The LA office of landscape firm SWA has made a name for itself designing waterfronts in places as diverse as Tulsa, Los Angeles, and China. Last month, the firm won a competition to rethink a vital portion of the City of Shanghai’s waterfront. It enlisted Morphosis to develop the site’s architecture.

The site, known as Front City, for its location at the southern head of the city, includes a 940-acre mixed-use development and a 250-acre park along the Huangpu River, in the Pudong section of the city. The development is just south of the site of Shanghai’s International Expo Centre. SWA divided the 1.4-mile-long park space into five.

Design for West Coast’s Tallest Tower Revealed

On February 7, California-based architecture firm AC Martin Partners unveiled detailed plans for the Wilshire Grand, a 1,100-foot tower in downtown Los Angeles that will be the tallest building on the West Coast. The $1 billion, 73-story project, funded by Hanjin International, is downtown’s first high-rise office in decades. Located on the corner of 7th and Figueroa streets, it will include 400,000 square feet of offices, 900 hotel rooms, and a 160-foot-tall, mixed-use podium at its base.

The building’s tapering, elliptical shape is evocative of a sail, or as architect and aviation enthusiast David Martin, sees it, an airplane wing. He said that his cousin Chris Martin, who is managing the project, thinks the podium design resembles Half Dome, the famous rock

La Kicks Off Citywide Mini Park Program

On February 3, Los Angeles kicked off the pilot parklet program it announced last fall, opening a miniature public space in the Eagle Rock neighborhood of East Los Angeles. Designed by LA landscape architecture firm Shared Spaces, the park is located on the site of a former parking space in front of Bobby’s Auto Parts, near the corner of Avenue 50 and York Boulevard. The $30,000 parking space-sized park is modest in scope: It features stained wood-plank flooring, curving built-in wood furniture, and mosaic tile furniture and siding. But as the city’s first parklet, it represents a major milestone. The parklets initiative involves intensive coordination among several city departments, including the Department of Transportation (DOT), the Department of Planning, the Bureau of Engineering, the Bureau of Street Services, the Mayor’s Office, and various city council offices. The parklet was sponsored by LA Councilman José Huizar, planned and coordinated by the nonprofit Living Streets LA, and built by the LA Conservation Corps.

Winging It

On February 7, California-based architecture firm AC Martin Partners unveiled detailed plans for the Wilshire Grand, a 1,100-foot tower in downtown Los Angeles that will be the tallest building on the West Coast. The $1 billion, 73-story project, funded by Hanjin International, is downtown’s first high-rise office in decades. Located on the corner of 7th and Figueroa streets, it will include 400,000 square feet of offices, 900 hotel rooms, and a 160-foot-tall, mixed-use podium at its base.

The building’s tapering, elliptical shape is evocative of a sail, or as architect and aviation enthusiast David Martin, sees it, an airplane wing. He said that his cousin Chris Martin, who is managing the project, thinks the podium design resembles Half Dome, the famous rock

Film Industry Bucks Downtown LA Alterations

The resurgence of the residential community in downtown Los Angeles has come with numerous urban design interventions, from bike lanes to parklets to new transit stations. Not all of the neighborhood’s stakeholders, however, are happy about the changes. The film industry, one of the most powerful of those groups, has grown increasingly outspoken in its concerns about how the modifications are impacting business. Downtown’s impressive mix of Art Deco, Beaux-Arts, and Postmodern buildings, along

Power to the Parklet

On February 3, Los Angeles kicked off the pilot parklets program it announced last fall, opening a miniature public space in the Eagle Rock neighborhood of East Los Angeles. Designed by LA landscape architecture firm Shared Spaces, the park is located on the site of a former parking space in front of Bobby’s Auto Parts, near the corner of Avenue 50 and York Boulevard. The $30,000 parking space-sized park is modest

An Unveiled

On February 7, California-based architecture firm AC Martin Partners unveiled detailed plans for the Wilshire Grand, a 1,100-foot tower in downtown Los Angeles that will be the tallest building on the West Coast. The $1 billion, 73-story project, funded by Hanjin International, is downtown’s first high-rise office in decades. Located on the corner of 7th and Figueroa streets, it will include 400,000 square feet of offices, 900 hotel rooms, and a 160-foot-tall, mixed-use podium at its base.

The building’s tapering, elliptical shape is evocative of a sail, or as architect and aviation enthusiast David Martin, sees it, an airplane wing. He said that his cousin Chris Martin, who is managing the project, thinks the podium design resembles Half Dome, the famous rock

Film Industry Bucks Downtown LA Alterations

The resurgence of the residential community in downtown Los Angeles has come with numerous urban design interventions, from bike lanes to parklets to new transit stations. Not all of the neighborhood’s stakeholders, however, are happy about the changes. The film industry, one of the most powerful of those groups, has grown increasingly outspoken in its concerns about how the modifications are impacting business.

Downtown’s impressive mix of Art Deco, Beaux-Arts, and Postmodern buildings, along

Power to the Parklet

On February 3, Los Angeles kicked off the pilot parklets program it announced last fall, opening a miniature public space in the Eagle Rock neighborhood of East Los Angeles. Designed by LA landscape architecture firm Shared Spaces, the park is located on the site of a former parking space in front of Bobby’s Auto Parts, near the corner of Avenue 50 and York Boulevard. The $30,000 parking space-sized park is modest in scope: It features stained wood-plank flooring, curving built-in wood furniture, and mosaic tile furniture and siding. But as the city’s first parklet, it represents a major milestone. The parklets initiative involves intensive coordination among several city departments, including the Department of Transportation (DOT), the Department of Planning, the Bureau of Engineering, the Bureau of Street Services, the Mayor’s Office, and various city council offices. The parklet was sponsored by LA Councilman José Huizar, planned and coordinated by the nonprofit Living Streets LA, and built by the LA Conservation Corps.

Winging It

On February 7, California-based architecture firm AC Martin Partners unveiled detailed plans for the Wilshire Grand, a 1,100-foot tower in downtown Los Angeles that will be the tallest building on the West Coast. The $1 billion, 73-story project, funded by Hanjin International, is downtown’s first high-rise office in decades. Located on the corner of 7th and Figueroa streets, it will include 400,000 square feet of offices, 900 hotel rooms, and a 160-foot-tall, mixed-use podium at its base.

