ARCHITECTURAL RECORD
10 October 1961
Building Types Study: Schools
Quiet Architecture of Edward Larrabee Barnes
Organization for Efficient Practice
New Precast Techniques
Full Contents on Pages 4 & 5
versatile Qualitybilt wood casements...

... include Qualitybilt wood casements for that final, distinctive touch to your best designs. The complete line encourages imaginative window treatments. The excellent quality and precision construction allow you to specify these modern casements with absolute confidence. You'll find complete information in Sweet's Architectural and Light Construction Files and we have architectural tracing details for you upon request.

Qualitybilt WOODWORK

Farley & Loetscher Mfg. Co. / Dubuque, Iowa
PRESTRESSED CONCRETE

COVERS EVERY OPERATION

1. Force development calculations—from the design engineers' basic data Ryerson furnishes the necessary computation verifying that forces developed by our system meet all requirements of your plans and specifications.

2. Detailing and placement plans—Ryerson prepares detailed placing drawings for the tendons, grout connections, grout vent pipes, anchorages, and other components. All units are clearly tagged and identified in accordance with these drawings.

3. Quality-controlled tendon and anchorage assembly—all units are fabricated under carefully controlled conditions. We can furnish test reports on every heat of wire used in the tendon. In every processing step we maintain close quality controls that assure compliance with all your specifications.

4. Equipment for precise stressing and positive grouting—we furnish all equipment, including easily operated jacks, precise instruments for measuring stress and elongation, hydraulic pumps, drop mixers, etc.

5. Field labor procedures—experienced Ryerson personnel assist in the supervision of every step of the post-tensioning operation, from accurate placement of tendons through precision stressing and anchoring to final positive grouting.

6. Dependably scheduled deliveries—Ryerson's nationwide distribution facilities give unequaled convenience and flexibility. Materials and equipment arrive at construction site in accordance with job progress.

RECENT CONSTRUCTION PROJECTS USING RYERSON POST-TENSIONING

WANAPUM DAM DEVELOPMENT, EPHRATA, WASHINGTON
BUILDER—Public Utility District of Grant County, Washington
ENGINEER—Harza Engineering Co., Chicago
CONTRACTOR—Grant County Constructors

UNITED AIR LINES EXECUTIVE OFFICE AND TRAINING CENTER, CHICAGO
ARCHITECT—Skidmore, Owings & Merrill
CONTRACTOR—Gust K. Newberg Construction Co.

ONEIDA LAKE BRIDGE
BUILDER—State of New York, Dept. of Public Works
ENGINEER—Summers, Munninger and Molke
CONTRACTOR—Terry Contracting, Inc.

CHICAGO EXPOSITION CENTER
BUILDER—City of Chicago
CHIEF ARCHITECT—Alfred Shaw
STRUCTURAL ENGINEER—Carl Metz
CONTRACTOR—Gust K. Newberg Construction Co.

NAVAL AIR STATION TAXIWAY, LEMOORE, CALIFORNIA
BUILDER AND ENGINEER—U.S. Navy
CONTRACTOR—Griffith Company

NORTHWEST EXPRESSWAY OVERPASS, CHICAGO
BUILDER AND ENGINEER—Cook County (Illinois) Highway Dept.
CONTRACTOR—Thomas McQueen Co.

LAKE MEADOWS SKATING RINK, CHICAGO
BUILDER—New York Life Insurance Co.
ARCHITECT AND ENGINEER—Skidmore, Owings & Merrill
CONTRACTOR—Turner Construction Co.

GEORGE WASHINGTON BRIDGE APPROACHES, NEW YORK CITY
BUILDER AND ENGINEER—Port of New York Authority
GENERAL CONTRACTORS—Gull Contracting, Inc.; Johnson, Drake & Piper
SUB-CONTRACTOR—Precore, Inc.

MISSION VALLEY FREEWAY BRIDGES AND PRESIDIO PARK OVERPASS, SAN DIEGO
BUILDER AND ENGINEER—State of California, Dept. of Public Works, Div. of Highways
CONTRACTOR—W. F. Maxwell Co.

SANTA MONICA AND SANTA ANA FREEWAYS INTERCHANGE
BUILDER AND ENGINEER—State of California, Dept. of Public Works, Div. of Highways
CONTRACTOR—Peter Kiewit Sons Co.

CENTURY 21 COLISEUM, SEATTLE
BUILDER—State of Washington, Dept. of Commerce & Economic Development
ARCHITECT—Paul Thiry, Seattle
CONTRACTOR—Howard S. Wright Construction Co., Seattle

LEHIGH PORTLAND CEMENT STORAGE BUILDING,
MITCHELL, INDIANA
ENGINEER AND CONSTRUCTOR—Fruin-Colnon Contracting Co.

MULTI-LEVEL PARKING DECK, HAMMOND, INDIANA
BUILDER—Triangle Parking Corp., Hammond
ENGINEER—DeLuw, Cather & Co., Chicago
CONTRACTOR—Roy C. Clark, Inc., East Chicago, Indiana

ROOF STRUCTURES, CONEY ISLAND POLLUTION CONTROL PROJECT
BUILDER—City of New York, Dept. of Public Works
ENGINEER—Greeley & Hansen, Chicago
Consultant—Frank Klein, Chicago
CONTRACTOR—Lasker-Goldman Corp., New York City

GRINNELL COLLEGE FINE ARTS CENTER,
GRINNELL, IOWA
ARCHITECT—Skidmore, Owings & Merrill
CONTRACTOR—The Weitz Company, Inc., Des Moines

OTHER RYERSON CONSTRUCTION PRODUCTS
Re-bars, spirals, wire fabric, sheet steel piling • Open-web joists • Caisson rings • Structural shapes • Structural and aluminum tubing • Grading • Stair treads • Threaded bars • Crex and Lally columns • Aluminum building products • PVC waterstops, expansion joints, conduits, etc.

RYERSON STEEL
Joseph T. Ryerson & Son, Inc., Member of the United Steel Family

ARCHITECTURAL RECORD October 1961 3
Architectural Engineering

HIGH-RISE STRUCTURES IN HAWAII
COMBINE PRECAST, POURED CONCRETE 176
by Alfred A. Yee
Shows how one engineer is getting more structurally efficient and economical precast concrete framing by combining precast units compositely with poured-in-place concrete. Particular attention is paid to detailing of connections.

TECHNICAL ROUNDP 182, 183
Shutting Out Bowling Alley Noise
Plastics Featured in Unusual Structures

TIME-SAVER STANDARDS 184
Lighting for Stores: 2 (Conclusion)

BUILDING COMPONENTS 189
A Lexicon for Plastics in Building, Part 1
by William Demarest

PRODUCTS REPORTS 193

OFFICE LITERATURE 194

Record Reports

BEHIND THE RECORD 9
"Architects as Leaders"
by Emerson Goble

EERO SAARINEN DEAD AT 51 10

BUILDINGS IN THE NEWS 12
New Campus for University of Illinois
Design for a Castle Which Might Have Been 14

CURRENT TRENDS IN CONSTRUCTION 18
"Building for Learning"—A monthly analysis prepared for the RECORD by Edward A. Sprague, Associate Economist, F. W. Dodge Corporation

CONSTRUCTION COST INDEXES 20

MEETINGS AND MISCELLANY 23
A roundup of professional news

REQUIRED READING 38

CALENDAR AND OFFICE NOTES 266

Architects and Buildings

BARNES, EDWARD LARRABEE. U.S. Consulate, Tabriz, Iran ... 121; Haystack Mountain School of Arts and Crafts, Deer Isle, Me. ... 126; Dormitories, Saint Paul’s School, Concord, N.H. ... 126; Helen Newbery Joy Residence for Women, Wayne State University, Detroit 126; Neiman-Marcus, Fort Worth 122
GIAMPI, MARIO J. Vista Grande Primary School, Daly City, Calif. ... 122
CURTIS AND DAVIS. Riverbank Elementary School, Stamford, Conn. ... 163
EISENSHAT, SIDNEY. Union Bank, Beverly Hills, Calif. ... 142
GRUEN, VICTOR. ASSOCS., AND DANIEL, MANN, JOHN­SON & MENDENHALL, Tishman 615 Building, Los Angeles ... 139
HAMPTON, MARK. Amaryllis Park Primary School, Sarasota, Fla. ... 172
KATZ, WAISMAN, BLUMENKRANZ, STEIN, WEBER. Public School 46, Brooklyn ... 156
KETCHUM AND SHARP. Darlen High School, Darlen, Conn. ... 164
MANN & HARROVER. Richland Junior High School, Memphis, Tenn. ... 176
McLEOD AND FERRARA. West Bethesda High School, Montgomery County, Md. ... 169
SCHLESINGER, FRANK. Ira Bernstein House, Princeton, N.J. ... 181
SKIDMORE, OWINGS & MERRILL. Drexel National Bank, Chicago ... 144
TRUSSELL, KENNETH. Burton Cohen House, North Miami, Fla... 147
WINTER, WILLIAM R., MORGAN AND O'NEAL. Woodlawn High School, Shreveport, La. ... 166

Authors and Articles

GRUEN, VICTOR. ASSOCS. "Organization for Effective Practice" ... 132
SCHWARTZMAN, DANIEL. "Lighting for Stores," Part 2... 184
YEE, ALFRED A. "High-Rise Structures in Hawaii Combine Precast, Poured Concrete" ... 176
LEXICON OF PLASTICS IN BUILDING ... 189
VIBRATION ISOLATION SYSTEM SHUTS OUT BOWLING ALLEY NOISE ... 182

ARCHITECTURAL RECORD October 1961

2.1 ARClllTECTURAL RECORD
Features

QUIET ARCHITECTURE OF EDWARD LARRABEE BARNES 121 A portfolio of five new projects: a United States consulate, a summer arts and crafts camp, two school dormitories and a shopping center

ORGANIZATION FOR EFFICIENT PRACTICE: 6 133 Some principles of complete architecture and how they were applied to the design of a downtown shopping complex by Victor Gruen Associates

COLORFUL HIGH-RISE IS TALLEST IN L.A. 139 Victor Gruen designs a new kind of curtain wall with blue glass mosaic tile facing

CALIFORNIA BANK FEATURES LUXURY INTERIORS 142 Posh spaciousness by Maria Bergson for the moneyed Beverly Hills citizenry

HANDSOME BANK IN CHICAGO REDEVELOPMENT 144 Sleek good looks characterize this neighborhood bank by SOM

BIG HOUSE SPACIOUSNESS FOR SMALL FLORIDA LOT 147 Kenneth Treister uses an “exploded” two-story plan to meet clients’ needs

MASONRY PYLONS SUPPORT TRIM HOUSE 151 Frank Schlesinger applies the “service shaft” principle to house design

Building Types Study 299: Schools

Eight Schools With Good Ideas For Achieving Quality With Real Economy

ART AND NEAT DETAILS BEAT BROOKLYN BUDGET 156 Public School 46, Brooklyn, New York

GEODESIC GYM GIVES MORE FOR LESS 159 West Bethesda High School, Montgomery County, Maryland

PRECAST VAULTS AND PLAYFUL AIR TO GRADE SCHOOL 162 Vista Grande Primary School, Daly City, California

WELL EQUIPPED, LOW-UPKEEP SPACE IS ECONOMY BASIS 164 Darien High School, Darien, Connecticut

A BUDGET CAMPUS SCHEME REPLETE WITH MURALS 166 Woodlawn High School, Shreveport, Louisiana

A CHALLENGE TO PROVIDE THE BEST FOR FIXED FUNDS 168 Riverbank Elementary School, Stamford, Connecticut

DISCIPLINE AND TASTE CUT COST TO $10 SQ FT 170 Richland Junior High School, Memphis, Tennessee

EXPANSION SCHEME USES REPETITIVE CLASSROOM UNIT 172 Amaryllis Park Primary School, Sarasota, Florida
Coming in the Record

MODERN ARCHITECTURE, MONASTIC

Breuer's great monastic church for St. John's Abbey, Collegeville, Minn., has now been completed, and a major presentation in the RECORD will provide another opportunity (as with Le Corbusier's La Tourette) to consider modern architecture as the expression of ageless purpose and unchanging character at work in a changing world. The perceptive will find, in this most important unit of Breuer's greatest work, a rare combination of true architectural sophistication and true architectural humility.

HOUSES SEEN AS ARCHITECTURE

Every house is not a home, and every house or home is not architecture, either; but it would be the RECORD's thesis that every house has a better chance of being a home if it is architecture—and that this is a reasonable objective right across the board cost-wise. Next month's 16-page special feature on houses will offer some convincing testimony as to the validity of this thesis in five houses ranging from "minimum" to "maximum." All of the houses have rather spectacular sites, and these were gifts of nature; but their wonderful spaces for living—from the smallest to the largest—are the purposeful creations of their architects.

BUILDING TYPES STUDY NO. 300

The RECORD will present next month its 300th Building Types Study, this one a review of current architectural accomplishment in the field of industrial buildings. Kinds of industrial buildings presented will range from small manufacturing facilities to very large research centers: the coverage based, as always with RECORD Building Types Studies, on the most careful editorial analysis of contemporary practice, problems and trends. Not to mention, of course, access to F. W. Dodge Corporation analyses of prospective activity of the type.

ARCHITECTURAL RECORD (combined with AMERICAN ARCHITECT and ARCHITECTURE), title & reg. in U. S. Patent Office, © copyright 1961 by F. W. Dodge Corporation, a Metraw-Hill Company. All rights reserved including the right to reproduce the contents of this publication either in whole or in part. Quotations on bulk reprints of articles available on request. Indexed in Reader's Guide to Periodical Literature, Art Index, Industrial Arts Index and Engineering Index.

Every effort will be made to return material submitted for possible publication (if accompanied by stamped, addressed envelope), but the editors and the corporation will not be responsible for loss or damage.

SUBSCRIPTIONS: Available only by paid subscription. Publisher reserves the right to refuse non-qualified subscriptions. Subscriptions to Architectural Record solicited only from architects and engineers. Position, firm connection, and type of firm must be indicated on subscription orders forwarded to Circulation manager, Architectural Record, 119 West 49th Street, New York 18, N. Y. Subscription prices: U. S., U. S. Possessions and Canada: $6.50 per year; other Western Hemisphere countries, to those who by title are architects and engineers, $9.00 per year per copy. Single copy price except Mid-May 1961 issue $3.00; Mid-May 1961 issue $2.00. Beyond Western Hemisphere, to those by title are architects and engineers, $9.00 per year for 12 monthly issues not including Mid-May 1961 issue. Subscriptions from all others outside U. S., U. S. Possessions and Canada for 12 monthly issues, not including Mid-May issue, $24.00 per year.

CHANGE OF ADDRESS: Subscribers are requested to furnish promptly both old and new address, sending, if possible, stencil impression from magazine wrapper; new postal zone number, if any, should be included. Allow one month for change.

UNCONDITIONAL GUARANTEE: The publisher, upon written request, agrees to refund the part of the subscription price applying to the remaining unfulfilled portion of the subscription if service is unsatisfactory.

Staff of Architectural Record

EDITOR
Emerson Goble, A.I.A.

SENIOR EDITORS
James S. Hornbeck, A.I.A., Features
William Dudley Hunt, Jr., A.I.A.
Elisabeth Kendall Thompson, A.I.A., West

ASSOCIATE EDITORS
Robert E. Fischer, Engineering
Jeanne M. Davern, Assistant to the Editor
Herbert L. Smith, Jr., A.I.A., Houses
Mildred F. Schwartz, Design
Grace M. Anderson
William R. Foxhall
Anne Keffer, Production

CONTRIBUTING EDITOR
Ernest Mickel, Washington

ASSISTANT EDITORS
Kathryn Gallant

EDITORIAL ASSISTANT
Jan Rahm

DESIGN
Eugene H. Hawley, Director
Alex H. Stillard, Associate

CONSULTANTS
George Cline Smith, Economics
Clifford G. Dunnells, Jr., Field Research
Daniel J. Howe, Jr., Public Relations
Sigman-Ward, Drafting

PUBLISHER
Robert F. Marshall

EDITORIAL DIRECTOR
Robert M. Cunningham, Jr.

PUBLISHING ADVISER
H. Judd Payne

CIRCULATION MANAGER
Marshall T. Glenn

Officers of F. W. Dodge Corporation

HONORARY CHAIRMAN OF THE BOARD
James McV. Breed

CHAIRMAN OF THE BOARD
Paul Abbott

VICE CHAIRMAN OF THE BOARD
Charuney L. Williams

PRESIDENT
Irving W. Hadesell

EXECUTIVE VICE PRESIDENTS
Julius T. Little, Robert F. Marshall
T. Oliver Morgan, O. O. Paulsell

EXECUTIVE VICE PRESIDENT AND TREASURER
Howard M. Thompson

VICE PRESIDENTS
Robert M. Cunningham, Jr., William H. Hatch, Jr., H. Judd Payne, Richard H. Ray, George Cline Smith

REGIONAL VICE PRESIDENTS
Miles W. Hatty, Carl B. Bennett, Robert G. Bingham, Roy J. Hard, Alton W. Kitchens, Arthur D. Prior

ASSISTANT VICE PRESIDENT AND COMPTROLLER
Edwin H. Freed

ASSISTANT VICE PRESIDENTS
Walter F. DeSax, Clifford G. Dunnells, Jr., Gault Eastman, Clyde Shute

SECRETARY
John S. Brittain

ASSISTANT SECRETARYS
William C. Breed, Jr., George W. Morgan

ASSISTANT TREASURER
Irving B. Satin
Architects as Leaders

“We expect our living standards to rise more or less automatically. But what will not automatically rise is the environment of living.” So said Hugh Gaitskell, leader of Britain’s Labor party, as quoted by John Crosby in his syndicated column. “This is essentially a matter of planning.”

Recent observations in London, Paris and Rome confirm the fact that cities are not improving automatically with the rising standards of living in European countries. They are choked with automobiles and those blasted little scooters to the point where Paris at least is restricting the sale of automobiles to Parisians. No, improvement in the environment of living is not an automatic concomitant of improving material prosperity. Rather the reverse, as for life in cities.

It is, yes, essentially a matter of planning. And for all that we seem always to be talking about planning, the exact status of it at present is woefully backward. Charles Luckman, an architect who has been around a bit, has this to say about planning in California:

“... The Commission (the Governor’s Commission on Metropolitan Area Problems) was horrified to learn:

“That such urgent riddles as air pollution, water utilities, and transportation were wholly beyond the jurisdiction of local authorities;

“That no comprehensive metropolitan area plan had ever been generated in this state;

“That not a single identified metropolitan area in this state had an over-all planning function;

“That even if such plans had existed, no authority was available to carry them out.”

Luckman’s firm is one that has organized to undertake planning assignments, which might help fill this void. He continues:

“In order to develop a total concept, we put together a 22-man team of researchers, analysts, planners, engineers, traffic consultants, and cost estimators. We gathered data in scores of meetings with firms, individuals, agencies, and authorities. We examined and evaluated 400 separate reports. We collated and weighted the opinions of other architects, engineers, contractors, civic experts, and citizens’ committees.

“Out of this orderly melee, there evolved a coherent solution—and another proof that the architect has a function as the statesman-like advocate of coordinated planning.

“As another evidence of this changing role of the architect, it will perhaps interest you to know that about five years ago, our work in large-scale planning became 30 per cent of our total fee volume.”

The situation seems to be crying for leadership, just such leadership as a well equipped architectural firm could supply. To carry city planning beyond street surveys and mechanical map-making, into something which might impress Mr. Gaitskell as a rise in the environment of living, is a task for architects.

As A.I.A. members know, the encouragement of architects to undertake serious planning and the preparation of members for the job are a current project of the organization. It looks like a clear call for architects to assume their full responsibility for improvement in environmental standards.

—Emerson Goble

ARCHITECTURAL RECORD October 1961 9
EERO SAARINEN DEAD AT 51; ASSOCIATES PLAN TO CARRY ON

EERO SAARINEN'S SKYSCRAPER

Eero Saarinen died unexpectedly on September 1 at the age of 51; and thus ended with tragic and stunning abruptness a lifetime of the most intensive and innovative search and research, effort and accomplishment in the cause of architecture.

Mr. Saarinen showed the first symptoms of illness on August 14 and was taken to the University Hospital, Ann Arbor, Mich., August 21. His death followed an operation, a malignant brain tumor the cause.

In the 11 years since the death of his renowned father Eliel, the younger Saarinen had emerged as a commanding figure in this architectural generation's search for form: he had also steadily and inventively explored, in all his executed work, and as perhaps no other architect of his generation, the new architectural possibilities unfolded by contemporary developments in building materials and techniques. The larger problems of city planning and urban design which had so absorbed his father might also have come to be the equal concern of Eero: such later projects as the U. S. Embassy in London, the residential colleges for Yale (now under construction) and some of his other recent work suggest it. And Mr. Saarinen, in an article on campus planning published last November in the RECORD, commented that "the primary characteristic of this period seems to be building buildings—buildings thought of as entities in themselves." The architect, he said, "must emerge from his self-made cocoon and expand his vision into the next larger thing. In the process he will gradually formulate strong convictions about outdoor space—the beauty of the space between buildings—and if he does, he will carry his convictions on to his most important challenge—how to build cities. This is the next chapter, the one we have not yet begun to face—esthetically."

Mr. Saarinen's partners, Joseph N. Lacy and John G. Dinkeloo, have announced that the plans to move the Saarinen office from Bloomfield Hills, Mich., to Hamden, Conn., will be carried out on schedule (about October 15) and that the entire staff is dedicated to completion of Saarinen's work according to his designs. Ten major projects of Saarinen's design are in various stages of construction, working drawings or final design detail.
The Copper and Brass Research Association considered this impressive spire the year's most distinctive and ingenious application of copper metals in architecture and building construction.

It was designed by Architect Hugh Moore, Jr., of Easton, Pennsylvania and was erected in that city on St. Michael's Church. The design is a reinterpretation of early Gothic forms which were usually made of wood sheathed in lead. Example: Sainte Chapelle in Paris.

The spire stands 32' high on a 9' diameter base, and weighs about 3 tons. It consists entirely of standard mill sizes of Anaconda architectural metals in angles, sheet, rod and tube, thus avoiding the cost of specially designed shapes.

Proposed master plan for new Chicago campus of University of Illinois, to be built in three stages, would provide in the first phase a 40-acre core campus (central in photo above and far right across-page) with the most intensively-used facilities (lecture center, library and student union) related to a "Great Court" (closeup at right) which would be both the ceremonial center of the campus and the roof of the lecture center. High-rise structures, including a 28-story staff office and administration building (shown at left on opposite page, with auditorium across plaza), would be placed at periphery and low-rise buildings in center to establish sense of architectural identity both from within and from without campus.
CAMPUS DESIGN BY FUNCTION, NOT BY DISCIPLINE

A new concept in campus design has been developed by Skidmore, Owings & Merrill, architects, in their master plan for a new Chicago campus for the University of Illinois. Buildings are designed to serve a function rather than a discipline, so that classroom buildings, laboratory buildings and high-rise office buildings replace the traditional "biology" or "special science" building which included classrooms, laboratories and offices. Another significant innovation in the scheme is an "express walkway" which will connect most buildings on the campus at the second-story level, either directly or through tributary walkways, thus creating a pedestrian circulation system completely separated from vehicular traffic.

The plan was made public in Chicago last month at a civic luncheon given by the university's Board of Trustees. It was to be presented formally to the trustees later, with approval expected in time for groundbreaking next summer.

The proposed plan would develop a 106-acre site on Chicago's near west side in three phases at an ultimate cost of at least $150 million—the first phase to be completed by the fall of 1964 for an enrollment of 9000 students, with most advanced undergraduate work restricted to the Colleges of Liberal Arts and Sciences, and Commerce and Business Administration; the second phase to be completed by the fall of 1969 for an enrollment of 20,000 students in a full four-year, degree-granting institution; the third phase, scheduled for construction "probably after 1969," to provide auxiliary buildings—graduate, research and service structures, and other facilities.

The site is at Congress Circle, in the section of Chicago's near west side which lies immediately south and west of the Congress Expressway and the South Expressway, now under construction. The educational program now being offered in temporary facilities of the Chicago Undergraduate Division at Navy Pier will be transferred to the new campus and will be the basis for expansion into a full, four-year degree-granting program. Students at the Congress Circle campus will live at home, so housing facilities are not provided.

In the planning of the educational environment, the architects have explained that four basic ideas predominate:

First, new teaching techniques.
Second, flexibility. Rapid change and growth will require building spaces which permit ready conversion and expansion.

