This is the first Student Publication of the University of Florida's Department of Architecture. Student initiative, which began two years ago with a brochure for the Department, and has led us through an Alumni Newsletter, has now produced this Student Issue of The Florida Architect.

Our goal is to provide a publication which will give you a brief glimpse into some of the varied activities which occur within our Department. For too long we have suffered from a lack of meaningful communication with practicing architects and engineers and civic leaders. This is our attempt to change that status.

PRESENT AND FUTURE CURRICULA

Our present curriculum is a five-year program leading to a Bachelor of Architecture degree. During the first two years we receive a general education through the University College and are introduced to general architectural theory, building technology, freehand and mechanical drawing, and design processes.

An understanding of design processes begins with the fundamentals. Basic Design, the first stage of a four-year program, involves three primary steps—first, development of an approach to problem solving through a rational process; second, a study of three dimensional abstract relationships in form and space; and third, a basic application of the first two to architectural problems. The character and composition of more complex architectural problems, and their relation to the environment lead to studies in the fourth and fifth years in the specific context of Urban Design. The terminal project is a design exercise which is a synthesis of the knowledge and experience gained from all phases of architectural study.

Simultaneously, we make a thorough study of all of the phases of structures and technology which affect the construction of a building. The structures program begins with the basic laws of equilibrium and the effects of force on a body and continues with the study of how these principles may be applied to the design of structural systems of wood, steel, and concrete.

Architectural technology courses give us a working knowledge of construction principles, materials, and methods. The properties of various materials and their application to buildings are investigated. The environmental control equipment which is required in modern buildings is thoroughly studied so that we may understand and control man's reaction to heat, light sound, and the other conditions relating to physiological well-being. With this background we begin the highly technical study of working drawings and specifications writing which will continue throughout our professional careers.

Architectural history courses relate the aesthetic, social, political, and economic achievements of the past. By developing a basic understanding of the whole panorama of cultural development from ancient Egypt to modern America, we become better equipped to understand our own culture.

In addition to the staggering load imposed by these courses, we devote part of our third year to the mastery of delineation techniques in water color and casein. We also receive a basic grounding in the standards of practice and ethics of our profession.

In theory this is a five-year program.

In reality this is a six-year program.

Almost every recent Florida graduate has attended one or more summer sessions, made up some basic courses at a Junior College, or has managed to stay in school for an extra year. Thus, we must attend school for the equivalent of six years for our Bachelor's degree.
The University of Illinois, which has a very similar curriculum, would award a Florida graduate a dual degree—and, they allow their students to specialize in either structures and technology or design. We must specialize in many facets for a single degree.

THE UNIVERSITY OF FLORIDA ALREADY HAS A SIX-YEAR PROGRAM WHICH DEMANDS ENOUGH STUDY FOR A MASTERS DEGREE.

Yet our Faculty was not able to convince the administration of the need for change in our curriculum and degree structure.

Our Faculty anticipated the Princeton Report by several years, and in 1966 they recommended a six-year program which would operate in two-year phases. The first two years consisted of general education followed by two years of professional training which would result in a Professional Baccalaureate degree. Graduates with this degree, while not eligible for registration as architects, could fill a great need as consultants and technologists within the profession.

A graduate of the second phase could, after a year of organized and supervised internship, return to the University for two years of specialization in Planning and Design, Structures, or Building Technology. He would receive a Masters degree in Architecture and be prepared for professional registration.

Now that the Princeton Report has verified the wisdom of this proposal the profession must unite with its students and educators in active support of this program. Actual implementation of the entire program would take several years. However, many improvements could and should be made immediately.

Among these, the most urgent need is twofold: first, the curriculum must be revised to reflect the changing demands of our changing profession; and second, the six-year program must become a reality—now.

We have already begun. Many members of the faculty have been expanding and shifting course content within the sometimes limiting old curriculum.

A summer Urban Design study program was held in San Juan, Puerto Rico. Its goal was the involvement of architecture students in the real problems of the city. The freedom and responsibility which we were given demanded that realistic and valid solutions to the total environmental problems be evolved.

Our Basic Design courses have been restructured with this same goal in mind. New activities lead the student to think and evaluate each individual problem, rather than taking the standard dogmatic approach to design.

Both students and faculty have taken part in non-scholastic activities which are closely related to our professional education.

Several of our Design professors have made studies in problems ranging from migrant housing to mass housing for the new emerging nations of Africa.

Another significant project links architecture and the social sciences. This involves the creation of a therapeutic environment for physically handicapped children.

We hope that you will accept these articles as evidence of the strides which our Department of Architecture is making. Only through knowledge of and continuing concern for our activities can you help to insure that we will receive the best and most appropriate education possible for the ever-changing and dynamic profession, Architecture.
3 Design
New second year Basic Design Course stresses environmental understanding and perception.

4 San Juan Study
Student architects from the University of Florida study Urban Design in a Living City.

8 A Therapeutic Environment
Design Professor's proposal will aid in training children with physical and perceptual handicaps.

9 2x2's, Junkyard Steel, Metal Conduit, plus Imagination
A group of energetic students build a 60 foot diameter dome in The Architecture Courtyard.

10 Expedition to Mexico
A historical (or hysterical?) sojourn into the Pre-Columbian ruins of Mexico.

14 The Future of Grove Hall Is Up In the Air
Our "temporary" studio building must soon give way to a modern structure. Its unique environment will be missed.

16 Editorial
A challenge to our students, faculty, administration, and the profession.

18 Response
Arnold F. Butt, new Chairman, answers our challenge.

20 Art and Humanity
This crucial link is shown in a national exhibition of Florida art, featuring works by a Basic Design professor.

21 Architects Support the University
The Florida Central Chapter, AIA, and Mr. C. Randolph Wedding gave the students energetic support.
Strange new things are happening in Design. Our basic design students recently held a "build-in" during which they created a gigantic cardboard structure with a labyrinth of interior spaces. The project was an experiment involving space and scale along with light and shadow, texture and color.