The building’s tapering, elliptical shape is evocative of a sail, or as architect and aviation enthusiast David Martin, sees it, an airplane wing. He said that his cousin Chris Martin, who is managing the project, thinks the podium design resembles Half Dome, the famous rock

Film Industry Bucks Downtown LA Alterations

The resurgence of the residential community in downtown Los Angeles has come with numerous urban design interventions, from bike lanes to parklets to new transit stations. Not all of the neighborhood’s stakeholders, however, are happy about the changes. The film industry, one of the most powerful of those groups, has grown increasingly outspoken in its concerns about how the modifications are impacting business. Downtown’s impressive mix of Art Deco, Beaux-Arts, and Postmodern buildings, along

Power to the Parklet

On February 3, Los Angeles kicked off the pilot parklets program it announced last fall, opening a miniature public space in the Eagle Rock neighborhood of East Los Angeles. Designed by LA landscape architecture firm Shared Spaces, the park is located on the site of a former parking space in front of Bobby’s Auto Parts, near the corner of Avenue 50 and York Boulevard. The $30,000 parking space-sized park is modest in scope: It features stained wood-plank flooring, curving built-in wood furniture, and mosaic tile furniture and siding. But as the city’s first parklet, it represents a major milestone. The parklets initiative involves intensive coordination among several city departments, including the Department of Transportation (DOT), the Department of Planning, the Bureau of Engineering, the Bureau of Street Services, the Mayor’s Office, and various city council offices. The parklet was sponsored by LA Councilman José Huizar, planned and coordinated by the nonprofit Living Streets LA, and built by the LA Conservation Corps.

Winging It

On February 7, California-based architecture firm AC Martin Partners unveiled detailed plans for the Wilshire Grand, a 1,100-foot tower in downtown Los Angeles that will be the tallest building on the West Coast. The $1 billion, 73-story project, funded by Hanjin International, is downtown’s first high-rise office in decades. Located on the corner of 7th and Figueroa streets, it will include 400,000 square feet of offices, 900 hotel rooms, and a 160-foot-tall, mixed-use podium at its base.

The building’s tapering, elliptical shape is evocative of a sail, or as architect and aviation enthusiast David Martin, sees it, an airplane wing. He said that his cousin Chris Martin, who is managing the project, thinks the podium design resembles Half Dome, the famous rock

Film Industry Bucks Downtown LA Alterations

The resurgence of the residential community in downtown Los Angeles has come with numerous urban design interventions, from bike lanes to parklets to new transit stations. Not all of the neighborhood’s stakeholders, however, are happy about the changes. The film industry, one of the most powerful of those groups, has grown increasingly outspoken in its concerns about how the modifications are impacting business. Downtown’s impressive mix of Art Deco, Beaux-Arts, and Postmodern buildings, along
As many of you know I’ve been putting together an exhibition opening this July at the A+D Architecture and Design Museum called Never Built: Los Angeles. The show features an abundance of visionary ideas that never had the privilege of being realized, from staggeringly ambitious buildings by Frank Lloyd Wright to city-changing subway and park plans that never saw the light of day.

The original and visually stunning ideas are immediately compelling, and will introduce viewers to a new history of LA. But the heart of the story isn’t just the amazing, frustrated talent in this city and its amazing un-built work. It’s why they weren’t built. It’s a story that LA, like so many American cities, is still telling.

As I was just discussing with a friend, it’s a miracle that any building gets built these days. The constraints of red tape, political fragmentation, neighborhood resistance, risk-averse bankers, myopic developers, environmental regulation, zoning, etc. are never-ending. If we want to work our way back to a more innovative, visionary urban environment we’ll need to fix all of those hindrances.

We need to make the building system more transparent, so that the multitude of city departments—accountable to nobody—can’t hold up any project they choose. Environmental regulations can’t be used for political or economic purposes, only for legitimate environmental issues.

We need the building system to rally around good ideas, not as a blockade to them. Financing needs to catch up with the times, supporting innovation, not just pro forma spread sheets.

Of course, I’m not promoting building any way, anywhere, without regulations. I just want to make the process easier and smarter. I want to make sure LA and other major metropolises in this country and throughout the world live up to their true potential instead of falling far short of it.

In the coming months leading up to the exhibition AN West will be looking into the issues that keep good projects never built, and asking architects, developers, and planners to weigh in on how this can be fixed. (The Protest in the West will be looking into the issues that keep good projects from falling short of it.

Let’s make sure that the next crop of visionary projects get built, and that our cities once again become laboratories for innovation. —Sam Lubell

UNVEILED

LOS ANGELES FEDERAL COURTHOUSE

We’ve known for some time that SOM would be designing the new federal courthouse in downtown Los Angeles. But the firm has just unveiled new images of the project, filling out the picture of this vital new landmark for the city on the corner of 1st street and Broadway. The familiar image of a cube-like landmark in the middle of the city is now accompanied by a closer view of a folded glass facade prominently featuring the U.S. seal. The building appears
GOSSIP: GRAND AVENUE EDITION

The Grand, the multi-million-dollar, mixed use project on top of LA’s Bunker Hill, is finally... slowly... moving forward with an Arquitectonica-designed residential tower, which just broke ground. But it appears that Frank Gehry’s days on the project may be numbered. After a recent call with Related, we got no assurances that the starchitect was still part of the project. A report in the Downtown News got similarly uncommitted answers.

Just across the street from the Grand we hear that The Broad (what’s with all the THEs?)—Eli Broad’s multi-million-dollar art museum—is getting ready to add an upscale market to its rear, just above the parking lot. If it’s even close to as successful as Chelsea Market in New York, Downtown LA could have yet another hit on its hands. Meanwhile, decking is being laid for a new park to The Broad’s south, but still no renderings of the park have been unveiled. Let’s make this public Mr. Broad. We can’t wait to see your plans, which could singlehandedly make or break Grand Avenue.

SEND CONDO LEASES AND LOBSTER TAILS TO EAVESDROP@ARCHPAPER.COM

Rontoms Bar, an eastside Portland lounge serving up Scandinavian fare, local liquor, ping-pong, and free concerts on Sundays, is a local’s best-kept secret. The entrance is marked with only a small painting of a boy spinning hats. And the bar itself resides in a spacious repurposed industrial building with mid-century furnishings; it’s been likened to a cozy basement den, circa 1973. But just as talked about as the bar is its canopy: A portion of Rontoms’ large patio, located at the corner of Burnside and Sixth Street, contains the 1,500-square-foot wood structure, fashioned from two bent girders held together by a ridge beam. The canopy’s minimalist take on the log cabins of the great Northwest also adds refined simplicity, sheltering patrons from the Northwest drizzle and glaring summer sun, while allowing for al fresco drinking and dining under its raftered ceiling.

