United States Naval Medical Center
Washington, D. C.

U. S. Navy Department—Bureau of Yards and Docks
REAR ADMIRAL BEN MOREELL, Chief of Bureau

F. W. SOUTHWORTH, Architect
PAUL P. CRET, Consulting Architect

DURACON
PRECAST EXPOSED AGGREGATE PANELS

FEDERAL SEABOARD TERRA COTTA CORP.
OFFICE:
10 EAST 40th STREET
NEW YORK, N. Y.
TELEPHONE ASHLAND 4-5800

PLANTS: PERTH AMBOY, N. J.
WOODBRIDGE, N. J.
SOUTH AMBOY, N. J.
Take a second look at the
WORLD'S FIRST WINDOWLESS PLANT

They gave the weather man the gate two years ago—and now they’re working as few plants can!

BITTER THAN DAYLIGHT

SIMONDS SAW AND STEEL COMPANY set new production records. Two years of experience have proved to Simonds that buildings need not be designed with windows—that they’re better without them. And modern fluorescent lighting is one of the reasons. In sunshine or rain, day or night, bright daylight is always available inside the plant. Heat radiation is reduced to a minimum, allowing greater economy in operation of the air conditioning system.

WEATHER THAT’S ALWAYS FAIR is supplied by four air conditioning units like the one above. They make possible a higher level of production, output and quality in the Simonds factory than ever before. Clean air, at proper temperature and humidity, supplies perfect ventilation—without the need for windows that let out expensive heat, let in distracting noise. In the Simonds plant, the reduction in winter heating costs offsets the additional costs in summer of both air conditioning and lighting.

INSIDE FACTS...

about windowless buildings!

★ Lower Cost Heating, Maintenance and Repairs
★ More Floor Space for the Building Height
★ Greater Flexibility of Layout
★ Elimination of “E” and “L” Construction

Sources of savings and greater values in windowless buildings are listed above. Consider them carefully. Present conditions make a detailed evaluation of this modern construction more important than ever before.

Kinetic Chemicals, Inc., the manufacturers of “Freon” refrigerants, specified by the careful architect because they are safe and efficient.

*“Freon” is Kinetic’s registered trade-mark for its fluorine refrigerants.
EDWIN B. MORRIS, Editor

Table of Contents

Page
Editorials .. 4
Louis A. Simon 7
The Simon Era in The Supervising Architect’s Office 8
Air-Raid Protection 14
Tile Competition 18
Members of Association of Federal Architects 22
Editorial Remarks Extended 25
Construction Engineers 26

Advisors on Publications
L. M. Loevinger
F. W. Southworth
C. H. Stratton
William Partridge
George A. Daidy
J. I. Morganstein
FORMICA column covering, wainscot and counter tops in the Greyhound Bus Terminal at Washington, D.C., contributed a great deal to neat, modern appearance of this unusually good-looking station, designed by Wischmeyer, Arrasmith & Ellswick of Louisville.

In the upper photo the lower part of the wainscot is brown Formica with metal trim, and in the lower photo the counter front is the same material, the column covering is dark red Formica, and the counter tops dark gray.

Cleanliness, durability, freedom from upkeep and maintenance make Formica especially adaptable for use in public rooms.

The Formica Insulation Company • • 4620 Spring Grove Avenue, Cincinnati, Ohio
Life, we are informed, is a process of continual change. There is no progress without motion. There is no advancement without rearrangement of masses and forces. The surface of the earth heaves, and there is a mountain; it sinks, and there is a lake. Always motion!

The Supervising Architect’s Office is an example of this cosmic truth. For nearly a century it remained geographically fixed, like Cape Cod, or Helper, Utah, or the Washington Monument. Historians and soothsayers believed that, were it removed, the grand old Treasury building would experience rumbling in its foundations and crumbling of its exterior architecture.

But the slow, steady forces of the universe are irresistible. Tidal waves rise, quakes shiver the earth, glaciers creep and creep. The forces united and swept the Supervising Architects’ Office out of its temple. The temple, the sturdy Treasury, did not crumble, its columns did not reduce to dust. The building remained, in fact, surprisingly as it was.

The good old Supervising Architects’ Office sat gasping in its trucks and vans, until decision was made to store it and its attendant paraphernalia in a warehouse down by the Seventh Street railroad station. Then and at once the compensating forces of Nature began to push up a building upon adjoining ground which presently flowered into drafting rooms, model shops, blueprint spaces, sample rooms and the like.

The Supervising Architects’ Office flowed into this space. It was by then equipped with modern adjuncts: A Supervising Engineers’ Office, an Office Manager, a General Counsel, a Real Estate Section, a Fine Arts Section, advisers, consultants, assistants, assistants to, and so on.

One would have guessed off-hand, therefore, that the organization, having become such a large affair and being equipped with the dignified title of Public Buildings Administration would at last remain fixed and immovable.

Far from that: Its step was springy, its respiration still strong. And when another agency, urged by war conditions, came along one morning saying “Why in the world don’t you fellows move out of this building and let us have it?” the Public Buildings Administration agreed to be wafted to other pastures.

The process of wafting began. Secret agents looked about, wondering where a very large organization, leaving one space, found another. As soon as the secret agents found a space, another organization would appear and say, “Thank you, young man, for discovering this. Our outfit will occupy it.”

At length a very smart strategy was evolved. The Public Buildings Administration, wearied with making occupation plans for buildings they never occupied, built themselves a structure—a very quick and temporary structure, to be sure, but still a shelter from the icy blasts—and prepared to occupy it. It was camouflaged in painted patterns, nets were stretched over it covered with autumn leaves, fences shielded it from the covetous eyes of other bureaus.

At the zero moment trucks were to be assembled and loaded with the goods of the Public Buildings Administration. Painstaking plans for furniture redistribution had been made. In the dead of night, accompanied by police escort, this formation of loaded vehicles was to roar at sixty miles an hour up Seventh Street and down Constitution Avenue to the new building.

The camouflage was then to be cast aside. A thousand workmen would pour furniture into the building through doors, windows, vent shafts and pent houses, placing it feverishly in the carefully predetermined spaces.

It was foreseen that, as the last HB pencil was dropped through the last skylight, hordes
of bureaucrats would converge upon the building from north, south, east and west, bureaucrats in their cars followed by their furniture in vans.

These representatives of homeless sub-sections of subordinate divisions of under-bureaus of coordinating units of major activities of vital departments and independent establishments would, it was felt, storm the locked doors, hungrily seeking writs of habeus corpus and caveat emptor, until they could be wheedled away and given space in other buildings or in St. Louis.

