THREE PROJECTS BY PHILIP JOHNSON, EACH DESIGNED FOR A HILL

JOHANSEN'S ORLANDO LIBRARY: COMPATIBLE COLONY OF VARIED FORMS

BUILDING TYPES STUDY: OFFICE BUILDINGS—COST VS. QUALITY

SEMI-ANNUAL INDEX

FULL CONTENTS ON PAGES 4 AND 5
For modern luxury, nothing beats Acrilan.
Nothing

Acrilan acrylic has two kinds of luxury. The kind you see with your eyes and feel through the soles of your feet.

And the luxury of not having to be treated as if it were a tapestry. A carpet of Acrilan is made to retain its luxurious appearance in the face of repeated punishment.

It actually bounces back after being stepped on by thousands of feet. And it’s simple to clean.

A carpet made with Acrilan acrylic fiber in the pile is also mothproof. Mildewproof. Non-allergenic. You see, like all good modern things, Acrilan is functional as well as beautiful.

Which is the utmost in luxury for your client, isn’t it?

For more data, circle 2 on inquiry card.
now you can use...

DURCON®

UNDER TABLE PIPING

TO COMPLETE THE INSTALLATION!

DURCON SINKS AND UNDER TABLE PIPING FOR COMPLETE CHEMICAL LABORATORY INSTALLATIONS

Now Durcon under table piping joins the full line of time proven, corrosion resisting DURCON laboratory sinks to bring you the quickest, easiest, most economical installation yet! Corrosion, heat and shock resistant DURCON is available in 10' lengths of pipe; and outlets, traps and drainage fittings in 1½” and 2” sizes. Light in weight and easy-to-assemble DURCON assures a fast, low cost installation. Joints with the new one bolt Durco mechanical couplings are corrosion and leak proof. Insist on DURCON in your next lab job. Write for complete details in Bulletin PF/5f.

THE DURIRON COMPANY, INC., DAYTON 1, OHIO

For more data, circle 3 on inquiry card
Versatron:

Practical enough for a classroom...

Versatron units combine good looks and good lighting. That's why they make sense for offices and stores as well as classrooms.

Versatron is versatile, too! Choose from three interchangeable side panels: new perforated metal illuminated sides, ribbed translucent plastic or baked white enameled steel. All three styles are available with 35° X 25° X 45° shielding.

To find out more about Versatron, call your local Benjamin distributor. Or use this coupon to write us.

☐ Send detailed specifications of Versatron.
☐ Include a catalog on all industrial and commercial lighting.
☐ Send information on where to get Versatron.

NAME ______________________________________

FIRM ______________________________________

ADDRESS __________________________________

CITY ____________________ STATE _______ ZIP ______

THOMAS INDUSTRIES, INC.

207 E. Broadway,
Louisville, Ky. 40202
Dept. AR

For more data, circle 4 on inquiry card
FEATURES

139 THREE PROJECTS BY PHILIP JOHNSON
The Kline biology tower at Yale, a sunken hillside art gallery, and a Riviera vacation house, each on a hill, serve to illustrate—by three totally different examples—architect Johnson’s ideas on the problem of relating a building to a hill.

151 ORLANDO PUBLIC LIBRARY BY JOHN JOHANSEN
Described by the architect as “a composition in monolithic concrete, this powerful library building is programmed to serve the needs of a diverse reading public.

157 EIGHT VACATION HOUSES
A group of exciting new houses, whose design strength, functional efficiency, and reasonable cost demonstrate the architectural potential generated by current interest in the second house.

165 FOUR BUILDINGS FOR BUSINESS
Through appropriate architectural solutions four buildings contribute to the success of the business of merchandising products and commodities.

187 TOWARD A NATIONAL DESIGN POLICY
Architect Archibald C. Rogers’ thoughtful and thought-evoking presentation to the Ribicoff subcommittee on the relationship between decision-makers in architecture and decision-makers in government.

BUILDING TYPES
STUDY 372

171 OFFICE BUILDINGS: THE COST-QUALITY PARADOX
A study of how the rising costs of mechanical and electrical components and the increasing sophistication of investors in office buildings seem to be favoring an upgrading of architectural quality.

175 STORE-OFFICE-APARTMENT ON A TIGHT SITE
Fox Plaza, San Francisco; architects: Victor Gruen Associates.

178 STRONG VERTICALS ENHANCE A STATE OFFICE BUILDING
Rutledge Building, Columbia, South Carolina; architects: Lyles, Bisset Carlisle & Wolff.

180 EARLY CONSULTATION WORKS FOR UNITY OF ARTS
Standard Oil Building, San Francisco; architects: Hertzka & Knowles.

182 PROGRESSIVE-TRADITIONAL FOR BANKING OPERATIONS
GROPUS' SPLIT TOWER IS HUB OF BOSTON CENTER

POST-TENSIONING CUTS COSTS FOR APARTMENT FLOOR SLABS
Engineers have usually considered post-tensioning only for special structures and long spans. Horatio Allison Associates have found, however, that the technique makes sense for flat plate construction in apartments, resulting in savings of about 20 per cent in structural costs.

BUILDING COMPONENTS
Prefab walk-in coolers and freezers meet changing demands for food storage.

PRODUCT REPORTS

OFFICE LITERATURE

READER SERVICE INQUIRY CARD

BEHIND THE RECORD
"Current Architecture Draws a New Picture," by Emerson Goble.

PERSPECTIVES

THE RECORD REPORTS
A.I.A.'s 99th annual convention in New York City is biggest ever.

BUILDINGS IN THE NEWS
A.I.A. Honor Awards 50

LETTERS

ARCHITECTURAL BUSINESS
Building activity 83
Cost trends and analysis 87
Cost indexes and indicators 89
Practice/Office management ... 93

OFFICE NOTES

REQUIRED READING

SEMI-ANNUAL INDEX

ADVERTISING INDEX
COMING IN THE RECORD

BUILDING NEW TOWNS AND REHABILITATING OLD NEIGHBORHOODS

Next month’s Building Types Study on Urban Housing will show one of the best of the new towns which are currently being planned and constructed. Designed to house 30,000 people, it is located on a 2,000-acre tract of open farmland near Washington, D.C. It will also show some current approaches to the rehabilitation of slum housing—emphasizing the replanning of entire neighborhoods. Two such studies will appear—one for the Hough district in Cleveland, and the other for Park Slope in Brooklyn.

EXPO ’67: A DESIGN SUCCESS

The spirit of architecture shapes this fair, and creates its overwhelming public appeal. Architects and planners will learn much from a visit to Montreal this summer, as next month’s issue will prove.

McGraw-Hill
The Fresno Civic Center is "painting" itself

There are 175,000 square feet of bare USS Cor-Ten Steel Sheets on Fresno's new Community and Convention Center—the first major use of Cor-Ten Steel as wall panels. USS Cor-Ten Steel "paints" itself as it weathers. It develops a tight oxide coating that protects the steel for good. If it is scratched, it heals itself. The longer bare Cor-Ten Steel weathers, the better it looks. It develops a rich earthy color and texture that only nature can provide.

Because it needs no periodic painting or care, bare Cor-Ten Steel eliminates maintenance cost. This, plus its aesthetic value, led to its selection for the job. The Cor-Ten Steel siding is attached to a steel frame with self-tapping Cor-Ten Steel screws.

Bare Cor-Ten Steel is also a natural selection for structural applications. With a minimum yield point of 50,000 psi, it is nearly 40% stronger than structural carbon steel. Members can be lighter and more graceful. USS Cor-Ten Steel is available in a full range of structural shapes, plates, bars, and sheets. For complete information on the proper use of Cor-Ten high-strength low-alloy steel in architectural applications, contact a construction marketing representative through the nearest USS Sales Office or write U. S. Steel, Room 4494, 525 William Penn Place, Pittsburgh, Pa. 15230. USS and Cor-Ten are registered trademarks.

This mark tells you a product is made of steel.
HYDROMENT JOINT FILLER—now stronger than ever—gives you ten colors to stir your imagination. There’s a color to match, accent or enhance any quarry tile or brick paver you specify. Best of all, Hydroment Joint Filler has a twenty-five year reputation for pleasing thousands of architects, owners and contractors.

Reason: it’s the one quarry tile and brick paver grout that is 1. dense, tight, non-shrinking, non-expanding. 2. highly resistant to corrosion and wear, quick and easy to clean.

We have a free data chart for you—“Handy Estimator For Upco Floor And Tile Products.” It’s yours for the asking.

Colors available: Tile Red, Tan, Terra Cotta, French Gray, Champagne, Brown (shown), Sand Beige, Black, White and Natural.

THE UPCO COMPANY 4805 Lexington Ave. • Cleveland, O. 44103 / a subsidiary of United Shoe Machinery

For more data, circle 5 on inquiry card
CURRENT ARCHITECTURE

It has occurred to me that my recent outbursts (February, April) about how the architect speaks—or does not speak—to his public, omitted at least one very important point. Maybe it’s several points, but it can be focused simply as: the communication is going on, whether “the architect” is doing the talking or the listening.

What many people think of as “the architect”—a sort of Medici version of an artist in masonry—has been the subject of a good deal of wondering and worrying of late. The fact is that architects, taken altogether, never had it so good. They are rebuilding America—as we have been hearing for years—and rebuilding the rest of the world. A building boom (this building boom) is speaking in foreign places.

While the story would not be entirely true, it wouldn’t be completely false, either. He didn’t seem to have the two pictures handy, but you know what he means. George explains that there is sorrowful moaning about it among some groups of travelers, but he adds that there is an entirely new group of world travelers, nervous about old-world mannerisms of a hundred kinds, and happy to see a great Hilton Hotel to steady them.

These buildings he speaks of have been strewn about by American architects, copied by foreign architects, diluted, proliferated, and so on. Good or bad, what George called “mass modern” is communicating to the world about architecture. It speaks of America, materialism, affluence, influence, and a lot of other things. Perhaps, as Bucky Fuller has always insisted, spreading prosperity will eventually bring world peace, and these high-rise symbols are constructive; my point here is merely that they are defining American architecture not only abroad but here at home.

Architectural education is suffering a good deal of finger-pointing right now; let me just relate it to this matter of mass communication. Charles Graves, Dean of the School of Architecture at the University of Kentucky, put it very nicely, I thought, when I asked him once what architectural students were excited about. “Well, I think,” he said, “that it’s difficult to consider an architectural student as a separate entity. He absorbs so much from so many different sources, on so many different topics, that over-simplification is a danger.” What does that mean? It might mean that the image of the architect is a badly worn cliche which better be summarily dropped. Certainly it means that an architectural school today is no cloistered monastery.

We in the field of publishing, particularly in periodicals, are well aware that everybody today—everybody—absorbs vast quantities of information of all sorts, from many sources. Images or catchwords or personalities spring up, catch the public fancy, and pass on under relentless exposure. This observer would be the last to suggest that we throw ourselves into the mob scene—or the mob scene—and forget our true standards. But it would be plain silly not to be aware of these waves of thought or fancy or childish stupidity or whatever they may be, and to relate them to our own interests as seems appropriate.

This rambling is intended just to remind you that communication is in a boom, a really terrific boom. And that massive forces—or massive acceptances—are setting architects’ standards for them. Let’s don’t say “standards,” let’s say “parameters,” and make it a matter of application.

—Emerson Goble
Circling the world with American building designs

The mention of the worldwide spread of "mass modern" architecture (preceding page) reminds me of a letter from my sister-in-law. She is starting a new stint with the State Department, this time in Tehran, and as usual her first letters deal with the housing troubles of Americans abroad. Not hotels, but housing.

She related her dismal findings until she came to a brand new American type apartment house. She had been so pleased to find modern accommodations, well equipped kitchens, etc. etc. There was just one trouble: the vacant apartment was on the fifth floor, and the building had no elevators. Seems that electricity is just simply too expensive to waste on pushing people and things up and down. Legs can do that.

Massive mid-city muddle; the message of Mumford

A massive mid-city muddle is a well known fact, and most of you will remember, if you don’t mind it, the messages of Lewis Mumford about the present mess. We have in the RECORD office a new manuscript by Lewis, in which he charges again against the forces which are becoming synonymous with our current affluence, and which are helping to push this mass modern architecture (preceding page) around the whole world. We are now in correspondence with him about publishing it. I am going to get my neck out (with Lewis) by lifting out a quotation in advance of the usual arrangements, just because I can’t resist it:

“Many people ... have tried to take comfort in the thought that the present disordered and disintegrating urban mass ... is in fact the modern form of the city, new, dynamic, and inevitable, whether we like it or not. That is a slushy idea, worthy only of a Marshall McLuhan or a Timothy Leary. You might say of this sprawling megalopolis non-entity, the anti-city in McLuhan’s terminology, that the mess is the message. And the more massive the mess, the more muddled the message.”

A neo-eclectic melange in the orthodox manner

While speaking, as I have been hereabouts, of the rapid spreading of the modern melange of architecture, I shall quote (just for fun)—and I’m not sure that the fun isn’t too subtle—from a recent story in New York (World Journal Tribune).

It was entitled “Towards a Drive-in Museum,” and written by Barbara Rose. I skimmed it quickly, wondering what in —— a drive-in museum might be, and noticed that the architect’s name was not mentioned. I thought this was the usual inattention, until I came to this tongue-in-cheek paragraph, then it was obvious that the architect had insisted that he not be named.

“Taking its cue from Hollywood, the Drive-in Museum has chosen glamour as its keynote. Designed by a noted International Style architect, the Drive-in Museum will combine the best features of Radio City Music Hall, the Roman amphitheater and Disneyland. The architect, who was Gropius’ first assistant during the time the Bauhaus moved from Weimar to Dessau, describes his style as orthodox neo-eclectic melange. According to his original plan, the Drive-in Museum was to have been patterned directly on the public lavatory of the Bauhaus, but local art patrons objected that the scheme was too cold and impersonal. Under this pressure, the architect finally adopted the present compromise solution.”

Needle Los Angeles again; to keep the fight alive

It might seem that Los Angeles has had enough abuse about its devotion to the automobile, and about the ‘ruination’ of downtown reality values. But until urban problems can find some more constructive programs than have yet appeared, they had better be argued about. And transportation is, of course, basic to the whole unhappy mess.

Latest dope on Los Angeles comes from Dr. William J. Roman, chairman of the Metropolitan Commuter Transportation Authority, speaking to the American Insurance Association:

“We have passed the time when we can afford to think about highways separately from air, rail or water transportation—not just one mode of transportation. As a nation, we have overemphasized the automobile as an answer to our urban needs to the neglect of other forms of travel.

“Los Angeles, the classic ‘automobile age’ city, now devotes some 70 per cent of its downtown area to streets, highways and parking facilities. As a result, highways and parking have almost obliterated the downtown they sought to serve. The assessed valuation of Los Angeles downtown land has dropped 63 per cent since 1931 and department store and other retail sales have tumbled.”

I suppose there are some who feel that a drop of downtown values of 63 per cent during a boom time is something less than a tragedy, but it is certainly a definition of a problem. —E.C.
Specify Nevamar Fresco

The very first laminate to capture the very essence of wood.
(now to capture the fragrance)

No ordinary laminate, this Fresco. Sure it's tough like a laminate, practical like a laminate, easy to get along with like a laminate ... it is one. But draw your fingernails over the nearest piece of hand-rubbed walnut. For all practical purposes you just drew your fingernails over Nevamar Fresco. Fresco has grain (not scratches). True, deep, sealed grain! Like the genuine article. It's the only wood grained laminate of its kind on the market. And you can specify Fresco on most wood patterns in the Nevamar forest. Some people still think laminates will never be the equal of real wood. Frankly, we don't take to that kind of talk at Nevamar. It goes against our grain!

Manufactured by National Plastic Products Company, Inc., Odenton, Maryland 21113 • An Affiliate of Enjay Chemical Company

For more data, circle 6 on inquiry card
Add bright new color to food service installations

and get superior performance as an added bonus

Now you can have brilliant color and lightweight, flush-fitting construction in cooler and freezer doors. The Jamolite Plastic Door provides both easy, efficient operation and the eye appeal wanted for food handling operations in hotels, restaurants, cafeterias, institutions and other food service installations.

Jamolite doors are more economical than heavier, standard type cold storage doors in the same sizes. They are economical to install since they can be mounted on the same bucks as household doors, and one man can install door and frame.

Specify beautiful Jamolite Doors in gleaming white, ivory, salmon, blue and blue-green to complement any interior. They are all plastic—insulated with 4" of foamed-in-place polyurethane which forms a permanent, rigid bond with the outer door shell. Freezer doors with Frostop® carry UL marker.

NSF APPROVAL

JAMOLITE Food Service Doors conform to all applicable standards and criteria of the National Sanitation Foundation Testing Laboratory, Inc., meeting high public health standards.

For complete details on Jamolite Doors, write for catalog 7 to Jamison Door Co., Box 70, Hagerstown, Md. 21740
Add gleaming stainless steel to doors for food service

and get improved appearance and sanitation

These installations show how Jamison stainless steel clad doors can add to the appearance of any installation and facilitate cleaning and sanitation procedures. These doors, which served the food industry for years, were stainless clad only on the kitchen or warm side of the door. Now Jamison has improved the design and all outer surfaces of the door and frame are stainless steel.

This new door is the NSF completely stainless food service door. It is built with a stainless clad plywood front to which is attached a 20 gauge stainless back pan. Polyurethane insulation is foamed in place, bonding front panel and back pan into one lightweight, rigid unit. Because of their light weight, these NSF doors can often be installed where only minimum support is available.

For assistance with selection or specifications, call Jamison, or write for food service door catalog to Jamison Door Co., Box 70, Hagerstown, Md. 21740.

NSF APPROVAL

Jamison Metal Clad Food Service Doors conform to all applicable standards and criteria of the National Sanitation Foundation Testing Laboratory, Inc., meeting high public health standards.

For more data, circle 7 on inquiry card
Robbins has come out with a new kind of continuous surface flooring that makes all other kinds of poured floors impractical.

It’s called ULTRAFLOR

Every once in a while you get a chance to get in on something really new... design-versatile... and practical. Like Robbins completely new continuous surface vinyl flooring: ULTRAFLOR.

Unlike conventional poured floors... Robbins ULTRAFLOR can be installed anywhere permanent sheet vinyl can be installed... on or below grade. It exhibits its versatility in flash-coved, wainscotting... and floor-to-ceiling installations. And there are no installation problems with ULTRAFLOR. It can be installed easily, quickly, and professionally by the average floor mechanic. You see... Robbins continuous surface ULTRAFLOR doesn’t have to be “manufactured” on the job. It’s ready-made... ready-to-be-laid in continuous 6-ft. wide rolls. Another advantage of Robbins ULTRAFLOR is its backing... called MOISTGUARD... which eliminates discoloration by preventing any show-through of the subfloor.

And the finish coat... which Robbins calls N.S.U. 238... does even more than expected. It dries thoroughly within 24 hours... with a tough, non-slip, high-gloss finish that never requires waxing and is unsurpassed for its wearability. It can even be recoated after years of hard use for a new-again floor.

The result of all this is a beautiful continuous surface floor that can be installed in a minimum of time... with a cost factor proven acceptable to both commercial and residential customers. ULTRAFLOR adapts itself to any installation not only because of its durability and construction... but also because of its range of designer colors and patterns.

We think ULTRAFLOR is the kind of continuous surface floor you’ve always wanted to specify... but have never been able to buy before. Why don’t you get in on it right now?
Free to architects: ideas for concealing various shapes and sizes of cooling towers behind attractive, technically sound enclosures. Special booklet contains photos that show how leading architects and contractors have screened Marley cross-flow, counter-flow and under-flow cooling towers. Illustrations demonstrate varied air inlet, discharge and louver arrangements.

Marley's Cooling Tower Enclosures brochure also includes technical information and valuable guides for selecting the best cooling tower locations. (For help with unique tower location problems, architects are invited to call their nearby Marley representative, who is backed by the world's most experienced and knowledgeable cooling tower manufacturer.)

For your free copy of Marley's informative "Cooling Tower Enclosures," write The Marley Co., 222 W. Gregory, Kansas City, Missouri 64114.
FLUROPON® By DeSoto
The Long-Life Architectural Metal Finish... a breakthrough in exterior metal surface protection with colorful fluorocarbon coatings.

DeSoto Chemical Coatings, Inc.
1700 S. Mt. Prospect Road, Des Plaines, Illinois 60018

For more data, circle 10 on inquiry card
Window wall for an apartment or commercial building, Fluropon adds the dimension of long-lasting color to exterior designs. Roll coated or sprayed onto metal, Fluropon won’t chip, shatter or delaminate.

Widen your design horizon with FLUROPON

Now... a wider scope of design flexibility in long-life colors is available with Fluropon. Create aesthetically imposing structures and protect their beauty for 20 years—and longer—with Fluropon. Only Fluropon provides a unique combination of beauty, durability and economy.

Louvers on air conditioning cooling tower stay beautiful. Fluropon offers excellent chemical and solvent resistance, cleans like china, is impervious to detergents.
Unusual panel designs are possible with Fluropon. This newly developed fluorocarbon fusion system eliminates most problems of previous metal finishes. Has excellent resistance to most chemically corrosive atmospheres. Fluropon—for exterior metal beauty.

SPECIFICATIONS:
All exposed exterior metal (aluminum and/or HDG steel)—including panels, spandrels, columns, supports, Mullions, leaders, facias, copings, louvers, battens, screens, flashing, jams, sills, fenestration and hardware as applicable—and as detailed—shall be chemically cleaned, pre-treated (primed in the case of HDG steel) and coated with Fluropon as manufactured by

BUILDINGS & BUILDING PANELS
Aluminum Company of America
Aply Products Division
1501 Alcoa Building
Pittsburgh, Pennsylvania 15219
Aluminum Company of Canada, Limited
P. O. Box 6090, Montreal 3, Quebec, Canada
The Binkley Company
Building Products Division
P. O. Box 70, Warren, Missouri
Inland Steel Products Co.
P. O. Box 393, Milwaukee, Wisconsin 53201
Kaiser Aluminum & Chemical Sales, Inc.
300 Lakeside Drive, Oakland, California
The R. C. Mahon Co.
Building Products Division
6565 East Eight Mile Road, Warren, Michigan 48091
Pasco Steel
1301 Lexington Avenue, Pomona, California 91766
Plasteel Products Corporation
McAdams Avenue, Washington, Pennsylvania
Rheem Dudley Buildings
A Division of Rheem Manufacturing Co.
14001 South Garfield Avenue, Paramount, California
H. H. Robertson Company
Architectural Products Division
Pittsburgh, Pennsylvania
Elwin G. Smith & Company, Inc.
100 Walls Street, Pittsburgh, Pennsylvania 15202
Soule Steel Company
1750 Army Street, San Francisco, California 94119
Stran-Steel Corporation
P. O. Box 14205, Houston, Texas 77021
Walcon Corporation
4375 2nd Street, Ecorse 29, Detroit, Michigan
George D. Widman, Inc.
17823 Evelyn Avenue, Gardena, California 90247

DeSoto Chemical Coatings, Inc. Fluropon must be applied by an experienced processor in accordance with Fluropon fusion process instructions printed by the manufacturer. Colors as selected by the architect. (Long-form specifications available on request).
Fluropon coated aluminum or hot dipped galvanized steel panels, louvers and window wall components are commercially available from:

WINDOWS, LOUVERS AND ACCESSORIES
The William Bayley Company
1200 Warder Street, Springfield, Ohio
Bloomberg Building Materials
1453 Blair Avenue, Sacramento, California
Construction Specialties
55 Winans Avenue, Cranford, New Jersey
725 Twin Oaks Valley Road, San Marcos, California
895 Thermal Road, Port Credit, Toronto, Canada
O. O. McKinley Company, Inc.
P. O. Box 55265, Indianapolis, Indiana 46205
Metal Trim, Inc.
Box 632, Jackson, Mississippi
Porce-Len Incorporated
31 Haig Street, Hamden, Connecticut 06514

CONTACT YOUR FLUROPON REPRESENTATIVE AT DESOTO CHEMICAL COATINGS, INC., OFFICES:
8600 River Road, Pennsauken, New Jersey 08110
Area Code: 609-665-6700
1034 S. Kostner Avenue, Chicago, Illinois 60624
Area Code: 312-632-3700
Fourth & Cedar Streets, Berkeley, California 94710
Area Code: 415-526-1525

DeSoto Chemical Coatings, Inc.
1700 S. Mt. Prospect Road, Des Plaines, Illinois 60018

For more data, circle 10 on inquiry card.
ALMA.

Alma?

Of course. Remember, we are the world's leading manufacturer of wood office furniture. This is the Castilian 500 Series — another design from our Trend Program. For catalogs showing this and other Trend lines, write Alma Desk Company, Box 271, High Point, N. C. 27261.
Ceramic tile lends carefree warmth to an unusual circular home by John Nyberg.

Located in Pasadena, California, this circular home has an atrium as its focal point. All rooms of the masonry and tile structure open off the atrium with its circular pool.

Designed by the firm of Nyberg and Bissner as Mr. Nyberg’s home, ceramic tile is used both decoratively and functionally. Quarry tile floors are found in the living room, dining area, kitchen and den. It is also used for kitchen counter tops and backsplashes.

Scored glazed tile is used for bathroom counter tops and walls including a unique circular treatment of the walls of the master bath.

In keeping with the contemporary Spanish feeling sought for, extensive use of tile is made throughout other areas of this five bedroom home. Tile contractor for the home was C&D Tile Company of San Gabriel.

If you’re looking for a material with limitless possibilities in combined decorative and functional use, look for ceramic tile made in the U.S.A. and Quality Certified by the Tile Council of America. The triangular seal at right is your assurance of glazed wall tile, ceramic mosaic tile and quarry tile that is tested to meet the most rigid government specifications. For more information about Certified Quality Tile, a material that can be used with confidence indoors and out, write: Tile Council of America, Inc., 800 Second Avenue, New York, N.Y. 10017. Or, see the current Sweets Architectural File.

MEMBER COMPANIES: American Olean Tile Co., Inc. • Cambridge Tile Manufacturing Co. • Continental Ceramic Corporation • Florida Tile Industries, Inc. • Gulf States Ceramic Tile Co. • Hoffman Tile Mfg. Co., Inc. • Huntington Tile, Inc. • Keystone Ridgeway Company, Inc. • Lone Star Ceramics Co. • Ludowici-Celadon Company • Marshall Tiles, Inc. • Mid-State Tile Company • Monarch Tile Manufacturing, Inc. • Panama Tile Manufacturing Co. • Sports Ceramic Company • Summitville Tiles, Inc. • Texeramics Inc. • United States Ceramic Tile Co. • Wenczel Tile Company • Western States Ceramic Corp.

For more data, circle 12 on inquiry card
... where appearance is so important

NORTON® CLOSERS

CONTROL DOORS—NOT DESIGN

Possibly, no other type of building demands styling with as much taste as commercial structures. And, where beauty is so important, the styled Norton line lets you select door control to achieve the design and decor you desire.

Your choice may range from complete invisibility to the selection of Norton closers to exactly match woodgrains or hardware finishes. Selection of a Norton closer means years of dependable control for your doors and you can choose from a wide range of door controls engineered to your specific requirements. Apartments, restaurants, offices, stores, and athletic arenas all present special door control requirements. You can fill these needs without inhibiting your design when you choose Norton Door Closers and Unitized Door Controls.

NORTON SERIES

CC-900 CLOSERS

For the beauty of complete invisibility, Series CC-900 closers mortise completely into the top rail of the door. The arms are visible only when the door is open. Units can be installed in the most esthetic indoor locations, wherever complete concealment of closer is desired.

NORTON SERIES

7000 CLOSERS

For matching or contrasting with room decor. Series 7000 closers are available with covers of 67 woodgrains to perfectly match room and door woods. Covers also available in clear aluminum, bright brass, or dull bronze to match other hardware for a contrast to wooden doors.

NORTON SERIES

6100 CONTROLS

For complete door control in a single hardware installation. Series 6100 controller is a combined door closer and door holder. All five door control functions: cushions the opening of the door, stops the door, holds the door open, closes the door, and regulates door closing and latch speeds. Simplifies hardware installation for less cluttered appearance.

NORTON SERIES

1600 CLOSERS

For versatility and styling for wood and metal doors. Series 1600 closers can be installed anywhere. Features three types of mounting: Invisible mounting, no screws visible; Back mounting, screws visible on back of door only; Regular mounting. Natural slim lines of Series 1600 ideal for styling of narrow aluminum doors.

NORTON SERIES

750 CLOSERS

For unobtrusive beauty, Series 750 closers mount into the top head jamb. These closers present an indiscernible projection when the door is open and become almost invisible when the door is closed.

For more data, circle 13 on inquiry card
the world is wonderful in white...

MEDUSA WHITE

The world of Medusa White is a beautiful world, a safer world and a more useful world. Medusa White Cement has high reflectance for safety, is strong and weather-resistant, is moldable to the architects creative dreams, and is true white for striking beauty . . . in the sunlight or at night. New uses include children's play areas, community recreational parks, decorative outdoor units of many types as well as highway median strips and crosswalks. Ask your precast concrete products producer, your ready-mix producer about Medusa White. Or write Medusa at P. O. Box 5668, Cleveland, Ohio 44101.

MEDUSA PORTLAND CEMENT COMPANY

White & Gray Portland Cements • White, Gray & Custom Color Masonry Cements • ChemComp® Shrinkage-Compensating Cement

For more data, circle 14 on inquiry card
NEW NORSEMEN LINE
FROM LIQUID CARBONIC!

20 models to choose from! Instant dispensing of 4 refrigerated flavors plus carbonated and plain water! Continuous supply of ice cubes or nugget ice! It's all yours in one compact Norseman unit with smart wood grain finish and gleaming stainless steel accents. Most efficient and economical beverage dispensing, ice making station on the market today! Easy to install. Mail coupon for full details.

Complete Flexibility
Ice Making Capacities from 100 to 600 lbs. per 24 hours, of either cubes or nugget ice.
Flavor Combinations. You have choice of either three flavors plus carbonated and plain water, or four flavors plus carbonated and plain water.
Dispensing Methods. Choice of under-counter dispensing station, tower unit, or flexible hand dispenser.
New Norseman line also includes automatic ice making equipment ranging in capacity from 50 lbs. to 2,000 lbs. per 24 hours.

Distributor Inquiries Welcomed

TELL ME MORE ABOUT NORSEMEN!

Advertising Department AR-67
Liquid Carbonic Corporation
135 S. LaSalle Street, Chicago, Ill. 60603

Send full details and prices on entire line of 20 models.
Have representative call.

NAME
FIRM
ADDRESS
CITY STATE ZIP

For more data, circle 15 on inquiry card

ARCHITECTURAL RECORD June 1967 25
Whatever the shape...

whatever the finish, you’ll find your requirements in Wall Urns by Duk-It. Superb quality, designed and built into every product.

See our complete line of urns, trash/ash receptacles by contacting your Duk-It representative... or write for full-color brochure.
Coatings based on DALVOR poly(vinyl fluoride) dispersion resins have outstanding ultraviolet stability. There's no fading, chalking, crazing, peeling or blistering. And they are available in a virtual rainbow of long-lasting colors.

You also get permanent protection against the harsh attacks of weather; as well as smoke and other airborne abrasive pollutants. Coatings based on DALVOR are insoluble in all known solvents at room temperature. They resist most other types of chemicals too.

Get a coating that's tough, long-lasting and flexible. One that can be post-formed 180° without rupture or separation from the substrate. One that can be applied to a wide range of substrate materials. Get the full story from Diamond. And a list of manufacturers who can supply coatings based on DALVOR resins. Return the coupon today.

For more data, circle 17 on inquiry card

For example, Super Bond-Ply™ Roofing System.

It's way ahead of its time. Goes down in half the time and stays down. Thanks to a new special treatment, its adhesion qualities are really super.

So is its appearance. Jet black with sharply contrasting guide lines. Makes Super Bond-Ply the best looking, best performing, easiest-to-install built-up roof you can buy.

Want to know the future? Write for more facts about Super Bond-Ply and other "new generation" building materials. Fabricated Products Division, Department AR-6, 40 Rector Street, New York, New York 10006.

For more data, circle 18 on inquiry card
The men in front of The "OVERHEAD DOOR" also stand behind it.

Specify The "OVERHEAD DOOR" and get much more than just a door.
Get the industry's widest choice of materials, styles, sizes and designs.
Get the dependability of the finest electric operator, matched to each individual door.
Get the experience of the company that originated the upward-acting door.
Get the confidence of the firm that's built more than eight million doors.
Get the assistance of our architectural consultants and engineers on any standard or special door requirements.
Get the service of the largest, finest, network of factory-trained door specialists.
Get the number of your minutes-near distributor listed under "OVERHEAD DOOR" in the white pages of your phone book.
Give him a call and get an expert. For more of what's behind The "OVERHEAD DOOR", turn the page.

Fully transistorized, portable transmitter with color-coded selector, controls up to 8 doors individually by radio control.

FOR MORE DATA, CIRCLE 19 ON INQUIRY CARD
What's behind The "OVERHEAD DOOR"?

Counterbalance design for easier opening. Longer life because it's made of the finest materials. The confidence of a name known and trusted since 1921. A service-minded distributor within minutes of most any job site in the United States. The "OVERHEAD DOOR" and electric operator save your client money because they are installed and warranted by a factory-trained distributor of The "OVERHEAD DOOR." Specify the genuine and original: The "OVERHEAD DOOR." It's the door you can stand behind, because we do. For further details call your local distributor listed under "OVERHEAD DOOR" in the white pages of your phone book; or refer to our catalogs in Sweet's Architectural File. Another open and shut case for The "OVERHEAD DOOR."
This Distribution Center is also a local landmark... with BASALT precast, prestressed Single Tees.

The architectural appeal of this distribution center, office and cafeteria complex was achieved simply and economically—with a roof of Basalt precast, prestressed single tees.

The 116 tees had cantilevers varying in length from 2½ to 15 feet. The resulting irregular eave line gives the building its unique appeal, and serves to screen direct sunlight from the full-length windows below. Achieve greater design freedom for your next project—specify Basalt for precision plantcast components and on-the-job know-how. Consult with a Basalt engineer today. Basalt Rock Company, Concrete Products Division, Napa, California...

Telephone 707/226-7411.
Lower total annual cost in All-Electric buildings?

Ask Buffums'...
Flameless, quick-recovery, water heating serves Buffums' beauty shop and washroom areas. Another important benefit of the All-Electric concept is the architectural freedom of design. All-electric systems are flexible, and can be incorporated in a great variety of building designs, rather than forcing the architect to design the building around traditional systems.

The All-Electric Building Award for Buffums' Palos Verdes testifies that this building has met recognized engineering standards for lighting, eating, and air conditioning.

Buffums', like so many other companies, has found that lower first cost, lower maintenance expense and competitive operating costs add up to lower total annual cost in All-Electric buildings. We can give you all the money-ahead facts and figures on All-Electric building, including hundreds of case histories. Write Marketing Engineering, P.O. Box 62, Terminal Annex, Los Angeles 90051.

BUFFUMS' PALOS VERDES
Architect: Killingsworth, Brady and Associate, A.I.A.
BUILDING PROFILE
GENERAL DESCRIPTION
Two-story building
43,000 square feet department store
Reinforced brick masonry construction
ELECTRIC LOAD
Connected Lighting and Miscellaneous Load—600 KW
Electric Air Conditioning (125 Tons—3 Units)—160 KW
Electric Supplementary Heating—92 KW
Electric Water Heating—40 KW
INSTALLED COSTS
Air Conditioning System—$1.25 sq. ft.
Electrical System—$1.90 sq. ft.
OPERATING COSTS
Total Electrical Operating Cost for a Six Day Schedule—$38 per sq. ft. per year
SPACE CONDITIONING
Direct expansion, refrigerated, air cooled cooling system.
Heat supplied by lights supplemented by electric heating coils as needed.

Southern California Edison
BEFORE THE RIBBON IS CUT...