Third, variety in the environment. Each University activity should be in the type of structure which can be utilized most efficiently. Classrooms and laboratories generate mass movements of students in short periods between classes. These can best be housed in three or four-story buildings which do not require passenger elevators. Offices and seminar rooms—generating smaller and more evenly distributed traffic—can best be housed in high-rise buildings. Lecture rooms, the Library and the Student Union require specialized structures.

Fourth, inter-disciplinary opportunities. Higher education is moving toward closer inter-relationships among the academic fields of study. To meet this development, a building should be designed to serve a function rather than a discipline. Classrooms and laboratories should be interchangeable and usable for various kinds of courses, both for economy and for inter-disciplinary contact. . .

The need for additional utilities can be met by a common service core for all floors—again important and economical. Planning classrooms and laboratories in separate buildings achieves another economy because ceiling heights are nine ft for classrooms and twelve ft for laboratories.
ONCE upon a time an architect named Harry Weese designed a Swiss chalet for a Rocky Mountain setting. Consisting of a fairy-tale bedroom tower and a glass pavilion living room, the three-bedroom summer and winter vacation house was to be a speculative or non-speculative residence.

The house was so arranged that three separate and private suites with bedroom and bath could be rented independently when the owner was not there. During rental season, living-dining areas could be shared.

When the owner lived in the house, he and his family could enjoy maximum privacy. The separa-
tion of the bedrooms contrasted with the extroverted living room which looked out onto mountain views.

The bedroom tower was reached from a stairway running between curved walls from floor to floor. On the ground floor was the dining area and a service kitchen, whose built-in units were concealed by a folding screen. This room was convertible to another bedroom on occasions. Each of the three bedrooms in the tower had its own balcony.

The living room had a large fireplace; foam rubber pads on the window seats which made up into four to eight sleeping accommodations for young people.

As the architect himself said of his house, “Designed for conventional construction, if somewhat unconventionally arranged, and easy maintenance; for example, the exterior of unpainted shingles. Exterior doors are flush white pine; casement sash is steel. Heating is by baseboard convection system. Bathrooms are tiled, with built-in cabinets and shelving under lavatories. Storage located by the ground floor side entry is intended for ski equipment.”

The house was one of 12 commissioned by the late Walter Paepcke to be designed for Aspen. And then the client died, and the house was never built.
When the modern concept of complete linen supply service is designed into a commercial or institutional building, maintenance and operating troubles are designed out. Expensive, space-wasting laundry equipment is eliminated. Fewer employees are needed. Valuable floor space is freed for income-production. Uniforms, table linens, towels, bed linens . . . washable cotton garments, surgical and other specialized linen items are furnished, professionally laundered and replaced regularly by a local linen supplier, in many instances at a saving over self-laundry installations.

Your local Linen Supplier will welcome the opportunity to work with you in the planning stages of your next building commission. Look him up in the Yellow Pages under "Linen Supply" or "Towel Supply."

ARCHITECTS

FREE BOOKLET, Case histories and suggestions for designing the most efficient linen supply services into schools, hospitals, restaurants and motels are available. Mention booklet(s) wanted.
Only the remarkable new Westinghouse Selectomatic Mark IV Elevator System

knows the shortest distance between two points...doesn't waste time going to the top or bottom when you're in-between.

operates on Demand Reversal—the ability to reverse direction at any point in the building. Cars go from any floor to any floor.

scans the entire building, matching calls and cars, decides in a fraction of a second where each car must go to give the fastest possible service.

travels in direct response to demand, not on a timed dispatch cycle.

Result: Selectomatic Mark IV gives equal service to all floors, answers calls as much as 30.6% sooner than the fastest system before Mark IV. Proven by in-use tests. Even if you're not contracting for new elevators this year call Westinghouse now to find out more about this radically new elevator system, available for installation in 1962.

Contact your local Westinghouse representative for a convenient viewing date of a 12-minute, color movie demonstration. Or for more information, write Westinghouse Electric Corporation, Department RJ00, Elevator Division, 150 Pacific Ave., Jersey City, New Jersey.

You can be sure...if it's Westinghouse.
BUILDING FOR LEARNING

“INVESTMENT IN HUMAN CAPITAL” was a phrase bandied around Washington this spring mostly by supporters of legislation to increase Federal aid to education. It was intended, of course, to serve as a substitute for less noble sounding terms such as “Government spending.” But despite its political implications, “investment in human capital” is a most appropriate expression to highlight the financing of our school systems. One of the surest ways to ensure the future of this country, or at least a future worth looking forward to, is to make sufficient current investment in the process whereby the quality of human capital is improved. Many, if not most, of our communities are taking the necessary steps. The lure of substantial Federal subsidies for local school districts (which has been put off probably for two years at least) has not deterred them from making their own efforts to upgrade the school systems.

IN RECENT YEARS, public school teachers’ salaries have risen notably faster than average money income from all occupations. School construction, the area of particular interest to us, has proceeded to a record pace for the last year and a half. Contract awards for educational and science buildings amounted to some $3 billion in 1960, 13 per cent above 1959 and easily an all-time high for any year. For the first seven months of 1961, school awards ran 6 per cent ahead of the same period last year. As a whole 1961 will undoubtedly set a new record for dollar valuation of school contracts. As we predicted last fall, total square footage involved in school contracts probably will range close to the 1960 level.

SCHOOL BUILDING now accounts for 26 per cent of the nonresidential building market, and is outranked in size only by the giant commercial building category. We anticipate a very strong growth trend in school building during the decade of the Sixties. In particular, there will be much more emphasis on construction of secondary school and college facilities for reasons that have been documented in this column before. But elementary school construction will still be the largest part of the school building market. Enrollments at this level are expected to rise between 12 and 18 per cent by 1970—a slower rate than experienced during the 1950’s. Because we are over the hump for a while in enrollment increases this does not mean an equivalent slowdown in elementary school building. Some fast growing areas around metropolitan centers will require more new school construction than ever before. The next five or six years will offer a good opportunity to eliminate what is left of the backlog of classroom need. Furthermore, increased emphasis on supporting facilities and on more classroom space per pupil should mean larger schools for the same enrollment. To allow use of audio-visual aids and other new teaching methods in elementary schools, the National Education Association claims that classrooms (for a maximum of 30 students) should have approximately 1400 sq ft of usable space.

Edward A. Sprague, Associate Economist
F. W. Dodge Corporation
A McGraw-Hill Company
THIS ACRYLIC LIGHTING SHIELD WILL LAST 20 YEARS

...IT'S MADE FROM DU PONT MONOCITE*

Twenty years is a conservative estimate, but even at 20 years the acrylic shield made from MONOCITE has an efficient, "non-yellow" service life more than 3 times greater than non-acrylic plastic shields. This is the best reason we know for specifying "cast acrylic shields made from Du Pont MONOCITE" for the lighting fixtures in your buildings. For more information mail the coupon below.

*Trademark for Du Pont's H-100 methylacrylate monomer.

BETTER THINGS FOR BETTER LIVING . . . THROUGH CHEMISTRY

E. I. du Pont de Nemours & Co. (Inc.)
Dept. A8-10, Room 2507M, Nemours Bldg.
Wilmington 98, Delaware

[] Please send your Lighting Booklet.
[] Please ask an acrylic-sheet manufacturer to contact me.

NAME ___________________________
POSITION _________________________
COMPANY _________________________
ADDRESS _________________________
CITY ___________________ STATE ______

ARCHITECTURAL RECORD October 1961 19
Construction Cost Indexes

Presented by Clyde Shute, Director of Statistical Policy, Construction News Div., F. W. Dodge Corp., from data compiled by E. H. Boeckh & Assoc. Inc.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>NEW YORK</th>
<th>ATLANTA</th>
<th>ST. LOUIS</th>
<th>SAN FRANCISCO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESIDENTIAL</td>
<td>APTS., HOTELS, OFFICE BLDGS.</td>
<td>COMMERCIAL AND FACTORY BLDGS.</td>
<td>RESIDENTIAL</td>
</tr>
<tr>
<td></td>
<td>Brick and Concrete</td>
<td>Brick and Concrete</td>
<td>Brick and Steel</td>
<td>Brick and Concrete</td>
</tr>
<tr>
<td>1930</td>
<td>127.0</td>
<td>126.7</td>
<td>124.1</td>
<td>128.0</td>
</tr>
<tr>
<td>1935</td>
<td>93.8</td>
<td>91.3</td>
<td>104.7</td>
<td>108.5</td>
</tr>
<tr>
<td>1939</td>
<td>123.7</td>
<td>124.4</td>
<td>130.7</td>
<td>133.4</td>
</tr>
<tr>
<td>1949</td>
<td>247.3</td>
<td>240.8</td>
<td>242.8</td>
<td>246.6</td>
</tr>
<tr>
<td>1950</td>
<td>256.2</td>
<td>254.5</td>
<td>249.5</td>
<td>251.5</td>
</tr>
<tr>
<td>1951</td>
<td>273.2</td>
<td>271.3</td>
<td>263.7</td>
<td>274.9</td>
</tr>
<tr>
<td>1952</td>
<td>278.2</td>
<td>274.8</td>
<td>271.9</td>
<td>265.2</td>
</tr>
<tr>
<td>1953</td>
<td>281.3</td>
<td>277.2</td>
<td>281.0</td>
<td>286.0</td>
</tr>
<tr>
<td>1954</td>
<td>285.0</td>
<td>278.2</td>
<td>293.0</td>
<td>300.6</td>
</tr>
<tr>
<td>1955</td>
<td>293.1</td>
<td>286.0</td>
<td>300.0</td>
<td>308.3</td>
</tr>
<tr>
<td>1956</td>
<td>310.8</td>
<td>302.2</td>
<td>320.1</td>
<td>328.6</td>
</tr>
<tr>
<td>1957</td>
<td>318.5</td>
<td>308.3</td>
<td>333.1</td>
<td>345.2</td>
</tr>
<tr>
<td>1958</td>
<td>328.0</td>
<td>315.1</td>
<td>348.6</td>
<td>365.4</td>
</tr>
<tr>
<td>1959</td>
<td>342.7</td>
<td>329.0</td>
<td>367.7</td>
<td>386.8</td>
</tr>
<tr>
<td>1960</td>
<td>351.6</td>
<td>337.2</td>
<td>377.7</td>
<td>395.8</td>
</tr>
<tr>
<td>May 61</td>
<td>362.3</td>
<td>342.1</td>
<td>396.8</td>
<td>422.0</td>
</tr>
<tr>
<td>June 61</td>
<td>365.5</td>
<td>345.5</td>
<td>402.6</td>
<td>427.3</td>
</tr>
<tr>
<td>July 61</td>
<td>367.3</td>
<td>346.6</td>
<td>405.4</td>
<td>431.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% increase over 1939</th>
<th>% increase over 1939</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 61</td>
<td>197.4</td>
</tr>
<tr>
<td>ST. LOUIS</td>
<td>183.2</td>
</tr>
<tr>
<td>SAN FRANCISCO</td>
<td>190.6</td>
</tr>
</tbody>
</table>

Cost comparisons, as percentage differences, for any particular type of construction, are possible between localities, or periods of time within the same city, by dividing the difference between the two index numbers by one of them; i.e.:

index for city A = \(\frac{110 - 95}{95} \)

(both indexes must be for the same type of construction).

Then: costs in A are approximately 16 per cent higher than in B.

\[\frac{110 - 95}{95} = 0.158 \]

Conversely: costs in B are approximately 14 per cent lower than in A.

\[\frac{110 - 95}{110} = 0.136 \]

Cost comparisons cannot be made between different types of construction because the index numbers for each type relate to a different U. S. average for 1926-29.

Material prices and wage rates used in the current indexes make no allowance for payments in excess of published list prices, thus indexes reflect minimum costs and not necessarily actual costs.
Samuel T. Hurst, dean of the School of Architecture and Arts at Auburn University, Alabama since 1957, has been appointed dean of the School of Architecture at the University of Southern California.

Dean Hurst's resignation at Auburn was announced by President Ralph B. Draughon and Dr. M. C. Huntley, dean of faculties, who said, "We congratulate him upon the promotion and U.S.C. upon obtaining the services of such an excellent educator."

The new U.S.C. dean assumed his new position in Los Angeles in September. Professor Henry Charles Burge has been acting dean of the U.S.C. School of Architecture the past year since Arthur B. Gallion resigned after 15 years to become director of planning for Harland Bartholomew and Associates in Honolulu.

A graduate of Harvard University where he received his master's degree in architecture in 1949 and of Georgia Tech where he earned his bachelor of architecture degree in 1942, Dean Hurst recently received a new four-year appointment to the National Architectural Accrediting Board.

In his position as dean of the School of Architecture and the Arts at Auburn, he has also been responsible for the department of art, building technology, dramatic arts and music. Dean Hurst has been a speaker at many architectural conferences across the nation and has lectured on architecture, art and education at Notre Dame, Georgia Tech, Union Theological Seminary in Richmond and the University of Arkansas.

Silouan Gropius Receives Highest German Prize

At a ceremony held in the Pauls Kirche on August 28, the birthday of Goethe, Dr. Walter Gropius of Lincoln, Mass. received the "Frankfurter Goethe Preis" for 1961 ($13,000). The citation declares that "Gropius, by means of his buildings, his writings, and his educational activities, has given direction to the architecture of the industrial age and influenced its development."

This is the first time the prize has been given to an architect. Former recipients of the Goethe Preis, which is given every third year, include Sigmund Freud, Albert Schweitzer, Gerhard Hauptmann, Max Plauk, Carl Zuckmayer and Thomas Mann.

Architectural Innovators Share Norton Professorship

For the first year the Charles Eliot Norton Professorship, which honors Harvard's great teacher of fine arts, will be shared. Newly appointed Norton Professors for the Harvard academic year 1961-62 are Felix Candela of Mexico, R. Buckminster Fuller of the United States and Pier Luigi Nervi of Italy.

Professor Candela will lecture from the middle of November to Christmas, 1961; Mr. Fuller from the beginning of February to the middle of March, 1962; and Professor Nervi, from the beginning of April to the middle of May.

continued on page 24
Second Reynolds Student Competition Invites Entries

For the second year the Reynolds Aluminum Prize for Architectural Students is being offered in recognition of design achievement, "the best original design for a building component in aluminum", at two separate levels: the individual school prize and the national prize.

Subjects chosen for design work can range from a single element to a complete architectural entity. Eligible to enter are students who have previously completed a minimum of two years of an architectural design curriculum at any school in the United States which is a member or associate member of the American Association of Collegiate Schools of Architecture or which has a student chapter, American Institute of Architects.

Each participating school will submit its winning design to the A.I.A., administrator for the Reynolds Prize, for consideration for the national prize. From these entries a jury of distinguished architects appointed by the A.I.A. will select one for the national prize, which carries an award of $5000—$2500 for the student or group of students originating the design and $2500 for the winner's school. A $200 school prize will be given to the winner in each of the participating schools.

Dean or department heads from schools wishing to participate should notify the A.I.A. by letter. For information write the A.I.A., Attn: Reynolds Aluminum Prize, 1735 New York Ave., N.W., Washington 6, D.C.

It is suggested that student designs be prepared for judging by individual schools no later than Dec. 18 to provide time for school judging and shipment of the selected entry to the A.I.A. in time for review by the National Prize jury. Each winner of the school prize submitted in the national competition must be received no later than Jan. 9.

A.I.A. National Honor Awards Program Announced

To encourage excellence in architecture, the American Institute of Architects announces its 14th Annual Program of National Honor Awards for current work. Eligible are buildings designed by registered architects practicing professionally in the United States, having been erected anywhere in this country or abroad and completed after Jan. 1, 1957.

A jury of five architects (one, an architectural educator) appointed by the Board of Directors of the A.I.A. will make one or more First Honor Awards for Distinguished Accomplishment in Architecture and as many Awards of Merit as it finds entries deserving.

Entries will be judged, not in competition with other entries, but on the basis of the architect's solution of the problem presented him and its worthiness for an award of excellence in architecture.

Entry slips must be received prior to Nov. 28. For further information write: 1962 Honor Awards Program, A.I.A., 1735 New York Ave., N.W., Washington 6, D.C.

Frank Lloyd Wright in Posthumous Recording

"Frank Lloyd Wright on Record" is the title of a long-playing record being issued this fall by Caedmon Records, Inc. In a one-hour conversation the late Mr. Wright speaks in typically candid style, answers questions posed by his publisher and by Caedmon.

Made from a master tape done in 1955, the recording, says Harold Drayson, national sales director for the spoken-word label, has been "most eagerly awaited.... We have had orders, re-orders and back orders, since it was first announced awhile ago. However, editing problems prevented its issuance until now."

Kaufmann International Award Jury Members Announced

The Jury of the Kaufmann International Design Award, which met in Zurich in September to select the winner of the 1961 Award, consists of the following members: Franco Albini, professor at the University Institute of Architecture in Venice, Italy; Jay Doblin, director of the Institute of Design, Illinois Institute of Technology, United States; Kaj Franck, director of the design department of the Waertsila-Arabia Potteries and the Waertsila-Notsjo Glassworks, Finland; Prince Lud-wig Von Hessen, founder and chairman of the Institut fuer Neue Technische Form at Darmstadt, Germany; and Iwataro Koike, associate professor at the Tokyo University for the Arts, Japan.

The announcement of the Jury's choice will be made in November.

Glass Cross Identifies Minnesota Church

This free-standing cross of colored glass identifies Transfiguration Lutheran Church in Bloomington, Minn. Capturing light and glowing with it, the 31-ft high and 12-ft wide cross serves as the visual expression of the name of the church.

Across the horizontal bar there are eight sections of colored glass. Within the metal framework are several hundred pieces of glass in approximately 40 shades. Colors begin with dark shades at the outer ends and fade to clear white in the center. The artist, August Molder, has woven into the glass work symbols of transfiguration: the Iota and the Chi, the first letters of Jesus and Christ in Greek; three shells for James; a serpent in a chalice for John; and crossed keys for Peter.

The entire cross weighs nearly 300 pounds. Its base is sunk in three yards of concrete.

Grant Gilderhus, of Sacred Design Associates, Inc., Minneapolis, Minn., contributed the concept of the glass cross. Structural engineering and working drawings were done by Adkins and Johnson.

more news on page 83
more beautiful than words can describe...

This fresh, new interpretation of cushion-edged tile is a closely textured weave pattern with the look and feel of luxurious hand-woven fibers. VICO Glazed WeaveTex Ceramic Tile is popular-priced, easy to maintain, and impervious to the elements... perfect for Interiors, Exteriors, New Construction and Modernization... wherever enduring elegance and graciousness is desired.

Available in 1 Ft. by 1 Ft. Square Sheets of 3 inch by 1½ inch tile... with "Perfo-Mesh" backing for easy and speedy installation. Trim shapes are available. Packed 25 sq. ft. per carton.

Contact your local Distributor for Samples, Prices, Color Literature and further information, or write directly to:

AMSTERDAM CORPORATION
285 Madison Avenue, New York 17, N.Y.

U.S. Pat. Pending VICO is a Reg. Trade Mark of the Amsterdam Corp. ©1961. Amsterdam Corp., New York
Space for Working In

OFFICE BUILDINGS. An architectural Record Book. F. W. Dodge Corporation, 119 W. 40th St., New York 18. 248 pp., illus. $9.75.

This is a collection of articles, and case histories, of office buildings published in ARCHITECTURAL RECORD over the past five or six years. For convenience of organization, the buildings have been sorted into sections covering high-rise and low-rise structures, although, as RECORD editor William Dudley Hunt Jr. points out in his introduction, design principles applied to one size may have equal implications for the other.

A third section, on engineering, comprises material on automation, acoustics, air conditioning and data processing facilities.

For Our Universities

In 1958, a survey conducted by the American Association of Physics Teachers showed that 200 university physics departments planned building projects in the near future to fill the needs of increasing enrollment in both beginning and advanced classes. With the aid of a grant from Educational Facilities Laboratories, Mr. Palmer, chairman of the physics department at Beloit, and Mr. Rice, an architect, began to look for answers to some of the questions these physics departments would be asking.

When the authors say that "special problems arise because a physics building is more complex than most other college buildings," they appear to be understating the case, seeing that physics buildings must somehow accommodate classrooms, conference rooms, libraries, shops, student labs and research labs—the future requirements and uses of the last being difficult to predict.

After several chapters broadly defining the needs of college physics departments, the authors add individual chapters on floor plans, lecture rooms, classrooms, teaching labs, research labs, offices and libraries. All of these chapters are illustrated with several examples of solutions found in existing buildings.

The study should be helpful in designing physics buildings, but will probably have its greatest utility for both administrators and architects in the programming stage.

The final chapter is a discussion of the requirements of high school physics laboratories.

A Golden Age in Color

THE HORIZON BOOK OF THE RENAISSANCE. Horizon, 551 Fifth Ave., New York 17. 431 pp., illus. $17.50.

Horizon, the magazine that is almost a book, has gone all the way in this enormous compendium of Renaissance art and history. Most striking are the numerous and superbly reproduced illustrations, chosen for their value both as art and history.

The text, written by the editors and by J. H. Plumb, is augmented by brief biographies of such Renaissance noteworthies as Leonardo, Michelangelo, Machiavelli and Lorenzo de’ Medici. The contents cover all major areas of Renaissance culture—art, scholarship, religion, diplomacy, war—with the single exception, alas, of architecture. Even Michelangelo’s biography leaves him before he turned architect.

The Building Team

Mr. Jenkins’s subtitle, “A survey of professional relations and practice in England from the 16th century to continued on page 47
Required Reading
continued from page 38

the present day," is more accurate (though admittedly less graceful) than Architect and Patron. The author traces the relations of the architect, his client and the builder as they developed from the earlier simple and flexible—one might almost say amateur—proceedings to today's complex, formal and highly professional practice. This development, Mr. Jenkins indicates, was influenced not only by matters of business, but also by considerations of taste, training and dominant building types (from fortified castles to country villas to council schools).

The author has supported his thesis with thorough, even painstaking, documentation.

Medicine's Headaches

To most people, with the likely exception of hospital administrators, it would seem that hospital administration is a most unpromising subject for a readable book. Mr. Cunningham, however, is a writer who can put life even into, say, the financial troubles of Blue Cross.

Architects engaged in hospital design should enjoy reading about hospitals from this viewpoint, and may indeed already have read some of these selections in The Modern Hospital. And they may find helpful Mr. Cunningham's suggestions for hospital design (e.g., "double the elevators"), and Frank Lloyd Wright's dicta on the same subject (e.g., "sick people should never be allowed to see sick people").

Strictly for diversion, Mr. Cunningham has included a few biographical sketches, ranging from a faintly eulogistic profile of the A.M.A.'s redoubtable Morris Fishbein to a somewhat less eulogistic piece on one Bradford Dorr, a thoroughly reprehensible quack whom Mr. Cunningham invests with wholly undeserved charm.

continued on page 60
AT PARMA... the size and scope of the new Valley Forge High School put special emphasis on the need for an efficient Time Control and Program system, free of operational and maintenance problems. This lead to the selection of Stromberg timing. Dependably correct clocks and signals are assured by the precision Master Time Control. This modern time system operates from ordinary lighting circuits. Complete uniformity of time is maintained by supervisory pulses each hour and every 12 hours over a control circuit. Stromberg maintains installation and maintenance service throughout the U.S.A.

A complete catalog — TIME AND SIGNAL EQUIPMENT — prepared for Architects and Engineers — is yours for the asking.

PLANNING THE NEW SCHOOL
A population explosion at Parma, Ohio completely overtaxed secondary school facilities. Rather than expand the old school, construction of the new Valley Forge High School was started in May of 1960 and scheduled for completion in advance of the school year beginning September 1961 at a completed cost of $4,000,000. The new structures — containing 70 classrooms, adequate library, science, language, shop and music facilities, as well as an ample auditorium, cafeteria and gymnasium — is planned to accommodate 2,000 students. Despite these impressive new facilities, plans are now being made for a third secondary school.

The Parma Public Schools, Mr. Paul W. Briggs, Superintendent — were advised in their choice and installation of Time Controls by:

* Fulton, Dela Matte, Larson, Nassau & Associates—Architect
 Mr. Vincent A. Lombardi — Electrical Engineer
 The Doan Electric Company — Electrical Contractor
strong, light and beautiful
new BUENSOD dual-panels

Here are underwindow enclosure panels in a limitless range of finishes to meet your design requirements. Choose Dual-Panels of real wood veneers, gleaming stainless steel, anodized aluminum, mar-proof thermoset plastic or prime-coated ready for interior-matched color finishing. These rigid, guaranteed flat panels, while strong enough to support the weight of a full-grown man, are exceptionally lightweight . . . less than 2 lbs. per square foot. Most amazing of all is the way Dual-Panel pop into place with no knobs, handles or fastenings in evidence. How is it done? The secret is Buensod's, but the benefits are all yours. See your Buensod representative or write for your free, colorfully illustrated Dual-Panel Brochure No. MP-10.
Step up to Bogen

For thirty years... leadership in sound. BORGEN-PRESTO, world's leading designer/producer of quality Sound Products, offers you the most exciting, most complete line in the industry. From ultra-modern office communications systems to high fidelity for the home—from P.A. and Mobile Sound systems to School Consoles—whenever precision, dependability and performance are required... step up to BOGEN.

