Outlets
It is quite a bit of trouble screwing a plug in and out every time the user wishes to connect a percolator, iron, etc.
Paiste "Push-Plug" Receptacles are a great convenience. Have plenty of them installed in the new house—they are so handy and save the sockets.
The No. 1482 is most convenient. With this "Duplex Receptacle" the percolator and toaster, the electric iron and fan, or a lamp and a fan may be connected at the same time.
Single receptacles already installed may be replaced by this "Duplex" type, affording the user more service from one outlet.

Send for samples.

THE HART & HEGEMAN MFG. CO.
HARTFORD, CONN.

Specifying a G & G Telescopic Hoist solves the ash removal problem completely. Any one of the 5 models puts your ash removal on an economical and thoroughly efficient basis, as hundreds of prominent architects throughout the country have found out.

Confer with us about your requirements and our engineering department will help you to select the most suitable model.
Write for new folders, "Schools and Auditoriums" and "Railroad Buildings."

GILLIS & GEOGHEGAN
Established 1866
545 West Broadway
New York
brick, reinforced concrete flooring and concrete foundation hospital. About $60,000.

READING, Pa.—Architect Wm. A. Fink, 426 Franklin Street, has designed a public garage to cost $25,000. Two story, 24 x 134. Owner C. H. Contos, 844 Penn Street.

SOUTH DAKOTA

TENNESSEE

MEMPHIS.—General hospital has been designed by Architects S. Hannaford & Son, sixth floor, Hubert Block, Cincinnati, Ohio, to cost $400,000.

TEXAS

ATLANTA, TEX.—Atlanta Light & Ice Company plans to rebuild plant recently destroyed by fire with loss of $70,000.

DALLAS, TEX.—Trinity Products Company, Hutchins Road, plans to rebuild factory recently destroyed by fire with loss of $100,000.

HOUSTON, TEX.—The machine shop of the Lucey Mfg. Company, Houston, Tex., which was recently destroyed by fire, will be rebuilt at a cost of about $100,000. It manufactures oil well equipment and supplies.

HOUSTON, TEX.—Lucey Manufacturing Corporation, 303-308 Texas Company Building, plans to rebuild machine shop at 1418 Car Street. Loss $150,000.

SAN ANTONIO, TEX.—G. B. Ellgeston and H. H. Todd, 217 South Grand Street, Galvesville, plan to build oil refinery. About $500,000.

VIRGINIA

HOPewELL, VA.—The Dupont Explosive Interests are preparing for a further expenditure of $3,000,000 on the construction of a new village in Hopewell, to contain 700 houses, community club building, church, etc.

LEE HALL, VA.—Orders have been issued by the War Department for additional construction at Camp Abrahm Eustis, Lee Hall, Va., to expedite training men for heavy artillery. An expenditure of $1,540,000 will be made and will cover schools, garages, etc.etc.

RICHMOND, VA.—First Baptist congregation plans to build in West End. About $1,000,000. Address W. S. Forbes.

WASHINGTON

SEATTLE, WA.—Boeing Airplane Company, 300 West Front Street, plans to build one and one-half story, 200 x 200 ft., assembling plant to cost $50,000. Bebb & Guild, Securities Building, Architects.

WEST VIRGINIA

HUNTINGTON, W. VA.—Chesapeake & Ohio Railroad, Ninth and Main streets, Richmond, Va., plans to build new wing, brick. About $50,000. E. W. Groce, Richmond, engineer.

WISCONSIN

CRYSTAL FALLS, Wis.—Derrick Hubert, Meminee, Architect, has prepared plans for a three-story brick hotel to cost $40,000.

KEWANEE, Wis.—Kewanee Public Hospital Asso-
THIS notable work, with its preface by Ralph Adams Cram, was prepared through the collaboration of some of the most eminent ecclesiastical architects of America, and is undoubtedly the most complete exposition of the subject of Church Design and Equipment ever published in this country.

These volumes contain nearly 500 full-page and text illustrations of recently constructed American Churches, comprising reproductions of Exteriors and Interiors, Floor Plans, illustrations of Pulpits and Lecterns, Altars, Reredos, Fonts, Rails, Chairs and Other Church Furniture, Accessories and Utensils, Choir Stalls, Organ Consoles and Cases, Stained and Leaded Glass, etc.