In spite of the seemingly utter chaos which this and other of their activities generate, our basic design students are gaining a greater understanding of the creative design process.

This renewed desire to educate an architect capable of dealing effectively with architectural problems, coupled with recognition of the danger inherent in allowing typed solutions to recur, has led the staff of the department to reassess our design approach.

The resultant changes have occurred this year in the basic, or second year, design level. This three course sequence, (AE 231, 232, & 233) has specific objectives but in general is organized around the basic premise that what is needed today and tomorrow as architects is men capable of thinking independently in the decision making process. Emphasis is placed on the students' ability to grasp alien or unfamiliar problems and take them to a logical concise solution through a meaningful thought process. The product of a student's abilities is not the determination of later successes. Instead, the thought process from which he arrives at a solution is the valid measure of competency.

AE 231, the first course in the design sequences, stresses the student's need for an awareness of his environment. The students spend time in analyzing and becoming more familiar with various aspects of their environment. In line with this the various elements that compose a framework for ordering our environment are discussed and analyzed—scale, space, circulation and color, texture and light—all to varying degrees.

AE 232 introduces the student to basic figure-ground relationships and abstract compositions in three dimensions involving scale, solid to void relationships, and color. This disciplines the student to the need for an understanding of basic space-form relations.

AE 233 is the first course in which the student begins to apply these various principles to basic architectural solutions. In this course the student is involved in two separate design problems running concurrently through the quarter. One, which runs the full ten weeks, is a "case study" in which the student gets totally involved in an analytical process which by the tenth week culminates in a final design solution. The other is actually a series of four two-week problems involving analysis, site conditions, structure and so forth which are designed to put emphasis on a particular area at a given time during the quarter i.e., a two week structures problem. Even though these problems are completely unrelated to the case study (in terms of content) the learning experience is certainly the same and the information can be fed back into the case study problem.

In all of these courses the students are required to keep a "daybook"—a record of their thoughts and ideas related either directly or indirectly to their course work, thus giving them a serial log of the progression of their changing ideas. The students are also encouraged in exploring many other ways of communicating their ideas, as through cinema, still photography, tapes, three dimensional matrix systems, and other methods as might be appropriate to a given problem.

With this increased understanding and perception of his environment the student hopefully develops a disciplined but free mental attitude that allows for the logical ordering and categorizing of experiences. The outcome should be a student who is capable of understanding human activity in any environmental situation.
The historic Spanish city of San Juan became home and school to 12 University of Florida students during the summer of 1966. A special studies course in Urban Design was sponsored by the Department of Architecture, in conjunction with the University of Florida's Center for Latin American Studies and the Instituto de Cultura Puertorriqueña. Professors Dan Branch and Blair Reeves organized the special 9-hour course which was taught by Mr. Branch.

The Instituto provided housing within the historic zone of Old San Juan. From this base of operations all parts of the city and its fantastic variety of activities were within a twenty-minute walk.

For seven hectic weeks the students lived and worked in Old San Juan. A weekend tour of Puerto Rico gave exposure to several smaller towns and their characteristic planning elements. A four-day excursion to the Virgin Islands offered a total change in environment, town character, and culture. As guests in the office of Toro and Ferer, FAIA, they saw many projects including a new development which will eventually integrate housing, commercial and social activities in a new Urban Core. Many lectures and discussions were held on the historic development of Puerto Rican architecture and Urban Planning. Round table discussions were held with Jesus Amaral, the head of Puerto Rico's new School of Architecture, at which many valuable ideas on curriculum and architectural education in general were exchanged.

The Department, and the students who participated, hope that this program can be repeated very soon. Eventually, this could lead to an exchange program with the University of Puerto Rico's newly established School of Architecture.

Professor Dan Branch's summer project in San Juan had as its major goal the search for a design pattern to the city. We accomplished this in two phases. To gain an understanding of the city's composition, social structure, and function, we first made close and detailed studies of urban and architectural spaces. Next we prepared design proposals based upon our observations and analysis of the various needs of the city.

Old San Juan offered a perfect environment for our study because it is a living city with a European character. Confined on three sides by the Spanish fortress walls, the harbor, and the Atlantic, the city was forced to grow compactly within a well-defined area. This limiting factor has prevented the urban sprawl found in the adjoining modern city, and gives Old San Juan its character and completeness as an urban complex.

The Old City has a typical grid pattern superimposed over the naturally hilly terrain. Traditional Spanish squares dot the city adding greenery and open space to the very dense urban environment.

Most of the structures are three to five stories tall with a white or pastel stucco finish which creates a very homogenous atmosphere. An interior courtyard is a traditional element found in almost every house.
To gain an understanding of the city and its people, we divided Old San Juan into twelve zones, each containing several blocks. After a brief period of orientation and discovery of the city we began a detailed technical study of the urban environment.

We observed building usage, condition, height, pedestrian circulation, traffic flow, and parking. This data was compiled on large maps of San Juan which gave us a complete physical evaluation of the city.

The cityscape was studied next, giving us a feeling for the character of the city. Here we noted overhangs and projections; the number of openings onto the street; nodes of public activity such as squares, cathedrals, and public buildings; boundaries, whether physical or mental; and the neighborhood units which they formed.

A major part of our study dealt with the city unit — the block. For one week we worked in conjunction with Professor F. Blair Reeves and his Historic American Buildings Survey team. Together we obtained detailed information about a typical city block. This data enabled them to produce a complete set of measured drawings of the entire block. More importantly, it made us aware of the cumulative structure of the city — beginning with the single unit — the house, which combined to produce the block, and hence the city.

We found the social make up of the block quite interesting and quite analogous to the city as a whole due to its diversity. At one extreme is the home of Sr. Ricardo Alegria, the director of the Instituto de Cultura. His home occupies one eighth of the block and features a lush courtyard.

A neighbor’s house is at the other extreme. Her home is eight feet wide and about eighty feet deep. Its two-story structure has been wedged into an alley between two existing houses. Her house, too, has the traditional courtyard.