Required Reading
continued from page 47

Design in Early Virginia

This study is divided into two sections. The first contains material on construction methods, materials and tools, and on design sources and theories (as far as these last can be reconstructed). The second section, intended both as history and as a guide to the Colonial houses at Williamsburg, gives rather detailed descriptions of the originals as well as some information on their restoration.

The illustrations include plans, drawings, and photographs (before and-after, in some cases) of the houses, their interiors, and framing details.

Politics and Building

Superficially, this study, undertaken by a professor of government, is not related to architecture. Ultimately, it is not so related, either. But in the middle ground—well, four of the six political case histories given are directly, or at least intimately, related to building: the Branch Hospital, the Urban Renewal Project, the Branch Campus and the Exhibition Hall.

Mr. Banfield, looking at the community of Chicago, has attempted to answer speculations about who makes political decisions, and why. Architects who are already members of decision-making cliques (and very often architects are) will not be astonished by the C.P. Snow-like complexities of political influence. For architects peripherally involved, as yet, in community (and therefore political) matters, Mr. Banfield's treatise should prove enlightening—not to mention entertaining.
The Record Reports

U.L.I.-N.A.H.B. Study
Cites Need of Modern Zoning

Out-of-date zoning regulations hampered by the single lot concept and involved legal verbiage are major barriers to better use of land suitable for residential development, according to a joint study on residential land use published by the Urban Land Institute of Washington, D.C., and the National Association of Home Builders.

"Density control zoning" is suggested to guide suburban growth into more compact areas which can be easily serviced with municipal facilities and include properly located open space and park land. Under this method population densities need not increase but more efficient use of available land is obtained.

The study, titled "New Approaches to Residential Land Development," points out that more dwellings designed into efficient groupings means lower road and utility costs and additional savings by advance planning for schools, churches and open space.

Promising development methods, including the planned community development, the cluster method and town houses, are discussed in this study. Differing from the small subdivision and the neighborhood in that it starts out by fixing land uses, building relationships, allocations of open space, the planned community development calls for a total concept instead of individual lot planning.

Other land development concepts discussed include circular blocks and lots, loop streets, mobile home parks and waterfront property.

The study, while recording some progress in altering zoning regulations which now prevent improved land use, concludes, "...only through improved planning techniques, through knowledge of prevailing enabling legislation and restrictions, numerous appearances before zoning bodies and tremendous diligence and patience can success be achieved."

Bulletin 40 which carries the study is available for $6.00 a copy from the Urban Land Institute, 1200 18th St., N.W., Washington 6, D.C.
Now! A “fast-flow” storm water drainage system that cuts installed costs up to 28%

With Johns-Manville Transite® Pipe, you can control the flow of rain water from roof level to outfall with a system that can be installed at a 28% reduction in cost.

First, Transite’s material cost is substantially less than that of other quality materials previously used in this service. Secondly, the long lengths and light weight of this strong asbestos-cement pipe make for quick, sure installations, thus cutting labor time and costs. And, J-M’s easy-to-install Ring-Tite® Coupling is a time-saver, too. It forms a tight joint that protects against leakage and the infiltration of ground water.

Over the years, Transite will continue to save you money. Its interior is made smooth to stay smooth, thus permitting rain water to be carried off at a maximum rate through minimum pipe sizes. You can just about forget maintenance problems, too! This non-metallic pipe cannot rust and resists corrosion inside, outside, and all the way through. For full details, send for Data Sheet TR-252. Write Johns-Manville, Box 362, AR-10, New York 16, N. Y. In Canada: Port Credit, Ontario. Cable address: Johnmanvil.
In New York's new Corning Glass Building, architects Harrison & Abramovitz & Abbe sheathed the lobby columns, walls and elevator areas with the classic beauty of domestic white marble. For the exterior areas above a reflecting pool, they framed diamond-matched sections of dark green marble behind glass panels set in stainless steel frames. The marble will require little maintenance...remain an economical and beautiful choice through the years. Significantly, marble is being specified for large and small installations by architects of note throughout the country.

Qualified members of the MIA can give you complete information on the selection and use of more than two hundred marbles. For detailed literature and a list of members, write

Marble Institute of America, Inc.
32 South Fifth Avenue, Mount Vernon, New York
DESIGN FOR CHURCH SPIRE WINS COPPER AND BRASS AWARD

A new design in a church spire has won for Hugh Moore Jr., A.I.A., Easton, Pa., the 1961 Copper and Brass Achievement Award for distinguished application of the copper metals in architecture. The award, $500 and a bronze trophy, was presented to Mr. Moore during the annual meeting of the Copper & Brass Research Association.

The prize-winning spire, made entirely of bronze, was recently erected on St. Michael's Roman Catholic Church in Easton, replacing one destroyed by fire some years ago.

Mr. Moore used only standard mill forms for his 32-ft high structure, thereby avoiding production costs associated with specially designed shapes. Materials were bronze angles, flats, rods and tubes joined with bronze bolts. The form of the spire is described in the award announcement as "based on early Gothic prototypes."

Special citations for outstanding merit were awarded William J. Conklin, partner in the firm of Mayer, Whittlesey & Glass, for his design of a five-story bronze façade of the Painting Industry Insurance Building in New York; and R. F. Schultheis for his engineering work involving the design and application of a copper roof on the Wells Fargo-American Trust Building in San Francisco. Architects were Skidmore, Owings & Merrill.

Concentrate Responsibility...

Specify
SEDGWICK
Dumb Waiters
and
SEDGWICK
Dumb Waiter
Doors

When you select a Sedgwick Dumb Waiter, you get a completely integrated installation — including dumb waiter doors — designed, engineered, manufactured and installed by Sedgwick.

This places the responsibility for the entire installation in the hands of one supplier — cutting in half the red tape, contracts and approvals, and eliminating your coordination of door and dumb waiter design and erection. Furthermore, all equipment is shipped at the same time, saving shipping and handling costs. The same mechanics install both doors and dumb waiters.

Sedgwick Dumb Waiters and Doors are available in a complete range of modern, improved types and standard sizes that can be adapted to fit requirements exactly.

(See standard specifications and layouts in SWEETS 24a/3e)

Doors are manufactured in bi-parting, slide-up, slide-down or hinged arrangement. Also access and clean-out doors. (Underwriters' Labelled where required.) Send today for complete literature and specifications.
Steel Construction Provides Unlimited Expansion Potential

Additions to existing structures are relatively simple, with geometric steel framework repeating or augmenting the basic design of the original building. Joining new steel beams to old in the creation of new bays or even entire wings, is easier and far more economical both of time and money than is the case with most other types of building material.

Design Freedom

From the cube to soaring arches and space-spanning domes—from the triangle and the pyramid to tri-dimensional hexahedrons and tetrahedrons. From the simplest of warehouses to highrise office buildings or the complexities of church architecture, steel enhances free expression and architectural creativity.

and Strength with Lightness

For today's modern steels have great load-carrying capacity—minimize dead load stress—reduce foundation costs—can be fabricated into forms of the utmost lightness and grace while lending rigidity and rugged strength to the structure.

The Record Reports continued from page 94

Kling Scholarship Established at Columbia

The Vincent G. Kling Scholarship in Architecture has been established at Columbia University's School of Architecture. The partial tuition scholarship has been made possible through an annual gift to the School of Architecture by members of the staff of the architectural office of Vincent G. Kling, Philadelphia. Mr. Kling was a member of the class of 1940.

The award will be made primarily on the basis of professional promise and financial need to students in the third year or later years of their architectural curricula.

E.J.C. Study Finds Job Market Up for Engineer Grads

According to a report by the Engineering Manpower Commission of Engineers Joint Council, a decided increase in the postgraduate commitments of engineering graduates of 1961 is apparent, in spite of the recent economic recession. The report summarized the results of a survey based on the response from 138 of the nation's engineering schools representing 16,344 engineering graduates, or a little less than half of the 1961 graduating class.

As of May 19, 84.4 per cent of the engineering graduates, covered by the Manpower Commission's survey, had either secured jobs, decided on postgraduate studies, had been committed to military service or had other definite plans. By June 15, the engineering graduates "committed" had risen to 91.8 per cent. Those in the liberal arts and physical science groups compared favorably with engineering, although the "graduates committed" group among the business and commerce groups was 11 per cent below engineering.

As of May 19, 1959, 83.6 per cent of engineering graduates were committed and, in 1960, 81.5 per cent were committed to postgraduate careers. Of the total, 14.3 per cent of engineers in 1961 were entering graduate studies to pursue advanced degrees in engineering. This contrasted with 9.8 per cent in 1960.

Specifying the Floor Finish That Can Take a Pounding... Seal-O-San®

Clients appreciate the way Seal-O-San protects their expensive gym floors. This floor finish exposes, yet protects, the natural beauty of the wood. Even the annual rat-a-tat-tat of thousands of basketballs can’t erase Seal-O-San protected beauty. This is a hard-nosed floor finish that shrugs off the pounding of gym shoes, street shoes, even roller skates and bridge table legs. So protect your reputation for creating stay-beautiful buildings. Specify Seal-O-San. And send for our free Gym Floor Manual. It answers all important questions about gym floor care.

See our insert in Sweet’s Catalog, 13 M/Hu

Huntington Laboratories

Huntington, Indiana

Huntington...where research leads to better products
8 ways to enrich school curricula and improve administration

...through an economical sound-communication system

The console shown here is the central control of an Executone sound-communication system for an average-sized K-8 or secondary school. Located in the General Office, it handles switching, programming, transmission and power amplification for all the services described below—and others that your special requirements may suggest. Its 5-channel capacity eliminates the need for more than a single conduit for signals or communication between any two points in the system. Identical functions are available in a vertical console, for use where office space is at a premium.

Supplement the teaching program with sound

Classroom audio-aids can give students access to sources of important teaching materials...can place each class in closer relation to the school and the world around it...can help develop each pupil's critical faculties. Leading educators value the availability of:

Radio broadcasts: speeches; music; coverage of special events; interviews; important dramatic presentations; sessions of Congress; etc.

Recordings: from an ever-increasing fund of educational material on tape and discs.

Transmissions from other parts of the school: student musical programs; sports events; etc.

Recording and play-back facilities: for classes in choral and instrumental music; language and speech courses; drama workshops; etc.

All these audio-aids can be supplied by a single Executone classroom reproducer...the same instrument that handles time signal, alarm and intercom functions. With a standard Executone system, any combination of rooms—chosen by selector-switches—can receive either of two simultaneous sound transmissions. Reproduction is of unusually high quality. Where recording and play-back are desired, rooms need only be supplied with microphone and tape-deck jacks. Amplification takes place at the main control console.

Speed administrative action: relieve over-burdened staff

Freedom to teach—and to work more productively—is one of the best answers to the chronic shortage of teachers and administrative personnel. Time savings increase in direct proportion to the staff’s communication capabilities. Today, these can economically include: A) 2-way electronic voice intercom...between the office and any classroom...with complete privacy safeguards. B) Private-line room-to-office and room-to-room intercom...with call origination from any point. The Executone system offers all the above, providing 2-way remote-reply intercom through each classroom speaker...optional private-line handset communication using an independent channel carried by the same wiring.
Project drawing of the United States Consulate for Tabriz, Iran contrasted with old engraving of a Persian city. The consulate lies within a walled compound as do most of the buildings in the Persian city, its roofs are domed or flat as in the old city, but while the old compounds in the engraving were crowded and assymetrical, the new one is spacious with a major axis, not unlike the more sophisticated Persian design of palaces and gardens. Office building is at the center of the compound on axis with the consul's residence. Staff apartments are at upper left

QUIET ARCHITECTURE
OF EDWARD LARRABEE BARNES

Quiet architecture, that neither startles nor asserts, by an architect uniquely concerned with the timeless qualities of buildings . . . environment, material, light, shadow and scale
Domed and Walled
United States Consulate
for Tabriz, Iran

ARCHITECT: Edward Larrabee Barnes
STRUCTURAL ENGINEERS: Severud-Elstad-Krueger-Associates
MECHANICAL ENGINEERS: McGuinness and Duncan

Architect Barnes has said: "There must be a strong architectural idea behind every project. It is not enough to have a decorative, or historical or mathematical concept. An architectural idea is an expression of life in the building." For the Tabriz consulate, about to be constructed, the idea grew from the native way of building, basically a system of mud covered brick walls and domes, within walled compounds and inner walled gardens.

The United States Consulate Compound lies on the outskirts of Tabriz, near the Russian border. It was once a farm with an almond grove, and reservoir and irrigation system. The old outer brick wall is retained and the compound is further divided with inner walls, and rows of poplar trees so that each of the major buildings; the office, the consul's residence, the staff apartments, and existing houses is given a court with its own landscaping.

The office building, like the Persian bazaars, is a cluster of brick domes. There is a strong disciplin
n plan and structure. The thin brick domes are supported on ribbon arches and brick columns. The thrust of the peripheral domes is carried to the round in sloping buttresses. Infilling walls between the columns are non-bearing (like any modern office building). The domes over the lobby are elliptical, providing greater height and span. Inside rooms are lit with an oculus skylight at the center of the dome. The entire structure is brick, the principal Persian building material since Old Testament days. It is an architecture entirely of compression.

The tradition, in Iran, is to cover the brick with a mud, or plaster, or, in the case of the mosques and palaces, with ceramic tile. Here, the entire structure is stuccoed white on the exterior and plastered on the interior. Tabriz, as a city, is mud brown. Once inside the outer compound gate of the Consulate, all architectural surfaces will be white.

The consul's residence has three elliptical domes butting six barrel vaults. The roof forms slip into

Office building in foreground, consul's residence beyond
each other. As in the office building, a formal plan coincides with a formal structure. The house is planned for formal receptions, with axial relationship to the office building and garden vistas.

The staff apartments zig-zag to provide separate little outdoor terraces, all within a private garden. The roofs are flat-supported on brick jack arches on steel beams.

The structural details show the thin shell dome, the ribbon arch, the elevation, and plan. Because the mortar is sticky and paste-like, known locally as "gatch", domes up to 16 and 20 ft in diameter are built without form work or centering by spiraling in from the supporting structure. The same is true of the barrel vaults. Each successive arch of brick is glued to the succeeding one until it is completed and can take its own thrust. One modern structural refinement; the poured concrete beam around the periphery. This beam rings the building and binds it together to withstand earthquake crumbling.
Below: section through center living, reception and dining space in consul's residence. Office building in distance.
In discussing the repetitive vocabulary of this art camp, Barnes said: "There is nothing esoteric about architectural ideas. They can be drawn on the backs of envelopes. A flight of steps to the sea. A banked garden. Such ideas are at the root of every job. They formalize space and movement through it. The important thing is to express the idea clearly and see all the implications. Structure must be direct and consistent. Elimination is as important as elaboration. There is no better way to do architecture than to have a strong architectural idea and be true to it."

The Haystack School of Arts and Crafts is a summer community of 80 students and faculty who work and live on a lichen-covered granite slope looking south to the sea. A main flight of steps runs down to the shore, and branching walkways and decks link the work shops and cabins together. Big studio windows point up to the trees. Ribbon windows look out to sea. The construction is balloon frame. The walls and steep tilted roofs are shingled. Already all the wood is turning silver like a Maine fishing village.

The approach from the road is over a slight rise to a crest of rock 90 ft above the sea. Straight ahead is the main stair down. The first deck serves as a sort of "Town Square", a place to gather and eat outside the dining hall. The four shops: pottery, carpentry, weaving and graphics: each have generous teaching decks. White canvas covers are planned for partial shade. Sleeping quarters vary from the faculty house with its own living room and deck to dormitories and individual cabins. Note the wash house stepped downhill under a continuous roof.
Diagonal elevation from water

The prototype was this studio designed by Barnes for Robert Osborn in 1951.
New Dormitories Located to Redefine Campus Space

Years ago this school was built along a country street. With the passing of time many of the oldest buildings have been demolished and construction has taken place on the campus periphery. These new dormitories will reverse the trend and reinforce the school center. They connect to a Gothic school house, the Victorian rectory, the old cylindrical ice house. Across the old street they face the old chapels and the pond. New service roads and gates made it possible to keep through traffic off the old street.

In scale, the new buildings are low. The boys' rooms are all on the ground floor in a continuous ribbon-like structure which steps down at intervals to follow the sloping street. The masters' houses and apartments rise occasionally in three-story blocks and pent houses perched above the boys' rooms. The prototype for the basic concept is the University of Virginia where the one-story student arcade steps downhill broken by two-story faculty houses. Low retaining walls form little entrance squares that link the new buildings to the old. The effect is that of a continuous garden wall running along the street with the skyline broken by the masters' quarters with their pitched roofs and studio windows looking up to the trees. The material for the walls, terraces, corridor floors and outside walks is red brick with dark mortar. The flat roofs have brick red gravel. The pitched roofs are oiled copper.
The dormitory site is near to parking lots, two expressways, and a 40-acre cloverleaf. It is essential to provide isolation for study and relaxation—to keep out the city. The basic concept is that of a private lawn and garden planned as an integral part of the building. The façade of the dormitory continues out in a 10-ft wall back of which is a ramped bank pitching up from the dormitory so that rooms look out, not on a closed in courtyard with a high wall, but on a great tilted plane of grass. This wedge of earth is carried around the ends of the dormitory so that there is access at grade from all three floor lounges. The building is sunk a half floor into the ground, thus cutting the vertical height and the walk to the top floor.

Cut and fill on the site are in balance. The central block contains the common facilities. Since the lobby has glass walls facing both entrance and the garden, the effect is that of a bridge under which one looks to the green lawn. Spanning over the entrance desk is the resident advisor’s apartment, and on the top floor is the recreation room with a great north window looking up into the trees. There is space transfer from the entrance over the recreation room balcony up to the sloping roof.

The fenestration and furnishing of the individual rooms is of interest. A desk runs along the inside face of the outside wall, over which is a square view window, and at the ceiling is a deeply recessed ventilating strip of glass. The skin of both the building and the retaining wall is precast concrete, natural color with a smooth stone-like finish.

Sloping Lawn and Retaining Wall Enclose Dormitory

*NAME: Helen Newberry Jay Residence for Women
OWNER: Wayne State University
LOCATION: Detroit, Michigan
STRUCTURAL ENGINEERS: Severud-Elstad-Kruger-Associates
MECHANICAL ENGINEERS: Cosentini Associates*
NORTH ELEVATION

FIRST FLOOR

PLAZA

APARTMENT FLOOR

RECREATION FLOOR

MAIN LOBBY

LAWN

PLAZA-LOBBY-TERRACE

BASEMENT

THIRD FLOOR

SECTION A-A

SECTION B-B

ELEVATION C-C
Compact Shopping Center

NAME: Neiman-Marcus
OWNER: Neiman-Marcus Co.
LOCATION: Fort Worth, Texas
ASSOCIATED ARCHITECT: Preston M. Geren
STRUCTURAL ENGINEERS: Severud-Elstad-Krueger-Associates
MECHANICAL ENGINEERS: Cosentini Associates
INTERIOR DESIGNER: Eleanor Lemaire, Frank J. Labianca, project co-designer

This two story department store project is surrounded by a cluster of rental shops. Axial courtyards and outdoor arcades connect to generous *porte cochères* on two streets. Parking will be convenient at both sides. The shops step down around the central block to follow the warped site. Fountains, trees and flowers will fill the patios and courts.
How to practice architecture in this time? The Victor Gruen Associates answer to this question is—in actuality—a series of answers. They say, “we try to combine good design with good business, to temper idealism with realism. To do this, we offer very complete services in architecture, planning, engineering, and related design fields by a group of specialists who are also whole architects.” While the Gruen method may not be right for every office or practitioner, the method works. Therefore, it merits consideration.

Victor Gruen Associates was organized to do complex building projects in complex times. To accomplish this, the firm offers professional services including architecture, engineering, planning, and related design services such as interiors and graphics. Having recognized the extreme difficulties facing any one man who might attempt to master the technology and economics of building today, the firm reflects in its organization a team effort of a group of capable professionals. This, they feel, leads to the high degree of cooperation and coordination necessary for successful practice in these times. Perhaps the most useful method of getting at the secrets of such a practice is to examine the workings of a particular project as it passes through its phases. Before doing this, it will be helpful to take a look at the general organization of the firm in some detail.

The Gruen firm is a large one. It employs about 250 people and has permanent offices in Beverly Hills, New York, and Chicago. The locations of these offices reflect, roughly, the geographical distribution of the firm’s work across the country, about a third of the work being located in the western states, a third in the midwest, the remainder in the east. In addition, the firm does quite a bit of foreign work. Most of the production is handled in Beverly Hills. From time to time, the firm establishes what it calls coordinating offices in other locations when the volume of work in a given area demands it. At the present time, the firm has about $130 million of work under construction.

In addition to the professional staff of architects, engineers, planners, and the like, the organization includes interior designers, merchandising analysts, graphic designers, and other specialists. The largest proportion of these people is located in the Beverly Hills office. On the highest level, the executive functions of the firm are handled by Victor Gruen and five partners.

The work of the firm includes an extremely wide range of projects, varied in size, scope, and type. While most of the firm’s projects are individual buildings, a number involve groups of buildings, planning, or elements such as graphics, interiors, or furniture design. As is often true, there is some tendency, on the part of outsiders, to regard the firm as shopping center specialists, commercial specialists, or the like, but the firm definitely thinks of itself as being engaged in the general practice of architecture.
ORGANIZATION OF FIRM

Victor Gruen Associates was organized in a manner calculated to give clients the benefits of specialization, while retaining the assets inherent in generalist practice of architecture. Thus, each of the five partners of the firm, other than Victor Gruen himself, performs at least two major functions. Each has a specialized divisional responsibility and also acts as partner-in-charge of a number of individual projects. Organizationally, this means that each partner has a staff position as well as a line position; each participates in every project as the firm’s expert in his specialty; each performs the role of the whole architect in charge of specific projects.

As it works out, partner Edgardo Contini has charge of engineering, while R. L. Baumfield heads architectural design. Ben H. Southland is head of the planning division, Karl Van Leuven of development, and Herman Guttman of production. Gruen’s role in all of this involves him in guiding and directing the activities of the firm as a whole and in participation in all phases of all projects.

The organization has thirty associates. Some of these, with the title of director, act as assistants to the partners. Others head various specialized departments of the firm such as urban renewal, research and analysis, cost control, interior design, graphic design, landscape architecture, or merchandising. Still others act as project coordinators or have similar specialized functions.

WORK OF FIRM

The Gruen organization, as now constituted, is only twelve years old. However, each of the principals had been in practice before the founding of the present firm. During the years of growth of the firm, all types of projects have been handled. These range from small specialty shop interiors to multi-million dollar urban renewal projects. At the present time, the organization is attempting to continue offering services on all types of projects, regardless of size. Along with this goes a continuing effort to make those services more complete.

Right now, the firm has on the boards such diverse jobs as shopping centers, apartments, stores, civic buildings, churches, and industrial plants. In other than single buildings, the work ranges up in size to commissions involving land development, rapid transit system consultation, traffic planning, legislative proposals, and a host of other projects of similar scope. At the same time, a number of smaller jobs such as the design of lighting fixtures, chairs, and signs are now in progress.

HOW FIRM WORKS

One of the partners, other than Gruen, is assigned to each project that comes into the office. This partner, with a project coordinator, has the over-all responsibility for the job. In essence, the partner is the architect of the job, representing the Gruen firm. He handles all of the outside contacts on the job, with the client, consultants, city building departments, contractors. He guides the job through conceptual stages, development, production, and construction to completion. His is the responsibility for coordinating, for this particular job, the work of all other divisions and departments within the firm. In addition to his responsibilities on his own jobs, each partner, other than Gruen, directs one of the specialized divisions of the firm such as design, engineering, or production.

FEES AND CONTRACTS

The Gruen organization feels very strongly that the conceptual stages of any project are the decisive ones. They believe the traditional percentage fees to be unrealistic because this type of fee structure does not allow the proper amount of emphasis to be placed on the conceptual stages. Instead, the firm recommends to its clients that fees for the exploratory and preliminary design phases be based on a cost-plus contract. After the program and design have been fixed, the production of working drawings and specifications and the constructing phase of the project can be accomplished for a lump sum fee. The firm has found some client resistance to this idea and there are some jobs—government work for example—which do not readily lend themselves to such a system.