There is also a series of intensely interesting and authoritative articles, by leading specialists, on designing, planning, heating, ventilating, lighting and general equipment of churches.

Beautifully bound in purple silk with handsome cover design and lettering in gold. Printed on heavy coated paper throughout, with India tinted paper used for plate illustrations.

Price per set of two volumes $15.00
Single volume $7.50

U. P. C. Book Company, Inc.
Successors to the The American Architect Book Dept.
241-249 West 39th Street New York
Professional Consideration

"No better proof of the true function of advertising in the business world can be had than the ever-insistent demand that advertising writers shall have had actual selling experience—or at least shall have the experience and the knowledge which are essential in a successful salesman. Chief among the qualifications necessary in the good advertisement writer is a knowledge of the field in which his product is to find its market. Another essential is an understanding of and a sympathy with the methods and standards of the men who will buy or influence the buying. And nothing would be more inspiring to an advertising man than to know that the men he addressed appreciated his efforts to be helpful to them, by placing before them information which is useful to them. An advertising man deserves from architects the consideration due one professional man from another.
MOODERN SCHOOL HOUSES

Part II

This volume gives the latest phases of School House Design, Construction and Equipment in the United States; 170 pages of Plates; 80 pages of Illustrated Text; Price (postpaid), $7.50.

U. P. C. Book Company, Inc., Successor to The American Architect Book Department
241-249 W. 39th Street, New York

BEAUX-ARTS INSTITUTE OF DESIGN
126 East 75th Street New York City
LLOYD WARREN, Director
— FOUR FREE COURSES —
Architectural Design
Sculpture
Interior Decoration
Modeling of Ornament
Industrial Art Design
Composition in Murial Painting

These courses, rendered in co-operation with the Society of Beaux-Arts Architects, the Art-Alliance of America, the National Sculpture Society and the Society of Mural Painters, respectively, are modeled on the principles of teaching of the Ecole des Beaux Arts, Paris, and are intended for the instruction of students of Architecture, Interior Decoration, Sculpture and Painting, and of apprentices and workers in the artistic trades allied to Architecture. Any one of the courses may be taken during the year. The courses may be followed outside of New York City under the direction of the Institute. For the courses in Sculpture and Ornament Modeling instruction is given in the studios at the Building of the Institute. Circular of information concerning any of the courses will be mailed to those applying for them.

EDWARDS ROLLING DOORS

LARGE AND SMALL
SINGLE AND IN GROUPS
BLACK AND GALVANIZED
CORRUGATED AND INTERLOCKING
ALL GRADES AND ANY KIND OF GEAR
Send Specifications for Estimates.
THE EDWARDS MFG. CO.
LESTER G. WILSON, Consulting Engineer
310-349 Egleston Avenue
Cincinnati, Ohio

MAURER — STRENGTH OF MATERIALS

By Edward Rose Maurer, B.C.E., Professor of Mechanics, University of Wisconsin. A work of great value to architects, builders and designers. 156 pages, 39 illustrations. Cloth binding. Price, $1.00.

241-249 W 39th Street New York
ARCHITECTS' OFFICE EQUIPMENT

PENCILS: American Lead Pencil Co., 220 Fifth Ave., New York City.

CARBON PAPER: Dixon Crucible Co., 230 Broadway, New York City.

CASEMENT WINDOWS

METAL: Pomeroy Co., Inc., S. H., 30 E. 42d St., N. Y.

CEMENT AND PLASTER

SPRINGSTEEL: Truscon Steel Co., Dept. 08, Youngstown, Ohio. Representatives in principal cities.

DOORS AND TRIM

ELEVATORS AND HOISTS Continued

ELEVATORS (Hand Power): Sedgwick Machine Works, 150 W. 15th St., N. Y.

HOISTS (A): Gillis & Geigleman, 545 W. Broadway, N. Y. C. "The O. & O. Teleoptic Hoist"; Model A, hand power cable to sidewalk; Model B, collar to wagon; Model C, like A, but electric power.