...sign it with pride

The last piece of work before the doors are opened to any building, is to properly identify the edifice with a bronze plaque, artfully produced by M. GREENBERG'S SONS, craftsmen for over a century. Modern, fully equipped foundry...excelling in skillful hand casting, hand tooling and expert finishing. Write for a copy of our Plaques and Letters Catalog.

Founded 1854

For more data, circle 21 on inquiry card

ZIP CODE SPEEDS YOUR PARCELS

1. Packages are shipped by more direct route.
2. They are handled fewer times.
3. There is less chance of damage.

ZIP Codes keep postal costs down but only if you use them.
Now Pomona Tile offers American Olean ceramic mosaics

Avocado? Beryl? Cerulean? Driftwood? Name it. Now the complete line of famous American Olean ceramic mosaics are available from Pomona Tile. A wide range of colors and patterns are immediately available from well stocked distribution centers throughout the West. Whatever your needs in ceramic tile, look to the ideapeople at Pomona.

Pomona Tile
A DIVISION OF AMERICAN OLEAN

For more data, circle 22 on inquiry card

230 South Reservoir Street, Pomona, California 91766
Concrete block never looked so good... never sealed out moisture so completely. PRIME 'n FILL primes, fills, and surfaces concrete blocks in one operation. Moisture simply cannot seep in, because PRIME 'n FILL blocks and seals every void in the block. Its hard, dense, non-porous surface makes a perfect base for all vinyl, acrylic, latex, or oil type coatings. PRIME 'n FILL also does the same effective job on interior building block surfaces. This low cost, time-tested, quality product extends the economy of block construction right to the finish. One pound (mixed in water) covers 15 to 25 square feet. Stretches paint coverage, too; one finish coat usually does the job. Now you can forget the problems and high cost of painting concrete block. Just PRIME 'n FILL... then paint.

MAIL THIS COUPON FOR COMPLETE INFORMATION
THE SYNKOLOID COMPANY 3345 Medford Street, Los Angeles, California 90063
Gentlemen: Tell me more about PRIME 'n FILL.
NAME ____________________________
COMPANY __________________________
ADDRESS _______________________________________
CITY ______________________ STATE _______ ZIP CODE __________

For more data, circle 23 on inquiry card

32-6 ARCHITECTURAL RECORD June 1967
new
dimensions
in style by
CHF
Introducing the new
Florentine series . . .
petal shaped and
graceful with style
and simple elegance
in the classic manner.
Available in cast iron
or aluminum . . . choice
of finishes and colors.
For tops up to 60 round
or oblong 72
Write or call.

Chicago Hardware Foundry Co.
North Chicago, Ill. 6064

For more data, circle 24 on inquiry card

A successful builder
speaks about
Am-Finn Sauna.

AM-FINN Sauna, the sophisti-
cated feature that makes an
effective talking point toward
your client's fully rented
building. AM-FINN has
crafted its Sauna to be the
finest you can buy. Workman-
like construction in hand-
somely finished woods, UL
approved heaters, low operat-
ing costs because of AM-
FINN'S unique insulating
qualities. Invigorating, relax-
ing, desert-dry heat . . . no
pipes, no plumbing, no
steam. AM-FINN Saunas—an
invaluable feature to attract
a full complement of tenants.
Let us tell you how you can
show your client the advan-
tages of including AM-FINN
in his plans.

Write for our free Architects kit to:

Am-Finn Sauna Inc.
HADDON AVENUE AND LINE STREET, CAMDEN, NEW JERSEY

For more data, circle 25 on inquiry card

ARCHITECTURAL RECORD June 1967 33
Fluid roofing of Du Pont Neoprene and HYPALON* is as flexible as your roof design

This is one of the important reasons fluid roofing was specified for Civic Center BUSCH MEMORIAL STADIUM in St. Louis (home of the baseball and football Cardinals).

The stadium's long span, multifaceted, cast-in-place concrete roof is subject to contraction and expansion. Fluid roofing of elastomeric Du Pont Neoprene and HYPALON accommodates these movements. It protects the concrete against deterioration throughout the seasons.

Neoprene and HYPALON cure quickly after application to form a tough, continuous, weathertight membrane that resists ozone, sunlight, weathering, industrial fumes and abrasion. It's flame resistant, too. And HYPALON can be furnished in a wide range of colors.

When properly applied by experienced roofing contractors, fluid roofing delivers long-term dependable performance.

Du Pont makes both Neoprene and HYPALON, not fluid roofing compositions. Write for data sheet. Du Pont Company, Room 395, Wilmington, DE 19898.

For more data, circle 26 on inquiry card
ARCHITECTS ANALYZE NEW MEANS OF INFLUENCE

Largest A.I.A. convention ever meets in New York City...tresses the practice and politics of the architect at community and state levels

he theme of the 99th annual convention of the American Institute of Architects—The New Architect—Serving A New Society—was well documented and pervasively presented as 5,120 registrants, the largest number ever, convened in New York City from May 14-18. New A.I.A. President Robert L. Durham clarified his concept of "the new architect" and the aims of the profession in his inaugural speech on the last night of the convention. Mr. Durham stressed that the profession must unify and strengthen itself in order to be more effective in "serving a new society." While recognizing the continuing importance of the Institute's liaison with the Federal government, Mr. Durham called for new efforts at the community and regional levels to make innovations in the practice of architecture available to the smallest firms and to make the small architect a more potent force in influencing the environment of his community.

Mr. Durham outlined four areas in which he "will strive for improvement":

1. a more effective system of two-way communication between chapter and institute to prevent duplication of efforts;
2. a better public relations effort aimed toward supplying the membership with tools for chapter implementation;
3. exceeding the fund raising goal for the new headquarters building (see page 46); and
4. a new quality of liaison with the public from the smallest village to the capital of our country...We must now give equal attention to the state and local level down to the small school board."

"We follow lofty motives," said Mr. Durham, "but we must not forget the nurture needed by the individual member, whether employee, teacher or practitioner. I feel a special responsibility to-

Not pictured: Sidney W. Little, Western Mountain.

Old Medalist: Wallace K. Harrison of New York receives the Institute's highest accolade, the Old Medal, and a citation from President Charles M. Nes Jr.—the highlight of the annual inner and ball. The citation read: "To Wallace Harrison, F.A.I.A., architect, who has shown the highest order of architectural statesmanship. He has led a team in producing significant architectural works of high quality over a period of more than 30 years. He has worked with the concept of urbanism, creating architecture as part of the fabric of the city, with great dedication and loyalty to the best interest of his own New York." Also invested at this gala occasion were 82 fellows and five honorary fellows.

ARCHITECTURAL RECORD June 1967 35
ward the one- or two-man office. But whether large or small, by pooling our resources, by exchanging information, by establishing reasonable limits on our professional liability, we can bring renewed vigor to our profession."

Kassabaum becomes president-elect

In one of two contested elections, George E. Kassabaum of St. Louis defeated George Vernon Russell of Los Angeles for the office of first vice president and president-elect. Also Dean F. Hillinger of Bloomington, Illinois was elected for a two-year term as treasurer, defeating Charles J. Marr of New Philadelphia, Ohio. The three vice presidents elected for the following year are Robert F. Hastings, Detroit; Samuel E. Homsey, Wilmington, Delaware; and Harold Spitznagel, Sioux Falls, South Dakota. Rex Whitaker Allen of San Francisco continues as secretary. Six new regional directors were unanimously elected: Philip W. Bourne of Boston—New England; Joseph H. Fial of Madison, Wisconsin—North Central States; Sidney W. Little of Tucson, Arizona—Western Mountain; A. Bailey Ryan of Louisville, Kentucky—East Central States; Joseph Tuchman of Akron—Ohio; and Max O. Urbahn, New York City—New York.

Twenty honor awards were presented at a luncheon on May 15 (see pages 50-55). Other awards and honors presented during the course of the convention (and previously reported in the RECORD) included: the Gold Medal to Wallace K. Harrison of New York; 82 fellowships; five honorary fellowships; six honorary memberships; five medals to practitioners in the allied arts; the Edward C. Kemper Award; the Citation of an Organization; and the Architectural Firm Award.

Canadian products exhibit

won a special award as "the best product exhibit the exhibit awards jury had ever viewed." The Canadian exhibit, a composite by 14 producers, was Canada's first participation in an A.I.A. convention.

"Blueprints in Fashion", a brunch and fashion show held at the Hotel Pierre on May 18, was attended by 700 architect's wives and guests. The event, organized by the Woman's Committee of the 1967 convention—Mrs. P. Whitney Webb, chairman—presented fashions by Lord & Taylor and Larry Aldrich, Bill Blass, and Donald Brooks. Guests, at right, included, (from left) Mrs. Max O. Urbahn, Mrs. John V. Lindsay, wife of the Mayor, and Mrs. L. Rado, all from New York, and Mrs. Charles M. Nes Jr. of Baltimore. Other women's events included tours of the Pan-Am Building, the Seagram Building and Lincoln Center, and a breakfast forum at the Museum of Modern Art at which Mrs. John Noble Richards gave a dramatic monologue.

Princeton graduates honor Professor Jean Labatut

on his retirement by presenting his portrait bust to the school. From left: Charles Stade, Mr. Labatut, Dean Robert Geddes, and Professor Joseph Brown (sculptor of bust).

Speakers, at left, addressing themselves to the theme of the convention—"The New Architect—Serving A New Society"—included: (top, from left) Charles Luckman, who spoke on "Practice"; and Dr. Arthur Clarke, who spoke on "Technology"; and (center, from left) Dr. Marshall McLuhan, who delivered the Third Annual Purves Memorial Lecture, and Dr. Harold Taylor, who spoke on "Education." At bottom, from left, are workshop speaker, architect Philip Johnson of New York City, Mayor John V. Lindsay of New York City, who delivered a theme speech on "Design and Politics", New York Regional Director Max O. Urbahn, New York City, and A.I.A. President Charles M. Nes Jr. of Baltimore. At right, Mayor Lindsay delivers his speech before a throng at the New York Hilton.
there is no greater sales and service force in air conditioning today

TITUS IS:

Bob Langmade
Norman S. Wright & Co.
Phoenix, Arizona

Allen Bullard
Bullard-Hill Company
Little Rock, Arkansas

Rowe Hill
Bullard-Hill Co.
Little Rock, Arkansas

Wally Rasmussen
Norman S. Wright & Co.
Los Angeles, California

John E. Bush
Norman S. Wright & Co.
Sacramento, Calif.

Norman S. Wright
Norman S. Wright & Co.
San Francisco, Calif.

J. K. Keivston
Norman S. Wright & Co.
San Francisco, Calif.

N. H. Malcolm
Air Purification Company
Denver, Colorado

Alfred J. Hamilton
Alfred J. Hamilton Co.
Hartford, Conn.

R. M. Myers
R. M. Myers Co.
Jacksonville, Florida

Bill Ousley
Ousley & Associates, Inc.
Miami, Florida

R. A. Sansing
Sansing Sales Engineers
Pensacola, Florida

Dick Peck
R. K. Peck & Associates
Tampa, Florida

Robert A. Lucas
Ousley & Associates
Winter Park, Florida

Robert G. Bradley
Crawley-Gorbandt Co.
Atlanta, Georgia

Don Crawley
Crawley-Gorbandt Co.
Atlanta, Georgia

A. K. Ching
Norman S. Wright & Co.
Honolulu, Hawaii

George Richardson
Richardson Equip. Co.
Boise, Idaho

E. B. Boston
Air Products Equip. Co.
Chicago, III.

R. B. Hudson
Air Products Equip. Co.
Chicago, III.

Glen Partridge
Colby Equip. Co.
Evansville, Ind.

John R. Colby
Colby Equip. Co.
Indianapolis, Ind.

Dan Murphy, Jr.
D. C. Murphy Co.
Davenport, Iowa

D. C. Murphy
D. C. Murphy Co.
Des Moines, Iowa
to solve your air distribution problems - wherever you are!

You get more than just the nation’s finest architecturally-designed air diffusion products when you specify Titus!

You get the full services of the most knowledgeable, most competent, best qualified air conditioning men in your area—YOUR LOCAL TITUS REPRESENTATIVE.

His training and many years of experience in the field—backed by the tremendous engineering, manufacturing and air research laboratory facilities of the Titus company, are your assurance of outstanding, conscientious service.

If you want to be sure of the solution to toughest air diffusion problems—and of the new and different in air diffusion products to meet any aesthetic design requirement—contact your local Titus representative. HE’S PICTURED ON THESE PAGES. TITUS MANUFACTURING CORPORATION, WATERLOO, IOWA 50704.

Don L. Titus
President
TITUS MFG. CORP.

Robert W. Titus
Vice President
TITUS MFG. CORP.
The President’s Reception became a splendid happening in the grandly monumental spaces of the Metropolitan Museum of Art, whose new director, the inventor of happenings in New York City parks, Thomas P. F. Hoving, made available for the occasion the entire first floor of the museum. Chartered buses transported what seemed like the entire convention from the New York Hilton to the Museum. Above right: A.I.A. President Charles M. Nes Jr. and Mrs. Nes, of Baltimore, welcome guests on the receiving line. Below right: Architect Charles Correa and Mrs. Correa of Bombay, India, sample one of several bountiful spreads of hors d’oeuvres.

Host Chapter Party started for some at private pre-ballet parties such as the buffet given by Mr. and Mrs. Robert W. Cutler of New York. Pictured above (from left) are Daniel Boone, Abilene, Texas; Mrs. Cutler, Miss Carol Bjorkman, New York; Reginald Roberts, San Antonio; and Mr. Cutler. Then on to a special performance of the Royal Ballet (including a performance of “Paradise Lost” by Roland Petit, danced by Margot Fonteyn and Rudolf Nureyev [center left]) at The Metropolitan Opera at Lincoln Center, designed by Gold Medalist Wallace K. Harrison (the convention occupied the entire house). And on to a reception-dance in the New York State Theater at Lincoln Center (right) designed by Philip Johnson. At the reception, President Nes cited the New York Chapter, A.I.A., on its 100th anniversary, with Max O. Urbahn accepting the citation, as William Tabler and E. Allen Dennison look on. A citation was also presented to Dr. Frank Stanton, president, the Columbia Broadcasting System, for advancing the cause of “environment, architecture and the applied arts.”

Atting special interest, A resolution calling for permission to admit a new class of “professional affiliate (including engineers, planners, landscape architects, sculptors, muralists, and other artists allied to architecture)” to chapters was vociferously debated pro and con before a substitute measure calling for further study of the proposal by the A.I.A. Board of Directors was passed.

Another resolution, passed after a floor fight and roll call vote of 410 to 213, changed the A.I.A.’s Standards of Professional Practice by eliminating a prohibition against architects working for non-architects who offer architectural services to the public, and substituting a requirement that no A.I.A. member should be employed by an individual or firm whose practices are “inconsistent with” the A.I.A. Standards.

The third resolution of particular interest—and essential to the development of the headquarters expansion project—was the unanimous approval of the sale of the Octagon headquarters in Washington, D.C. to the A.I.A. Foundation, which will restore it and maintain it as a historic and architectural landmark. This is the second such approving vote on this issue, due to bylaws, the first vote being taken at last year’s convention in Denver to “free needed capital of the Institute for its activities in advancing the interests of the profession.” A new design by Mitchell & Giurgola for a vastly expanded headquarters building, which would also allow a larger garden area for the Octagon, was unveiled at the second business session (see page 46).

Other resolutions passed called for regional directors to establish revolving funds for planning, so as to encourage the elimination of performance of architectural services for government agencies on a contingent basis, and for the Board of Directors to undertake a study of the nature and extent of services rendered on a contingent basis; commendation of architects and entrepreneurs who are “demonstrating the feasibility of creating...
The traditional F. W. Dodge Party for the architectural profession on the eve of the opening of the convention this year honored the Whitney Museum of American Art and its architects Marcel Breuer and Hamilton Smith. The party brought 2,400 architects and their wives to the gala cocktail reception at the museum. Three upper floors of the museum were stocked with a variety of refreshments and a variety of musical groups, including Jeremy & The Satyrs, a rock-and-roll group which featured an electric flute (top left) and jazz by the Billy Taylor Trio (left). Also featured were folk music by the Simon Sisters, Helen & Harley and Bill Elliot, ragtime by Willie "The Lion" Smith, jazz by the Buddy Weed All Stars, and Dixieland by the Dick Raymond Five. Exhibitions installed at the Whitney included a retrospective devoted to Jules Pascin (1885-1930), works by William Glackens (1870-1938), and the latest additions to the museum's permanent collection. At the head of the reception line (top right) were F. W. Dodge President Wallace F. Traemly, Flora Whitney Miller, chairman of the Board of Trustees of the Whitney Museum, and Shelton Fisher, president of McGraw-Hill, Inc. At center right are Robert S. Muller, vice president-Marketing, F. W. Dodge Company, Marcel Breuer and RECORD Editor Emerson Goble. At bottom right are Hamilton Smith and Leon Levine of the Whitney Museum staff.

Dr. McLuhan in his address "Knowledge and the Future of Man" set about to clarify the current state of society in terms of the new electronic age. His clarification seemed to some of his fascinated hearers to need clarification, and his delivery to have some of the qualities of the "auditory space" that he says is characteristic of our electronic culture—discontinuous, not uniform, not connected, tactile, kinetic, "all-at-once-ness," and emphasis on effect.

Auditory and visual space

Dr. McLuhan distinguishes this auditory space—characteristic of spaces generated by other senses than vision—from "pictorial space" or visual space, a 2,500-

...Auditory and visual space...
year-old Western concept in which there is a fixed point of view, uniformity, continuity and connectedness and in which there can be detachment and objectivity. “Electric technology,” says Dr. McLuhan, “simply because it is all at once, is also discontinuous. . . . To the rational observer who seeks to find connectedness and uniformity in the spaces of his world, the new situation presents an extreme form of the irrational.” The result of this new method of perception, in Dr. McLuhan’s view, is consciously or unconsciously, a conception of our environment as an infinite series of unrelated parts which make up the cosmic whole. Dr. McLuhan’s message seemed to be to perceive and comprehend where we are in a total sense before didactically plodding forward.

Teach the young to see
Educator Dr. Harold Taylor, in his address “Education and the Human Environment” characterized the education of the young as “a process of slow attrition of the sensibility and the substitution of categories of fact-gathering, conceptualizing and memorizing in place of the development of the creative facilities.”

Formal educational subjects should, said Dr. Taylor, be geared to real and immediate world situations to make people aware of their surroundings. “The practice of the art of creating and the practice of the art of seeing, listening, moving and feeling, are essential ingredients of an education in judging the environment.”

To combat the mediocrity of our culture and environment, Dr. Taylor called for two steps: “to take the measure of the artists and writers and to assess the nature of the truth they are telling (about the mediocrity of our psychological and physical environment);. . . . and to find a way to teach the young to look at the world as it really exists, to look at it with the eye of an artist, the warmth of a humanist, and the concern of a citizen. For it is literally true that the young are the architects of the future.”
Design quality as political goal

John V. Lindsay, Mayor of New York City, truck a positive note in citing the design accomplishments and policy of his administration. "We in New York’s city government are committed to the concept of excellence in design," said Mayor Lindsay. "That commitment transcends the design of a few very conspicuous buildings by some of the most celebrated members of your profession. It mandates a design quality that will carry through all the actions of government, and, as far as possible, through the private sector . . ."

"In the end, however, the quality of the results will depend in large measure on how your professions respond to the opportunities the cities can offer. I have every confidence that you will rise to those opportunities, that you possess a readiness to undertake on a large scale the kind of public works that are truly public—in the sense that they serve the highest interests of the citizenry—and truly works—in the sense that they endure to be judged by future generations."

The not-too-distant year 2000

Astronomer and science fiction writer Arthur C. Clarke, addressing the convention on "technology," predicted some possibilities of what our environment will be like by the year 2000 and beyond. Advances in transportation and communication will make it possible for man to live anywhere and work anywhere. The acceleration of communications will change us from "a producing society to an information-processing society." The new freedom to live anywhere, and the historical functions of the cities ceasing to exist as they spill out over the countryside, said Dr. Clarke, that "the cities are growing like the dinosaurs and for much the same reason, they will become extinct."

Dr. Clarke foresees "self-contained households" that will produce their own food and process their own wastes, and mobile towns that could "just take off and fly you anywhere you like."
A.C.S.A. meeting
At the 53rd annual meeting of the Association of Collegiate Schools of Architecture in New York, held immediately prior to the A.I.A. convention, the organization continued to strengthen its activities on the regional level, a move first implemented at last year's meeting in Denver, Colorado.

The new president of A.C.S.A. is Robert Bliss, head of the department of architecture at the University of Utah, who succeeds Walter Sanders of the University of Michigan. Charles Burchard, dean of the College of Architecture at Virginia Polytechnic Institute, is the new treasurer, succeeding Henry Jandl of Princeton. Continuing officers include Dean Thomas Howarth, University of Toronto, vice president, and Dean John Lawrence of the School of Architecture at Tulane University, secretary.

New regional directors include: Charles Kahn, North Carolina State—Southeastern; Richard Wheeler, University of Cincinnati—East-Central; Henry Wright, Kansas State—West-Central; and Wesley Harper, Texas A & M—Southwestern. Continuing regional directors are Dean D. K. Sargent, Syracuse—Northeastern, and Marcus Whiffen, Arizona State—Western.

Highlights of the annual banquet included the presentation of certificates of appreciation to: Joseph Hudnut, former dean of the Graduate School of Design at Harvard; Douglas Haskell, former editor of Architectural Forum; Kenneth Smith, dean of the School of Architecture at Columbia; and John D. Entenza (in absentia), executive director of the Graham Foundation for Advanced Studies in the Fine Arts, Chicago. Also at the banquet, a new fellowship sponsored by American Metal Climax, Inc. of New York and administered by the A.C.S.A. was presented to architect Donald Watson of New Haven for a two-year study of "indeterminant architecture." The fellowship, made possible by a grant of $25,000, is planned "for architectural study devoted to the perception of new opportunities offered by industry for improvements in the construction or planning and designing of buildings."

N.C.A.R.B. meeting
In another pre-A.I.A.-convention meeting, the National Architectural Accrediting Board, after studying its evolving role in the past few years, and after an analysis of its past activities and procedures by Sam T. Hurst, dean of the School of Architecture and Fine Arts at the University of Southern California, who is outgoing secretary and new president of the organization, announced administrative changes intended to improve the service of the Board.

On advice of counsel, the Board has incorporated under the laws of the District of Columbia, with the articles of incorporation reflecting basic constitutional changes. The purpose of incorporating, according to outgoing president Frederick Hobbs of Columbus, Ohio, is that "the Board will be on firm ground in its tax immunity and Board members will henceforth enjoy certain legal safeguards conferred by corporate status."

The new documents shorten the terms of Board members from six to four years, and increase the six-man board (composed of two representatives each from the A.I.A., A.C.S.A. and N.C.A.R.B.) to not less than eight members with provision for further expansion. The two new members will be from the field of education—one a "generalist" and the other a representative from one of the design professions or specialties other than architecture.

N.C.A.R.B. convention
Significant progress toward the realization of three long-term aims—uniformity of registration requirements, upgrading of professional standards and the establishment of reciprocal registration between different countries as well as different states—was made at the 46th annual convention of the National Council of Architectural Registration Boards held in New York May 12-14.

Of the various resolutions and reports adopted, probably the most significant was the Council's ratification of Memorandum of Agreement drawn up by the Foreign Evaluations Committee, N.C.A.R.B. and the Architects Registration Council of the United Kingdom to establish reciprocal registration between the two countries, making it possible for architects to practice freely in either country. The committee has now been empowered to develop appropriate machinery to give effect to this agreement.

In presenting its report, the Committee on Policies and Procedures put forward a resolution—accepted by the Convention after heated discussion and a close vote—to make graduation from an accredited school of architecture a mandatory prerequisite for Council certification after January 1, 1973. This resolution is intended to have the dual function of promoting consistency in preparation for registration while at the same time ultimately upgrading professional standards.

Ample advance notice and consideration of equivalent qualifications in particular cases would assure the minimum of hardship to individuals.

As a result of the work of the Committee on Examinations, whose report was approved at the convention, for the first time in the Council's history all of the 54 member boards are now using the same examination in five areas: history and theory; building construction; structural design; professional administration and building equipment. Continued work on the subjects of site planning and design may lead—before too long—to a national system of consistent examining procedures.
"People can work without plumbing.
And they can work without air conditioning.
But they just can’t work without telephones."

Fairchild Hiller Corporation’s facilities manager, A. S. Damiani, knows what he’s talking about.

He’s seen buildings outgrow their communications capacities time and time again. He’s tripped over exposed wires. Cables running across floors. Seen holes being drilled for telephone wires right after a building had been finished.

And he was determined this wasn’t going to happen to the new Sherman Fairchild Technology Center near Washington, D.C.

That’s why he called in a Bell System Architect and Builder Service Representative at the very beginning.

The result: not just the most modern telephone system possible, but a system which provides for every foreseeable communications need.

Data-Phone® service. TWX. Even closed circuit TV using Bell Telephone System lines.

All cabling is concealed…yet the installation still insures the owner easy access, painless movement and quick expansion.

To make sure your next building is as modern as modern communications can make it, simply call 212-393-4537 collect. We’ll send you a complete list of our Architect and Builder Service Representatives.

For more data, circle 28 on inquiry card
Cumbernauld, New Town in Scotland, 14 miles from Glasgow, will be honored by the first $25,000 R. S. Reynolds Memorial Award for Community Architecture (January, page 36). Chief architect and planning officer since 1962 for the new town is Dudley R. Leaker, successor to L. Hugh Wilson, who held the post from the beginning of the project 11 years ago. The awards jury (consisting of Morris Ketchum Jr., Archibald C. Rogers, and John Fisher-Smith) cited Cumbernauld as "the most comprehensive project of community architecture to date." Key features of the town cited by the jury are: complete separation of pedestrian and vehicular traffic in a system of walkways and roads; a unique multi-level town center to extend a half-mile in length when completed; design as a single community without subdivision into neighborhoods; a high level of amenities for daily living; and exceptional economy in development. Eventual population will be 70,000.

Architect Victor F. Christ-Janer has been presented the 11th annual $25,000 R. S. Reynolds Memorial Award for "distinguished architecture using aluminum" for his design of the James F. Lincoln Library of Lake Erie College, Painesville, Ohio. The jury (consisting of Jose Luis Sert, chairman, John E. Burchard, Harald Hollein, William Morgan and William Keister) praised the library for "the merits of the use of light aluminum panels for exterior walls suspended from the roof structure and spandrels in the different floors." Light is allowed into the interior of the building by glass strips framing the bottom of its overhanging cubed shapes.

The new design for the national headquarters building of the American Institute of Architects in Washington, D.C., designed by Mitchell/Giurgola Associates, winners of the national design competition (February, page 10), will provide almost twice as much usable space as the original solution on an enlarged site made possible by the purchase of adjoining property. The new design will have the five office floors, located above two-story exhibit and conference area, successively step forward over the space of an Octagon garden. "The projecting configuration of the building," say the architects, "shields each floor from the direct rays of the sun to the southwest and allows for the introduction of natural light onto each floor from the northeast." The $4-million building will be of reinforced concrete faced with brick.
We move air evenly. We do it with a brand new linear bar (see our diagram). The bar economically and efficiently and quietly moves air throughout the entire space. We call it the OCF Dimensionaire Ceiling System. It's a total ceiling system. Air, light and sound. There's nothing like it.

This drawing shows how a diffuser moves air unevenly. The air shoots out, much like through the nozzle of a garden hose. Sit under one of the blasts, and you'll know what we mean. Air can stagnate in one area of the room, and drafts build up in the other.

We have a movie you should see. And a brochure. They tell everything about the OCF Dimensionaire Ceiling System. Mail the coupon now, before it slips your mind.

OUR MOVE

THEIR MOVE

YOUR MOVE

For more data, circle 29 on inquiry card

Owens-Corning Fiberglas Corp., Dept. DCS, P.O. Box 901, Toledo, Ohio 43601

AR-6
A dramatic showcase for prestressed concrete

This new building by a Florida prestresser is both headquarters for his operation and a showcase for his product. Every prospective customer who visits the office sees a demonstration of what precast concrete can do for the building he has in mind. The special textured cast-in-place corner walls provide architectural contrast for the variety of smooth surface prestressed and precast components. Dura-Stress Inc. uses Lehigh Early Strength Cement to obtain both early and ultimate high strengths for their units. Lehigh Portland Cement Company, Allentown, Pa.

Second floor ceiling features 8' x 36" lin tee beams. Each 86' prestressed lin tee is supported by two-story high precast columns. This permits use of non-load bearing interior partitions on second floor, which consists of 14" prestressed double tee beams. Floor tees cantilever to support second story precast panels. Corner walls have an exposed aggregate "corduroy" surface. The building provides 10,000 sq. ft. of floor space.
One man operates the Honeywell Control Center that starts, stops, adjusts, reveals, alarms, monitors, analyzes, and checks almost everything in an industrial plant. Shown here: Two views of 57-acre Chrysler Corporation Sterling Stamping Plant, Detroit, Michigan. Architects and Engineers: Giffels and Rossetti, Inc., Detroit.

Now! Honeywell 1-man Control of an entire plant that pays a 33 1/3% annual return

That’s right, most plant owners save enough in operating costs to pay for Honeywell automated control in 3 years or less…a 33 1/3% annual return on investment!

One man at the control center:
• reads and adjusts temperatures.
• starts, stops and adjusts equipment.
• protects an entire plant against fire and intrusion.

Five systems. Honeywell offers 5 different systems to fill your needs, and more fire and intrusion detectors than anyone else, so you can pick exactly the protection you need for each commercial building job.

Greatest reliability. Only Honeywell offers microelectronic circuitry for infinite life expectancy and reliability.

Personal follow-up. There’s a field staff of Honeywell Building Automation Systems Engineers to help your clients get full payback.

In short, Honeywell can design, build, install, guarantee and service the complete temperature control and protection system you need for any commercial building you design.

Make us prove it. For examples of operating economies in other plants, just mail the coupon.
A.I.A. HONORS 20 BUILDINGS IN NATIONAL AWARDS PROGRAM

Twenty honor awards, to projects shown here, were presented at the New York convention in the 19th annual Honor Awards Program of the American Institute of Architects. For the first time, all 20 winning projects received honor awards, instead of the distinction between honor awards and awards of merit in past programs. The winning projects were selected from a field of 317 submissions by a jury consisting of: James M. Hunter, Boulder, Colorado, chairman; R. Max Brooks, Austin, Texas; Vladimir Ossipoff, Honolulu; Joseph N. Smith, Atlanta; and Philip Will Jr., Chicago.

The jury report, in part, read:

"...The perennial problem of judging small, low-budget buildings against large prestige-budget efforts was a worrisome problem in this year's competition—and much debate was concentrated in defense of the low-budget try, against the affluent competitor.

"There was a marked definition of architectural philosophies motivating buildings, and we found ourselves continually adjusting our individual thinking to the competitor's objective and architecturally—what he wanted to do, and why he wanted to do it.

"The results of our efforts can only be, at best, opinions and impressions of five architects representing Hawaii, Texas, Illinois, Georgia and Colorado, regarding submissions from 3 states, territories and seven foreign countries. It can only be hoped that we have, as we intended, recognized each building's appropriateness to its function, its clarity of structure, its use of materials and their thoughtful detailing, and that the building was appropriate to its time and its place.

"We were delighted with the recognition of the needs of 'people' in the majority of the projects, and we premiated which made only a humble architectural statement, but which was so full of the spirit of gaiety, goodwill and wholesomeness that its recognition became mandatory."

"This highly disciplined, well proportioned building expresses its utilitarian function and technical occupancy. The professional competency of its author is evident. This building is an expression of modest architectural good manners in a classic setting."

VANNEVAR BUSH CENTER FOR MATERIALS, Science and Engineering, Massachusetts Institute of Technology, Cambridge. Architect and structural, mechanical and electrical engineers: Skidmore, Owings & Merrill, Chicago; general contractor: George A. Fuller Company, Inc.

"A delightful statement of a ski lodge without resorting to the vernacular of the Swiss chalet. In its sturdy detailing and by the use of good graphic devices, it imparts an appropriate aura of gaiety within the discipline of a direct and simple solution."

"A forthright statement of its municipal function. The lower levels handle the city's business. It is sympathetic to its surrounding and is sensitively detailed with its traditional neighbors. This is the proud and dignified building."

A highly disciplined and dignified expression of the tall office building, the First Federal is well tailored to the needs of a bank and suited to a difficult site in downtown Detroit.

“Humble and respectful of its site, the project utilizes a limited palette of materials well. It is beautifully planned, thoughtfully detailed and well executed.”

“The highly disciplined elegance and sophisticated detail make this a truly great office building. A fresh and accurate structural expression containing dignified spaces appropriate to a great banking house.”

Warm yet dignified interiors. Competent wooden detailing gives it a sincerely regional flavor providing a happy relief from the sleek approach. Good scale and use of materials—the ‘Greene Brothers’ in a contemporary idiom.”

“A powerful integration of utility, structure and mechanical systems. There is a delightful sequence of scale and space as one enters the court; it is unique to this size building in an urban setting.”

All of a sudden domes are the easy solutions.

Soon, America will shelter two hundred million people—focused mostly in cities and towns. Every gathering then becomes two—three—four times the humanity of 1950! And in theory at least, the dome should come into its own as the ideal, space-enclosing form. Practically, dome structures present forbidding difficulties on most budgets.

Suppose you had at your disposal a space frame system in which those difficulties were transformed into advantages. The Butler Triodetic® system for example. The essential elements of Triodetic are merely hubs (nodes) and structural tubes, prefabricated to specification. These are factory-sized and site assembled to form structures as simple as lattice trusses, as complex as the various braced domes.

The hub design is the real secret. Solid steel or aluminum shafts containing grooved keyways full length. Structural members are end-coined to slip into these keyway slots—snugly. A number of structural members may be framed into a single hub, approaching from several angles of incidence!

Triodetic is self-spanning. Thus construction is both swift and simple. And—length and diameter of members can vary to your design needs. No welding is required. Consequently, structural strength at the node connection is outstanding.

We are compiling computer calculations on many dome sizes as well, and these are part of the service that comes with the hardware. Why not check us out in greater detail in Sweets? Then write or phone:

BUTLER MANUFACTURING COMPANY
7427 East 13th St., Kansas City, Missouri 64126

Architectural Systems Department

For more data, circle 31 on inquiry card
Videne resists most stains...

Videne is virtually stainproof. Most stains wipe away with a damp cloth. The surface won't crack, chip, peel or fade. Has over twice the abrasion resistance of high-pressure laminates.

The new Videne Total Wall Decor System offers you paneling, molding, and architectural grade doors designed to improve interiors and keep building and maintenance costs down. The paneling has all the beauty of fine woods at less than half the cost. Low-cost Videne doors are the plastic-finished doors that can be fit and morticed on the job. Order the system or any of its components from a wide range of 16 authentically textured woodgrains and 34 exciting colors. No premium for solid colors.

...at less than half the cost

Videne surface is available on a variety of base materials for store fixtures and decorative displays. Specify Videne for new construction or remodeling. For commercial buildings, shopping centers, stores. Wherever you need durability as well as drama. For more information write: Videne Division, The Goodyear Tire & Rubber Company, Akron, Ohio 44316.
"This project is intimate, understated and gracious, thoroughly appropriate to the age group served. It fits its site and is especially suitable to its purpose. Sensitive detailed." C. THURSTON CHASE LEARNING CENTER, Eaglebrook School, Deerfield, Massachusetts. Architect: The Architects Collaborative, Inc. (principals in charge: Sarah P. Harkness and Herbert K. Gallagher; job captain: Sherry Proctor); associate architects: Campbell, Aldrich & Nulty; (principal in charge: Walter Campbell); structural engineer: Souza and True; mechanical and electrical engineer: Jackson and Moreland; lighting design: William M. C. Lam; educational consultants: Donald Mitchell and Robert Anderson; contractor: George B. H. Macomber Company.

"This is a significant effort of classic discipline, exquisite in concept and execution. A jewel box dramatizing the importance of its rare contents."