When the cost-plus, lump sum fee structure has been used by the organization, the Gruen firm has found itself able to work out better design solutions for their clients, often at savings in construction costs. In most cases, fees based on this structure closely equate with those based on a percentage of construction costs. The success of the cost-plus, lump sum system used by the Gruen organization could not have been achieved without the accurate and detailed data maintained by the firm on the professional service costs of each job. With such information in hand, the firm has been able to estimate with accuracy the amount of time required for doing jobs of particular types, and to translate this into fees.

COST CONTROLS

The firm believes that close control of costs, both office costs and actual construction costs, is essential to client understanding and efficient practice. Accordingly, very complete and accurate records are kept of all items of costs of production of a job and its construction. Periodic checks, at close intervals, are made to insure up-to-date control. In this way, costs are kept in hand and problems may be anticipated. Complete records are analyzed and put into usable form for future estimates and budgets.

OUTSIDE CONSULTANTS

The Victor Gruen Associates organization is unusually complete, yet it finds itself increasingly dependent on the consulting services of outside specialists. As the firm is drawn into bigger, more complex, more complex projects, it turns increasingly to such people as scientists, sociologists, economists, market analysts for expert help. It finds itself working more with painters, sculptors, and other artists. It may seem somewhat unusual in an architectural practice, but hardly surprising considering the breadth of the Gruen work, that the firm finds a growing need for consultation with financial experts, lawyers, political advisers, and governmental agencies. Some understanding of the way the Gruen organization works may be had from an examination of one of its complete projects. Midtown Plaza in Rochester, N. Y. serves as a good example on several counts. The firm was involved in the project before the exact nature of the project had been determined, from its beginnings through the planning, architectural, and construction stages. Midtown is sufficiently complex, composed of enough elements, to demonstrate well the Gruen techniques in all phases of architecture.
Midtown Plaza is a downtown shopping center integrated with office buildings, a parking garage, and department stores. Unusually complete professional services on this project by Victor Gruen Associates included architecture, planning, engineering, graphic design, interiors, and a host of related activities. While not exactly typical of the firm’s services, Midtown does serve to illustrate the manner in which the firm handles many of its large, complex projects.

As finally designed, Midtown Plaza is a downtown shopping center in Rochester, N. Y. Located on a ten-acre site in the central business district, the center will revitalize a business area which had gone into an acute decline. Presently under construction, Midtown Plaza will eventually form a complex group of elements including a two-story shopping mall, an 18-story office building with 180,000 sq ft of rental space and 78 hotel rooms, a telephone company building, a union bus terminal, two large department stores, and underground parking for about 2000 cars. Several existing structures have been incorporated into the complex. The central and unifying element is the skylighted, air conditioned central shopping mall. The cost of the first phase is $15 million; the ultimate cost will be $25 million.

THE BEGINNINGS
Midtown Plaza actually began late in the winter of 1956, when Victor Gruen was asked by the owners of two of Rochester’s department stores to look into their merchandising problems. Their business was falling off due—they thought—to the lack of downtown parking. Their question was: should the stores initiate a suburban shopping center program? They had grave doubts about such a step since Rochester seemed hardly large enough to support such ventures. If not suburban stores, what?

Victor Gruen, in response to the request of the department store owners, discussed their problems with them at some length and visited a number of the outlying shopping centers near the city. Just before Christmas, Gruen reported to the owners that, in his opinion, no real market for regional shopping centers with department store branches existed in the area. Further, he informed them that his firm would develop some recommendations for actions that might be taken to correct the existing situation. These first preliminary steps were taken in utmost secrecy to forestall any competitive moves by other interests before the goals had been determined and agreed upon by all of the parties concerned.

EARLY PLANNING STUDIES
Early in 1957, the firm began exploratory studies of the downtown Rochester situation. Working with the planning department of the city, the Gruen partner for planning and his staff found that Rochester had come to realize the problems existing in the heart of the city and had initiated some preventative measures. A loop road, offering access to the central area, was then under construction. A number of public garages had been constructed in the area, but none near the site of the department stores in question. A parking and property survey was made. At this time, the firm advised the owners re-
garding acquisition of land near their stores. The owners began buying the land.

By March, 1957, the firm had prepared a program and report which was presented to the owners and the city. The fees for these services were handled on a cost-plus basis, as were all of the fees for the ensuing conceptual phases. The recommendations made in this report were that revitalization of the area in question was feasible, that the city would cooperate, that a complete economic study should be made, that further planning study was necessary. On the basis of the report, the owners authorized further studies. Consultation was begun at this time between the architects and the Rochester planning consultant, Ladislas Segoe.

FIRST PLANS

As the Gruen firm began further planning studies, economic studies were under way by consultant Larry Smith, and the city’s overall plan for downtown was progressing. The Gruen firm insisted that the city’s over-all plans must be developed in conjunction with and complement the Gruen plans for the Midtown area. Only in this way could the city government and taxpayers be convinced of the ultimate benefits to be derived by all from the revitalization efforts.

When the city plan for a downtown core had been finalized to some extent, the firm presented a series of requests to the city relating to Midtown. If the project were to go ahead, it would be necessary for the city to extend a street to the property, close one street on the property, another partially, and construct an underground garage larger than had been originally contemplated.

In January, 1958, nine sketches were presented, showing the Midtown Plaza concept as a pedestrian shopping center with an office and hotel building, an underground parking garage, and a union bus station. The scheme was accepted in general, with the provision that the shopping center become two-story rather than one, warehousing for the department stores be included, the bus terminal be enlarged, and a restaurant and bar be provided. As it turned out, the scheme was almost contin-
uously reviewed and revised, and alternate schemes were developed, during the entire year following.

DESIGN
Gradually, during the development of the first sketches, the burden of the project was shifted from the planning division of the firm to the architectural design division. At this time, Edgardo Contini assumed responsibility for the project as partner-in-charge. The projected time schedule was this: Revision of exploratory studies—6 weeks, development—5 months, preliminaries—3 months, working drawings—4 months, adding up to a total time of about one year before construction could actually begin.

As work went ahead, all sorts of new problems presented themselves and had to be resolved. The owners decided to enlarge one of the department stores. The Gruen merchandising and interior departments were put to work on this problem. The firm found itself increasingly involved in areas that ordinarily fall outside of architecture, such as consultation on land acquisition. Since the entire project was to be privately financed and owned, except for the parking garage which was to be publicly financed and owned, the firm got involved in the knotty legal questions presented by public and private ownership of the same piece of property. These problems, together with a vast number of others, added up to considerable delay in the architectural work. Twelve schemes were worked out, presented, and revised many times. The thirteenth scheme was accepted, in the spring of 1958. Work now came almost to a halt, since certain necessary parcels of land had not been acquired at this time.

In the summer of 1958, negotiations for three important parcels of property were nearing completion and the owners authorized the preparation of presentation plans and a model. In the fall of that year, the presentation was made to the city council and the press. Victor Gruen gave a public lecture in Rochester to outline the benefits to be derived by the city from Midtown Plaza. Later, he appeared before the city council to explain the project. The city council approved extension of Broad Street as requested, and gave the go ahead for preparation of parking garage working drawings. The architectural contract was on a percentage basis and included all services, except supervision which was given to the Rochester firm of Bohacket and Flynn.

PRODUCTION
The Gruen firm began working drawings for the garage, on a crash basis, early in 1959. Within four months, excavation of the site was begun. Within the next two months, all working drawings and specifications for the garage were complete, including those for the intricate automatic system of traffic control. Garage working drawings had to be rushed to completion, before all the preliminary problems of the remainder of Midtown had been solved. This made necessary a series of assumptions on features common to both structures such as columns, stairs, exits, elevators, and the like.

While the garage production was under way, problems kept popping up on the remainder of the project. For example, objections were raised against Midtown by neighboring merchants and a theater. Victor Gruen and

![Image of the Architect IN PRACTICE —Victor Gruen Associates](Image)

![Arcade Connecting Central Mall with Main Entrance](Image)

![Escalators Connect Various Levels With Parking Garage](Image)

![Central Mall Forms Link Between Large Stores](Image)
Edgardo Contini met with these interests and succeeded in working out the differences. The final result was that the theater and many of the stores began alteration programs of their own to bring their properties more into keeping with Midtown.

As the garage construction got under way, the other preliminaries were being revised and reworked to bring them into accordance with later thinking of the architects and owners and to solve further problems. Estimates of costs were under study during all of this time and were being revised in the light of more complete information.

About this time, the firm got into two other areas of the work, the initiation of an art program for the center and the leasing negotiations between the owners and prospective tenants. Victor Gruen set up a program of integration of art with the architecture of the project, with the cooperation of local artists whose work is eventually to be used. A separate project was set up to assist prospective tenants with layouts, consultation, and design. To help stimulate interest among these people, the graphics department prepared a brochure to explain and help sell Midtown Plaza to prospective tenants. By late winter, 1959, the project was far enough along for the owners to authorize preparation of working drawings. The architectural and engineering services contract, from this point on, was for a lump sum based on the extent of the work.

A difficult problem, at this stage, was that while the owners wished to push ahead with working drawings as fast as possible, they also wanted, at the same time, to keep basic features of the plans open and flexible to avoid interference with lease negotiations. To add to the problems, garage construction was behind schedule, with the result that the department stores were without their original parking, yet could not use the new garage. Steel drawings were finalized early to allow early mill orders. At length, the problems were solved and contract drawings and specifications were completed and released in October, 1960.

CONSTRUCTION

In the spring of 1960, while working drawings were being prepared, the firm recommended to the owners that they negotiate with a selected group of contractors for construction of the project. The owners retained Carl Morse, of Construction Advisors, Inc., and President of Diesel Construction Co., to negotiate with contractors in the interests of the owners. The Gruen firm worked with Morse in these negotiations. Also, early in this year, the Rochester Telephone Company decided to go ahead with the construction of a six-story office building within the project. The architectural firm was involved in the negotiations leading up to this decision. While working drawings were being prepared for the telephone building, the contract for the rest of the project was awarded in November, 1960.

The first phase of the garage has now been completed; the shopping center, telephone building, and tower are under construction. Supervision is in the hands of the Victor Gruen Associates field office, established in Rochester for that purpose. Checking of shop drawings is handled in Beverly Hills by the Gruen departments involved. Construction is scheduled for completion in 1962.
COLORFUL HIGH-RISE IS TALLEST IN L.A.

Sheathed in a curtain wall of blue glass mosaic tile and vertical aluminum ribs, the colorful new 22-story office building for the Tishman Realty and Construction Co. in Los Angeles is one of the first structures to exceed that city's previous height limit of 13 stories, and is now the tallest commercial building in the city. Rising over two below-grade floors devoted to storage and certain mechanical equipment, the structure—which covers an area of one-half a block—reaches a height of 270 ft. Additional mechanical equipment is housed at roof level; tenant parking is provided by a new, multilevel structure for 350 cars, located on an adjacent lot.

At the level of the 20th floor, a 12-ft wide-open terrace forms the perimeter of the building and provides 20th floor tenants a protected outdoor space—reached through sliding glass doors—that offers an attractive view of the city. At street level, the exterior walls are of glass, marble, and travertine; the travertine is carried through into the lobby.

Glass mosaic tile was chosen for the unusual curtain wall due to its qualities of permanence, ease of cleaning, and wide range of color. However, its small size and the necessary high labor and scaffolding costs of conventional application led the architects to devise a production line technique to manufacture prefabricated panels one-story high and 7 ft 6 in. wide. The panels were manufactured in the open on a suburban lot; ordinary tools and equipment were used; no special problems were encountered, either in manufacture or in placing the panels on the building.
The production line fabrication methods employed in the manufacture of the blue glass tile curtain wall panels for this building may encourage further experimentation with glass tile walls, since a practical and economical method of using this material has been established. The panels—7 ft 6 in. wide and 11 ft 6 in. high—were manufactured in the open on a suburban lot. Each panel has a 4 in. steel channel frame and a 3 by 5 ft opening for an aluminum window assembly. A scratch coat was applied to wire mesh attached to the frames; followed by a setting bed into which paper backed tile sheets were pressed. After the paper was soaked off, the panels were grouted and stacked ready for shipment. The building required 1180 panels, each weighing 1200 lbs. Panels were secured to the steel frame by welding; the placing of window units and caulking were done from a light-weight window washing scaffolding.
LUXURY INTERIORS
A FEATURE IN
CALIFORNIA BANK

Union Bank, Beverly Hills, Calif.
Sidney Eisenshtat, Architect
Maria Bergson Associates, Interior Designers

The posh interiors of this bank—the first regional branch built by the parent Los Angeles organization—are designed for maximum appeal to the wealthy Beverly Hills citizenry. The brown and beige carpeted banking room is high-ceilinged, spacious, uncluttered; and features a generous lounging area reminiscent of a turn-of-the-century club. The black marble and stainless steel check desks are of both the stand-up and sit-down types, and were made to special design by Bergson. Lounge and desk chairs are variously upholstered in blue, orange, and beige fabrics. The restrained banking counter has black marble top surfaces and a die face of natural cherry panels and aluminum strips. The wall back of the tellers consists of white vinyl rectangles. The mezzanine, enclosed by a decorative screen of special design, houses the credit department.

Engineers: Joseph Sheffet, Structural; Samuel Kaye, Mechanical; John Silver, Electrical; General Contractor: Del E. Webb Construction Company
This well designed bank building—containing 10,000 sq. ft of banking space, a safe deposit vault, and 10,000 sq. ft of office and service area—is the latest addition to an existing shopping center which is, in turn, a part of the Lake Meadows Redevelopment Project.

Two major considerations influenced the design: the small site, and the effort to integrate the new building into the existing structural expression and at the same time give it an individual character. The fireproofed steel frame is jacketed and painted white; the gray glass walls are framed in extruded aluminum sections.

The building is in two parts: the glass enclosed main banking room, and a link to the south housing the vault, walk-up teller's booths, and a closing room. The only major element in the banking room space is the free-standing central core of offices, stairs, shafts, etc.

General Contractor: E. H. Merhoefer, Jr. Company
The photo below shows the main banking space, pointing out how the central island core—at left—leaves the peripheral gray glass walls clear for check desks and the three drive-up tellers' booths. The illuminated ceiling is suspended on aluminum T-sections; the floor of the banking room is gray terrazzo—in other areas is vinyl tile; the glass-topped check desks are of special design by the architects.

Photos by Hube Henry, Hedrich-Blessing
The two photos at left show exterior views of the link that connects the bank to the remainder of the shopping center, and which houses, at its far end, the safe deposit vault. In the foreground one sees a walk-up teller's window and the night depository. The brick that sheathes this wing is matte glazed and light gray in color.

At left below, the photo shows the north wall with its drive-up tellers' windows. Note the precision of detail for the aluminum and gray glass curtain wall, and the manner in which the drive-up windows have been integrated into its modular pattern. At right below, a view of the interior of the same wall, showing the other side of the drive-up booths, as well as a peek inside one.
BIG HOUSE SPACIOUSNESS
FOR SMALL FLORIDA LOT

House for Mr. and Mrs. Burton Cohen
North Miami, Florida
Kenneth Treister, Architect
Howard Ahern, Associate Architect
Gaines Construction Company, Contractor
Bertram S. Warshaw, Structural Engineer
The Burton Cohen House

The big problem of providing privacy and large living and entertaining areas, at reasonable cost for a young family, was solved in some very interesting ways in this house.

The lot was a small urban one, measuring 75 by 125 ft, and bordering on a typical Florida developer's canal. There were no natural features, except for the possibility of a view of Biscayne Bay from a second floor. The family, at present, consists of husband, wife, and an 11-year-old son.

The clients' needs were met by completely enclosing the lot with a garden wall, to give privacy and define the lot as living space, and by using a divided or "exploded" plan with several courtyards for outdoor living in traditional tropical style. The house is divided into three separate buildings within this compound: a main house (complete in itself), a guest and cabana house (which could become a self-contained apartment), and a carport. Family bedrooms were placed on a second floor in the main house to take advantage of the bay view.

The sense of space was enormously increased in the house by several devices. The living areas have a fairly open plan, and using a two-story space for the actual living room. These areas also open on two sides to private courts and on the third side onto a big screened Florida room with swimming pool. Wherever possible, the furniture was built-in to save space.
The Burton Cohen House

The separate guest house helps create an illusion of more space in the complex than really exists. This building contains guest room-den (above) which gives additional living space, a cabana and bath facilities for the pool, and a maid's room placed where it has considerable privacy.

In the main house, the kitchen has a pass-through and snack bar opening directly on the pool area (below left). All rooms in the house open onto courts, as in the living room (below right).

Construction is of wood frame, with cypress board paneling throughout. Living and dining room floors are green Vermont slate; those in the den are brick, and walks and pool areas are cement finish lined in cobblestones. The courts are largely paved with gravel.
MASONRY PYLONS SUPPORT TRIM HOUSE

 Owners: Mr. and Mrs. Ira Bernstein
 Location: Princeton, New Jersey
 Architect: Frank Schlesinger
 Landscape Architect: Jeanne Schlesinger
The Bernstein House

Four massive masonry elements rising unbroken from ground level to roof line play a major role in structure, design emphasis, and plan of this neat $29,000 house.

The house is on a sloping site, and is approached across a podium-like motor court. All major living areas are located on the upper level to overlook a brook and a large stand of elms to the north; it also permits admission of south sun to these spaces through a skylight in the roof. These spaces are extended out by a screened deck. Smaller bedrooms, opening on covered terraces, are on the lower "half-basement" level. It was felt that the strong two-story masonry elements would help obviate any "basement floor" associations to the lower level. The "U" shape of the masonry pylons also allows them to house the basic storage areas of the house; the lot is a narrow one, with windows not particularly desirable at the sides of living spaces.

One of the owners' requirements was that the kitchen, living and dining areas be one open space. This was provided, with low cabinets to designate activity areas. The obvious need for a multi-use, private room, was provided by the studio off the kitchen. It is concrete floored, and includes such items as a slop sink, floor drain, laundry facilities, lavatory and storage. It also doubles as hobby room, TV room and spare guest room.

The exterior walls are lightweight concrete, finished with silicone. Interiors are finished in plaster, with a sand finish. All ceilings are cedar. Floors are birch in living areas, quarry tile in kitchen and entry. Heating is radiant panel in the concrete slabs, and fin tube radiation recessed in floor joist spaces.
The Bernstein House

In spite of its raised-basement scheme of the house, all rooms and areas are well related to the outdoors, as these photographs clearly show. The photo at left is a side view of the entrance court, with steps leading to the grounds.

At the rear of the house, the lower terrace is reached directly from bedrooms by sliding glass doors. The screened deck above has access to the terrace via the stair seen in the photo below right.
It has been repeatedly said that, without resorting to shoddy, cheap construction, there is no single way to achieve real and effective economy in schools: there are, though, endless combinations of many smaller ways.

With this in view, we have gathered this portfolio of more than usually attractive schools, whose architects have found their own answers to at least some of the many cost problems facing school designers today. The range runs from schools which had to be designed for their programs for the least money possible, to one with a more liberal—but fixed—budget, and which was expected to offer the most and best facilities possible for that sum. A couple of the schools were expected to considerably upgrade the environment for the children, and on a budget; and there is one which offers a scheme for addition at minimum cost. Several offer ways for possible changes for new curriculums. And there is a direct comparison cost study between a gym of typical construction, and one housed in one of Bucky Fuller's domes.

As for typical costs of schools, we would like to recommend a new government publication giving results of a cost survey of 128 schools across the nation, and with breakdowns on regional averages, materials, labor, and so on. Their U.S. cost per sq ft average is $14.16; for the Northeast, $16.99; North Central, $13.67; South, $12.11; and West, $14.25. The booklet, "Labor Requirements for School Construction, Bulletin No. 1299", may be obtained for 35 cents each from the Bureau of Labor Statistics, 341 Ninth Avenue, Room 1025, New York 1, New York.
This handsome K-6 school forms quite a “status” structure for its Brooklyn neighborhood—it is replete with sculpture, murals, good graphics, and fine details. But perhaps the most interesting facet is the fact that its cost was about $600,000 under the budget: it was budgeted for $2,500,000 and bids came to $1,910,000.

Planned for 1,200 pupils (and including a detached kindergarten wing), a good visual and educational environment was sought throughout. All materials were also selected with a special eye to low upkeep.

The architects credit the economy to several factors: 1. the use of a simple, compact structure and plan; 2. construction materials are largely used as finish materials; 3. repetition of a carefully studied classroom (there are 37, besides the kindergarten); and 4. special attention to detail.

Some of these details include: continuous windows with column covers and glazed brick spandrels less expensive than other combinations studied; raw concrete for retaining walls, with exposed aggregate; high auditorium and gym permit elimination of fireproofing over steel; epoxy enamel wainscot on exposed concrete; repetition of window type; canopies independent of basic structure.
Economical Schools

Brooklyn Public School 46

The free-standing entrance canopies of the school, as well as the retaining walls, have sculptural inserts by Nivola. These were set in forms and became the negative sculptures when the forms were stripped. (Photo upper left).

Corridors are zoned to 5 classrooms each, and have colorful, durable finishes: plastic faced block and glazed brick, acoustical ceilings, vinyl covered display boards. Other interiors have plastic faced block under chalk boards and as continuous base, and colorful, plastic laminate tops and faces for all storage cabinets; all cabinets are standardized. All clocks, signs and identification symbols are extremely well designed for the building.
Results of a comparative cost study on a conventional gym­nasium vs. a geodesic “field house” won a victory for the geo­desic scheme for the West Bethesda High School, now under construction. The architects were able, by virtue of a grant from the Educational Facilities Laboratories, (Ford Founda­tion), to carry out a research project to determine cost and space advantages of each. Plans and bids were made on both types of structures. The geodesic scheme came out with 4,000 more sq ft of usable space, slightly less cost.
West Bethesda High School
Conventional Gym vs. Geodesic Field House

An unusual opportunity to make actual cost comparison between a geodesic dome gym or field house, and a typical, double court, gym of conventional construction, was made possible by EFL's grant to finance a study, and preparation of working drawings and specifications for each. The Montgomery County Board of Education reportedly wanted more than the conventional box gymnasium, and yet were understandably reluctant to commit public funds to the planning of a domed alternate. The final results, and bids, led the Board of Education to adopt and construct the geodesic scheme based on R. Buckminster Fuller's structure.

Conditions set down for the study required that the two types satisfy the same program and equipment requirements: it was not intended that the designs for either type reflect an absolutely minimum facility, but that the two types meet the usual Montgomery County standards for a physical education plant.

Bids were taken on three items: the main school excluding the gym; the standard gym; and the geodesic field house. Site work was taken as a separate bid for each item for better comparison. A breakdown of the successful contractor's bidding on the two gyms is shown below.

A full report of the study, Case Studies of Educational Facilities #1, is available from Educational Facilities Laboratories, 477 Madison Ave., New York City.

<table>
<thead>
<tr>
<th>Item</th>
<th>Conventional Gymnasium</th>
<th>Geodesic Field House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Excavating and Backfilling</td>
<td>$10,915</td>
<td>$9,272</td>
</tr>
<tr>
<td>Concrete</td>
<td>98,500</td>
<td>94,430</td>
</tr>
<tr>
<td>Masonry</td>
<td>71,000</td>
<td>62,000</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>37,000</td>
<td>64,100</td>
</tr>
<tr>
<td>Ceramic Tile</td>
<td>13,700</td>
<td>11,000</td>
</tr>
<tr>
<td>Metal Windows, Curtain Walls, Screens, and Panels</td>
<td>20,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Metal Doors and Frames</td>
<td>5,000</td>
<td>6,000</td>
</tr>
<tr>
<td>Miscellaneous Metals</td>
<td>7,400</td>
<td>8,000</td>
</tr>
<tr>
<td>Insulation, Roofing, and Sheet Metal</td>
<td>12,200</td>
<td>46,778</td>
</tr>
<tr>
<td>Coating, Weatherstripping, and Thresholds</td>
<td>1,300</td>
<td>1,500</td>
</tr>
<tr>
<td>Carpentry and Millwork</td>
<td>26,460</td>
<td>24,189</td>
</tr>
<tr>
<td>Acoustical Ceilings</td>
<td>7,750</td>
<td>800</td>
</tr>
<tr>
<td>Resilient Floors</td>
<td>3,310</td>
<td>430</td>
</tr>
<tr>
<td>Glass and Glazing</td>
<td>1,400</td>
<td>800</td>
</tr>
<tr>
<td>Furring, Lathing, Plastering, and Stucco</td>
<td>11,480</td>
<td>4,920</td>
</tr>
<tr>
<td>Painting</td>
<td>16,000</td>
<td>20,310</td>
</tr>
<tr>
<td>Toilet Partitions</td>
<td>1,075</td>
<td>1,285</td>
</tr>
<tr>
<td>Furnishings and Special Equipment</td>
<td>72,492</td>
<td>60,106</td>
</tr>
<tr>
<td>Plumbing, Heating, and Ventilating</td>
<td>112,000</td>
<td>100,535</td>
</tr>
<tr>
<td>Electrical</td>
<td>55,000</td>
<td>57,200</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5,839</td>
<td>5,779</td>
</tr>
<tr>
<td>Total</td>
<td>$589,761</td>
<td>$583,674</td>
</tr>
</tbody>
</table>
THE CONVENTIONAL GYM (sketches on black, opposite page) has floor area on two levels of 31,586 sq ft, has space to seat 2500 spectators. Gym areas are divided by a motorized folding wood partition.