Oris Elevator Co., 11th Ave. and 26th St., N. Y. C. Automatically reel and unhook hoists, blast furnace and ship hoists.

FIREPROOFING MATERIALS

Johns-Manville, H. W., Co., N. Y. C.

METAL LATH:

Truscon Steel Co., Dept. 08, Youngstown, Ohio. Representatives in principal cities. "Hy Rib," "Riff" leaf; "Diamond Moss" leaf.

FIRE PROTECTION

FLOORS

COMPOSITION:

FOUNDATION.

PILES:

Raymond Concrete Pile Co., 140 Cedar St., N. Y. C. "Raymond" concrete piles are made by driving a reinforced steel shell which is left permanently in the ground. This shell is then filled with concrete.

FURNITURE AND DECORATIONS

CHURCH:

Kundzi, The, Theodore, Co., Cleveland, O., Church and auditorium seating.

DRAPERIES, UPHOLSTERIES, WALL COVERINGS:

METAL:

Canton Art Metal Co., Canton, Ohio.

ALPHABETICAL INDEX OF ADVERTISERS ON PAGE 34
HARDWARE

- **BOLTS:** Corbin, P. & P., New Britain, Conn.
- **BUILDERS' HARDWARE:** Corbin, P. & P., New Britain, Conn.; Stanley Works, The, New Britain, Conn.
- **BUTTS AND HINGES:** Corbin, P. & P., New Britain, Conn.; Stimley Works, The, New Britain, Conn.
- **DOOR CHECKS:** Corbin, P. & P., New Britain, Conn.
- **BUILDERS' HARDWARE:** Corbin, P. & P., New Britain, Conn.; Stanley Works, The, New Britain, Conn.
- **BUTTS AND HINGES:** Corbin, P. & P., New Britain, Conn.; Stimley Works, The, New Britain, Conn.
- **DOOR CHECKS:** Corbin, P. & P., New Britain, Conn.

HEATING, VENTILATION, PLUMBING

BLOWERS AND EXHAUSTERS: Buffalo Forge Co., Buffalo, N. Y.

DRINKING FOUNTAINS: Cahill Iron Works, The, Chattanooga, Tenn.

FLOOR DRAINS: Clapperton-Farley Bros. Co., Kansas City, Mo.

FURNACES: Hawley Down Draft Furnace Co., Easton, Pa.

LAUNDRY TUBS: Cahill Iron Works, The, Chattanooga, Tenn.

LAVATORIES: Cahill Iron Works, The, Chattanooga, Tenn.

PIPE, IRON: United Linex Tube & Valve Co., 172 Franklin St., Boston, Mass. Lead, tin or brass lined lead pipe.

PIPE (Steel): Youngstown Sheet & Tube Co., Youngstown, O.

REGISTRERS: Wagner Register Co., Waterloo, Iowa.

SINKS: Cahill Iron Works, The, Chattanooga, Tenn.

SINKS (Op): Cahill Iron Works, The, Chattanooga, Tenn.

TANKS (Close): Cahill Iron Works, The, Chattanooga, Tenn.

TRAPS (Radiating): Johns-Manville Co., H. W., New York City.

TRAPS (Steam): Jenkins Bros., 80 White St., New York City.

TUBS (Bath): Cahill Iron Works, The, Chattanooga, Tenn.

URINALS: Cahill Iron Works, The, Chattanooga, Tenn.

HEATING, VENTILATION, PLUMBING—Continued

VALVES (Air): Hoffman Specialty Co., 120 No. Fifth Ave., Chicago, Ill.; Siphon Air valves; Siphon Air and Vacuum valves; "Air Line" valves; Junior Quick Vent Air valve; Quick Vent "Equal" air valve; Quick Vent "Float" air valve; Quick Vent "Float" Air and Vacuum Valve; Return Line valve for vapor, vapor vacuum, modulating and vacuum heating systems; vapor vent valves. Jenkins Bros., 80 White St., New York City.

VALVES (Water Line): Jenkins Bros., 80 White St., New York City.

VALVES (Steam): Jenkins Bros., 80 White St., New York City.