But that was just a plan, an unfulfilled desire. As we stood in the dark of night ready for the move, the silence of the night was shattered by the sirens of cars that roared at top speed through the Mall. With grinding of brakes and shrieking of tires they slid to a stop, to inform us that we were not to move, since the building to which we were to go had been commandeered by other activities.

There has been so much talk of late, especially in the Nation's capital, about Administrative Control. It is held to be a most important and precious commodity, and all organizations, not excepting some of the architectural offices, have been observed to jockey about from time to time seeking this elusive advantage.

That is a field to occupy larger, wider angle minds than ours. We have brought up the subject because we note that the lower animals are interested in it and have taken it up and are using it very extensively. Perhaps they have always used it.

We find the subject important because of the fact that we share our house and grounds with a colony of rats (mus decumanus) who disregard completely the fact that title to the property rests entirely and absolutely with us and who make such arrangements and decisions as they desire without routing such matters through us, the controlling officer, for check and initial.

It appears that the whole matter starts with the mole (scaplos aquaticus) which in the spring builds up a complicated system of subways, which he and his kind are permitted to occupy until the rats arrive.

Where the rats arrive from, we have no idea. They without question, being very smart and clever individuals, have had swanky warm winter quarters in houses, garages and other modern edifices. In warm weather they like out-of-doors. They explain to the moles that the rats are a defense organization and dispossess them.

During the summer the rats live happily in their bomb shelters and our lives do not cross. We have a squad of sleek stream lined black-snakes, nice, unobtrusive fellows, who go down into the subways and eat up a rat or two now and again. We don't take sides in this feud at all, preferring to let them consolidate their own differences of opinion.

In the fall the subterranean residences become too uncomfortable for the rat families, some of whom move into our house. This is not bad as they insist on administrative control and keep away mice.

This is awfully nice, for we cannot indulge in cats, which drive away our birds. You notice the delicate balance of our life. So we endeavor to stop all ingress to the upper house, with large though not perfect success, confining the rodents to the cellar where they can be warm and sheltered from the storm without being too obnoxious.

We have a very delicate administrative matter here ourselves. We have to use certain birth control expedients for and among them so that their population will not increase beyond all reason and so that at the same time they will not be exterminated entirely and cease thereupon to exclude the mice.

This requires considerable tact and discretion. About every week or ten days we purchase some very excellent fresh hamburger steak which we mix without touching our hands thereto with a valuable compound of barium recommended by the Department of Agriculture as a lethal diet for rats. Over this we pour a savory of melted butter.

In this way the population is kept down to a few of the older and wiser members of the mus decumanus species. We rather fancy these solons cooperate with us in urging their cousins and mothers-in-law to eat the savory, thus reducing the number of mouths to be fed.

Of course, every once in a while they get smarter than we are (a feat in itself) and pull a Pearl Harbor on us breaking through in an unexpected place and eating a bit of book bind-
or something. It is then necessary for us to plug up certain spots and spread out more beef and barium, until the rats become more reasonable. And so we get on with the rodents and us struggling for administrative control.

But we have no mice.

We stopped over in New York the other day and commandeered Lorimer Rich to take us to the exhibit covering the Development of the Plan of Washington which was then hung at the Architectural League.

We were impressed by the scholarly handling of the show. It was a simple effort, but charming on that account. The material was nicely calculated as to quantity so that it had unity and told its story with fine clarity.

They had hung the plans so that one began with the original L'Enfant plan and proceeded therefrom through the various plan schemes for the capital up to the present very carefully studied layout, part of which by patient endeavor has been fulfilled, part of which is merely in prospect.

Adjacent to the chronological series of plans was William Partridge's great model of the capital made for the Park and Planning Commission and painstakingly kept up to date, a beautiful and accurate record, which is a never-ending source of pleasure to behold.

The Architectural League has done a great service by holding this exhibit and by encouraging all architects and architectural students to see it. The object was, in part, to make the plan and design of Washington a matter of interest to the whole nation and not to consider it as merely the concern of those who happen to be residents of the capital.

The youth of the architectural profession will for a long while regard responsibility for the Washington design with a very gingerly feeling. There is a conviction in the younger mind that the type of government building design set up a century ago is entirely too traditional and that it should not be continued.

We don't know about that. City plan, however, is not a matter to be torn between the urges of the traditional and modern. It is just plan, which providentially is not concerned with stylistic differences of opinion.

The Architectural League deserves great credit for its exhibit. The fundamental idea behind it is public spirited and broad, Architectural thinking in terms of national responsibility!

The other day we received a check from George Daidy who was Managing Editor of this magazine in its early days. The check represented a dividend paid recently by that bank which in the magazine's infancy held our funds and which folded up in the midst of things.

The check was welcome, but more important than its cash value was the history it represented. We still see clearly the struggling magazine, existing from day to day, living hand to mouth, waking up one morning to find it hadn't a penny in the world.

The magazine was, and is, a small venture, as business ventures go, but Daidy felt that it filled a need and accomplished a purpose. That need was not spectacular, not for mention in history, but it was something which, great or small, he felt was his duty. And he pulled things through with perseverance and no little ingenuity.

We like this piddlin' little sheet we publish, and give it more attention than it deserves, and we like most to think about that accomplishment of its former Managing Editor. The act was characteristic in that he strove to lick the situation, not because of the magnitude of the result nor the glory therefrom, but because it was the job for the day.

On February 9th Mr. George Howe of Philadelphia assumed the duties of Supervising Architect of the Public Buildings Administration, succeeding Mr. Louis A. Simon, who retired from that position as of December 1st. Mr. Howe, who has an engaging personality, entered into the responsibilities of the office with a genial briskness and a modest air of self effacement which indicated that the distinguished mantle worn by so many Supervising Architects had fallen on capable shoulders.

Page 6

The FEDERAL ARCHITECT • JANUARY-MARCH, 1942
"Since 1896 he has participated in the growth of the office he now heads as Supervising Architect of the Treasury Department, Procurement Division. During this time his great interest has been in the development of an expressive Federal Architecture, the observance of high standards of architectural design and construction, the establishment of a better relationship between the office of the Supervising Architect and the architectural profession, and a closer cooperation with other agencies of the government having to do with Federal construction, so that his influence has always been one to stimulate a respect for the dignity of the profession of architecture. Because of his successful administration of an important public office and his sympathetic understanding of problems of his fellow practitioners, his associates and the profession hold him in affectionate esteem and proudly advance him to fellowship in the Institute."