ARIEL ROSENSTOCK

AT THE FRONT continued from front page sections, also called fronts. These include the Eco Front (with a sprawling park), the International Front (a formal park with large plazas and landmarks), the Civic Front (with axial corridors and links to the larger development), the Community Front (including sports and recreation), and the Youth Front (for children’s activities). All the spaces can be traversed via a 4.4-mile loop.

Along the river itself, the firm has created a floodwall control system made up of walls that rise and fall according to the water level. The sinuous stretches of riverbank will also include snaking pedestrian bridges; reflecting pools; and colorful, whimsical shade structures.

“We try not to create a boundary between natural and built landscape; spaces flow into one another,” described firm principal Ying-Yu Hung.

Principal Gerdo Aquino lauded the willingness of Chinese clients (in this case the Shanghai Binjiang Tourist Resort Development Company) to push boundaries.

“Once you’ve gained their trust and shown that you understand their culture, you can get as crazy as you want,” he said.

That ambition is evident in the development company’s excitement about designs put forth by Morphosis for the park’s architecture. (Morphosis has yet to be named the official architect for the project.)

A highlight of the firm’s design is its “friendship tower,” a multi-story structure that merges with the landscape, resembling a series of interconnected Taihu stones—a porous limestone produced at the base of Dong Ting Mountain in Suzhou by millennia of lapping water. Morphosis principal Thom Mayne also designed a spectacular ferry terminal and cultural center for the site. Both seem to emerge from the earth, with pieces seemingly designed to combine with those from the other structures, like merging continents.

The project is set to break ground in March. The completion date has not yet been finalized. SL
POWER TO THE PARKLET

opened shortly after the first. Two colorful parklets, created pro bono by designers Berry and Linné, architects/developers utopian org, and builders Hensel Phelps, opened this month on Spring Street in downtown Los Angeles. Watson worked on these parks as part of the Downtown Los Angeles Neighborhood Council, which coordinated the projects. She said they can easily be copied because they use inexpensive, off-the-shelf materials like wood, perforated metal, and stone pavers.

Another new parklet, a much larger iteration designed by Shared Spaces, was at press time set to open on February 16 in El Sereno, another neighborhood in East Los Angeles.

This first round of parklets took more than two years to realize, not because of the complexity of their designs, but because of the significant community outreach and input involved and the development of an entirely new approval process, which is now coming into shape. Future parklets should take less time to complete, said Tricia Roberts, deputy planning director for Los Angeles Councilman Huizar.

Parklets have been popular elsewhere, in cities like New York, Boston, and San Francisco, which has more than 25 of them. But LA's parklets, said Shared Spaces principal Steve Rasmussen, will be open to the entire public, not just the customers of the businesses which they front, a scenario that often happens in San Francisco.

LA's pilot parklet program is part of a bigger initiative for streetside improvements in the city, namely the Streets for People program, which includes separated cycle lanes, increased street plantings, wider sidewalks, curb extensions, bicycle parking, and midblock crossings.

CRIT: PEROT MUSEUM OF NATURE AND SCIENCE

The Santa Monica firm Morphosis has completed its first museum, and it's a model of its typology. The Perot Museum of Nature and Science fuses the programs of three institutions that abandoned their old quarters, merged their operations, and commissioned a shared building. According to Morphosis principal Thom Mayne, "The first scheme was much more aggressive and architectural, but [museum officials] couldn't deal with that, and we developed a cube raised on pilotis as an alternative."

Though the firm may have reined in its invention, the final design is a brilliant match for the site and the program. It's located on the far side of an elevated freeway, away from the glittering towers of downtown and the axis of the Dallas Arts District. It anchors a barren expanse in the Victoria Park development, and its form and facades aptly express the museum's function. The massive concrete cube is cut away at the southeast corner and glazed to pull natural light into the five-story atrium. A glass-enclosed escalator projects from the south facade, beckoning visitors to enter and explore.

A low podium extends from the base of the cube, and both are faced with precast concrete relief panels that simulate rock strata (land were themselves inspired by a nearby rock quarry). As project architect Arne Emerson explained, "Fabricators prefer repetition, but we devised a system that combines a few variants to achieve random patterns." The depth of the relief diminishes from the base to the top, dematerializing the mass, and creating a constantly changing chiaroscuro, as the sun moves around the building.

School buses drive up to the entrance of the podium that contains the children's museum and educational wing on the east side. To the west, families park their cars and proceed up a curved and canopied ramp to the entry plaza. The roof of the children's museum is a boldly landscaped terrace that opens out of the lobby and can be viewed from above. Shale and native plantings recreate a typical Texas landscape while concealing a tank for the collection of rainwater—a precious commodity in this drought-prone city.

A flexible black box for displays on the second through the fourth floors morphs into transparent public areas at the entry level and around the atrium. Offices are located on the fifth floor. Many science museums pack everything into a windowless container, or go to the opposite extreme of building a glass house, like Renzo Piano's California Academy of Science in San Francisco. Here in Dallas, there's a sharp divide between dark and light. It gives the curators what they need, and visitors can enjoy the alternation of immersion and release.

Open staircases, escalators, and glass elevators provide easy access to the upper floors, and many visitors head straight to the lofty fourth level for its spectacular displays of dinosaur skeletons, a vivid history of the universe, and a bird display in the mezzanine gallery. The second and third levels house displays of minerals, robots, and biology: a platform simulating earthquakes of different strengths; and (this being Texas) an exhibit on oil prospecting.

At the entry level, a café and shop flank a 300-seat theater with state-of-the-art projection and well-honed acoustics. Wavy recessed lighting slots punctuate the fabric-covered sidewalks and ceiling, in an echo of the rippling concrete cladding. In the lower-level Sports Hall, you can try to outrun an animated cougar or T. Rex, roaming down a parallel track, or else match skills shooting hoops with a pro. As business director Jennifer Scripps, observes, "You can learn a lot at home on a computer, so a museum needs to offer a visceral and social experience."

Dallas was a latecomer in acquiring good venues for the arts, and now the sciences, but when the city finally caught up, it did things right. Symphonic Hall is one of L.M. Pei's best buildings. Renzo Piano's Nasher Sculpture Center is a jewel. OMA and REX designed an adventurous theater. And there's a flamboyant but functional opera house by Foster and Partners. The new museum, largely funded by the Ross Perot family, is a triumph of bold architecture and enlightened philanthropy. Both elements are lacking in a city like Los Angeles, for example, where the County Museum of Natural History has done a good job of restoring its Beaux Arts legacy, but has failed to realize the bold addition it commissioned from Steven Holl.