VALVES (Water Line): Jenkins Bros., 80 White St., New York City.

VAPOUR HEATING SYSTEMS: American Dist. Steam Co., No. Tonawanda, N. Y.

VENTILATORS: Burt Mfg. Co., The, 77 Main St., Akron, O. Manufacturers of all types of ventilators, both stationary and revolving.

HOISTS

(See Elevators and Hoists)

INSULATION (Sound and Heat)

LIGHTING FIXTURES

GLASSWARE: Mitchell-Vance Co., 562 W. 24th St., New York City.

METAL: Mitchell-Vance Co., 562 W. 24th St., New York City.

MUSICAL INSTRUMENTS

ORGANS: Kimball, W. W., Co., Chicago, Ill.

ORNAMENTAL BRONZE AND IRON

- Polychrome, John, Bronx & Iron Co., 460 Hancock St., Long Island City, N. Y.
- Window Bros. Co., 4600 W. Harrison St., Chicago, Ill.

PAINTS, VARNISHES, STAINS

- **STAINS:** Gladens Co., Cleveland, O. Gladens architectural finishes, including varnishes, stains, enamels, etc.

PARTITIONS

PLASTER

(See Cement and Plaster)

PLUMBING

(See Heating, Ventilation, Plumbing)

REFRIGERATION

REFRIGERATING APPARATUS: Johns-Manville, H. W., Co., New York City.

ROOFING

ASBESTOS: Johns-Manville, H. W., Co., New York City.

SHEET METAL

SLATE: Rising & Nelson Plate Co., West Pawlet, Vt.; 101 Park Ave., N. Y. C. Special slate to architects' design.

SAFETY TREADS

SASH

(See Windows)

SASH CORD

Samson Cordage Works, 88 Broad St., Boston.

SHEET METAL

FORMED PRODUCTS:

METAL CEILINGS:

PAINTS, VARNISHES, STAINS

- **STAINS:** Cahill, Samuel, Inc., Boston. "Cabinet Trap."

VARNISHES: Gladens Co., Cleveland, O. Gladens architectural finishes, including varnishes, stains, enamels, etc.

INSULATION (Sound and Heat)

LIGHTING FIXTURES

GLASSWARE: Mitchell-Vance Co., 562 W. 24th St., New York City.

METAL: Mitchell-Vance Co., 562 W. 24th St., New York City.

MUSICAL INSTRUMENTS

ORGANS: Kimball, W. W., Co., Chicago, Ill.

ORNAMENTAL BRONZE AND IRON

- Polychrome, John, Bronx & Iron Co., 460 Hancock St., Long Island City, N. Y.
- Window Bros. Co., 4600 W. Harrison St., Chicago, Ill.

PAINTS, VARNISHES, STAINS

- **STAINS:** Gladens Co., Cleveland, O. Gladens architectural finishes, including varnishes, stains, enamels, etc.

PARTITIONS

PLASTER

(See Cement and Plaster)

PLUMBING

(See Heating, Ventilation, Plumbing)

REFRIGERATION

REFRIGERATING APPARATUS: Johns-Manville, H. W., Co., New York City.

ROOFING

ASBESTOS: Johns-Manville, H. W., Co., New York City.

SHEET METAL

SLATE: Rising & Nelson Plate Co., West Pawlet, Vt.; 101 Park Ave., N. Y. C. Special slate to architects' design.

SAFETY TREADS

SASH

(See Windows)

SASH CORD

Samson Cordage Works, 88 Broad St., Boston.

SHEET METAL

FORMED PRODUCTS:

METAL CEILINGS:

STAINS
(See Paints, Varnishes and Stains)

STONE

LIMESTONE:

GRANITE:

PRESSED STEEL CONSTRUCTION:
THE STANDARD OIL CLOTH CO., INC., 320 Broadway, Dept. F, New York 4-1

PLASTER BOARD:
House. Booklet and samples on request.