Around the corner are a series of three and four story tenement structures. Originally designed for the wealthy, they now house dozens of families in apartments created from one or two small rooms. Each room opens onto a rickety veranda which encloses a bleak courtyard.

A similar pattern was discovered on the other two sides of the block. We noted the major difference to be the higher income level of the residents. Generally only one or two families live on each level and the courts are smaller due to filling in of the structure over the years.

Our total experiences, culminating in the block study taught us much about the city and its people. Primarily, we learned that people of widely varied income and educational levels can successfully live together. The juxtaposition of the commercial and residential uses provided not only visual relief and variety, but more importantly, served a commercial and social function.

JULY, 1968
ARCHITECTURAL SOLUTIONS

We also saw many areas which we felt needed improvement. The second phase of our program led us toward architectural solutions to these problems of urban design.

Two teams were formed to study the housing situation. One design problem, programmed and executed by Robin Bosco and Peter Wilson, proposed the construction of a new "neighborhood" which captured the scale and character of the Old City. Integration of functions, activities, and social levels was preserved.

Another housing scheme suggested the preservation of the block which we had studied. Foster Thorpe, John Toppe, and Dan Williams recommended that all but the worst structures be renovated and restored. The center of the block was opened, linking the private courtyards. Walkways were provided between the street and the new neighborhood core. Eventually each block could have a core of this type interconnected by interior pedestrian paths. The existing streets were retained in order to preserve their social and economic function in relation to the rest of the city.

Vestpocket parks were proposed to meet the urgent need for recreation and play areas for children. Mark Freeman utilized existing vacant lots and proposed that more small park areas be created by selective demolition of buildings which were beyond renovation. Filled with simple basic play elements such as pipes and blocks, these parks were to meet the physical needs of the children which the plazas could not serve.

The social function of Plaza de Armas was improved in a scheme prepared by Ed Oliver. By rerouting traffic he was able to rededicate the plaza, in the heart of the city, to pedestrian use and restore its lost historical character.

The gateway to Old San Juan, Plaza Colon, was redeveloped by Steve Fowler, Tom Hammer, and Bill Speer. A transportation center was proposed which would perform a dual function. Visually, it restored a section of the city wall which had been destroyed to allow expansion, and would protect the old city as a contained environment. As a transportation terminus, parking and related facilities were provided with the intent of limiting the influx of automobiles into the city.
Another plan to preserve the pedestrian nature of Old San Juan was presented by Skip Sims. Utilizing the rundown waterfront area, he proposed a series of parking and commercial structures linked to a transit system for the daily users of the city. New commercial activity would lead to the revitalization of the dock area.

The old Market Place was restored by Lydia Rubio Garcia. One of the most rundown areas of the city would be revitalized through her scheme which would generate much needed social and commercial activity for the local residents.

These projects were juried by a distinguished group of local architects and civic leaders and were very favorably received. Sr. Jesus Amaral, the Dean of the University of Puerto Rico's new School of Architecture, worked closely with us and gave us much valuable advice and criticism. Also serving as critics were Sr. Ricardo Alegria, director of the Instituto de Cultura and Efrain Perez Chavis, editor of Urbe.

Each of these proposals gained impetus from our personal reactions to our experience in Old San Juan. We began with preconceived notions of neither problems nor solutions. Thus each project developed freely according to our individual interests.

We worked within very strict limitations. Each of us selected a problem, investigated and then programmed it and presented a proposed solution. This was one of the great values of the San Juan project as a learning experience. We had to completely evaluate the validity of each proposed project. We did not accept the status quo. The total environment became our site, and as future architects, we had to carefully consider the impact of our project as it would affect the people within the environment and their lives.

All of us feel that the project should be repeated as soon as possible. It should perhaps be expanded to form a study team which could include sociologists, economists and other consultants who are becoming more and more involved with architects in Urban Design.
An adaptive playground for preschool physically disabled children, some with perceptual deficits, is presently under development for Forest Park School in Orlando. The playground is a research project sponsored by Federal funds.

Professor Leland G. Shaw of the University of Florida, the consulting designer for the facility, was selected on the basis of his earlier work in the field of visual perception relating to elementary education.

The program is planned for August. Thereafter the children's progress will be tested at given intervals to see if there has been a change in their perceptual motor development. Both still pictures and movies will be made, showing the equipment and the playground in use to assist in an analysis of body movements made while using the equipment.

The objective of the program is to design a therapeutic environment with equipment of unique design to reinforce certain aspects of therapy training. Professor Shaw's theory is based on the fact that the success of the program depends not on providing a mere physical facility but in creating an environment which will provide a stimulus for the child, placing in him a desire to experience the physical aspects of the design which will in turn improve his motor perception. A sense of place in such an environment will be created by use of color, by the texture of the materials, the forms within the facility, the scale of the objects, the amount of light and shade, the intimacy of some areas, and the openness of others.

Which textures, which materials, which colors, and which dimensions will invite a child to engage in an activity so often avoided since birth? What part do shadows play in the development of a handicapped child? Will a child seek the softer, darker areas to satisfy a need for the security he might have failed to receive. Will a sharp shadow portray a barrier to an uninviting space?

What inspires a child to crawl when it has been so difficult in the past? Could it be a progression of colors, the softness of foam rubber? Or might it be a bell at the climax of a trip which he can ring as an announcement to all that he, a physically handicapped child, has overcome an obstacle?

One of the more important activities to help the children adjust is a series of planes at various levels designed to invite a child to climb from one level to another and finally fall into a pit, teaching him a sense of psychological control and at the same time muscular coordination. Since many of the youngsters have multiple and extensive handicaps, falling is an integral part of their daily processes.

Another interesting facet of the design is a pit of water in which the child experiences one of the most beautifully aesthetic properties of water... its ability to reflect the image of white clouds on a sunny day. Or the clean feel of the water on his dirty fingers might help provide the mood necessary to reach a child's confidence.