THE GEODESIC FIELD HOUSE (the circular part of the plans and sketch on this page) contains 35,800 sq ft, space to seat 3500 spectators. The gym is divided by a reinforced plastic divider which can be automatically raised vertically. The playing floor is wood.

THE ENTIRE SCHOOL was planned for a total construction cost of $3,150,000. The school is planned for an eventual curriculum change requiring varying size instruction spaces. Thus all general subject spaces have partitions which can be rearranged as needed. The entire plant will be air conditioned.
This festive little school is a good demonstration that limited funds need not prevent the creation of a stimulating environment for children.

The building was built under the so-called “austerity program” of the California State Aid Program of school construction. The program called for a six-classroom, plus kindergarten, primary school with multi-use room, administrative unit, and dependent facilities. The site is a limited, hillside one in a densely populated urban area. Problems of vandalism and maintenance were serious factors.

The architects provided a very pleasant, compact and workable plan, roofed by a system of precast thin-shell, reinforced concrete barrel vaults, and precast concrete bents. The vaults were topped by built up roofing with aluminum coating. Acoustical plaster was used to finish the underside. The vaults, two to a classroom, rest on a sort of low “garden wall” construction of reinforced concrete block. Floors are concrete slab on grade, with a colored concrete finish. Classroom and administration areas have radiant heating installed in the slab, unit heaters elsewhere. Partitions are movable for future change. The system makes for a minimum of maintenance, low insurance and long life. Total cost of the project was $253,300 ($199,900 for building, $53,400 for site work). Gross area of the school is 14,160 sq ft.
This Senior High School, which has a present classroom capacity of 1,000 students, offers some very interesting ideas for providing a well equipped (there are seven science labs), sound building at reasonable cost—$14.93 sq ft.

As so often happens, the school was faced with a program cut-back in its earlier stages: the original budget was for $3,400,000, and was later cut to $3,000,000. Rather than provide "cheaper" (and usually higher maintenance) construction, three major economies helped provide for the program.

First, spaces were developed for multiple use. The cafeteria doubles as a study hall, and a second, smaller dining space also serves as a small auditorium or lecture hall for about 200 people. The teachers' dining area, which adjoins this, doubles as a stage, and is closed with a folding partition.

Secondly, after study, some spaces were reduced in area. The prime example was the gym, reduced by 33 per cent, and reportedly working well, with good scheduling, for the school and community.

The cafeteria uses a "supermarket" technique to cut waiting time in line to a minimum, and thus speed up time for lunch periods: hot meals are picked up from two motor-operated turntables, each of which holds 14 plates and makes a revolution a minute.

Third: temporary economies resulted from postponing the building of the auditorium.

Durable materials include gray cement and blue-glazed brick exteriors, steel deck roofing.
STEEL DECK - LONG SPAN JOIST 112" x 1" LATERAL BRACING LIGHT FIXTURE 2" SPACERS / 2" x 4" BLOCKING

CAFETERIA CEILING

STEEL DECK LONG SPAN JOIST 0" x 1" LATERAL BRACING LIGHT FIXTURE 2" SPACERS / 2" x 4" BLOCKING

LIBRARY CEILING

ACOUSTIC PLANKS 9'0" x 12" x 12" OC

ARCHITECTURAL RECORD October 1961 165
The idea that a budget school must, of necessity, be of compact, barracks austerity, is skillfully refuted once again by this extremely pleasant high school. The program required a well-equipped, 1500-capacity school for grades 10, 11 and 12, with emphasis on the community use of cafeteria, auditorium and gymnasium. The site is a 54-acre, heavily wooded one, with soil conditions making it mandatory that all buildings be placed on pile foundations and suspended concrete floor slabs.

A campus scheme was evolved which placed all academic activities in a three-story wing, and all joint school-community facilities in connecting buildings, with planted courts between. The pleasant atmosphere was further enhanced by integrating abstract murals into the brick and concrete wall surfaces. The structural frames are concrete and steel; exterior walls are brick and porcelain enamel panels. Interiors are concrete block and glazed tile, with floors of asphalt tile or terrazzo, ceilings of suspended acoustic panels.

The actual building cost of the project was $2,266,444, or $1510.97 per pupil, $13.72 per sq ft. This included $285,300 for special foundation conditions; excluding this brings costs to $11.99 per sq ft.
where large volumes of hot water are needed... SPECIFY

Ruud COPPER SANIMASTER COMMERCIAL GAS WATER HEATERS

SOLID COPPER TANK
REINFORCED WITH STEEL

CORROSION CAN'T HAPPEN: Sanimasters were especially built for the high-volume, high-temperature commercial needs. The tank is solid copper, reinforced with steel, and all fittings are non-ferrous metal. Rust can't get a toe-hold, anywhere!

NO EXPENSIVE EXTRAS NEEDED: Copper Sanimasters are self-contained, underfired, automatic storage water heaters. They're factory-assembled; fit through standard doorways; need no expensive, on-the-job additions of insulation, circulators, temperature controls, support frames, etc.

GROWS EASILY, ECONOMICALLY: When demands increase, simply add another Sanimaster, at less than the cost of replacing an external storage tank. The Ruud Equa-Flow Manifold connects 2, 3, or 4 units; equalizes water flow, yet keeps them working separately.

CARRIES INDUSTRY SEALS: All Ruud Copper Sanimaster Water Heaters are approved-listed by the National Sanitation Foundation. They are also approved by the American Gas Association Laboratories and are constructed in accordance with the A.S.M.E. Boiler and Pressure Vessel Codes.

FREE FACT-FILLED BROCHURE!
☐ Please send me a free, detailed brochure on the Ruud Copper Sanimaster line of commercial gas water heaters.
☐ I would also like information on how I can obtain the new Ruud Engineers Manual & Certified Sizing Guides.

RUUD MANUFACTURING COMPANY
A subsidiary of Rheem Mfg. Co.
7600 S. Kedzie Ave., Dept. NAAR-10, Chicago 52, Ill.
Manufacturers of a complete line of commercial and residential gas water heaters of the highest quality.

Name __________________________

Firm Name _______________________

Address _________________________

City ___________________________ Zone State

Product Reports
continued from page 198

Range and Oven with Fume Control
The Air Conditioned Range is a built-in cooking surface with its own fume control system which removes cooking odors, smoke and heat before the fumes escape into the room. During cooking, fumes are sucked through a high-velocity pull-off slot in the raised cover. Because the power unit is suspended on a resilient mounting in the rear of a bottom cabinet, the operation is quiet. When the cover is closed, all power to the range is automatically cut off. Because there is no overhead equipment, cabinets can extend across the wall above the range. There is greater freedom in designing kitchens since odors do not reach near-by areas. The four cooking surfaces are arranged in a line,

eliminating reaching over hot burners. The matching, built-in Air Conditioned Oven has the same fume control so the kitchen is not heated when the oven is opened. Jenn-Air Products Co., Inc., 1102 Stadium Drive, Indianapolis 7, Ind.

more products on page 220
concrete... goes in place \(\frac{1}{3} \) faster than bars

New Structural Wire Fabric will speed up and improve multistory building construction. Just consider these advantages:

- Structural Wire Fabric mats go in place at least \(\frac{1}{2} \) faster.
- Structural Wire Fabric eliminates thousands of time-consuming spacing and tying operations.
- Structural Wire Fabric mats are prefabricated to your exact specifications of size and design requirements.
- Structural Wire Fabric mats are "stiffer," your assurance that the steel will remain in the proper position in the concrete slab.
- Structural Wire Fabric is made from high-tensile, high-yield cold drawn wire up to \(\frac{1}{2} '' \) diameter, permitting increased working stresses with a greater factor of safety.
- Structural Wire Fabric is electrically welded at all intersections, assuring positive mechanical anchorage in the concrete.

For designs that call for innovations in concrete, look into Structural Wire Fabric. We’ll be glad to assist you or your structural consultant with technical recommendations. Just contact our nearest sales office or write American Steel and Wire, Dept. 1247, Rockefeller Building, Cleveland 13, Ohio. **Innovators in wire.**
Product Reports
continued from page 193

Solid State Lighted Sidewalk
A solid state, lighted sidewalk has been installed at Sylvania Electric Products Inc. Unlike lighted side-
walks which require conventional light sources under a transparent or opaque surface, the Sylvania product is composed of solid pieces of steel embedded in the ground. The Pan­el­escent lamp used produces light over the entire surface by the principle of electroluminescence, in which light is created by the excitation of phosphors in an electrical field. The lamps used are set in aluminum trays and covered with plastic for weather­proofing. Sylvania Electric Products Inc., 730 Third Avenue, New York 13, N.Y.

Translucent Industrial Door
A new kind of strong, heavy-duty door, the Filuma 2800 Series, is translucent. It weighs about one third as much as comparable size wood or metal doors and comes in a choice of five colors in sizes up to 24 by 16 ft. The Filuma is an overhead door operated by adjustable torsion springs, with sections of reinforced fiberglass tightly encased in extruded aluminum frames. The door never needs painting or glazing and is cleaned by hosing. Frantz Manu­fac­turing Co., Sterling, Ill.

Decorative Linear Diffusers
A new line of extruded aluminum linear air diffusers called the Titus Staccato Line introduces a copyrighted design in which short-spaced dashes along each louver stand out in relief against a dark background. The faces of the raised sections are brushed satin aluminum finish, a contrast to the anodized black finish of the rest of the louver. Diffusers can be furnished with a variety of extruded aluminum borders, in many standard widths, and in any length for continuous appearance. Titus Mfg. Corp., Waterloo, Iowa.

more products on page 214

APPLICATION DETAILS
for the SMOOTHEE® Door Closer Shown on Opposite Page
As Demonstrated in Drawings Above:
1. The LCN "Smoothee" takes less space than most doorknobs between door and wall.
2. Degree of door opening possible depends mostly on type of trim and size of butt used.
3. Arm of LCN “Smootbee” is formed to avoid conflict with almost any conventional trim.
4. Joints in arm and shoe make it easy to vary the height of shoe as needed for beveled trim.
5. Power of closer is increased or decreased by simply reversing position of shoe.

Complete Catalog on Request—No Obligation
or See Sweet's 1961, Sec. 186-Lc

LCN CLOSERS, PRINCETON, ILLINOIS
A DIVISION OF SCHLAGE LOCK COMPANY
Canada: LCN Closers of Canada, Ltd., P.O. Box 129, Port Credit, Ontario

198 ARCHITECTURAL RECORD October 1961
Prestressed Concrete Industry Continues To Add To Design and Construction Advantages

Few, if any, of its segments have contributed so greatly to the construction industry in such a short time as has prestressed concrete.

Its growth has been phenomenal and healthy because it is based upon an advanced engineering concept of attaining equal or greater structural strength with less concrete and less steel.

After rapid technological development of superior steel, concrete and design, theory became theorem with an impact to be reckoned with. Now, each year, more and more architects and engineers are using prestressed concrete in their designs. A wide range of architectural and structural shapes are produced in plants across the nation.

Technological development continues to enhance the many basic and collateral advantages of prestressed concrete such as:

- Greater—more flexible strength for longer spans, fewer columns.
- Thinner sections, lower depth to span ratios.
- Lower wall heights, increased usable cubage.
- Balanced stresses and strains and controlled deflection.
- Closer quality checks in controlled manufacture.
- Ready availability, speedier erection.
- Lower maintenance and insurance.

Strength Factors of Prestressed Concrete Increased

By Research Laboratory

In combining, or balancing, the compressive strength of concrete with the tensile strength of stress relieved round wire strand, a loss of bond occurs. The designing engineer must compensate for this with more strand at less tension.

Prestressed wire and strand has been a major project in Union Wire Rope laboratories, even before the beginning of the industry in America. Now, loss of bond through creep and slippage has, for the first time, been largely overcome with Union's Tuf-Lock strand.

New Union 'Tuf-Lock' Strand Locks Itself In Concrete—Increases Bond Strength Up To 100%

Note the shape of the wires. Not round—not flat—but a combination that provides angular grooves and rounded bonding areas. The tendency to slip when cast in concrete is restricted. A locking action takes place as the strand, in seeking release from tension, tends to orient itself. A gripping effect is set up in the concrete locking the strand all along the axial path of the grooves.

The superior ability of Tuf-Lock strand to pass the tension stresses to the concrete has been proved in tests. 100% strand strength is developed by Tuf-Lock in one-half the length required by round wire strand.

Still Readily Available UNION'S ORIGINAL Tufwire

Tufwire for post-tensioning—Tufwire Strand—widely used since the beginning of prestressing in America will continue to be manufactured in unlimited quantities. It is available in coils, wooden reels and the New Tuf-Pak.

FREE Brochure provides information on the physical properties of all Union pre-stressing products, including the increased bonding qualities of new Tuf-Lock Strand. Also gives methods of shipment including the new Tuf-Pak which makes possible shipment of longer lengths. Write Union Wire Rope, Armcro Steel Corp., 2312 Manchester Ave., Kansas City 26, Mo.

* Pat. Applied for
Office Literature

Blueprint for Better Schools
Features wood school designs developed by Cooper and Auerbach, A.I.A., with isometric renderings, site plans, sketches and detail drawings. A variety of exterior siding, interior panelings, and door and window designs are also shown, as are flat, sloping and curved roofs supported by beam-and-purlin and beam-and-rafter systems, laminated wood bents, laminated beams, bow-string trusses, and V-arches. Wood Information Center, National Lumber Manufacturers Assn., 1319 18th St., N.W., Washington 6, D. C.*

Insulation Product Information
(A.I.A. 37-D) Describes available forms or types of thermal insulations for all types of commercial and industrial requirements; discusses advantages to users; and gives detailed specifications, including compliance with government specifications and ASTM standards. Catalog IN-244A, 64 pp. Johns-Manville Sales Corp., 20 East 40th St., New York 16, N. Y.*

Store Equipment for Store Planning

TECO Catalog
Describes and illustrates the firm’s line of timber connectors, framing devices and installation tools, and includes recommended working loads of Teco-U-Grip joist and beam hangers, Trip-L-Grip and Du-Al-Clip framing anchors, and installation data on Fas-Lok bridging. 8 pp. Timber Engineering Company, 1319 18th St., N. W., Washington 6, D. C.

Kentile Floors
A new Workbook for Architects and Builders (A.I.A. 23-G) covers recommended uses, suitable walls and underfloors, approximate costs, light reflectance, radiant heating, adhesives, static loads, and relative quietness; and also includes installation and maintenance instructions for various tile and wood floors, flooring suggestions for special circumstances, and specification data. 48 pp. Kentile, Inc., 58 Second Ave., Brooklyn 15, N. Y.*

Electric Traverse Rod
A 16-page catalog describes the Kenney electric traverse rod as “an entirely new concept in automatic drapery control.” The rod includes track assembly, power supply and electrical control system. Controls operate from single or multiple stations. Kenney Mfg. Co., 609 Wellington Ave., Cranston 10, R. I.

Patterned Aluminum Sheet
Samples of 41 different types of patterned aluminum sheet are shown in Designed Surfaces, from Alcoa. It lists the width, length, alloys and tempers in which each pattern is normally available. The patterned sheets are flexible and allow interchange and combination of patterns and finishes, pre-finished coatings, color and original designs. Aluminum Co. of America, 1501 Alcoa Bldg., Pittsburgh 19, Pa.*

Steel Beams
(A.I.A. 13-G) Details and specifications of Diamond-Span-R open web steel beams are given in a spring-bound catalog. Elizabeth Iron Works, Inc., 840 Green Lane, Union, N. J.

Concrete Construction Devices
Accessories used in concrete construction are discussed in a handbook made up of 12 loose-leaf bulletins. Form-tys, supports, inserts and anchors are among the more than 400 products included. Individual bulletins or the complete handbook are available from Richmond Screw Anchor Co., Inc., 816-838 Liberty Ave., Brooklyn 8, N.Y.*

Emergency Lighting
A 24-page catalog describes emergency lighting systems that can be used in all types of non-residential buildings. Should normal lighting fail, emergency lighting comes on instantly and automatically. The systems also have built-in “supervisory” circuits which report any disarrangement—even a burned-out light in an exit sign. Power is provided by non-acid nickel-cadmium batteries which last 25 years or more. The Standard Electric Time Co., 89 Logan St., Springfield, Mass.

*Additional product information in Sweet’s Architectural File

more literature on page 254
WOOD SHAVINGS, GYPSUM MAKE UP PREFAB PANELS

The National Gypsum Co. has developed a new prefabricated panel which can be assembled to form non-load-bearing partitions. The panels are made of two pieces of gypsum wallboard laminated with a center core of hardwood spirals to form a panel 2 3/8 in. thick. The hardwood spirals resemble familiar wood shavings, but are precision cut to a uniform size. Each panel has a wood strip embedded in one end to aid application on the job site. Panels can be erected individually, or by pre-assembling entire wall sections. They can be used in place of conventional stud construction for all interior non-load-bearing walls, except those incorporating water and sewer service lines. Short electrical runs can be pushed between the spirals, or they can be punctured to permit longer runs of cable to be fed through them. National Gypsum Co., Buffalo 2, N.Y.

FOLDING PARTITION PROVIDES SOUND BARRIER

A new folding partition which provides a high degree of sound control has been introduced by the E. F. Hauserman Co. Sound tests have shown the partition, called Operable Wall, to have an over-all average of sound reduction comparable to many fixed partitions. The wall is composed of steel panels which enclose a core of packed rock wool. Continuous sealing at the perimeter and neoprene gaskets at the panel joints counteract sound leakage. The wall is manually operated and runs on an overhead track. There is also a floor guide for increased stability. A thirty foot Operable Wall can be stacked in an area less than 2 ft deep. The panels have a baked enamel finish, and chalk and tack boards can be permanently applied. Individual panels are removable, as each is hung separately, and an end panel is available as a door. The E. F. Hauserman Co., 5711 Grant Ave., Cleveland 5, Ohio.

more products on page 198
Plastics in Building

NYLON:
Molded-nylon products have qualities as spectacular as those of the longer known nylon fabrics. They are tough, have a low frictional coefficient, and they resist mechanical wear better than many metals. Nylon's high softening temperature is exemplified by its replacement of brass for mixing-valves in automatic washers.

POLYCARBONATE:
A new polymer offering outstanding impact strength, dimensional stability under varying humidity or temperature, and heat resistance.

POLYETHYLENE:
Waxy and chemically inert, flexible even at low temperatures, this material is one of the best known plastics. It is a water barrier and retards the passage of water vapor. The plain, colorless substance is short lived in sunlight, but carbon-black-pigmented polyethylene has a good weathering record. (A new, "linear" polyethylene with properties more desirable for certain applications, is now available.)

POLYPROPYLENE:
A thermoplastic material composed of polymers of propylene. The lightest of all commercial plastics, its properties are roughly comparable with those of linear polyethylene.

POLYSTYRENE:
Non-water-absorbent, it is found in colorful, but brittle, wall tiles. Copolymers of styrene with rubber can be very tough. Polystyrene is one of several plastics used in electric-lighting diffusers. In foamed form, it has become an important thermal insulation.

PVC (POLYVINYL CHLORIDE):
The resin itself is rigid; plasticizers add flexibility to excellent resistance to wear and abuse.

SARAN:
A cousin of PVC, chemically as well as in its properties. Unlike PVC, which must be "stabilized" against degradation under ultraviolet light, Saran performs well outdoors without special formulation.

Thermosets
ALKYDS:
These appear chiefly as molded electrical parts. They are also important constituents of certain paints.
Lasticizer:
Materials added to a plastic to improve flexibility or to facilitate compounding.

Polymer:
A substance consisting of long-chain molecules formed by the union of many small molecules that are alike. (See "monomer.")

Polymerization:
The process by which polymers and copolymers are formed.

Postforming:
Bending phenolic laminates or certain other thermosetting sheet materials into simple (substantially permanent) shapes by heat and pressure after initial cure.

Resin (synthetic):
Polymeric synthetic products having some of the characteristics of natural resins. Some serve as base ingredients of plastics; others are important ingredients of finishes, adhesives, etc.

Resorcinol:
Generic noun for a group of synthetic polymers, much like the phenolics, that are chiefly used as heat and water resistant adhesive.

Roving:
A form of fibrous glass in which spun strands are woven into a tubular rope.

Suspension:
A liquid with small, solid particles dispersed more or less uniformly throughout.

Thermoplastic:
Term identifying that category of plastics which soften whenever heated sufficiently.

Thermoset and thermosetting:
Terms identifying the other category of plastics, which undergo a chemical change and harden permanently when heated (in contradistinction to the thermoplastics).

Thixotropic:
Said of materials that are gel-like at rest, but fluid when agitated (desirable in paints).

Vacuum forming:
Method of sheet forming in which the plastic sheet is clamped in a stationary frame, heated and drawn down by a vacuum into a mold.

Vinyl:
Alone, this word has a precise meaning to chemists. But as used in building, it is a vague term for certain polymers or copolymers. It is safe to assume that "vinyl" means, in connection with latex paints, "polyvinyl acetate" or—anywhere else in building "polyvinyl chloride" (PVC), or a preponderantly-PVC copolymer.

Principal Types of Plastics

Thermoplastics:

ABS Plastics:
Compounds of acrylonitrile, butadiene, and styrene. Important characteristics are toughness, chemical resistance, and non-brittleness at low temperatures.

Acetate:
See "Cellulosics."

Acrylics:
Popularly known trade names are "Lucite" or "Plexiglas"; chemical name, "polymethyl methacrylate." These materials combine the transparency of glass with plastics' shatterproof quality. Their weathering performance has been better than other common plastics and is being constantly improved.

Butyrate:
See "Cellulosics."

Cellulosics:
(Primarily cellulose acetate or butyrate.) Also transparent, "acetate" is well known as photographic safety-film. These plastics are amazingly tough—one common use is tool handles.

Fluorocarbons:
A group of extremely inert plastics. As resins, dispersions, oils, greases, and waxes, they have high thermal stability and excellent resistance to chemical attack.

Methyl Methacrylate:
See "acrylics."

ARCHITECTURAL RECORD October 1961 101
Plastics in Building

Tensile strength of plastics is comparable to wood and concrete, but increases to the range of metal alloys when reinforced or laminated with other materials or when drawn into fine filaments. Although plastics are inherently low in stiffness, when reinforced they range higher even than wood and concrete. Forming into structural shapes also increases stiffness. Thermal conductivity is about as low as wood, making plastics excellent insulators. Although as low as wood, making plastics excellent insulators. Although combustion occurs to the range of metal alloys

Note: Charts are reproduced from "Physical and Engineering Properties of Plastics" by Albert G. H. Dietz, a paper delivered at the 1954 conference on plastics held by the Building Research Institute and published in the conference report "Plastics in Building."

TERMINOLOGY

A certain amount of chemical-industry terminology cannot be avoided in discussing plastics. A few of the following terms are included because their meanings in this context are somewhat more precise than in common parlance.

COLD FLOW:
Creep occurring at room temperature.

COPOLYMER:
A substance consisting of long-chain molecules formed from two or more different monomers.

CREEP:
The change in dimension of a plastic under load over a period of time. Does not include the initial instantaneous elastic deformation.

CROSS-LINKING:
The chemical union of polymer molecules to form a three-dimensional network. Cross-linked polymers are usually infusible thermosets.

CURE:
Changing physical properties of a material by chemical reaction—usually to a harder or more permanent form.

DEFLECTION TEMPERATURE:
Degrees Fahrenheit at which a plastic material under fixed stress distorts as temperature increases, according to standard ASTM test procedure. (D 648-56).