Citation on the occasion of the elevation of Louis A. Simon to fellowship in the American Institute of Architects
Louis Simon at the unveiling of the Robert Mills Monument on May 30th, 1936. Mr. Simon is at the extreme left.

THE SIMON ERA IN THE SUPERVISING ARCHITECT’S OFFICE

Louis A. Simon came into the Supervising Architect’s office September 18, 1896. The office was then in the process of being built up. During the latter part of the ’80’s it had been in control of a number of men of German origin, who did architecture in a very heavy-handed way which resulted in buildings of not very great grace and distinction.

E. A. Crane, as superintendent of the Architectural Division, brought in a number of young men well trained in architecture, and Simon was among them. They brought the traditions of the French Renaissance with them and, while it was a little too playful for good government design, it was a vast improvement over the work of the preceding decade.

Simon at once attracted attention to himself as an untiring worker. When Crane left to enter the firm of Rankin, Kellogg and Crane, Wheaton succeeded to the position of Superintendent and appointed Simon as his assistant. This was quite fortunate for the latter because Wheaton shortly thereafter transferred to the War Department, leaving his position open to his assistant.

The office, at that time, was at the bottom of the south courtyard of the Treasury Building. It was very warm and an attempt was made to cool it by blowing air over ice placed in large racks. This was unsuccessful. The humidity was so great that tracings became mere rags impossible to work on.

The men, for the most part, were housed in little loges. After Simon was made Superintendent a man in one of these loges complained of the lack of good light. Simon had a very good comeback in saying that he had occupied the loge for ten years and had had no difficulty in seeing.

There was only one telephone in the whole office, in the Supervising Architect’s office. There was no telephone at all on the desk of the Superintendent. The only apparatus of communication there was a large dinner-table gong, so that when a draftsman or a messenger was needed the Superintendent whammed the gong, the sound echoing and re-echoing throughout the office.

Quarters became so cramped in the basement space that J. K. Taylor, the Supervising Architect, executed a coup d’état by filling his private office with draftsmen, so that visitors had to stumble over them. This made such a convincing visible argument that money was obtained for rehabilitating the attic of the Treasury Building for use of the Supervising Architect’s office. In 1909 the office moved up into this space.

The architecture of the office had by now been changed, put under control. The exuberance of French Renaissance, with its large-scale cartouches, brackets, flowers, etc., had been subdued by suitable bromides. In its place, under Mr. Simon’s guiding hand, came more the subdued, more sentimental architecture of the Italian Renaissance and the Colonial.

During this first decade of the century, the office library, through the combined efforts of Mr. Simon and his willing and cultured subordinate William (Continued on page 13)
The above represents in complete form, the original conception of the Triangle, that is, a group having its eastern end at Seventh Street and using the site between 7th and 6th Street (now occupied by the Federal Trade Commission Building) as a park.

This was the major project of L. A. Simon's career. It would have had to be, as for size, it is the greatest building venture in history. Simon's tact, co-operative ability, and good sense of architectural values were responsible for its being successfully carried out.

There are many now, who, assured of the permanence of a newer architecture, wish the Triangle had not been conceived in the early Federal Spirit. These may be right. They believe their smooth buildings will, by reason of their simplicity, be deathless. It's hard to tell. In fifty years we shall know more.
THREE BUILDINGS ERECTED IN THE LAST YEAR OF THE SIMON ERA

1. (above) The new War Department Building
2. (next page, top) Temporary defense agency building "D"
3. (next page, bottom) Temporary defense agency building "R"
Louis Simon and his friend Louis Ayres, of the firm of York and Sawyer, labored long and devotedly over this building. If you believe that architecture, like bonnets must be modern and up-to-date, it may not appeal to you. If you believe architecture is a matter of inspiration and skill, and not style alone, this building has great sentiment and personality.
THE SIMON ERA

(Continued from page 8)

Windom, grew to be a large, varied and valuable collection. Probably there is now no other architectural library comparable to it. Even the Congressional does not possess all the books the library of the Supervising Architect boasts.

A great tragedy happened in 1911 when, following a statement by the then Assistant Secretary that he needed less money to run his organization (an all-time high in modesty and repression), Congress violently cut the appropriation for the Supervising Architect's office.

Following the cut fifty per cent of the architects were discharged one afternoon in September of 1911. There is the legend of a retiring little man who read his dismissal notice calmly and remarked "Mortitur saltamus."

It was a tragic notification. Washington was a small place in those days and the possibilities for employment of eighty architects were slight. The private architectural offices soon put up signs, "NO ADDITIONAL DRAFTSMEN NEEDED."

The crew melted away, were heard of in cities all over the country. Some of them returned afterwards, some of them never returned. One finally came back into the service twenty-five years later. Another, notified after six or eight months that there was a vacancy, wired hysterically from some spot in the middle west, "Hold the job. I'm coming."

A reorganization of the office occurred at this time. Franklin MacVeagh, a Chicago business man, then Secretary of the Treasury, was filled with a desire to introduce modern business methods into the Treasury Department. He put efficiency experts to work upon the organization, who, while introducing many ideas of questionable value, succeeded in cleaning house and setting up a more efficient operating scheme.

James Knox Taylor resigned as Supervising Architect and Oscar Wenderoth, a former employee of the office and one of the most finished draftsmen architecture has known, was appointed successor. The administrative problems, however, were heavy and not a little distasteful to him, so that after a few years he also resigned.

During his term of office he had leaned strongly upon James A. Wetmore, his Executive Officer, for administrative advice and assistance. Mr. Wetmore's long experience with procedure in the Treasury Department, coupled with his natural shrewdness, made him so valuable as an executive that the Secretary of the Treasury kept him after Mr. Wenderoth's resignation as acting head of the office. He served in this capacity for twenty years.

He was a well-beloved person, to those in, as well as those outside, the office. He made it a point to confine his activity as nearly as possible to the administrative control of the office. The technical side he left to the trained men under him.

During those twenty years, Mr. Simon was thus the architectural head of the organization.

The work in the period was varied. Immediately after the first World War, a great many hospitals came into the office. It was not possible to obtain enough draftsmen, and the force worked ten hours a day, under an arrangement which permitted (due to the pleasant provisions of the legislation for those particular buildings) payment for overtime.

Following this hospital program the office found itself in 1925 confronted with the prospect of a building program greater in extent than any ever previously set up.