BRICK:

VARNISHES
(See Paints, Varnishes and Stains)

VENTILATION
(See Heating, Ventilation, Plumbing)

STUCCO AND WALL BOARD

PLASTER BOARD:
Bishopric Mfg. Co., The, 744 East Ave., Cincinnati, Ohio. Bishopric Stucco or Plaster Board. The do-it-yourself key locks the place, won't wear and is flexible. Made of cloth with a built-in key that locks the place. Made of cloth and asphalt and heavy fiber board.

TERRA COTTA
TERRA COTTA (Architectural):
N. Y. Arch. Terra Cotta Co., Tel. Astoria 700.

TILE
(See Flooring and Roofing)

WOODEN METAL
Detroit Steel Products Company, Department No. 9, Detroit, Michigan. Wooden Solid Steel Windows are made from Solid Steel bars interleaved by patented Fomcote joints. Ventilators are equipped with indefinite, moveable butts. Fomcote Gravity Can Last Longer than Steel. Fomcote Windows and Ventilators. Patented Channel Section gives ventilation double weathering.

COMBINED STEEL AND WOODEN METAL
Mississippi Wire Glass Co., 216 5th Ave., New York City. California Redwood Association, 1703-05 Corek and Expanded Metal Reinforcing Plate. 195 8th Ave., N. Y. C. 10 E. 42d St., N. Y.

REDWOOD:

WIRE GLASS

PLASTER BOARD:
Bishopric Mfg. Co., The, 744 East Ave., Cincinnati, Ohio. Bishopric Stucco or Plaster Board. The do-it-yourself key locks the place, won't wear and is flexible. Made of cloth with a built-in key that locks the place. Made of cloth and asphalt and heavy fiber board.

WOOD

VARNISHES
(See Paints, Varnishes and Stains)

VENTILATION
(See Heating, Ventilation, Plumbing)

STUCCO AND WALL BOARD

PLASTER BOARD:
Bishopric Mfg. Co., The, 744 East Ave., Cincinnati, Ohio. Bishopric Stucco or Plaster Board. The do-it-yourself key locks the place, won't wear and is flexible. Made of cloth with a built-in key that locks the place. Made of cloth and asphalt and heavy fiber board.

TERRA COTTA
TERRA COTTA (Architectural):
N. Y. Arch. Terra Cotta Co., Tel. Astoria 700.

TILE
(See Flooring and Roofing)

WOODEN METAL
Detroit Steel Products Company, Department No. 9, Detroit, Michigan. Wooden Solid Steel Windows are made from Solid Steel bars interleaved by patented Fomcote joints. Ventilators are equipped with indefinite, moveable butts. Fomcote Gravity Can Last Longer than Steel. Fomcote Windows and Ventilators. Patented Channel Section gives ventilation double weathering.

COMBINED STEEL AND WOODEN METAL
Mississippi Wire Glass Co., 216 5th Ave., New York City. California Redwood Association, 1703-05 Corek and Expanded Metal Reinforcing Plate. 195 8th Ave., N. Y. C. 10 E. 42d St., N. Y.

REDWOOD:

WIRE GLASS

PLASTER BOARD:
Bishopric Mfg. Co., The, 744 East Ave., Cincinnati, Ohio. Bishopric Stucco or Plaster Board. The do-it-yourself key locks the place, won't wear and is flexible. Made of cloth with a built-in key that locks the place. Made of cloth and asphalt and heavy fiber board.

TERRA COTTA
TERRA COTTA (Architectural):
N. Y. Arch. Terra Cotta Co., Tel. Astoria 700.

TILE
(See Flooring and Roofing)

WOODEN METAL
Detroit Steel Products Company, Department No. 9, Detroit, Michigan. Wooden Solid Steel Windows are made from Solid Steel bars interleaved by patented Fomcote joints. Ventilators are equipped with indefinite, moveable butts. Fomcote Gravity Can Last Longer than Steel. Fomcote Windows and Ventilators. Patented Channel Section gives ventilation double weathering.

COMBINED STEEL AND WOODEN METAL
Catalog No. 13-11 gives complete detailed information about Carrier Air Washers. We'll be glad to send you a copy.

Carrier Air Conditioning Co. of America, Buffalo, N.Y.

LocksandBuilders' Hardware

Everything required to equip any building, and all of a uniformly high quality.