DEGRADATION:
Molecular change to the polymer, usually from exposure to light, fire, or heat, becoming apparent as charring, discoloration, clouding of transparent plastics, embrittlement, or other loss of original properties.

DISPERSION:
A liquid with finely-divided insoluble particles scattered uniformly throughout. Called a "colloid" if particles are fine enough. "Dispersion" and "suspension" contrast with a "solution."

ELASTOMER:
A material which at room temperature can be stretched repeatedly to at least twice its original length and, upon release of the stress, will return instantly and with force to its approximate original length.

EXOTHERMIC:
Adjective indicating a chemical reaction that gives off heat.

FILM:
Sheeting of nominal thickness not greater than 10 mils.

FLASH:
Extra plastic attached to a molding along the parting line. It must be removed before the piece can be considered finished.

HIGH-PRESSURE LAMINATES:
Laminates molded and cured at pressures not lower than 1000 psi, (commonly 1200-2000 psi).

INHIBITOR:
A substance that slows down chemical reaction—often used to prolong "shelf" or storage life.

LATEX:
A suspension in water of fine particles of rubber, (which today includes synthetic rubber).

LINEAR:
Adjective to describe a long-chain molecule with a minimum of side chains or branches.

LOW-PRESSURE LAMINATES:
In general, laminates molded are cured in the range of pressure from 400 psi down to and including pressures obtained by the mere contact of the plies.

MONOFILAMENT:
A continuous thread made up of only one filament.

MONOMER:
A substance constituted of a simple molecule, of relatively low molecular weight, that is capable of reacting with like molecules to form long molecular-chain "polymers" (or with both like and unlike molecules to form "copolymers").

ORGANIC:
Adjective to distinguish those compounds, like plant and animal matter, which contain the very prevalent carbon atom. "Inorganic" compounds are those that do not contain carbon.
Building Components
Application and Specification of Materials and Equipment

A Lexicon for
PLASTICS IN BUILDING

Part I

Even though plastics have come into architecture in a big way, there still is considerable uncertainty about nomenclature and the proper application of these synthetic materials to building components. This article gives definitions that architects and engineers need to know in working with plastics, and lists plastics typically employed—from surfacings all the way to plumbing.

Although our laboratories are synthesizing more and more materials that do not occur in nature, this is not a random process and the plastics—so far, the greatest group devised by man—constitute a recognizable class of materials, analogous to the woods or the metals.

Chemists describe this group as organic "polymers" and can explain why similarities in the structure of plastics' molecules give rise to many similarities in engineering properties. Fairly safe generalizations can be made about the physical characteristics of these materials, just as with metals and other materials. Further, it is useful to recognize the basic division among plastics, which is reflected in their engineering properties. Not unlike the distinctions between "non-ferrous" and "ferrous," or "hardwoods" and "softwoods," the two major divisions into one of which all the plastics must fall are:

The Thermoplastics, which become soft when exposed to sufficient heat and harden when cooled, no matter how often the process is repeated. Although some need more heat than others, softening with heat is their distinguishing characteristic, very much like the behavior of candle wax.

The Thermosets, which are set into permanent shape when heated during forming. Reheating will not soften them (any more than it would the white of an egg), and the only change that can be brought about by increasing heat is actual chemical decomposition—allogous to the charring and burning of wood.

Ten characteristics of plastics in general have an important bearing on building applications. They are exhibited in varying degree, often being especially marked in one or the other of the two basic subclasses—thermoplastic and thermosetting plastics.

1. Excellent electrical-insulating properties, in terms both of resistivity and dielectric strength. There are also other good electrical properties which are important in specific applications that are of more significance in electrical engineering than in building.

2. Good corrosion resistance. At least one plastic material can be found to resist practically any corrosive condition found in building. Many instances can be cited—in industrial piping, for example—where plastics have far out-performed costlier metals, such as copper or stainless steel, under corrosive conditions.

3. Creep. Some plastics, especially the thermosets, are essentially elastic within certain limits of stress: deformation in proportion to the load applied which disappears quickly when the load is released. Others, especially the thermoplastics, exhibit plastic behavior: they flow, or "creep," when stressed, depending not only on the load, but also on the rate at which it is applied and its duration, and increasing with increases in temperature. This characteristic is comparable to that of steel or other metals when stressed, perhaps at high temperatures, beyond the elastic limit. When the load is removed, the material may eventually recover part of the deformation, or all of it.

4. Low tensile strength is generally characteristic of unreinforced plastics, although in laminated or reinforced form, plastics can compare quite favorably with metals.

5. Low modulus of elasticity is also characteristic, but glass-fiber-reinforced thermosetting plastics offer roughly the same range of stiffness as wood or concrete.

6. Low maximum service temperatures. In contrast with a number of structural building materials in common use, plastics in general are best used at temperatures below the wood-char point of 380-400 deg F. This is only an approximate statement, due to the varied conditions of actual use and to differing combinations of temperature-affected properties that may be relevant: tensile strength, creep, chemical stability, and the like.

7. High thermal coefficient of expansion. Plastics typically expand, per unit of temperature increase, several times as much as metals. Thermoplastics, as a group, have a higher coefficient than thermosets.

8. Flammability. In the sense that they can be destroyed by fire, plastics can be grouped with all other organic materials. However, a number of them—including certain thermoplastics—will extinguish themselves once the igniting flame has been removed.

9. Low thermal conductivity. Typical "k-value" for the plastics in common use is about 1.5, or slightly higher than wood. As low-density foams, plastics provide some of the most efficient thermal insulators available for building; a 2 lb per cu ft polystyrene foam, for example, might offer a "k" of 0.25.

10. Light weight, per unit volume. Unmodified with fillers, reinforcements, or other additives, the more common of these materials range from a specific gravity of just under 0.9 (polypropylene) to roughly 1.5 polyvinyl chloride, PVC. Strength-to-weight ratios thus compare favorably with those of other materials.

ARCHITECTURAL RECORD October 1961 189

by William Demarest
Director, Plastics in Building
Manufacturing Chemists' Association, Inc.
LIGHTING FOR STORES: 2—Equipment; Electrical Outlets
by Daniel Schwartzman, F.A.I.A., Architect

(Conclusion)

OUTLETS
All interior columns should have one duplex convenience outlet about 14 in. above the floor; one duplex convenience outlet about 12 in. below ceiling; and one telephone receptacle. All exterior columns should have one duplex outlet about 14 in. above floor.

Outlet Locations:
1. Cashier's Room for Calculating and adding machines
2. Cloth winder measurograph machines
3. Pilot lights for all machines, executive office equipment
4. Luggage stamping machines
5. Alteration Room for: Steam irons, sewing machines, steam generating unit boiler, pants pressing machine
6. Stationery department pen stamping machine
7. Drinking fountains and dispensing machines
8. Hospital sterilizer and stove
9. Pharmacy sterilizer and stove
10. Carpentry shop power equipment
11. Ticketing machines in marking areas
12. Store time-card clocks
13. Burglar protection
14. Sprinkler wiring system
15. Local fire alarm system
16. Store clock system and dismissal bell
17. High and low water alarm
18. Automatic time control system of exterior signs
19. Ventilating smoke and heat detection
20. Annunciator System
21. Automatic time control for show window lighting
22. Telephone system
23. Pneumatic tube blower system
24. Service bell at receiving platform
25. Night bell at store entrance
26. Cash register outlets on electric circuit separate from lighting circuits.
Mound of Earth, Plastic Planks Provide Thin Shell Form

The 240-ft thin shell concrete dome for a 7200-seat auditorium in Anderson, Ind., has been poured over a mound of gravel, and after curing will be hoisted into final position atop 36 steel columns by hydraulic jacks. A compression ring of concrete, 36-in. wide and 24-in. deep will be post-tensioned to take outward thrust.

The 26,000 cu yd of gravel used to mold the dome were topped by sand and then covered with 1-in. thick sheets of Styrofoam expanded polystyrene which serve as both a permanent form liner and as insulation. Concrete is poured after the steel reinforcement has been laid over the expanded polystyrene. When the dome is erected the Styrofoam will serve as an insulator and a base for the plaster.

Architects for the Warner Auditorium of the Church of God are Johnson, Ritchhart and Association.

Epoxy Resin Glues Together Aluminum and Plastic Shell House

Epoxy resin is the only material used to fasten the post-and-beam structural components of a 24 by 28 ft plastic and aluminum shell house, designed by architect George Frederick Wise and chemical engineer Max C. Weiner for Major Realty Corp. of Philadelphia.

Structural aluminum mullions which are part of the wall panels are attached to the wood sill by epoxy resin. The wall panels are rigid polyurethane foam sandwiched between and exterior sheet of plastic-coated aluminum and an interior sheet of hardboard, sealed with polyvinyl acetate. Reinforced fiberglass plastic beams, 3 by 12 in., in turn are glued to the aluminum mullions with epoxy. Finally the roof panels, laminated sandwiches of rigid polyurethane foam between two layers of fiberglass reinforced plastic, are laid on top of the beams with epoxy as the adhesive. This shell without finishing sells for about $3000.

Liquid-Applied Plastic Forms Roofing for a Plywood Canopy

A 7500 sq ft fir plywood hyperbolic paraboloid canopy for a bowling center in Willow Grove, Pa., features medium blue roof covering of fluid-applied neoprene- and Hypalon-based material. The roofing was placed in four coats to give a total thickness of 20 mils. Neoprene chips were applied between the two pigmented Hypalon-based coats to provide texture. The membrane weighs less than 20 lb per 100 sq ft. Architects are Powers, Daly and DeRosa.
Vibration Isolation System Shuts Out Bowling Alley Noise

A new ceiling isolation system utilizing cross-ribbed neoprene pads counters noise and vibration generated by bowling alleys located over a floor of offices in the renovated Strand Building in Brooklyn.

Wide Application
According to the acoustical consultant, Lewis S. Goodfriend and Associates, Montclair, New Jersey, the same isolating principle can be used either when extreme vibration must be contained or when an unusually low vibration and noise level must be maintained.

Because the noise problem was discovered after the installation of the bowling equipment, the isolation system was designed to meet existing conditions. The system as used was considered both effective and economical for the given conditions.

Pin-setting machines and rolling bowling balls on the second and third floors created vibration which was transmitted through building structural members. Isolation of noise due to vibration was a prime consideration in order to provide office space on the first floor.

By isolating the first-floor ceiling from the second floor, engineers determined that noise and vibration would be reduced to below that acceptable for office space. Isolation of the walls was not considered necessary.

A conventional ceiling isolation approach considered involved rubber-in-shear vibration hangers. However, these hangers would have had to be spaced at 4 ft intervals. Many of them would have been attached to the floor at points where some vibration could be transmitted from the floor through the hanger to the ceiling, according to Goodfriend. This approach, although entirely satisfactory in many applications, was ruled out because of the magnitude of vibration.

The acoustical engineers decided isolation efforts should be concentrated at the rigid structural steel members rather than at points along the concrete floor. Their solution, utilizing the cross-ribbed isolating pad is shown in the bottom figure.

Proper compressive loading of the isolating pad is the key to its effective use. The isolating system shown is the original method developed. It can be modified to accommodate individual problems found in specific installations.

The material, designated MB Iso-mode Pad by its manufacturer, MB Electronics, New Haven, is predominantly used to isolate vibrating machinery of all types.

System Details
Ideally, vibration should be isolated at a point as close to the source as possible. In the Strand application, vibration traveled from the second floor through the main structural members to subsidiary members. The joints between the main structural members and the lightweight joists used to support the ceiling were chosen as isolation points.

Two layers of neoprene pad were inserted at the beam-joist joints. A steel bearing plate and a steel wedge were used as illustrated to create proper loading surfaces for the pad. Approximately 4 sq in. of pad were used to bring the pad loading figure to 50 lbs per sq in.

The number of layers of pad needed for a given installation is a function of the disturbing frequency. In this application, two layers were recommended so that better than 75 per cent isolation could be obtained in the hearing range of humans.

An air-tight 15 lb per sq ft lath and plaster ceiling with a 2-in. thick glass fiber blanket backing was hung from the joists. All lighting fixtures and ducts were suspended below the monolithic ceiling. Holes drilled in the ceiling for fixture hangers were sealed with a non-hardening caulking compound. Ceiling edges were sealed in the same manner.

Remodeling was done by Braverman Construction Co., Inc.
4. PRECAST PILES ECONOMICAL IN VOLCANIC SOIL

If Hawaii's builders have made significant advances in the use of precast, prestressed components for high-rise structures, it has been possible only because they first solved a variety of perplexing foundation problems. The island's basic volcanic substrata are literally interlaced with erratic deposits of sand, clay, boulders and coral reef. It is not uncommon to have a difference of as much as 50 ft in the driven length of piles which are only 3 ft apart.

Precast, prestressed concrete pilings have proven to be the most satisfactory solution thus far. Because of the prestressing action, the concrete will take a great deal of punishment from the driving hammer which permits the piles to be driven to extremely high bearing capacities. This, of course, means considerable savings can be realized through a reduction in the number of piles required for a given column load and a consequent reduction in the size of concrete pile cap and reinforcement.

Equally important is the relatively low initial cost. Eighteen-inch, octagonal, prestressed piles have been sold at the plant for as little as $5.23 per lineal foot, and driven at the construction site to carry a design load of 200 tons each.

To meet the inconsistent ground conditions mentioned earlier, it has been imperative to develop a simple and economical method of pile splicing. A dowel splice has been used extensively with 18-inch octagonal piling. Experience, however, has shown that the dowel connecting the two pile sections can occasionally cause severe damage. Chipping at the splice point may cause the pile contact points to disintegrate, with the result that the dowel begins acting like a driving wedge which eventually destroys the connecting units.

Elimination of the dowel has provided a simple solution. Recent tests have shown that the "steel-can" splice collar by itself is capable of developing all the strength needed to resist the bending movement of connecting piles under actual driving conditions. On a recent job a pile driving rig with the hammer resting on the top pile toppled over shortly after making a splice. The upper of the two connecting piles broke off just above the splice joint, which was still exposed above ground. Despite its inconvenience, the accident offered solid proof that the "can" splice was stronger than the piles it connected.

Lightweight Concrete

One other recent development that must be included in any discussion of multi-story construction in Hawaii is lightweight concrete. Commercial operations have now begun on two deposits of lightweight pumice aggregate. This material is giving designers a new opportunity for reducing building weight, a critical factor in high-rise construction.

These aggregates can easily produce 3000 to 4000 psi concrete weighing about 105 pounds per cubic ft. This concrete is being used for cast-in-place composite slabs, walls, span-drels and columns. With these basic structural elements reduced in weight, pile footing costs are saved, and additional savings are realized through a significant reduction in the amount of concrete and reinforcing steel required in the structure.

This article is derived from a talk given at the Western Conference on Prestressed Concrete Buildings sponsored by the Engineering and Sciences Extension of the University of California.

Splicing an 18-in. octagonal prestressed, precast concrete pile

Left: Pile splice detail showing use of both the steel splice can and dowel
Right: Pile splice detail with dowel eliminated
Prestressed joists are supported by the "branches" of columns. Dimensions in the sketch right are for a building under construction. The first three levels of "column trees" are precast in one piece; upper floor "trees" are precast in single-floor units for ease of handling. Precast units are tied together with a cast-in-place floor, which acts as a shear diaphragm to transmit lateral forces to shear walls. Detail above shows reinforcing pattern (follows stress lines) of a "tree"

A two-story warehouse and laboratory uses "column trees," but in this case precast Lin-Tees form the floors (detail right gives general dimensions for this type of unit). This technique permitted construction of a two-story addition over an existing warehouse. Architect: George W. McLaughlin; Structural Engineers: Alfred A. Yee & Associates, Inc.; Contractor: Rothwell Construction Co., Ltd.
3. THE PRECAST "COLUMN TREE" CONCEPT

One of the most recent developments in multi-story framing is the so-called "column tree" concept. Principal components of this system are combination column-beam units and precast, prestressed joists. We have employed "column trees" successfully in a number of multi-story buildings. The tallest thus far is nine floors, now under construction.

A typical "column tree" unit consists of a precast column with contiguous, branch-like beams projecting out at the various floor levels. The joists rest on these "branches" of the tree. The first three floors of the column-beams are normally cast as a single unit, with all "trees" for the upper floors cast individually for ease of handling and placing.

The base of the column fits into a concrete socket in the footing which is cast to a dimension somewhat larger than the column. First a grout pad is put down into the bottom of the socket to exact elevation. When the grout pad hardens, after a day or so, the column is set on the pad at the exact vertical elevation. Then the column is adjusted laterally in either direction or rotated clockwise or counterclockwise as necessary. This oversized concrete socket has permitted all of these adjustments, even though the footing or column may not have been cast to exact dimension. Finally, the gap between the socket and the precast column is filled with expansion grout for permanent anchorage.

The space between the "branch" ends of adjacent "column trees" offers a decided advantage since it can be utilized for running air conditioning ducts, plumbing and other utilities close up against the deck slab with a resulting savings of head room. At the same time, "column tree" units can be designed so that they closely follow stress lines, making reinforcement placing simple and effective. In the completed structure, lateral forces are resisted by shear walls and the cast-in-place floor slab acts as a shear diaphragm tying together all precast components at each floor level.
Precast, Poured Concrete

2. ACCOMMODATING UTILITIES

For maximum economy in the use of mass-produced precast units, the variety of beams and joists should be held to a minimum. If unusual loads or other irregular conditions occur in the deck framing, it is possible in most cases to use the same kind of components throughout by simply doubling them up for additional strength or altering the spacing to meet the situation.

In the 19-story building shown here, a traffic jam of air conditioning ducts leading into the main air conditioning shaft created a headroom problem. Precast, prestressed joists, which had been evenly spaced for the rest of the deck frame, were doubled up adjacent to the congested area and thickness of the cast-in-place slab was increased. This left the area near the shaft free of joists, thus providing the required head room while maintaining adequate structural strength. Air conditioning ducts, wiring and plumbing were accommodated with no loss of head room throughout the remainder of the floor area by casting the joists with holes in the webs.

The girders are shown in place ready to receive slab form work. Columns are poured-in-place

64-ft prestressed concrete girders are hoisted by boom of conventional crane on lower floors

Forming and pouring of the floor slab is accomplished through use of a climbing crane

the entire deck frame is compositely "glued" together to resist both lateral and vertical forces.

Precast Columns. One of the most encouraging of recent cost saving developments has been in the field of precast concrete columns or combination column-beam units which are adaptable for use in either low- or high-rise buildings.

One of these methods permits the precasting of several floors of columns in one unit (page 176). In the multiple-column units, vertical reinforcing steel is continuous throughout, but spaces are left in the concrete portion of the column at each floor level to accept continuity bars for the intersecting beams. The joint between beams and column can be completed with a cast-in-place column head.

There are several advantages in using precast columns. Where the building site is located in a congested area, and there is little room to store materials and equipment, columns can be precast at a central plant and hauled to the site for erection. Because of the nature of precast work, these columns can be made with a high quality architectural finish. Precasting saves much formwork and shoring, and the construction can progress much faster. However, where buildings are higher than 10 stories, the column sizes usually become quite large for handling and, therefore, must be spliced often. There may be difficulty in developing the full load transfer at these splices because of the greater amount of vertical reinforcing steel necessary in these heavily loaded columns.

In general, for buildings below 10 floors, columns can be precast, and above 10 floors should be poured. When buildings have about eight or nine floors, it is open to question whether they should be poured-in-place or precast, and the answer depends upon structural and architectural considerations.

Beam Ends. Ends of the beam units are tapered to develop more favorable bearing stress patterns and the beam's prestressing tendons are extended into the cast-in-place portion for additional tie. Spalling at this joint is prevented by the use of small diameter mild steel reinforcing cages in the corbel area near the ends of the beams. Full continuity is assured by adding mild steel in the composite deck slab.

Composite connection of prestressed concrete joists to spandrel beams is shown in the detail. This system was used in the 25-story structure below. Beams were moved into position on rolling tripods whose vertical posts telescope to lower beam. 1441 Kapiolani Boulevard Office Building, Honolulu; Architects & Engineers: John Graham and Co.; Contractor: Hawaiian Dredging Construction Co., Ltd.

Alfred A. Yee (far right) with partners Ben Ranada, Kalfrid B. T. Lum study a scale model of a special prestressed beam erection method devised by their office for high-rise buildings. Lifting davits attached to two columns place the beams on movable tripods for final positioning. This davit system was used for the office building shown on the following page; conventional crane was used for lower floors.
HIGH-RISE STRUCTURES IN HAWAII

Rapid advancements in the mass production of precast, prestressed concrete components are aiding Hawaii's increasing need for high-rise buildings. Where the framing system must have a clear span of 30 ft or more, the utilization of these components tied together compositely with cast-in-place lightweight concrete can bring about very significant cost savings. Also wherever ground conditions require piling, prestressed concrete piles can furnish the necessary support at low cost. Prestressed units also can provide a building framing system which is simple to erect and offers flexibility for mechanical services.

1. TEAMING PRECAST, Poured CONCRETE EFFICIENTLY

To achieve the highest efficiency, all connections between precast units should develop full bearing and continuity (detail below and page 177). The connecting ends can either rest on, or butt against, intersecting units, with mild steel reinforcing added in the poured slab portion to serve as continuity ties. In this situation no steel bearing plates, bolts or weld points are required.

Tolerances. Precast concrete units cannot be manufactured with the same degree of precision as machine-shop-produced steel units. Some dimensional deviations from specified alignment, camber and length will exist in precast units. Fortunately, however, under the composite method all of these dimensional inconsistencies can be easily absorbed by the cast-in-place concrete with no sacrifice in structural strength. Cast-in-place concrete forming the spandrels and slab also completes the jointing media between precast units; thus

The prestressed “soffitt” becomes part of the beam through use of stirrups pre-embedded in the unit. The “soffitts” are connected to columns by poured-in-place corbels. The “soffitt” units may range in length from 15 to 45 ft.
Prestressed Industry Profile

Facts and figures on the nature and size of the prestressed concrete products industry are given in a 8-page report presented in the June Construction Review published by the Business and Defense Services Administration, U. S. Department of Commerce. One of the most interesting statistics pertains to growth of this industry in the last decade—from five or six plants in 1950 to more than 200 at the end of 1959. In 1959 plants used 1,200,000 cubic yards of concrete; 90,000 tons of steel especially made for prestressing operations; and 45,000 tons of conventional types of steel. Structural members for buildings exceeded those for bridges and waterfront structures by 10 per cent based on cubic yards of concrete. There were 163 companies fabricating building members. More plants (117) produced double tees than any other item. Other types included single tees, channel slabs, I-beams and joists, T-joists, inverted T-beams and rectangular beams, flat slabs, lintels, wall panels, box beams, tapered girders, monowing tees and trusses.

Home-Made Electricity from Gas Turbines

The gas industry (and electric utilities too) along with architects and engineers will be watching the performance of gas turbine installations in buildings for generating electrical energy on the spot as well as providing energy to heat and cool these buildings. A 900 kilowatt generator is being used at Park Plaza shopping center in Little Rock, Ark. to supply electricity to a supermarket, bowling alley, discount department store and 27 other shops. Waste heat from the turbine is converted into steam for heating and for absorption refrigeration. A natural gas burning turbine utility package will be installed also in a division office of Northern Illinois Gas company outside Chicago. This unit will produce 400 cycle current for fluorescent lighting and will be converted to 60-cycle for other applications.

Scientific Plumbing

The problem of providing plumbing drains and vents which are adequate, but not unnecessarily large and costly, has been studied at the National Bureau of Standards. Current plumbing codes differ in their requirements on sizes of pipes for these systems. The study has resulted in equations, tables, and charts to compute pipe dimensions ample but not excessive in size. The study was concerned primarily with the mechanics of flow in main vertical drains and vents (stacks). Pertinent charts and illustrations were developed showing velocity of water in vertical drains, rates of air flow, hydrodynamic pressures, and permissible plumbing loads. The report, Capacities of Stacks in Sanitary Drainage Systems for Buildings, NBS Monograph 31 (1961) is available from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. for 35 cents.

Tubular Steel Made for Buildings

Almost two years ago we wrote about the growing interest in tubular steel structures. The point was made that, “In architectural circles, tubular steel structures have for many years been thought of principally in terms of the dramatic space-frame constructions—bridges, towers, exhibition buildings, et al—so common abroad. With the exception of the pipe column, which can surely be no mystery to any designer, structural uses here have been limited to the quasi-architecture of radio and TV towers, and oil-well drilling masts.” This article, which dealt with welded steel tubing, went on to point out how the availability of this material had made possible a variety of curtain wall constructions, canopies, and even served as the exterior columns for a 24-story office building in Dusseldorf, West Germany. Recently several steel producers have announced the availability of hot-rolled steel structural tubing in square and rectangular shapes up to 8 by 8 in. in size. One of the main deterrents against the use of steel tubes for building has been cost; and a prime reason for this has been that steel tubing has been produced primarily for industries outside the building field. Now steel producers are offering tubing with properties in line with those of hot rolled structural sections.