The results of these activities and the answers to these questions will be evident only after careful experimentation with these youngsters. If through specific and gross motor training, with play as motivation, the motor perception of physically disabled children can be improved, the result will be a more normal basis upon which academic learning can be built. Proof that this is possible will provide a breakthrough for educating not only these children but similarly handicapped children throughout the nation—as well as other varieties of exceptional children whose motor experience has been limited by mental, emotional, social, or cultural deprivation.
One of the most exciting and creative events to occur on the University campus evolved from the Architecture Courtyard’s gravel-filled sculpture pit, the "Ashtray."

Here a group of fourth-year students, led by Charles Seiger, Richard Barrette, Robin Bosco, James Lloyd, and William Pauli initiated the planning and the construction of a dome. For some of them it was a structures project for Professor M. H. Johnson and for the others the dome offered the excitement of an experimental structure.

Rising 30 feet and spanning 65 feet, the structure consists of one ton of 2 by 2 fir members, junkyard steel plates, and metal conduit braces. Compression is resolved through an elaborate series of overlapping plates. A one-quarter inch braided steel cable threaded through eye-bolts serves as the tension ring.

The Dome has opened the Ashtray for sculpture displays by our Art students, as was originally intended. It will serve as a space-definer in our Architecture courtyard and as a design laboratory for our Basic Design students.
EXPEDITION TO MEXICO
by Derek B. Donley

Two University of Florida history professors, Donald Buttress, an avid collector of Adam chimney pieces from Manchester, England, and Harold Kemp, a farmer from Washburn, Illinois, recently spent two weeks at Pre-Columbian ruins in Mexico. The trip was a serious and fascinating tour which had its humor. What follows is a blow by blow description.

The Gainesville sun was beating heavily upon the soft top of Hal Kemp’s red Triumph as he and Donald Buttress left for Tampa and a plane bound for Merida, Mexico. “A simply super car,” said Buttress the stalwart Limey. “Well naturally . . . ” thought Kemp, “he knows it’s British.” And with that Hal put on his spiffy new red check racing cap, which everyone knows will make a car, any car, surge 10 mph faster, and with little else to be said soon arrived at Tampa’s airport.

“I’m terribly sorry, sir, but all British subjects must have a tourist card from a Mexican consul before entering Mexico,” said the ticket agent. With that final word, they watched their plane leave later on that afternoon. With Donald mumbling something about stupid nits and the insufferable red tape, he and Hal left for Miami, the consulate, the consul, the tourist card, the overnight hotel which had a leaky bathroom (the w.c. ran all night) and finally the jet to Merida the next morning.

Their objectives in seeing the Pre-Columbian sites and Mexico were varied. Hal wanted to photograph the ruins for a course in Pre-Columbian architecture he will teach here next fall. Donald wanted to experience them as monuments to a strange and now vanished civilization. He was equally interested in the colonial churches of Spanish pilgrimages, and in observing the Mexican towns from a city planning standpoint since this is his interest back at the University of Manchester. See and experience Mexico they did, and it is a wonder that Chichen Itza, Uxmal, Kabah, Monte Alban, Mitla, and Teotihuacan still survive after their forays.

“Do you speak English” . . . “No comprendo” . . . “Hmm, well, how do you get to Chicken-It’s-A?”

Chichen Itza was a tremendously vast city with hillock after hillock yet to be excavated. The potential drama and wealth to be discovered is only waiting for time and more money. But the present excavations are also truly impressive, even to two tourists in the great humidity and staggering heat. Hal felt that he was better accustomed to the heat than Donald, where in his country the presence of the sun once in every four years sets off mass hysteria in Trafalgar Square, and Druid sacrifices are held to bring back the Cloud God. Hal set off on his first pyramid climb and promptly became dizzy half way up. Donald then set off to prove the infallibility of the Empire, made it to the top as the bus was blaring him to come down and go!

After that it was Uxmal and Kabah. Donald was still hors de combat because of the heat so he drank some freshly squeezed orange juice in a rather sleazy little town; it did look “oh, so good.” Hal held back and the results told a couple of days later in Mexico City.

But first a plane ride to Oaxaca in which Hal and Donald, wearing no coats over their short sleeve shirts, froze in an unheated plane at 18,000 feet. The stewardess had given them a threadbare blanket and darted to the pilot’s cabin which just happened to be heated. After the plane landed the two took a taxi to Mitla which really was the best site of all. It was still a city; the Mexicans had their huts all around the old religious and civic ruins. The intricately carved tiny stones placed in rigid geometric and abstract patterns were quite a switch since other sites had flowing animal and human forms. Realism for these ancients was an abstract idea.
The expedition then boarded a vintage two engine Dakota DC3 at Oaxaca bound for Mexico City. The airline company had two planes, but only one could fly at a time since they had only three engines. The plane staggered up to its 12,003 foot ceiling while the mountains reached 11,997 feet. They just made it after almost dumping Donald's pottery, blankets, beads, trinkets, and tin Christmas tree. At last they were descending to the plateau on which Mexico City rests when suddenly the plane lurched, turned, and dropped a couple hundred feet to avoid a somewhat hell-bent-for-leather novice pilot coming at them in a light aircraft. Donald palely observed to Hal that these pilots don't care how they take off or where they go in the air because they're guaranteed heaven anyway.

The first day in the city was rather traumatic since Donald's flirtation with the "tourist's tumult," via the orange juice, finally paid its heavy toll and sightseeing was limited to a hundred yards from the hotel. The city offered impressive sites; the classical and baroque cathedral which was overpowering in its immensity and more particularly, the well-equipped and well-planned National Institute of Anthropology and History. The large tension structure, as long as five football fields, was perhaps a bit "Miami Beach" in design but the interior held exquisite stone carvings and detailed models of the Pre-Columbian sites which held their attention for days.

They felt one should, if interested in architectural history, go to the Museum first since it is a fine introduction to the sites; spend a couple of days there and then pick the ancient sites that interest one most.