BEINECKE RARE BOOK AND MANUSCRIPT LIBRARY, Yale University, New Haven. Architect and landscape architect: Skidmore, Owings & Merrill, New York; structural engineer: Paul Weidlinger; mechanical and electrical engineers: Jaros, Baum & Bolles; sculptural marble court: Isamu Noguchi; lighting consultant: Edison Price; general contractor: George A. Fuller Company.

"This humane, gay and exuberant effort makes no great architectural statement. Its orientation is not toward its author, but toward people of all ages. What this effort accomplishes in correcting the urban scar and meeting the living needs of the neighborhood and its people cannot be easily measured."

"Nicely sited with its underground parking concealing its urban necessities. An elegant plan—sensitive and simple. A thoroughly functional and handsomely proportioned curtain wall. The arrangement of three towers is well handled both for itself and its urban neighborhood."

his theater combines dignity and gaiety and under a classically disciplined structure... the performing arts have no alibi—they have been challenged. The generous and imaginative design of the public spaces recognizes that the audience is part of the show."

ESSEX H. JONES HALL FOR THE PERFORMING ARTS, Houston. Architect: Caudill Rowlett Scott; Architects (Charles E. Lawrence, design partner; James B. Gatton, technology partner; Thomas A. Bullock, managing partner); owner: City of Houston; structural engineers: Walter P. Moore; mechanical and electrical engineers: Bernard Johnson Engineers, Inc.; landscape architect: Robert H. Reed & Michael L. Ise, A.S.L.A.; acoustical consultants: Bolt Beranek and Newman; theater design-engineering consultants: George Izenour; contractor: George A. Fuller Company.

"Cool, white, and tropical, the dignified and mannered statement of this building fits it well to the climate and cultural needs of its location."

"The gracious interiors, the gardens and green spaces capture the flavor of a resort hotel. It is completely suitable for a subtropical climate with its restrained detailing and fine special sequences in a completely contemporary idiom."

MAUNA KEA BEACH HOTEL, Kamuela, Island of Hawaii; Architect and structural, mechanical and electrical engineers: Skidmore, Owings & Merrill, San Francisco; owner: Laurence S. Rockefeller; landscape architect: Eckbo, Dean, Austin & Williams; general contractor: Haas & Haynie.

"An exuberant and frolicsome solution to the art time vacation apartment. Good fun, fresh and wholesome—a place for congenial people intent on a few hours, or a day or two, of escape from the city and its problems."

"This modest building nestsles gracefully into a site of relaxed natural beauty. The civic function lends importance and dignity without awesome overtones. The center plaza unites its three governmental functions and provides for the future."

THE ADVANTAGES OF MICROFLEX ARE BUILT INTO

EVERY FOOT OF THIS INSTALLATION!

Benefits accrue along every foot of MICROFLEX you use because you're getting the proved quality and long-lasting advantages of stainless steel.

This job-tested and exciting non-reflective matte finish flashing, roofing and construction metal is strong, durable, resistant to stain and rust and adds elegance to your architectural designs — modern or traditional — and at an installed cost substantially below that of comparable copper!

MICROFLEX, The original soft stainless steel, meets with the favor of your fabricator, too, for it is completely compatible with his shop techniques, tools and workmanship.

MICROFLEX bends, folds, forms — by hand — without springback! It can be soldered and cleaned, riveted and welded as well as fastened by standard methods.

Multiply your benefits — specify MICROFLEX for your next installation!

*ST. JOHN'S VILLA, CARROLLTON, OHIO
Architect: George Tanner Smith & Associates
General Contractor: Robert Briner Construction Co.
Roofing Contractor: Miller-Thomas-Gyekis, Inc.
MICROFLEX Applications: Gutters, Downspouts, Roof Flashing, Cap Flashing, Lock Seam Roof Deck, Standing Seam Roof Deck

WASHINGTON STEEL CORPORATION
WASHINGTON, PENNSYLVANIA 15301
Plants: Houston and Washington, Pennsylvania; Detroit, Michigan
Subsidiary: Calstrip Steel Corporation, Los Angeles, California

For more data, circle 33 on inquiry card
New, Superstrong Moistop-2 Makes Sure Moisture Migration Never Damages The Floor

It's what goes under the floor that counts! Moisture migration through the slab plays havoc with floors as well as the most beautiful floor covering. Not to mention complaints, call backs and repairs. That's why before you start thinking about floor covering, think first about a tough enough vapor barrier. Specify and then insist on Moistop®-2.

Moistop-2... the 5-ply vapor barrier that keeps out moisture because job-site abuse won't rip and tear it like plastic film. Moistop-2's strength comes from two plies of polyethylene film, plus glass-fiber reinforcement, asphalt and high-strength kraft. It has a permanent MVT rating of 0.10 perms. Be sure... send for Moistop-2 sample and Specification Guide. Write: Sisalkraft, 73 Starkey Avenue, Attleboro, Massachusetts. In Canada: Domtar Construction Materials Ltd.
This Krueger diffuser controls smudge.

Anti-smudge? You bet we are. When it comes to controlling ceiling smudges due to secondary air, our 1100 series diffusers can’t be beat. These Krueger diffusers were engineered in our ADC Certified Research and Test Laboratory. And, subsequently proven in many installations across the nation. The characteristics of 1100 series diffusers, due to center aspiration, deposit any smudging particles in the center of the perforated plate. The perforated plate can be quickly and easily removed for cleaning, saving maintenance costs. Insist on Krueger...

Model 1100 diffusers are available in 1, 2, 3 and 4 way deflection with adjustable patterns. They provide proper balance and aesthetic appeal for Tee-Bar and Spline ceilings.

Want more information on the entire Krueger line? See your local Krueger Agent

For more data, circle 35 on inquiry card
When deadly errors eight, do a follow-up article.

When you see that the difference is, indeed, unattractively two years too late for us, be assured that the architectural credits for the Rochester Science Complex are in error. The proper architectural credits are:

Kenneth DeMay (of Sasaki, Dawson, DeMay Associates)—Anderson Beckwith and Haible—Associated Architects.

As you can see, Kenneth DeMay and Anderson Beckwith and Haible are both associated architects. This is the way the project has been thought of since the beginning and how, in fact, the work has been carried out—two architectural firms associating together. Unfortunately, the designation in the article lists me as the architect and Anderson Beckwith and Haible as the associated architects. In a very real way this misnomer is extremely embarrassing to us as well as to our client, the University of Rochester. We would all appreciate it, and I especially, if a correction could be made in the next issue. I realize the difference is subtle but, the implication of the two titles is entirely different.

Kenneth DeMay
Watertown, Mass.

ARCHITECTURAL RECORD deeply regrets the incorrect credits, and realizes that the difference is, indeed, a very important one. We are surely the most embarrassed of all.

Seven deadly sins

The article on office management by D’Orsey Hurst in the April publication is one of the finest and most concisely stated pieces of writing for practice we have ever seen. Its publication is unfortunately too late for us, because all seven errors have turned up in our own office in recent months. Only with much pain and considerable cost have we been able to define the problems listed on the two pages of the article. We recommend it to offices large and small.

Henry J. Wald
Wald & Zigas
New York City

When deadly errors eight, nine, and ten show up, please let us know so we can do a follow-up article.

Rudolph? or $11 million?

Your March editorial naturally was of unusual interest to me, since I live in New Canaan, Connecticut.

Tempers were flaring, and there were a number of self-appointed spokesmen making some pretty silly comments to the New York Times and apparently to you.

The issues seem quite clear to the voters. They rejected not Mr. Rudolph but the proposal of the local school building committee that the town spend something over $11 million for a new high school when that committee had been earlier instructed by a vote of the townpeople to spend $5 million.

There was considerable interest among the voters in discovering how much the building cost was inflated by the decision to hire three firms of architects instead of just one. There never was any satisfactory answer given to this question, so I would guess that many who voted against the $11-million building did so with the thought that the inflated figure would drop if the town hired a single architectural firm.

more letters on page 61

The rugged 1967 descendant of the original, exclusive Wade packing house drain.

Check these features and benefits:

1 GOLDEN DUCTILE IRON GRATE. Corrosion resistant. Designed to withstand heaviest loads.

2 SQUARE TOP. Can be used in both concrete and split brick floors.

3 EXTRA HEAVY RIM. Provides greater strength at floor level.

4 HEAVY DUTY WEDGE TYPE CLAMPING UNIT. Provides permanent bond between drain body and flashing.

5 FOUR STEP ADJUSTABLE COLLAR supported on all four sides at all adjustment heights. Provides for variations in floor thicknesses.

6 BI-LEVEL SEEPAGE OPENINGS with knockout pins provide positive seepage control with or without water-proofing membrane.

7 SERRATED SEEPAGE FLANGE. Provides positive clamping.

8 DRAIN INTERIOR HAS SLOPED BOTTOM AND ROUNDED CORNERS for easier maintenance.

9 BOSSES MAY BE TAPPED FOR LEVELING BOLTS to set and secure drain or form before slab is poured.

10 SET SCREWS on caulked outlet drains for supporting drain prior to caulkling.

AVAILABLE WITH SEDIMENT BUCKET

for better product features, specify … Wade

WADE DIVISION/ TYLER PIPE INDUSTRIES, TYLER, TEXAS

100 years ahead on product research and know-how.

THE WADE W-1520 packing house and industrial floor drain.
LCN
for modern door control

Details of installation for bracket-mounted "Smoothee" closer shown in photograph

Main features of the LCN 4010 Smoothee® Door Closer

1. Fully hydraulic, providing efficient, full rack-and-pinion control of the door
2. Easily adjustable general speed, latch speed and spring power (may be increased 50%)
3. Adjustable hydraulic back-check fully effective before 90 degrees of door opening
4. Available with hold-open or fusible link hold-open arm (90° to 180° opening)
5. Finished tan lacquer, statuary, aluminum or prime for painting to match trim; plated available

Full description on request or see Sweet's 1967, Sec. 166/Lc

LETTERS

continued from page 59

There certainly is no opposition to contemporary design. Take a look at the schools that have been built in New Canaan. And do you know of any community of comparable size that has as much good contemporary architecture among its homes?

Joseph E. Howland
Men's Garden Clubs of America
New Canaan, Connecticut

Do-it-yourself communication

Since my field is business communication, I write to commend your April editorial, "Current Architecture and Its Communication," as a lucid and forthright analysis of a perplexing problem.

In counseling corporate clients who seek to improve the public's understanding of their services, I often advise a do-it-yourself approach:

Each architectural firm has its own potential public relations spokesmen in its employees. If they have been properly informed and motivated, they can do much to improve the public's understanding of architecture via the surprisingly broad range of social and business contacts the average employee has.

Harold Knoll
Public Relations Counsel
Winona, Minnesota

Return to Sanity

We consider the rejection of Breuer's Design for the F.D.R. Memorial by the Fine Arts Commission of Washington a Return to Sanity.

The commission members should be commended for good judgment and courage.

Michal Kunic, Architect
Edward A. Alexander
Frank Ramella
Charles A. Miller
David Dart
Helen Halsim
Carol Watson
James R. Sweer
Francis J. Zokaites

Kind words department . . .

I am writing to say how pleased I am at the article on the three IBM office buildings in the April issue. I think that the handling of the photography and the text is very well done, and that you have made extremely clear the evolution and development of the architectural ideas that I was exploring. Incidentally, this is sure to be of very great and specific help in enabling me to carry out further studies along these lines.

Eliot Noyes
New Canaan, Connecticut

For more data, circle 37 on inquiry card.
That's why **I-LINE**® has side-mounted plugs

True, any busway can be mounted so that the plug-in units are on the sides where they are easy to install and operate. But if it is the kind of busway with a perforated housing for air circulation, you run into a derating problem. It's like paying for 2,000 ampere duct and getting only 1,600 amperes of usable capacity—and why pay for capacity you can't use (not to mention extra weight and bulk).

I-LINE busway—both feeder and plug-in—mounts in any position without derating. You can always have plug-in switches and breakers mounted on the sides, where they can be seen and reached easily. And centerline spacing between plugs is just two feet on each side.

There are other **I-LINE** advantages, too. Because it is totally enclosed, there's no chance of accidental contact with the bus bars. No foreign matter can accumulate inside. **I-LINE** duct has a one-bolt joint for fast installation. The joint bolt is always at ground potential and accessible for routine maintenance checks even while the busway is energized. It meets NEC vertical riser requirements without modification—no shields or barriers with their derating factors to worry about. Matching ends make feeder and plug-in runs completely compatible.

Want the complete story on safe, easy-to-use **I-LINE** busway? Your Square D field office or distributor has the details. Or write Square D Company, Department SA, Lexington, Kentucky 40505.
solution to a burning problem:

New Alsynite®/Structoglas®
UL-25 fiberglass reinforced building panels

- A UL flame spread rating of 25—which is classified noncombustible. Ideal for industrial skylighting, and side-wall construction...for any type of building which must meet codes specifying UL-25 flame spread rating, or where safety is of the utmost importance.
- Excellent light transmission. Provides soft, diffused light without heat and glare.
- High strength to weight ratio found only in fiberglass reinforced panels.

Specify new Alsynite/Structoglas UL-25 fiberglass reinforced translucent building panels.

Got a burning problem? Write or call for additional information.

Name ___________________________
Title ___________________________
Firm ___________________________
Address _________________________
City ____________________________ State ___________ Zip ___________

For more data, circle 39 on inquiry card
All 48 GE Econoglow™ luminaires offer four lowest-total-cost-of-light benefits.

The 48 Filterglow™ models go them one better.

All in all, you can choose from 96 new industrial lighting units for Lucalox™, mercury-vapor or Multi-Vapor™ lamps that keep lighting costs low under almost every plant condition.

Filterglow luminaires give you more of the light you pay for. The only air that enters this unit is cleaned first by an activated charcoal filter. Light levels stay high even in locations where dirt concentrations are high.

New ALGAS "reflectors help you get the most out of your lighting dollar. On all 96 Econoglow and Filterglow models, reflectors are precision-formed aluminum, chemically coated with a glass-like finish. They won't tarnish or discolor, so reflected light stays up as long as the luminaires do.

Increased visual comfort helps keep workers more efficient. Hard-on-the-eyes contrasts are eliminated by effective up-lighting. And brightness in the critical viewing zone is lower than with conventional reflectors.

Installation costs stay down; new units are a snap to put up. All luminaires are shipped assembled, with hardware, and ready to hang—without special tools. For conduit installation, a detachable cover supports the unit while connections are made. Factory-installed hooks make busway installation even faster.

For more data, circle 40 on inquiry card
With the first stroke COLORCOAT adds beauty, color, protection

COLORCOAT® By Sonneborn

Hydrocide Colorcoat and Super Colorcoat protect and waterproof masonry...give it a decorative flair...keep it looking that way for years.

For more data, circle 41 on inquiry card
Idaho State Hospital South,
Blackfoot, Idaho, C. A. Sundberg
and Associates, Architects;
Arrington Construction, General
Contractor.

Westminster Manor Apartments, 1400
Jackson Blvd., Austin, Texas. Eugene Wukash,
Architect; George A. Fuller Co., General Contractor;
Clay Newton, Painting Contractor.

Montclair State Teach
Chapin Hall Building
New Jersey, Guilbert
Architects; Joseph
General Co

U. S. Printing and Lithographing Co.,
10 W. Fourth St., Erie, Pa.
J. J. Graciano, General Contractor

Idaho State Hospital South,
Blackfoot, Idaho, C. A. Sundberg
and Associates, Architects;
Arrington Construction, General
Contractor.

Westminster Manor Apartments, 1400
Jackson Blvd., Austin, Texas. Eugene Wukash,
Architect; George A. Fuller Co., General Contractor;
Clay Newton, Painting Contractor.

Montclair State Teach
Chapin Hall Building
New Jersey, Guilbert
Architects; Joseph
General Co

U. S. Printing and Lithographing Co.,
10 W. Fourth St., Erie, Pa.
J. J. Graciano, General Contractor

colorcoat,
gives you these benefits!

The building owner or architect who specifies and uses Hydrocide Colorcoat or Super Colorcoat has a lot going for him. Take a look below, and you'll find some of the reasons why Colorcoat has been used for more than 17 years.

Rugged and Water Resistant—Colorcoat shields masonry from even the toughest weather. No flaking or peeling. Mildew and fungus resistant. Bridges hairline cracks, fills pores—cuts costly early repairs. Gives maximum above grade water-proofing—yet masonry is permitted to breathe. Vapor transmission rate: 3.5 grams per 100 square inches per 24 hours.

Economical—One coat covers most masonry surfaces. New color stabilizing agent absorbs Ultra Violet rays—keeps "sun-fading" to a minimum. You get long lasting color retention.

Ease of Handling—Apply with brush, roller or spray. Dries fast. Easy clean-up. Comes in handy 5 gallon pails.

Versatile—Use Colorcoat on concrete, stucco, block or brick. Fine for renovating older masonry. Imparts the look of new, precast, colored masonry units. Your choice of 27 decorator colors (including white).

For more detailed information call or write Sonneborn.
Wherever you travel, there are always one or two buildings that catch the eye. Buildings that maintain a look of ageless, permanent beauty—year after year. Most likely many of the ones you’ve admired are listed here. These are but a few of the thousands of buildings that have been beautified and protected with Colorcoat or Super Colorcoat. The one coat beauty of Colorcoat stays beautiful.

colorcoat and super colorcoat
brought long-lasting beauty
to these buildings!

This is to certify that the guarantee set forth below was issued on the date written above.

Sonneborn Building Products, Inc.

This warranty is non-transferable. Sonneborn shall have no other liability with respect thereto, including without limitation, any liability for indirect, consequential, or resultant damage. This warranty is void in the event of fraud. Sonneborn is not liable for any product not manufactured by Sonneborn.

Sonneborn Building Products, Inc.

Wherever you travel, there are always one or two buildings that catch the eye. Buildings that maintain a look of ageless, permanent beauty—year after year. Most likely many of the ones you’ve admired are listed here. These are but a few of the thousands of buildings that have been beautified and protected with Colorcoat or Super Colorcoat. The one coat beauty of Colorcoat stays beautiful.
COMPARE THESE TWO GUARANTEES

AN AVERAGE OR USUAL GUARANTEE
(It protects the manufacturer)

We certify that when properly installed and operated, this Unit will deliver the full power and the voltage and frequency regulation promised by its nameplate and published specifications. This plant has undergone several hours of running-in and testing under realistic load conditions, in accordance with procedures certified by an independent testing laboratory.

The Stewart & Stevenson GUARANTEE OF DUTY
(It protects the purchaser)

This Unit is capable of being operated on the Purchaser’s load; developing the needed, steady, and reliable power suitable for the successful operation of Purchaser’s machinery, up to the full rating of the Unit. Should the Unit fail to operate as specified, and after reasonable time, we cannot make it perform as specified, we are agreeable to removing it at our expense and refunding any money paid.

Why should you buy any emergency power unit that provides you with less protection than the Stewart & Stevenson GUARANTEE OF DUTY?

Of course, Stewart & Stevenson also provides the standard factory warranty against defective parts, workmanship or materials... as well as certified testing under realistic load conditions.

But, why should you risk the gamble of what happens if your unit does not perform as specified after installation? We don’t think you should.

We would like to tell you all the other advantages of Stewart & Stevenson Diesel, Gas or Turbine Powered Generator Sets. We have made more Diesel installations in more varied industries than any other engine distributor in the world. Write or call. A free booklet and catalog are available.

STEWART & STEVENSON SERVICES, INC. Main Office: 4516 Harrisburg Blvd., Houston, Texas 77011, Phone Capitol 5-5341

THE WORLD’S LARGEST DISTRIBUTOR OF DIESEL ENGINES

For more data, circle 42 on inquiry card
Convenient nurses' station in constant care area.

Hospital pharmacy with custom storage space includes working island unit.

To create an air of spaciousness and beauty, yet utilize every foot of space efficiently in your new hospital construction or remodeling project, call on the experience and talent of St. Charles. Our technical staff and versatile productive resources can solve every space and storage problem. St. Charles casework is custom-designed to fulfill your hospital's specific requirements for convenience, economy and easy maintenance—and equally important, to coordinate with your decorative theme. The excellence of design, craftsmanship and quality of materials assure the ultimate in lifelong satisfaction when you call on St. Charles.

HOSPITAL CASEWORK DIVISION
St. Charles Manufacturing Company, St. Charles, Illinois

30 YEARS OF LEADERSHIP IN CREATING CUSTOM CASEWORK
Write Dept. 200 for our "St. Charles Hospital Casework" Catalog.

ARCHITECTURAL RECORD June 1967
Only FLOATING FLOORS systems have 100% free underfloor access

and these 14 other advantages for computer rooms.

1. Greater strength—.080" deflection under 1,000 lb. load.
2. Unique design eliminates stringer interference.
3. Precision-made to .005" tolerance.
4. Self-grounding—no mechanical devices needed.
5. Positive locking pedestal head assures stability.
6. All panels completely interchangeable.
7. Fireproof—all metal.
8. Plastic edge recessed into panel—eliminates overhang.
9. Easy to install
10. Choice of two panel sizes—18 1/4" or 24".
11. One-piece tile covering, if desired.
12. 10-year guarantee on availability of replacement parts.
13. Local distribution assures reliable service.

Floating Floors, Inc. is part of the worldwide National Lead Company, a leader in metals and metal products for the past 75 years.

We invite you to compare Floating Floors raised flooring with all others. For further information on Floating Floors write today for detailed brochure.

FLOATING FLOORS is a trademark of Floating Floors, Inc., 111 Broadway, New York, N.Y. 10006, for raised flooring systems.

Guardian Pedestrian Bridges

...the answer

Guardian Pedestrian Bridges are the modern solution to pedestrian crossing problems. Guardian bridges carry the student, housewife, worker or hiker above the traffic or railroad tracks. Guardian eliminates the need for signal or guard, does away with traffic tie-ups or lengthy delays waiting for pedestrians to cross. Most important, Guardian Pedestrian Bridges work for the community or plant twenty-four hours a day—in any weather.

Guardian Engineering & Development Co.
Hammond & Gregg Sts., Carnegie, Pennsylvania 15106

For more data, circle 44 on inquiry card

SAVE ON HANDLING, RIGGING and SCHEDULING
IMMEDIATE DELIVERY • Constructed with Thick Wall Sections and

VESSELS & SHAPES
P. O. Box 84 - Village Station - Warren, Michigan 48091

For more data, circle 45 on inquiry card
This shower head has extra spray channels in non-corrosive, non-stick plungers. Beautifully by Speakman.

From needle spray to flood pattern, showering under Anystream provides more pleasure than ever before. Important new improvements include up to 33% more spray channels. This means a fuller and more even spray pattern. Just a flick of the lever handle and the channeled plungers move in or out . . . to give you any stream . . . invigorating needle . . . soothing gentle . . . normal rain . . . or full flood.

Another improvement. Anystream plungers are now made of black Lexan, General Electric's high temperature plastic. Lexan has extraordinary resistance to lime and other hard water deposits. Non-corrosive, non-stick plungers mean that Anystream will give better performance the day it's installed and throughout the years.

The difference in shower enjoyment is all in the head. And with Anystream what a difference. Beautifully designed and exceptionally engineered by Speakman. Why not let Speakman quality speak for you.

Anystream shower heads available with water-saving Autoflo as option.

Send for complete descriptive literature without obligation.
LPI's frameless diffuser has a frame. You can't see it, but it's there to provide the strength, safety, and convenience that no other frameless diffuser has.

You wouldn't know that the LPI frameless diffuser has a frame unless the diffuser door was open. Only then could you see the full-length metal frame that provides the positive hinging, latching, and seating that you just can't get from any all-plastic frameless diffuser.

Thanks to this hidden metal frame, an LPI frameless diffuser can never sag and cause unsightly light leaks. Nor is there any possibility of a plastic pin breaking and making it necessary to replace an entire diffuser door.

Maintenance is easier too. LPI frameless diffusers open and close easily and quickly and can be installed to work from either side. There's never any awkward maneuvering. And once the metal latch is locked, LPI frameless diffusers stay in place without any shifting; they can't fall out.

No metal mullions are visible when LPI frameless diffusers are installed in continuous rows. You can illuminate a hallway, a corridor, or any room with an unbroken path of light. You also get the exclusive LPI feature of metal light traps at each end of the luminaire.

LPI frameless diffusers are available to fit the entire line of LPI recessed troffers and surface units. In fact, they can be interchanged instantly with any LPI frame-style diffuser of the same type. No tools or adapters are required.

You can get LPI frameless diffusers with prismatic lenses in clear virgin polystyrene or acrylic. Write us or ask your LPI representative for a brochure which describes our frameless diffusers in detail.

For more data, circle 47 on inquiry card.
9 reasons why
Ruberoid vinyl asbestos meets all the floor requirements of your clients

1. **HIGH STYLE COLORS** in stone, chip, marble patterns. 12" x 12" tiles, ½" and ¾" gauges.

2. **PATTERNS** go all the way through. Milled down sample shows pattern at .025", .050", .075".

4. **RESISTS** grease, stains, fading, fire, commercial hazards. Stands up under heavy traffic.

5. **EASILY MAINTAINED** at low cost. Tight, hard surface is easy to clean, keep clean.

6. **LOW INITIAL COST.** Long service life makes annual cost per sq. foot unusually low.

7. **PROMPT DELIVERY** anywhere in U.S.A. through local distributors. Plants coast to coast.

8. **STREAMLINED**, modern plants carry on Ruberoid's 80-year reputation for responsibility.

9. **SAMPLERS** show the complete line of architectural tiles. Ask your Ruberoid representative.

For more information write

RUBEROID
FINE FLOORING

733 Third Avenue, New York, N.Y. 10017, Dept. AR-67

For more data, circle 48 on inquiry card
The number of extra people who can fit on an elevator with Otispace-Saver doors depends on the people.

Otis has found a way to save space between car and hoistway. This exclusive Otis engineering development gives you the option of extra car capacity—or extra rentable space in your building. It's standard with a VIP elevator installation. At no extra cost.
Over 500,000 sq. ft. of wall coatings based on Shell Epon® resin simplify maintenance at A&P food processing plant

High-gloss, seamless Ply-Tile coating, based on Epon resin, prevents penetration of contaminants, cleans easily and quickly. A&P chose these coatings in yellow, blue, green and ivory for this food processing facility.

Durable, high-gloss coatings resist stains, clean easily in A&P’s huge new Ann Page Division plant.

When A&P needed wall coatings for its new Horseheads, N.Y. food processing center, it chose M.A.B. Ply-Tile® based on Shell Epon resin. Reason: the stain resistance, impermeability, toughness and attractive appearance of these coatings. Applied a year ago over cinder block and poured concrete, A&P finds them easy to maintain and remarkably resistant to tough service conditions.

Cost-saving durability

A&P packages and processes mustard, relishes, jelly, vinegar and ammonia and many other products at this plant. Ply-Tile coatings withstand exposure to oils and chemicals from these products, without discoloration or failure. They also stand up to high temperatures and moisture without softening or cracking.

Maintenance is easy

Ply-Tile coatings form a seamless, glossy surface that is impervious to contamination. Thus, the walls can be cleaned easily and quickly.

Coatings applied in 3 steps

1. First, an acrylic block filler was squeegeed onto base surfaces.
2. An Epon resin-based primer was applied.
3. A high-solids coating based on Epon resin (12 mils thick) formed the outer surface.

Is there an idea here for you?

Almost any building can benefit from the durability, easy maintenance and good looks of coatings based on Shell Epon resin.

Mail the coupon if you would like to have a supplier of these cost-saving materials contact you. Please state the use you have in mind.

For more data, circle 49 on inquiry card
Time-defying Eljer plumbingware chosen for new state office building in Pennsylvania

Decades from now, the plumbing fixtures inside this recently completed building in Harrisburg, Pennsylvania, will look and perform like they did the day they were installed. That's because they bear the name Eljer, whose Master Crafting builds quality plumbingware. And whose design refuses to be outdated by the calendar.

No wonder more and more architects think Eljer when they think plumbingware. Too, they know that Eljer's full-line availability assures their client on-schedule delivery.

For all the facts, call your Eljer representative. Or write:
Eljer, Dept. AR 7, P.O. Box 836, Pittsburgh, Pa. 15230.

Recently completed, this magnificent, 16-million-dollar, high-rise office building will provide offices for 4,500 employees of eight state departments.

Eljer Plumbingware Division, Wallace-Murray Corporation
Start with any room—in any building. Then select a Marlite Decorator Paneling with the touch that brings your interior plan to life. Wide choice? No one offers more than Marlite. Select from rich new textures, bold or muted colors, exciting patterns and designs.

Maintenance? Hardly worth mentioning. Marlite plastic-finished hardboard is the original wash-and-wear paneling. Its durable baked finish shrugs off heat, moisture, stains and dents—wipes clean with a damp cloth.

If you haven't seen Marlite's 1967 Decorator Paneling line, look in Sweet's File or write Marlite Division of Masonite Corporation, Dover, Ohio 44622.

1. TEXTURED WORMY CHESTNUT reproduces every surface detail of a rare, costly wood. You can feel the texture!
2. TEXTURED TAPESTRY captures the look and feel of hand-woven fabric.
3. TEXTURED TRAVERTINE duplicates the characteristic texture of Italian limestone.
4. TEXTURED LEATHER has all the masculine good looks of real cowhide.
5. RIVIERA TILE features a classic pattern in gold, set apart by score lines.
Give me a room with some guts

“Horse” Fitzgibbons doesn’t know much about interior design. But he knows what he needs in his room—tough furniture—the kind that can hold its own day after bruising day.

So give him new Simmons PACE, the dormitory furniture designed to take on the “Horses” for years to come, while providing all the comfort, room and practical working area a student needs.

PACE systems capitalize on every inch of floor space, often freeing up enough for additional rooms. The Wall-a-Bed® is a real space saver and features the famous Beautyrest mattress for full comfort and long-term durability.

Seven standard wardrobes can be used individually or in a variety of combinations. They can be assembled by unskilled laborers in minutes for a considerable savings in labor costs.

Available in Contemporary, Traditional or Elite styles, PACE cabinets, dressers, desks, bookcases and chairs are both functional and comfortable for the student. They’re tough, built to take abuse for years.

Simmons PACE represents true value for the school and freedom for the architect/designer.

Call your Simmons representative for full information, or write directly to us.
A complete line of advanced architectural hardware, including the Sargent Maximum Security System.

New Haven, Connecticut • Peterborough, Ontario
architects working on multi-family pro-
tects to be insured by the Federal Hous-
ing Administration will soon be able to
et day-by-day advice from the Federal Hous-
ing Administration’s district offices.

To speed up the paperwork and cut
ed tape, FHA has devised the “Accelerated
Multifamily Processing” (AMP) system, now being tested in four FHA
istrict Offices.

One element of the AMP system is
ew method of working out final ar-
titectural approval. It is hoped that the
MP system will generate personal and
quent communication between FHA’s
ersonnel and the architect, cutting
own the waiting period now imposed
ile the architect prepares his plans,
ly to have FHA question details be-ore granting approval.

“We hope to avoid shuffling plans
ack and forth between our local of-
ces and the architect,” says Charles
ieman, assistant FHA commissioner for
echnical standards.

Minimum property standards
so revised to speed processing
proved liaison with the architect
hourthrough the design stage is only one
f several steps proposed by the AMP
ystem. Other steps include:
• FHA’s Minimum Property Stan-
dards (MPS) will now have the new status
f “official guides,” to be used as flexibly
possible.
• Architects will be encouraged to
ention alternatives in product specifi-
ations. Intent is to do away with change
ders. “At least we want to hold them
to a minimum,” says Dieman.
• FHA will begin estimating costs
square-foot basis rather than by de-
tailed quantity survey.

This permits the sponsor and FHA
to gather information needed to assess
project’s feasibility before the architect
is commissioned.

MPS relaxation
spreads to multi-family projects
The Federal Housing Administration will
soon relax its Minimum Property Stan-
dards for multi-family projects financed
through the partially-subsidized pro-
grams of 221d3 and 221d4.

Objective of the new standards is
ower cost, since many “d3” sponsors
nd architects have had a problem in
bring the design in under the maxi-
mum mortgage amounts permitted for
subsidized housing.

FHA will not be distributing the new
standards to its field offices until June
or July, however. (Printing the new regu-
lations will take at least that long, FHA
 anticipate).

Here’s a quick rundown of some of
the more significant changes: up to a 50
per cent reduction in the ratio of auto
parking spaces to units; the allowable
distance from parking space to unit en-
trance lengthened from 100 feet to 250
feet; deletion of the 8-foot planting strip
between parallel parking bays; widths of
parking spaces reduced; somewhat
smaller room sizes—for instance, in
one-bedroom units: living rooms may be

reduced from 160 to 140 square feet;
dining from 100 to 80 square feet;
kitchen from 60 to 50 square feet; com-
bined living-dining-kitchen, from 270 to
230 square feet.

Elevator requirements have been re-
laxed a bit. For instance, one elevator
instead of two is permitted in a seven-
or eight-story project if there are only
five units per floor. Required elevator
speeds have been reduced somewhat
according to a new formula worked out
with elevator representatives.

Perhaps the most controversial, from
an engineering standpoint, is the change
in heating plant requirements. For pro-
jects with 60 units or more, each of the
two cross-connected boilers must carry
only 50 per cent of design load rather
than 70 per cent.

These changes resulted from a study
undertaken by Arnold Kronstadt, Wash-
ington consulting engineer, for the Na-
tional Association of Home Builders.
Kronstadt felt, for instance, that the
change in boiler systems represents a
major cost savings, although FHA and
some of its consultants disagree.

In the process of reviewing its multi-
family MPS with NAHB, FHA discovered
certain changes could be made for all
multifamily programs, not just the sub-
sidized ones.

Thus, FHA is also going to make
these changes in its MPS in the next few
months:
• Revision of the yard set-back for-
mula to account for varying weights and
depths of the building.
• Open risers on public stairways
for two- and three-story buildings.
• Travel distance from unit to stairs
has been increased to 100 feet for all
types of buildings.
After months of study and consultation with all parties concerned, the General Accounting Office, reporting to Congress in April, expressed the opinion that the procurement of the services of architect and engineering firms is and should be subject to competitive negotiation (instead of by negotiation with a single company) in order to procure the most acceptable technical or design proposals.

GAO also expressed the view that statutory requirements for the submission of cost or pricing data prior to the award of negotiated contracts apply to architect-engineer contracts.

GAO's report recommended that:
1) the present statutory 6 percent limitations imposed on architect-engineer fees be repealed; 2) Congress clarify its intent as to whether the competitive negotiation requirements of the Federal Public Law 87-653 are to apply to the procurement of architect-engineer services; 3) in the absence of clarification of Congressional interest, the Department of Defense should appropriately revise the Armed Services Procurement Regulations to reflect a proper implementation of Public Law 87-653; and 4) the General Services Administration also should similarly revise the Federal Procurement Regulations.

The views and comments of architectural and engineering societies were incorporated into the report.

Professional committee formed to study GAO report
A committee was formed by six architectural and engineering professional societies to consider their position relative to the recent General Accounting Office Report to the Congress on statutory and regulatory requirements relating to architect-engineer fees and contracting procedures.

The new group, to be known as the Committee on Federal Procurement of A-E Services, includes representatives of the American Institute of Architects, American Institute of Consulting Engineers, American Road Builders Association, American Society of Civil Engineers, Consulting Engineers Council, and National Society of Professional Engineers.

Richard H. Taitlow, III, president-elect of ASCE, was elected chairman of the group. Samuel A. Bogen, president-elect of CEC, and Philip A. Hutchinson, Jr., AIA's director of governmental affairs, were elected vice chairman and secretary, respectively. Other committee members are: David N. Yerkes, FAIA; Richard Walker, AICE; A. W. Banister, NSPE; and Gerald T. McCarthy, ARBA.

GAO urges Congress to change A-E contract fees

GAO found that many of the changes could have been incorporated in the basic contracts, thus avoiding the disadvantages inherent in contract changes; and it was pointed out in a report that many of the changes result from the piecemeal mode of appropriation and the multiple, assertive occupancy which also maintained some control of appropriations.