This Month’s AE Section

Almost two years ago we wrote about the growing interest in tubular steel structures. The point was made that, “In architectural circles, tubular steel structures have for many years been thought of principally in terms of the dramatic space-frame constructions—bridges, towers, exhibition buildings, et al—so common abroad. With the exception of the pipe column, which can surely be no mystery to any designer, structural uses here have been limited to the quasi-architecture of radio and TV towers, and oil-well drilling masts.” This article, which dealt with welded steel tubing, went on to point out how the availability of this material had made possible a variety of curtain wall constructions, canopies, and even served as the exterior columns for a 24-story office building in Dusseldorf, West Germany. Recently several steel producers have announced the availability of hot-rolled steel structural tubing in square and rectangular shapes up to 8 by 8 in. in size. One of the main deterrents against the use of steel tubes for building has been cost; and a prime reason for this has been that steel tubing has been produced primarily for industries outside the building field. Now steel producers are offering tubing with properties in line with those of hot rolled structural sections.

ARCHITECTURAL RECORD October 1961 175
Amaryllis Park School

The unifying appearance of the exposed steel structure, and some very nice detailing, negate any possible monotony from the repetition of the basic classroom units. (Photos above). The tall open pavilion visible is now used as a covered play shed, and is part of the future covered walkway which will link successive wings of the school.

As sharp accents to the basically beige-toned building, all exposed steel is painted black and gravel stops white. The corridor wall is made up of white translucent plastic panels alternating with a "weathered-gray" stained wood jalousie; entrance doors are aluminum clad, bright colored. Interior cabinet work is natural birch; core walls are surfaced in yellow tile.
This elegant little school is the first stage (12 classrooms) of a scheme which will ultimately have 24 classrooms, 8 kindergarten rooms, an administration unit and a cafeteria with either a kitchen or serving pantry. (The completed part is shaded in the plot plan below.)

For maximum economy in both first stage and future development, the scheme was based on a concept of self-contained units that could be added to the school plant as needed. Each unit is a double-classroom arrangement with consolidated utilities; the units were also designed to allow plumbing to run free of paving, to allow outside access to the heater (for code and maintenance), and to give as much counter space, tackboard, pegboard and chalkboard area as possible. Each classroom includes an outdoor instruction area.

To simplify later additions, a structural system of exposed steel in 16 by 16 and 16 by 28 ft bays was worked out. All materials were carefully chosen for cost, scale, visual and maintenance requirements: walls are buff concrete block; floors are buff vinyl asbestos; ceilings are sprayed acoustic plaster. Cost of the 12 classroom unit was $243,235.17 or $11.69 for 20,800 sq ft (with covered areas at ⅛).
DISCIPLINE AND TASTE CUT COST TO $10 SQ FT

NAME: Richland Junior High School
LOCATION: Memphis, Tennessee
ARCHITECTS: Mann & Harrover
STRUCTURAL ENGINEER: John C. Brough
MECHANICAL & ELECTRICAL ENGINEERS: Griffith C. Burr
CONTRACTOR: S & W Construction Co.

This handsome, neatly organized junior high school, was designed to fit a standard program: ten classrooms; eight special classrooms, including a library; auditorium-cafeteria and gymnasium; and administration. It was also required that the building be easily expandable, economical in first and maintenance costs, and suitable for community use.

As constructed, the building comes off very well. By tailoring a regular structural system to fit the program and site—and by using simple, durable materials—the city obtained a good-looking, well organized and equipped school for the modest cost of $10 per sq ft.

The site is a sloping one; a uniform roof line was effected by designing the school in three units, with the highest spaces (cafetorium, gym) at the lowest land level. The west unit, on high ground, contains classrooms and library, which faces on a court. The central unit contains home economics, labs, music rooms, and administration. This disposition allows evening use of the remaining facilities—shops, cafetorium and gym—for community use.

The structure is reinforced concrete, dominated by a post-tensioned folded plate concrete roof. Walls are brick, concrete block and porcelain enamel panels. Floors are quarry tile, ceilings acoustic plaster.
Economical Schools

A CHALLENGE TO PROVIDE THE BEST FOR FIXED FUNDS

NAME: Riverbank Elementary School
LOCATION: Stamford, Connecticut
ARCHITECTS: Curtis and Davis
STRUCTURAL ENGINEERS: Fraioli, Blum & Yesselman
MECHANICAL ENGINEERS: Tizian Associates
LANDSCAPE ARCHITECTS: Schreiner and Schmitt
ACOUSTICAL CONSULTANT: John A. Donohue

The cost problem facing this school was not necessarily to design the most economical building, but rather to provide the best school plant and the most facilities within the funds available. The funds totaled $1,058,000, and the program called for a K-6 school for 800 pupils which included 24 classrooms, two kindergartens, auditorium, cafeteria, gymnasium, library and administrative area. The site was 14 acres of rolling land.

The final school, as shown here, represents the result of a considerable series of studies, whereby the architects sought to fulfill the following objectives: 1. develop complete separation of classroom areas from areas used by the community after school hours; 2. isolate all classrooms from noisy activity areas; 3. group and separate units requiring different types of structural systems (long span versus short span), for simplicity and economy of construction. A study was made to find the most economical method of construction for these spans—resulting in the use of steel columns and laminated wood beams and wood deck (which the architects found cheaper in this case in spite of higher insurance costs).

The obvious need for combining some of the major spaces led to an analysis indicating that a stage-cafeteria combination was best. It allowed the gym to be available for physical education throughout the day; it permitted a sloping floor with fixed seats for the auditorium; a sound deadening curtain made both stage and auditorium available as educational space.

The cluster classroom arrangement also permits a corridor space which can double for teaching or display space. Classroom shapes were determined to some extent by best shape for viewing TV; all partitions are non-load-bearing and contain no utility lines for possible replacement by folding walls.
PROTECTONE MINERAL FIBER UL FIRE-RATED PRODUCTS

<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>TIME-RATED</th>
<th>CEILING-FLOOR CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Natural Fissured</td>
<td>1-hr.</td>
<td>Wood deck over wood joists</td>
</tr>
<tr>
<td>(2) Plaid</td>
<td>2-hr.</td>
<td>Concrete deck over steel bar joists</td>
</tr>
<tr>
<td>(3) Striated</td>
<td></td>
<td>All above are 12" x 12", square-edge,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kerfed for concealed H & T suspension system</td>
</tr>
<tr>
<td>(4) Tiffany</td>
<td>2-hr.</td>
<td>Concrete deck over steel bar joists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12" x 12", tongue and groove,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kerfed for concealed Z-runner suspension system</td>
</tr>
</tbody>
</table>
HINGES for HEAVY DOORS or HIGH FREQUENCY USE

Half mortise, channel iron jamb, four ball bearing, template hinge for heavy doors or high frequency in hospital or asylum use. Made of wrought steel, highly polished and heavily plated, bonderezied and primed for painting with inner edges of leaves beveled. Also available in solid brass, bronze or stainless steel with stainless steel pins. All hinges conform to Federal specifications.

GRiffin MAUuACTURING COMPANY - ERIE, PA.

Product Reports

continued from page 214

Gray Transparent Mirror

Parallel-O-Grey Mirropane is a twin-ground gray transparent mirror designed for use where there is little difference in light intensity between the two areas involved. Like regular Plate Mirropane, which it will augment, it consists of a special chrome alloy, thin enough to be transparent, applied to twin ground glass by thermal evaporation. There are two differences: the glass in the new product is gray instead of clear, and it operates effectively as a mirror at lower light ratios: between four-to-one and two-to-one, instead of ten-to-one and five-to-one. It comes in a ½-in. thickness in any size up to 70 by 84 in. Libbey-Owens-Ford Glass Co., 811 Madison Ave., Toledo 3, Ohio

Acoustic Plank

By enlarging the traditional one-ft-sq acoustical tile to a plank 16 in. wide and 10 or 12 ft long, Kaiser Gypsum has introduced an easy-to-handle product which reduces application time. The Fir-Tex acoustical plank is ½ in. thick, same as standard tile. It has a washable, white finish and comes in either a pin-punched or fissured pattern. Because of the plank size, it can be used for walls as well as ceilings. Kaiser Gypsum Co., Kaiser Center, Oakland 12, Calif.

Fire-Resistant Wall Finish

In a series of tests, Glazetite, a spray-applied, low maintenance interior wall coating, rated “0” for flame-spread and “0” to “10” for smoke developed. A permanent covering of over 90 per cent inorganic composition, Glazetite is not affected by deterioration from oxidation and moisture. It is available in many colors, with a high gloss finish. Desco International Association, Box 74, Buffalo, N.Y.

more products on page 226
Let the Victaulic Method save you money on piping costs. Whatever piping material you choose, Victaulic can join it and provide fittings. You save in material cost, in installation time, and in reduced piping maintenance cost.

CUT COSTS WITH OVER 1100 VICTAULIC ITEMS FOR BETTER AND EASIER PIPING

- Standard Couplings
- Lightweight Couplings
- Rigid Couplings
- Roust-A-Bout Couplings
- Snap-Joint Couplings
- Plainlock Couplings
- Malleable Iron Fittings
- Stainless Steel Fittings
- Aluminum Fittings
- Nipples and Adapters
- Lined Fittings
- Cast Iron Fittings
- Plainlock Fittings
- Vic-Groover Tools
- Vic-Easy Tools
- Plug Valves

For complete information on any Victaulic product, write:

VICTAULIC
COMPANY OF AMERICA
P. O. Box 509, Elizabeth, N. J.

Product Reports continued from page 220

Console Air Conditioning Unit

Roommate II combines two air conditioning firsts: patented Humid-a-Guard control system which can de-

humidify at full capacity with or without reducing room temperatures; and an air volume stabilizer damper which will maintain the desired amount of outside air under all conditions no matter what the wind velocity. *John J. Nesbitt, Inc., State Road & Rhawn St., Philadelphia 36, Pa.*

Photo-Copying Machine

Office production of glossy photo-copies is possible with *Polymiero*, a photo-copying machine made in France. The prints can be used in making half-tones and are produced in 10 seconds each for less than 10 cents in paper costs. *Photorapid Corp., 142 Oregon St., El Segundo, Calif.*

Aluminum Window—Colonial Style

The Series 410 *Alwinitie* window is single-hung with separate panes and white enamel finish in Colonial style. The sashes are pre-glazed and chipped or broken glass can be replaced from the inside. For cleaning, the lowe sash lifts completely out of the frame. *General Bronze Corp., 71 Stewart Ave., Garden City, N.Y.*

more products on page 23
You can plan clear space for 12 trailer trucks or 2 basketball courts ... under an ALLSPAN roof!

ALLSPANS, up to 120 feet in length, are vital where plans call for maximum unobstructed space. ALLSPANS are the longest, strongest open web framing members available. They give you all the design and erection economies of open web construction — plus nailability — without excess weight. Frame with ALLSPANS for strength, speed, economy.
A. R. Voelker, superintendent of maintenance for H. C. Prange Co., with Kohler Model 75R78, 75 KW, 120/208 volt AC.

KOHLER ELECTRIC PLANT poised to prevent power failure hazards at H.C. Prange Co. store

Business as usual can continue in the H. C. Prange store at Appleton, Wisconsin, when a storm or accident causes a power blackout. A 75 KW Kohler electric plant will provide immediate emergency power for lighting, automatic heat—forestalling risk of loss, panic or distress.

Today's increasing dependence on electrical facilities makes stand-by power a vital necessity in stores, hospitals, schools, theatres—public buildings of all kinds, as well as homes. Kohler plants are economical to operate, easy to maintain, known everywhere for reliability.

To help you write specifications, a complete manual will be sent on request with data on sizes from 1000 watts to 115 KW, gasoline and Diesel.

Kohler Co. Established 1873 Kohler, Wis.

KOHLER of KOHLER
ENAMELED IRON AND VITREOUS CHINA PLUMBING FIXTURES • ALL-BRASS FITTINGS
ELECTRIC PLANTS • AIR-COOLED ENGINES • PRECISION CONTROLS

Product Reports continued from page 225

Compact Playgrounds

Packaged playgrounds called playscapes combine economy and safety with sculptured design. They are designed with such built-in safety factors as no moving parts and no pieces higher than five ft. Individual pieces are age-graded. A typical playscape is about 50 ft sq, and contains a selection from a total collection of 37 devices. Planning, design, and consultation services are available Playground Corp. of America, 16 E 52nd St., New York, N.Y.

Geodesic Dome Shelter

A lightweight, dome-shaped structure 22 ft in diameter, said to be sturdier, more durable and lower in cost than a tent of equal size now being marketed as a ready-to-assemble shelter. Geospace is a free-standing, portable geodesic dome 12½ ft tall and weighing only 450 pound but containing 352 square feet of usable floor space. It sells for $34 f.o.b. Baxley, Ga. Shelter is formed from prefabricated triangular panels of one-half inch thick Foamite board, resin coated for weather resistance, which are bent and bolted together at the site, available in pastel yellow, forest green and eggshe white. Geospace Dome Shelters, 87 N. Lindbergh Blvd., St. Louis 66, Mo. more products on page 2.
when the air distribution equipment is by TUTTLE & BAILEY

The broad range of T&B air distribution devices and accessory equipment for heating, cooling and ventilating answers every requirement of the architect, engineer and client. As the largest full-line manufacturer, T&B offers the precise piece of equipment for each job . . . setting the highest standards of appearance and performance.

Write for the name and address of the Factory Office or Sales Representative nearest you.

TUTTLE & BAILEY
Division of Allied Thermal Corporation
New Britain, Connecticut
Tuttle & Bailey Pacific, Inc., City of Industry, Calif.
GUTH multi-mount EXITS

THE FIRST ALL-NEW “EXITS”
...since doors were invented!

A slight overstatement, maybe. But these Guth Exits DO introduce a lot of new ideas.

DESIGN-WISE — They’re on the elegant side. A dramatic new shape with trapezoidal housing. Guth quality construction throughout. No screws to unlatch on face-plate doors. Doors lift up and swing open for easy servicing. The face slants to point directly at the natural “line of sight.”

THREE LAMP SOURCES — Your choice of Incandescent, Fluorescent or those new, right-out-of-the-future Electroluminescent panels.

FIVE MOUNTINGS — Whatever you prefer! Drawings below show complete selection.

Top Mounted Surface Mounted Recess Mounted
End Mounted Triangular

One piece, die-formed, hinged Face Plates: All glass or cut-out metal letters with glass behind.

Product Reports
continued from page 234

Domed Plastic Skylight
A new roof window by Ventarama is designed to function as both skylight and operating window. Roof window can be installed on either flat or pitched roofs, and can be opened awning-fashion to act as a scoop for ventilation air. A single package includes screening, flashing and operating control. Framing is aluminum sizes from 22 by 30 in. to 45½ in square. Dome consists of a double layer of clear plastic providing insulation. It is also available in translucent or colored plastic. Ventarama Skylight Corp., 174 Main St., Port Washington, N.Y.

Clear Finish for Exterior
A clear satin finish for wood which closely simulates an expensive hand rubbed effect and is suitable for indoor, outdoor and marine use, is newly perfected. Varmor Satin, companion to Varmor Clear Finish Gloss, is a clear, semi-luster finish having sufficient resistance to wear, weather and water to be used on any wood surface. Pratt & Lambert, Inc., Tonawanda St., Buffalo, N.Y.

Fiberglass Panels
Lascolite fiberglass panels can be made to duplicate any sheet contour shape to architect’s design in runs as low as 10,000 sq ft. A wide variety of colors is available. Lasco Industries, 1561 Chapin Rd., Montebello, Calif.
The shape for things to come ... in structural steel

Add low-cost USS National Hollow Structural Tubing to the list of available structural sections.

USS National Hollow Structural Tubing is made of hot-rolled carbon steel. This product has a tensile strength of up to 80,000 psi, and a minimum yield strength of 33,000 or 36,000 psi—maximum strength at minimum cost. It conforms to the chemical and mechanical properties of ASTM A-7 and A-36 specifications. Because of the hollow design, you obtain maximum strength with minimum weight. It's compact, easy to handle and maintain. It is a highly efficient structural member especially in compression and where subjected to bending moments in more than one direction.

USS National Hollow Structural Tubing comes in a wide range of stock sizes: 1" x 1" to 10" x 10" for squares, up to 32" perimeter for rectangles, and in lengths 36 to 42 feet. For more detailed information, send the coupon.

USS and National are registered trademarks

National Tube Division of United States Steel
For that BIG or extra RUGGED Door, Kinnear’s “Goliath” slat is unbeatable

Roll-formed of steel or aluminum* this giant slat forms a curtain of unmatched strength — an almost impenetrable barrier! Ideal for extra large and special openings such as in prisons, piers, gantry cranes — wherever ruggedness and durability count more than the extra cost.

All Kinnear Rolling Door advantages are retained in the “Goliath” slat . . . space-saving, coiling-upward action . . . jamb-to-jamb doorway clearance . . . fast-action push-button control by means of the all-new Kinnear Motor Operator (optional) . . . protection against wind, weather, vandals, intruders . . . valuable resistance to fire . . . an unmatched record for long, low-maintenance service at low cost. Write today for free information.

*14 or 16 U.S. gauge steel; 10 or 12 B and S gauge aluminum. Other Kinnear curtain slats range down to 1/8” width, in various gauges of aluminum, steel or other metals.

The KINNEAR Manufacturing Co.

Office Literature

continued from page 194

Blueprint Reading Course
A technical blueprint course is available in English and soon will be available in major foreign languages. Consisting of 12 LP records and a 24-page blueprint manual, the course uses easy-to-understand language. The complete course is $9.90, with $1.50 each for additional manuals. Natac Publications, Inc., 214 W 23rd St., New York 11, N.Y.

Movable Partition File
A special file includes sample specification sheets for interior movable walls and partitions. Aluma-Wall Partition Co., 859 E 108th St., Los Angeles 59, Calif.

Curtain Walls
A 16-page catalog illustrates various types of, and typical specifications for, curtain walls, window walls and interior division walls. W. P. Fuller & Co., Trimview Metal Fabricating Division, 600 N. Third Ave., Covina, Calif.

X-Ray Layout File
A 64-page loose-leaf reference file contains scale drawings and specifications on x-ray processing tanks, coolers and all standard x-ray accessories with complete plumbing roughing in details to aid architectural layouts. Bar-Ray Products Inc., 209-25th St., Brooklyn 2, N.Y.

Prestressed Concrete
Illustrated 20-page booklet describes 21 types of structures in which prestressed concrete is often used and gives reason for the selections. Prestressed Concrete Institute, 205 W Wacker Dr., Chicago 6, Ill.

Spec Sheets on Closet Seats
Specification sheets on solid plastic closet seats designed for institutional, commercial and industrial applications. Beneke Corp., Columbus 442, Miss.

Plastics Lighting
K-S-H Plastics, Inc. has re-issued their plastics lighting catalog, now including the white opal polystyrene and acrylic prismatic lens panels. K-S-H Plastics, Inc., 10212 Manchester, St. Louis 22, Mo.
The Charlotte skyline now boasts a striking new addition: the headquarters building of the North Carolina National Bank. General Bronze engineered, produced and erected the complete aluminum curtain wall system, as well as reversible aluminum windows and architectural metalwork.

When you think of curtain walls...either skin or grid-and-panel systems...in aluminum, bronze, or stainless steel...think also of the design and engineering services only General Bronze can offer you. With close to half-century's experience in architectural metalwork and fenestration, and 16 years in curtain wall construction, General Bronze is uniquely equipped to help you realize the benefits and avoid the pitfalls of this highly specialized field.

For additional information, consult your Sweet's files...call in the General Bronze representative nearest you...or write to: General Bronze Corporation, Garden City, N. Y. • Sales Office: 100 Park Avenue, New York, N. Y.

TREMCO MONO-LASTO-MERIC®,
1-PART 100% LIQUID POLYMER,
ACRYLIC BASE SEALANT
factory mixed, ready for use in cartridge or bulk, assures absolute
Weathertightness for controlled joints, expansion joints and
conventional caulking joints. It has a basic superiority over
conventional sealants which require the use of ingredients that
will migrate or oxidize in time, thus lowering sealant life and
efficiency. Mono-Lasto-Meric is formulated with Tremco devel­
oped and Tremco manufactured pure 100% liquid polymer.
The desired requirements of exceptional adhesion and enduring
elasticity are inherent and permanent parts of the basic polymer.
Absolutely non-staining on masonry surfaces.

For your next bonding, sealing or caulking as­

tainment consider Mono-Lasto-Meric. A product
data sheet designed for specifying authorities is
available from your Tremco Representative or
write: The Tremco Manufacturing Company,
Cleveland 4, Ohio, or The Tremco Manufacturing
Company (Canada) Limited, Toronto 17, Ontario.

Office Literature
continued from page 254

Automatic Innkeeping
The advantages of automatic inn­
keeping for hotels and motels are de­
scribed in a 16-page booklet featur­
ing centralized control systems for
message signal, morning call and
maid control. The booklet also de­
scribes electronic air cleaners, security
systems, fire-detection systems and other forms of centralized con­
trol. Minneapolis-Honeywell Com­
cercial Division, 2727 S. Fourth
Ave., Minneapolis 8, Minn.*

Decorating With Canvas
A 24-page color booklet illustrates
more than 60 shapes and styles of
canvas sunshades for windows, door­
ways and accessory uses. “Decorating
and Shading With Canvas,” price 25¢, National Cotton Council of
America, P. O. Box 9905, Memphis
12, Tenn.*

Emergency Lighting Handbook
A 96-page handbook on emergency
lighting covering installation con­
siderations, equipment specifications
and maintenance requirements, is
now available for $2. Electric Cord
Co., Handbook Dept., 432 Plane St.,
Newark 2, N.J.*

Metal Doors
Doors of stainless steel, bronze and
aluminum are described in two book­
lets. Doors are custom designed and
need minimum maintenance. Details
and photographs show installations
Editions V-48 and B-48 (Balancec
Doors). Ellison Bronze Co., Inc.
Jamestown, N.Y.*

Fire Safety
Buyer’s guide to portable fire extin­
guishers, smoke and fire detectors
and built-in carbon dioxide systems
is a 12-page booklet which also give:
information about accessory items
Brochure P-67, Walter Kidde & Co.
Inc., 675 Main St., Belleville 9, N.J*

Recommended Design Practices
Technical manual presents detailed
engineering data on the design of
metal buildings. Metal Building
Manufacturers Assn., 2130 Keit
Bldg., Cleveland 15, Ohio

*Additional product information in
Sweet's Architectural File
OTHER LUPTON PRODUCTS THAT MAY SOLVE PROBLEMS FOR YOU ARE:

Double Hung Windows. LUPTON DH-A2 aluminum double-hung windows are custom built for installation in masonry construction or metal curtain walls. Woven-ole weatherstrip and barrel type suspension give smooth operation and weathertight closing.

Projected Windows. LUPTON "Master" windows in projected or casement types—used equally well in curtain walls or in masonry construction. Tubular ventilator members for extra rigidity...double weatherstripping, bronze hardware.

LUPTON® MICHAEL FLYNN MANUFACTURING COMPANY

Main Office and Plant: 700 East Godfrey Avenue, Philadelphia 24, Pa., West Coast Office and Plant: City of Industry (Los Angeles County), California. Sales Offices: Stockton, California; Chicago, Illinois; New York City; Cincinnati, Ohio; Dallas, Texas. Representatives in other principal cities.
Here is a proved way to gain precious classroom space for the primary job of instruction. The FAIRHURST Wardrobe is specifically designed to occupy less room than other types while providing a greater amount of effective storage space.

Only 2’ deep, a single wardrobe unit 4’ wide accommodates 15 pupils. The secret lies in Fairhurst’s patented disappearing door feature: opened, the doors are completely out of the way at the ends of each compartment. These may be fitted with continuous blackboard and chalk rail if desired.

Sturdy pivot arms and center shaft do away with the need for floor tracks or guides. These are so positioned that there is no obstruction when entering or leaving the wardrobe. Closed, the doors project no more than 1½” beyond wardrobe face; while operating, doors extend no more than 8” into aisle space.

Individual Fairhurst Wardrobes have given trouble-free service for upwards of 30 years. For details and free catalog, write Dept. AR — no obligation, of course.