Mexico City was not without its frustrations. The two took a guided tour of Teotihuacan that lasted a total of six hours. Unfortunately, the driver was a remarkable capitalist and took them first to a pilgrimage church for 15 minutes, a leather factory for 30 minutes and a sisal factory for 45 minutes, where he got a commission on all his passengers' purchases. They were out at the site for only an hour and this time no pyramids were scaled.

Mr. Buttress was very impressed by the planning and the huge scale of the Mayan sites but altogether found them inferior to Mycenean sites in Greece which is comparable to the total development of the Mayans yet much earlier. Mitla in Oaxaca was his favorite for the simple site was dramatically surrounded by mountains. A most serene environment—it was very difficult to leave.

The time had come and gone all too quickly when they landed at Tampa. Hal got through customs in five minutes with his single bag although they did look for a false bottom. Donald fared worse, much worse. What with three rugs and other treasures, and a wide-brimmed straw hat, he looked very much the typical shady character. He even had to empty his pockets, but much ado about nothing for his record is still clean, at this writing, anyway.
Whether you buy, sell, use, install or specify COOLING / HEATING EQUIPMENT for stores, offices, restaurants, motels, industrial plants, homes, or apartment units... there's no match for flameless electric!
Today’s key “card” for Florida’s better living and business climate.

FLAMELESS electric reverse-cycle air conditioning saves the higher cost of separate heating and cooling systems. One compact, space-saving unit does the work of two systems.

FLAMELESS... no fumes, smoke, soot or odors. Saves on cleaning and redecorating bills.

FLAMELESS... requires no flues or vents. Easily installed in out-of-the-way places. Cheaper to maintain and operate.

FLAMELESS... year 'round right for Florida’s climate. The rapid trend toward electric reverse-cycle air conditioning has brought substantial price reductions. Many models, sizes and styles available.

Want more facts? Contact your electric utility company... no obligation.

Florida’s Electric Companies... Taxpaying, Investor-Owned.

Florida Power & Light Company
Florida Power Corporation
Tampa Electric Company
Gulf Power Company
The Future of Grove

OR: what are they going to do with 400 students when Grove falls?

by Juan A. Delgado

Grove Hall was built in 1947, and became a faculty office building called "The Poor Man's Pentagon." Later it was converted into a women's dormitory, and in 1962 the Architecture Department moved in. It lodged student studios, faculty offices, administration, and the library.

Professor Dan Branch remembers the "Great Fire of 1964" which threatened the existence of Grove Hall. He and some students traced the smell of smoke to room 85. After forcing the door down, they extinguished the fire.

Presently, Grove Hall contains the Basic Design class "sweat shop," a dismal lecture room, the students’ studios, and some faculty offices. The students are allowed to arrange, paint, and decorate the studios to their tastes. To this are added all-night charrettes and 25 stereos playing 25 different records. These things give Grove Hall its character.

In chatting with some of the students and professors, a variety of opinions were found. Arnie Butt, one of our design professors, is quoted as saying, "As a faculty member it is discouraging and hopeless. Group meetings are hard, but as a place for a student to work it is good."

Oscar Larrauri, 4th year student: "A wonderful place to be; so ugly that nothing distracts me and it makes me work."

Blaine Miller, 4th year student: "I like it."

Chuck Sieger, 4th year student: "Grove Hall creates a closeness among students and faculty not achieved in other fields."

Mike Griffis, basic design student: "Reminds me of my mother's womb."

Dan Branch, design and urban planning professor: "I like to teach here but in the summer it is physically impossible. Each person has a little individuality and the individual room deprives him of socializing during his work.

Robin Bosco, 4th year student: "This old building is great because the students are not afraid of it."

Hal Kemp, professor of history and design: "Terrible. Tear all the partitions down and have a big room where I can locate my students. The student, by iso-
lat ing himself, is unable to relate his work with that of other stu-
dents.”

Pete Combs, 5th year student: “It’s great because it’s open all night long.”

Donald Buttress, visiting design and history professor from Man-
chester: “In England the stu-
dents screened themselves from each other in a big room. It is better to work in a smaller studio. Grove needs more exhibition space, new furniture, and larger studios. A mess of corridor!”

Gail Davenport, basic design stu-
dent: “I am very attached to it.”

Lydia Rubio de Garcia, thesis stu-
dent: “The individual expression of each student will be lost com-
pletely when they tear down Grove Hall. The designer needs to identify himself with the space he is working in.”
In spite of the many constructive activities which are occurring here, the mood within our Department of Architecture remains one of frustration.

What is wrong? Why are we all — students, faculty, and administration—so terribly bogged down by this all-encompassing feeling?

We have been without a department chairman for one year.

We are working under a quarter system to which we have not been able to adapt properly.

We are working under an old curriculum for which revision is long overdue.

Our potential within the University Community has not been exploited. Due to the quarter system and the relentless pressure which it exerts, we students are too busy "getting an education" to absorb anything. Involvement with campus life, whether social or political, is practically impossible. The faculty has apparently lost the interest (or perhaps the hope) which it once had in the affairs of the University — especially those activities related to our campus environment.

The College of Architecture and Fine Arts has a mixture of building construction, art, music, and architecture curricula, but offers no real integration of the arts. We exist in a cultural vacuum in the midst of plenty. The fantastic variety of experiences available within our college and on our campus are beyond the concern of most of us — simply because we do not have enough time to get involved.

Change is needed now. The changes must be far more sweeping than those now in the planning stages. Our department must first decide what type of graduate it is trying to produce and then structure the curriculum — in anticipation of the eventual six-year program — so that each and every course contributes to this goal.

Presently, there is no sense of direction within our Department of Architecture. We are cranking out architects, to be sure, but what of the quality of our graduates? They seem to be thoroughly trained technicians, and most of them are very capable designers, as shown by their successes in graduate study at Harvard and other leading design schools throughout the world. But, our graduate is really not trained as an environmental designer. Too much of our time is wasted on courses which do not contribute to our professional education.