MICHAE WEBB
and 9th Street, the heart of between Cesar Chavez Avenue and running along Spring Street bike lane painted bright green when the city unveiled a buffered an unexpected conflict arose In November 2011, however, president and CEO of Film L.A. for them,” said Paul Audley, in Los Angeles that doubles or Chicago. “It’s the only place States, such as New York in particular, known as the neighborhood as a proxy location. The film industry uses the Historic Core, a boomtown for industry—like the era of the back lot for Hollywood. Since the headquarters of of back lot for the film industry—made downtown such an increase, Film L.A. has plenty of work on the horizon to make sure that the neighborhood continues to play the role of back lot for Hollywood. Since the Spring Street bike lane controversy, Film L.A. has worked closely with the mayor’s office, the city council, and other city departments to improve the sitting of such urban initiatives. According to Audley, Film L.A. will not oppose any of the projects, “because they are important to the future of downtown, to keep it vibrant and alive.” He acknowledged, though, that more work is required “to consider the needs of this critical area as these projects go forward.”

To Daveed Kapoor, a downtown resident, registered architect, and one of the designers of the Spring Street bike lane, the proximity of these new facilities to the work of the film industry has multiple benefits. “We’re going to export images of a new type of city,” said Kapoor, adding that the parklets and the bike lane will slow traffic on the street, making it a safer place for film crews to work.

Rick Coca, spokesperson for Council member José Huizar, who represents the area, stressed that the film industry will have to adjust to the new reality of downtown: “You have 50,000 people living there, as opposed to 10,000 people living there ten years ago…500,000 people work there.”

Clearly, the ghost town quality that made downtown such an attractive back lot for the film industry—like the era of the early 20th century that built the neighborhood—is a thing of the past.

JAMES BRASUELL

LA APPROVES REDEVELOPMENT OF MINORU YAMASAKI-DESIGNED HYATT A NEW CENTURY

On January 15, after years of ups and downs, the Los Angeles City Council approved the $2 billion, 1.6 million-square-foot redevelopment of the Century Plaza Hotel.

2009 developer Next Century Associates proposed to tear down Minoru Yamasaki’s curving midcentury Hyatt Regency Century Plaza Hotel to make way for a major redevelopment of the site. A parade of preservationists, including the LA Conservancy and Diane Keaton, stood in their way. The outcome of that standoff is a compromise in which the hotel will be preserved by Marmol Radziner and surrounded by two three-sided, 46-story residential towers designed by Pei Cobb Freed. The project will also feature a 100,000-square-foot retail plaza and more than two acres of public open space designed by Rios Clementi Hale. The executive architect is Gensler.

The City Council approved the scheme’s Environmental Impact Report and approved a 15-year development agreement.

JAMES BRASUELL

THE WORLD’S SLIMMEST SIGHTLINES.

The 3/4” profile Vitrocsa sliding glass wall system. Absolutely nothing else compares. Proven and tested since 1993, with over 25,000 Vitrocsa units installed in over 26 countries.
The Broad, philanthropists Eli and Edythe Broad’s contemporary art museum rising on Grand Avenue downtown, is the most significant new architectural project in Los Angeles. The three-story, 120,000-square-foot building, designed by Diller Sapiro+Renfro (Gensler is the Executive Architect), topped out on January 8, and by next year will be home to the Broads’ collection of more than two thousand contemporary artworks.

Project Manager Greg Wade, who works for the museum’s general contractor, MATT Construction, recently walked me through the site. Perhaps the project’s most important element is a 65-foot-long, 1.5 foot-wide, 2-inch thick, V-shaped member of built-up structural steel plate that resembles the hull of a Viking ship. It’s called the “touchdown beam,” and, once installed, will bear the load of the entire “veil.” The veil encompasses the steel and GFRC (Glass Fiber Reinforced Concrete) lattice that will front the museum.

At the time of this writing, the beam sat a few feet from the building, awaiting relocation to the Grand Avenue side. The 83,000-pound beam, shipped in one piece from Germany, will be set in place with a 500-ton hydrocrane.

When DS+R first conceived of the veil—originally designed to be precast concrete—it was meant to support the weight of the museum’s roof. That plan was scrapped, however, because the cost and complexity of supporting that much weight with no structural steel would have been too high, said Wade. The touchdown beam would also have had to be so large that it would block much of the sidewalk. Instead, the beam will now fit handily below grade so the veil will appear to emerge from the concrete.

The veil, which soon will be covered with hundreds of molded GFRC panels, has been the object of close coordination between the architects and the builders. The architects have been working in the 3-D design software CATIA, which has been translated into Revit and Autocad 3D for the builders. Sometimes the shape hasn’t matched what the architects wanted, so it’s been changed, said Wade. Other times the shape hasn’t matched what the builders needed, so it’s been changed again. This back and forth, the project manager claimed, has constituted the most interaction he’s ever had with an architect.

The second floor of the building cantilevers 60 feet from the building’s core toward Grand Avenue. In the center of this floor will be the vault, which will contain the artworks not on display in the galleries. To install this cantilever, the builders teamed with geotechnical and mining specialists DYWIDAG Systems International, creating a post-tensioned structure more akin to a bridge than a building. The slab was raised via a gigantic hydraulic jack, employing about 300,000 pounds of force. It measures six feet thick near the building and just two feet thick at its end. The top floor will contain the bulk of the museum’s exhibition space. A diagrid steel matrix frames the roof. It will soon be given a curvy GFRG (Glass Fiber Reinforced Gypsum) cladding, resembling the veil, and will be inset with 399 glass skylights, all angled to face north, to create a glowing, rhythmic effect. MATT Construction made mock-ups of many of the building’s systems before beginning construction. A dozen were required by contract, but the firm made almost 100 to determine various components’ constructability. “Until you start to build, you really don’t know what will work,” said Wade.
annual floor sample sale
up to 70% off

march 2-10
mon-fri 9:30am - 6:00pm
sat & sun 11:00am - 6:00pm

New York
212.685.0800
136 Madison Ave @ 31st
181 Madison Ave @ 34th

Los Angeles
310.273.5050
8806 Beverly Blvd @ Robertson

www.ddcnyc.com
If, as Louis Kahn said, a brick wants to be part of an arch, what does a biopolymer molecule, a block of aerogel, or a slab of metallic foam want to be? The empirical basis for inferring bricks' intentions is well established, comprising building traditions that have evolved over millennia. For newer materials, the chance of moving from laboratories to construction sites can be a crapshoot. The successful ones not only capture markets but transform behavior.