Mr. Mellon, then Secretary of the Treasury, was extremely interested. When Simon conceived the idea that a program of such magnitude should be controlled as to architectural design by a board of consultant architects, Mr. Mellon seized upon the thought with enthusiasm.

Such a board was then appointed. It consisted of E. S. Bennett of Chicago, Louis Ayres of New York, Milton B. Medary of Philadelphia, Arthur S. Brown of San Francisco and Louis A. Simon. John Russell Pope of New York was added and, toward the end

A man who has been accustomed to working at a desk and doing a certain amount of figuring might enjoy juggling a few figures each day. You have often used the figures 3.14159 to multiply the diameter in order to find the circumference of a circle, but did you ever stop to think that using those figures you never obtained an exact and correct answer. You may have reduced the multiplier to 3.1416, but if you did your answer would be an excess of 0.148 of an inch in a mile. The decimal of this multiplier has been carried out by patient men to several points, as—

3.14159265358979323846264338327950288419716939937510582097494
498923078164062862089862034825342117067821480865313727932384626
38446, Etc. Etc.

In 1872, William Shanks carried the decimal out to 707 places, and for any person with a mind for figures (digits), it might be an interesting hobby to continue and endeavor to find an exact stopping point.

H. G. RICHEY

The FEDERAL ARCHITECT • JANUARY-MARCH, 1942 Page 13
AIR-RAID PROTECTION

Illustrations from The Architectural Review (London)

Street “kerb,” as the English put it, in war paint, to guide the blackout motorist.

With the active entry of the United States into war, there comes into being that all-important part of modern warfare—civillian, non-combatant defense. In older days, war was for the soldier. While sieges and storming of cities sometimes brought the finger of death to women, children and unarmed men, nevertheless battles in the main were fought between armed forces, and messages of death were directed against soldiers, and those preparing counter messages of death.

But, in present civilized war, death is packaged and delivered to the enemy wherever he may be and however he may be armed. The babe in arms is a military target just as is the helmeted warrior.

Defense, therefore, extends to every inhabitant of a country at war. And it is a feature of warfare that as mechanized and scientific attack develops, defense against it lags further behind in percentage of effectiveness. The efficiency of defense against arrows in olden days could be made very high. Efficiency against artillery was less. Efficiency against aerial bombs is very much less.

Malignant forces set up by heavy bombs parallel Nature’s disaster forces: earthquakes, hurricanes, lightning, against which humans are largely defenseless. Human ingenuity, however, works steadily—classifying, eliminating futile steps, perfecting effective ones.

There is little protection against direct hits by aerial bombs. The missiles obtain a ferocious velocity of about 800 to 1400 feet per second. A 2000-pound bomb will penetrate 6 feet of concrete and bombs of lesser weight possess penetrating power in proportion.

Direct hits, therefore, may be in general considered as superior to defense against them, but the spread of damage beyond the spot directly hit is very great. The forces of blast, flying debris and ground movement are each as freighted with disaster just as is the bomb hit itself.

These forces can be guarded against. Skillful and studied protective schemes have been successful in reducing death toll and in driving down the percentage of effectiveness of air raids.

The blast force in itself, unaccompanied by flying solids, is potentially a death dealing menace. There is the example of certain officers at lunch in a mess hall. A bomb exploded close by and the blast, without aid of splinters or moving debris, is said to have killed all the officers, without scar or mark. It is still a moot question, but blast cannot yet be written off as a danger.

Secondly, the flying splinters and debris have the velocity of bullets and carry death with them. Protection against them, in the nature of curtain walls, and steel plates, is one of the most valuable of air raid defenses and has reduced the percentage of casualties.

Thirdly, there is the ground movement, the shift of earth when a bomb buries itself and explodes. The forces thus set in motion are many times that of...
Air raid shelter constructed under a London apartment house. In connection with it is an emergency generating unit, a gas filtration system and water service.

an earthquake. In England where factories at the beginning of the war made air raid shelters which were in effect trenches under the ground floor, the movement of the ground buried the occupants.

Protection against air raid, therefore, concentrates in shelter against splinters and concussion and debris. Effort has been made to find interior spaces in well constructed buildings where masonry partitions afford lateral protection and the floors above act as detonating surfaces and debris-collectors. Basements are found not to be good because of the possibility of broken steam lines, electrical services and gas mains.

The London subways have been such havens of refuge that it is felt by many Americans that our subways will be satisfactory shelters. But in most instances, this is not true. The London subways are generally a hundred feet or more beneath the surface, this level having been necessary because of the nature of the soil strata under the city. The depth protects the subways from the ground movement resulting from bomb-explosion.

There are shown here two types of air raid shelters used in England. The man-high cartridge type of sentry-box is an air-warden’s post. The warden stays out more or less in the open and takes it as it comes. The box protects him until there is a direct hit in his vicinity, after which he is under the skies.

The other shelter with the seats and lights is probably not proof against the results of a very near hit, but is protection against the secondary dangers of splinter and blast.

The so-called “Dormy” protection is meant for indoors. It is manufactured in sections and is put together like a radiator, fastened with bolts at the top.

Study of the air-raid protection problem has been going on for many months. The data of the English air-blitz has been pondered and reviewed. English shelter methods have been worked over. Actual experimental shelters have been built and trial bombs dropped to test their efficiency.

An important part of our air-raid protection is the organizations that have been built up in various sections to deal with the overhead blitzes and their immediate results. Maps have been made of neighborhoods. These contain records, in instantly recognizable form, of facts essential in emergency—the loca-
Mr. Edwin Morris,
Washington, D. C.

My Dear Eddie:

When reading the last issue of the Federal Architect from “kiver to kiver” I got quite a “kick” out of the editorial, which indicated that your air conditioned journey to New Orleans, several years ago, had given you an insight into at least one of the blessings of life in this City that Care forgot, and that you have become a habitual drinker,—yes of coffee. I trust that this enjoyment which you are now getting out of life is just a “hangover” from the days you spent in New Orleans, and that nothing has occurred in connection with your arduous duties, or otherwise, to drive you to drink,—even coffee.

After reading your article I am still in doubt as to whether you are drinking coffee for the exhilarating enjoyment you get from sipping this delectable beverage, or if it is just greed to collect certificates to be redeemed in tea-towels. If you but recall your visit to New Orleans I am sure you will remember that the “natives” drank coffee for the pleasure of drinking, and its exhilarating effect, and did not have to coax it down with a certified promise of a prize in the far distant future.