Graphics courses lack any sense of purpose. We begin with freehand drawing and advance to classical casein rendering. Somehow, we never learn how to express our ideas simply and graphically — to ourselves or to our teachers.

We must be taught how to draw — not only buildings, but people and nature, in perspective and in scale. Every now and then, in a fit of excitement, we almost begin to do just this. But, as usual, faculty and student apathy leads us back to the same old rut.

Construction and technology courses are trying in too many cases to turn out highly qualified specialists. We spend too much time drawing meaningless and often incorrect "details" of which we comprehend nothing. Long and intricate problems which are over-involved in mathematics and under-involved in architecture leave us far behind in the comprehension of basic principles.

As architects we must learn how to communicate with the specialist and understand the principles with which he must work. Our course orientation must recognize and adapt to this fact.
Structures courses keep us groping in the dark until the end when we stop doing theoretical problems and start working with wood, steel, and concrete. Unfortunately, by the time we have advanced to this stage, we have neglected those principles which we were supposed to have learned in the beginning.

We must re-orient these courses to the present-day realities of professional practice. Heavy timber trusses don’t really teach us much about structural design except how to plug numbers into formulas. We need principles, not formulas.

History courses are making progress now. Slowly but surely we are moving away in some courses from overemphasis on dates and details towards a greater understanding of past cultures and civilizations. New options with a much more thoroughly balanced approach, geographically and historically, must be made available to more of our students.

Design courses are making great improvements, especially at the lower levels. This new feeling for design instruction must spread to all areas of design. Some courses are putting a greater emphasis on shorter projects, for we must not limit our University career to quarter-long design problems. More short abstract design projects are needed, as are more brief-but-realistic projects. Too many of our design exercises have no real goal in mind — they are not conceptual design and they are not detail design — they are just building solutions.

These proposals are not impossible dreams. Almost every one of them could be implemented before the start of our next school year. The great improvements which were brought about in the history and design programs literally occurred overnight. Immediate change of this magnitude is needed in almost every area of our old curriculum.

This is our immediate challenge.

Our greatest challenge is the development and implementation of a new six-year curriculum which would lead to a Masters in Architecture.

The six-year program will not become a reality until all of us work together for it. We students must become more involved in our education. Our apathetic attitude of getting by with as little work as possible must come to an end. We must, as future professionals, take a more constructive approach to our problems and a more active interest in our education.

The faculty, now in the process of curriculum revision, must respect our feelings and respond to our needs as we must react to theirs. Our problems can only be solved through mutual respect and communication. We must cooperate to bring about the sweeping changes which we all know are needed.

Our administration must become more aware of the problems faced by both students and teachers of architecture. They must respect the judgement of our faculty and promote the advancements which will be proposed — especially the forthcoming six-year program.

The profession must take a more active role in the development of our new program so that it will be truly responsive to the needs of the future. Too often in the recent past, the profession’s attitude, with a few significant exceptions, has been overly negative and lacking a constructive approach. Usually, there has been too little interest too late.

The leaders of our state, whether in business or government must take a more active interest in the affairs of our University System. They must respect the wishes of the educators who know best what is needed within our Department at the University of Florida.

John R. Toppe
Student Editor
JULY, 1968
NEW CHAIRMAN APPOINTED

As this Student Issue of the Florida Architect was being prepared Dean Robert S. Bolles announced the appointment of Arnold F. Butt as Chairman of the Department of Architecture. Dean Bolles stated, "Mr. Butt has a wealth of knowledge and experience as an architect, campus planner, consultant, administrator, educator, and civic leader and will be a tremendous asset to the College, the University of Florida, and the Community. He is a forward thinking man, well organized, and of fine moral character. His thoughtfulness, sensitivity, and fairness in dealing with personal inter-relationships is most commendable. We are fortunate in having Mr. Butt available for this important position.

We asked Mr. Butt to comment on our Editorial. In his first official act as Chairman of the Department of Architecture, Mr. Butt made this RESPONSE.

RESPONSE

This student edition of The Florida Architect offers a unique opportunity for a statement by a new Chairman of the Department of Architecture for several reasons. I feel sure it will be widely read by the professionals in the state and will serve to introduce me where I am not presently known. The editorial by Mr. John Toppe (which should be considered before reading the statement) was ready to go to press so there is the opportunity to comment on it.

For there is a revolt in the making, a revolt which can no longer be suppressed. This is the revolt of the humiliated human instincts. May I draw a pertinent conclusion? We have to prepare the next generation for these enormous tasks lying ahead. The present curricula are insufficiently adjusted to the necessities of this period. The students feel it strongly, sometimes more strongly than their professors.

Sigfried Gideon
Architects and Planners Symposium
Princeton University 1947

This study was commissioned by the American Institute of Architects because of a widespread feeling that education for environmental design must change.

The Princeton Report
Princeton University 1967

Change is needed now (in the architectural curriculum).

John Toppe, Student Editor
The Florida Architect
July, 1968

Mr. Gideon was not an unusual prophet—there were many architects and planners proposing changes in architectural education in that symposium at Princeton twenty years ago. Perhaps we should not be surprised that it would take the profession twenty years to embrace the broad concept of services embodied in the term "environmental design" which is the language of the Princeton Report. However, it does seem that good students like Mr. Toppe have waited long enough.

The following statements are constructed as a response to points raised in Mr. Toppe's editorial but also they outline briefly a course of action already begun which will interest the support of the profession.

Regarding the concern about the vacant chairmanship, I hope Mr. Toppe is one of the students who will agree that the Department is no longer without a chairman.

His second point concerns adaptation to the quarter system. Mr. Toppe has strong support for his position that our students have no time for involvement in campus life from Chancellor Robert B. Mautz who has warned against cramming thirteen weeks work into ten weeks. It is true that changing from the semester to the trimester to the quarter system within essentially the same course structure has hit some conscientious faculty where it hurts—namely, the shrinking of course content. Certainly participation in the social, political, and cultural aspects of campus life and concern for the campus environment are two pieces of the same pie. A reasonable time for such participation by students and faculty is a goal in adjusting course content and teaching methods. The influence which faculty and students may have on the environment of our campus and community will be proportional to the way students and faculty use that time.