The most promising approaches, materials specialists agree, emphasize integration rather than isolation. "We don't just create materials or products; we create information systems," says architect/author Blaine Brownell, who co-directs the MS in Sustainable Design program at the University of Minnesota and whose most recent book, Material Strategies: Innovative Applications in Architecture (Princeton Architectural Press, 2012), links innovations in minerals, concrete, wood, metal, glass, and plastics to prominent case studies. Using the term hypermaterial to denote the convergence of materials and information processing, Brownell looks to the management of light, energy, and data as the leading edge of materials research.

Jason O. Vollen, associate director of the Center for Architecture Science and Ecology (CASE), a joint project of Rensselaer Polytechnic Institute and SOM, heralds "a fundamental paradigm shift from moving energy mechanically, which is how we do it now, to moving energy materially." Instead of multiple layers of a structure performing different functions, Vollen says, as in Mike Davies' concept of the polyvalent wall, "We think one layer should do multiple things; we think a potential solution is the multivalent material. That's not so far off; it's speculative fiction rather than science fiction."

Citing the "holy grail" of Lawrence Berkeley National Laboratory's Stephen Selkowitz—a material optimizing both daylight and insulation—Vollen says "what exists now won’t do that, but what exists around the corner might." Nano-technology, where categories blend and "metals can become more like glasses, glasses become more like ceramics," he continues, is yielding unprecedented control over properties such as heat flow and daylight transmittance. With high-performance ceramics in particular offering properties that answer climate-change-driven imperatives, he is convinced, "the industry is poised for a revolution."

Materials research is often a matter of systematic biomimicry, invoking a parallel understanding of natural processes occurring over time on multiple scales, from the nanoscale to the visible to the ecosystem. "It’s not about translating shape, or a static image of a biological behavior," says Jenny E. Sabin, assistant professor of architecture at Cornell and a founding member of Cecil Balmond’s Nonlinear Systems Organization. As the architectural member of the National Science Foundation-sponsored ESkin interdisciplinary team, which also includes a materials scientist, a cell biologist, and a systems engineer, Sabin investigates homologies in materials, geometries, and forms. She describes her challenge as "thinking about how those properties could work across scales" and replicating them in "highly engineered, sustainable materials that have very sophisticated responses to environmental cues."

Generative models based on cellular activity inform her "Branching Morphogenesis" installation at Linz, Austria’s 2008 Ars Electronica. "The ArchiTec T's NewspAper February 20, 2013

Bill Millard plumbs the field of materials science in search of the next transformative technology
and transmissibility as well as strength; geometries that repel or absorb water, a high priority in materials that must endure sea-level rise; and self-organizing properties on nano-to-macro scales.

The technological transition suggested by business consultant David Morris, vice president of the Institute for Local Self-Reliance—replacing the hydrocarbon-based economy, with all its externalities, costly extractive processes, and resource-availability constraints, with an older, cleaner system, “the once and future carbohydrate economy”—calls for more use of lifelike materials, Brownell suggests: those derived from agriculture and those deriving knowledge from living systems. A brick may want to be thick, but contemporary materials want to be smart.

Resource maximizers, beginning with light Andrew H. Dent, PhD, vice president of library and materials research at Material ConneXion, sees two broad questions driving research in the field: what does Earth have in abundance, and what are we running out of? To the extent that materials and processes based on ample, readily available resources (from sunlight to silicon) replace those with sources in short supply (petroleum, gold, copper, clean air, and water), materials research represents a critical adaptation to emergent conditions. Most of this work is economic optimization rather than new discovery, Dent adds. Methods of developing biopolymers from a wide range of plants harvested in different regions and conditions (corn, castor, switch grass, sugar cane, potatoes, and others) are already known. “The issue is how to beat out oil,” he says, which “even at a high price is still significantly cheaper.” Tradeoffs of this sort are inevitable. A material may be lightweight enough that its production and transport save energy and yield an admirable overall ecological footprint, but its components pose toxicity concerns, as with ethylene tetrafluoroethylene (ETFE, the transparent insulating “pillow” material seen in the 2008 Olympic Water Cube and other buildings worldwide). Biopolymers for construction, consumer products, or fuel, likewise involve edible crops and thus compete with food production. “Back in 2006 and early ’07” Brownell recalls, “when there was so much excitement about biofuels and ethanol...states like Iowa were promising all kinds of fuel-making capacity without taking a hard look at how a lot of this corn that we make goes to developing countries in order to feed the world.” Vollen frames this starkly as “a political and regulatory issue: ‘if we replace oil with corn, what do we eat?’”

In this regard, viewing solar energy as the ultimate free resource, Brownell is particularly enthusiastic about products that harvest and manipulate light, such as Sensitile’s light-piping panels, embedding optical channels in concrete and resin substrates, or a recent breakthrough at Duke University’s Pratt School of Engineering, scattering silver nanocubes on a gold film to “help the substrate absorb virtually all the light...so incredibly efficiently that nothing leaves the surface” and improving the efficiency of sensors. Another promising use of multiwall carbon nanotubes, he says, is field-induced polymer electroluminescent (FIPEL) technology, which generates a warm, nonflickering wavelength resembling sunlight—“that spectrum that clearly influences human behavior and productivity in workplaces and learning places.” These flat lighting panels offer a distinct improvement over harsh compact fluorescents and heat-inefficient incandescents, with efficiency approaching that of LEDs. Developed at Wake Forest University and licensed for commercial development to CeeLite Technologies, the panels can be integrated with flexible substrates and incorporated into windows or even textiles. Brownell also cites the engineer/designer Akira Wakita’s work with “conductive threads to make thermochromic and photochromic textiles that can act as computer monitors.” The importance of lighting in the developing world, he emphasizes, makes it a promising field for leapfrogging technologies that address “the good but tough 99 percent question” about new materials’ relevance to global
The bugs from surviving once they to a genetic “kill switch” that keeps material (finally stopping, thanks “microbial glue” when it is injected another high-performance concrete at the University of Michigan with superplasticizers, ground quartz, concretes that use silica fume, high-performance crack-resistant with any concrete; among various Tensile strength is a concern, with fiber-reinforced bendable concrete. that changes people’s expectations. One of nature’s recurrent strategies for economizing on material bulk—porous forms—characterizes several materials, whose properties have drawn absorption by using magnesium silicate, iron carbonate, or other alternative components. This process is done by TecEco in Tasmania, Novacem in London, and CarbonCure in Nova Scotia. Concrete strikes me as something like molé,” Brownell comments: “Every family has their own recipe.”
Tensile strength is a concern with any concrete; among various high-performance crack-resistant concretes that use silica fume, superplasticizers, ground quartz, or mineral fibers, Victor Li’s work at the University of Michigan with fiber-reinforced, bendable concrete stretches the category’s definition altogether. Lafarge’s Ductal is another high-performance concrete that bridges the border between concretes and composites. A novel self-repair strategy developed at Newcastle University, BacillaFilla, programs a Bacillus subtilis strain to create calcium carbonate and a “microbial glue” when it is injected into cracks; it then cures to the same strength as the surrounding material (finally stopping, thanks to a genetic “kill switch” that keeps the bugs from surviving once they detect a surface; this feature relates hypothetical sci-fi concerns about an uncontrollable Bill Joy-style gray goo). The prospect that concrete could move from carbon-negative to carbon-negative strikes many commentators as an achievable goal—provided the newer variants gain market share, despite contractors’ comfort level with current recipes. “What we need,” suggests Dent, “are some high-profile architects to use some of [the new] material and show its advantages by being part of a high profile, near-carbon-zero building.”

