Veterans' Administration Hospital at Gulfport, Mississippi

The FEDERAL ARCHITECT

RECEIVED Aug. 9, 1943
APPROVED

JOHN J. McMAHON, ARCHITECT.
“Why settle for 75¢ when you can have $1.00?”

It gives you something to think about when you compare the advantages of Nairn Linoleum with other floor materials. For Nairn Linoleum alone meets all four of the basic specifications for the modern floor.

1. **EYE APPEAL** — Unequaled beauty and wide variety of color offer unlimited freedom of design. Patterns that are Color Correlated—with each other and other decorating materials.

2. **LONGER WEAR** — Nairn commercial linoleums not only meet, they exceed U. S. Government specifications on every point. Built-in ruggedness that spells long-range economy.

3. **RESILIENCE** — Quiet, “foot-easy” Nairn Floors are sound absorbing, sound deadening . . . “comeback” with a minimum of marring after indentation.

4. **CLEANLINESS AND EASY MAINTENANCE** — One-piece construction leaves no dirt-catching cracks and joints . . . reduces maintenance time and cost to a minimum. Positive germicidal properties. No splinters! No “dusting”!

Why be satisfied with a floor that gives you only two or three of these advantages—a 50% or 75% value for your money? In times like these especially—it’s important to get “all 4”—100% for every dollar you spend—with Nairn Linoleum!

EXTRA VALUE IN NAIRN WALL LINOLEUM, TOO. It lasts as long as the building. It won’t fade, crack, discolor, stain or dent. And—with its amazing variety of patterns and colors—it offers more decorating possibilities than any other permanent wall material. Both Nairn Floor and Wall Linoleum are fully guaranteed when installed in accordance with specifications.

FREE—200 PAGE BOOK of installation aids and specifications—for architects, contractors, builders. Write on your letterhead to Congoleum-Nairn Inc., Kearny, N. J.

Nairn Linoleum— the floor that gives you “all 4”
EVIDENCE
like this is piling up

Overwhelming evidence from hundreds of builders and engineers proving again that Strong-Bilt Panels for lining walls and ceilings are the best answer to problems of speed construction, lasting quality and lower costs.

Strong-Bilt Panels will benefit you in two ways:

1. Add dollar value to the job by providing greater beauty, crackproof construction, efficient insulating value and lower maintenance expense.

2. Cut your costs by reducing application time, reducing number of needed paintings, and permitting earlier completion any month of the year, anywhere, without delay and cost of “drying out.”

Let us send you our free booklet which tells how you too can utilize dry-built full wall construction to the best advantage on today’s war housing construction and on postwar homes for private owners. Phone, wire or write. The Upson Company, Lockport, New York.

Upson Quality Products are Easily Identified by the Famous Blue-Center

Left: Crackproof full wall construction completed with Strong-Bilt Panels by Stofflet & Tillotson.

Above: Strong-Bilt Panels for quality, speed and lower costs in a big Stofflet & Tillotson project.
Romany Quarry Tiles have long been known for their beauty, durability and reasonable cost. The wide variety of colors, sizes and shapes offered make possible many distinctive patterns which will harmonize with the architecture of any building.

— New Catalogue #9—furnished on request —

United States Quarry Tile Co.
Canton, Ohio
PROBLEM: To Erect Mill Building Walls with Minimum Use of Critical Materials...

...Using Wall Units which combine all these advantages in one thickness:

✓ STRUCTURAL STRENGTH
✓ EFFICIENT INSULATION
✓ GOOD APPEARANCE
✓ EASY HANDLING
✓ FAST ERECTION

SAVING NAILS
SAVING LUMBER
SAVING TIME
SAVING DECORATING EXPENSE
SAVING MAINTENANCE EXPENSE

ONE thickness of Cemesto does the work of many materials. That is why Cemesto construction is setting new records for speed in factory construction with wood framing. This revolutionary new method deserves the attention of every architect. Bring your files up to date by sending for this new Cemesto portfolio now. It contains a wealth of detail drawings and descriptive specifications. A request on your letterhead will bring it promptly.

CELOTEX
CEMESTO

The word Celotex is a brand name identifying a group of products marketed by The Celotex Corporation.
Annex to the Bureau of Printing and Engraving, Washington, D.C.

Designed under the direction of Louis A. Simon, Supervising Architect, Public Buildings Administration, Federal Works Agency.

The

SPARTA CERAMIC CO.

EAST SPARTA

OHIO

Page 4

The FEDERAL ARCHITECT • JULY, 1943
WHY LEADING ARCHITECTS CHOOSE CARRARA FOR MODERN TOILET ROOMS

Look at the toilet rooms of any fine, modern building, and the chances are you'll find walls, stiles and partitions of Carrara Structural Glass. Here's why:

Carrara is mechanically ground and polished ... every piece of it. This precision-manufacture gives Carrara the polished beauty, the richness, the maximum effectiveness in architectural design that only a finely-machined structural glass can offer.

And Carrara's practical qualities equal its exceptional good looks. It never absorbs odors, never checks, crazes, fades or stains. Moisture, chemicals, pencil marks affect it not at all. It is easily kept clean by an occasional wiping with a damp cloth. And it is easy to install.

Very important, too, is the fact that Carrara Glass, in polished or Suede finish, and in a wide selection of thicknesses and colors, is promptly available today. And its installation requires very little, if any, use of critical materials.

Carrara is structural glass at its best. Send the coupon for our free, illustrated booklet which contains information on Carrara's physical properties, colors available, installation details and other helpful data.

CARRARA
The Modern Structural Glass
PITTSBURGH PLATE GLASS COMPANY

The FEDERAL ARCHITECT • JULY, 1943
Libraries and other set-ups which held the THE FEDERAL ARCHITECT by volumes have been confused by the gaps in publication during the war period. These have been due to the printing and engraving congestion in the Washington area. A summary of issues during the last few years appears below. From now on publication will be regular.

1940
January
April
June
October

1941
January
April-June
September-December

1942
January-March
April-June

1943
April-June

Table of Contents

Page

Editorials .. 8
Hospital Planning—Veterans' Administration 12
Officials of Veterans' Administration 14
Relation of Bicycle to Gasoline Shortage 17
Alan Johnstone House 18
Log and Stone Construction—Forest Service 21
Temporary Federal Office Buildings 26
Problems—Navy Department 30
Federal Architect Membership List 34
Prince George's County Hospital 36
Charles Louis Borie 39

ASSOCIATE EDITORS
W. Ellis Groben, Agriculture
Anthony J. Windheim, Coast Guard
Elbert Poets, Natl. Housing
Lient. Henry Etter, Navy Dept.
David Lockling, Public Buildings
Marshall Shaffer, Public Health
Edward M. Kilerlane, Veteran's Admin.
Plastic Strips
Make
Terrazzo
A "Natural" For War Construction
For Three Outstanding Reasons:

1. **Non-Critical:**
 The development of these plastic strips which have already proved through actual use, their durability and wearing qualities, makes Terrazzo an entirely non-critical product unaffected by any existing war restrictions, because the other component parts of its make-up, marble chips, cement and sand are also non-critical materials.

2. **Adaptability:**
 Terrazzo is adaptable to any type of construction either permanent or semi-permanent, and can be installed over any type of sub-base: wood, concrete or earth fill. It can also be installed in monolithic form by applying the 3/8" topping direct to a 2" reinforced concrete slab over wood or concrete joists. Terrazzo can be used on floors, wainscoat, stairs, and numerous other essential parts of buildings. Our product is extremely useful in airplane plants and industrial buildings where reflected light can be obtained by using white cement Terrazzo. A new use for Terrazzo, that of a surface for huge Pedestrian Ramps was developed in the world's largest building—the U. S. War Department structure in Arlington, Va.