I also am in doubt as to whether you are imbibing in the correct kind or brand of coffee in order to be classed as a “coffee drinker.” There are coffees and coffees, and to obtain and know the best one must be a connoisseur. To produce good coffee, first select the desired brand of roasted but unground bean, and then add five per cent, or more according to taste, of chicory. The coffee and chicory must be thoroughly mixed, then placed in the grinding machine and ground to the desired fineness, ranging from 1/64 to 1/16 inch in diameter and with little or no powder.

The ground coffee should then be placed in the drip boiler or percolator where the boiling water can be passed through the ground coffee several times, until the desired strength and color is obtained. The one test to ascertain the correctness of the mix, dripping, etc., and one which a novice can use is as follows:

Pour the coffee carefully into a clean cup and then tilt the cup so the coffee flows up the side of the cup; then with a steady slow motion return the cup to its normal upright position. If the coffee, of a dark brown, nearly black color, adheres to the side of the cup like lead and oil paint, it can be considered satisfactory for use. Such coffee, however, must be used “as is” and not diluted by adding milk or cream. From such coffee, as you say,—“comes steadiness of hand and steadiness of thought.”

Yours sincerely,

H. G. Richey.

Page 16
Terminal Building, Washington National Airport, Gravelly Point, Virginia.

United States Quarry Tile Co.
CANTON, OHIO
A competition was offered by the Association of Federal Architects for the interior treatment of a bomb shelter, treatment to be in tile. The response to the competition invitation was smaller than had been expected. There were a number of reasons for this. The men in the offices were working long hours and were, in their spare time, taking air-raid and first-aid courses. The submission date for the competition, therefore, crept up upon them and passed.

The competition was sponsored by the Sparta Ceramic Company, an organization which, while obviously existing by the sale of its product, has taken an unusual interest in having that product fit into architectural schemes and in encouraging architects when using tile to use it architecturally.

This is an attitude that is praiseworthy in the case of any producer of architectural materials. Architectural schools are devoting more and more time to the study of materials rather than just to the relation of lines and masses. In educational circles, it is felt, therefore, that cooperation should come from the producer of materials, whose obligation to the field of architecture becomes greater and greater as architecture simplifies its ornament and places more and more reliance on the materials themselves.

The Sparta Ceramic Company is, therefore, to be commended for its understanding of the trend of building design; and the members of the Association of Federal Architects certainly view with approval and gratitude its gesture in making the competition available.

The prizes were not awarded, upon recommendation of the Jury, but consolation awards were made to each contestant.
DESIGN FOR INTERIOR OF A BOMB SHELTER IN TILE
Submitted by Maurice J. Zardus

DESIGN FOR INTERIOR OF A BOMB SHELTER IN TILE
Submitted by R. L. Watmough and D. W. Twiddy
United States Post Office
Westfield, New Jersey

Supervising Architects Office
Public Buildings Administration
Procurement Division

Page 20

The FEDERAL ARCHITECT • JANUARY-MARCH, 1942
Annex to the Bureau of Printing and Engraving, Washington, D. C.

Designed under the direction of Louis A. Simon, Supervising Architect, Public Buildings Administration, Federal Works Agency.

The

SPARTA CERAMIC CO.
EAST SPARTA
OHIO

The FEDERAL ARCHITECT • JANUARY-MARCH, 1942
This newly developed material consists of ferrous sheet metal which is completely bonded to a shellac base and is protected by a transparent colorless or metallic coating of shellac. It is a new product identified as CHENEY PITCH-ON-METAL. This material has the strength of steel and the flexibility of copper. It is not affected by weather, moisture, lime, or cement mortar and is resistant to most acid conditions.

Our experiments carried on with the government departments at Washington and with the Bureau of Standards definitely convinces us that our new product, CHENEY PITCH-ON-METAL, will prove a worthy substitute during the emergency.

CHENEY BLACK FLASHING is a new product identical in shape and form with the original Cheney Copper Flashing except that it is made of CHENEY PITCH-ON-METAL instead of copper.

CHENEY BLACK REGLET is made of CHENEY PITCH-ON-METAL and costs of both Black Flashing and Black Reglet are much less than copper.

CHENEY PITCH-ON-METAL SHEETS can be satisfactorily painted any desirable color provided one coat of shellac is applied after all fabrication is completed.

After all roofing and sheet metal work is completed this contractor shall point all flashing in masonry parapets, where low roofs abut the superstructure, wherever thru-wall flashing is set between two courses of masonry, and elsewhere as indicated on drawings. Thru-wall flashing shall be placed in the wall with mortar below and on top of flashing so that a mechanical bond is obtained both vertically and horizontally. All counterflashings shall be bent to shape by the manufacturer. These flashings shall be CHENEY BLACK FLASHINGS and shall be furnished and installed according to the standard specifications of THE CHENEY COMPANY, ARDMORE, PA.

All counterflashings shall be CHENEY BLACK REGLET and shall be furnished and installed according to the standard specifications of THE CHENEY COMPANY, ARDMORE, PA.

All counterflashings shall be CHENEY BLACK REGLET and shall be furnished and installed according to the standard specifications of THE CHENEY COMPANY, ARDMORE, PA.

Pitch-On-Metal can be satisfactorily painted any desirable color provided one coat of shellac is applied after all fabrication is completed.

SPECIFICATIONS (Private Work)

THRU-WALL FLASHING shall be provided below parapet coping, for counter-flashing in masonry parapets, where low roofs abut the superstructure, wherever flashing is set between two courses of masonry, and elsewhere as indicated on drawings. Thru-wall flashing shall be placed in the wall with mortar below and on top of flashing so that a mechanical bond is obtained both vertically and horizontally. All counterflashings shall be bent to shape by the manufacturer. These flashings shall be CHENEY BLACK FLASHINGS and shall be furnished and installed according to the standard specifications of THE CHENEY COMPANY, ARDMORE, PA.

After all roofing and sheet metal work is completed this contractor shall point all exposed thru-wall flashing with one brush coat of CHENEY PITCH PAINT.

FLASHING REGLET (for flashings in concrete) shall be CHENEY BLACK REGLET made by the Cheney Company, Ardmore, PA. The counterflashings locked into the reglet shall be CHENEY PITCH-ON-METAL.

SHEET METAL CHENEY PITCH-ON-METAL 24 or 24 gauge shall be used for counter-flashing, grooved stops, valleys, downspouts, facias, termite shields, ducts, roof pons, roof scuttles, and for all sheet metal work that can be formed by locking or riveting. All sheet metal shall be painted with one field coat of CHENEY PITCH PAINT after fabrication to seal any damage to the Pitch-On coating.