The greatest challenge facing the Department and the profession is the proposed curriculum revision aimed at a six-year program. The Princeton Report clearly establishes the need for the new curriculum. The large majority of our graduates spend six years obtaining the Bachelor of Architecture degree now. More than sixty schools in the country have taken definite steps to implement the recommendations of the Princeton Report. Under the able leadership of Assistant Dean
Joseph Sabatella who has been the acting chairman of the Department for the past year, the faculty has produced the framework of such a curriculum and we are hopeful that it can be instituted this fall.

Many hurdles must be crossed before that can be done. It is our hope that we can approach the university administration with evidence of support from the profession and certainly with the endorsement of the Florida State Board of Architecture for our proposed curriculum. We plan to meet with representatives of the Florida Association of Architects and the Florida State Board of Architecture this summer to outline our plans, explain our problems, and seek their reactions.

The goals of our proposed curriculum are those suggested in the Princeton Report in terms of what graduates should have, namely:

The ability to work effectively within the real world constraints that shape present day practice.

The ability to comprehend the continuing changes in the social, economic, political, scientific, and technological setting of our society.

The ability to formulate a concept of a better environment beyond present day constraints to give direction to his adaptability to change.

The report suggests guidelines for the development of a program of study to achieve these goals but wisely avoids outlining course schedules or content. Each institution which attempts the difficult task of adjustment will have to find its own best course.

Briefly, we propose a curriculum of two years of General Education with architectural courses held to a minimum. This would be followed by two years of General Education in Architecture leading to a degree of Bachelor of Science in Architecture. An additional two years of study with concentration in a special area would lead to the degree of Master of Arts in Architecture and would qualify the candidate for professional registration after appropriate internship. Suggested options for specialization in the last two years are Environmental Design, Environmental Control Systems, Environmental Technology, Environmental Research and Theory, and other courses of study such as Architectural History and Urban Design as it relates to architecture. It is interesting to note that the curriculum will in all likelihood involve some team-teaching in certain areas, not unlike what many architects in the state will remember as the “project system” which was in effect here until the mid-fifties.

With the establishment of a graduate program we have the exciting prospect of developing research in other colleges of the university representing all the professions and disciplines. We have a fine research library and an IBM 360 computer on the campus. We are a part of an institution which is dedicated to excellence—there is a climate which encourages those who strive for excellence. With a significant increase in graduate enrollment there is every project for beginning additional research that needs to be done, not the least of which is the problem of how to improve our own professional abilities.

Finally, the urgency in Mr. Toppe’s editorial for action to change the curriculum soon, deserves a reply. I would point out, as he does, that improvements have been made in the present curriculum. He has used these improvements as a measure of what can be done. We have a responsibility to the students who are with us now to make every improvement we can and they have the responsibility to join with us and help us.

If we simply measure our efforts in terms of what could be done instead of what has been done, then the students, faculty, and the profession can make this one of the finest schools in the country.

ABOUT ARNOLD F. BUTT

Arnold Butt did his undergraduate work at the University of Nebraska where he earned an AB degree and went on to receive the Bachelor of Architecture degree. He received his Master of Architecture degree from Rice University in 1952. His internship was gained in architectural offices in Lincoln, Nebraska. Four of his sixteen years with the University of Florida have been spent as a faculty member in the Department of Architecture. He served for twelve years in the office of Consulting Architect and was Consulting Architect and Campus Planner for five of those years. At present he is Associate Professor of Architecture and Associate Director of Planning.

In addition to an architectural practice Mr. Butt has had considerable experience as a campus planning consultant for many colleges and universities in the Southeast. At present he is planning consultant for three major institutions and is conducting a study of parking and traffic for the University of Florida. He has been active in community affairs as Chairman of the City Planning Board and was a candidate for the Gainesville City Commission.

He is President of the Florida North Chapter of the American Institute of Architects this year and is also a member of the Association of University Architects.

Mr. Butt served four years with the Air Force in World War II. He is married to Elizabeth Bennett of Lincoln, Nebraska and they have three children.

JULY, 1968
Featured in a choice selection of contemporary Florida art now on display at the Pan American Galleries in Washington, D.C. are three local artists and faculty members: Bernard Voichysonk, Department of Architecture, Hiram Williams, and Geoffrey Naylor, Department of Art.

ART & HUMANITY

The exhibition, Florida 17, was received with enthusiasm by hundreds of Washington's international art and diplomatic elite at its formal opening on March 19. It constitutes the first major exposure of the State's artistic achievement beyond its borders.

What one learns about Florida from this exhibition of seventeen artists, according to Kenneth Donahue of the Los Angeles County Museum of Art, may be that, "In addition to being a Land of Enchantment, Florida is a Land of Reality, grappling with the practical, philosophic, and aesthetic problems of contemporary life. The works of art indicate that foremost among these are the meaning of the human being in the contemporary world and pre-eminence of technological over humanistic values."

Mr. Donahue also stated "the involvement of these artists with the realities of contemporary life implies that a large segment of Florida's population is equally involved. This, added to a favorable natural environment, an expanding professional population, and rapid growth in higher education and technology, offers great hope that Florida may be a major center of creative civilization in the century to come."

It is anticipated that the thirty-two items of painting, graphics, drawing, and sculpture will go on national tour following the closing of the show in Washington.
At the invitation of the Florida Central Chapter, AIA, twenty students from the Student Chapter went to Tampa to meet and get acquainted with the Gulf Coast Architects. The students were invited to dinner at the Commerce Club with the guest of honor, Robert L. Durham, FAIA, who gave a well-informed slide lecture on fine European architecture, both old and new.

Afterwards the students and chapter members met at Jim Jennewein's home for an informal get-together where lively discussion on about everything ensued until early in the morning.