3. **Cost**
 Terrazzo is the cheapest material you can use, even though its initial cost may be slightly above other materials; because it gives you lifetime wear with no replacements or repairs plus economical maintenance. Compare the cost of Terrazzo with cement or composition materials used for a similar purpose; and when you take into consideration the replacements, painting, etc. needed for their upkeep, you will still find Terrazzo the Lowest-Cost-Per-Foot-Surface over a period of years.

Terrazzo Gives You Results
Unequaled By Other Products

- Lifetime Wear
- No Replacements
- Sanitary
- Beauty and Design
- Economical Maintenance

Send for our free "Informational Kit"

National Terrazzo and Mosaic Association

1420 New York Avenue N.W. Washington, D. C.
We found ourselves on the morning of May 26 in Cincinnati, a large town on the Ohio River opposite the city of Covington, Kentucky. At the very sumptuous Cincinnati Union Station, a taxi driver crowded us into a vehicle and dropped us at the Netherland Plaza Hotel, a really luxurious and gay sort of inn, what with Rookwood Faience friezes, stair-rails of such fabulous metals as bronze and stainless steel, and many other shining remembrances of the Pre-Blitz period.

The hotel was further distinguished by having assembled upon its very busy and exciting Fourth Floor, the simultaneous conventions of the American Institute of Architects and of the Producers Council, two great organizations concerned with man's desire to live, work and often to play under a roof and within four walls.

These two organizations were each individually concerned with the prospects for post-war construction, the Producers Council orally concerned on the 26th, the Institute orally concerned on the 27th. Since we were primarily concerned with the post-war scene, we obtained a Producers Council guest badge for the one day, an American Institute guest badge for the other.

The Producers Council discussion was under the leadership of Mr. Roger Creviston, of the Crane Company in Chicago. His work had been largely organizational. The Council had spent a year in investigation. Mr. Creviston took that information and together with his associates developed it into a well built-up organizational scheme.

That organization is clarifying. I think the average citizen is appalled at being confronted by a high wall of theoretical conjecture as to the future. It is like fooling with the Fourth Dimension or with the theorem of Relativity.

Mr. Creviston and his associates have succeeded in a smart way in breaking down that wall of theory into a number of logical steps and procedures which in themselves are not theoretical. The result gives assurance, makes the picture less confusing, less discouraging.

It, for instance, relegates speculation as to the overall industry future to the Producers Council, speculation as to particular phases of that future to trade associations, planning for individual private companies to the companies, an obvious enough breakdown, but needing stating, so that the direction of effort is set up for everyone. There need be no overlapping.

Aids to planning, market research, distribution and financial considerations, etc., get laid out, and to a considerable extent have been laid out, by capable and experienced committees which have for some time been in working status.

Of course there is sometimes the feeling where a quantity of committees and sub-committees and under-subcommittees are set up that there is too much machinery. More telescopes than vision.

But in this case the action of the committee appeared correct. The stimulation of post-war construction is not a strategy of accomplishment from a central point. It is a strategy of accomplishment by accumulated effort. It requires the unified efforts of individuals and individual companies, or organizations, widely separated geographically from coast to coast. The problem is to have these lesser individual forces apply their individual pressure in the same direction and for the same purpose.

The problem was to make thousands of people think about this thing, until it becomes a matter of approved public opinion, until those who may build after the war, begin to think now about the manner and scope of that building.

The Producers Council scheme is a matter as of wide advertisement. People think in accordance with a framework of reasoning publicly laid out for them, provided it is reasonable. That is the way they buy cigarettes, decide on national issues.

All this is based on the theorem that Pri-
vate Industry should get into it now, should begin to plan now. The Council's organization is a method of inducing the construction industry, and those agencies who may later construct, to plan now, or at least to think now.

A fact that was brought out at the convention was that the construction industry represents half of the business scene. It is the largest prosperity wheel and should be turned first. If that wheel revolves, all the national prosperity wheels will revolve.

Then followed the matter as to the expected size of the post-war construction program in dollars. A forecast on this subject pointed out that the size of the program would depend to a considerable extent upon whether and to what extent we have inflation. The thought that under normal currency values, with no important inflation, the Government and other public construction backlog would be about six billion dollars, this public backlog being a yardstick.

It is assumed that private industry would double that, making the annual construction somewhere between fifteen and twenty billion dollars.

It would obviously be better if the figure were twelve billion, which corresponds to a normal prosperous building year, and lasted at that figure for several years. There was considerable discussion upon this matter, seeking for methods of flattening out such construction peaks and filling up the valleys.

The reason a large private construction volume may be expected is first because there is a surplus now of income over things the wage-earner can buy. This is going into war bonds. After the war this reservoir, it is estimated, will be beyond the figure of one hundred billion dollars. Secondly, there are the new family formations which will require enormous housing facilities.

The consideration and pre-planning of the committees of the American Institute of Architects, which reported to the AIA convention of the following day, were in a way similar to those of the Council. They had organized committees to light the torch from the central torch and to pass the flame on to other torches.

The Institute, however, did not think so much in terms of volume. Their speakers did not speak of size of the post-war program. They did not speak of how to stimulate it or to control it in a quantitative way. Their reasoning was qualitative. How, rather than how much, was their approach.

It was the professional point of view. At times a bit Quixotic, possibly, keeping the hem of the garment just a little too carefully out of the dust. But in the deep ethical tradition.

They dwelt upon the things which were their inspirational purpose in being architects. There is something heroic about the architectural profession. Architects meet at times when the world has not been kind to them, and they carefully refrain from mentioning the things or laying out plans which will bring them incomes. They speak rather of means of better planning, of being more useful to the community, of bending their efforts toward more useful and more beautiful cities.

One doesn’t always approve of that. It sometimes seems, as we say, too Quixotic. But it does ennoble the profession. It makes the architect unselfish, altruistic.

The post-war construction situation was being taken care of, therefore, in two energetic ways, with untiring effort. The Council’s effort was more dynamic, more driving. It will help set up the construction program by the very momentum it builds up.

On the other hand the Institute will lend a careful skillful hand. If a large post-war program is built up, and it will be, the efforts of the architects will make the program a thing to give the nation more useful construction, more beautiful construction.

One thing however, built up from this that from my point of view was not wholly satisfactory. The discussion of the Institute confined itself to consideration of publicly financed projects. It is to be hoped that that will be a relatively small part of the post-war program. And for a very definite and important economic reason, tightly woven into our American design for living.

What we need is a virile, vitamin-filled post-war construction program with its roots in a natural prosperity. We don’t want to have all the water we get from the pump be poured back to keep the pump primed. We don’t want construction money to spin around. We don’t want all of it to be money
which is allocated by the government to construction, goes into wages and fees, is paid back in taxes, goes again into construction, wages, taxes and so on in its vicious circle. The pump rather needs a large contribution from that clear crystal springs of private enterprise and participation.

From that point of view the program of the Producers Council was somewhat more direct and forceful. But both were concerned with the one certain cardinal objective—to publicize the Post-War construction plan. If construction, as was stated at the meetings, is to be the first and ranking industry, the country should be thinking about it and continue to be thinking about it.

There has been a great deal of discussion in recent months upon the question that engineers have to some considerable extent come over into pastures held previously to be purely architectural. The engineering profession, it is held by many architects, aspires to do all the staff and control work in connection with designing and erecting buildings, calling on the architectural profession, as a subordinate to do the architecture.

We are not too much perturbed about that, while admitting that it is a possibility. If there was such a thing as an Engineer, combining all the functions of the broad scope of engineering in one person, we should be quite fearful.

But as a matter of fact the man who comes closest to having a full understanding of all the types of engineering and their relationship to each other and to a building is the Architect.

To amplify that statement, we say in explanation that we never saw a mechanical engineer who looks upon a structural engineer with any seriousness. To the M.E. the S.E. is there to make it hard, putting beams where there should obviously be ducts and slabs where sanity dictates pipes. And a civil engineer, to the M.E., is just a sun-burned character who looks through a spy-glass and comes up with a wrong grade. So, while a M.E. could possibly coordinate engineering, he has never been educated for coordination.