Fees paid to the construction architects (Harbeson, Hough, Livingston & Larson) were significantly more than would have been allowed by GSA, according to GAO. It was pointed out, however, that GSA fees, while lower in nominal percent, make separate appropriations to cover program and schematic development, separate contracts and bid documents for various stages of the work, travel expenses, and other items of expense to the architect which were not expected to be absorbed by the 5 1/2 percent Rayburn fee.

It was further maintained by GAO that the lump-sum contract for landscape architectural services was not the appropriate type of contract in the circumstances existing at the time, and may have been more costly than was necessary under standard procedures.

The unusual circumstances of the Rayburn Building contract and those certain atypical NASA contracts with A-E firms may have brought the whole problem of inconstancy in government A-E relations to the attention of GAO, which, after all, has only the problem of approving bills for payment with context of the intent of Congress.

Architect-manufacturer communications advanced

The perennial search for improved communication between architects and manufacturers has been stimulating activity from both the architects' and the producers' side of the business. Two architectural firms recently announced a professional advisory service to manufacturers in the design and development of product lines, and the promotion of new material. Robert Martin Engelbrecht and Associates of Princeton, New Jersey have established such a service for manufacturers of basic building materials and equipment, while in New York the new firm of Morris, Salisbury and Cather—combining the talents of E. B. (Ted) Morris, A.I.A., Salisbury Associates, an architectural firm which has made something of a specialty of manufacturers' product literature, and Michel-Cather, industrial advertising consultant—is setting out to provide "an architect-oriented approach to the marketing of architectural building products." A recently completed brochure on the architectural uses of copper is a notable example of the work of the Salisbury firm for the Copper Development Association, Inc., of New York.

Architects support product literature and sales training developments

The second Construction Industry Advertising and Product Literature Conference will be held at the Drake Hotel, Chicago, from October 23-24. Sponsored jointly by the American Institute of Architects, the Consulting Engineers Council, the National Association of Home Builders, the National Lumber and Building Materials Dealers Association, the Producers Council and Sweet's Construction Catalog Services, the Conference will concentrate on raising the standard of trade literature for the building industry. With this in mind, the competition for trade literature will be biennially in future to give manufacturers more time to produce literature "that is new, timely, and in keeping with the needs of the design professionals."

The Producers Council's first Architectural Sales Representatives Institute, held at the University of Colorado in March, was such a success that two additional meetings have been scheduled during 1967—one at Pratt Institute, New York from June 13-16, and another at the University of Cincinnati, Ohio in October of this year.

82 ARCHITECTURAL RECORD June 1967
actors shaping the future for architects

Consider how the market for the services the architect has expanded during the last two decades. The total value of construction work done annually has grown steadily from about $20 billion in 1947 to the present $75 billion. And within this growth market, some of the hottest components have been those traditionally the architect’s bread and butter; commercial and industrial buildings, schools, hospitals, and apartments. Within these areas, the proportion of architect-engineer planned structures has increased.

It’s a pretty safe bet that we can rely on the basic growth of the economy to provide a continuously expanding total construction market. But just because the total construction market will be expanding, it doesn’t follow that the designer of buildings’ work, as we now it today, will increase in direct proportion. Some of the important factors in shaping future demand are:

Business capital formation: One of the areas of fastest architectural expansion during the Sixties has been business-related construction. Since 1961, the contact value of industrial and commercial building projects has grown half-again as fast as that of other architectural building types, and twice as fast as total construction work.

It must be recognized, though, that this surge of business-related building was one aspect of the strongest capital spending boom in our history, spanning the cyclical swing from the ‘61 recession low to what now may well be the peak, or close to it. We cannot, therefore, expect sustained long-term growth in industrial and commercial building at anything like the 11% average yearly expansion that has taken place in the extraordinary Sixties.

Institutional shift: For the first time in about twenty years, we are catching up with the backlog of needs for elementary and secondary school facilities, and will soon be in balance as far as higher educational needs are concerned. In the Seventies, then, educational building will be a less rapidly growing market for architectural services than it was in the Fifties and early Sixties. However, some of the slack here is likely to be taken up by further expansion in hospital and health facilities, and greater emphasis on various kinds of recreational projects.

Urbanization: Some of the important ways in which coming urban squeeze will alter the architectural market are: (1) The proportion of apartments to single family homes will increase further. (2) More emphasis will be put on rehabilitating existing structures of all kinds. (3) The planning function itself has already become much more highly developed, and will get more so, involving not just projects but whole communities and even regions; not just structures, but all facilities. (4) More resources will go into nonbuilding construction as the problems of water supply, air and water pollution, and mass transit become more acute with population density. (5) Government will become more and more involved with the planning and financing of construction.

During the ‘50’s and ‘60’s, a ‘designer of buildings’ had no difficulty finding all the work he could handle. But unfolding trends suggest that this may not always be the case. To make the most of the markets of the ‘70’s and ‘80’s, the architect will have to redefine his role in much broader terms.

Building activity: monthly contract tabulations

<table>
<thead>
<tr>
<th>J F M A M J J A S O N D</th>
<th>(\text{$(BILLIONS)$})</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENTIAL BUILDING</td>
<td>1,1,1,1,1,1,1,1,1</td>
</tr>
<tr>
<td>NONRESIDENTIAL BUILDING</td>
<td>1,1,1,1,1,1,1,1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J F M A M J J A S O N D</th>
<th>(\text{$(BILLIONS)$})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL BUILDING</td>
<td>1,1,1,1,1,1,1,1,1</td>
</tr>
</tbody>
</table>
Masterpiece in All-Electric Design

THE JOHN F. KENNEDY CENTER
FOR THE PERFORMING ARTS, WASHINGTON, D.C.

to be completed in 1969

Architect: Edward Durell Stone
Structural engineers: Severud-Perrone-Fischer, Sturm-Conlin-Bandel Associates
Mechanical and electrical engineers: Syska and Hennessy, Inc.
This theater complex for the performing arts—which will house two theaters, an opera-ballet house and a concert hall—will be served by a single source of energy, electricity. For heating and cooling. And for all other functions requiring power. As a result of this All-Electric design, planners anticipate a substantial reduction in owning and operating costs.

LIVE BETTER ELECTRICALLY
Edison Electric Institute
750 Third Avenue, New York, N.Y. 10017

For more data, circle 54 on inquiry card
Provide that slope...at lower cost...with more efficient insulation...and greater design freedom! Specify PERMALITE Perlite Aggregate concrete, poured in place with a slope to drain on a level roof deck! For a new slant on getting water off your roof as you insulate, call your local Permalite man, see Sweet's or write for Bulletin G-3. GREFCO, Inc./Building Products Division, 630 Shatto Place, Los Angeles, California 90005.

Permalite

The Mining and Minerals Group of General Refractories Company

For more data, circle 55 on inquiry card
Bid alternates: gain or loss for architects?

The architect frequently utilizes bid alternates to provide flexibility in achieving a total contract cost. Yet he generally receives less value for his building dollar achieving this flexibility. In other words, a contract involving alternates will cost more than a contract for the same features packaged in an all-inclusive base bid.

Alternates give flexibility at not equivalent values

On the other hand, the use of alternates is a strategy frequently employed when:

The architect wishes to evaluate an unusual design feature, a new product, or an extraordinary technique in the local construction market without committing firmly to the project.

Confidence in the architect's estimate in the stability of the bidding market weak, and the value of the basic project scope is not accurately established.

The architect fears that his basic project scope will cost more than the funds available, and hopes to reduce its cost without redesign.

A project scope other than that represented by the contract documents is desired, and the architect chooses not to redraw the documents.

The penalties of re-bid are onerous, when project completion time is essential, funding considerations demand an immediate award, etc.

Alternate construction elements must be provided because the corresponding elements in the base bid are proprietary.

Alternates can be rationalized—but they can be overcome

On the surface the foregoing seem to be reasonable motives for employing bid alternates. And, insofar as the intended goals can be achieved without causing off-setting difficulties, the use of bid alternates is justified. Unfortunately, alternates are used far too widely. In many agencies they become the rule rather than the exception, and are frequently used where few advantages accrue.

Contractors resent extra pricing, mistrust motives behind alternates

Potential difficulties arise initially because contractors dislike the use of alternates. They resent the additional estimating expense involved in pricing. This burden would be unnecessary, they believe, if the architect did his job properly—i.e., designed a building within the project budget.

An even more important and far-reaching concern of contractors is that an array of bid alternates may provide the means for the owner or architect to select a favored bidder from a competitive group.

For example, consider the following language from typical specifications:

"The contract will be awarded to the lowest responsible and reliable bidder for the base bid, plus or minus the cost differences of such alternate material as may be selected by the State Architect."

Or: "The Government reserves the right to make award to the bidder whose aggregate bid on any combination of aggregate bid schedules is low."

It is clear that if competition is stiff for a project bid under either of these specifications, and if a number of alternates is indicated, there may be several low bidders, one each for different combinations of base bid and alternates. The temptation to choose a combination which favors the low bid of a "cooperative" contractor will surely arise if other conditions permit such a choice.

When contractors get cagey competitive bidding is impaired

In a sense, the very idea of more than one low bidder for a given project is slightly absurd. Competitive bidding is essentially an exercise of strategy. The contractor must give serious consideration to the probable behavior of his competitors. This becomes most difficult for a contractor faced with the possibility of being low for the base bid but not for the "chosen" package of alternates. One might reply that the solution lies in computing the alternates in precisely the manner used in figuring the base bid.

In such a case, the low contractor for one would be low for all.

But this argument does not hold up for two reasons: It ignores the strategic aspects of bidding. Contractors, to be successful, simply must consider what their competition will do. With a long list of alternates, a new element is added. They must now ask, "What will the architect do?" and "What alternates represent work most desired by the owner?"

Furthermore, alternates are not estimated or priced by a contractor in the same manner as a base bid package. The usual routine of pulling together prices from subcontractors and suppliers for a single lump sum bid doesn't work for bids which include multiple alternates.

Eliminating alternates at bid time is not the real answer

Some architects and some public agencies, recognizing the inequities in the practice outlined above, use alternates as means to adjust a bid price, but not to assist in the selection of a low bidder. The specification requirements then call for award to be made to the low responsible bidder for the base bid alone. The architect may then select such alternates as he wishes to contract for from the proposal of the low bidder. Unfortunately this remedy is often as painful as the disease it is meant to cure.

Value of building dollar for alternates is too low

If a contractor is chosen on the basis of his low bid for the base package alone, without regard to the prices proposed for the alternates, he is not compelled to quote reasonably for the alternates.

In the absence of these strategic considerations, contractors tend to price additive alternates somewhat higher, and deductive alternates somewhat lower than fair value for the work to be performed, for several reasons.

First of all, it would be foolish to do otherwise. Since strategic considerations always lead to trimming bids rather than expanding them, the additive alternate bid in the absence of competitive pressures will be higher.

Secondly, the burdens of pricing multiple alternates are such that many suppliers or subcontractors cannot or will not quote accurately and responsibly to the general contractor. Thus while the general contractor may have an excellent firm quote from a subcontractor for the base bid, he may not have reliable in-
Too many alternates may discourage competitive effort
Perhaps the most destructive effect of bids which involve alternates is that they often discourage keen competitive effort among contractors even for the work involved in the base bid. Faced with more projects than he can find time to estimate, a contractor will often pass up those with burdensome alternate provisions. If he does bid, it may be a "courtesy" gesture which does not in any way reflect his best efforts.

Some contractors view multiple alternate contracts as an admission that the architect doesn't know his business. At best the presence of alternates relieves the architect's doubts about the relationship between expected bids and the project budget.

And yet, minimizing risk on a project where there is an element of uncertainty about the outcome may sometimes be necessary. At the race track this known as "hedging a bet" and, as gambling, it must be recognized that lessening the odds against failure in this way is accomplished only by compromising the possible gains. In other words don't load the specs with alternates.

European methods for controlling the construction cycle

Anyone, from the architect to the unskilled laborer, whose livelihood is dependent on the rate of construction activity, is quite aware of the economic fluctuations that characterize this unique industry. These cyclical and seasonal swings may be inevitable but the experience of other advanced nations suggests that remedies do exist.

Government policies a major force in shaping industry growth
The extent to which this policy can affect the rate of construction either directly or indirectly is quite evident. For construction, as for the rest of the economy, the goal of fiscal and monetary policy is the achievement of economic growth with full employment and stable prices. Yet it often seems that policies undertaken in the interests of the general economy are not always in the best interests of the construction industry.

Tight money policy restricts construction excessively
For example, a restrictive monetary policy may help limit inflation but—as has been well demonstrated may—disproportionately affect residential and commercial construction. Direct government action through increased public building programs may coincide with increased private construction that has been indirectly stimulated by government policy. The result can be an inflated construction market with cost excesses, labor and material shortages. Many European countries, on the other hand, have found that measures designed to dampen severe fluctuations in construction activity are compatible with over-all economic policy.

Construction permits or licenses restrict inflation, spread work
One widely used method is the system of issuing construction licenses, which are simply permits to build. If the government feels that construction is progressing at too rapid a pace so as to create inflationary cost increases, labor shortages, and materials scarcities, then they simply restrict the amount of building permits issued. This method is practiced in England, Sweden, the Netherlands, and Switzerland. It is by no means a complete answer. For while it is effective in slowing down the rate of construction activity, it does not effectively work to stimulate it. Merely issuing more permits does not guarantee a greater rate of building without some other incentive.

Tax rebates promote building when it is needed
Because of this, these countries employ various means to stimulate construction. To increase private building, various forms of tax rebates are offered. There is, however, an essential difference between this method and incentives offered in the United States. For example, the United States will influence construction activity by such means as the re-establishment of the 7 per cent investment credit, and accelerated rates of depreciation. This policy, however, is directed toward influencing the level of general economic activity and not specifically toward construction. The short- and long-run impact on the rate of construction activity is not the sole consideration.

The method of tax rebates, on the other hand, is designed to stimulate private investment specifically in construction, when there is a lag. And as another method of restraint, Sweden assesses tax penalties on those companies that undertake construction during periods of excess activity.

Having public building plans in reserve cuts lead time
Public construction in the European countries is increased through government policies similar to those employed by the United States. But it is more than a mere increase in the amount of public projects. Both Sweden and the Netherlands maintain a reserve of plans for various public projects. As a result construction can be started almost once the situation demands. This eliminates the long lead time that occurs in most projects.

Northern countries focus on winter slumps
Some countries have developed unique schemes to soften seasonal fluctuations. As might be suspected, they are primarily northern countries: Canada, Denmark, Germany, and Sweden. As in the northern part of the United States, construction tends to drop off sharply during the winter months. This situation is a perennial problem in the U.S., creates severe unemployment problems. Sweden encourages winter construction with its system of licensing. In preference to this method, Canada subsidizes buyers whose homes are completed during the four winter months.

Germany, on the other hand, offers subsidies to builders during the winter months. This has had a remarkable effect on seasonal unemployment, which has been reduced from over 300,000 to under 50,000 in six years.

All of these systems encourage mechanization, the use of prefabricated and new materials, and have encouraged technical improvements and research to make winter operations more profitable, U.S. constructors please note.

Government programs are a major force in determining the trends of future construction activity—in both the public and private sectors. The goal of over-all economic policy is stable growth and toward this end the unique problems of the construction industry cannot be ignored.
INDEXES AND INDICATORS
William H. Edgerton
Manager-Editor, Dow Building Cost Calculator, F. W. Dodge Service

BUILDING COSTS

HISTORICAL BUILDING COST INDEXES—AVERAGE OF ALL BUILDING TYPES, 21 CITIES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Average</td>
<td>213.5</td>
<td>259.3</td>
<td>264.6</td>
<td>266.8</td>
<td>273.4</td>
<td>279.3</td>
<td>284.9</td>
</tr>
<tr>
<td>Atlanta</td>
<td>223.5</td>
<td>289.0</td>
<td>294.7</td>
<td>298.2</td>
<td>305.7</td>
<td>313.7</td>
<td>321.5</td>
</tr>
<tr>
<td>Baltimore</td>
<td>213.3</td>
<td>277.5</td>
<td>286.9</td>
<td>297.8</td>
<td>305.5</td>
<td>308.6</td>
<td>302.7</td>
</tr>
<tr>
<td>Birmingham</td>
<td>208.1</td>
<td>240.2</td>
<td>249.9</td>
<td>250.0</td>
<td>256.3</td>
<td>260.9</td>
<td>263.6</td>
</tr>
<tr>
<td>Boston</td>
<td>199.0</td>
<td>232.8</td>
<td>237.5</td>
<td>239.8</td>
<td>244.1</td>
<td>252.1</td>
<td>257.8</td>
</tr>
<tr>
<td>Chicago</td>
<td>231.2</td>
<td>284.2</td>
<td>289.9</td>
<td>292.0</td>
<td>301.0</td>
<td>306.6</td>
<td>311.7</td>
</tr>
<tr>
<td>Cleveland</td>
<td>207.7</td>
<td>255.0</td>
<td>257.6</td>
<td>258.8</td>
<td>263.9</td>
<td>269.5</td>
<td>274.0</td>
</tr>
<tr>
<td>Dallas</td>
<td>211.9</td>
<td>239.9</td>
<td>244.7</td>
<td>246.9</td>
<td>253.0</td>
<td>256.4</td>
<td>260.8</td>
</tr>
<tr>
<td>Denver</td>
<td>211.8</td>
<td>257.9</td>
<td>270.9</td>
<td>274.9</td>
<td>282.5</td>
<td>287.3</td>
<td>294.0</td>
</tr>
<tr>
<td>Detroit</td>
<td>197.8</td>
<td>239.9</td>
<td>246.4</td>
<td>250.9</td>
<td>256.9</td>
<td>257.3</td>
<td>260.0</td>
</tr>
<tr>
<td>Kansas City</td>
<td>213.3</td>
<td>237.1</td>
<td>237.3</td>
<td>240.1</td>
<td>247.8</td>
<td>259.5</td>
<td>256.4</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>210.3</td>
<td>263.0</td>
<td>274.3</td>
<td>276.3</td>
<td>282.5</td>
<td>288.2</td>
<td>297.1</td>
</tr>
<tr>
<td>Miami</td>
<td>199.4</td>
<td>256.5</td>
<td>259.1</td>
<td>260.3</td>
<td>269.3</td>
<td>274.4</td>
<td>277.5</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>213.5</td>
<td>260.0</td>
<td>267.9</td>
<td>269.0</td>
<td>275.3</td>
<td>282.4</td>
<td>280.0</td>
</tr>
<tr>
<td>New Orleans</td>
<td>207.1</td>
<td>242.3</td>
<td>244.7</td>
<td>245.1</td>
<td>248.3</td>
<td>249.9</td>
<td>256.3</td>
</tr>
<tr>
<td>New York</td>
<td>207.4</td>
<td>265.4</td>
<td>270.8</td>
<td>276.0</td>
<td>282.3</td>
<td>289.4</td>
<td>297.1</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>228.3</td>
<td>262.8</td>
<td>265.4</td>
<td>265.2</td>
<td>272.2</td>
<td>275.2</td>
<td>280.8</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>204.0</td>
<td>243.5</td>
<td>250.9</td>
<td>251.8</td>
<td>258.2</td>
<td>263.8</td>
<td>267.0</td>
</tr>
<tr>
<td>St. Louis</td>
<td>213.1</td>
<td>251.9</td>
<td>256.9</td>
<td>255.4</td>
<td>263.4</td>
<td>272.1</td>
<td>280.9</td>
</tr>
<tr>
<td>San Francisco</td>
<td>266.4</td>
<td>327.5</td>
<td>337.4</td>
<td>343.3</td>
<td>352.4</td>
<td>365.4</td>
<td>368.6</td>
</tr>
<tr>
<td>Seattle</td>
<td>191.8</td>
<td>237.4</td>
<td>247.0</td>
<td>252.5</td>
<td>266.6</td>
<td>266.6</td>
<td>268.9</td>
</tr>
</tbody>
</table>

Costs in a given city for a certain period may be compared with costs in another period by dividing one index into the other; if the index for a city for one period (200.0) divided by the index for a second period (150.0) equals 133%, the costs in the one period are 33% higher than the costs in the other. Also, second period costs are 71% of the first period (150.0+200.0=250%) or they are 25% lower in the second period.

ARCHITECTURAL RECORD June 1967 89
Would you believe it? This expanded metal is lighter per foot and stronger per pound than the solid metal.
Drape Mesh 1½" Facade Castle Louvermesh

made from. Wrap it around a balcony; slap it up on a wall; divide a room with it; shape a patio; contemporize a

Have you written for our booklet about Architectural Mesh?

Wheeling For more data, circle 56 on inquiry card

Wheeling, West Virginia
When you sit down on a Stan-Sure* bathtub bottom, you do it on purpose

Look for the polka dots and you'll find an American-Standard bathtub that is not slippery when wet. Tests show our Stan-Sure bathtub bottoms are four times safer than conventional tub surfaces. Yet this slip-resistant finish is beautiful to look at, comfortable to sit on, cleans as easily as a regular tub surface. From now on, why not specify this safety feature for all the bathrooms you design? It's available on every American-Standard cast iron tub...fused right into the triple-thick enamel...costs only about $8 more. See your American-Standard representative for more information. Or write American-Standard, Plumbing and Heating Division, 40 West 40th Street, New York, N.Y. 10018.

For more data, circle 57 on inquiry card

*TRADEMARK AMERICAN STANDARD CORP.
. . . our uncommon profession"

A preparation for this talk today, I wrote 2 architectural firms, of varying size and access, and asked each the same question, "What is the single most important problem facing architects today?" Forty-five replies. That, in itself, is an electrifying return; but equally stimulating was the wide range and diversification of their replies. The "single, most important problem" turned out to be many most important problems: The architect as leader of the team, design, lack of trained and educated people, getting new business, urban renewal, the changing forces of society, storage and retrieval of information, effect of court cases on liability, fee scales of public agencies, the percentage fee system, lack of communication with clients, quality control, cost control, complexity of projects, lack of business acumen, a decent profit.

When I realized how important their replies were, and how limited my time was today, I inveigled IBM into letting me run a test on their newest, superlative computer. Into its gaping jaw I fed 41 replies, together with my request of the machine for an analysis and a brief summary of their views. Motors whirred, years meshed; memory drums rotated; finally, into its hot little mechanical hand, floated a small piece of paper with the cryptic message, "Are you kidding?"

Perhaps I am kidding myself with the belief that I can partially answer a few of the problems posed. I know that I have neither the time nor the sagacity to answer them all, but in the time available, I will touch on those most frequently nominated as of first importance.

Statement: "The single most important problem is design."

I am glad this was stated, because it allows me the opportunity of expressing my earnest conviction, that we architects will be set back 100 years unless we integrate the word "design" into architecture in a real way.

I must say immediately that if "architecture" may be said to be a precise profession, "design" must be designated as nearly the opposite. Design is a field in which a man may wander and gather as many nosegays of ideas as his fancy dictates. Architecture is the field in which the design concept must be translated into reality.

Actually architects today are sharply divided by two schools of thought. One believes design is all-important, an overriding influence, with construction costs and engineering function secondary. I cannot, and do not, subscribe to this.

The second school believes that while design is of great importance, it must be a partner in the total concept. It must be brought into focus with the total process architecture which includes design, fine arts, engineering, construction, and the economic elements of a project. To this I must, and do, subscribe.

My theme today is simply that we must never permit ourselves to be boxed in by the narrow viewpoint of the what-does-it-look-like school to whom the dictionary of design is the beginning and end of all architectural wisdom. Architecture is too big for such smallness. Today's world is too dynamic for such anmanor. It is one thing to indulge yourself in so-called "brutal design." It is quite another to have this brutality rub off onto the profession.

In the total team effort which the architect must lead—composed of designers, engineers, sculptors, painters, contractors, suppliers, real estate men, economists, and financiers—there is no room for prima donnas, for dilettante daydreamers, for eccentric ego maniacs. We are builders. We want to build. We want both the beautiful and the best.

How far the architect as a designer concept has failed in this total concept might be measured by the fact that in 1966, architects took part in only one-third of the $72-billion-worth of construction in the United States. The remaining two-thirds, or $48 billion, was done by package dealers, contractors, engineers, and by designers who possess poetic license, but not an architectural license. It is not difficult to pin down the responsibility for this, but, like a hot poker, nobody wants to grab it. What is the fundamental reason for this shocking lack of participation? I suspect it is because we have tended to forget our relatively humble beginnings.

The word architect, like many words derived from the Greek, is made up of two parts: archi—chief, and tekton—a builder. Thus, the original meaning of the word embraces a union of designing and building activities, a union which the architect maintained up to the middle of the 19th century. From that time on, he was thought of more as a designer than as a builder. Architecture became a fine art, and transferred form the outdoors to an inside atelier, where it has remained for nearly 100 years. Perhaps now it is time to go back outside for some fresh air.

Statement: "The single most important problem is the influence of recent court decisions on the practice of architecture."

There is, of course, no doubt that the judicial courts are having a profound effect on architecture, just as they are on our civilization. In the early days of the thirteen colonies, during the uncomplicated life of that day and age, the courts found it easy to say, "The law is clear, and therefore our decided is . . ." In the infinitely more complicated fabric of our life today, the courts find it increasingly more difficult to ferret out what must be called the "meaning of the law," and therefore say, "It is the 'opinion' of this court that . . ." But of great significance to us here today, are the effects of those recent court opinions with respect to the professional responsibility and liability of the architect.

Twelve years ago, I gave a talk before the California Council of Architects on "Cost Control." I said, in part, that the term "cost estimating" was as antiquated and unrealistic as the age-old phrase in our contracts, "the architect is not legally responsible for the accuracy of his cost estimates." I observed at that time that, while I recognized an architect was not legally responsible, he did, in my view, have a moral responsibility as great as or greater than a legal one.

In the intervening years, the courts have proved that I—and our time-honored phrase declaring legal responsibility—were wrong; that we, in fact, do have a legal position to fulfill. The most
recent, and most far-reaching court opinion, held that the drawings, as instruments of service, were worthless to the owner because the bids were so substantially above the agreed-upon budget that the owner could not make use of the drawings, and therefore, the owner was not obligated to pay the architect.

I think it is clear, therefore, that what we desperately need to do today is to embrace the concept of creative cost control. I use the word creative in connection with cost control because we should make the budget work for us, not against us. It is easy to be creative without a budget; it is infinitely more difficult, but equally rewarding, to be creative within the budget.

Once the creative concept is achieved within the framework of the budget, all the development work thereafter must be "controlled" as to cost. This means that both the architect and the client must be controlled. "Breathes there a client, with soul so dead, who has not unto an architect said, 'Well, as long as we are going this far, we may as well add ...'?" Our obligation is to say more than, "Yes;" we are professionally bound to say, "Yes, and it will add this specific amount to the budget."

It is not our responsibility to determine policy, but it is our responsibility to give the client accurate cost information on which he can base policy determination. The client is entitled to make his decision based on fact, not fancy—either his, or our own.

It follows that each time the architect accepts a commission, he puts the reputation of the profession on the line along with his own. Any embarrassment he causes himself through careless or incapable cost controls rubs off on all architects. Conversely, credit reflects on us all. In our uncommon profession, this is our common bond!

Statement: "The single most important problem is getting the architect to assume leadership of a team."

First, I cannot stress too strongly my conviction that in all of our activities, we are learning—to an ever-increasing extent—that the architect cannot be regarded solely as a "specialist." He must have, rather, a combination of special abilities which make him a "generalist," capable of coordinating the work of many specialists. Since architecture is a total process, the architect must accept total responsibility for this totality.

This does not suggest that the architect must be a universal genius, equally at home in all fields of knowledge. But this does mean that the word architect must be accepted as a parent word. The architect therefore, must be sympathetic to, and understand, the vast variety of disciplines and activities that go into the development of a total building concept. Otherwise, he is not entitled to be leader of the team.

If the architect is to face toward the future, he must be such a leader. And we do face a fantastic future. Witness these predictions by our CLA Research Division:

- By 1985, more than half of the people will live in cities not yet built. So for better or for worse, our nation's future will be decided in our cities.
- By the year 2,000, less than half a lifetime away, the U.S. population will be 350 million.
- By the middle of the 21st century, some of our present cities will be 100 times as large as they are now.
- By the middle of the 21st century, there will be a 20-hour work week—and the trend toward this will be the most influential factor in our lives.

We have to stretch our minds even to grasp remotely the momentous, the incredible impact of such changes upon our civilization, and therefore upon our architecture. Imagine what all this vast added income, and added leisure, will mean to the design of the future. Imagine what new concepts, products and procedures, must be created to meet the demands of such drastic variations in our industrial and commercial patterns—and in the total environment for the family.

There can be no hope of fulfilling this responsibility, except as the architect develops a cooperative meshing of the multi-faceted talents of his "team," and thereby proves his right to leadership.

It isn't easy! Witness the fact that Walter Gropius, one of the great masters, has, for most of his life, been a staunch supporter of the collaborative approach. He recently, and rather sadly, said: "...I have tried to give more incentive by developing a spirit of voluntary teamwork among groups of architects. But my idea has become almost suspect since so many of my colleagues are still wedded to the 19th-century idea that individual genius can only work in splendid isolation."

Dr. Gropius' determined concept of welding a collaborative team is not only applicable today, but research proves that it is rooted in the archives of history. About 425, Pope Paul III granted the following commission—"Master Michelangelo shall be authorized to direct the development of the Tomb of Julius II... he shall be authorized to entrust three of the six statues designed for this Tomb to good, esteemed and well selected masters... and the other three, among them the Moses, shall be by his own hand..."

The history of that day records that the Pope's Tomb was, in fact, the result of complete collaboration:

- lower story of architecture—by Antonio del Portasieve.
- upper story of architecture—by Urbino
- four Hermes—by Jacomino del Duca
- coat of arms of the Pope—by Donato Benti
- Sibyl and Prophet—by Montelupo
- Madonna—by Fancelli and Montelupo
- Pope's figure—by Bosco.

The guiding hand of this combination effort was that of the talented Michelangelo. Thus do the past and present converge and merge on the basic need for the combining of talent.

Statement: "The single most important problem is client communications."

Perhaps one of the reasons we have so much trouble communicating with our clients, lies in the fact that we architects have so much trouble communicating with each other! Not too long ago, I read an A.I.A. report on a symposium in which fifty practicing architects participated. The transcript makes strange reading, containing as it does an inspired imbalance; a weird combination of gobbledygook and intellectual incest.

Here are some of the pearls of wisdom emanating from that architecture seminar at Cranbrook:

First architect: "A great piece of architecture need not be an equally good solution of the client's problem, and the great architect's client should not tolerate some structural defects." (Note by CL: Let us pray for clients who can't read.)

Second architect: "This matter of the incomplete dynamic. I think this is a very important point; it was made, and it is something which I did not report this morning, but we have many topics which show quite clearly that the creative individual is attracted to the incomplete, that which is in imbalance, that which is complexly asymmetrical, just because it does not create tension. It isn't that he likes disorder, but the disorder challenges him to do something about it, and without this kind of incompleteness, one does not have the kind of enduring motivations which are so characteristic of the highly creative individual." (Note by CL: Reminds me of a sign on the window of a Miami delicatessen, which read: 'Kosher, Hungarian goulash, Dixie style.')

Third architect: "It's true not only of creative architects, but true of all highly creative groups that they come to sexual expression much later than some of the other groups we have studied. For example, we find quite retarded in comparison to Air Force officers. But the distinction should be made between the age of first intercourse and the kind of sexual vitality, if you will, that overlaps with a kind of psychological vitality; and I think that there is a great deal of this kind of vitality in these creative individuals. But I think there is a sense in which a great deal of their sexuality, or pregenital sexuality, to use a Freudian term, gets sublimated into their work. I think one may say that highly creative architects seem to be wedded to architecture..."

(Note by CL: As for me, I am queer for girls.)

If our clients, present or prospective, react to this kind of double talk, this kind of claptrap, this kind of hodgepodge—they must indeed pale at the prospect of having us spend their hard-earned dollars. Our world today is nervous enough, without this kind of thoughtless thinking adding to its sense of instability.

(continued next month)
VERSATILE BORDEN PRESSURE LOCKED GRATING

Borden’s Pressure Locked steel grating is used extensively as the flooring of the continuous balconies surrounding the new Washington, D. C. German Chancery building shown here. An integral part of the design of this striking 95,000 sq. ft. steel-and-wood-framed structure, the grating adds the practical advantages of sun shading, ease of window cleaning, and requires no maintenance.

Available in many subtypes, Borden’s Pressure Locked Type B, approved for all general purposes, was chosen for the above application. For complete information on this and other grating types, including Riveted and All/Weld in steel or aluminum, write for . . .

a free copy of
The 16-page Borden Grating Catalog

BORDEN METAL PRODUCTS CO.
MAIN OFFICE: 822 GREEN LANE, ELIZABETH, NEW JERSEY
* Elizabeth 2-6410
PLANTS AT: LEEDS, ALABAMA; UNION, NEW JERSEY; CONROE, TEXAS

When in New York City, see our exhibit at
Architects Samples, 161 Park Avenue

For more data, circle 58 on inquiry card
In this now famous building, GJ DOOR CONTROL was specified for every floor. This quality hardware can be depended upon to function through the years. GJ is always the SAFE specification.

CHICAGO CIVIC CENTER
Chicago, Illinois

C. F. MURPHY ASSOCIATES Architects
GUST K. NEWBERG CONSTRUCTION CO.
General Contractor

GLYNN-JOHNSON CORPORATION
4422 NORTH RAVENSWOOD AVE. / CHICAGO, ILLINOIS 60640

SEND FOR FREE DESCRIPTIVE LITERATURE

For more data, circle 59 on inquiry card

For more data, circle 60 on inquiry card
Instead of using structural steel like wood, as is customarily done, this design takes advantage of the tensile strength inherent in the material. A triangular lightweight-steel spaceframe spanning 250 feet is assembled on the ground and raised into position by hoists that are supported by tripods located at the three corners. The roof, constructed of typical steel channels and steel centering covered with lightweight insulating Zonolite concrete, is hung from the spaceframe. The glass and steel perimeter walls are suspended from and supported by cables.

The Elegant Solution

Zonolite® lightweight insulating concrete roof decks are in themselves elegant solutions, because they solve a multitude of problems with beautiful simplicity.

Weight: Zonolite insulating concrete has as little as 1/6th the weight of ordinary concrete.

Insulation: Specified insulation value can be obtained simply by varying the thickness.

Fire Ratings: Fire ratings can be obtained with a Zonolite lightweight insulating concrete roof deck system.

Flexibility: This concrete can be used with form boards, galvanized metal or structural decks.

Permanence: Won't rot or decompose, lasts the life of the building.

Drainage: Slopes for drainage as prescribed by the built-up roofing industry are easily and economically provided.

Economy: Because of the speed and ease of application, the original cost is remarkably low.

Application: It is certified to be as specified, by the Approved Zonolite Roof Deck Applicator and Zonolite Division, W. R. Grace & Co.

For more data, circle 74 on inquiry card
...costs down, with Reznor In-line Furnace. The handsome appliance finish of Reznor horizontal furnaces and their trim, modern design blends into any exposed overhead heating system...even stores and offices.

Forced-air furnace and matching blower cabinet are completely factory assembled with all necessary controls—ready to integrate into custom-designed built-up heating systems. Side panel lifts out for easy servicing of the burners and controls.

Patented Thermocore heat exchanger features unique venturi tube design to provide maximum heat transfer and keep thin ribbon of flame from touching metal. Aluminumized steel tubes proven in over 20 years of service. Both operating and maintenance costs are reduced to the minimum.

Here's a heating plant for the Econoseur...an economy expert who knows TRUE value! Capacity from 50 to 400,000 Btuh. For more facts write Reznor Operation, ITT Environmental Products Div., International Telephone and Telegraph Corporation, Mercer, Penna., Dept. F7-4.

For more data, circle 75 on inquiry card
The new, thin 319 slide packs the muscle to carry 150 pounds.

Grant’s 319. It has everything you need for drawers which must support very heavy loads. Requires but 1/2” side space. Provides full extension. 150 lb. load capacity. Part of the great Grant line. Get the facts today.