Pitch-On-Metal can be satisfactorily painted any desirable color provided one coat of shellac is applied after all fabrication is completed.

SPECIFICATIONS (Public Work)

THRU-WALL FLASHING shall be provided below parapet coping, for counter-flashing in masonry parapets, where low roofs abut the superstructure, wherever flashing is set between two courses of masonry, and elsewhere as indicated on drawings. Thru-wall flashings shall be formed with dovetail or undercut serrooth corrugations spaced three inches apart, and shall be placed in the wall with mortar below and on top of flashing so that a mechanical bond is obtained both vertically and horizontally. All counterflashings shall be bent to shape by the manufacturer. These flashings shall be CHENEY BLACK FLASHINGS and shall be furnished and installed according to the standard specifications of THE CHENEY COMPANY, ARDMORE, PA.

After all roofing and sheet metal work is completed this contractor shall point all exposed thru-wall flashing with one brush coat of CHENEY PITCH PAINT.

FLASHING REGLET (for flashings in concrete) shall be CHENEY BLACK REGLET made by the Cheney Company, Ardmore, PA. The counterflashings locked into the reglet shall be CHENEY PITCH-ON-METAL.

SHEET METAL CHENEY PITCH-ON-METAL 24 or 24 gauge shall be used for counter-flashing, grooved stops, valleys, downspouts, facias, termite shields, ducts, roof pons, roof scuttles, and for all sheet metal work that can be formed by locking or riveting. All sheet metal shall be painted with one field coat of CHENEY PITCH PAINT after fabrication to seal any damage to the Pitch-On coating.

Pitch-On-Metal can be satisfactorily painted any desirable color provided one coat of shellac is applied after all fabrication is completed.
Cleveland (Berea Formation)

Sandstone

- Because of its durability, uniformity of color, high silica content and lustrous appearance, this sandstone is authoritatively recognized as a superior stone in the construction field.

- A product of our large quarries at South Amherst in Northern Ohio — the Sandstone Center of the World — Cleveland Sandstone has gained wide usage throughout the United States and Canada for exterior and interior building purposes.

The Cleveland Quarries Co.

Cleveland Ohio

Minnesota Dolomitic Limestone

A sound durable stone, produced in color shades of gray, cream, buff, and pink.

Fine and Coarse Texture Stone

Ample production and milling facilities for any project.
WITH YOUR INDULGENCE

The Editor Extends his Remarks:

Architects and architectural editors should not delve too deeply into the field of economics. But then architects and architectural editors do think and do concern themselves with architecture. Particularly with the future of architecture.

Most of us view the future, the general future as affecting all men, with dark foreboding. That is the usual tendency of the thinking world, in times of stress and in times when there is no stress. A curious phase of the philosophizing of the man on the street is that he is able to see the future as very black, blacker oftener than the reality when it arrives.

Professional men now try to avoid thinking of the world after the war. Their thoughts are pessimistic, briefly gloomy. We overheard a doctor who had joined the medical corps say that he was giving up his practice, an extensive one, without great perturbation of spirit. "This is the end," he remarked. "After the war the diagram indicates no place for the professional man. The government will step in, see that we get the bare necessities of food, shelter and attention. There will be no personal money to pay a doctor."

That was just a speech, not a sensible theorem. But it represented, by exaggeration, a chaotic future we all fear. We all of us see years ahead in which there will be fewer automobiles, fewer radios, fewer clothes, fewer luxuries. We envision the motto of these times to come as "fewer, fewer."

Everyone can take that. The more privation, the more courage. But when the "fewer" is repeated oftener and oftener and at length the great zero appears to rise over the horizon, then, and only then will we give way to despair.

If we may come forth with our timid and restrained voice, which is not backed by any clairvoyant thinking, we would wish to say, as firmly as we may be permitted, that there isn't going to be any Great Zero.

We don't want to be classed as being anything so reprehensible as an optimist. But we want to advance the theorem that this world is going to remain a sphere, it is not going to be flattened out into a door knob.

Our prophetic theory is that if we as a nation, and our allies as nations, have the strength and the courage and the perseverance to prosecute this war to a successful conclusion for the purpose of defending our culture and our civilization, then we shall have the strength and the courage and the perseverance to keep alive after the war that culture and that civilization.

We met a sailor a while ago who was to be attached to a hospital ship, scheduled to follow the fleet. In his opinion, it was a dangerous post. "All the Japanese," he asserted, "have cataracts, and they are cataracts of the type that make it impossible for them to note the difference between a lighting ship and a hospital ship."

Now let us have and hold this hope. Let us hope that the Japanese, misguided by their cataracts, astigmatism and whatever else in the way of near-sightedness and snow-blindness afflicts them, have picked a foe in the States of America that is too big, too determined, too right, and too strong for them to lick. Let us hope this; and that, by the will of Providence, we shall trim them and ride them back into their little isle.

And then—

Let us hope that we, in this victory, battered and bankrupt though we might possibly be, will then be as far-sighted as the little yellow men have been near-sighted.

Then will come the time for the disciples of culture, the followers of the arts, the writers, the artists, the inspired ones, to gather together to set up again and crystallize the culture and civilization we shall have won the right to enjoy.

There must be no despair, for culture will not go hand-in-hand with defeat. In those vital days after the war, we may and will have less to eat, less impressive roofs over our heads, less flashy motor (or bicycle) transportation, more patches, more makeshifts to keep (Continued on page 28)
LIST OF CONSTRUCTION ENGINEERS

Public Buildings Administration

W. A. Benneman
Richard W. Prendergast
Henry C. Smith
Herbert Q. Vanentine

District No. 7
Dallas, Texas
I. D. Porter
Albert E. Saderland
Laddis McQuillin
John R. Lammers
Wm. Nichols
Frank M. Weakley
Joseph B. Amori

District No. 8
San Francisco, California
(same located at Oakland, Cal.)
Wm. Arthur Newman
Thomas H. Farlington
Logan E. Dunlin
Carl R. Shepard
Paul E. Wadz

Emergency Operations Unit
C. L. Berry
Seattle, Wash.
Charlie Elsman
Atlanta, Ga.
Clayton R. Haden
Fr. Worth, Texas
Curtis L. Hilyer
Arlington, Va.
H. W. Olmsted
Chicago, Ill.
Shefby Post
Richmond, Va.
Walter M. Sanger
Los Angeles, Calif.
Grower C. Sullivan
Los Angeles, Calif.
Paul E. Wicklund
New York, N.Y.