The structural engineer considers the mechanical engineer and the sanitary engineer and the road engineer just playboys who, with a little more patience and perseverance, might have progressed to be structural engineers. The structural engineers view the others as being in the tadpole stage of the profession, particularly the mechanical engineer, since it is elemental that water will run through a pipe and air through a duct.

But architects, while growling and grumbling as is their nature, have learned through generations to evaluate the services and talents of the engineers. Nowhere in life do the various types of engineers get such whole-hearted, though grudging, respect and admiration as from the architects. When an engineer says it's a 12-inch beam, it's a 12-inch beam, period. Though the architect reserves the privilege of being dyspeptic and ill-tempered about it.

The architect is the coordinator, the staff strategist. He brings together all these engineering geniuses, growling all the time, but keeps fretting and tearing his hair until at length he coordinates engineering and architecture. At least he hopes.

We think engineers do not covet the architect's job of planning and coordination. The engineers we know are concerned too much with their trusses and their air-conditioning loads to want to take on over-all planning, to worry about seating-capacity and corridor circulation patterns.

Yet, if our diagnosis is correct, there is a certain section of the public that would like to give engineers rather than architects plan and design control. Architects have unfortunately got themselves pretty well misunderstood in the past decade or so.

The curse of architects is that they are inarticulate. A long while ago the profession, after calm deliberation, became non-advertising. This was unfortunately taken to also mean non-explanatory. In distinction to the medical profession. The medical profession does not advertise. It does as a profession explain its progress and reasons for progress. Its X-ray technique, its sulphur drugs, its new anaesthetics are brought to the attention of the world, as a public service. Educated people generally, therefore, have an understanding of the aims and viewpoint of the medical profession.

Not so architects. In the last twenty-five
years the architectural profession took the most drastic step in its history, the most drastic step in the history of any profession. They cast aside the accumulated lore of their trade, locked their books on the top shelf and started in to recreate their profession as practically a new vocation, insofar as outward and visible sign is concerned.

Whether that was aesthetically and socially wise is a question that has been argued and table-thumped for many years, without decision. The thing that, practically, was unwise about it was that the profession decided to come out as a modern profession disconnected with its past, without careful publicity preparation to apprise the public as to what was going to happen and why.

And thus the architectural profession lost its public. In changing its language, it made one fatal blunder. It failed to understand the nature of public appreciation of architecture. The public in general has no quick-changing reasoning, no mental appreciation of architecture. Its enjoyment of architecture is emotional, a good deal of it is deep-seated, inherited through several generations, just as is their emotional ecstasy over green hills and valleys and distant mountains.

We think it is without question that the architectural appreciation of the man in the street is for the most part a seed that was in him at birth, an unconscious prompting from within him that causes him to stop and emotionally feel the dignity or the beauty of a building.

Architects have known for years that their buildings appeal to a receptivity in the average citizen, which is actually to the receptivity of a great grandfather or a grandfather transmitted down as emotional force. Just as orators know there are words which have appeal to the inner heartbeats of their listeners, because those words have been emotional symbols for centuries.

The public was unprepared for and puzzled by the about-face of the architects. Reasons for it had not been advanced and hammered home. The new architectural manifestation aroused no emotion in the public in general. The public looked at the buildings designed in this strange mood; and they were just walls. Nourishing, no doubt, but puzzling.

It soon eventuated that if an engineer or a relatively untrained architect designed in this new mood, it was the same to the public as if the best mind in the architectural profession designed it. That statement may sound strained, but we have seen proof of it so many times. We like to observe what people on the curbstone look at.

We see their eyes rest on a building designed in the simple modern way of windows of one size equi-distant on centres horizontally and vertically. They do not see the building. Their glance slithers off it just as it does off a row of brick houses. And when you ask them about it later, you find that, insofar as they were concerned, the building was not there. It does not necessarily follow that the building lacks merit. Merely that the public does not know it has merit.

It can be said, therefore, that the architect has lost his public, and there is where his sickness lies. It gives the engineer, the contractor, the broker, anyone, the chance to step in.

All this is drivel, perhaps, weeping over spilt milk. Or is it? Why can't the architect try to get back his public. That is the tragic responsibility of every other artist. The writer of novels, the playwright, the producer of motion-pictures, they all must listen to the applause of the public ringing or failing to ring on the cash-register.

Who are architects that they alone may tell the public what to like, while all other creative genius listens breathlessly for the public's approval? The answer is that in that detachment of architects from the public lies the possibility of disaster.

The public are beginning to say now, indifferently and a little absent-mindedly, but they do say it, “We don't understand the product of these architects. We'll let anyone design our buildings.”

We may be wrong in this attitude. We have been wrong before. But there are two facts. One, the architect went into his redesign status, without giving consideration to, or caring, whether the lay mind would like the new product. Two, the architect is, or is on the verge of, losing his public. Do these facts connect.
In 1919 there were five separate Governmental Agencies administering veterans' benefits. This condition was found to create a cumbersome and inefficient handling of an important function of the Federal Government. Consequently, in order to remedy the situation, Congress in 1921 enacted a law by which the Veterans Bureau was established. By this Act all matters relating to veterans' benefits with the exception of those administered by the Bureau of Pensions and the National Home for Disabled Volunteer Soldiers were placed under one head.

Nine years later, in 1930, an Act was passed authorizing the President to consolidate executive and administrative bureaus and any hospitals created relative to relief, or benefit of former members of Military and Naval Establishments. At this time, the work of the Veterans Bureau, Bureau of Pensions and the National Home for Disabled Volunteer Soldiers was combined and the Veterans Administration created.

During the years these various agencies were handling veterans affairs and in the years of transition to ultimately one agency, construction of hospitals and homes has been a major part of the work. Today this important work is performed by the Construction Service and as the architectural work is of hospital type and specialized in character, it is believed to the interest of the profession to cover certain features of hospital planning, design and construction.

This article, first in a series to be presented, is devoted to the origin of the Veterans Administration, to the officials responsible for and interested in the accomplishment of its building programs, and to the organization of the Construction Service.

The Veterans Administration administers all laws relating to the relief of and other benefits provided by law for former members of the military and naval forces. It is responsible for extending relief to veterans and to dependents of deceased veterans of all wars, and to soldiers and to dependents of deceased soldiers who served in Government military and naval establishments during time of peace, as provided for by various acts of Congress. These laws, include in addition to compensation and pensions, benefits in the form of government insurance, military and naval insurance, adjusted compensation, emergency officers' retirement pay for veterans of the World War, and hospital and domiciliary care for veterans of all wars.

The providing of benefits in the form of hospital and domiciliary care for veterans of all wars has, through the past twenty-two years, required the construction of a group of hospitals and homes as listed herein and indicated on the map. These hospitals and homes represent the largest number of such institutions ever operated as a group.

Veterans Administration hospitals and homes, 93
in number, will be found in every State in the Union, except three, New Hampshire, Rhode Island and Delaware. The facilities are divided into four types: General Medical and Surgical, Neuropsychiatric, Tubercular and Domiciliary. The classification of hospitals is determined from the type of patient predominating.