Material moneyball

Top: Victor Li at the University of Michigan has been experimenting with fiber-reinforced bendable concrete. Middle: Alusion, an aluminum foam that’s 80 percent air, was derived from Cymat, a material used as glass shielding on military vehicles. Bottom: Lafarge’s Ductal is a high performance concrete reinforced by organic, reinforced metallic fibers that increases the material’s compression resistance, ductility, and longevity.

The ArchiTec T’s NewspAper
February 20, 2013

Bill Millard is a New York CitY...
FEBRUARY

SATURDAY 23

LECTURE
Food, Art and Community: Creative Community Engagement with the Environment
2:30 p.m.
Inner City Arts
720 Kohler St., Los Angeles
elaasangaeles.org

LECTURE
Leisure, Commerce, and Tragedy in the Villa of Oplontis near Pompeii
2:00 p.m.
The Getty Villa
17985 Pacific Coast Highway
Malibu, CA
g Getty.edu

EVENT
Introduction to Design Thinking
10:00 a.m.
Frey Art Museum
725 Ninth Ave.
Seattle, WA
freyartmuseum.org

SYMPHOSIUM
Design of Self
8:30 a.m.
UCLA
Royce 314
405 Hilgard Ave., Los Angeles
ad.ucla.edu

MONDAY 25

LECTURE
Altered States
8:30 p.m.
Roy and Edina Disney/CalArts Theater
Walt Disney Concert Hall
631 West Second St.
Los Angeles
redcat.org

TUESDAY 26

EVENT
Lyn Foulkes and the Machine
7:30 p.m.
Hammer Museum
10889 Wilshire Blvd.
Los Angeles
hammer.ucla.edu

LECTURE
Pamela Burton
6:30 p.m.
UCLA
Parish Hall, Decafe
405 Hilgard Ave.
Los Angeles
ad.ucla.edu

FRIDAY 29

LECTURE
The Power of Politicized Street Art
12:30 p.m.
SPUR Urban Center
654 Mission St.
San Francisco
spur.org

EVENT
Who Sculpature Unveiling
6:30 p.m.
Mint Plaza
Mint St. and Jessie St.
San Francisco
theintersection.org

SATURDAY 29

TOUR
A Walk Through Grand Reductions
12:30 p.m.
SPUR Urban Center
654 Mission St.
San Francisco
spur.org

MARCH

FRIDAY 1

EXHIBITION OPENING
Spectacle IA Group Exhibition
5:00 p.m.
111 Minna Gallery
111 Minna St.
San Francisco
11minnagallery.com

SATURDAY 2

EVENT
Stand Out from the Crowd II (Portfolio Review)
1:00 p.m.
KillerFlamming Architects
1626 Olympic Blvd.
Santa Monica, CA
wwa-la.org

THURSDAY 7

EXHIBITION OPENING
Object Focus: The Bowl, Part 1
11:00 a.m.
Museum of Contemporary Craft
242 NW Daviv St.
Portland, OR
mocc.pnca.edu

2/12

EVENT
Vestas
5:30 p.m.
Pacific Film Archive
2575 Bancroft Way
Berkeley, CA
bampfa.berkeley.edu

FRIDAY 8

EVENT
David Freeland
Organized Resilience
1:00 p.m.
SCI Arc
960 East 3rd St.
Los Angeles
sciarc.edu

SATURDAY 9

EXHIBITION OPENING
New Work: Trisha Donnelly
5:00 p.m.
New Museum
368 Spring St.
New York, NY
moma.org

EXHIBITION OPENING
Extrastatecraft
7:00 p.m.
Hammer Museum
10889 Wilshire Blvd.
Los Angeles
hhammer.ucla.edu

SUNDAY 10

EXHIBITION OPENING
From Portland to Rome and Back Again: Curie Mac Weens' World View
2:00 p.m.
Portland Art Museum
1219 SW Park Ave.
Portland, OR
portlandartmuseum.org

MONDAY 25

EXHIBITION OPENING
Japan's Modern Divide: The Photographs of Hiroshi Hamaya and Kansuke Yamamoto
10:00 a.m.
The Getty Center
1200 Getty Dr.
Los Angeles
g Getty.edu

TUESDAY 26

EXHIBITION OPENING
Stephen Talasnik's intricate graphite and ink drawings are influenced by an early enduring interest in architecture and engineering, specifically by the design of aviation, visible bridge infrastructure, and the architecture of amusement parks. His work also borrows from the great and fantastic designs he saw at New York’s 1964 World Fair, from NASA’s Space Program, and from his later studies under black and white photographer Aaron Siskind. Travels to the Far East in the mid 1980s exposed Talasnik to hand-buit bamboo and reed structures. In Japan he documented modern architecture and product design. In the early 2000s, he pursued work in sculpture propelled by his interest in engineering and motivated by early 20th century avant-garde Russian stage sets.
It hit me on Sunset Boulevard. I was inching past Chateau Marmont. Not a guy on one could picture with a wrench in one hand, a nut in his mouth, and the other hand probing the lower extremities of an oil sump. He’s not that kind of guy. But, hey! Even car guys aren’t really car guys any longer. Real car guys actually enjoy balancing old Dell’Ortos, or tracking down a suspect leak. They’re made for it if it weren’t for all the clattering chaos of valve trains they might reckon they’d gotten their money’s worth. Musk’s ideas, on the other hand, seem to have materialized out of a cloud. The car (I drove the Model S four-door sedan) is so nimble, so responsive, so telepathic, that it sometimes seems guided by thought alone.