GRANT
PULLEY & HARDWARE CORPORATION
EASTERN DIVISION: 9 HIGH STREET, WEST NYACK, NEW YORK 10994
WESTERN DIVISION: 944 LONG BEACH AVE., LOS ANGELES, CALIF. 90021
For more data, circle 76 on inquiry card
ISN'T THIS WHAT YOU WANT?

PERMALITE SEALSKIN® Class 1 rated insulation laid to insure maximum protection against roofing rupture—utilizing conventional roofing techniques.

PERMALITE PELITE INSULATION BOARD is non-combustible, moisture-resistant, dimensionally-stable and utilizes conventional roofing techniques. Its thermal efficiency remains constant. Integrally-formed surface—called Sealskin—inures a uniform skin-tight bond of board to roofing membrane. Combine these features with the recommended staggered pattern of application and you have permanent insulation in a long-life, trouble-free installation. Here's why:

1. Checkerboard pattern produces long lines of cleavage that can rupture in both directions. Taping the joint adds to roofing labor without removing basic cause of trouble.

2. Brick pattern shortens length of insulation joints in one direction, but leaves long runs in opposite direction.

3. Staggered pattern results in shortest possible line of cleavage. Requires no extra labor or materials. Gives maximum protection against roofing rupture along insulation joints.

Permalite Sealskin Rigid Roof Insulation Board does everything you want insulation to do—and more.

PERMAPAK SYSTEM. The idea “package” for Class 1 construction. Provides three UL and FM listed materials for optimum thermal and vapor control: (1) Permalite Sealskin Insulation Board. (2) Permalite Perforative Vapor Barrier. (3) Permalite Adhesive. All available from source—GREFCO.

See your Permalite representative or consult Sweet's or write for literature and samples.

GREFCO Inc./Building Products
333 North Michigan Avenue
Chicago, Illinois 60601

The Mining and Mineral Products of General Refractories Co.
OUR ROOF?

Seal photos taken at Marineland of the Pacific, Los Angeles.

For more data, circle 77 on inquiry card.
Doll house doors may be a "tongue-in-cheek" exception to the exceptional things you can specify — and get — from Eggers Hardwood. Regardless of the kind of architectural door you want — from flush to specialty doors — Eggers will make it to your exact needs. For the exceptional in custom-crafted plywood paneling, specify Eggers Plywood. Write for your free catalog.

For more data, circle 78 on inquiry card
16,000 spectators hear everything they paid for at the new San Diego International Sports Arena. No matter where you sit, the giant hearing aid—an Altec speaker cluster suspended from the roof—projects crisp, intelligible sound.

Altec “Voice of the Theatre” speaker components make up the cluster to provide clarity of speech and realism for music at the multipurpose arena which converts from musical spectacles to rodeos on 12-hour notice. Through high power-handling capacity, electro-acoustical efficiency, and carefully controlled dispersion of sound, Altec covers the entire 60,000 sq. ft. arena from one central location. Feedback and dead spots, which are common to low-level, distributed speaker systems, are eliminated.

Modern, all-transistor Altec amplifiers and multi-channel control console are also part of this all-Altec sound system. Representing advanced applications of transistors in high quality audio circuits, the system assures reliability and minimal maintenance. It adds to spectator comfort within the total environment of this arena by eliminating the annoyance of poor sound.

Altec sound systems are installed and maintained by factory-trained authorized Altec Sound Contractors. You’ll find one listed in the “Yellow Pages” under “Sound Systems.” Please give him a call to discuss your sound project, present or pending. Or for further information, write Dept. AR-6.
Virtually every detail of this design provides graphic witness to the solidity and permanence of the occupying firm. Custom built aluminum windows by Hope’s set in deeply recessed precast openings, combine function and performance with appearance. Their elegant dark bronze Duranodic\(^*\) 300 finish, an integral, enduring oxide coating applied in Hope’s modern anodizing facilities, will be little affected by the passing of time. Rigid inspection and control through fabrication, processing, finishing and erection assures the quality and durability architects and contractors expect from Hope’s installations. Your inquiries are invited.

Trade name of Aluminum Company of America

Our catalogs are filed in Sweet’s Architectural File and our sales offices and representatives are located in principal cities.
Six 8' Excelux Units do the work of nine 8' School Fixtures!

THE NEW GUTH EXCELUX 800 . . . "goes to school" so economically it saves over $100.00 per room on equipment alone. It cuts annual operating costs at least 20%. And with White Louvers, Excelux meets the Scissors Curve. Ask for Bulletin No. 320. The Edwin F. Guth Company, P.O. Box 7079, St. Louis, Missouri 63141.

*and many other places

For more data, circle 81 on inquiry card
Do both heating and cooling jobs economically and efficiently with the new SC NELSON/aire cabinet unit. Install the units in one room at a time or in a complete wing at one time. This thin-profile, through-the-wall unit heats via central systems steam or hot water—or comes equipped with its own electric resistance coils. Whisper-quiet air conditioning is self-contained. A sealed refrigeration unit, available in 8,000, 12,000 and 15,000 BTU/hr. capacities, needs only the correct electrical source for immediate, plug-in cooling. It also features 20% fresh air ventilation. SC NELSON/aire may be installed initially for heating and ventilating only. Then, packaged refrigeration section can be added quickly, easily, at low cost when you're ready. Here's the ideal way to bring modern climate control to older rooms or build it into new ones. American Air Filter Company, Inc., 215 Central Avenue, Louisville, Kentucky 40208.
NELSON/aire
UNIT

S.C. NELSON/aire cabinet unit
(self-contained air conditioning) can be installed through the wall without disrupting service to surrounding areas. Complete assortment of temperature control packages helps you get the most from your fuel cost—in any installation. Unit is completely insulated and weather sealed. Slide-in refrigeration section is equipped with handles for easy maintenance. Two-speed operation with color coded pushbutton control. Choice of filters to fit any maintenance program—throwaway, renewable, permanent or removable. Pop-out front panels (optional) make filter changing fast and easy—for anybody. Decorator or standard models available in choice of colors. Cabinet top and sides are 16-gauge metal. Thin profile projects only 7½” into room. Fits any wall thickness.

OFFICE NOTES

NEW FIRMS, FIRM CHANGES

Robinson Neil Bass, A.I.A. has been joined by William Jackson Elliston, Jr., P.E. in a partnership to be called Bass, Elliston & Associates, Architects & Engineers to be located at 321 7th Avenue North, Nashville.

Julian Weldon Jenkins has joined the firm of S. David Boozer, Architect to form the new firm of Boozer, Jenkins, Architects, Inc. at 210 E. 12th St., Anniston, Alabama.

Burke Kober & Nicolas, a Los Angeles—San Francisco based architectural and engineering firm, has changed its name to Burke, Kober, Nicolas & Archuleta. Millard J. Archuleta has been a partner in the firm since 1961. The new firm has named five associates: E. A. Allen, Raymond L. Gamble, Marcia Kober, David W. Picard and Dan Powell.

Celli-Flynn announces the expansion of the partnership to include as associates Paul P. Rona, A.I.A., John R. Maue, P.E. and Mary E. Noel. The architectural, engineering and planning firm is located at 335 Shaw Ave., McKeesport, Pa.

Cushing Terrell Associates, architects, engineers and planners have named James H. LeBar, R. Wayne Berry and James A. Orr associates of the firm which is located at 1333 Airport Rd., in Billings, Montana.

Farnham, Peck Associates/Architects announces the association of James A. Grady, A.I.A. They are located at 124 Southwest Yamhill St., Portland, Ore.

John D. Tapking has joined the Los Angeles architectural, engineering and planning firm of Victor Gruen Associates as project director of their planning division.

Specify Pliolite based paints. The reasons are elementary.

Insist on masonry paint with a durable Pliolite® binder. And neither rain, snow, sleet, sun, salt, nor industrial fumes will ever cost your client a premature repaint job.

Pliolite synthetic resins are chemically inert. They resist alkalis in masonry that cause some paints to fail.

Paints based on Pliolite resins have proven their durability from the Norwegian subarctic to the Texas oil fields to a lighthouse in Maine. Our first test buildings are still going strong after 12 years on the Florida coast.

We'll say five years for most buildings under most conditions. That's about twice as long as latex. That's about half as many repaintings.

There is one thing you can do about the weather. Write for our directory of paints with Pliolite binders.

Goodyear, Chemical Data Center, Dept. F-84, Box 9115, Akron, Ohio 44305.
Chances are we already have the answer...

It comes from thousands of Bally prefab Walk-In Coolers and Freezers already in use. Installed in schools, hospitals, hotels and motels, food stores, bakeries, dairies, research laboratories... wherever the finest in refrigeration is required. Each time, the answers to problems come more easily because we keep perfecting our techniques and our product.

So ask us. No matter how difficult the problem. Ask us for details about handling every type of food... and special materials including drugs, blood plasma, epoxys, film, chemicals. Ask us about relative insulation efficiencies... how to plan special sizes or layouts... shelving... special doors or display windows. The answers come from our experience.

Answers from Bally are answers from the leader in the industry. The company that developed the use of 4" self-extinguishing urethane foam insulation equal to 8½" of fiberglass; the inventor of self-closing magnetically sealed doors; the company who designed the patented Speed-Lok that makes installation easy... makes it easy to add sections for size increase... equally easy to disassemble and relocate.

Our Engineering Department will be happy to work with you. For more information, send for free Architect's Fact File which includes a 32-page catalog and a sample of urethane.

See our catalog in Sweet's Architectural File, No. 23a/BaL.
Endowed by Nature.
The better homes in every neighborhood have WOOD WINDOWS

The best homes of all have Caradco Wood Casements. The natural superiority of wood assures low transfer of heat and sound for comfort and economy; psychological attraction; strength; decorative latitude. And casement style windows have unique design advantages. Exteriors appear clean and uncluttered because extra horizontal elements, like meeting rails, are eliminated.

Ventilation? 100% when casements are fully open. Caradco offers a big size range (including "hi-boys") for easy adaptation to most plans.

Caradco combines the essential advantages of wood casements with the outstanding construction features shown below. Specify Caradco Wood Casements for homes that merit the finest windows...endowed by Nature first, then bettered by Caradco.

From the manufacturers of creative building products

CARADCO, INC.
Dubuque, Iowa
Subsidiary: Caradco Eastern, Inc.
Pemberton, New Jersey

Caradco Windows and Patio Door products are further detailed in Sweets 19c and Canadian file 8wmm Car

For more data, circle 168 on inquiry card
After you've settled on the very best masonry wall reinforcement, what else could you ask for?

Perhaps you need specific technical data on special reinforcing problems. Let us know what they are. We have a qualified engineering staff to assist you. Versatility? Choose from a complete range of shapes and sizes. Prompt delivery? You get it with Dur-O-wal brand masonry wall reinforcement—our 11 strategically located plants supply over 8,000 dealers in the United States and Canada.
Three projects by Philip Johnson, each designed for a hill

Architect Johnson states that he would never place a building at the top of a hill—"the Parthenon is not at the highest point of the Acropolis, you know." He explains that placing a structure on top of a hill destroys the hill by denying its culmination, and that—in addition—a static and pompous composition results. He avers that the building should be placed on a shelf or platform near the apex—on the brow of the hill—"you need a platform to build upon anyway, and this is where it should be." These and further principles dealing with hillside design are set forth in more specific and detailed form in these 12 pages.

—James S. Hornbeck
The siting of the Kline biology tower was handled with great skill, so that its tall, strong form sets up a pleasing and effective relationship with the city, the bounding streets, and the hill it crowns. The purplish-red shaft makes a bold and handsome mark in the New Haven skyline, and seems to possess the right scale for its urban role. Placing the tower on a shelf just short of the crest of the hill, and off-center, creates a more than satisfactory termination for Hillhouse Avenue—as the large photo at right shows. Its placing has the further great virtue of maintaining the integrity of the crest of the hill by allowing it to remain unobstructed. The similar siting of Gibbs on the opposite brow of the hill made such a tower location possible.

The approaches from other directions offer a variety of experiences, of which the one from Whitney Avenue alongside Johnson's geology building and on up the steep slope past the end of Gibbs is the most compelling—it is pictured in the small photo at far right. From the north, the shaft rises interestingly above the earth berm forms of the tandem accelerator structure, emphasizing the way in which the tower serves to bring the entire center into visual focus. The latter prospect can be seen in the lower middle photo, which was taken before the early morning haze had burned off, with the result that the tower takes on a bluish cast. The color of the iron-spotted, glazed brick changes intriguingly through the day and with the seasons—an effect brought about, in large part, by the action of its reflective glazing.

PLAN LEGEND
1. PEBODY
2. GEOLOGY
3. UNDERGROUND POWER PLANT
4. SLOANE
5. GIBBS
6. STERLING
7. CHEMISTRY
8. ACCELERATOR
9. TANDEM ACCELERATOR
The 17-story tower reaches upward from the corner of an open-to-the-sky but enclosed courtyard at the crown of the hill, shown at right. The length of the courtyard runs north and south, to parallel the long dimensions of the Kline tower and nearby Gibbs, yet a strong counter-movement is set up by the 100-foot-wide brick platform leading to the tower entrance. There is access to and from this cloistered space at several points, so its pedestrians in motion will have different objectives, changing directions. The tower rising from a courtyard is characteristic of Yale, and in such purely symbolic terms the Kline acropolis seems appropriate to its milieu. The architect's intention was to create a very special kind of place at the top of the hill, and it is indeed that, although so strongly defined it tends, perhaps, to become a place apart.
A close-up and detail of the tower’s exterior can be seen at left; exhaust ducts for the lab hoods are housed within the drum-like columns. These bold uprights and the deep reveals set up a strong, three-dimensional pattern which is further enlivened by the extended, token-like spandrels. This is architect Johnson’s boldest building, and a very elegant one. The decision to use brick and Longmeadow stone was influenced by the surrounding buildings—except in the case of Gibbs, which appears uncomfortable among its suave neighbours. The palette of the tower is completely convincing in this context.

The biology library was placed underground so it could be expanded to meet future needs. Its entrance hall and stair extend through two stories; a reading lounge opens to a sunken court.
Reminiscent of an old-fashioned root cellar, architect Philip Johnson's art gallery is seemingly burrowed into a grassy slope, although in reality it is built upon a hillside shelf and buried by berms. This came about because Johnson is interested in the esthetics of earth mounds, because he did not want any outside distractions to interfere with the study of his collection, and because it is easy to maintain optimum temperature and humidity control in an underground space. Furthermore, the architect did not want another building within the carefully studied outdoor space of his New Canaan estate, the gallery's location. The interior space comprises three tangential circular areas, each containing a set of swinging panels for the display and storage of paintings. Sculpture and furniture are on casters, so the arrangement can readily be changed.

Philip Johnson explains that this gallery was constructed as a demonstration of one way in which the very real problem of storage and viewing space for art can be handled. Many large museums can show only 10 percent of their permanent collections, and store the remainder in racks difficult of access. Johnson is glad his gallery makes it possible to show educators and collectors a new way in which paintings can be studied and enjoyed.
RIVIERA HOUSE ON A HILLTOP

In designing this vacation and weekend villa for a hilltop overlooking the cote d'azur, architect Johnson's intention was not so much to build a house as to create a place—a place to dramatize to the utmost the spectacular and beautiful site. This was accomplished by arranging five separate buildings upon a two-level shelf cut into the brow of the hill, then joining them by courtyards and outdoor stairs. All circulation is in the open; there are no corridors. This makes for a constant sense of identity with the place, which has the appealing character of a miniature village on a hillside.

The entire scheme comes to focus on a black slate podium, 42 feet square, which is protected from the Riviera sun by an undulating concrete parasol floating lightly overhead on four columns. The large photo shows the podium and the square, glass-enclosed living room beyond; the forecourt of tan gravel is pictured below.

The buildings are backed against concrete retaining walls that extend above the hill's slope to offer protection from the spring mistral; fenestration in this direction—and towards the courts—consists of high strip windows. Otherwise, the buildings have large glass areas opening over the slope to the view. The lower, more protected courtyard is shown below; the photo above looks up the precipitous hill to the podium and its floating parasol.
Johansen's Orlando library: compatible colony of varied forms
Although each of the diverse elements of this strongly stated building has been clearly emphasized, a handsome over-all unity has been achieved by framing the loose assembly of enclosed spaces with a dominant, overhanging cornice supported by bold service towers. In John Johansen's words, "the library, a composition in monolithic concrete, may be called an accretion of forms, as colonies of shelled animals assemble or grow together. It suggests the continuing process of growth, a most valid concept and expression, since expansion is so important a part of the program."

In view of the program requirement that the building be capable of expansion to three times its present size, in several future stages of construction, the design concept of gathering a variety of expressive forms into a compatible colony seems a very valid one. And at this initial stage, at least, it has resulted in a quite harmonious building. The general use of rough concrete surfaces, with carefully
controlled textures left by removal of wooden formwork, is, of course, another major unifying factor. The other visible materials (glass areas, bronzed aluminum rim, interior carpeting for sound control) are treated in a quiet, subsidiary manner.

This first unit of the library provides two main floors for public use, with open stack areas and reading rooms closely related. The basement is devoted to closed stacks, processing and bookmobile service. The top or third floor is given to the auditorium and staff offices. While most of the plan is open and unobstructed, all service elements, such as workrooms, toilets, stairs, elevators; and the like are arranged as closed elements on the periphery. A central open well is three stories in height to serve as a unifying space, topped by a clerestory and the huge air-conditioning housing; light filters in on all sides from the bands of windows at the top of the well.

The building occupies one-third of a city block, with set-backs for planting and quiet. The remainder of the block is being purchased by the city in stages for future expansion.

The program for the new Orlando Public Library was written by a library specialist, Dr. Frank Sessa, director of the Miami Library, and established the following departments for the new building: children, young adults, adult circulation and reference, browsing and popular reading, history and genealogy, fine arts, business and technology, stack areas, a small auditorium, and staff offices.

Downlighting is used by consultant Shemitz to define such use areas as central desk and lounge. Stacks are lighted by direct-indirect troffers.
Even the smaller details of the Orlando Public Library have been designed with the same gusto as the major parts of the building: the "roofscape" (top), which is a disastrous happening in all too many buildings; the service stairs (center, left); the sidewalk book drop; and the roof terrace, with its built-in benches and planters (left).

As can be noticed in many of the preceding photos, provision for good lighting (note downlights to exit stair and wall washers), quiet, and comfort is well-thought-out all through the building.
eight vacation houses whose design strength, functional efficiency and very reasonable cost demonstrate the architectural potential in the current upsurge of interest in the second house.

Bill Maris photos (courtesy of Conde Nast)

VARIETY AND ECONOMY IN CANAL-SIDE HOUSE

A low-lying site near an elevated drawbridge over the Shinnecock canal was chosen for this attractive cedar-shingle summer house—winner of the 1966 A.I.A. New York Chapter annual house competition. Private sleeping areas were required for a family of five, but the rest of the house is free-flowing, angular and exciting, with strategically placed windows and skylights giving good cross-ventilation and unusual extension of visual space. Because of the possibility of flooding, the house is raised on piles, and a two-story solution was adopted to create a "positive visual relationship" with the dominant bridge structure. Decking around the house provides pleasant sunbathing areas and connects the main building with a detached storage house.

CONCRETE AND GLASS
HOUSE COMPLEMENTS
AN IRISH HILLSIDE

Perched on reinforced concrete stilts on a hillside overlooking the river Brandon in southwest Ireland, with a distant view of the Irish Sea, this little concrete and glass weekend house combines strength and elegance to a remarkable degree for so small a structure. Although the house is only a 36-foot square, extensive use of glass on all sides and open planning give an unusually spacious effect. The fireplace and storage wall separates the bedroom from the living area—providing privacy without total enclosure. Even though the house is used only for weekends and vacations, it contains a collection of classic modern furniture which admirably complements the uncluttered interiors.

A-SHAPED HOUSE
WELL ZONED,
WELL DETAILED

well-worked-out, compact plan and sensitive detailing make this comfortable, efficient house for a family of five. Four bedrooms, three baths, a large living-dining room, adequate kitchen, an outdoor shower, extensive decks and an electric heating system are all provided within a $30,000 budget. The neat kitchen-entry area provides good zoning separation between the bedroom wing and the living room. The strong articulation of the H-shaped plan—with the extended floor and ceiling posts forming balanced but opposing cantilevers—is described by the architect as "a logical development of the basic function and structure of the house which effectively liberates the design from the standard H-box pattern." The roof cantilevers give protection to the large glass areas.

Residence for Mr. and Mrs. Alexander Menkovitz, Harvey Cedars, New Jersey. Architect: Myron Henry Goldfinger; contractors: Ullman and Silvermaster.
ENCLOSED PATIO COMBINES PRIVACY WITH OUTDOOR LIVING

One of the results of the second-house boom is that desirable beach areas within range of big cities are becoming increasingly crowded, raising the problem of providing for outdoor living and privacy on tiny, hemmed-in lots. Architect Bernard Marson has solved this problem on a restricted Fire Island site by constructing the house around three sides of an enclosed wood patio, with sliding and fixed glass panels connecting the indoor and outdoor spaces. A louvered wall on the fourth side of the patio completes the privacy but allows pleasant breezes to flow through the court. The blank exterior facades are broken only by the front door and by small sliding glass windows introduced beneath the roof line on the two side elevations for cross ventilation. A simple exposed wood-frame structure with tongue-and-groove cedar plank interior and exterior walls facilitated construction and kept the cost—including electric heating—to $12,500.

STRONGLY DEFINED
COURTYARD HOUSE
RESPECTS ITS SETTING

The beautiful, but now heavily developed dune land at the tip of Long Island posed similar problems for the architects of this handsome house, who also conceived of the solution in terms of a central court. In this case, however, one side of the deck was left open to take advantage of the only relatively unspoiled view. While making a strong architectural statement, the house is sympathetic to its surroundings and seems to be very much part of the dunes. Since no ocean view was possible, a one-story scheme was adopted—with complete separation of the guest or children's wing from the main pavilion fulfilling an important program requirement. Glass panels on both sides of the main living-dining area include the courtyard in the visual space and take advantage of sun and sky effects on the western exposure. The peaked roof allows double-story height for the sunken living den. Rough-sawn southern yellow pine is used on exterior and interior walls. The $25,000 cost includes gas-fired heating.

QUIETLY STATED HOUSE TAKES ADVANTAGE OF A WATERFRONT SITE

A year-round beach house beautifully situated at the southern end of Puget Sound takes full advantage of an impressive site while avoiding any conflict with the scenery. A broad, sheltered deck extends the house to the water's edge. As soon as you enter the house across the wooden bridge you are aware of the view right through the living room to the water. The restrained, horizontal building form, well-organized rectangular plan and imaginative details—such as the clerestory windows and the stone fireplace alcove—resulted in an Honor Award from the Seattle Chapter of the AIA.

THOUGHTFUL DESIGN
IN TINY PACKAGE FOR
VERSATILE VACATIONS

Earl Flansburgh's ingenious use of the shed roof to provide ceiling height and bunk space for this vacation cabin turns what might have been just another weekend shack into an attractive and compact vacation home. The prefabricated "Nutshell" house, which can be delivered complete to the site ready for immediate connection to sewage, power and water supplies, costs $3,995—exclusive of shipping, foundations and utility connection costs. Inside, the sofa folds down into a double bed, while two bunks fold down from the ceiling and can be hooked neatly back in place when not in use. Kitchen facilities, shower, toilet, a baseboard electric heater and a wood-burning stove are all included in the basic cost of this summer or winter cottage. Structure is wood frame with plywood walls.

SHINGLE TURRET USES SPATIAL POTENTIAL

An exciting environment for weekend and vacation living has been provided in this 20-foot-square, 32-foot-high "tower house" situated in beautiful scenery just an hour away from the center of San Francisco. The interior forms one continuous space, broken only by the sleeping balcony and culminating in a dramatic 12-foot-square roof-skylight. Generous decks, unusual fenestration and a recessed fireplace add to the spatial interest and livability of the house, whose construction cost was $36,000. Dominant materials are cedar shingle and redwood.

Residence for Mr. Lon R. Driggers, Penngrove, California. Architects: Kosovitz, Knox and Nairn; engineer: Ephraim Hirsch.
FOUR BUILDINGS FOR BUSINESS

These four buildings, each designed for the special needs of a business, are as varied architecturally as the commercial enterprises they house, but each contributes, through its distinctive—and appropriate—architectural solution, to the success of the business of merchandising products and commodities, proving again the interdependence of design and function.
This garden materials sales center was designed as both a place for business and a life-sized advertisement for the business. Its location on the Coast Highway, one mile south of Newport Bay on the southern California coast, is in daily full view of some 100,000 persons who pass the site in 34,000 cars. The unusual and delightful character of the open wood pavilions and lath houses, and the display of plants and flowers, have proved more effective eye-catchers than any other means of attracting attention. The buildings are designed in units 20 feet square so that they can be moved easily when the freeway, scheduled to cut through the site, is built. The main sales pavilion, 40 feet square, is detachable into four 20-foot squares. All materials are used in their natural state—douglas fir, resawn redwood, cedar shakes—and were chosen to convey the “feeling of the barn, the open field, the exhilarating breath of air, and space.” Cost of construction and site development was $50,000, exclusive of fees.

DIGNITY AND RESTRAINT FOR AN AUTOMOBILE SALES AGENCY

Strong simple forms, boldly used, give visual impact to this automobile agency in Southern California, and a sophisticated handling of materials and color adds to its handsome design. In a field of merchandising not noted for restraint, this building effectively attracts attention without garishness or tricks. Red brick, lighter walls dominate the exterior appearance, but the building form is established by the dark plaster and concrete bands. The site is on a corner, and its slight slope from front to rear is advantageously used to provide an elevated location for the display areas inside and outside. Inside the building, the floor levels follow the grade, descending toward the rear. This change in grade, and the change in use of the interior spaces, is expressed on the exterior. The building received an Honor Award in the recent Triennial Awards Program of the Southern California chapter of the A.I.A.

DESIGNED TO ENHANCE A BROADCAST COMPANY’S PUBLIC IMAGE

Besides meeting the complicated needs of an up-to-date broadcasting center, this building reflects the company's desire to present a handsome and distinctive face to the community as a means of retaining—and building—public acceptance. The architectural design is a direct response to these requirements. The building is of reinforced concrete and has a folded plate roof which makes possible an economical solution to the requirements for long-span space for studios and for flexibility in use of spaces. The concrete sunshades and the sculptured concrete columns, the pools on either side of the entrance walk, the brick paving which extends from the building to the street, and the pleasant landscaping which enhances the building are all means of attracting a pleasant public response.

Brick tile (1/4 inch thick) laid vertically to distinguish it from standard brick, is used for its warm color, low maintenance and light weight.

The concrete sunshades which cut the air-conditioning load, and the pools on either side of the entrance in which the columns stand along the front of the building are distinctive features of the design. The building won a design award from the Seattle Chapter of the A.I.A.
AN URBAN COMPLEX OF SHOPS ON A SMALL INTERIOR LOT

Bancroft Center has a fortunate location across from the campus of the University of California in Berkeley, which provides it with a ready clientele, but its pleasant arrangement of shops and the amenity of its parking is a design solution applicable in any other urban location. The site, an interior lot 150 feet square, is small for what it contains: four shops and a large central court, with parking underneath, for which a two-way driveway from the street had to be provided. The owner’s original intent had been to build four shops fronting directly on the street. The architect’s solution using the open court offered so unusual an environment, however, that it became the final design. The court is not only the focal point for the center but a source of daylight for the large women’s specialty shop and for one of the three accessory shops. Its slight elevation above grade permitted shallower excavation for the garage. Graphics and store interiors were also designed by the architect.

The Cost-Quality Paradox

The two most important influences favoring an upgrading of quality in the design of today's office buildings have to do with economics. This is not to deny the all-pervasive influences of public taste, architectural education, and talent. These, for better or for worse, we have always with us in all kinds of construction. But the architect of commercial buildings, other than those lavishly underwritten as corporate status symbols, is only now finding relief from a sorry several decades when the constraints of cheapness and standardization were synonymous with economy.

Quality gets less paring as mechanical costs increase

The increasing relative cost of mechanical and electrical components of office buildings has resulted in a corresponding decrease in the portion of the budget dollar allocated to the so-called architectural components. Hence, less impressive savings can be shown by paring the quality of materials and finishes. For example, if the exterior walls of a building represent only 10 per cent of its cost, a fractional saving in wall materials will not represent a very significant percentage of the over-all budget.

It is true that a very small fraction of a very large budget can represent several hundred thousand dollars. But where millions of investment are at stake, a sacrifice of quality for relatively small savings is not likely to be undertaken as a matter of course in a market where quality is increasingly regarded as an important adjunct of the investment.

Lenders want tenants who want quality buildings

The second fundamental economic change bearing upon architectural quality of office buildings has to do with the changing attitudes of money sources.
OFFICE BUILDINGS

New Britain Bank and Trust Company Building,
New Britain, Connecticut.
Architects: Emery Roth & Sons; sponsor: First Hartford Realty Corp.

This first building in a central urban renewal project is set back 30 feet on its 114-by 230-foot corner site. Mechanical core and stairwell are in offset, precast paneled tower. Landscaped plaza of black brick and concrete fronts the glass-enclosed first floor.

Both the investment builder, who intends to own and operate the building as income-producing rented space, and the so-called speculative builder, who intends to sell the building soon after its completion, find that mortgage lenders want to know who the major tenants of the building are going to be before a commitment to finance is made.

Here the builder is likely to encounter a changing attitude on the part of prospective tenants with regard to the quality of space they may agree in advance to occupy. The effectiveness of high-quality structure in reflecting corporate image has been amply demonstrated by many examples in many cities.

Now many other corporations, not necessarily giants in the national economy, are insisting on the same kind of quality when they are approached as prospects for major leases in new buildings. In fact, even the branch offices of larger corporations tend to locate in buildings which support an image that may have been built into a high-quality home office building.

The simplified envelope improves in quality
Both of the influences so far described are underscored and ramified by many side effects. As Richard Roth Sr. pointed out in a recent interview, the rising costs of mechanical and electrical components had something to do years ago with accelerating simplification of the building envelope. While this simplification, manifested in curtain walls and various precast shell devices, has been through phases wherein its primary objective of economy was all too apparent, curtain wall manufacturers have come up with many new assemblies of high-quality materials and have developed a capability for custom work.

In reviewing the New York scene, with which his firm, Emery Roth and Sons, is eminently familiar, Mr. Roth recalls that former code stipulations of setback heights placed serious constraints upon design; and program requirements calling for maximum envelope under those conditions left little or no opportunity for architectural development. Nowadays, with new zoning encouraging plazas and concourses, architects can exercise considerably greater design ingenuity.

Design in smaller cities is more status-motivated
Office building design outside of New York and a few other major cities, Mr. Roth observes, encounters quite a different set of design criteria. In small cities, the newest commission is likely to be for the tallest or most important looking building in town, whether or not it is to sustain a corporate image. Considering that the prospective tenants for such buildings are likely to be drawn from extremely low-rent existing structures, the problem of "selling" quality to tenants confronts resistance which sometimes puts an impractically low ceiling on chargeable rents. Architect should be prepared to offer clients sound financial analysis in such situations so that the true price of status building (as opposed to over-building) is clearly understood.

A notable example of conservative but directed enthusiasm in smaller-city commercial building is the New Britain (Connecticut) Bank and Trust Company Building illustrated at left. The company has played a leading role in a 90-acre, $26 million renewal program for the city's central business district; in which the $2.3-million, seven-story building is the first construction. The bank occupies the first 2½ floors. The rest of the 70,000 square-foot structure is leased.

The bank wanted a strong, modern statement consistent with its leadership in the renewal project and the commercial life of the city. The building was to be moderate in size, scaled to the
town of about 84,000 people. Design architect Richard Roth Jr. selected a combination of precast white concrete panels with strongly expressed bronzed aluminum window frames and tinted glass. Far from the embellished luxury of the high-budget corporate image, this building is intended and succeeds as a dignified and thoughtful solution to an investor’s program in context with upgrading the business center of a city.

External materials selection can affect framing costs as well
It seems almost too elementary but is an often-overlooked fact that you may not simply add a factor for each square foot of exterior wall as you progress through alternates of increasing cost. Assuming that a light-weight curtain wall is at the low end of the scale of overall cost, the architect and his estimator must remember that as materials are added in a search for a higher expression of quality, the weight of the skin increases. Most such additions simply mean an increase in the weight or strength of steel in the structural frame—which is, of course, an added cost.

If an alternate of heavy precast or limestone members is considered, the total increase of cost, including supporting steel, can be on the order of 30 percent in some locations. While this may still be a small percentage of total budget, it should be realistically considered, since square-foot cost of the materials themselves may be low.

Similarly, if even heavier stone materials, such as granite or travertine, are considered, the framing itself may have to be converted to concrete for proper application. Here again, the square-foot cost of surfacing materials is affected by internal factors. And of course, to labor the well-known once more, the choice between concrete and steel framing itself on a cost basis can go one way or the other in different regions.

An investor’s program lays the groundwork for quality
A document at hand is a proposed program for a new office building to be built and owned as an investment by a large insurance company. It is in general a “performance”-type program based on an architect’s conceptual scheme showing the site (28,000 square feet, including 7,900 square feet of plaza area in a southern city) and translating an objective of some $67,000 square feet of gross rentable area into 29 office floors and two mechanical floors.

Of interest in the cost-quality context of this discussion are the opening general remarks of the document: “Because of the relatively low rentals obtainable in this city and relatively high land values, there is a burden placed upon the building itself as to cost and efficiency. The building must be designed to give the greatest efficiency of rentable space versus gross, and must be designed also so that time-tested materials and design features are used extensively. It is expected that because of the high caliber and ingenuity of the architects that this can be done and at the same time [we can] have a building produced which will be distinguished and different from the run of office buildings in this city.”

Further suggestions of interest are: “If test borings show that clay extends down to, say, 40 feet below grade, then we can have two or possibly three basements. . . . This will be purely an economic consideration—i.e., rental obtainable versus cost of construction.” And again: “If it is possible (with specified elevators) to add an additional story, this should be seriously considered.” This is a sampling, admittedly scanty, of the trend of thought of one large office building client who demands an above-average but not the highest cost-quality range in all his investment buildings.

ARCHITECTURAL RECORD June 1967 173
“The push for quality must come from the people”
So stated Walter Gropius in recent reflections about what he observes as emerging opportunities for design. In different countries, the rank order of the different professions varies markedly. For instance, some European and Asiatic countries put the teacher, the scholar and the artist in the top rank; whereas in the United States, which had to build from nothing, the business man was, and still is today, most highly regarded.

Changes in these rank orders are very slow, Dr. Gropius observes, but it is noticeable that the modern businessman in the United States has recognized the need to promote cultural progress. There is sufficient evidence today that big business feels responsible for good architecture in new buildings.

The key to improvement, says Gropius, seems to be ever-better education, which would start with the need to pay the teacher more in order to continue to attract good people into the profession. Some progress in this direction is noticeable, but it is not enough. Says Gropius: “Any hope for raising the general level of quality of architecture starts in schooling of all people at all ages. We can not do anything without the response of the people. All of these influences are tied up with raising the level of quality in whatever economic climate may exist. The push must come from the people.”

Design quality has two aspects, says Gropius. First and uppermost in the mind of the designer must be the wish to create buildings which become the image of the desired human and social aspects of life. Second is the material problem of sufficient money to translate these spiritual ideas into high-quality work. To reach this goal, the designer needs the understanding of the people; the creator needs the response of the user.

—William B. Foxhall
Store-office-apartment
on a tight urban site

Fox Plaza in San Francisco is the first multi-use building on the West Coast to combine a two-level shopping center with a high-rise consisting of 12 stories of office space separated by one floor of mechanical services from a top 16 floors of residential apartments. There is also a two-level underground garage.

The shopping complex is clustered around a covered and skylighted central plaza. The building replaces the old Fox Theater on a small triangular plot of 64,000 square feet facing Market Street in a first hopeful step toward revitalization of a run-down section of the city. In spite of the restricted site, the vertical arrangement of offices and apartments made it possible to maintain a generous set-back creating a landscaped plaza.