General Medical and Surgical Hospitals

- Albuquerque, New Mexico
- Alexandria, Louisiana
- Amarillo, Texas
- Atlanta, Georgia
- Baravi, New York
- Boise, Idaho
- Brecksville, Ohio
- Bronx, New York
- Cheyenne, Wyoming
- Columbia, South Carolina
- Dallas, Texas
- Dearborn, Michigan
- Des Moines, Iowa
- Dwight, Illinois
- Fargo, North Dakota
- Fayetteville, Arkansas
- Fayetteville, North Carolina
- Fort Harrison, Montana
- Fort Howard, Maryland
- Hines, Illinois
- Huntington, W. Va.
- Indianapolis, Indiana
- Jefferson Barracks, Mo.
- Lake City, Florida
- Lincoln, Nebraska
- Marion, Illinois
- Memphis, Tennessee
- Minneapolis, Minnesota
- Montgomery, Alabama
- Muskogee, Oklahoma
- Newington, Connecticut
- Pittsburgh, Pennsylvania
- Portland, Oregon
- Reno, Nevada
- Salt Lake City, Utah
- San Francisco, California
- West Roxbury, Mass.
- Washington, D. C.
- White River Junction, Vt.
- Wichita, Kansas

Neuropsychiatric Hospitals

- American Lake, Washington
- Augusta, Georgia
- Bedford, Mass.
- Canandaigua, New York
- Chillicothe, Ohio
- Coatesville, Pennsylvania
- Danville, Illinois
- Downey, Illinois
- Fort Custer, Michigan
- Fort Lyon, Colorado
- Gulfport, Mississippi
- Knoxville, Iowa
- Lexington, Kentucky
- Lyons, New Jersey
- Marion, Indiana
- Mendota, Wisconsin
- Martinsboro, Tennessee
- Northampton, Massachusetts
- North Little Rock, Ark.
- Northport, L. I., New York
- Palo Alto, California
- Perry Point, Maryland
- Roanoke, Virginia
- Roseburg, Oregon
- Sheridan, Wyoming
- St. Cloud, Minnesota
- Tuscaloosa, Alabama
- Tuskegee, Alabama
- Waco, Texas
- Walla Walla, Washington

Tubercular Hospitals

- Castle Point, New York
- Excelsior Springs, Missouri
- Fort Bayard, New Mexico
- Legion, Texas
- Livermore, California
- Oteen, North Carolina
- Outwood, Kentucky
- Rutland Heights, Mass.
- San Fernando, California
- Smmount, New York
- Tucson, Arizona
- Whipple, Arizona

Homes

- Bath, New York
- Bay Pines, Florida
- Biloxi, Mississippi
- Dayton, Ohio
- Hot Springs, South Dakota
- Kecoughtan, Virginia
- Los Angeles, California
- Mountain Home, Tennessee
- Togus, Maine
- Wadsworth, Kansas
- Wood, Wisconsin
Brigadier General Frank T. Hines, Administrator of Veterans Affairs, is head of this large organization. During his twenty year tenure in office, the work of the Administration has greatly expanded, and as will be noted from the list of the Field Stations, many hospitals have been built; others remodeled and enlarged.

General Hines undertook direction of the Veterans Bureau on March 15, 1923. At that time Warren G. Harding was President of the United States and there was an urgent need for a competent responsible executive to handle veterans' affairs. General Hines was selected for this tremendous task. Orderly business procedure was established which is well evidenced by the following excerpt taken from a recent issue of the National Tribune: "During the twenty years he has held office, the agencies under his charge have disbursed approximately fifteen billion dollars altogether, without the slightest hint of any irregularity or scandal. It should also be pointed out that during this period not one personal attack has ever been made on General Hines or his integrity. Many have had complaints about not getting what they thought they should receive from the Veterans Bureau and the Veterans Administration, but there is practically universal agreement that General Hines has done, and is doing, his job in a way which has brought forth the highest commendation, from Members of Congress, from veterans organizations and from the disabled veterans themselves who have been under his care."

General Hines has held office under four Presidents, which is unusual for the head of a Federal Agency.

He was born and raised in Utah. At the age of eighteen, he left Utah Agricultural College and enlisted in the 1st Utah Volunteer Artillery. With this unit, he saw service in 24 engagements in the Philippines. He was commissioned a Second Lieutenant in the field at nineteen years of age. When this volunteer unit was returned to the United States, he was mustered out of the service. Shortly thereafter, he was commissioned a Second Lieutenant in the regular army from which rank he rose to Captain. He received a rare distinction in being promoted from Captain to Brigadier General after World War I.

General Hines was responsible for evacuating 3,100 American citizens, chiefly from Italian ports, in the beginning of World War I; served as Chief of the Embarkation Service of the War Department, which organization carried two million soldiers to and from Europe; and, saw action with the troops at St. Mihiel and in the Argonne.

General Hines, as Administrator of Veterans' Affairs, is also Chairman of the Federal Board of Hospitalization, which is advisory to the President in all matters relative to need for, the location of, and expenditures on account of increased Government facilities for the hospitalization and domiciliary care of all veterans of the United States. The authority of the Board has been increased recently as will be noted from the following statement by General Hines before Congress: "In the matter of hospitalization, the President on March 31, 1943, directed the War Department, Navy Department, Veterans Administration and the Social Security Agency that no more construction would be undertaken that has not been cleared through the Federal Board of Hospitalization. That has brought about a study of the projects submitted by the War and Navy Department with a view of anticipating the load that the Veterans Administration will get when the War is over."
The Director of Construction for the Veterans Administration is Colonel Louis H. Tripp. Colonel Tripp, as Director of the Construction Service carries extensive responsibilities for the Veterans Administration. He is charged with directing the performance and accomplishment of the following: (a) Preliminary inspection and engineering work in connection with the selection of sites for new hospital and domiciliary facilities; (b) Preparation of plans, specifications and estimates covering construction of additional hospital and domiciliary facilities, alterations and repair of plants and equipment and supervision of performance of such work; (c) Maintenance of contact with other Services, bureaus and government departments in order to provide facilities as and when required for the service; (d) Award and administration of construction contracts; (e) General supervision of the maintenance of buildings, grounds, and mechanical equipment under the control of the Veterans Administration, including motor and other equipment used for transportation; (f) General supervision of maintenance and operation of utilities, including heating, lighting, electric power, plumbing, sewage and refuse disposal, water supply, fire protection, refrigerating plants, carpentry, laundry and telephone; (g) and, General supervision of all farming activities.

He was appointed Chief of the Construction Division, Veterans Bureau, in March, 1923. After the Veterans Administration was created he was ap-
pointed to his present position.

Colonel Tripp was born at Westport, Massachusetts, and was educated in the public schools of that state. He is a graduate of the Massachusetts Institute of Technology in Boston.

On March 1, 1907 he entered the Government Service in the Office of the Supervising Architect of the Treasury Department. He transferred to the office of the Quartermaster General, War Department, in 1913, and while connected with this office was commissioned a Captain in 1917, advancing to the rank of Major. During World War I, Colonel Tripp was in charge of mechanical design for army construction in this country, including camps, cantonments and hospitals.

With extending the authority of the Federal Board of Hospitalization to include study of hospital projects of all Federal agencies, Colonel Tripp was appointed Chairman of the Technical Advisory Committee of the Federal Board of Hospitalization.

The duties vested in Colonel Tripp are performed by the Construction Service which consists of the Office of the Director, the Maintenance and Operation Division, and the Technical Division.

Colonel Tripp is assisted in the Central Office by Herbert P. Baruch, Assistant to the Director, and Joseph A. Fahy, Chief of Project Supervision, and in the field by two supervising superintendents of construction and five field supervisors.

The Maintenance and Operation Division, of which Herbert W. Gardner is chief, with administrative control, through the Managers of Field Stations, of maintenance and utility personnel, directs and supervises the maintenance, repair and upkeep of buildings, grounds and mechanical equipment.

The Technical Division functions under the direction of William R. Talbott, an architect with more than twenty years’ experience in hospital planning. He is responsible for preliminary studies regarding the selection of new sites for Veterans Administration Facilities, inspection and surveys of new sites to form the basis of subsequent design, the preparation of plans and specifications and administrative duties required to accomplish this work. He is assisted by Roy E. Guard, Architect, Chief, Architectural Sub-Division; A. G. Bear, Architect, Chief, Specifications Sub-Division; Major Walter R. Metz, Mechanical Engineer, Chief, Engineering Sub-Division; and John M. Kerr, Civil Engineer, Chief, Structural Sub-Division.