John T. Fairhurst Co., Inc.
45 West 45th Street New York 36, N.Y.

The Record Reports
On the Calendar

October

1-6 43rd National Recreation Congress, sponsored by American Recreation Society and National Recreation Association; cooperating agencies: Detroit Dept. of Parks and Recreation, Recreation Association of Michigan, Federation of National Professional Organizations for Recreation; theme: “Recreation in a Mobile America” — Cobo Hall, Detroit

5-8 Annual meeting, American Society of Industrial Designers; theme: “Design Explorations” — Santa Catalina Island, Calif.

7-10 Western Building Industries Exposition, sponsored by Associations of the Western Building Industries Council—Great Western Exhibit Center, Los Angeles

9-15 National Electrical Contractors Association—Washington, D.C.

9-18 8th Advanced School for Home Builders, co-sponsored by Univ. of Illinois Small Homes Council-Building Research Council and National Association of Home Builders, in cooperation with Division of University Extension—University of Illinois campus, Urbana, Ill.

10-12 National Conference on Standards, American Standards Association—Rice Hotel, Houston, Texas

10-14 Annual meeting, American Council of Independent Laboratories, Inc.—Sheraton Hotel, Philadelphia

continued on page 27
in the two newest states...

Public Safety Bldg., Anchorage
Architect & Asso.: Edwin Crittenden, Anchorage, Alaska
Hardware: Glass, Sash & Door Supply Co.,
Anchorage, Alaska

The Ala Moana Building, Honolulu
Hardware: Theo. H. Davies & Co., Ltd., Honolulu, Hawaii
Owner-Contractor: Hawaiian Land Company, Ltd., Honolulu

it's russwin, the doorware that "speaks for the architect"!

In Alaska, in Hawaii... wherever doorware
is chosen for beauty and stamina, architects
choose Russwin Doorware.

Handsome Turbo Design Unilocs with
award-winning knobs and heavy-duty "unit
construction" are the choice for Honolulu's
new Ala Moana Building with its distinctive
roof-top revolving lounge. In the new Anchorage
Public Safety Building, Russwin's popular
Stilemaker Heavy Duty Cylindrical Locks,
Cosmic Design, are used.

Look to Russwin when you want doorware
with flair... doorware that lasts... doorware
that speaks for itself and you. Write
Russell & Erwin Division, The American
Hardware Corporation, New Britain, Conn.
Since 1956 this huge building has served Western Electric as a Distribution Center. Balfour Automatic Rolling Fire Doors are installed in key traffic locations along fire walls. They have stood up under constant use as service doors plus providing ever vigilant protection against fire.

Balfour rolling doors

Catalog in Sweet's or write:
WALTER BALFOUR & CO. INC.
Brooklyn 22, N. Y.

The Record Reports
continued from page 266

12-16 Annual conference, National Trust for Historic Preservation—Waldorf-Astoria Hotel, New York

15-19 1961 convention, Prestressed Concrete Institute; theme: "New Opportunities in Structural Design"—Cosmopolitan and Brown Palace Hotels, Denver

15-20 Fall General Meeting, American Institute of Electrical Engineers—Statler-Hilton Hotel, Detroit

16-20 Annual convention, American Society of Civil Engineers; theme: "Metropolis-1980"—Hotel Statler Hilton, New York

16-20 1961 National Safety Congress, annual convention of the National Safety Council—Chicago

17-18 American Society of Mechanical Engineers Materials Handling Conference—Pickett Hotel, Minneapolis

19-21 Joint Fall Meeting of the Virginia Chapter, American Institute of Architects and the Virginia Chapter, Virginia Society of Professional Engineers and the National Chapter of the National Society of Professional Engineers, who are holding their National Directors Meeting; theme: "Education for Engineers and Architects to Meet Today's Needs"—Hotel Roanoke, Roanoke, Va.

23-27 National Metal Exposition—Detroit

28 First National Symposium Industrial Designers Institute; theme: "The Pivoting Forces"—Somerset Hotel Boston

29ff 28th National Conference National Association of Housing and Redevelopment Officials; through Nov. 1—Sheraton-Park Hotel, Washington D.C.

November

1-3 14th regional meeting, American Concrete Institute—Dirkier-Tutweiler Hotel, Birmingham, Ala.
What does it take to turn out products of consistent high quality? At Modine, specialized testing equipment deserves a share of the credit. Other factors include a sustained research program, creative engineering, modern production tools and techniques, and over 40 years of heat transfer experience.

Combine them, and you come up with products like the Modine convector at work in this hospital scene. Modine convector provide steam and hot water heating at its finest... and most economical. They respond instantly! Maintain uniform, full-room comfort with gently circulated radiant and convected heat. They're lightweight and compact... easy to install, easy to maintain. And Modine has models for every building need... 8000 combinations of sizes and types.

For further information on the “little-known” side of Modine or any of our products, contact your nearest Modine representative. Or write direct. Ask for Convector Bulletin 259.

MODINE CONVECTOR WITH PERMA-LAP® FRAMING.

Modine's PERMA-LAP framing assures easy, neat, permanent installation of recessed convectors. It snugs up to finished walls or can be used as a plaster stop for flush installation. No air leakage to cause wall streaking! Servicing? Simply remove the unit's front panel... no need to disturb the seal between wall and PERMA-LAP.
STEEL makes the difference

Moisture is no menace to steel roof deck. Steel deck retains its strength and remains dimensionally stable, whatever the weather. You can erect steel deck, when you can’t go ahead with some other types. It is welded quickly to the structural members. You get under cover fast — keep construction on schedule. The deck immediately provides a safe working platform; it requires no curing time.

Fast, all-weather construction is just one advantage of steel roof deck. Others are detailed in specific product catalogs available upon request to any member company of the Metal Roof Deck Technical Institute.

The Record Reports
continued from page 270

4-7 National Retail Lumber Dealers Association Eighth Annual Building Materials Exposition—McCormick Place Exhibit Hall, Chicago

6-8 Annual convention, Structural Clay Products Institute; theme: Industry Research—Shoreham Hotel, Washington, D.C.

6-9 46th edition, National Hotel Exposition—The Coliseum, New York

6-10 Annual convention, National Warm Air Heating and Air Conditioning Association—La Salle Hotel, Chicago

14-16 Building Research Institute 1961 Fall Conferences—Shoreham Hotel, Washington, D.C.

20ff American Society of Mechanical Engineers Winter Annual Meeting; through Dec. 1—Statler Hilton Hotel, New York

21ff Exhibition, Stained Glass Windows by Chagall designed for a synagogue at the new Hadassah-Hebrew University Medical Center near Jerusalem, shown under the sponsorship of Hadassah; through Jan. 7, 1962—Museum of Modern Art, New York City

28-30 Building Research Institute 1961 Fall Conferences—Mayflower Hotel, Washington D.C.

December

3-7 18th annual National Association of Home Builders Convention-Exposition — McCormick Place, Chicago

5-7 Building Research Institute 1961 Fall Conferences—Shoreham Hotel, Washington, D.C.

continued on page 21
On the 20-plus story X building in the city of A, the architect had specified either Type B spray-on fireproofing, or Zonolite Mono-Kote.

The general contractor, for mysterious reasons of his own, informed the plastering contractor to use the Type B spray-on fireproofing. So the plastering contractor, eager to oblige, ordered over 1,000 bags of Type B, and his men dutifully began to spray it on.

Now, be it understood that Type B is a respectable product, manufactured by one of the giants in the field, scientifically tested and all that. You read all the time about how good it is.

Except that the nozzle men spraying the stuff on didn't think so. Type B didn't stick to the lower edge of the beam flanges. It was hard to build up even to $\frac{3}{8}$" on the first pass. And there was so much rebound and splatter that the nozzle men were getting coated as well as the beams.

When the nozzle men threatened to quit, the plastering contractor decided to try Mono-Kote, though the general contractor tried to dissuade him (verbally; no firearms). But his argument failed.

The nozzle men found that on the first pass, they could apply Mono-Kote at least $\frac{1}{2}$" thick to the beams, and a full $\frac{3}{4}$" thick to the contour floor.

Within two hours, Mono-Kote was so firmly set that the nozzle men could come back for the second (and final) pass to build the coat out to $1\frac{1}{4}$", for a five hour rating. The floor received a 1" coat for a three hour rating. A fast, clean, economical job.

The story has all sorts of happy endings. The plastering contractor was happy because he did a good job fast. The general contractor was mollified (sort of) because the work waiting for the fireproofers to finish was able to begin sooner than he had planned. Even the nozzle men were happy... they stayed clean, not coated, working with Mono-Kote.

In many advertisements they are willing to give you the names on request if you write in. Not us. Not even if you say please. No names mean no trouble.

Story's over; now for a few more facts. Aside from the speed and excellent application characteristics of Mono-Kote, you use less material; 1" for a three hour fire rating, $1\frac{1}{4}$" for a five hour rating.

On your next job, specify what you will or Zonolite Mono-Kote. We'll be happy to take on all comers. For complete information about Mono-Kote, write for Bulletin PA-53, to:

ZONOLITE COMPANY
135 SOUTH LASALLE ST., CHICAGO 3, ILLINOIS
W. E. Green has opened an office for the general practice of architecture at 130 W. Liberty Drive, Wheaton, Ill.

James P. Hawke, internationally known consulting structural engineer, has opened a consulting engineering office at 503 Market St., San Francisco.

John A. Bower Jr. and Frederick M. Fradley announce the formation of a partnership for the practice of architecture as Bower and Fradley Architects, 114 West Coulter St., Philadelphia.

The partnership of Pohlman & Chapelsky Architects has been formed by Lauren V. Pohlman and Roman N. Chapelsky. The address is 1140 E. Jersey St., Elizabeth, N.J.

Robert K. Moss, engineer, announces the formation of a new consulting organization to be known as Robert K. Moss, Consultants, 2252 Dehne Rd., Northbrook, Ill.

Rolland D. Thompson, formerly in partnership with Henry Steinhardt, announces the relocation of his architectural office to 33 E. 61st St., New York 21, N.Y.

C. Herbert Paseur is now a full partner in the Houston architectural firm of Caudill, Rowlett and Scott. New associates in that firm are: James R. Cox, Louis E. Finlay, Philip C. Williams, Donald E. Wines, William W. Harper and W. C. Bonvillain.

William R. Funk, administrator of the Mechanical Contractors Industry Advancement Program of Greater Philadelphia, Pa., announces the appointment of John R. Watson to the staff. Mr. Watson, an engineer, will promote closer cooperation and relationships between architects and engineers.

Alexander E. Hoyle has retired from the Boston architectural firm of Hoyle, Doran and Berry (formerly Cram and Ferguson). New members of the firm are: Nisso T. Aladjem, Frank E. DeBruyne, Robert W. Hadley and Charles P. Harris.

Richard O. Stanley, architect, has established a new firm with offices at 31 Exchange St., Lynn, Mass.

William E. Cox has been appointed to the architectural design staff of The Ballinger Company, Architects & Engineers, 1625 Race St. Philadelphia.

Henry Van Loon, who was Executive Director of the Pennsylvania State Planning Board, has joined the architectural firm of Perkins & Will. To participate in the firm’s urban design practice, Mr. Van Loon will be based in the White Plains N.Y. office.

Richard J. Chorlton, Architect, 188 Nassau St., Princeton, N.J.

Henneberg & Henneberg, Architects and City Planners, 806 Massachusetts Ave., Cambridge 39, Mass.

Morton T. Ironmonger—A.I.A. 106 Oak Park Bldg., 2631 E. Oaklark

New Addresses

Richard J. Chorlton, Architect 188 Nassau St., Princeton, N.J.

Henneberg & Henneberg, Architects and City Planners, 806 Massachusetts Ave., Cambridge 39, Mass.

Since 1909

Your SOURCE!

Here is your source for drinking facilities that truly do credit to your finest plans! Complete details on fountains, coolers, emergency facilities, too. And it's yours for the asking!

HAWs DRINKING FAUCET COMPANY / 1443 FOURTH STREET / BERKELEY 10, CALIFORNIA

continued on page 22

Vision-Vent and Grid-Vue Walls with Aluminum Projected Window. Standard of the industry. See details and specifications in Sweet's Architectural File 3d/TR.

BIG CHOICE OF REPUBLIC STEEL LOCKERS to make dress-and-change facilities attractive and convenient. Republic Lockers are Bonderized to keep their good looks longer. Republic helps you plan the most efficient locker room facilities, will handle all installation details. Send coupon.

USE REPUBLIC ELECTRUNITÉ® STRUCTURAL TUBING for mullions, columns, beams, spandrels in curtain wall buildings. Square and rectangular shapes save weight, cut costs, speed erection, are architecturally attractive. New design manual lists elements of sections for round, square, and rectangular structural tube. Send coupon.

CONSTRUCTION GOES FAST with Republic High Strength Bolts on the job. Two men can apply this extremely high clamping force which transfers loads by friction to structural members. Joints are stronger. Improved fatigue life. Send coupon.

REPUBLIC STEEL CORPORATION
DEPT. AR-2712
1441 REPUBLIC BUILDING – CLEVELAND 1, OHIO

Please send more information on:

☑ Truscon Vision-Vent Curtain Walls ☐ Republic Steel Lockers
☑ Republic High Strength Bolts ☐ Republic ELECTRUNITÉ® Structural Tubing Manual

Name ___________________________ Title ___________________________
Company __________________________
Address __________________________
City ___________________________ Zone _______ State ___________
The Record Reports
continued from page 282

Park Blvd., Fort Lauderdale, Fla.
Ratcliff-Slama-Cadwalader Architects, 3408 Grove St., Berkeley 8, Calif. and 6117 Grove St., Oakland 9, Calif.
Allen J. Wright Associates, Civil Structural Engineers, 11212 Grandview Ave., Wheaton, Md.

I.E.S. Awards Gold Medal, Elects Fellows

The Gold Medal Award for 1961 of the Illuminating Engineering Society has been given to Dr. Deane B. Judd, "the outstanding authority in the field of color in the United States and probably in the world."

The I.E.S., an organization of more than 10,000 members, awards its Gold Medal "for the purpose of giving recognition to meritorious achievement which has conspicuously furthered the profession, art or knowledge of illuminating engineering."

According to A. D. Hinckley, managing director of the world-wide Society, "The importance of the part played by color in illuminating engineering has only in recent years begun to receive the recognition it deserves."

Dr. Judd, who has been a physicist at the National Bureau of Standards since 1922, has made major contributions in the following broad areas: the "standard" observer for colorimetry and photometry; light scattering properties of materials, color-blindness, indices of whiteness, uniform color scales, color names, color differences and color tolerances, and chromatic adaptation.

Eight members of the I.E.S. have been elevated to the rank of Fellow, an honor which recognizes stature in the profession and contributions to the program of illuminating engineering. They are: H. E. D'Andrade, architects' and engineers' adviser, Large Lamp Department, General Electric Company, New York, N.Y.; Grant E. Davidson, supervising illumination engineer, Ontario Hydro-Electric Power Commission, Toronto, Ont., Canada; Arthur A. Eastman, visual research engineer, Radiant Energy Effects Laboratory, Lamp Division, General Electric Company, Cleveland; George E. Inman, retired, formerly manager, Advance Discharge Lamp Engineering, Large Lamp Department, General Electric Company, Cleveland; Merle E. Keck, manager, Outdoor Lighting Engineering Section, Engineering Department Westinghouse Electric Corp., Cleveland; Herbert A. Kliegl, president Kliegl Brothers Universal Electric Stage Lighting Company, New York; Karl A. Staley, specialist Personnel and Sales Training, Large Lamp Department, General Electric Company, Cleveland; and Arthur W. Weeks, engineer in charge of fluorescent testing, Champion Lamp Works, Lynn, Mass.

Lloyd Warren Fellowship Winners Announced

Winners of the Lloyd Warren Fellowship, Paris Prize in Architecture are: Alan B. Glass, Oklahoma State University—first prize of $5000 and Sidney R. Barrett, Georgia Institute of Technology—second prize of $3500. Both sailed in September continued on page 2.

Van has continuously served Western & Southern for 45 years!

You will find unusual measure of Van's ability to help you with your food service equipment problems in this story of nearly a half century of kitchen engineering and equipment manufacture for one of the large life insurance companies. Our general sales manager... Dave Wayman... has been Van's kitchen engineer on this account for over 25 years!

Evidence of the benefits of Van collaboration with you and your architect: Van installed two service counters for 1500 lunches in 1958 so that when the new building was erected in 1961 two more counters were integrated to serve 3000 lunches daily... and the kitchen expanded to accommodate. As the illustrations show, here is shining stainless equipment, enduring and sanitary.

To keep down costs, call in Van when you are planning.

THE JOHN VAN RANGE CO.,
429 Culvert Street,
Cincinnati 2, Ohio.

FOOD SERVICE EQUIPMENT
AIR DISTRIBUTION CONTROL
Corrugated galvanized steel serves as form for finish floor slab and forms the top of an unobstructed air plenum. Baffles are used to zone air to desired areas. Perimeter discharge opening can be continuous or spaced as desired.

A-E FLOOR COMPLETE
Sill can be located at any height—important in curtain wall constructions. Speedy placement of air terminals, air grilles, and standard electrical outlets completes your A-E Floor System.

For additional information and details, write for A-E Floor catalog No. AE-601 (A.I.A. File No. 30).

GRANCO STEEL PRODUCTS CO., 6506 N. Broadway, St. Louis 15, Mo. A Subsidiary of Granite City Steel Company.

A-E FLOOR
a floor system providing air and electrical distribution

GRANCO
to pursue their studies abroad. Mr. Glass will stay one year, Mr. Barrett eight months.

Awarded by national competition, the fellowship is administered by the National Institute for Architectural Education and has been given since 1904 with the exception of the war years. The competition this year consisted of a preliminary competition executed in three days from which those to compete in the final competition were selected. The problem for the preliminary called for the design of "A Center for New Countries Adjacent to the U.N." The second part of the competition required the solution in five consecutive weeks to a problem the subject of which was "A U.N. Delegation Headquarters" for the African countries.

Members of the jury were: Caleb Hornbostel, chairman, Arnold A. Arbeit, George Beiers, Giorgio Cavagneri, Charles Colbert, Joseph Judge, Sidney L. Katz, L. Bancel LaFarge, Gillet Lefferts Jr., John C. B. Moore, Hugh N. Romney, Charles Rieger and Kenneth Underwood.

The third prize of $250 in the final competition was awarded to Morton Gruber, a student at Massachusetts Institute of Technology. Regional prizes of $100 each were awarded to students at Agricultural & Mechanical College of Texas, Iowa State University, North Carolina State College and the University of Illinois.

Brunner Scholarship Available

Applications are being accepted for one of the nation's top architectural awards, the $5000 Arnold W. Brunner Scholarship. The Scholarship, sponsored annually by the New York Chapter of the American Institute of Architects, is open to American architects who have advanced professional background. Each candidate may choose his subject of study in some special field of architectural investigation which will contribute effectively to the practice, teaching or knowledge of the profession.

As part of his application, the candidate is required to submit his choice of subject with an outline of his proposed studies, research and necessary travel. Under normal conditions the Scholarship must be completed within one year from the date of the grant.

Past projects for which the Scholarship has been awarded include: study of urban living through the movement of people, the creation of a traveling architectural exhibit for high school students, the compilation of a guide to contemporary architecture of Europe and a history of city planning. Architects Richard A. Miller and Arnall T. Connell won the most recent grant for their proposed study of visual perception as it is related to design.

For application blanks and further information, write the New York Chapter, A.I.A., 115 East 40th St., New York 16, N.Y. Jan. 15 the deadline for submitting applications.

more news on page 2
AN $8,640 ADDITIONAL INVESTMENT WILL BRING THESE SAVINGS:

$13,950 ON HEATING-COOLING EQUIPMENT

The cost of construction for this air-conditioned school had to be $13 per sq. ft., or less. Original specifications called for 3/4" of Fiberglas® Roof Insulation, a 3 1/2" air space in the exterior walls, and plate glass windows. A Dividend Engineering analysis showed that increasing the roof insulation to 2", filling the walls with Fiberglas Building Insulation, and using heat reducing plate glass would produce optimum heat savings. The added efficiency, obtained at a cost of $8,640, should reduce the cost of the heating-cooling equipment by $13,950 ... a net saving of $5,310 in the budget.

$1,836 FORECAST SAVINGS IN ANNUAL OPERATING COSTS

Dividend Engineering calculations also forecast a $1,836 saving in the cost of heating and cooling. Without this evaluation to point out the "thermo-economic" performance of the building, over $1,800 would be spent unnecessarily each year.

Let us show you how Dividend Engineering forecasts significant savings, and makes the comfort and production benefits of year-round air-conditioning economically feasible in buildings of every type. For more facts about Dividend Engineering, write: Owens-Corning Fiberglas Corporation, Industrial & Commercial Division, 717 Fifth Avenue, New York 22, N. Y.
A-V Aware
Architects
Choose
Da-Lite Screens

Business, churches, and schools are becoming more and more conscious of Audio-Visual communication. One big trend is architect-planned permanent installation of Da-Lite projection screens in offices, conference rooms, meeting rooms, training rooms, auditoriums, classrooms—wherever pictures will be shown. The architect provides a vital contribution to the convenience of a new building when he anticipates the need for projection screens—specifies one of the many Da-Lite electrically operated, remote-control screens. Be A-V Aware! Get the specifications for Da-Lite screens for permanent installation by writing for the Da-Lite A-V Manual. We'll also supply the name of the Da-Lite trained, franchised dealer near you who can give you competent technical assistance in planning A-V installations.

The Record Reports
continued from page 290

Preservation Trust Meets;
Two Exhibits Planned

Coinciding with the annual meeting in New York October 12-16 of the National Trust for Historic Preservation is the opening of two related exhibitions presented during October and November by the Cooper Union Museum for the Arts of Decoration in New York City.

One of the exhibitions, sponsored and prepared by the National Trust, is entitled "Preservation: the Heritage of Progress". It will consist of 40 photographic panels showing how many historic monuments have been preserved or restored and also illustrating neglect or destruction of others. After its initial showing at the Cooper Union Museum through Nov. 17, the exhibit will be circulated throughout the country under the sponsorship of the American Federation of Arts.

The second exhibition, prepared by the Cooper Union Museum staff, will illustrate in depth both the interior and exterior aspects of historic restoration. Entitled "Method and Style in Restoration," the exhibit will be divided into three sections: the first devoted to archaeological research; the second containing rare documents and a variety of objects showing how dates and styles can be verified in restoration projects; and the third illustrating the variety of styles in interior furnishings from which the restorer can choose to reflect a given historical period.

Cincinnati U. Appoints
New Staff Member

John R. Hagely has been appointed assistant professor of architecture in the University of Cincinnati's College of Applied Arts.

Having received his Bachelor of Architecture degree from Ohio State University in 1955 and served on the faculty of Ohio State as an instructor in architectural construction from 1955 through 1960, Mr. Hagely completed his Master of Architectural Design degree at the University of Illinois in 1961. He has worked in the fields of architectural design and contract drawing for architectural firms in Columbus, Ohio.

Now available for the first time in English

ELEMENTARY STATICS OF SHELLS
Second Edition

by Alf Pfliiger

Translated by Ervin Galantay

Here is a simple and methodical introduction to shell design. Newly translated, this compact work is designed to meet the urgent demands of practicing engineers and architects. Written by a noted authority on surface structures, ELEMENTARY STATICS OF SHELLS is essentially a visual presentation of the spatial interplay of forces in shells. Its approach is more elementary than those studies which employ such highly advanced mathematical tools as tensorial equations and vector analysis in a system of curved coordinates. All given equations are capable of visual interpretation. Once the basic equations are set down, their results can be practically interpreted in tables and graphs. Thus, you are led to the intuitive understanding of shells which all authorities consider the key to their design.

Special features of this manual: an approximate method for the calculation of shells of revolution subjected to load of rotational symmetry, and a 19-page appendix with tabulated values of the solutions of the Membrane Theory.

Concise in both aims and methods, ELEMENTARY STATICS OF SHELL will help you meet today's demand for designers who can perform a dual task: 1. calculating and building shells, 2. explaining these structures and their limitations to architects.

122 pages, 6 x 9", clothbound
Over 125 clear line illustrations
Only $8.75

Mail this coupon for immediate delivery

DODGE BOOKS, F. W. Dodge Corporation
119 W. 40 St., New York 18, N. Y.

Send me ... copies of Elementary Statks of Shells @ $8.75 each. After ten days I will either remit the price plus a few cents postage, or return the book without cost or obligation.

Name...
Address...
City...Zone...State...

ARCHITECTURAL RECORD October 1961
298