So what is it that makes the Tesla so different? For starters, look in the scrap heap. No muffler. No carburetor(s). No intake. No gearbox. Throw away the differential, the drive shaft, the ignition coil, the starter motor. And while you’re at it, deep-six the valves, the cams, the crank, and the pistons. Oh, and don’t forget the gasoline tank, the oil pan, and the filters and fillers. Plus the radiator (always liked them—beautiful!) and the hoses and clamps. Now, can’t you get left? Four wheels and a clean sheet of paper.

Add a DC electric motor and a battery and you have what Nicola Tesla (the original!) had envisioned in the early 20th century, when the battle between the internal combustion engine and the electric motor first began. The... continued on page 13

TESLA'S TRANCE

Tesla Model S four-door sedan: Base price $52,400 www.teslamotors.com

Dune, designed by Magnus Larsson, would use bacteria to slow the spread of the desert.

to fold real live organisms into their work. It is now theoretically possible to cross trees with glow-in-the-dark jellyfish genes, creating organic street lamps. It’s possible to use sand and bacteria to grow a Great Wall-style bulwark against the spread of the Sahara desert, or to transform E. coli into the digital data stores of tomorrow. It’s even possible to whip up a mood-enhancing mousse from a diner’s own blood.

As evidence, he compiles an impressive kaleidoscope of projects, each lusciously—almost pornographically—illustrated. Many of these images will be familiar to readers who feast regularly on design blogs, but that doesn’t detract from the power of seeing them all in one place, a vibrant petri dish of our bio-connected future.

Myers is a deft, often-thoughtful guide. He has an unobtrusive writing style that eschews the “gee whiz!” response that bleeding-edge design typically inspires. He also acknowledges that biodesign faces significant economic and political hurdles and must be accompanied by new regulations and financial incentives to reach its potential. But there’s a question he does not address, except in passing: Is biodesign good design?

If it’s as urgent as Myers suggests, it damn well better be. Maybe it’s too soon to say. A lot of the featured projects are in the conceptual or prototype phase. Others occupy the lesser precincts of art and thus don’t hew to the usual design standards. But I would’ve liked some consideration of the projects’ individual merits beyond the boilerplate I can like some consideration of the projects’ individual merits beyond the boilerplate I can individual merits beyond the boilerplate I can... continued on page 13

DESIGN WITH NATURE?

Bio Design: Nature + Science + Creativity
William Myers
The Museum of Modern Art, $50

Would you wear a jacket grown from bacteria? Get a tattoo digitally printed on your skin using stem cell technology? How about sip from a plastic cup made possible by the electrochemical wonders of human waste? This futuristic, faintly unsettling collision of biology and design is the subject of William Myers’ Bio Design: Nature + Science + Creativity, a lush, 288-page tome that works as both high-minded eye candy and environmental battle cry. If Bio Design has a fault, though, it’s that the book is all too sanguine about the prospects of a marriage between biology and design, and about the latter’s ability to tame the former to suit its needs.

Myers is a New York-based freelance writer (and contributor to this newspaper). His premise in Bio Design is that designers and architects have drawn inspiration from biology since the days of Lalique and Munch. Only recently, though, have advances in biotechnology—advances that the late Steve Jobs called “the biggest innovations of the twenty-first century,” as the back of the book helpfully notes—given designers the tools...

continued on page 13
The electric powertrain is simple with a minimum of parts.

The brilliance of the Tesla’s design is a stupefying simplicity in which nearly every part plays multiple roles. The battery pack, for instance, is an integral part of a stressed skin structural platform. Those surprisingly compact jumbo coffee cans next to the wheels? They’re amped-up motors—350 horse-power total—that can take the performance model Tesla from 0 to 60 in less than five seconds. Add a few cables (big ones), a black box or two, and that’s it.

Well...there’s the matter of creature comforts. Sublime. Not quite the Iron Turk one would expect from an all-electric. Leave that to the new BMW 3i. It’s more old streamliner. Moderne. A Norman Bel Geddes sort of fuselage with femme overtones. Sleek flush door handles that pulse out to reluctantly offer something for the hand, but it is not the sort of car for the voluptuary. The thrills it gives aren’t the analog sort. But they are thrills, nevertheless.

The silence of a glider. Poise of a top. Effortless vault of a cat. The Tesla seems unflappable even when pressed really hard, cuddling your hopelessly animal flesh in a nearly gadget-free, sleek and refined interior with a minimum of hardware. Remarkably, the designers have not lifted a finger to protest the absence of the knobs and buttons that festoon even the most modest auto interior. They have simply, thankfully, let it be.

Craig Hodgetts is a Principal at Hodgetts + Fung in Culver City, California.

The electric powertrain is simple with a minimum of parts.

unsustainable levels.

The brilliance of the Tesla’s design is a stupefying simplicity in which nearly every part plays multiple roles. The battery pack, for instance, is an integral part of a stressed skin structural platform. Those surprisingly compact jumbo coffee cans next to the wheels? They’re amped-up motors—350 horse-power total—that can take the performance model Tesla from 0 to 60 in less than five seconds. Add a few cables (big ones), a black box or two, and that’s it.

Well...there’s the matter of creature comforts. Sublime. Not quite the Iron Turk one would expect from an all-electric. Leave that to the new BMW 3i. It’s more old streamliner. Moderne. A Norman Bel Geddes sort of fuselage with femme overtones. Sleek flush door handles that pulse out to reluctantly offer something for the hand, but it is not the sort of car for the voluptuary. The thrills it gives aren’t the analog sort. But they are thrills, nevertheless.

The silence of a glider. Poise of a top. Effortless vault of a cat. The Tesla seems unflappable even when pressed really hard, cuddling your hopelessly animal flesh in a nearly gadget-free, sleek and refined interior with a minimum of hardware. Remarkably, the designers have not lifted a finger to protest the absence of the knobs and buttons that festoon even the most modest auto interior. They have simply, thankfully, let it be.

Craig Hodgetts is a Principal at Hodgetts + Fung in Culver City, California.

The electric powertrain is simple with a minimum of parts.

unsustainable levels.

The brilliance of the Tesla’s design is a stupefying simplicity in which nearly every part plays multiple roles. The battery pack, for instance, is an integral part of a stressed skin structural platform. Those surprisingly compact jumbo coffee cans next to the wheels? They’re amped-up motors—350 horse-power total—that can take the performance model Tesla from 0 to 60 in less than five seconds. Add a few cables (big ones), a black box or two, and that’s it.