Hospital Planning in the Technical Division during the past twenty years has required the services of many architects. These architects have found in their years of experience that considerable emphasis must be placed on the floor plans. The ultimate objective of their work—a hospital—demands proper and economical arrangement of each floor to insure operation of the building with the maximum efficiency.

Architectural treatment of the exteriors is carefully studied and every effort is made to have the buildings in harmony with the traditions of the locality. With respect to the latter, the Technical Division has been unusually fortunate in having architects among its personnel who have practiced their profession in every part of this country and are, therefore, thoroughly conversant with the appropriate type of architecture and local conditions affecting building construction, such as climate, soil conditions and availability of materials.

The Construction Service, in view of its specialization in hospital work, has assisted many State and Foreign Governments in the preparation of hospital plans.
THE RELATION OF THE BICYCLE TO THE GASOLINE SHORTAGE AND VICE VERSA

The other day in the midst of sad contemplation concerning the shortage of gasoline, I ran across a very exhaustive and learned discussion concerning the bicycle. It was written by a gentleman named James Thurber who carefully draws the most uncoth and unfinished drawings we know about.

Appropriately the treatise appeared in a far-back issue of the Bermudian, a magazine devoted obviously to thoughts and news concerning the isle of Bermuda, where land transportation is largely, if not exclusively, by bicycle. It is the more interesting since the whole world may soon, willingly or not, be following the example of the island. I believe we could bring up are some of Thurber's profound observations. He says:

"Although the bicycle has not multiplied anywhere near as rapidly as the rabbit, it must be borne in mind that in the beginning there was only one bicycle whereas there were two rabbits. It is perhaps unfortunate that both the vehicle and the animal are just about the same today as they were to begin with.

They have not reached a very high point of development; they are not, as a matter of fact, really Getting Anywhere. This, to be sure, is also true of the bugle, the Beagle, the Button, and practically everything else. Indeed, one of the few things I can think of at the moment which have really made appreciable progress is Woman. However, we are getting off the subject for this lecture is to be concerned solely with the origin and progress, such as it has been, of the wheel. I am sorry, but that is what it is to be concerned with.

Next month, if you are good little boys and girls, I shall tell you something more about Woman.

"The first wheel constructed by the hand of man was square. This played hell with the early charioters, who were jiggled and jerked and bumped about during races and battles like so many jumping-jacks in a windstorm. Acutely uncomfortable as it was, this type of wheel was used for several centuries, until, in fact, the year 247 B. C. when a Greek named Thycides, by cutting off each point of the square wheel, brought into existence the octagonal wheel. This was something of an improvement, but not much, for as one famous charioteer of the period observed, 'Maybe she don't jolt you as high as she once did, but she jolts you twice as often.'"

This is pretty deep stuff and requires concentration. In general perhaps most of us would fail to agree with Mr. Thurber's findings. However, in such cases I can't remember which.

"And what was the rabbit doing all this time? Let us take a peep and see. In the past seventy years the total number of bicycles in the world has lagged far behind the total number of rabbits. There is considerable room for doubt as to whether, short of a rabbit purge, or a bicycle boom, or both, the two figures will ever reach a parity. In Australia alone there are not more than 6,500 bicycles in New York state, or in the country at large. I can't remember which."

"The highest number that I personally have ever encountered on a freight car was 6079672048342. This is exactly 15,347 times as large as the total number of bicycles that have been manufactured in the entire world since the installation of the first official U. S. government weather bureau (March 3, 1839).

"A question which is frequently asked of me takes this form: 'Is the bicycle here to stay? It is difficult to say. We all know, of course, that in the past thirty years the bicycle has taken on a pretty bad tossing around from the automobile and from certain low-flying airplanes. There is probably no more upsetting experi-

(Continued on page 40)
On these two pages are shown photographs of the home of Alan Johnstone General Counsel for the Federal Works Agency. The house is located at Newberry, S. C., and was designed by Robert Mills in 1841. It has always been in the possession of Mr. Johnstone's family, and, with much pride in its architectural origin, he has carefully had it restored to its original design. This is an important step in the effort to preserve our historic American buildings, of which this is one of the most interesting.
Sketch for Ranger Dwelling for Forest Service
LOG AND STONE CONSTRUCTION BY THE FOREST SERVICE

W. Ellis Groben, Architect
U. S. Forest Service

The concern of the Forest Service is not only the proper administration of the natural resources of national forests but also to make available to the public the numerous opportunities and facilities they afford for pleasure, rest, and recreation.

Throughout the widely distributed forest areas, these functions necessitate many buildings for administrative and for recreational purposes.

The design of these buildings varies with both Forest Service requirements and geographic location, and is influenced very often by indigenous types of architecture—whether it be adobe, pueblo, ranchhouse, the timber type of rough sawed boards, or log construction.

The latter two types are particularly interesting because they recall the traditions of the early frontier days in this country and bespeak the forests themselves. In timbered areas primitive, intimate, low, one-story structures of this sort, frequently combined with stone, have been customary for generations.

The Forest Service builds many distinctive timber and log structures because the materials of construction are those with which the foresters and natives alike are most familiar. This is especially true in remote or isolated localities, far removed from transportation facilities. In so doing, it perpetuates the pioneer craft of log work despite the fact that the craftsmanship required to cut and fit the logs in the best traditional manner may involve more time and greater expense than that of other more common forms of wood construction.

In achieving sympathy with rugged natural surroundings, square-hewn and round logs, or rough sawed timber wall construction are found to be very appropriate—and truly Forest-Service-like in character.

It is not intended to suggest that the Forest Service has gone archiological by reverting to log buildings. On the contrary, they are merely incidental, representing, as they do, only a negligible proportion of the total number, and then they occur only in localities where they conform with past tradition. As a prototype, picturesque through historical association, it has been the inspiration for a variety of less massive and laborious subsequent timber designs.

The present trend of Forest Service architecture is away from any semblance of imported styles and toward indigenous prototypes and, above all, toward harmony with the immediate environment, as well as the locale generally.

To search out, conventionalize, and adopt characteristic elements of design which may be found in local prototypes requires keen observation, an appreciation of native construction, and the ability to recognize its stylistic possibilities. This is particularly difficult in regions where very little traditional architecture exists upon which to draw and, consequently, very few motifs suitable for use in design.
PHILIPBURG RANGER STATION
DEERLodge NATIONAL FOREST
REGION I

PHILIPBURG RANGER STATION
Forest Service
 Exact similarity is discouraged, in order to avoid mass duplication, by individual designs based upon respective site planning. Varied exposures, particular environments, variations in plans due to respective utilitarian requirements, and especially the peculiarities of different sites, all tend to afford the opportunity for pleasing modifications in behalf of diversified elevational effects.

The Ranger Dwelling and Garage, Warm Springs Ranger District, Va., illustrates the tendency toward one type of individual design expressive of the Forest Service, itself. These buildings are unique in many ways, differing from those with which architects, in striving for bigger and better buildings, are unfortunately not as familiar as they might be. At least they furnish an architectural note quite different from those so universally illustrated in the current professional journals.

In contrast to the pre-fabricated, ready-cut, mass-housing, or the light cantonment types of construction of which so much has been seen recently, it has been found that these Forest Service designs furnish a wholesome change as well as a welcome departure from standardized architectural treatments.

DEAN KOYL SPEAKS

Dr. George Simpson Koyl, Dean of the School of Fine Arts, University of Pennsylvania, spoke to the members of the Association of Federal Architects on May 28 on the subject of "Qualifications of Architects to Meet the Problems of the Post War Era."