Regular P.S.A. Engineers
John A. Ackerman
John J. Austin
Ralph C. Raiser
Washington, D.C.
Washington, D.C.
Washington, D.C.
Washington, D.C.
Washington, D.C.
Chester, Pa.
Greenville, Ala.
Laurence E. Allison
Washington, D.C.
Rudolph W. Andson
Burlington, Ia.
Joseph Arakelian
Washington, D.C.
John J. Austin
Washington, D.C.
Washington, D.C.
Washington, D.C.
Washington, D.C.
Laredo, Texas
Laredo, Texas
Washington, D.C.

C. A. Converse
Lloyd Orr Godle
M. M. Mann
E. J. Quitin
Henry O. Quin
H. C. Russell

District No. 5
Chicago, Ill.

A. A. Packard
Fred H. Williams
Paul J. Bodey
Albert J. Chandler
Wm. A. Gebhart
F. A. Miller
Wm. A. Ruchradon
Edmund Schlemmer

District No. 6
Kansas City, Missouri
Wm. Neville Collier
Karl L. Hultsick

W. E. Brown
Washington, D.C.
Wm. T. Brown
Portsmouth, N.H.
Ralph S. Ruth
Center Line, Mich.
Hugh A. Campbell, Jr.
Baltimore, Md.
Frank Cashan
Fort Kent, Maine
Robert J. Colgan
Marcus Hook, Pa.
Robert, Colton, Jr.
Washington, D.C.
Alfred T. Coston
Mill Valley, Calif.
Harold K. Contrill
Cairo, Ill.
L. C. Crew
Corry, Pa.
Walter L. Cremin
Corry, Pa.
Elmer P. Cummings
Wayzata, Minn.
Chas. H. Duding
Dover, N.J.
Chas. W. Davis
Baltimore, Md.
Wm. H. Field
Washington, D.C.
Reginald L. Dies
West Palm Beach, Fla.
Frank H. Dohrmann
Washington, D.C.
Oliver V. Dukes
Sunniald, Md.
Harrison R. Faye
Versailles, Ind.
J. C. Elliott
Rome, Ga.
David J. Evans
Santa Ana, Calif.
James K. Evans
Wichita Falls, Tex.
Roy S. Eyre
East Paterson, N.J.
Wm. E. P. Parnham
Mobile, Ala.
Jos. H. Frevan
Roaring Springs, Pa.
Simeon M. Feinberg
Washington, D.C.
Warl E. Fisher
Bath, Maine.
Arthur A. Fletcher
Pt. Leonard Wood
Rolfs, Mo.
Frank C. French
Junction City, Kans.
Louis W. Frerex
Kansas City, Kans.
Scott Fullerton
Charleston, W. Va.
Edward J. Garvey
Versailles, Ind.
Morise Gay
Niagara Falls, N.Y.
George A. Gehl
Milan, Tenn.
Lloyd Groswel
Owen, N.Y.
Clmont J. Gerber
Wichita, Kans.
Paul Giddings
Macomb, Ill.
Max M. Gold
Mobile, Ala.
Chas. E. Gordon
San Francisco, Calif.
Hiram A. R. Gray
Kansas City, Kans.

L. C. Grossman
Portsmouth, N.H.
Edgar L. Grover
Morgantown, W. Va.
S. Parry Grub
Washington, D.C.
Edward C. Hildeman
Baltimore, Md.
Geo. P. Hales
San Francisco, Calif.
Nels Hansen
Bath, Maine.
Frank L. Hawkins
Leeville, La.
Ferd. E. Hrases, Jr.
South Bend, Ind.
Paul H. Heimer
East Paterson, N.J.
Joseph T. Hendron
Huntington, W. Va.
Geo. W. Higes, Jr.
Washington, D.C.
Henry E. Hill
Washington, D.C.
C. C. Hallewell
Burlington, Calif.
Arthur H. Howland
Baltimore, Md.
P. M. Huff
Boston, Mass.
Hubert P. Illman
Athena, Ga.
Alfred R. James
Hatboro, Pa.
Roy J. Jelinek
Hinsdale, Ill.
Wm. M. Jarvis
Baltimore, Md.
Geo. L. Jensen
Penndel, Oregon
George W. James
Fort Huachuca, Ariz.
Lisgernon J. Johnson
Washington, D.C.
Wm. S. Johnson
Mobile, Ala.
Bruce K. Jones
Niagara Falls, N.Y.
Richard L. Jones
Washington, D.C.
F. P. Karbo
Washington, D.C.
George W. Kays
Spokane, Wash.
Wm. H. Kelsey
Washington, D.C.
James J. Kerley
Corpusville, Ind.
Clyde C. Key
Washington, D.C.
Darrell F. L. Kall
Schnitt, Md.
Guy T. Kuntz
Portland, Oregon
Emil W. Kunze
Kansas City, Kans.
Harry D. Lackore
Seattle, Wash.
Barney M. Laid
Louisville, Ky.
Louis R. Langle
Corpus Christi, Texas
Raymond Lavercombe
Washington, D.C.
Wm. E. Lawrence
Brooklyn, N.Y.
John L. Lee
Wasserburg, Conn.
Chas. E. Legris
De Pere, Wis.
Henry R. Leslie
Washington, D.C.
Jacob Don Levin
El Reno, Okla.
Daniel J. Lix
North Landing Ground, Ill.

(Continued on page 28)
Sparta Brick is manufactured from a fine quality clay and is fired in a variation of colors and shades.

It is furnished in Brick (2 1/4 x 8) and double Brick (5 x 8) sizes and in 3 3/4 or 1 3/4 thickness.

Salt Glazed Brick or smooth buff face Brick are furnished in two faces and two ends glazed but only one face is guaranteed. Two face walls should be erected with two single face units bonded.

Samples of colors will be cheerfully furnished upon request.

For further information write or call our home office:

UNITED STATES QUARRY TILE COMPANY, EAST SPARTA, OHIO
body and soul together. But it will be the joyful and stern duty of every architect, every artist, every writer, every doctor, every exponent of all the civilized professions to devote his life to seeing that our civilization goes on.

The great cultural and professional organizations, the institutes and associations of architects, artists, engineers, physicians, lawyers, chemists and all the personnel of culture and civilization must consider themselves after the war as drafted to consolidate the victory the other draftees have won.