Well...there’s the matter of creature comforts. Sublime. Not quite the Iron Turk one would expect from an all-electric. Leave that to the new BMW 3i. It’s more old streamliner. Moderne. A Norman Bel Geddes sort of fuselage with femme overtones. Sleek flush door handles that pulse out to reluctantly offer something for the hand, but it is not the sort of car for the voluptuary. The thrills it gives aren’t the analog sort. But they are thrills, nevertheless.

The silence of a glider. Poise of a top. Effortless vault of a cat. The Tesla seems unflappable even when pressed really hard, cuddling your hopelessly animal flesh in a nearly gadget-free, sleek and refined interior with a minimum of hardware. Remarkably, the designers have not lifted a finger to protest the absence of the knobs and buttons that festoon even the most modest auto interior. They have simply, thankfully, let it be.

Craig Hodgetts is a Principal at Hodgetts + Fung in Culver City, California.
In January, AIA San Francisco took a courageous step, endorsing a campaign to urge the overall organization to amend its Code of Ethics and Professional Conduct to prohibit the design of “buildings that violate human rights.” Since everyone is in favor of human rights, this decision seemingly would have been an easy one, but in fact the discussion burst out of its allotted time on the board agenda. It was also noteworthy for the intensity of reflection it raised. Meanwhile, the issue is now moving forward in other AIA chapters, knowledge communities, and ultimately the National Board of Directors, who may all consider the same question.

“Wait a second,” I hear someone saying: “How is it possible for buildings to violate human rights in the first place?” As the president of Architects/Designers/Planners for Social Responsibility (ADPSR), I got to make that case to AIAASF. And the situation was not as simple as it might seem on its face, because there are actually two specific (and rare) building types that violate human rights: execution chambers and supermax prisons.

In the case of execution chambers, it’s no secret that the United States is an outlier among the world’s developed countries—in fact, among all countries—in continuing to use the death penalty. We are in the company of China, Saudi Arabia, Iran, and Iraq, as those particular nations carry out the highest numbers of executions. International human rights groups over many decades have consistently called for the United States (and all countries) to end the death penalty. What’s relatively new is the realization that racial bias and prosecutorial errors make the U.S. death penalty irrationally unfair. That was the reasoning that led the legislatures of six different states to abolish the death penalty in the past six years alone.

Supermax prisons, meanwhile, are architecturally unique in that they contain no space for group activity and are, in fact, designed to eliminate the possibility of voluntary social contact entirely. This is the opposite of most building types, which bring people together for work, learning, play. In fact, human psychology depends on daily social interaction to maintain a stable sense of self. When deprived of social contact for extended periods, people suffer severe depression, paranoia, and hallucinations; commit acts of self-mutilation; and frequently resort to suicide—at a rate more than double that of other prison units.

Accordingly, in 2012, international human rights organizations, including various United Nations bodies, identified prolonged solitary confinement—over fifteen days—as a form of torture. When prisons are designed with hundreds of cells arrayed in tiny pods, when all food and services are delivered to each cell, and exercise takes place only in segregated outdoor yards sized for one person at a time, it’s clear that most people will stay in solitary for decades.

So what does this mean for architects? Commissions for death chambers come up occasionally, exemplified by one in 1984 for the federal execution chamber in Terre Haute, Indiana, and California’s remodeling of its death chamber at San Quentin State Prison, in 2010. There are over 50 supermax prisons in the United States, and an RFP is out for one now.

These are not proud milestones in domestic governance or architectural history, so we cannot let our natural aversion to the horror of execution or prison conditions keep us from confronting the issue. Consider that doctors, nurses, psychologists, anesthesiologists, and many other medical professionals have specifically amended their ethics codes to prohibit participation in executions or any act of torture. The World Medical Association code even states, “The physician shall not provide any premises, instruments, substances, or knowledge to facilitate the practice of torture.”

Does the public expect anything less from architects who “provide premises” as our basic public service? Does our obligation to protect public “health, safety, and well-being” include, as a bare minimum, a commitment to stop making places where—admittedly despised—members of the public will be killed or tortured?

ADPSR shared our campaign at the recent conference of the AIA Academy of Architecture for Justice (AAJ). AAJ is the knowledge community of AIA members who design prisons, jails, police stations, and courthouses. From what we saw at the conference, some members interpreted our campaign as needlessly casting blame, while others agreed that extreme isolation and execution don’t belong in even the toughest kind of facilities they would be willing to design. Without presuming to speak for AAJ, we do want to clarify that we cast no blame on past work, before the ground rules for solitary confinement and human rights shifted. In the past, the consequences of housing thousands of people in supermax prisons weren’t clear. But it is our hope that knowing what we now know, AAJ will join AIAASF in support of ADPSR’s human rights position.

What’s at stake here is not just the tiny number of contracts for these building types, but architects’ professional commitment to public well-being. This can’t be just an individual act of conscience, for instance, by an individual refusing to design a supermax prison—since surely someone else will design it. And some brave architects facing such a program no doubt try to talk their clients into a more humane approach. Yet such a conversation may well get cut short by the prospect of losing the contract to other architects who won’t question the program.

The architects who take the courageous stand of challenging unreasonable client demands need support. We want them to have the support of the AIA Code of Ethics, and of a profession publicly committed to the highest standards of Human Rights. AIA San Francisco has taken the first step. To join ADPSR’s petition to AIA, go to www.tinyurl.com/aiaethics or contact ADPSR (www.adpsr.org) to host a discussion at your local AIA chapter.

RAFAEL SPERRY IS PRESIDENT OF ARCHITECTS / DESIGNERS / PLANNERS FOR SOCIAL RESPONSIBILITY. HE IS BASED IN SAN FRANCISCO.
OUR BEST CONFERENCE YET—SIGN UP TODAY!

Cut through the jargon and consider the heart of high performance building envelopes. Join a broad consortium of your peers at facades + PERFORMANCE, where experts in the industry will analyze, discuss, and dispute the development, implementation, and maintenance of high-performance building enclosures.

Discover new perspectives on building skins and opportunities for advancement in the delivery of cladding systems.

Keynote Speaker:
Christoph Ingenhoven
World Class Sustainable Design Visionary

Visit www.facade.archpaper.com for more information.
New Solarban® R100 solar control, low-e glass. A better glass for a better environment.

Clean lines. Clean look. Clean conscience. It's a lot to expect from an ordinary piece of glass. Then again, Solarban® R100 solar control, low-e glass is about as far from ordinary as you get – thanks to a Solar Heat Gain Coefficient of .23 and a neutral-reflective appearance that lets your building put its best face forward. And you'll really be surprised by the extraordinary energy savings you can expect with Solarban R100 glass. To get your copy of the white paper, go to ppgideascapes.com/SBr100.