This combination of vital downtown elements into a single complex was awarded the State of California Governor's Design Award for excellence in the category of urban buildings. The chief designer was Rudy Baumfeld and chief engineer was Edgardo Contini—both of Victor Gruen Associates.

Structural problems presented by the unique combination of facilities were complicated by a requirement for ultimate column spacing for parking structure, office building and apartment building which required study of many alternatives to reconcile a sound structural system with code requirements covering seismic and wind forces. The diverse framing requirements were accomplished in part by transfer of a 14-foot typical bay of the upper apartment levels to a 28-foot bay in offices and garages.

The framing arrangement devised for apartment floors made it possible to limit floor-to-floor height to 9 feet 3 inches while maintaining room ceiling height at 8 feet 9 inches.

Separation of traffic to the various components of the complex is accomplished by separate entrances and elevators serving separate but adjoining lobbies for offices and apartments. Entrance to the shopping plaza is separate and served by a large lobby with a fountain in the center.

Air conditioning is supplied to the shops and offices from an absorption system on the mechanical floor. Apartments are not air conditioned but are heated by fan-coil units in small closets. The lack of air-conditioning ducts in apartment areas was one of the reasons for the high ceilings in relatively small floor-to-floor height. This height for the office section is 12 feet 4 inches with an 8.5-foot ceiling height.
Strong marble verticals for a state office building

Since the Rutledge building is the first state office building to be erected in South Carolina since 1938, the program required the architects to erect a building with sufficient monumentality to symbolize the dignity of State Government, but which would also be functional, contemporary and easy to maintain. The use of white marble in the dominant vertical fin structure blends well with traditional neo-classic southern architecture, is easy to maintain and provides the simple elegance demanded by the program. The plan is functional and well organized, with office spaces surrounding a central core of elevators, mechanical equipment, toilets and storage facilities.

The landscaped podium from which the 13-story building rises has several functions. In addition to providing an attractive open space around the building, it also serves to compensate for an awkward grade change on the site, and is used to provide fall-out shelter for civil defense facilities.

The glass-walled lobby floor is set back behind the marble columns which are complemented by the marble-faced interior. The distinctive treatment of the entrance floor sets it off appropriately from the bronze-finished aluminum window-walls of the upper office floors. Change of function is thus clearly articulated in the exterior form of the building, but is not in any way disruptive of the unity of the total scheme. The building has received design awards from the South Carolina Chapter of A.I.A. and Marble Institute of America.
Structure of the building—which cost approximately $2.9 million—is reinforced concrete columns, beams and pan-slabs designed on a 4-foot module. Light troffers provide air-conditioning outlets and return from a dual-duct system. Exterior cladding is marble with aluminum window-walls.
Early consultation works for unity of arts

Architects, landscape architects and artists joined forces in conceptual phases of this building. Although it was programmed to house the supporting activities of a headquarters building diagonally across the street, it is in no sense minor. Development of the main entrance plaza and pool, for example, enlisted the talents of landscape architect Theodore Osmundson & Associates in a scheme for changing flowers every month, mosaic artist Alfonso Pardina in a colorful reflecting pool, and architect-sculptor Stefan Novak for striking welded-metal wall mountings in the glass-enclosed main lobby area. The result does not pretend to be an architectural monument, but conveys some of the joy and seasonal variety of New York's Rockefeller Plaza in a public meeting place and approach to a dignified office building.

Of the 165,000 square feet, Standard Oil occupies five lower floors, which include three floors of about 19,000 square feet each, providing the large open spaces needed by departments like engineering and marketing. Other features of the company's floors are: an employee cafeteria and kitchen to serve 400, a lounge and a floor devoted to rooms for training programs.

Present site coverage is about 50 per cent, but Standard Oil will build additional headquarters (present headquarters is a block away) west of the plaza.

Typical office floors (double scale at top) are planned on a 4.5-foot module with mechanical and electrical services also modular. Framing is steel. Tower roof will be a heliport. Exterior walls are ceramic veneer with bronzed aluminum window frames. Relief map, right, is by Jack Hoag.
Progressive-traditional style for bank operations

Vincent Kling's $7-million Stock Exchange Building in Philadelphia applies good design and sophisticated mechanical-electrical systems to support facilities for a bank's operations. Provident National Bank, the owner-client, uses the first six floors, including a computer installation on the first floor. The remaining six floors, 60,000 square feet, are rentable. The 257-member Philadelphia-Washington-Baltimore Stock Exchange is principal tenant.

The 246-by-65-foot site is a well-known location in the banking and financial district. Architect Kling avoided any tendency to allow a weaker facade and less-impressive approach on the narrow (east) end of the site by adding a 20-foot setback to his ground-floor design vocabulary of strongly expressed columns and deeply splayed spandrels (photo at left). The resulting space becomes a small court. On both east and south facades exterior space is let into the building via a portico made by setting the all-glass lobby wall back one bay.

The 42-foot-wide, 218-foot-long clear-span floors have a 5-foot 9-inch by 5-foot 6-inch modular electrical and air-conditioning grid. Two air-conditioning systems can circulate either cold air or cool or warm water as required. A two-channel underfloor raceway duct system adds flexibility in placing telephone and electrical outlets. An automatic vertical mail conveyor system uses lock covers sanctioned by the post office—and carries bank receipts as well as mail.

In the photo above and the plans at left one can see the three strips that make up the building: 42-foot-wide, clear-span office space; corridor with windows at both ends; service core with stairway—together affording quiet, continuous space with windows around the perimeter. Interior is modular, with flexibility and integration of services and partitions. Shown below is the 92-dealer stock exchange room.
Gropius' split tower
is hub of Boston Center

From the beginning, the client—GSA for
the United States Government—wanted
to separate "regional" office functions
from central government offices. The de-
signers suggested putting the latter in
a long, rectangular low-rise building con-
forming to a 4.5-acre site 275 by 723 feet.
On the other hand, they put the "re-

gional" offices in a 26-story tower pro-

viding 24 office floors and two mecheni-
cal equipment floors at the top. Walter
Gropius, partner in charge of design for
TAC, felt that a simple square tower ac-

commodating the required usable area
(672,000 square feet for both-buildings)
would have been stubby and fat—so a
double tower of offset rectangles joined
by a common mechanical core was
planned and joined to the lowrise at the
two lower levels. In that way, Gropius
points out, there is more daylight for
each tower office, a more slender mass-
ing and more varied shadow effect.

"I try to start any design from study-

ing requirements of the human being
who will be using the space," says Dr.
Gropius. "How can we enliven that space
for workers in order to increase effi-
ciency? Here, we have used large,
strongly colored walls offering points of
interest that 'give a little kick' to the
passerby." Such a point is the Mother-
well mural in the passageway between
buildings.

JOHN F. KENNEDY FEDERAL OFFICE BUILDING,
Boston, Massachusetts. Architects (joint venture):
The Architects Collaborative and Samuel Glaser
Associates; for TAC: Walter Gropius, Norman
Fletcher and Roland Klauer; for SGA: Samuel
Glaser and Clifford H. Towne; structural engi-

neers: LeMessurier Associates, Inc.; mechanical
and electrical engineers (joint venture): Joseph
R. Loring Associates and Guy B. Panero En-

ineers; landscaping: Homer K. Dodge; kitchen
and laboratory: Crabtree, Dawson & Michaels;
specifications: Philip Todisco Associates; general
contractor: J. W. Bateson Co.
"We cannot make a new architecture every month, so we are not always in the vanguard with something new. The design process should begin by getting rid of all preconceived ideas at the start of each job—like the man who said: 'I empty my soul so that God may enter.'—Then we can achieve a kind of second innocence at the start of our thinking about man in a functioning environment. A building then must function both practically and psychologically. This beginning is implicit in this building."—Walter Gropius
Flexible office space is achieved by modular planning based on a 4-foot-10-inch square grid co-ordinating windows (which pivot for inside cleaning), lighting, air conditioning, partitions and cellular under-floor for electric and telephone distribution. Low portions of the building are faced with polished granite, the exterior walls are precast panels with exposed quartz aggregate. A basement garage parks 130 cars. Plaza will have sculpture by Hadzi and a large tree. Sculpture by Ferber will be in the courtyard.
... a thoughtful and thought-evoking analysis of the present state of design in our environment, and what could be accomplished through more effective dialogue between decision-makers in design and decision-makers in government policy. It was presented by Archibald C. Rogers, on behalf of the American Institute of Architects, to Senator Abraham Ribicoff's Senate Subcommittee on Executive Reorganization of the Government. Mr. Rogers is a founder of the Baltimore firm of Rogers, Taliaferro, Kostritzky, Lamb; and chairman of the A.I.A. Committee on Urban Design.

Urban design policy

Ends are shaped by means and process shapes its product. The end product of the physical design process is our physical environment. Today, this end product is clearly chaotic—a chaos developed during our present century, explosively expanded during its three middle decades and promising continued acceleration in the decades ahead.

The process which produces chaos is itself chaotic. Our failure to create an orderly physical environment is due first to the absence of a co-ordinated series of goals to be accomplished by the design process and secondly to the absence of a mechanism for depicting such goals.

The failure of the end product of physical environment is clearly recognized. The failure of process is not yet recognized. Expensive environmental programs have been sponsored by government since the 30's—ranging from public housing to highway beautification. Each program is aimed at a sore spot in our physical fabric. Most programs are well administered and indeed have created occasional islands of environmental order. (Constitution Plaza and the Washington-Baltimore Parkway are examples.) Yet, the total impact of these corrective programs has thus far been negligible.

Their failure is due to their discrete-ness and their discreteness is due to the absence of co-ordinated national goals.

A program having as its aim the provision of new single-family housing quickly and at a massive scale may most expediently achieve its purpose at the sacrifice of open space surrounding the city. The creation of a national highway system having as its single purpose the movement of vehicles will, quite properly within the limits of its mission, ignore the goals of other programs. It counters the national purpose of housing the poor by de-housing the poor and the objective of creating new neighborhoods through urban renewal by disrupting such neighborhoods.

The attempt to co-ordinate these discrete programs through the creation of new departments (HUD and DOT) is a belated recognition of this programatic defect.

Yet, this approach to co-ordination, while certainly justified, will not of itself correct the basic defect which is that these programs, even so co-ordinated, remain product-rather than process-oriented.

So long as our environmental programs deal with the physical end product without evolving a co-ordinating design process, we are unlikely to create a form for our physical environment that will come close to matching in quality the high level of our national aspirations and resources.

Environmental form

Environmental form is the result of the total decision making process that ends with the "putting in place" of each component of our national physical fabric. Its embryo is found in the very beginning of the process—in goal setting; in economic feasibility decisions; and in site selection decisions.

Its final form is forecast in the words of a program statement and in the dollars of a capital program budget.

When "designing" starts—when the planner, architect or engineer begins his sketches—all that remains is to test alternative design concepts against the previously recorded decisions (generally only one foreordained concept is found to fit) and the minor decisions as to the decor that will clothe this concept.

It is no surprise that the design professionals are today regarded as cosmepicians—decorators called in at the last moment to embellish concepts developed prior to their involvement.

Nor, should it be a surprise that each new product of such process makes its contribution to chaos; that the users of this product often react to it adversely despite the obvious intention of most sponsors to benefit these users and that the sponsor himself is so often disappointed by the final result of what may have been years of costly effort on his part.

Design is inherent at every stage of the decision making ladder, whether it is recognized or not.

But, if it is not recognized by the decision makers, if it is left latent until the topmost rung of the ladder is reached, its potential for creative physical synthesis is lost.

Design

Design is the conscious synthesis of each family of alternatives posed for evaluation and decision at each stage of the decision making process.

It is the depiction of the formal image that is inherent in each family of alternative decisions.

It is the fitting together of the separate pieces of our physical environment at each stage of decision making:

1. Relating man-made to natural elements of our environment.
2. Ranging from the microscale of a single building to the broadest scale of a metropolis or region.
3. Co-ordinating the tangible program requirements, such as functions and costs, with the less visible but more important intangibles—the social and...
psychological needs of those who will use and experience the final product.

4. Co-ordinating these requirements not only horizontally as a two-dimensional plan but vertically as a three-dimensional architectural concept from the smallest to the largest scale of development.

Design is finally the creation, through each such concept at any scale, of that enduring architectural art which should properly be the final purpose of each segment of our physical environment.

Lesson of the past
The design process of past ages produced a certain order and beauty as seen in the historic buildings and cities that are our heritage. Our respect for this heritage is reflected in our tourist tradition and in our efforts at historic preservation. And, this respect is as much a condemnation of our contemporary achievements as it is a tribute to the achievements of the past.

But, the scale of past undertakings was so much simpler than those of today that the earlier design process is not really applicable to our own circumstances.

In the simpler past, the sponsor was normally an individual—a monarch, magnate, or minister who acted as patron of the art of architecture. The designer was also an individual whether he was titled architect, military engineer or simply “artist.” He conceived and executed for his patron the full range of physical elements—palaces, parks, bridges, boulevards and cities.

We are faced today with the urgent need to evolve a new design process fitting our complex circumstances as that of the past fitted the simplicity of prior circumstances.

Circumstances of today
Despite the overwhelming complexity of our age, there is concrete evidence that a new design process fitting this complexity can be articulated and can achieve significant results.

Two examples illustrate this point.
The first example is the utilization of this process in planning for the renewal of downtown Cincinnati in 1963 (“Process for Action” by Jonathan Barnett, May 1966, ARCHITECTURAL RECORD reports on this example).
The second example is the organization in 1966 of a concept team to design the interstate freeway system in Baltimore City (John Schmidt’s report on this example is in the January 1967 issue of Baltimore Magazine).

These two examples point the way toward the evolution of a design process that fits the circumstances of our time and that can be applied to every element at every scale in the building and rebuilding of our physical environment.

The circumstances that must be satisfied by this process are:
1. The new scales of complexity, geography and time that typify most of today’s projects.
2. The fact that the individual sponsor has now become the exception rather than the rule for such projects. Today’s sponsor is generally impersonal—a school board, a governmental agency, a corporation—and behind this impersonal sponsor, whether private or public, there is the direct or indirect involvement of government through its regulatory function as an anonymous co-sponsor.
3. The fact that the individual designer of such projects has also become the exception. As the complexity of our social and economic organization has increased and as the multiplication of knowledge has accelerated, the singular design profession of the past has spawned its specialties and sub-specialties in order to manage its facet of social organization and of accumulated knowledge.

Given these circumstances, the new design process requires:
1. An articulation of the process to fit the project complexities and the adaptability of the process so articulated to fit the full range of scales and project types.
2. A new form of sponsor that will reintroduce the personal commitment of the past into the design process as well as a new concern for, and involvement of, the user in the decision making process.
3. A new form of designer that will re-integrate today’s specialties into a design team or group capable of developing a creative conceptual synthesis.

Articulated design process
The design process is articulated to match the several levels of decision making. For clarity, these levels are labeled in accordance with military planning custom. Decisions are customarily rendered by the sponsor upon proposals offered by the designer. Decisions are customarily rendered at an increasing level of detail and decreasing scale of compass:
1. Vertically, starting with basic objectives and ending with detailed design.
2. Horizontally, starting with a broad geographic frame of reference (the environment) and ending with intensive study of the project area itself (the focus).

The sequence of decision making steps will normally involve the following stages in the design process, stages that presuppose the initial and all-important establishment of goals:

Stage I—Reconnaissance
A generalized appraisal by the designer to define the environment and the focus and, within these definitions, to draw their profiles—their salient features and trends both physical and functional. The objectives of the reconnaissance are to distinguish factors that cannot be changed from those that can; to identify, for factors capable of change, those that constitute problems to be corrected and opportunities to be capitalized in the design synthesis; to forecast the near term and long term future of these factors; to prepare a co-ordinated depiction of the environment and its focus and to conclude with a generalized functional, so-
cial and physical program for the focus within the limitations imposed by the resources inherent in the environment.

Decisions by the sponsor at the conclusion of the reconnaissance are essentially judgments as to the validity of the findings submitted by the designer.

Stage II—Strategic objectives
The designer translates the reconnaissance findings, in their approved form, into a range of attainable alternative objectives. Each alternative objective is technically analyzed to confirm its compatibility with the reconnaissance findings. Each alternative found to be compatible is subjected to a comparative evaluation of its costs and benefits. The family of subordinate objectives which relate to each major strategic objective are identified and similarly evaluated.

The designer, in order to give image to the latent physical form, diagrams the design implications of each alternative family of objectives for both the focus and the environment. He compares the relative costs and benefits, recommends as to which alternative is judged technically best from the viewpoint of design implications, the ability to solve the problems and to capitalize the opportunities identified in the reconnaissance.

Decisions by the sponsor at the conclusion of this stage involve his selection of the strategic design objective from among the alternatives posed. This selection may not conform to the technical recommendation of the designer as there are considerations of a non-technical nature that may override. Moreover, the selected objective may not precisely conform to any of the alternatives but may rather represent a compromise decision. The important thing is that a decision be made to which the sponsor is fully committed; that he clearly understand the design implications of this decision; that it not be changed by the sponsor later in the design process; and that it be completely accepted also by the designer, whether or not it conforms to his technical recommendation and whether or not it involves a compromise.

Stage III—Alternative strategies
The author prepares sketch diagrams of alternative design concepts covering the geographic area of the frame and the focus. These diagrams are normally two-dimensional where large areas are being studied. Each alternative concept incorporates the program agreed to at the conclusion of the reconnaissance, as amended to fit the strategic objective selected. Each is evaluated as in Stage II to judge its ability to attain the strategic objective selected. A technical recommendation is prepared for the sponsor and decisions rendered as in the case of the strategic objectives.

Stage IV—Alternative tactics (design)
The selected concept is developed in the third-dimension. The design incorporates the final space and use program detailed on the basis of the Stage III decisions. The design is normally limited to the area of the focus—the development project itself.

The alternatives in this stage are more limited and are posed to the sponsor for decision at check points throughout the evolution of the final three-dimensional design. The costs and benefits of these tactical alternatives are, as in previous stages, presented to the sponsor for guidance in decision making. During this design stage the sponsor becomes directly involved in architectural decisions. This involvement must be accepted and encouraged by the designer.

Stage V—Implementation
The sponsor and designer must continue their involvement during this phase. At the smallest scale of focus this may be the preparation of construction documents and construction supervision of a single building over a time period of a few months. At the larger scale, decades may be required to implement the design. The important point is that implementation is the culmination of the entire design process and it must be carried through to this stage once it is started. If the decision making process is interrupted, momentum may be lost and the entire design process aborted.

New sponsor
For small-scale design, an individual representing the sponsor is normal. For large-scale projects affecting diverse areas of interest, a team or committee is often required. In any case, the sponsor must be constituted so that he can function effectively within the urban design process as articulated above.

The key attributes of the new sponsor must be:
1. The ability to make decisions when they are posed and to make them well:
 a. As a group or an individual he must have sufficient knowledge (or have it available through staff) to act intelligently upon the technical proposals of the designer and to relate these to the original goals established for the process.
 b. He must, at the point of decision, receive the designer's proposals in their totality and be capable of responding totally through his decisions as a synthesizer of all the sponsor's requirements.
2. The power to make binding decisions, regardless of employment or contractual relationships with the designer, as power is the key attribute of the sponsor.
3. The time to devote to the design process and to prompt decision making.
4. The willingness to participate as an individual (or as a group of individuals) in personal involvement with, and commitment to, the design process.
5. Continuity throughout the process. To change the individual or individuals, constituting the sponsor, during the design process can be just as damaging as changing the designer.

"Process for Action" illustrates one form of this new sponsor in Cincinnati's Working Review Committee for its downtown redevelopment—a committee
that, by virtue of its membership and staff, has all of the above attributes even though it has no employment or contractual relationship to the designer.

The new sponsor contrasts with the situation as it often exists today—particularly within a public agency but often including private sponsors also.

In this situation, the designer may submit his proposals for decision to an agent not vested with decision making power. His proposals are often reviewed, not by that agent, but by others—committees or bureau employees. The reviewers are normally concerned with separate segments of the proposal with no one responsible for review of the whole. The designer often is not permitted to discuss his proposals directly with those who review them. In the end he receives his decision in the form of a consensus report ratified by the individual in the hierarchy of the sponsor who does have decision making power but who often has not even seen the proposals upon which he is rendering his decisions.

New designer

As in the case of the sponsor, the designer too must reorganize if he is to function effectively within the design process. He is the technical master of this process and must be able to administer it and to adapt it to fit the particularities of each project.

Regardless of the scale of project the designer today is generally a team. Each team is made up of differing specialties tailored particularly to the requirements of each project. This team may be for a small project no more than an architect, mechanical-electrical engineer and landscape architect. For a large urban design project 15 or 20 different specialists may be required (traffic engineering, sociology, political science, systems engineers, etc.).

While such a team of specialists requires a co-ordinator, it functions best as a co-equal group of peers when developing or testing concepts. It is this group which, in fact, is the designer in the sense that the designer is the generalist who synthesizes all the specialties.

If the chief attribute of the sponsor is power, that of the designer is creative conceptualization and imagination—the ability to forecast the image of decisions. Although each individual member of the team may have an isolated area of expertise, he must be capable of contributing toward this attribute which must be inherent in the team as a whole.

The architect is often best qualified as team co-ordinator as he is by experience an individual generalist rather than a specialist. Yet, in this role he should not take upon himself the sole responsibility for synthesis, which is rightly the role of the team itself.

National design policy

Given the results of the absence of process—or at least from an incoherence of process—as we see these today in our physical environment; given the initial demonstration that the process proposed above, with its new sponsor and designer, can achieve far better results where offered the chance, as in Cincinnati and Baltimore City; given the involvement of government in the public and private decision making process that shapes our environment today; and given the leadership role inherited by the federal establishment in this governmental influence on decision making, it is today feasible to consider the adoption of the recommended process as a national design policy.

This process is adaptable to all types of physical design projects and to all scales—including the scale of the nation.

By modifying the process and carefully structuring the sponsor’s team and the designer’s team to fit each situation, it can be applied to the model cities program; to the development of new towns; to public planning programs from the neighborhood to the regional scale; to community renewal programs; to urban renewal and rehabilitation projects; to area economic development activities; and to highway planning. It can and should be applied to the development of individual structures and facilities—to private and public buildings, parks and systems.

This process holds out the hope of producing order to replace our present chaos, of creating a framework for the art of architecture in place of our present artistic impoverishment.

This, as a national goal, is attainable if the process is correctly understood and applied; if the sponsor and designer are concerned with the social realities of the citizen who must live within the end product and if the citizen is involved in the process by making public the decision making and the image of its design that is today normally withheld from public view.

Beyond these conditions is the fundamental precondition that there be developed a set of co-ordinated national objectives, and strategies to achieve same, as these relate to our physical environment.

The Federal government can apply the recommended design process to establish these national objectives and strategies. It can adapt the process to its current public programs. It can encourage the use of this process in all areas of activity outside of its direct jurisdiction.

The goal of constructing a national physical environment matching the quality of our national aspirations and resources is clearly attainable. The complexities of programing and planning for this goal are no greater than those faced in our exploration of space or in our successful prosecution of a world war. It has been achieved by less resourceful nations in the past.

The first step toward such a goal is to reintegrate design into the decision making process and to apply the enlightened process at every scale of endeavor consistently and creatively as we add to and rebuild our national physical fabric.
New thin-shell forming technique uses a balloon to both lift and mold concrete

Potential economies of thin shell construction often are not fully realized because of the cost of formwork. The construction process is sometimes characterized as, “building a wood roof to form a concrete roof.” Thus the reason for the continual search for new forming techniques.

The newest of these, which was first demonstrated in the U.S. at Columbia University during the A.I.A. convention last month, uses a balloon form to lift concrete and its reinforcement into the air to yield an “instant” thin shell.

So far, new approaches to forming thin shells have consisted mainly of multiuse of forms, prefabricated shells, or, for very large domes, use of mounds of earth.

While this new method, invented by a 34-year-old Italian architect, Dante Bini, resembles somewhat the Airform system conceived in 1942 by architect Wallace Neff, the big differences are that the Binishell system requires no scaffolding at all, and the construction process itself gives the concrete a uniform thickness. Neff employed a neoprene balloon, which, after inflation, had the reinforcement placed on top and concrete sprayed on pneumatically. Uniformity of thickness depended on the skill of workmen and care in supervision; scaffolding was required for the placement of steel and concrete.

Bini uses a plastic membrane over which are laid a flexible steel mesh and a fairly free-flowing concrete mix. The airtight membrane, anchored to a ring at the base of the shell, is inflated by means of two blowers powered by 5- to 10-hp motors. The pressure needed to lift the concrete and reinforcement varies from 0.15 to 0.75 psi, depending on the size and shape of the dome. Pressure is maintained constant by means of pneumatic regulators and air valves.

The reinforcing steel varies with the characteristics of the dome. Usually, it consists of a mesh and additional reins...
forcing elements (bars or cables) in the direction of the maximum tensile stresses and in the area of large cuts in the dome.

Additives are used in the concrete to modify its flow and setting time. The additives give plasticity to the concrete and allow it to adhere to the steel mesh after inflation of the membrane. This operation may be eliminated (as was done at Columbia) by use of a thin stretchable membrane superimposed on the concrete and lifted during inflation.

Although the Columbia structure is circular in plan, square-, rectangular-, or polygonal-shaped bases are also possible. The inventor states that even high-rise structures would be possible with the method.

Openings may be provided in the domes either by means of pre-set templates, or by cutting them out with a rotary saw after the concrete has hardened.

The inventor says that the compactness of the concrete and shape of the domes guarantees water-tightness without requiring the addition of sealants, but they may be used as a precautionary measure.

Thermal insulation may be provided by sprayed-on asbestos or by sprayed or board types of urethane or polystyrene.

The experimental structure on the Columbia campus was inflated in an hour and a half, is 2 in. thick, and weighs 33 tons. It will be test loaded and strain measurements will be taken at different locations to determine shell stresses. Sponsors of the demonstration were Dr. Kenneth A. Smith, dean of Columbia School of Architecture, and Dr. Mario G. Salvadori, professor of civil engineering and architecture and chairman of Columbia division of architectural technology.

Bini, who has his firm in Bologna, has already built 20 shells in Italy by his technique. Cost there is less than $1 per square foot of floor space. The Binishell company, incorporated in Switzerland, hopes soon to license construction firms in the U.S.

B.R.I. to vote once more on merger with B.R.A.B.

Membership of the Building Research Institute is voting on June 9 as to whether their organization should join with the Building Research Advisory Board to form a new organization—known as the Building Research Board—within the National Academy of Sciences. A vote last February—298 for, 224 against—failed to produce the two-thirds majority necessary to permit the merger to take place. The board of directors again unanimously approved the merger proposal on May 3; and so are again asking for the membership vote in the hope that a favorable response will permit the merger to take place on the July 1 target date.

The merger is being opposed by a dissident group of members headed by Robert P. Darlington, Washington architect and former technical director of B.R.I. and assistant director of B.R.A.B. Darlington has stated that if the proposal is defeated once more, he will demand the resignation of the current board.

Peter B. Gorden, president of B.R.I., wrote the membership that an immediate decision is necessary with three possible alternatives: 1) to dissolve and combine forces with B.R.A.B., 2) to dissolve and let the pieces fall where they will, and 3) to remain separate with a drastic cutback in operating costs, staff, and services.

Gorden pointed out in his letter that reserves were deliberately pumped into the operation in the years 1963-1965 to make up for the falling off of membership dues and conference income, in the hope of attracting new members and better conference attendance, thus generating new income. Since this failed to happen, he said that B.R.I. has no alternative but to cut back activities after July 1 to maintain solvency.

Lumber size standards: back to the old drawing board

Late in April, the Commerce Department rejected the current proposal to establish "green" and "dry" standard widths for softwood timbers. This would seem to stall the American Lumber Standards Committee's attempt to replace the 1953 softwood lumber standards with a set of technically-based rules agreeable to a majority of the industry and providing a more consistent set of lumber sizes to work with for the lumber consumer. Known as the 1½-in. lumber standard (the width for "dry" 2x4s) this latest proposal was put to a popularity contest within various segments of the lumber industry. Although most of the producers (80 per cent by number, 69 per cent by volume) agreed with the 1½-in. width, Commerce Department lawyers ruled this insufficient for "general consensus." Of the producers of "green" lumber, 44 per cent were against the proposal.

In rejecting the 1½-in. proposal, Department lawyers raised various technical and legal objections that will mean a rocky road in the courts should advocates of the new proposal seek to challenge the government's ruling.

Crx of the five-year-long saga has been competitive fights among softwood lumber producers. Oversimplified, the problem has been the unwillingness of the Western "green" producers to let go of their present competitive advantage over "dry" producers.

Meanwhile, to prevent even greater confusion within the lumber-grade-marking business, the Department decided to retain the 1953 standard "pending further study." In doing so, the Department's lawyers reversed the ultimate of former Secretary John T. Connor that a new standard be devised.

Commerce's decision to turn down the latest A.L.S.C. compromise stemmed from two factors:

First, the poll, conducted by the Census Bureau, did not show a "general consensus" in the industry for the proposal, according to the Department's lawyers. Prior to the poll, Commerce's legal staff never firmly defined just what would constitute a "general consensus." Everyone agreed concensus was more than 50 per cent and less than 100 per cent—but no one would say where to draw the line. Now the Department's lawyers have ruled that 75 per cent support "would not, as a legal matter, be general concurrence."

Second, although experts at the Bureau of Standards and the Agriculture Department's Wood laboratories declared the 1½-in. proposal technically sound, the Commerce lawyers disagree. The proposal delegated authority to the A.L.S.C.'s Board of Review to determine stress values—which, said Commerce, is not proper. Further, the proposal did not include "performance criteria", as it should have in the lawyers' view, although construction industries have debated the "performance concept" for years.

Just what will happen next is not apparent. Advocates of 1½-in. could seek relief in Congress, but they do not appear to have the political leverage. There has been some talk of seeking a new standard from the U.S.A. Standards Institute, but this idea has been rejected in the past. A court battle against the Department's ruling is possible but time-consuming.

Another possibility, often mentioned, is to have regional grade-marking groups begin to proceed on their own to approve 1½-in. lumber.
Engineers achieve surprising savings by post-tensioning apartment flat plate slabs

More often than not, the post-tensioning technique is employed for long spans and special structures. Thus even the designing engineers were surprised when a post-tensioned flat plate apartment building in the Washington, D.C. area showed a structural savings of over 20 per cent attributable to the technique. In addition to achieving these savings by post-tensioning, the engineers, Horatio Allison Associates, had the assurance that the slabs would not deflect excessively, as has sometimes happened when conventional flat plates are designed to too close a margin. The $6-million 13-story Dolly Madison Apartment project in Arlington, Virginia, designed by Sheridan, Behm & Associates, has a 5-in. flat plate, typically spanning 15 ft by 18 ft. Following is a discussion of the design and construction by the engineering firm:

Consideration was narrowed to two materials and methods highly competitive in this area—continuous welded steel frame and concrete flat plate. The fact that our client had the capability to perform as his own general contractor with concrete flat plate, but not with a steel frame, proved to be the deciding economic factor. Savings in general contractor profit, overhead, concrete placing and reinforcement, overcame the slight edge that the steel frame has normally enjoyed over concrete in the Washington area.

Once the mild-steel reinforced flat plate had been selected for economy, we then attempted to optimize the potential of the basic structure. Our responsibility to make the most of a given material and a method led us to a comparison of a mild steel flat plate to post-tensioned flat plate. The flat plate's simplicity and economy permitted the architect to expose the 4-ft 4-in. leading edge of the structure which has a continuous 5-ft 8-in. cantilever.

The continuous cantilever afforded several design and construction advantages. For example, exterior walls were projected on the cantilever within 2 ft 8 in. of the edge where an increased apartment size was desired. The cantilever provided an ample balcony elsewhere. Also, the exposed cantilever eliminated the use of scaffolding except at projections, gaining savings of 80 per cent of scaffolding costs. The continuous cantilever allowed the use of a brick veneer wall in lieu of the normal 8-in. masonry wall found on the conventional apartment project. Not only is the wall lighter, but it is more economical to construct from a labor standpoint. This wall allowed the owner to enclose faster, and also, it decreased the U factor from the conventional 8-in. masonry value of 0.26 to the veneer wall value of 0.10.

Preliminary structural considerations

Once the basic structural shape, structural system and number of apartment units were established, we worked to maximize the economy of the flat plate. The architect laid out the apartments based upon the use of a mild steel flat plate with spans of 15 ft 4 in. by 18 ft. We felt that a mild steel flat plate, designed according to ultimate strength methods, would not give our client any particular advantage over competitive builders, since this design is common practice in the Washington, D.C. area. Any further reduction in reinforcement steel or thinning of the concrete slab would only cause excessive deflections, creep and perhaps future maintenance problems. Attempts to over-economize with this method has caused excessive deflections and creep in some area buildings. Perhaps the stimulating effect the flat plate has had on the engineers as
A FLOOR A WEEK

The construction sequence was carefully worked out so as to maintain continuity of work, but also to allow proper post-tensioning operations. To minimize effects of creep and elastic shortening, the central 209-ft portion was tensioned, followed by the 47-ft end sections.

well as architects—for its efficiency, economy and structural ability to withstand forces far above its design capacity—has caused the engineer to refine this design to the point where it infringes upon the economy of other building components (e.g., exterior walls, window and door fits, interior partitioning and door frame fits, etc.).

Because of this deflection and creep of the mild steel flat plate, we began investigating a method that would at least relieve the deflection problem. Once we began considering a post-tensioned flat plate, we were urged by some to take advantage of the method by increasing the spans to a minimum of 20 ft. An initial cost study showed that this was not feasible economically and could not compete with the ultimate strength design flat plate of a smaller span. The required steel in the mild steel version of 3.3 lbs per sq ft versus 0.8 lbs per sq ft of tendons in the post-tensioned version indicated that there might not be any advantage for the latter system.

Initially our only hope for the post-tensioned system was to equate the cost of the tendons to the mild steel on the identical span. The savings would then be 1 in. of concrete thickness valued at approximately $0.10 per sq ft. (The post-tensioned method yielded a 3-in. slab versus a 6-in. slab for mild steel design.) We were somewhat concerned by the common use of the post-tensioning method for long spans (20-ft minimum) and heavy loading. We were also concerned by post-tensioning's heritage of high labor costs, derived from need for more labor and skilled workmen, and the high level of quality control needed for concrete. We doubted the proper use of this method for the short spans of the building and our doubts were reinforced by several cable manufacturers. While these manufacturers were more than willing to bid on the post-tensioning material, they were politely skeptical of the application. Up to this point, the Washington area contained only a handful of post-tensioned structures, mostly unique or long-span structures.

However, one company guaranteed a price of $0.28 per sq. ft in place for 0.65 lbs per sq ft of tendons based on our preliminary plans. This price indicated that there might be savings greater than that from the 1-in. concrete. Next we had to convince the owner of the economy of this method, relatively new in our area. We also had to convince ourselves that we could simplify the design to a point where expensive labor and skilled workmen would not be required, as there are no workmen qualified for post-tension work in Washington.

The structural design

Basically there are three methods for the design of a post-tensioned flat plate:

1. Balanced-load method—this method attempts to balance an assumed portion of the total load on the structure by the prestress force.

2. Ultimate-strength method—this method is based upon the same principles used in reinforced concrete design.

3. Elastic-stress or allowable-stress method—the first theory used in analysis of prestressed structures which is based upon the theory that under working loads and stresses, concrete will be an elastic material.

The balanced-load method was used on the preliminary design as an extremely brief and effective method of determining the prestress forces required.

The load-balancing method is increasing its popularity due to the idea that gravity load or a portion thereof is balanced by the drape of a tendon. However, once this method applies resistance to a portion of the load, then the engineer must apply either the ultimate-strength method or the elastic-stress method to complete the analysis. This method also assumes that the structural engineer can arbitrarily select the correct portion of the dead and live loads to be balanced (e.g. total dead load and 50 per cent live load) for the achievement of zero deflection. We felt that this arbitrary point of zero deflection lacked analytical meaning, and also felt that we could not base the selection of this point upon experience. Our final reasons for the rejection of this method were: 1) the varying live load on the balcony (100 psf) and the apartment load (40 psf); 2) the fact that in apartments the exterior bay is generally load-free.
and the central bay contains the majority of the partitions (e.g., corridors, kitchens, etc.), and 3) the varying bay sizes.