There is no place for pessimism in this world so long as there is the future opportunity for service. And we, exponents of civilization, in which the army of architects is in the forefront, have this great and important opportunity which will be before us after the war, the opportunity to implement victory, to see that the things we are fighting for do not evaporate after we have won them.
WHEN Carrara Structural Glass is made, every piece of it is mechanically ground and polished to a true, flat surface. This precision method of manufacture imparts to Carrara the high degree of excellence and quality found only in a finely-machined product.

Thus, Carrara has a smoothness and reflectivity of surface, a depth and uniformity of color found only in a glass so made. Carrara joints are true and even, without lippage. Carrara never warps with age. It won't check, craze, stain, absorb odors or fade.

This glass can be decorated in various ways to achieve unusual architectural effects. It is available in a special Suede-finish for use where a soft, velvety-surfaced glass is desired. And there are no construction delays with Carrara — its application involves little, if any, use of critical materials.

Send the coupon . . . today . . . for our free booklet on Carrara. It is profusely illustrated, and contains full information on Carrara's physical characteristics, the colors available, construction details, and other data.

PITTSBURGH PLATE GLASS COMPANY
The modern Structural Glass

CARRARA
FEDERAL OFFICE BUILDING, ARLINGTON, VA.

View of Lobby

ATLANTIC WALL ASHLAR used for wall facing in lobbies 1, 2 and 3 and in vestibules.

Lobby walls 9' 5" high. Vestibule walls 10' 3" high including moulded cap. 7,000 square feet glazed area.

Typical field units 9" x 14" laid with 3/16" joints. Vertical stack jointing and bullnose corners.

ATLANTIC TERRA
MAKERS OF AMERICA'S BEST KNOWN TERRA COTTA

101 Park Avenue, New York City

Southern Branch: ATLANTA TERRA COTTA CO., East Point, Ga.

Page 30

The FEDERAL ARCHITECT • JANUARY-MARCH, 1942
FEDERAL OFFICE BUILDING, ARLINGTON, VA.

View of Vestibule

Two mottled glazed colors used; the base a rich red-brown and the field pale coral. Glaze and body produced in one firing at standard ATLANTIC temperature 2400° F.

Every unit machine ground accurately to size after firing to permit setting with uniform joints; an absolute ATLANTIC requirement for satisfactory stack jointing. Units packed in sturdy cardboard containers for safe transportation.

Great technological progress in recent years has made ATLANTIC TERRA COTTA the modern high quality building material.
The homes that can't be built today will be better built tomorrow because of ANACONDA RESEARCH

From mines to fabricating plants, production of Anaconda Copper and Brass is devoted whole-heartedly to our country's war program.

But meanwhile, Anaconda Research carries on with redoubled effort . . . not only for war purposes ... but looking also towards the time when—the present emergency over—copper and brass will again be available for unrestricted use.

The future is bright for the building industry—never in our country's history has such a backlog of needed housing accumulated. One day it will be released.

Anaconda Copper and Brass—in old and new forms of usefulness — will be ready.

The American Brass Company

General Offices: Waterbury, Connecticut, Subsidiary of Anaconda Copper Mining Co.
1900 EXTRUDED SHAPES
Introduction and development of the extrusion process for architectural bronze and nickel silver.

1922 ANACONDA BRASS PIPE
Introduced and promoted Brass Pipe for plumbing. Later developed Anacorda 85 Red Brass Pipe after a nationwide 10 year study of water corrosion.

1927 EVERDUR* METAL
Commercial development of high-strength, weldable copper-nickel alloys used to line for water tanks.

1932 "ELECTRO-SHEET" COPPER
New process makes wide, thin copper available for low-cost, lasting, damp-proofed, weather-proofing and concealed flashing.

1934 10-OZ. ECONOMY COPPER ROOFING
New narrower, lighter weight roofing sheets make economical, long lasting, copper roofs available for small and medium sized homes.

1935 THROUGH-WALL FLASHING
Patented new design provides positive protection and easier installation at reduced cost.

1938 COPPER WALL PANELS
A new dry-construction, patented-wall facing: weather tight, non-absorptive; erected without solder or caulking compounds; allows free movement to prevent buckling. Panel walls can be dismantled and re-erected in another location.

1940 ANACONDA COPPER REGLET
Patented reglet to receive flashing in concrete construction: sturdy, efficient and easily installed.

1942 ANACONDA RESEARCH
This program of The American Brass Company is carrying on in many varied directions to improve efficiency and usefulness of existing products, and to develop new products and uses which will make building in the coming era more efficient, more lasting.

Highlights of ANACONDA SERVICE to the building industry

makers of Anaconda Copper & Brass

In Canada: Anaconda American Brass, Ltd., New Toronto, Ontario
RIGHT NOW OUR FACTORIES have only one interest: to make more Defense Aluminum than the world has ever seen before. Every resource we can muster is concentrated on that job.

WHEN AMERICA HAS WON THROUGH to make the world safe for our children to live in . . . the saying is: What a lot of aluminum is going to be available for everybody.

THE REAL POINT TO PONDER is how to get set to make that deluge of light metal work for you. In the kind of world we’re going to have, sure as fate, the man who fails to call, now, on every resource at his command is going to be left at the post.

WE’VE COINED A WORD: IMAGINEERING. It’s the fine art of deciding where you go from here. It’s the act of thinking out what you are going to face, and doing something about it now. Imagination plus engineering is a formula for the future you’re going to hear more about.

A MAN CAN be producing for Defense at top speed and be imagineering at one and the same time. In fact, the more he is devoted to Defense now, the more he needs imagineering for THE DAY WHEN.

OBVIOUSLY, you can imagineer with steel, copper, glass, zinc, plastics, or what have you. We hope you will, because the world is going to need better use of all materials than it ever saw before.

THE CLOSER YOU GET TO FUNDAMENTALS the more quickly you must decide that the great need is going to be for the very things Alcoa Aluminum does best: Lightness with strength, resistance to corrosion, reflectivity, workability and all the rest of its powers all wrapped up in a low-cost package full of unlimited possibilities for you, personally, in your business.

TWO HEADS ARE BETTER THAN ONE. Already, many an industry, many a company, has called us into an imagineering session. We’ve seen things projected that will make news when the curtain can be lifted. Usually we’ve been able to help with some imagineering of our own.

DOES THIS SUGGEST ACTION? WE HOPE SO.
Aluminum Company of America, Pittsburgh, Penn.