In the course of his remarks, Dr. Koyl said that due to the war the classes in architecture in colleges have become quite small. That this was regrettable in view of the great need of architects in the Post War Era. He advised that the American and British problems were somewhat similar with respect to architects and that Canada has taken the lead in promoting the program of Refresher Courses for Architects in basic subjects of engineering; such as mathematics and design of structures in wood, steel and concrete. That after the war the architect must again become the Master Builder and give a guiding hand in city planning, slum clearance and other building projects.
The date September 18th, 1943, is the 150th anniversary of the ceremony of laying the cornerstone of the Capitol. On that day in 1793 a brilliant procession headed by the officers and brethren of Alexandria Masonic Lodge No. 22 “crossed the Potomac” and formed before the Capitol site. As stated in a newspaper account of the day, “The President of the United States and his attendant brethren ascended from the cavazion to the east of the corner-stone and there the Grand Master pro tem, elevated on a triple rostrum, delivered an oration fitting the occasion, which was received with brotherly love and commendation. At intervals during the delivery of the oration volleys were discharged by the artillery.”

The Federal Architect will issue a number on September 18, as a gesture of celebration of this sesquicentennial, dealing with the occasion, the Capitol and the early city.
IN December the Federal Architect will issue a hospital number, based on the experience, data, observation and practice of the Veterans Administration. This number has been under study for many months. It had been felt that the twenty years of design and follow-up in hospital construction that has been the history of the Administration, information of infinite value has been stored up. It has been carefully studied and classified. The number will attempt to spread out in reference form, information concerning the design of (a) Neuropsychiatric Hospitals, (b) Tuberculosis Hospitals, (c) General Medical Hospitals. Group layouts and individual building plans will be discussed. Each element will be treated: feeding systems, operating rooms, diet kitchens, utility rooms, etc. Materials, mechanical equipment, window design and other hospital construction features will be covered. It is felt that while the Veterans Administration solution of each problem may not be always the best solution or the only solution, its experience will be of value in reducing research for architects and others planning hospital construction.
When Washington stepped in to win this war, it became apparent that major changes must be made in the personnel occupying the city. The War and Navy Departments were increasing in size faster than buildings could be found for their occupancy. New agencies were being formed to carry out the multitudinous new angles of war. Certain offices which had always been located in Washington, and which were all-important in times of peace, were now considered non-essential to the war effort and were moved elsewhere so that their quarters could be taken over by others. Working hours were made longer and shifts were added, but still business increased and more employees were necessary. Additional office space was needed. It was needed in large areas and in a hurry.

Congress appropriated funds and the Office of the Supervising Architect was directed to solve the problem. This directly after Pearl Harbor.

To place a building on federal ground in Washington is serious business in itself, since the city is laid out according to its very definite plan. Certain areas are for buildings, certain areas for parks and trees and certain areas must remain clear for vistas. To depart from this formula simply isn’t done—at least, hadn’t been done before.

Committees meetings were held, opinions were handed down and the first site for temporary buildings was located. It was in Arlington, Virginia, near the west end of the Memorial Bridge and adjacent to the new entrance to Arlington National Cemetery. However, this site seems doomed to vacancy. It was pointed out that as set up by Congress, the funds for temporary buildings must be spent within the District of Columbia. Later, this same location was considered for the Pentagon, but that also was built elsewhere. The first site approved and used for a temporary building was on Independence Avenue between 4th and 6th Streets, Southwest, on which was erected T.F.O.B. (Temporary Federal Office Building) “D.”

While sites were being decided upon and surveys being made, the design of the buildings rapidly went into the working drawing stage. It was decided that the buildings were to look like what they were—temporary structures to be removed as soon as the war is over. They were not to imitate the recently built permanent federal buildings in any way. They were to be of frame, fireproof on the outside, interior fire walls where necessary, two stories high generally, no elevators, and no basements except where grade conditions or service requirements forced their use. All materials must be of stock design and size, and
Above — Lobby for Temporary Office Building "V" for U. S. Information Service.

Right — Temporary Building T5 at 17th and Constitution Avenues, occupied by the Navy Department. View from the Northeast corner.
as need for priority had just gotten well under way, the kinds of materials had to be carefully watched. Above all, the buildings must be capable of very rapid construction.

Although no claim is laid to purity of line or beauty of ornament, the buildings as completed do fill the need for additional office space and are designed to be built in an amazingly short time.

Foundation walls and piers are of either brick or concrete at the option of the contractor. Exterior walls are covered with 3/16" asbestos board over 1/2" gypsum board, and so designed that a stock 4' x 8' board can be cut once and both parts used immediately. Studs are 2' on centers to take the widths of boards, and platform construction is used at all floor lines so that walls and partitions can be framed while lying on the floor and raised into position.

This has caused amazement on the part of many Washingtonians who noticed a whole story had been added to a building while they were at the movies.

Windows are large, wood, double-hung, operated with a balance to save metal. Stock size glass and stock shapes for muntins and sash are used. Interior walls are of 1/2" insulation board, painted, and floors are of a cheap grade hardwood which has turned out to look surprisingly well. Fire partitions are covered each side with two layers of asbestos board and filled with mineral wool.

As Government telephones are apt to change with the moon, easy access to the wiring is assured by building a continuous conduit near the ceiling resembling a box type cornice. The face is removed by screws, so wiring can be exposed by just reaching in and grabbing a handful.

Master sheets of details were made and kept up to date so that gelatin prints could be used for each project. Plans and elevations at a small scale were drawn for each job, the Approach Plan often being the most complicated drawing required. Many times the drawings were completed before the final survey of the site was received.

The buildings have proved very adaptable to site conditions. Some have been built on hillsides, some on triangular lots and a few on level rectangular areas. When required, boiler rooms and shops have been included in basements, and cafeterias on the first floor. Occasionally offices have been beautified by wainscot, cornice, etc., such as in the suite for the Comptroller General in "T-8" at Friendship. The most ornamental lobby is that of T.F.O.B.—"V," the U. S. Information Building on Pennsylvania Avenue.

The real proof of the success of these buildings is in the requests for drawings on them. Sets of prints have been sent to many departments in Washington and to contractors and industry throughout the country. Perhaps they have found that better mouse trap.
MESSAGE FROM THE NEW PRESIDENT OF THE ASSOCIATION OF FEDERAL ARCHITECTS

My Fellow Members:

I am deeply grateful for the honor you have bestowed upon me by electing me President of the Association of Federal Architects. At the same time, I fully realize the obligations imposed upon me in these critical times, in holding together a professional organization such as ours, but you may rest assured that I shall, at all times, devote my best efforts to promoting the interests of our Association.

Despite the fact that we Americans like to personalize our achievements, it would be humanly impossible for a single individual to do the job, alone and unaided, but with the cooperation and assistance of each and every one of you, I am of the firm opinion that the Association can have a most successful year.

As most of you know, our Association has undergone certain important basic changes in the past few months. These changes were accomplished in an orderly, democratic manner, by first circulating a questionnaire amongst all of our members, asking for suggestions; then by compiling all of the various suggestions received; then by submitting each and every one of these suggestions at a series of general meetings of the members, where they were thoroughly discussed and acted upon; and finally, by appropriate action in changing the constitution and by-laws to conform to the mandate of our members.

Briefly, the principal changes effected were as follows:

The annual dues were fixed at Five Dollars. The office of Treasurer was so remodeled as to make him, in effect, the Business Manager of the Association; and this office was made appointive, rather than elective. One of the important duties now assigned to the Treasurer is to act as a clearing house for professional employment.

The various standing committees of the Association are now composed of members, who are not on the Board of Directors. Only the Chairmen of these committees will be members of the Board. Every Agency, therefore, will have basic representation on every committee; and there is an opportunity for every member to take a real active part in the affairs of the Association. It would be very gratifying to see such interest shown, as, after all, no Association is any better than its individual members make it.

In this connection, I am of the opinion that the program to be carried out during the present war period should serve to benefit, rather than entertain our members. And I feel quite sure, from the contacts I have had with a great many of you during the past month, that you are in full accord with me in this aim.

There is one matter, however, which is very close to my heart—We must have more members. At the present time, we have about 250 members in good standing. This should, at the very least, be doubled. There must be good, desirable men in all of the various offices who should be members. They don't have to be urged to join; they only have to be asked, and I am sure they would gladly come into the fold, and join us in the great work we are doing. You'll hear from me quite often on this matter, from time to time—So why not start doing something about it, right now?