Our final design was accomplished using the elastic-stress method and checked by the ultimate-strength method. For a practicing engineer, the use of these more analytical methods is somewhat more familiar. These methods are used in other structures such as reinforced concrete and structural steel frames, and perhaps this influenced our method selection as well as any other considerations. We had also set up an office design procedure for a post-tensioned flat plate similar to the procedures used on other frame buildings.

Briefly, our design procedure is as follows:

1) Select slab thickness in relation to amount of prestress required.
2) Establish the loading conditions.
3) Calculate the section properties of the columns and slabs.
4) Find the maximum eccentricity of the tendon and determine the maximum tendon spacing.
5) Use the moment distribution method to determine the moments from varying loading and span conditions. Assume some moment resistance by the column when slab deflection is not zero.
6) Using the maximum moment, set the tendon at its greatest eccentricity and establish the prestress force required producing a stress condition suitable to the concrete material selected and conditions of use.

7) Check the concrete slab stress under various conditions of load.
 a) initial prestress
 b) prestress at dead load
 c) prestress at live load
 d) check all unusual loading conditions for stress.
8) Solve for the cable profile using the two foregoing steps in repetition.
9) Check the deflection of positive moment areas and cantilever.
10) Select the number of tendons required and space in the middle and column strips. Also select the smallest number of cables for economy.
11) Select the required concrete strength considering the need for high early strength, modules of elasticity, creep strain and loss of prestress.
12) Check the end-anchorage design for the concrete bearing stress. Design bearing plates.
13) Check ultimate moment everywhere.
14) Check column shear.
15) Check friction losses, elastic shortening and creep.

This brief procedure summarizes our approach to the flat plate structure. We are presently attempting to program a method similar to this for computer application. The computer as a design tool will allow us to check stresses at every point for various load conditions. It will also allow us to investigate more concrete versus prestressing steel costs to balance the economy of each material more critically.

Lightweight concrete (112 p.c.f.) was used in the design to reduce the dead load by 25 per cent. Expanded shale and Potomac River sand were the aggregates. The expanded-shale aggregate exhibits good creep characteristics, an important factor in the selection of concrete for a post-tensioned slab. The reduction in dead load due to lightweight concrete reduced the prestress force to allow a net savings above our original $0.10 per sq ft figure.

An expansion joint was also eliminated in the 393-ft 4-in.-long building due to the use of post-tensioning; adding savings to our preliminary figure. Another cost savings occurred when all beams were eliminated on the floors. The additional load imposed by the stair opening was resisted by adding a few extra cables, the cost of which was far below the framing costs for openings with beams. A similar solution was used at the elevator shafts.

Because of the building's length—393 ft 4 in.—it was necessary in the design stage to impose a few limitations on the sequence of stressing and pouring. Since these limitations are not imposed on a mild steel flat plate, we discussed them with the builder, Mr. Syd Albright of the Dittmar Co., to assure ourselves that this would not affect labor costs or cause delays. We worked out a preliminary pouring sequence that would be somewhat flexible for the builder and would provide a suitable solution to structural problems.
Specifically, the structural problem was the elastic shortening of concrete when the prestress force is applied to the slab. If the elastic shortening of concrete had an additive force on the columns from one end of the building to the other, the column design would become burden-some. The solution to this problem was quite simple: we post-tensioned the central 209 ft 4 in. by using a jacking force at each end and co-ordinating the pulls via walkie-talkies. A minimum of three days passed before the two end portions were even poured, after the elastic shortening and a good percentage of creep had taken place in the long 209-ft 4-in. pour. Therefore the only elastic shortening effect on the end columns was due to the thin slab and the tendon's comparatively small drape. Friction losses were negligible elsewhere in the short spans.

We also considered the inducement of moment into the relatively stiff columns under extreme loading conditions. The columns were designed by the ultimate strength method to resist gravity loads and moments due to unbalanced loading of the slab and the subsequent deflection.

POST TENSIONING LABOR REQUIREMENTS TO POUR 574 CUBIC YARDS PER WEEK

<table>
<thead>
<tr>
<th>No. of men</th>
<th>Duties</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Stressing Crew</td>
</tr>
<tr>
<td>4</td>
<td>Tendon Placers</td>
</tr>
<tr>
<td>6</td>
<td>Rodmen</td>
</tr>
<tr>
<td>4</td>
<td>Finishers</td>
</tr>
<tr>
<td>2</td>
<td>Straight edgers</td>
</tr>
<tr>
<td>2</td>
<td>Rakers</td>
</tr>
<tr>
<td>7</td>
<td>Buggy men</td>
</tr>
<tr>
<td>3</td>
<td>Dumpers</td>
</tr>
<tr>
<td>1</td>
<td>Hopper man</td>
</tr>
<tr>
<td>2</td>
<td>Platform man</td>
</tr>
<tr>
<td>1</td>
<td>Ground man</td>
</tr>
<tr>
<td>1</td>
<td>Elevator hoist man</td>
</tr>
</tbody>
</table>

DOLLY MADISON COST BREAKDOWN—Garage Not Included

<table>
<thead>
<tr>
<th>Flat plate area</th>
<th>Plate area sq ft</th>
<th>Plate yardage cu yds</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 typical floors @ 37,724 sq ft</td>
<td>452.688</td>
<td>6,960</td>
</tr>
<tr>
<td>First floor</td>
<td>39,304</td>
<td>660</td>
</tr>
<tr>
<td>(15 ft-4 in. x 18 ft-0 in. typical bay)</td>
<td>491,992</td>
<td>7,620 in plate only</td>
</tr>
</tbody>
</table>

QUANTITIES AND COSTS OF MATERIAL AND LABOR

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Cost</th>
<th>Per sq ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Concrete—slabs, stairs and columns—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not slab on ground or foundation</td>
<td>8450 cu yds</td>
<td>$145,800</td>
<td>$0.296</td>
</tr>
<tr>
<td>2. Tendons</td>
<td>324,000 lbs.</td>
<td>121,000</td>
<td>$0.369</td>
</tr>
<tr>
<td>3. Support chairs</td>
<td>10,500</td>
<td>.027</td>
<td></td>
</tr>
<tr>
<td>4. Column and Stair mild steel</td>
<td>26,000</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>5. Miscellaneous slab steel</td>
<td>9,200</td>
<td>.010</td>
<td></td>
</tr>
<tr>
<td>6. Form material—slabs, columns, stairs, shores</td>
<td>40,500</td>
<td>.230</td>
<td></td>
</tr>
<tr>
<td>7. Labor (non-union)—concrete, steel</td>
<td>195,000</td>
<td>.960</td>
<td></td>
</tr>
<tr>
<td>carpentry, superintendent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Crane and Hoist rentals</td>
<td>22,000</td>
<td>.045</td>
<td></td>
</tr>
<tr>
<td>9. General supplies and misc.</td>
<td>30,000</td>
<td>.061</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$610,000</td>
<td>$1.23</td>
<td></td>
</tr>
</tbody>
</table>

DOLLY MADISON APARTMENT

Built in 1967

<table>
<thead>
<tr>
<th>Bays—15 ft-4 in. x 18 ft-0 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure—5 in. post-tensioned flat plate</td>
</tr>
</tbody>
</table>

WILDWOOD APARTMENT

Built in 1963

<table>
<thead>
<tr>
<th>Bays—15 ft-4 in. x 17 ft-1 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure—5 in. mild steel flat plate</td>
</tr>
</tbody>
</table>

No. of plates—13

- Area—491,992 sq ft
- Total structural cost—$610,000

No. of plates—11

- Area—519,928 sq ft
- Total structural cost—$717,000

Cost per sq ft

- $1.38
- (Add 12% for 4 year time adjustment) .17

Adjusted cost per sq ft

- $1.23
- Adjusted cost per sq ft $1.55

Post-tensioned savings:

- $1.55 Wildwood 5½ in. plate
- 1.23 Dolly Madison 5 in. plate
- .32
- .04 From 5½ in. to 5 in. slab (reduce 1½ in. concrete)
- $.36 per sq ft actual savings 1967

Note: A concrete contractor issued a low bid of $2.00 per sq ft on Wildwood Apartment before the owner built it himself.

Total savings of post-tensioned 5-in. flat plate over mild steel 6-in. flat plate on Dolly Madison was $177,000.00.

Construction

One of the most interesting aspects of the construction was the ease with which it was built. The builder constructed 12 floors in 13 weeks and one day. He poured 37,724 cu ft of floor area even five working days, a total of 574 cubic yards (not including columns). This was accomplished by holding to his construction sequence, a schedule rigid in the establishment of pours but flexible in various other operations. Surprisingly he also was able to accomplish constructing the building with a minimum of (skilled and unskilled) labor. He ran only a three-man stressing crew and a 10-man tendon placing crew, containing six rodmen. The reduction of the thickness of the slab also minimized the number of men required on the concrete crews.

Bulkheads were prefabricated on the ground for forming pour strips and anchoring cables. Once hoisted onto the deck, the deck was clearly marked by the bulkhead as to the type of tendon and its placing sequence. The builder devised index cards that contained the same information for each bulkhead. One card was a tendon layout card and the other was a sequence card. These cards eliminated time lost hunting for the proper tendons for a specific bulkhead.

The builder also made another index card on the shims that would be applied to the tendons after the prestress force had jacke the tendons to the correct pressure. This card co-ordinated the proper shim (all marked) to the correct tendon (also marked).

Final cost breakdown

The reduction in dead load achieved—a saving in columns and caissons; a 790-ft expansion joint and its double column were eliminated; all beams were eliminated at openings; concrete thickness was reduced by 1 in., and the quantity (and cost) of steel was also reduced.

We have computed an accurate record of job costs, and have tabulated them here. These prices do not include profit or taxes. All labor is non-union, and more important, the building was owner-built.

The almost unbelievable figure (profitless) of $1.24 per sq ft for the complete structure, almost 40 to 45 percent lower than most simple flat plates (mild steel) in this area, causes one to speculate whether post-tensioning is capable of achieving savings of $0.75 per sq ft or whether there is merely a lot of profit in the concrete business. The former is highly unbelievable. The chart indicates a savings of $0.36 per sq ft for the post-tensioned method.
Does anyone make an honest chair?

Yes, William Sullivan's 200 Series chairs capture the imagination with their complete honesty. Oiled walnut, screaming red epoxy or... you name the color. Comprehensive seating from clean slat chairs to beautifully detailed upholstered chairs and sofas. May we send you our illustrated brochure?

MARBLE/IMPERIAL FURNITURE COMPANY, BEDFORD, OHIO 44014
A DIVISION OF DICTAPHONE CORPORATION

For more data, circle 86 on inquiry card
the interesting ones are reinforced concrete

The design restrictions of other construction methods are eliminated.
With reinforced concrete you work freely.
It molds into any shape.
Unique facades can be designed.
Flowing roof lines created.
Record heights obtained.
It's economical, too!
Design for it on your next project.

CONCRETE REINFORCING STEEL INSTITUTE
228 North LaSalle Street • Chicago, Illinois 60601

Edens Theatre, Northbrook, Illinois
Architects: Perkins & Will
Engineers: The Engineers Collaborative
General Contractor: Chell & Anderson

Wyoming National Bank Building, Casper, Wyoming
Architect: Charles Detson
Structural Engineers: Kelchum, Kunkel, Ryan & Fleming
General Contractor: The B. H. Baker Company

Chicago Teachers College, Chicago, Illinois
Architects: Perkins & Will
Structural Engineers: Perkins & Will
General Contractor: Chell & Anderson
METROPOLITAN OPERA, Lincoln Center, New York City — Seven 8' x 60' stage lifts, two orchestra pit lifts, other equipment for handling sets and scenery.

Last year Dover Stage Lifts met the engineering challenge of the Metropolitan Opera

ROSARIAN ACADEMY, West Palm Beach, Fla.—Single stage lift 46'-4" x 9'-0", rise 5'.

and the budget of the Rosarian Academy Auditorium

These extremes of complexity and cost illustrate the versatility of Dover Stage Lift engineering. Utilize this unique breadth of experience on your projects by contacting Dover for imaginative suggestions on achieving the effects you want with Oil-draulic® Stage Lifts. There are practically no limitations on platform size, lifting capacity or control systems. Installation is by elevator specialists whose services are always available to assure dependable maintenance and operation. Write for literature and list of recent installations or see our catalog in Sweet's files.

DOVER CORPORATION / ELEVATOR DIVISION
Dept. T-3, P. O. Box 2177, Memphis, Tenn.

For more data, circle 87 on inquiry card
Prefab walk-in coolers and freezers meet changing demands for food storage

An architect designing any large building or complex should recognize the new standards for mass-feeding facilities, and the resulting increase in frozen food storage.

By George M. Prince
Bally Case and Cooler, Inc.

Buildings which are occupied by large numbers of people, whether in a center city area or an outlying district, can no longer be served adequately by "the little restaurant around the corner." In the design of schools, hospitals, dormitories, nursing homes, motels and hotels, industrial plants, public buildings and office buildings, there must be high-quality facilities for feeding the many people working, relaxing, and/or living there.

The architect designing the building with its mass-feeding facilities must consider the most practical and efficient food preparation and serving equipment to incorporate into his design. One of the most important of these considerations is the type of equipment for food storage. More and more buildings today need walk-in refrigerated storage space that will be efficient, have a long life, utilize space and, very important, be flexible. A good solution to all these requirements is the prefabricated walk-in.

Space needs are growing and changing

In the days before frozen foods, walk-in refrigerated storage space meant 35 deg F storage space for fresh meat, vegetables and dairy products. Today, —10 deg freezer space is needed at a ratio of about 1 cubic foot of freezer space to 2 cubic feet of 35 deg space.

Mass-feeding experts feel this proportion will change further, as the trends toward pre-cooking and freezing continues to increase. Improvements in flavor, taste, quick service and variety will be possible. Much of the pre-cooking will be done by suppliers using fast-freezing cryogenic techniques to maintain high flavor levels in vegetables, oven-freshness in baked goods, and fresh-from-the-water taste in seafoods. Other freezing will be done in the restaurant or institution kitchen. This will make possible large-batch cooking, will take advantage of low prices, and will make efficient use of surplus quantities of cooked foods.

Further, during the life of many structures being built today, the need for cooler-freezer space will change considerably. A school cafeteria that now serves a limited number of students may sometime in the not-too-distant future have to serve a much larger number. Or it might even become the preparation and freezing center for food for a school group.

Prefabs are movable and expandable

Prefab walk-ins of any needed size or shape, for any use where refrigerated space is needed, can be assembled from standard parts. Whether or not future changes are expected when the prefab is originally installed, it can later be expanded, divided, or disassembled and reassembled on a new site. New panels and new refrigeration capacity can be added.

Sometimes the change is in overall size; sometimes the interior is redivided to change proportions of cooler and freezer space, or the cooling system is changed to convert cooler temperatures to freezer temperatures.

Most new units use urethane

Prefab walk-ins that we manufacture are assembled from prefabricated standard parts and cooled by factory-assembled hermetically sealed refrigeration units. The key structural units are standard sized panels that are manufactured by foaming 4 in. of urethane between two skins of aluminum, galvanized steel, or stainless steel in a heated molding jig. Urethane, a plastic resin which is expanded with Freon and then heat cured, is a highly efficient insulator. It is a 97 per cent closed-cell material that will not absorb moisture. A 4-in. panel has a U factor of .029. Freezers with this material can operate at —40 deg F.

Structurally, the foamed urethane panel is strong and rigid enough to be self-supporting and load-bearing. Because no framing is needed for strength, every square inch of the panel insulates equally with no heat transmitting members.

Construction is simple, flexible

Tongues and grooves molded into the edges of the panel assure tight joints. A hook-over-rod cam action locking device
(small drawing turned by hex wrench as the walk-in is assembled, fastens panels together under constant tension. The tension is maintained because locks are mounted on a strip of steel imbedded in the urethane foam. With a rod on one end of each strip and a hook on the other, the strips lock to form a continuous ribbon of steel binding all panels together.

Because the panels align accurately and lock tightly together, metal edge to metal edge, and the oversized foamed-in-place tongue compresses into the undersized groove to form a weather-tight, vermin-proof, sanitary joint, the prefab walk-ins may be erected outdoors as well as indoors. Food particles and juices cannot seep into the insulation to reduce efficiency or contaminate. Metal surfaces are readily scrubbed and disinfected indoors, and are impervious to rain and snow. Additional insulating value, especially in direct sunshine, is gained from the patterned aluminum, galvanized steel, or stainless steel reflective surfaces.

Specialized panels form walls, floors and ceilings. Lightweight doors with automatic closers are mounted in their own panels.

Additional structural support from either interior or exterior steel members is required on ceilings of walk-ins where the smallest dimension is longer than 12 ft. A hung ceiling is supported by special non-conducting nylon bolts through the panels. Floors for fork-lift truck or other heavy use can be protected with concrete and epoxy wearing surfaces.

Shelving, racks, bump panels and other equipment designed to co-ordinate with the structure can be specified also.

In the case of outdoor installation, wood or steel sloped roof structures may be specified by the architect and built on site. Most economical and efficient, however, is a flat built-up roof with 2 x 4 spacers to allow air space between ceiling panels and roof.

Careful assembly assures balance

Refrigeration systems for prefabricated walk-ins are assembled in many sizes, then hermetically sealed and tested, ready for immediate use. They are assembled from a variety of components so that compressors and coils are always completely balanced in capacity. Thermostats, switches, time clocks, and all other needed controls are co-ordinated into the refrigeration system. The complete assembly is made in a white room under controlled dry air conditions.

The compatibility of components delivers the exact temperature needed to cool the walk-in. Because the system is supplied by the manufacturer, there is no division of responsibility for performance, service and guarantee, which should result in reduced field service problems and lower service costs.
Integrated ceiling system pre-engineered for acoustics, light, and wall-to-wall air delivery

The Dimensionaire Ceiling System (DCS) delivers conditioned air through a patented linear air bar and air tube assembly. The assembly functions as a wall-to-wall diffuser interlocking with cross tees to form grids that support a variety of lighting units and acoustical materials. The air bar is a continuous narrow metal channel, vaned on the top and slotted on the bottom. A center diverter in the bar directs the flow of conditioned air across the ceiling, setting up a natural air-flow pattern that draws air up from the room's comfort zone. Conditioned air is forced through the tube into the air bar. Spacing of air bars across the ceiling determines air flow patterns. Depending on the size and ceiling height of the room, the bar delivers air at rates as low as 10 CFM/lf or as high as 70 CFM/lf. Noise produced at the higher delivery rates is reported extremely low. In the 60 to 70 CFM/lf. range, for example, the bar generates 40 to 50 decibels.

The rigid Fiberglas air tube, suspended by hangers and fabricated in a pentagonal shape, is said to absorb equipment noise and insulate against heat loss and gain. The pentagonal contours of the air tube permit installation in restricted plenum areas as shallow as 12 in. Where required, the air tube can be fabricated in other shapes.

The grid system is formed by interlocking cross tees to the air bar. Main tees intersect the cross tees at right angles and are parallel to the air bar. The resulting grid pattern can be adjusted to accept the largest Fiberglas acoustical boards of standard-sized tiles which lift out of the suspension system for access to the above area.

Isometric drawing (right, above) shows the pre-engineered components for the system:
1) lighting units that meet illumination requirements from 20 to 200 foot-candles; 2) pentagonal-shaped air tube that absorbs equipment noise and insulates against heat loss and gain; 3) Fiberglas Dimensional Ceiling boards or tiles that control sound; and 4) linear air bar that functions as a wall-to-wall air diffuser, interlocking with cross tees and return air bar to form grids that support lighting units and acoustical materials. • Owens-Corning Fiberglas Corp., Toledo, Ohio.

Glass-ceramic wall panels limited only by imagination

An architectural wall panel of Pyroceram glass-ceramic material offers new direction to building design. Among the applications are curtain wall systems, window walls, veneer for masonry walls, interior partitions, accent walls, counters, and low-intensity lighted ceilings. Panels may be opaque or translucent, smooth or textured. The basic color is gray—this may be backlighted—either in matte or glossy finish. Panels may also be white, solid blue, or solid brown, and since the color is an integral part of the material, it will not change.

Characteristics: the material is non-porous; when used externally rain will wash it clean. It is indifferent to industrial atmospheres, salt air or other corroding influences. It resists thermal shock with an expansion coefficient of zero, and is reported to be literally as hard as steel. In nominal 0.200-in. thickness, the panels are approximately 2.5 lbs per sq ft with a modulus of rupture of more than 50,000 psi. Panels are available in 4-ft widths and up to 12-ft lengths. • Corning Glass Works, Corning, N.Y.

Glass-ceramic wall panels limited only by imagination

An architectural wall panel of Pyroceram glass-ceramic material offers new direction to building design. Among the applications are curtain wall systems, window walls, veneer for masonry walls, interior partitions, accent walls, counters, and low-intensity lighted ceilings. Panels may be opaque or translucent, smooth or textured. The basic color is gray—this may be backlighted—either in matte or glossy finish. Panels may also be white, solid blue, or solid brown, and since the color is an integral part of the material, it will not change.

Characteristics: the material is non-porous; when used externally rain will wash it clean. It is indifferent to industrial atmospheres, salt air or other corroding influences. It resists thermal shock with an expansion coefficient of zero, and is reported to be literally as hard as steel. In nominal 0.200-in. thickness, the panels are approximately 2.5 lbs per sq ft with a modulus of rupture of more than 50,000 psi. Panels are available in 4-ft widths and up to 12-ft lengths. • Corning Glass Works, Corning, N.Y.

Glass-ceramic wall panels limited only by imagination

An architectural wall panel of Pyroceram glass-ceramic material offers new direction to building design. Among the applications are curtain wall systems, window walls, veneer for masonry walls, interior partitions, accent walls, counters, and low-intensity lighted ceilings. Panels may be opaque or translucent, smooth or textured. The basic color is gray—this may be backlighted—either in matte or glossy finish. Panels may also be white, solid blue, or solid brown, and since the color is an integral part of the material, it will not change.

Characteristics: the material is non-porous; when used externally rain will wash it clean. It is indifferent to industrial atmospheres, salt air or other corroding influences. It resists thermal shock with an expansion coefficient of zero, and is reported to be literally as hard as steel. In nominal 0.200-in. thickness, the panels are approximately 2.5 lbs per sq ft with a modulus of rupture of more than 50,000 psi. Panels are available in 4-ft widths and up to 12-ft lengths. • Corning Glass Works, Corning, N.Y.

Glass-ceramic wall panels limited only by imagination

An architectural wall panel of Pyroceram glass-ceramic material offers new direction to building design. Among the applications are curtain wall systems, window walls, veneer for masonry walls, interior partitions, accent walls, counters, and low-intensity lighted ceilings. Panels may be opaque or translucent, smooth or textured. The basic color is gray—this may be backlighted—either in matte or glossy finish. Panels may also be white, solid blue, or solid brown, and since the color is an integral part of the material, it will not change.

Characteristics: the material is non-porous; when used externally rain will wash it clean. It is indifferent to industrial atmospheres, salt air or other corroding influences. It resists thermal shock with an expansion coefficient of zero, and is reported to be literally as hard as steel. In nominal 0.200-in. thickness, the panels are approximately 2.5 lbs per sq ft with a modulus of rupture of more than 50,000 psi. Panels are available in 4-ft widths and up to 12-ft lengths. • Corning Glass Works, Corning, N.Y.
HEATING & PLUMBING / Publication of a 1967 Heating Comparison-Selection Manual coincides with the publication of the updated 1967 Plumbing Comparison-Selection Manual. The latter includes a listing of 9,664 plumbing components of 84 manufacturers. The heating manual includes 6,519 listings representing 83 manufacturers. Single copies of each are $13. • Index Creations, Inc., P.O. Box 110, Madison, Wisc.

CONTROLS / A 1967-68 heating, air-conditioning and refrigeration controls catalog includes illustrated descriptions in 64 pages. • Emerson Electric, St. Louis.

Circle 400 on inquiry card

MASONRY REINFORCING / A 12-page guide features a line of masonry wall reinforcing for all types of masonry walls. • Wire Products Company, Chicago.

Circle 401 on inquiry card

AIR MOVING DEVICES / "Test Code for Sound Rating Air Moving Devices" incorporates the latest revisions of the code. This third edition contains 24 pages covering the history and authority of the code; sound power reference level; field testing; test setup and equipment; and observations and calculations. • Air Moving and Conditioning Association, Park Ridge, Ill.

Circle 402 on inquiry card

TEXTURED CEILINGS / The "1967 Catalog of Acoustical Metal Ceilings" describes textured metal that minimizes the visibility of joints and perforations. There are illustrated ceiling installations. Also included is test data on noise reduction and coefficients and sound transmission class. • E. F. Hauserman Company, Cleveland.*

Circle 403 on inquiry card

TRAFFIC DOORS / Several models of double acting, shock-absorbing rubber doors are described in a 4-page brochure. Doors have shatterproof glass vision panels, safety-cushion nosing, and gravity cam rise for self-closing. • Rubbair Door Div., Stic-Klip Mfg. Co., Inc., Cambridge, Mass.*

Circle 404 on inquiry card

INSTITUTIONAL FURNITURE / A 1967 catalog is divided into two sections: function-room furniture and institutional furniture. The 54-page catalog presents a total line of over 1,000 items for hotels, motels, restaurants and institutions requiring flexible equipment for social, professional, business or industrial functions. • Institutional Products, Inc., Philadelphia.

Circle 405 on inquiry card

INDUSTRIAL DOORS / A 12-page catalog includes illustrations and information on a variety of industrial and cold storage doors. • Clark Door Company, Cranford, N.J.*

Circle 406 on inquiry card

GLAZING / A 12-page brochure describes where and how to use Lexan polycarbonate glazing. The brochure explains that initial uses have been in educational, institutional and commercial buildings. It is particularly recommended in areas subject to vandalism or hard use. • Chemical Materials Dept., General Electric, Pittsfield, Mass.

Circle 407 on inquiry card

PLASTICIZED VINYL SHEET / A 14-page booklet describes how this adhesive-surfaced material is applied to the surface of fine metals where luster and smoothness are of the first importance. The Japanese-made material is said to be impervious to weather and water and is chemical resistant. • Nitto Electric Industrial Co., Ltd., New York City.

Circle 408 on inquiry card

DECORATIVE LIGHTING / A 32-page illustrated booklet describes the versatility of the Lyespan system for accent lighting, wall washing, and decorative lighting. • Lightolier, Jersey City, N.J.

Circle 409 on inquiry card

REFRIGERATION, DISPLAY EQUIPMENT / A 32-page illustrated catalog describes the 1967 line of commercial food refrigeration and display fixtures for retail stores, hotels, restaurants and institutions. • Clark Equipment Company, Niles, Mich.

Circle 410 on inquiry card

SPACE-FRAME SYSTEM / A 12-page brochure describes and illustrates a system with three-dimensional integrated modular frame work made up of five standardized parts. Illustrations show the spaceframe used for roofs, floors, ceiling gridwork, mezzanines and display areas. • Unistrut Corp., Wayne, Mich.

Circle 411 on inquiry card

COLUMNS / "Columns by Ultimate Strength Design—including Square Footings" is a 220-page book containing time- and labor-saving tables that present finished design calculations for loading based on the ultimate strength design method as presented in the 1963 ACI Code. All tables are based on high-strength reinforcing steels of 60,000 and 75,000 psi yield point, and concrete in strengths from 3,550 to 7,500 psi. Cost is $6. • The Concrete Reinforcing Steel Institute, 228 N. LaSalle St., Chicago.

Circle 412 on inquiry card

PLASTIC PANELS / A brochure contains complete product data and technical specifications on translucent fiber glass-reinforced plastic panels. • Technical and Field Services Department, Filon Corporation, Hawthorne, Calif.*

Circle 413 on inquiry card

MOISTURE BARRIERS / An 8-page brochure provides information on various uses of Votclay bentonite-based products for positive seepage prevention in subsurface building and tunnel construction. • American Colloid Company, Skokie, Ill.

Circle 414 on inquiry card

COUNTERS AND SHOWCASES / A 28-page full-color catalog lists over 222 items. • Reflector Hardware Corporation, Melrose Park, Ill.

Circle 415 on inquiry card

JOISTS / A 52-page booklet on long-span steel joists and open web steel joists gives standard specifications and load tables. • American Institute of Steel Construction, New York City.

Circle 416 on inquiry card

*Additional product information in Sweet's Architectural File

more literature on page 285
you see so much more in carpeting when you call in Berven of California

Searching for the unusual in carpeting texture that still offers down-to-earth practicality? Berven's hand-loomed Reversible Broadloom might intrigue you with its colors ranging from quiet monochromes to bright-toned combinations. This distinctive textural collection is but one of 10 basic lines manufactured or distributed by Berven Of California to offer you one of the widest selections of carpeting qualities and services in the Nation. And behind all this is a sure sense of color and textural styling that springs from a most knowledgeable Custom Carpet heritage. Wouldn't it sound like we might be of service? We'd like to try.

THE BERVEN OF CALIFORNIA RANGE
Manufacturers of: Tufted Broadloom; Custom Tufted Rugs and Carpet; Stock Design and Custom Designed Handmade Rugs and Carpet; Hand-loomed Reversible Chenille; Custom-braided Rugs; Hand-loomed Reversible Broadloom.
Distributors of: "Roxbury Broadloom (Axminster, Velvet, Knit, Tufted); "Loma Loom Rubber-backed Carpet; Ozite Outdoor-Indoor Carpet, Carpet Tile, Rubber and Felted Lining."

WESTERN STATES

BERVEN OF CALIFORNIA
General and Administrative Offices: 2600 Ventura Avenue, Fresno, California 93717 • (209) 268-0777 • Sales Offices and Showrooms: Chicago • New York • Miami • Minneapolis • Dallas • Houston • Denver • Phoenix • Seattle • Spokane • Portland • Sacramento • Fresno • Los Angeles • National City • San Francisco • Honolulu

For more data, circle 88 on inquiry card

ARCHITECTURAL RECORD June 1967 205

This specification covers six grades of high-strength low-alloy structural steel shapes, plates and bars. Grades 42, 45 and 50 are intended for riveted, bolted, or welded construction of bridges, buildings, and other structures. Grades 55, 60 and 65 are intended for riveted or bolted construction of bridges and for riveted, bolted, or welded construction in other applications.

USS Ex-Ten Steels meet all the requirements of this specification. In addition, USS Ex-Ten Steels are available in greater thicknesses in plates, and at a higher strength level (70,000 psi min.) in plates, shapes and bars than are covered by this new ASTM Specification.

The USS Ex-Ten Steel series of high-strength low-alloy columbium-vanadium steels was introduced by United States Steel several years ago. These steels won immediate acceptance because they deliver high strength per unit of cost and have excellent fabricating properties.

USS Ex-Ten Steels have been used in truck trailers, construction equipment, farm machinery and railroad cars. They have also been used in construction projects such as bridges, piling structures, electrical transmission structures, and buildings including auditoriums. In fact, due to the great economy offered by the use of Ex-Ten Steels, they have become today's most widely used high-strength low-alloy steel. The scope of USS Ex-Ten series of steel grades exceeds the ASTM Specification in the areas shown below in red.

If you want a copy of our latest USS Ex-Ten Steel property card, call the USS Sales Office nearest you, or write United States Steel, Room 4572, 525 William Penn Place, Pittsburgh, Pa. 15230. USS and Ex-Ten are registered trademarks.

ASTM A572-66

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield Point, min. psi</th>
<th>MAXIMUM THICKNESS OR SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>42,000</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>45,000</td>
<td>1⁄2</td>
</tr>
<tr>
<td>50</td>
<td>50,000</td>
<td>1⁄2</td>
</tr>
<tr>
<td>55</td>
<td>55,000</td>
<td>1⁄2</td>
</tr>
<tr>
<td>60</td>
<td>60,000</td>
<td>Group 1 and 2</td>
</tr>
<tr>
<td>65</td>
<td>65,000</td>
<td>1⁄2</td>
</tr>
</tbody>
</table>

In the above tabulation, Grades 42, 50, and 60 are the yield point strength levels most closely approximating a geometric progression pattern between 36,000 psi min. yield point steels covered by ASTM Specification A36, Structural Steel and 100,000 psi min. yield point steels covered by ASTM Specification A514, High-Yield Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding, and higher strength steels.

USS EX-TEN STEELS

<table>
<thead>
<tr>
<th>Grade</th>
<th>Yield Point, min. psi</th>
<th>MAXIMUM THICKNESS OR SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>42,000</td>
<td>8</td>
</tr>
<tr>
<td>45</td>
<td>45,000</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>50,000</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>55,000</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>60,000</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>65,000</td>
<td>1⁄2</td>
</tr>
<tr>
<td>70</td>
<td>70,000</td>
<td>1⁄2</td>
</tr>
</tbody>
</table>

See ASTM Specification A6.
If safety can place your reputation on the line...

Exit Fixture #3726 shown above.

go with the line with the reputation for safety

P. & F. CORBIN
DIVISION OF EMMART CORPORATION
NEW BRITAIN, CONNECTICUT 06050

In Canada—Corbin Lock Division, Belleville, Ontario

For more data, circle 90 on inquiry card
From Sylvania: where new ideas are brought to light

The whitest, brightest way
to light up an acre.
With one fixture.

Controlled to minimize glare. Yet so bright, you can cut down the number of poles you need in an area. Any area. Parking lots. Shopping centers. Malls. You'll save space and save money. And it's versatile, too. Takes Mercury as well as Metalarc lamps. For smaller jobs, there's a 1600-watt unit which uses four 400-watt lamps.

Photo-electric controls are available for automatic dusk-to-dawn illumination. Once the sun comes up, you'll see the Acre-of-Lite is space-age handsome. It comes in a wide choice of colors. And it's easy to maintain—without tools.

For any lighting need—outdoors or indoors—check the idea line first. Call your Sylvania distributor. Sylvania Electric Products Inc., Lighting Equipment Operation, 60 Boston Street, Salem, Mass.

SYLVANIA
SUBSIDIARY OF
GENERAL TELEPHONE & ELECTRONICS
GTE

For more data, circle 91 on inquiry card
These expo67 buildings have one thing in common:

Better air by AAF!

But that's about all they have in common when it comes to clean or conditioned air. The particular requirements of each building call for different types of air filters, dust collectors or air handling units. But since AAF makes all types, no problem in providing exactly the right unit for each need.

You won't see our equipment at Expo '67. But it's there. Behind the scenes, working 'round the clock—moving air, filtering smoke, dust and other contaminants, and adding to your over-all comfort in the major pavilions at Expo '67. For more information, write: American Air Filter Company, Inc., 389 Central Avenue, Louisville, Kentucky. 40208

For more data, circle 92 on inquiry card
Pittco® announces new two-tone door

Design freedom and striking beauty distinguish Pittco's new line of aluminum doors. Specify a variety of two-color combinations for contrast between frame and surrounding members. Accent this with matching or contrasting hardware variations.

The slim clean lines of Pittco's new entrance doors eliminate unsightly screw heads for hinge attachments and lock faces.

Pittco doors feature standard hardware that includes nonrising stainless pin butts and nonhanded extruded offset pivot sets, both designed for beauty as well as strength. Available in three stile widths.

See Sweet's Architectural for the full story, or write PPG Industries, Pittco Architectural Metals Department, 1500 Murden Street, Kokomo, Indiana 46901.
Ten years experience in manufacturing rubber waterproofing is one reason why...

Carlisle Sure-Seal was specified

The EQUITABLE BUILDING
Chicago, Illinois

Architects: Skidmore, Owings & Merrill

Carlisle Sure-Seal is specified time and time again, for both above and below grade waterproofing, for installations that demand top product integrity.

In the Equitable building complex, Sure-Seal was used in many ways... as roof flashing, plaza expansion joints, planter linings and in the reflecting pool.