AGENTS IN ALL CITIES

Raymond Concrete Piles

Made in place with protecting steel shell which remains in the ground.

RAYMOND CONCRETE PILE COMPANY

NEW YORK: 140 Cedar Street CHICAGO: 311 W. Monroe Street

Coal saving, money saving and warm homes in winter are mighty important items these days. Specify STANLEY STORM SASH HARDWARE.

CHASE Mohair Velvets

THE LUXURIOUS UPHOLSTERY

New York City Boston Detroit Chicago

Excellent years leadership in manufacturing

SEATS of the COLONISTS

U. P. C. BOOK COMPANY, Inc.

Successor to The American Architect Book Dept.

HELP WANTED

SPECIAL NOTICE

One Man Instead of Many
Handles Truscon Pressed Steel Beams!

The light weight and simplicity of Truscon Pressed Steel saves labor and time in building. The joists and studs are shop-made and reach the building site ready for installing—no cutting, no fitting, no punching, no riveting. Labor is scarce—use the constructions that save man-power!

The minimum of materials are used with Truscon Pressed Steel. Place the joists, attach the Hy-Rib Metal Lath by bending down the steel prongs and apply a thin layer of concrete or plaster. No centering nor forms required, no masses of concrete to be handled and placed.

Fireproofness and permanence are combined with economy and light weight. Truscon Pressed Steel is the ideal construction for moderately-loaded buildings, such as schools, apartments, stores, hotels, factories, etc. Its light weight makes it particularly desirable for additional stories of old buildings.

Ask for our suggestions—send for free copy of Truscon Pressed Steel Catalog.

TRUSCON STEEL COMPANY
YOUNGSTOWN, OHIO.
WAREHOUSES AND REPRESENTATIVES IN PRINCIPAL CITIES

TRUSCON PRESSED STEEL JOISTS and STUDS
The non-conductivity of Redwood plank roof prevents settling of manufactured products from the dripping of condensed moisture from roof—even in winter.

Paper Mill of Parker-Young Company, Lincoln, N. B.

The many unusual qualities of California Redwood make it better adapted to a wide variety of industrial uses than any other lumber.

Because of its remarkable resistance to fire, Redwood is of utmost importance in all general construction, in industrial housing, factory and similar buildings. Redwood ranks first for cores of fire doors, fire shutters, fire walls and elevator shafts.

The natural rot resistance of Redwood (no artificial preservative required) makes it supreme where long life is a factor—for all exterior uses, mudsills, siding, sheathing, roofs.

Tanks, pipes and flumes made of Redwood resist the action of water, acids and alkalis; and since seasoned Redwood resists rot and does not warp, shrink or crack, leakage and repairs are reduced to a minimum.

Redwood block paving costs less to lay, has longer life, stands the heaviest traffic. No creosote or other preservative required. Resists wet and dry rot. Permanent in shape. Maintenance costs practically nothing.

Many other important uses of Redwood are explained in our free booklets, "Redwood for the Engineer," "Specialty Uses of Redwood," and "Redwood Block Paving and Flooring." Write for them and stained samples of Redwood today.

CALIFORNIA REDWOOD ASSOCIATION
721 Exposition Building, San Francisco, Cal.
Two methods of securing daylight and ventilation in the same type of building are here illustrated. The method used in the building at the left of the picture offers advantages which especially recommend it for this type of building.

The center pivoted steel sash used provides wide openings for daylight both above and below the sash. Any reduction of lighting by monitor sash getting “smoked up” is thus overcome.

Thorough ventilation is another center pivoted sash advantage. When sash is opened wide there is an absolutely free flow of air—the sash opening being in the exact direction of the air currents. Fumes and gases find an easy straight up and out exit. No sharp bends to reduce the speed of flow.

Balanced construction also takes part of the load off of the operating device and makes the sash easy to open.

The new Fenestra Monitor catalog contains many helpful suggestions on daylighting and ventilation. A copy will be sent on request.

DETOUR STEEL PRODUCTS COMPANY
4109 East Grand Blvd.
Detroit, Michigan

Fenestra
SOLID STEEL WINDOWS