In conclusion, just let me say this. The possibilities for good which our Association can accomplish for its individual members, for the Government, and for the profession of architecture are practically unlimited. Let us all pull together and we will, beyond any doubt, make the Association an outstanding organization and one of which we will all be justly proud.

Yours for a Bigger & Better Association of Federal Architects,

ALBERT G. BEAR

BONDS IN THE PUBLIC BUILDING ADMINISTRATION

You are now reading of our fighting forces' victories; your American blood tingles with pride. Will you be able to celebrate on that day of final Victory with a clear conscience if you have NOT done your part? Your Government, the one to whom you look for your pay, is again asking you to INVEST at least 10% of your gross pay for its use during this war. The Public Buildings Administration stands so low among the other Federal organizations I hesitate to tell you our standing, but I have confidence that if your Bond purchases are delivered without undue delay and your inquiries are answered promptly, you will give us your support.

While this is a voluntary savings plan it is not a voluntary war. You have relatives in the fighting service,—you cannot call them back; put your $ in a fighting service that you can call back when needed.

ALLEN H. POTTS
Interdepartmental Committee
War Savings Bonds

(Mr. Potts, Room 3302, North Interior Building, Washington, D. C. has been appointed by the Commissioner of Public Buildings Administration, to act as alternate on the Interdepartmental War Savings Bond Committee. Mr. Potts has promised to see that all correspondence relative to War Bonds is answered promptly and hopes to raise P.B.A. standing among the 78 Federal organizations.)
UNUSUAL PROBLEMS ENCOUNTERED BY ARCHITECTS IN THE NAVY DEPARTMENT

The public and the architectural profession in general usually associate the practice of architecture in the Navy Department with the planning of Station Layouts and the design of Air Stations, Naval Training Stations, Hospitals, Naval Supply Depots, and Industrial Facilities.

While in the main, this is true, the Navy has such a wide-spread field of activity and so many varying functions that unusual problems frequently arise which tax the ingenuity of the architect to solve.

Descriptions of a few of the more interesting problems follow.

PHOTOGRAPHIC LABORATORY

Problem:
A general research and production laboratory for all types of photographic reproduction—color, aerial, sound, motion pictures, etc.—along with chemical labs, administration, classrooms, etc.

The Oddity:
The large sound and recording room for motion pictures had to be in the heart of the plan, but the structural frame had to be discontinuous because of the danger of transmitting alien noises to the sound tracks.

The Solution:
A completely separate building, within a building, from foundation to roof, 12 inches away from the main building on all four sides. Problems of waterproofing, flashing, etc., required meticulous detailing.

CAMOUFLAGE LABORATORY

Problem:
To design a building with facilities for study of the Techniques of Camouflage by means of scale models.

The Oddities:
Sufficient floor area had to be provided to permit study of models varying in size from that of an individual structure to one depicting an entire Naval Station.

Provision had to be made within the building for viewing and photographing the models from varying angles and heights and under varying lighting conditions.

A large outdoor pool was required for study in connection with the camouflaging of waterfront structures, piers, etc. Provision for overhead observation and photography for this facility was also a requirement.

The Solution:
For the structural frame of the Laboratory laminated wood arches were used. Suspended from this barrel-shaped ceiling, approximately 40 feet above floor, two catwalks were provided which permitted viewing and photographing of models from above. The catwalks connect to a three-story viewing stand in the center of the Laboratory which permits viewing of models at varying heights. Lighting was designed to permit varying intensities of artificial illumination. The administrative facilities were placed in a two-story structure forming an ell off one end of the main Laboratory and a large outdoor pool was built adjacent to it. The roof of the administrative wing was designed as a viewing platform for observation and photographing of camouflaged models in the pool.

COFFEE ROASTING PLANT

Problem:
A plant to store, roast, grind and package coffee, ready for delivery to Naval Stations and ships.

The Oddity:
It was required that the plant roast, grind and package the coffee mechanically.

The Solution:
A building 200 by 200 feet, one-story, except for the portion where the roasting and packaging process is executed which is three stories; concrete construction, flat slab type; divided into five major parts:

1. Storage space for green coffee.
2. Storage space for packaging materials.
3. Processing section.
4. Storage space for roasted coffee.
5. Small office, toilets, etc.

The green coffee is received in bags through large, overhead-type doors, and stored until ready for roasting. When ready for roasting, the coffee is trucked to the processing section where the bags are opened and the coffee allowed to flow through a dump in the floor. From the dump bin, the coffee is lifted by a bucket elevator to the green coffee cleaner, where dust, lint, and other particles lighter than the coffee beans are removed by a stream of air. The dust and other foreign matter is caught in a metal dust collector. The coffee is again lifted by the bucket elevator and deposited in a series of storage bins ready for charging the roasters. From the storage bins the coffee flows by gravity into the roasters and a charge is roasted. Temperature and progress of the roast are indicated on convenient controls. Chaff is removed from the coffee during the roasting by an air stream and deposited in an incinerator on the roof, where it is burned daily. When the roast is completed, the coffee slides from the roasters into the coolers where it is cooled by a stream of air, then drops through the coolers into hoppers below. From here, it is again lifted mechanically and passed through a stoner, which removes stones and other foreign matter heavier than the roasted coffee bean. From the stoner a portion of the roasted coffee falls into the whole bean roast coffee bin from which it flows through automatic scales and into 100-pound bags. The remaining coffee is passed through a granulator and thence through automatic scales, a portion of it being placed in 100-pound bags, the remainder being vacuum packed in 15-pound cans. The packaged coffee is then removed to the storage space for roast coffee to await delivery to Naval Stations or Ships.

The FEDERAL ARCHITECT • JULY, 1943
OPTICAL SHOP

Problem:

To design an optical shop with a floor area of 10,000 sq. ft. for the manufacturing and repair of optical instruments such as submarine periscopes, range finders, direction finders, etc.

The Oddities:

The Shop required a height that would provide an unobstructed view of the horizon in all directions with a minimum interference from structural columns, window mullions, muntins, etc. Provision had to be made for hoisting crated range finders to the floor of the optical shop. These crated range finders were 45 feet long by 3 feet wide by 3 feet high. Periscopes, on completion, had to be raised to a vertical position and range finders required a special type of air-tight crane door.

Solution:

The Optical Shop was combined with a large structural shop, then in the process of design. Roof trusses of the structural shop were designed to carry the floor load of the optical shop. This placed the optical shop floor at an elevation of 100 feet above grade and provided clear, unobstructed vision in all directions. This height created a new problem—that of raising the large range finders and periscopes to the floor of the optical shop. An elevator would have been uneconomical due to the size of platform required, relatively infrequent use and obstruction of the shop space below. The solution to this problem was a cantilevered canopy on the exterior wall which supported a 2-ton monorail with electrically operated hoist. This monorail ran from the shop through the door in the exterior wall, then turned at right angles and paralleled the exterior wall for a distance of 25 feet. A cantilevered platform at floor level was provided so hoisting operation could be directed from the optical shop. In operation, slings are attached to the 45-foot long direction finder crate and the crate is hoisted with the long axis parallel to the building face with the hoist at the extreme end of the monorail. When the crate reaches the elevation of the optical shop floor, the end of the crate is swung around until it starts in the door to the shop, the monorail then moves forward parallel to the building and the angle of the crate gradually changes as it moves into the door until it is at right angles to the exterior wall, thence directly into the shop.

To provide unobstructed vision, strip windows with as few muntins as possible were installed in all exterior walls.

To provide a height of 46 feet for testing the periscopes, a tower was built on the roof of the shop and the periscopes are erected in a vertical position within by means of monorail and electric hoist. This required careful design, to preclude the periscopes fouling structural framing while being changed from a horizontal to a vertical position.