The mass "meeting of the minds" was invigorating, but the most refreshing thought was that a group of architects took the trouble, the expense, and the time to entertain a large number of students, mostly unknown to them. Their interest in the students at Florida will be appreciated for a long, long time.

Architects Support the University

C. RANDOLPH WEDDING SCHOLARSHIP ESTABLISHED

In recent years the Gainesville community has taken steps to provide low-cost housing for its elderly citizens. Government subsidies have been secured for four projects, one of which became the subject of the first annual C. Randolph Wedding Scholarship Competition.

In addition to providing $500.00 in Scholarship Awards Mr. Wedding arranged for a jury of national prominence. Serving on the jury were Mrs. Marie McGuire, low-income housing specialist with HUD; Alan Borg, AIA, housing editor of The American Home; Arnold Butt, Associate Director of Planning at the University of Florida; Robert Chapman, housing and health specialist; Mark Hampton, FAIA, national design award winner; James T. Lendrum, AIA, Department of Architecture; and Mr. Wedding.

For C. Randolph Wedding and His Associates the main purpose of the Scholarship Competition was to create an interest in the field of mass housing.

PATRONS

We wish to especially thank our Patrons, whose generous gifts helped to assure the success of our first Student Issue.

Florida Central Chapter, AIA
Richard Plumer Business Interiors, Inc.
H. Samuel Kruse, FAIA, from American Institute of Architects Regional Enrichment Fund

ACKNOWLEDGEMENTS

Our sincerest thanks to Professors Harold Kemp, F. Blair Reeves, and Assistant Dean Joseph J. Sabella and especially Mrs. Margaret McDowell for the encouragement and advice which they so graciously gave. We appreciate the special photographic talents of Miss Alice Owens of the University's Teaching Resources Center. To Fotis N. Karousatos goes our deepest gratitude for his patience and understanding of our many problems.

ADVERTISERS

DUNAN BRICK YARDS, INC.
Third Cover
FLORIDA INVESTOR OWNED UTILITIES
12 - 13
MACDONALD COMPUTER SUPPLIES CO.
21
TRINITY WHITE GENERAL PORTLAND CEMENT CO.
22
HARRIS PAINT COMPANY
23
PORTLAND CEMENT ASSOCIATION
24

JULY, 1968

CLEAN ROOM DESIGN AND INSTALLATION

BY WEBER SHOWCASE & Fixture CO.
CALL MacDONALD COMPUTER SUPPLIES
TEL: 305/757-1091
BOX 68-501 MIAMI 33168
handsome, practical, economical... and precast!

The newly completed University of Miami Residence Halls feature a highly successful use of precast concrete made of Trinity White High Early Strength Portland Cement. Precast window units that shield the sun are alternated with fluted precast panels. The 1,200 panels are finished on both sides to form good looking structural walls—inside and out. The use of TRINITY WHITE High Early Cement permitted quick stripping of molds; delivery to the job on schedule; complete erection in forty days. Quite a normal result with precast concrete.

Credits: University of Miami Residence Halls, Coral Gables, Florida
Architect and Engineer: Connell, Pierce, Gettlem & Friedman, Miami
Contractor: Burk Builders, Inc., Miami
Panels by: Stresscon International Inc., Miami
Some people believe that painting should be a work of art. Harris does!

Paint should be many things. It should be the final touch of beauty to every home and building you design. It should also protect—and inhibit rust where necessary. It should be an enduring thing—able to withstand the test of time.

Harris Paints protect such diverse operations as the Sunshine Skyway in St. Petersburg, Florida; NASA's "Moon Shot" at Cape Kennedy; and the marine research ship "Oceanographer." The paints are widely used wherever corrosion protection and maintenance are required such as federal and local government installations, marine, chemical, food processing, and automotive industries, and in the home.

By using superior ingredients, we offer you a superior product that will complement your creative plans with immediate good appearance and superior durability. There are 30 Harris Paint Centers in Florida... factory operated branches...staffed by trained paint men who are ready and able to assist you in every phase of the Painting Section in your latest specifications.

No paint manufacturer can offer you more. A can of Harris Paint is a can of paint that makes economic and artistic sense. A paint that has no equal.

*Photo Courtesy Plant City Steel Co., Plant City, Florida
Orderly in Profound and Varied Ways

The First Methodist Church, Hollywood. The architects were Start and Moeller; the builder was Terry Tower. Subcontractors and suppliers involved were Prosser Plastering, Larson and Acton Masonry and Adobe Brick and Supply Co.

CONCRETE ADAPTS TO THE ARCHITECTURE OF RELIGION

From tile roof to stucco interior, concrete offers a wide variety of construction elements to meet the demands of today’s religious architecture. More and more, architects are utilizing concrete for designs that are ingenious and yet meaningful for today and generations to come.

Concrete provides the versatility, economy and permanence required for modern construction.

Low in initial cost, it gives superior insulation from heat, cold and noise. Additional savings are realized through the years because of low insurance rates and maintenance costs.

SPECIFY AND USE FLORIDA CEMENTS, MANUFACTURED IN FLORIDA FOR OVER 40 YEARS

FLORIDA PORTLAND CEMENT

Division of General Portland Cement Company

PLANTS AND OFFICES IN TAMPA AND MIAMI
This is an angle photograph of an actual panel 17' wide.

It began over 500 million years ago . . . in a quarry outside Mineral Bluff, Georgia. Through the ages, it adapted to a multitude of earth changes. Today, It is a fine-grained mica schist that has remained remarkably adaptable. It breaks into slabs of any desired thickness (stocked only in 1/2" thickness) . . . or cut and saw it to any shape. Variety is infinite. No two slabs show the same color shades . . . they range from greens and bluish-greens through yellows, browns and chocolate tones. Blend them to produce striking, artistic effects. This unusual stone is ideal for veneering . . . future uses are unlimited. It took over 500 million years for Zyrian Stone to reach such perfection of beauty and facility. It was worth the wait.