Ten years experience in manufacturing rubber waterproofing has not only qualified Carlisle as a leader in this field, but has built an outstanding portfolio of construction applications employing Sure-Seal.

Write today for complete information and list of Carlisle Sure-Seal installations.

Special Products Department
CARLISLE TIRE & RUBBER DIVISION
Carlisle Corporation • Carlisle, Pennsylvania 17013

Please send me additional information on Carlisle Sure-Seal Rubber Waterproofing and a list of Carlisle installations.

NAME__POSITION_____________________

COMPANY__ADDRESS_____________________

CITY________________________STATE________ZIP________________________

For more data, circle 94 on inquiry card
I SMELL SMOKE

The BRK fire detector senses the invisible products of combustion that precede actual fire and smoke. This electronic wonder uses no harmful radioactive materials—yet gives the alarm when a fire condition exists long before other fire detection systems.

BRK Electronic fire protection is available in either complete or compatible systems to update your present fire detection system... at home, in office, plant, theatre, data processing rooms or any other area where you need early warning of fire.
The formal generators of masonry structure:

The lozenge

While this is not a true lozenge by dictionary definition, (a figure of four equal sides with two obtuse and two acute angles) it is the basic architectural form incorporating the use of the diagonal. Beginning with the two dimensional figure, architect Stanley Tigerman projects it from parti through floor plan to complete structure.

Throughout this series we shall continue to show how the basic orthogonal shapes of masonry construction—the square, lozenge, rectangle, pinwheel, cross and linked figure—can be developed and projected. We hope the drawings offered here will serve as both idea stimulators and time savers.

Jamb sections: 8" concrete block masonry wall with operating, sliding aluminum sash set in wood buck.

ARCHITECTURAL RECORD June 1967

216
As you may have guessed, we have an ulterior motive. We make two products, roll-type and rod-type Keywall® masonry reinforcement, that can help you improve the usage and quality of masonry construction. We'd like you to use them, so we make it easy by including them in the details shown below.

This structure—with the details drawn to 3" = 1'0" for easy tracing—is reproduced on convenient 8½ x 11" sheets. To receive the entire series, write:

Dept. AR-56
KEYSTONE STEEL & WIRE COMPANY
Peoria, Illinois 61607

For more data, circle 96 on inquiry card.
no matter what you're using on your steps... new mercer Friction-Grip does it better!

Mercer's new exclusive Friction-Grip concept affords maximum traction—really puts the accent on safety and decor. Both Stair Tread and Top-Set Stair Nosing are easy to clean, won't trap dirt, and are made of noise-absorbing vinyl. Stair Tread has two friction strips in the heavy wear area. Top-Set Nosing eliminates the need for metal strips. More than ever, Mercer is first choice in stair accessories.

SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>COLORS</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>THICKNESS</th>
<th>PACKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAIR TREAD</td>
<td>Black, Brown, Dk. Brown, Beige, Gray, Olive Green, Green</td>
<td>Standard 12" sections or cut to specifications</td>
<td>9" and 12"</td>
<td>.230" in the Wear Area</td>
<td>400 per standard 12" carton</td>
</tr>
<tr>
<td>(Round and Square Nose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP-SET STAIR NOSING</td>
<td>Black, Dk. Brown, Lt. Beige, White, Silver, Gold</td>
<td>39" and 9" sections</td>
<td>1½"</td>
<td>.130"</td>
<td>39", 130" per cotton 9", 180" per cotton</td>
</tr>
</tbody>
</table>

Choose from 27 complete seat or seat-and-table units, 9 starter units and 21 add-ons. Add drop-in arms and panel inserts at will. Then select any of the numerous rich vinyl or fabric upholsteries available. The result is an astronomical number of possible arrangements—well, more than 45,000 anyhow! And behind the beauty and flexibility, there's lasting quality. Four-inch foam cushions. Spring-supported backs for an extra measure of comfort. Sturdy tubular frames with smooth-finished welds. Black, white or wood-grain laminated table tops.

All this at a remarkably moderate price. Write for the Sturgis Modular 300 catalog today! Dept. AR-103, The Sturgis Company, Sturgis, Michigan 49091.
COMMUNICATIONS / An all-in-one bedside station gives patients full finger-tip control of audio-visual nurse communications, room and reading lights, and entertainment functions. The unit is reported easily mounted in most types of furniture. Station includes color-keyed controls and indicators, receptacle for wired entertainment and nurse call remote control unit, 4-in. microphone-speaker combination, and optional electric clock. • RCA Service Co., Camden, N.J.

Circle 311 on inquiry card

the most complete and authoritative guide for—

• WEATHER STRIPPING
• SOUND PROOFING
• LIGHT PROOFING
• THRESHOLDS

Zero's 1967 Catalog shows many new products, contains 175 full size drawings.

Write today for your copy

ZERO WEATHER STRIPPING CO., INC.
Our 43rd year of service to architects
415 Concord Avenue, Bronx, New York 10455 • (212) LU 5-3230

For more data, circle 111 on inquiry card
A single climate conditioning system would be fi
In Marine Midland’s slim new tower by Skidmore, Owings & Merrill

Anemostat diffusers continue the clean, modular look—throughout

Two types of Anemostat® diffusers distribute a million-and-a-half cubic feet of air each minute through the 140 Broadway (Marine Midland) Building in New York City.

Building standard is Anemostat’s E-1 diffuser. Though only its crisp square shape is visible, the E-1 has a circular neck that delivers air with a draftless horizontal diffusion pattern. More than 5,000 units are used throughout the building.

Anemostat SLAD straight line adjustable diffusers were selected for entrance, mezzanine and executive levels. Mounted end-to-end, the slim, fully adjustable units form clean, unbroken lines in keeping with the building’s contemporary design.

Write for your copy of Anemostat’s complete air distribution catalog.

Anemostat Products Division, P.O. Box 1083, Scranton, Pa. 18501.
WEATHER-RESISTANT PANELS / Weathershield fiberglass panels are said to withstand severe climatic conditions while retaining their original finish. Available in a variety of colors, widths, lengths and finishes. • Barclite Corp. of America, Inc., New York City. Circle 315 on inquiry card

AIR CLEANER / An electrostatic air cleaner with activated charcoal odor removal includes in the compact casing a mechanical pre-filter, high-voltage transformer, electrostatically charged ionizing section, collecting section and columns of activated charcoal. The air cleaner is said to remove 95 per cent of airborne dirt and pollen particles. Filters sprayed with hexachlorophene aid in killing bacteria. • The Trane Company, La Crosse, Wisc. Circle 316 on inquiry card

About the Slim Twin... We take both sides

The new Slim Twin Reserv-A-Roll solves the dispenser problems of limited stall space. Easily mounted in existing partitions in minutes, this unit is, in fact, two Reserv-A-Roll units in a single case. One protrudes into one stall and the other into the next stall, maximum protrusion being only 1¾". This unique vandal proof mounting has no screw holes in the flange. Utilizing standard 4½" x 4½" rolls, and possessing the same automatic qualities as our standard units, the Slim Twin is a unique and economical addition to any restroom. For additional information and specifications, write Slim Twin, P. O. Box 2645, Houston, Texas 77001, Telex No. 077 406, A/C 713 UN 9-7321.

SLIM TWIN
From the Reserv-A-Roll Co.
An affiliate of RBM Enterprises

HARDWOOD PANELING / Gold Crest Heirloom cherry paneling with a planked effect accents the feature wall in the living room and the chimney breast in the dining room of this model home in Surry, England. • Georgia-Pacific, Portland, Ore. Circle 317 on inquiry card

SAUNA / A stainless steel electric sauna bath heating unit develops approximately 29,000 BTUs which heats a sauna bath to bathing temperature in 20 minutes or less. Twin internal high-temperature limit switches are said to prevent overheating. The unit requires only a 24 in. by 24 in. floor space. • Sauna Aire of America, Inc., Des Moines, Iowa. Circle 318 on inquiry card

For more data, circle 124 on inquiry card

For more products on page 272

For more data, circle 125 on inquiry card
New angle from G.E.

Semi-recessed fountain or cooler.

Or fountain first and cooler later: refrigeration package is available separately. Choose either 8 or 12 gph cooler model (or the fountain). Logical—and good-looking design from the thoughtful engineers at General Electric.

For more information, see the Yellow Pages. Or write: G. E. Co., Dept. 761-37, 14th and Arnold Streets, Chicago Heights, Illinois 60411.
When the sun gets too hot, cool off with Stevens COMFORT SCREEN.

Comfort Screen is a woven fiberglass fabric made for the control of solar heat and shade.

(1) Easy to install in exterior fixed frames or on interior shade fixtures.
(2) Reduces interior temperatures by blocking or reflecting solar heat.
(3) Reduces air-conditioning costs both initial and operating.

(4) Permits see-through visibility and, incidentally controls insects when used in exterior applications.

(5) Very low maintenance costs—can be cleaned with soap and water or vacuumed.

(6) Available in cool white, leaf green, aqua and grey.

Stevens Comfort Screen Brochure 15e-St available in Sweets Catalogue. For other technical brochures on Comfort Screen and insect screening, write:

Fiberglass Screening,

J. P. Stevens & Co., Inc.,

1460 Broadway, New York, N. Y. 10036.
FREEDOM TO CREATE IN WOOD... The promise of wood in the hands of a sensitive designer adds beauty to structure...form to function...feeling to flexibility. For more than two generations our single-source custom service has enabled architects and designers to unleash their total creativity on the wonderful warmth of wood. We invite you to think of wood as the medium...freely...unconcerned with construction and installation. We can produce it.

WOODWORK CORPORATION OF AMERICA
1432 WEST TWENTY FIRST STREET, CHICAGO, ILLINOIS 60608

For more data, circle 127 on inquiry card
Why did Portland State College install all-weather Tartan® Surfacing for roof deck athletics?

Because there is no better surface for their needs than TARTAN Brand Surfacing. The surface had to be durable, resilient, all-weather and non-slip. TARTAN Surfacing is all of these. And when poured over the entire roof became a waterproof roofing material, as well. Have you thought of using TARTAN Surfacing this way? It's just one of its many uses.

Recreation & Athletic Products
367 Grove St., St. Paul, Minn. 55101 • Tel. No. 612-733-2452

For more data, circle 128 on inquiry card
Corridor-installed Bradley Washfountains make supervision a snap, save money in schools! They get students out of toilet rooms quickly. There's no reason for loitering and possible horseplay. And one teacher can supervise wash-up and monitor the corridor at the same time. What's more, Washfountains serve up to 8 people with one set of plumbing connections. So, they reduce installation costs up to 80%. In 36 and 54-inch diameter circular and semi-circular models. Available in widest choice of colors and materials. Corridor-installed Washfountains. A bright idea you can use—from Bradley! For complete details, see your Bradley representative. And write for latest literature. Bradley Washfountain Co., 9109 Fountain Drive, Menomonee Falls, Wisconsin 53055.

For more data, circle 133 on inquiry card
OFFICE FURNITURE / This desk and storage cabinet designed by Kipp Steward are in imported English brown oak. The leather-topped desk, which measures 70 by 36, has files in both sides of top, with tambour closings which can be locked, and which offer ready accessibility and visibility to filed material. A concealed writing pull-out has a laminate surface. The drawer may hold a dictaphone and other service equipment. The top of the storage cabinet measures 70 by 20 inches, has a storage well with tambour tops and is divided into two sections to accommodate legal size filing. The other side has long, shallow drawers suitable for blueprints and charts. • Directional Contract Furniture Corp., New York City. Circle 319 on inquiry card

CHAIR / Both the seat and rounded back of this pedestal chair are foam padded. Upholstery is available in a wide color selection and the base, of polished aluminum, may be fitted with ball casters. • B. Brody Seating Co., Chicago. Circle 320 on inquiry card

SHOCK-ABSORBENT DOOR / Originally designed for high-traffic areas in industrial plants and warehouses, this lightweight door is now recommended for public areas of hospitals, retail stores, research plants and office buildings. The heavy-gage Kayon panels, which prevent dents and punctures, are available in nine colors. The door is said never to rust, fade or tarnish, and dirt and grease, are removed with soap and water. • Clark Door Company, Inc., Cranford, N.J. Circle 321 on inquiry card

FLASHINGS / A new soft stainless steel for flashings is reported to cost approximately 15 per cent less than the company's identical products of copper. This stainless is reported to have excellent workability without spring-back, and an attractive dull finish. • Cheney Flashing Co., Trenton, N.J. Circle 322 on inquiry card
It's good business to help colleges

Our colleges and universities must have enormous quantities of new money almost constantly if they are to be enabled to serve society as it needs to be served. Every business institution benefits today from the money and labors that those now dead have put into the building of these institutions. We are all dependent upon them for future numbers of educated young men and women from which to choose, and for the continued expansion of man's knowledge of the world he inhabits.

"We owe these institutions a great debt, and we can pay this debt in two ways: By supporting them generously with contributions of money and time, and by upholding their freedom to remain places of open discussion, and to pursue truth wherever it is to be found."

Last year our company contributed to colleges and universities more than $310,000 which represented 1.2% of profit before tax.

J. Irwin Miller, Chairman
Cummins Engine Company

A major problem in the education of students is rising costs. If companies wish to insure the availability of college talent, they must help support colleges with financial aid.

SPECIAL TO CORPORATE OFFICERS - A new booklet of particular interest if your company has not yet established an aid-to-education program. Write for: "How to Aid Education—and Yourself", Box 36, Times Square Station, New York, N.Y. 10036

COLLEGE IS BUSINESS' BEST FRIEND

Published as a public service in cooperation with The Advertising Council and the Council for Financial Aid to Education

continued from page 204

TINT BASES / A 6-page booklet contains data on the stability properties of universal tint bases formulated with Rhoplex AC-35 acrylic emulsion for exterior paints. The booklet explains that these bases offer superior resistance to chalking; reduced dirt pickup; and greater latitude in the use of pigments and extenders. • Rohm and Haas Company, Philadelphia.

Circle 416 on inquiry card

AIR CLEANER / A 4-page bulletin describes four Mistkops, or mist collectors, ranging in capacity from 614 CFM to 3,600 CFM. Industrial applications and types of mountings are shown. • The Agel Manufacturing Co., Adrian, Mich.

Circle 417 on inquiry card

PLUMBING / An illustrated 12-page catalog lists an expanded line of cast aluminum unbreakable fixtures specifically designed for institutional use. Units include water closets, lavatories, drinking fountains, service sinks and one-piece showers. • Aluminum Plumbing Fixture Corp., Burlingame, Calif.

Circle 418 on inquiry card

*Additional product information in Sweet's Architectural File

CHANGING YOUR ADDRESS?

If you're moving, please let us know five weeks before changing your address. Use form below for new address and attach present mailing label in space provided.

ATTACH
PRESENT MAILING LABEL
HERE

NAME
STREET
CITY STATE ZIP
FIRM NAME
TYPE OF FIRM
TITLE OR OCCUPATION

Mail to:
Fulfillment Manager
Architectural Record
P.O. Box 430
Highstown, N. J. 08520

For more data, circle 145 on inquiry card
This is CAMEO.
The only place for curved lines is “on” a roof ventilator.

That’s what architects told us. So Carnes engineers went to work and designed Multiflex—a new series of straight-line, low silhouette power roof ventilators that blend with any building design. And best of all, they’re competitively priced without any sacrifice in Carnes high quality or efficiency.

For example, Carnes automatic, quiet-closing louvers eliminate extra-cost backdraft dampers and bird screens, keep out the weather. Actually, Multiflex can save as much as 20 percent in installed costs.

Multiflex ventilators are provided in four models designed to fit your particular requirements—Stormline, Vertiline, Louverline and Trimline. All feature belt-drive, rugged vibration isolated-drive frame and weather resistant construction, quiet-running centrifugal fan wheels, backwardly-inclined, non-overloading blades and shielded motors. All achieve maximum-efficiency operation, and minimize noise level as well as motor size.

Write for the Multiflex Power Roof Ventilators catalog. (If you prefer curved models, we carry them, too!)

Carnes Corporation, Verona, Wisconsin • In Canada: Vapor Carnes, Ltd., 3955 Courtrai Avenue, Montreal 26, Quebec

For more data, circle 149 on inquiry card
CORRUFORM® AND TUFCOR®—tough-temper, high-strength steel permanent forms for economical floor and roof construction.

COFAR® AND COFAR COMPOSITE—combined forms and reinforcement for high strength slabs covering a wide range of span and load conditions.

ROOF DECK—strong, lightweight steel decks in a selection of five patterns and six gages for every roof construction need.

CEL-WAY®—for electrified structural slabs that carry telephone, electric, and even signal service to any location. A-E FLOOR—combines air and electrical distribution in one compact floor system.
For Floors and Roofs...

GRANCO

HAS THE SYSTEM YOU NEED

Do you need floors for heavy loads and vibration? Do you need sheer economy? Granco has what you need to keep floor and roof costs to a minimum for the required design conditions.

Want electrified floor slabs, with triple service steel cells, preset inserts and architecturally styled floor fittings that accommodate telephone, electric, and signal service? Or floors with built-in fire ratings?

Name your problem. Granco can help, with a wide selection of floor and roof systems that meet practically every requirement—structural, electrical, mechanical, architectural. See new 64-page Floor/Roof Construction Manual in Sweet's (1/J/Gr), or write us for a copy. Granco Steel Products Company, 6506 North Broadway, St. Louis, Mo. 63147. A subsidiary of Granite City Steel Co.

IMAGINATION IN STEEL

For more data, circle 150 on inquiry card
Since 9:30 A.M., March 27, 1967 you’ve been covered.

Allied Chemical is the only fiber producer to give a Three-Year Guarantee for commercial carpets.

Now everyone in the business—mill, distributor, specifier, even customer—can hand over to us, Allied Chemical, total responsibility for A.C.E.™ surface wear! Already there are more than 40 A.C.E.-labelled qualities in the market that have met the rigid performance standards required for this new selling concept.
A deposit of Zinc saves this bank's beauty

The deposit is on galvanized reinforcing rod used in the precast concrete grillework of the new Bank of Hawaii branch in Waikiki. The zinc coating prevents "under cover" rusting which could eventually "bleed" through and discolor the surface. It also eliminates surface cracking or spalling from internal pressures caused by rust build-up. And the zinc coating on the rods actually provides a better bond with the concrete than is possible with uncoated steel. About 50 tons of hot dip galvanized rebar were used for the 15 story, 5 million dollar bank building, designed by Wimberly, Whisenand, Allison & Tong, Architects Ltd. As shown in the inset photo, rebar cages for grille sections were preformed of #3 size hot dip galvanized steel at the casting yard. When you specify materials, remember that no other material gives you the proven combination of strength, corrosion resistance and economy found in galvanized steel.

ST. JOSEPH LEAD COMPANY
250 Park Avenue, New York, New York 10017
St. Joe is a Major Supplier of Zinc to the Galvanizing Industry

For more data, circle 161 on inquiry card
Evolution of a city

CHANDIGARH. By Norma Evenson. University of California Press, Berkeley, Calif. 94720. 113 pp., illus. $16.00.

By Sandra Kocher

The evolution of any city is a complex process, whether drawn out over centuries or created within recent decades. Few new towns or cities born in this century have had such an impressive group of architect-planners as Chandigarh, now the joint capital city of the Punjab and Haryana in northern India. Few have been realized within such severe limitations of climate, technology and budget as those imposed on this Indian city. And few have received such a thoroughly studied and carefully evaluated portrayal as that set forth by Norma Evenson.

Against the background of earlier city planning efforts in India, Miss Evenson, an art historian, presents and assesses the steps by which Chandigarh came into being in the 1950's, was developed and is still expanding. Aided by Fulbright and American Philosophical Society grants she was able to carry out much of her research in Chandigarh in 1961-63. There she gathered information and reactions from architects and engineers responsible for the design and construction of the city and its buildings, as well as from government officials, residents, students at Chandigarh's University of Punjab and occasionally from visitors to the city. For example, her evaluation of the success to date of Chandigarh as a place in which to live draws upon two surveys, one conducted by the Economic and Statistical Organization of the Punjab Government and the other by sociology students of the University of Punjab.

The author wisely places her discussion of the capitol complex in the latter portion of her well-written book, where it forms a crowning climax in the story of the evolving city. For, as every student of modern architecture is aware, Le Corbusier's high court, secretariat and assembly buildings—standing at the head of the city in dynamic relationship to one another and to the surrounding mountains—have become monuments of 20th-century architecture. The capital function of the city is, of course, Chandigarh's reason for being. One can only hope that the recent division of Chandigarh between the two rival states of Punjab and Haryana, and the possibility of a complete take-over by the Sikhs, will not mean the degradation of the city's architecture, original purpose and promise.

It is unfortunate that the illustrations massed at the back of the book do not measure up to the quality of the text. The photographs are numerous and by sheer quantity give the reader some idea of the extent of the Chandigarh construction. But too many of them are crowded on a single page, and the offset reproduction on highly bleached paper results in a gray tone. Le Corbusier, alert to the graphic potentialities of the printed page and concerned with the design of his own books, would, I fear, have been unhappy with such a presentation of photographs. The plans and drawings are more successfully presented.

Nevertheless, Chandigarh should not be overlooked. Its excellent text rewards us with a first-class study of a particular modern city. There is also the underlying reminder that beyond the initial, albeit terribly important, act of the planner in creating a city, people make a city—over a period of time. Critics hurrying to assess the various new towns burgeoning of late might well keep this in mind. As the author states: "If Chandigarh is ever to become a true city... it will be only when it has become free of its planners to acquire a destiny of its own. Ultimately the people of Chandigarh must achieve the city they deserve."
architect-planned nonresidential building
Readers using the index will find buildings, with only a few exceptions, entered in three ways: by architect's name, by owner's name, and by building type (apartments, hospitals, schools, etc.). Still other categories cover the special subjects dealt with in the magazine's engineering section (concrete, lighting, prefabrication, etc.).

ABBREVIATIONS: BTS—Building Types Study; AT—Architectural Engineering; TSS—Time-Saver Standards; BC—Building Components

A

Ack Ack, archts.; Lockheed-Georgia Research Center, Marietta, Ga.—Jan. 1967, pp. 160-161

Aging. Public Housing for the Elderly, Indianapolis—Evans Woodson & Assocs., archts.—May 1967, pp. 146-147

Amersm Park Nursery & Garden Center, Newport Beach, Calif.; Thomas N. Echternach, arch.—June 1967, pp. 165-170

An "Encouraging Development in architecture," by Rawleigh Warner Jr.—May 1967, BTS, p. 175

Anshen & Allen, archts.; University of California, San Diego, Center for Environmental Sciences, Unit 1—April 1967, BTS, pp. 198-205

Architects Collaborative, Inc. The, archts.; Fox Lane Middle School, Bedford, N.Y.—Mar. 1967, pp. 176-177

B

Bacon, Edmund N. "The city as an act of will"—Jan. 1967, pp. 113-120

Bancroft Center, Berkeley, Calif.; John Hans Ostwald, archt.—June 1967, pp. 165-170

Banks. Hernando Bank, Hernando, Miss.; Walk Jones/Mah & Jones, archts.—May 1967, pp. 165-170

Barnes, Edward Larrabee, archt. Private residence, Conn.—Mid-May 1967, pp. 42-47

Barrington College Physical Education Building, Barrington, R.l.; Kenneth DeMay, archt.—Apr. 1967, BTS, pp. 196-197

Barikus, Mr. and Mrs. A. J., Residence, Boulder, Colo.; Charles & D.Wagener, archts.—Apr. 1967, pp. 181-184

Bassett, Fred and Co., archts.; KGW Broadcast center, Portland, Oregon, June 1967, pp. 165-170

Bechtel Hall School of Nursing and Student Nurses' Residence, Samuel Merritt Hospital, Oakland, Calif.; Stone, Marraccini and Partners, archts.—May 1967, p. 163

Betts, Mr. and Mrs. Hobart, Residence, Quogue, Long Island, New York; Hobart D. Betts, archts.—June 1967, pp. 157-164

Boissoneau, Eric, House, Cap Benat, France; Philip Johnson, archt.—June 1967, pp. 139-150

Brom State Hospital, Children's Psychiatric Hospital, New York, The Office of Max O. Urbahn, archts.—Feb. 1967, p. 156

Bucholz, Allan, archt. with Mary Lnd Davis;
Tacooma Millwork Supply Co., Offices, Tacoma, Wash.—Mar. 1967, pp. 155-159

Chicago Theatre, Chicago, Ill.—Mar. 1967, pp. 159-164.

"Computer-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

"Concrete-aided building design: where do we go from here?"—Apr. 1967, pp. 219-220.

H

Kaplan and McLaughlin, archts.; Resthaven Community Mental Health Center, Los Angeles—Feb. 1967, BTS, pp. 160-161
Karas House, Monterey, California; MLTW/Miss. & Associates, archt.; Residence for Mr. and Mrs. William Keck—May 1967, BTS, pp. 112-114
Karlson House, Chicago; George Fred Keck—Mid-May 1967, BTS, pp. 71-74
Karlson House, Chicago—Mid-May 1967, BTS, pp. 112-114
Keyes, Lethbridge & Condron, archts.; River Road Unitarian Church, Bethesda, Md.—Jan. 1967, pp. 129-132

KGW Broadcast Center, Portland, Oregon; Fred Bancroft & Company, archt.—June 1967, BTS, pp. 165-170
Kidde, Walter, Constructors, Inc.; Skidmore College Nurses Center, New York—May 1967, BTS, pp. 160-161
King, Sol, archt. with Albert Kahn, Associated Architects and Engineers; Manufacturing, Sales and Distribution Center, Avon Products, Springdale, Ohio—Jan. 1967, BTS, pp. 152-155
Kirk, Wallace, McKinley, archts.; Residence for Mr. and Mrs. William D. Dafoe, Longbranch, Washington—June 1967, BTS, pp. 157-164
Kivett and Myers, archts.; Mid-Missouri Mental Health Center, Columbia, Mo.—Feb. 1967, BTS, p. 162
Kline Biology Tower, Yale University, New Haven, Conn.; Philip Johnson and Richard Foster, archts.—June 1967, pp. 139-150
Koslovitz, Knox and Naim, archts.; Residence for Mr. Lon R. Driggers, Pensacola, Fla.—June 1967, BTS, pp. 157-164
Kurnp, Ernest J., archt.; University of California, Santa Cruz, Central Services Building—April 1967, BTS, pp. 198-205.

Libraries.
Lincoln Elementary School, La Porte, Ind.; The Perkins & Will Partnership, archts.—Mar. 1967, BTS, pp. 175-177
Lockheed-Georgia Research Center, Marietta, Georgia; Aekc Associates, archts.—Jan. 1967, BTS, pp. 160-161
Loretto Hilton Center for the Performing Arts, Webster College, Webster Groves, Mo.; Murphy and Mackey, archts.—Feb. 1967, pp. 122-125
Lyons & Mather, archts.; University of Bridgeport, College of Nursing, Bridgeport, Conn.—May 1967, p. 164

Magnin, Joseph, Store, Los Angeles; Victor Gruen Associates, archts.—May 1967, BTS, pp. 184-185
Mah & Jones with Walt Jones, archts.; Hernandez Bank, Hernando, Miss.—May 1967, pp. 167-170
Marian College Library, Indianapolis; Evans Woollen & Associates, archts.—May 1967, pp. 140-141
Medical Education Facilities, Nursing Education Facilities: Skidmore College Nurses Center, New York City, Walter Kidde Constructors, Inc. archts. Arizona State University, Nursing Education Facility, Tempe, Ariz.; George H. Schoneberger, Jr., archt. Bethael Hall of Nursing and Student Nurses’ Residence, Samuel Merritt Hospital, Oakland, Calif.; Stone, Marraccini & Patterson, archts. University of Bridgeport, College of Nursing, Bridgeport, Conn.; Lyons & Mather, archts. Good Samaritan Hospital, School of Nursing, Portland, Ore.; Skidmore, Owings & Merrill, archts. Murray State College, Laboratory and Classroom Building, Dept. of Nursing, Murray, Ky.; Lee Potter Smith & Associates, archts.—May 1967, pp. 159-66
Mid-Missouri Mental Health Center, Columbia, Mo.; Kivett and Myers, archts.; Feb. 1967, BTS, p. 162
Mills, Willis N., Jr., archt.; Case House, Van Hornesville, N.Y.—Mid-May 1967, BTS, pp. 78-81
MLTW/Moore Turnbull, archts.; Karas House, Monterey, Calif.—Mid-May 1967, BTS, pp. 112-114
Moore, Charles W., archt. with William Turnbull, Jr. Karas House, Monterey, Calif.—Mid-May 1967, BTS, pp. 112-114
Munter, Martin, associat archt. with Melvin H. Smith, archt.; Residence for Dr. E. Arnold Jones, Amagansett, Long Island, N.Y.—June 1967, pp. 157-164
Murphy and Mackey, archts.; Loretto Hilton Center for the Performing Arts, Webster College, Webster Groves, Mo.—Feb. 1967, pp. 122-125
Murray State College, Laboratory and Classroom Building, Department of Nursing, Murray, Ky.; Lee Potter Smith & Associates, archts.—May 1967, pp. 166
Musical Arts Center, Indiana University, Bloomington, Ind.; Evans Woollen, archt.—May 1967, pp. 144-145

N
Nemény, George, archt.; Private Residence, Rye, N. Y.—Mid-May 1967, BTS, pp. 62-65
New Britain Bank and Trust Company Building, New Britain, Conn.; Emery Roth & Sons, archts.—June 1967, pp. 171-186
North Shore Unitarian Church, Plandome, N. Y.; Bentel & Bentel, archts.—Mar. 1967, BTS, pp. 174-175
Nursing Education Facilities. See Medical Education Facilities
Priestley House, Lake Oswego, Ore.; Edgar Wilson Smith, archt.—Mid-May 1967, BTS, pp. 25-30

Prince, George M., "Prefab walk-in coolers and freezers meet changing demands for food storage"—June 1967, BC, pp. 197-198

R

Ox Ridge Elementary School, Darien, Conn.; Sherwood, Mills & Smith, archts.—Mar. 1967, BTS, pp. 182-183

P
Parkin, John B. Assoc., archts.; Automotive Servic e Center, Toronto Intl. Airport, Malton, Ont.—May 1967, BTS, pp. 182-185

Penal Institution, Hawaii Adult Correctional Training Facility, Paouela Point; Hellmuth, Obata & Kassabaum, Inc., archts.—Mar. 1967, pp. 144-145

Perkins & Will Partnership, archts.; Lincoln Elementary School, LaPorte, Ind.—Mar. 1967, pp. 175-179

Pleasant Hills Middle School, Pleasant Hills, Pa.; Celli-Flynn, archts.—Mar. 1967, pp. 170-171

Portsmouth Priory, Portsmouth, R.I.; Pietro Belluschi and Robinson, Green & Beretta, archts.—Mar. 1967, pp. 184-186

Prefabrication, "Finally: A low-cost component system for housing that really works;"—Mar. 1967, AE, pp. 187-194

Rouse House, Clayton, N.Y.; Richard R. Mogey, archt.—Mid-May 1967, BTS, pp. 108-117

Rulledge Office Building, Columbus, S.C.; Lyles, Bissett, Portenske & Wolf, archt.—June 1967, BTS, pp. 171-186

S
St. Bride's Church and Presbytery, East Kilbride, Scotland; Gillespie, Kidd & Coia, archts.—Jan. 1967, pp. 133-136

Salishan Lodge, Gleneden Beach, Ore.; John Stors, archt.—Jan. 1967, pp. 143-150

Saragota Performing Arts Center, Saragota Springs, N.Y.; Vollmer-Ostrower Assoc., archts.—Feb. 1967, pp. 126-130

Sauer, Louis, archt. Townhouses, Reston, Va.—Mid-May 1967, BTS, pp. 58-61

Schoneberger, George H., Jr., archt.; Nursing Education Facility, Arizona State University, Tempe.—May 1967, p. 162

Resthaven Community Mental Health Center, Los Angeles; Kaplan and Mclaughlin, archts.—Feb. 1967, pp. 160-161

Riseman, William, & Assoc., archts.; Elkins Shoe Store, Boston—May 1967, BTS, pp. 176-177

River Road Unitarian Church, Bethesda, Md.; Keyes, Leitbhrige & Condon, archts.—Jan. 1967, pp. 129-132

Rogers, A. C., "Design and the material goal;"—June 1967, pp. 187-190

Roth, Emery & Sons, archts.; New Britain Bank and Trust Company Building, New Britain, Conn.—June 1967, BTS, pp. 171-186
Skidmore College Nurses' Center, New York; Walter Kidde Constructors, Inc., archts.—May 1967, p. 156.

Smith, Edgar Wilson, archt.; Priestley House, Lake Oswego, Ore.—Mid-May 1967, BTS, pp. 52-53.

Smith, Lee Potter and Assoc., archts.; Laboratory and Classroom Building, Dept. of Nursing, Murray State College, Murray, Ky.—May 1967, p. 165.

Spitz, Robert, Children's Division, Port Logan Mental Health Center, Denver; Victor Hornbein & Edward D. White, Jr., archts.—Feb. 1967, pp. 154-155.

Stafford, Robert, Jr., & Paul Rudolph, archt.—April 1967, pp. 151-158.

Stickney, Charles D. and William R. Hull, archts.; Civic Center, Los Gatos, Calif.—April 1967, pp. 159-161.

Stillman House, Litchfield, Conn.; Marcel Breuer and Herbert Beckhard, archts.—Mid-May 1967, BTS, pp. 54-57.

Stone, Marraccini and Patterson; Rechtel Hall School of Nursing and Student Nurses' Residence, Samuel Merritt Hospital, Oakland, Calif.—May 1967, p. 163.

Ware, C. Edward, archt., with Pietro Belluschi; Unitarian Church, Rockford, Ill.—Mar. 1967, pp. 135-140.

Warnecke, John Carl and Assoc., archts.; University Library, Unit 1, University of California, Santa Cruz—Apr. 1967, BTS, pp. 198-205; J. Henry Myer Memorial Undergraduate Library, Stanford University, Stanford, Calif.—Apr. 1967, BTS, pp. 206-209; Housing Clusters, Stanford University, Stanford, Calif.—Apr. 1967, BTS, pp. 210-212.

Webster College, Loretto Hilton Center for the Performing Arts, Webster Grove, Mo.; Murphy and Mackey, archts.—Feb. 1967, pp. 122-125.

West Oakland Shopping Center/Neiman-Marcus Store, Houston, Tex. (project in design); Hellmuth, Obata & Kassabaum, archts.—Mar. 1967, pp. 142-143.

Woo, Young, archt.; Woo House, Los Angeles, Calif.—Mid-May 1967, pp. 92-93.

Woollen, Evans, and Assoc., Recent Work: Federal Office Building, Indianapolis, Ind.; Marian College Library, Indianapolis, Ind.; Musical Arts Center, Indiana University, Bloomington, Ind.; Public Housing for the Elderly, Indianapolis, Ind.; Residence for Baron Mallory, Indianapolis, Ind.—May 1967, pp. 139-150.

ARCHITECTURAL RECORD June 1967 321
See Sweet's.
24,964 pages of detailed product data.

In your Sweet's Files you’ll find useful, readily available information from 1,497 manufacturers, including most of those listed in the adjoining index (see codes).

Save time. For immediate details, reach for your Sweet's Architectural Catalog File, Sweet's Industrial Construction Catalog File, or Sweet's Light Construction Catalog File.

Sweet’s pays
20th century siamese are made, not born, come in threes and fours as well as twos.

An integral safety specification for large buildings, siamese connections allow use of a building’s water source as a supplement to fire department hydrants.

You can specify W. D. Allen siamese for sidewalk or wall, flush or projecting installations, rough or polished brass or chrome, 2-way, 3-way, 4-way.

There is no style siamese W. D. Allen does not make, and you can specify the 4-way only from W. D. Allen.

Write or call W. D. Allen for complete specifications and prices.

W. D. ALLEN MANUFACTURING CO.
2200 W. 16th St., Broadview (Chicago) Ill. 60153
312/345-0230