The Direction Finder Shop and Navigation Instruments Shop were made dustproof by installation of a mechanically filtered air system with all doors and windows gasketed. Since the bridge crane had to enter these shops, a special type of door was designed. This resolved into a combination of vertical lift and horizontal sliding sections. The section from the bottom of crane girders to the head of door was made a vertical lift section which slid up into truss space, while the sections below the crane girder were made horizontal sliding. The upper section carried guides at bottom which supported lower horizontal sliding sections when in a closed position. The door was completely gasketed to prevent loss of filtered air.

BOATHOUSE

Problem:

To house about 150 training cutters in such a way that they could be hoisted out of the water and stowed out of the weather.

The Oddity:

A 40-foot change in tide, requiring either that the boats be lowered 50 feet or the boathouse be under water part of the time.

Solution:

To design the boat house to rise and fall with the tide. This was accomplished by designing a floating barge with the roof cantilevered over the two long sides sufficiently far to support the boats free of the water and under cover. Buoyancy is such that all boats may be removed from one side without danger of capsizing from the weight of those remaining on the other, and it is necessarily stable against high winds and heavy snow loads. Access to the shore is obtained by means of floating gangways. Anchorage is obtained by corner anchors, two secured ashore and two to weights in the lake. Cables from the outboard anchors are sufficiently long to permit the maximum change in tide, pass over sheaves on the corners of the barge and are kept taut by counterweights suspended below.
marine railway at a point level with the top of the ramp. Two types of cradles for boats were designed. One, the main cradle was hauled from the outboard end of the marine railway into the building by means of a winch and endless chain. This supported a second cradle on which the boat to be repaired rested. The secondary cradle was equipped with wheels by which it could be rolled off the main cradle onto the floor of the shop. Thence, by means of block and tackle and eye bolts in the walls of the shop, it could be hauled into the most favorable working position. This freed the main cradle for use in hauling in other boats, all on their own cradles. For returning boats to water, the above procedure was reversed.

The problem was complicated by the fact that the displacement of the boats to be handled varied from 11 to 80 tons.

BIG GUN RELINING SHOP

Problem:
To provide a structure housing facilities for removing worn liners and installation of new liners in naval guns of maximum calibers and lengths.

Equipment required included lathes and machines for surfacing, boring, and rifling of new liners.

Bridge cranes of large capacities on spans of 90 feet were required for handling of guns.

The Oddities:
(a) Facilities required for removing worn out linings from large guns.
(b) Facilities for installing new liners in gun barrels.
(c) Facilities for plating the bore of new liners after installation.

The Solution:

Width of building was determined by lengths of largest lathes, these in turn being governed by the length of the largest guns. The length of building was determined by the amount of equipment necessary to reline the required number of guns per year.

The height of the building was determined by the method used for removing, installing, and plating liners. In practice this is done with the gun barrel in a vertical position. This dictated a pit whose base was far below the shop floor into which the gun barrels were lowered. Height of structure above floor was determined by clearance required for handling liners and gun barrels in a vertical position suspended from the main hook of the bridge crane, which was necessarily located high above the floor. Since this height was not required over the entire area, the building was designed with a high crane bay in the center with lower bays on each side.

Two pits were installed. One for removal and installation of the liners and one for plating the liners.

Pits were circular in form, built of reinforced concrete with an inside diameter of 44 feet and a depth far below the shop floor. Thickness of the shell was 12 inches at top and 24 inches at base. Each pit was subdivided into four compartments each 12 feet square, permitting the working of four guns simultaneously in each pit. Each compartment is equipped with a steel gun platform capable of supporting the load of the heaviest gun which will be placed upon it. Platforms are raised or lowered by bridge cranes to accommodate the varying lengths of guns of different caliber and are supported at required height by dogs on the bottom of the platform which engage slots in the supporting structural columns.

To clarify the following, it should be stated that fundamentally big guns, excluding the breech mechanism, are composed of two main parts, the gun barrel and a rifled liner which is replaceable when rifling becomes too worn for accurate shooting.

To install a new liner the gun barrel is placed in a compartment, muzzle end down and surrounded by electric furnaces which heat it for 24 hours, thereby expanding it. The new liner, star gauged on exterior to match barrel is filled with cold water, to shrink it, and carefully lowered, by means of a bridge crane, into the gun barrel. The furnaces which heat the barrel are now turned off and by means of a spigot at the gun platform a predetermined amount of cold water is drained out of the liner at stated intervals. This process provides for the slow cooling of the barrel and the slow heating of the liner, thereby resulting in a tight accurate fit.

The reverse of this process is used for removing a worn liner plus the addition of an hydraulic jack placed on the butt of the gun to start the liner on its way out when sufficiently shrunk.

Plating pits are equipped with forced ventilation to carry off dangerous fumes which arise during plating operations. Small guns are plated in the normal way. Guns of large caliber are plated by filling the bore with the plating solution and lowering the anode into the bore at a predetermined, uniform speed. This involved the design of jib crane to support the anode exactly over the center of the gun muzzle with the addition of an electric motor to raise or lower the anode at the predetermined speed.

The accessory services for the shop such as toilets and locker rooms, tool rooms, transformer rooms, store rooms, etc. were placed in the leantos along the sides of building.
MINNESOTA DOLOMITIC LIMESTONE

A sound durable stone, produced in color shades of

GRAY, CREAM, BUFF, and PINK.

Fine and Coarse Texture Stone

Ample production and milling facilities for any project.

MINNESOTA DOLOMITE ASSOCIATION

Mankato Minnesota

CERAMIC TILE

CONTINUES IN ITS POSITION AMONG THE MOST IMPORTANT DURABLE BUILDING MATERIALS. THERE ARE MANY DIFFERENT TYPES OF FLOOR AND WALL TILE, EACH HAVING VIRTUES RECOMMENDING THEM FOR PARTICULAR USES.

WHEN BUILDING FOR THE FUTURE

DUE CONSIDERATION SHOULD BE GIVEN TO THE QUALITIES OF TILE IN RELATIONSHIP TO THE PURPOSE WHICH THE INSTALLATION IS TO SERVE. THE VARIOUS LINES OF MOSAIC TILE HAVE BEEN DEVELOPED TO PROVIDE MAXIMUM DURABILITY, EASE OF MAINTENANCE, FLEXIBILITY IN TREATMENT AND LONG LASTING BEAUTY.

THE MOSAIC TILE COMPANY

ZANESVILLE, OHIO
Crockett, Basil M., 3018 Upshur St., N.E., Washington, D.C.
Crossett, Ross D., 1428 26th St., N.W., Washington, D.C.
Daly, Ernest, 2100 19th St., N.W., Washington, D.C.
De La Vina, John, 1221 19th St., N.W., Washington, D.C.
D'Epagnicr, John A., 209 Hawaii Ave., N.E., Washington, D.C.
Diaz, Michael A., 2517 17th St., N.W., Washington, D.C.
Duckett, Vernon F., 1752 F St., N.W., Washington, D.C.
Dundie, Robert, 1048 15th St., N.W., Washington, D.C.
Dundie, John E., 4390 Russell Ave., N.E., Ramsey, Md.
Dungan, James H., Bellevue, Maryland
Ewing, Wm. D., 3142 Highlands Rd., Bethesda, Md.
Eckloff, James E., Jr., 4412 Highland Ave., N.W., Washington, D.C.
Farr, Robert L., 1566 14th St., N.W., Washington, D.C.
Frazier, Frank C., 1740 18th St., N.W., Washington, D.C.
Farr, Joseph S., 3542 18th St., N.W., Washington, D.C.
Giddler, James E., 1736 Columbia Rd., N.W., Washington, D.C.
Goldin, Jerome, 12 Parragut St., Kensington, Md.
Gregg, C. H., 1700 N. Tree St., Arlington, Va.
Guido, Charles, 4683 13th St., N.W., Washington, D.C.
Golding, John G., 12 Parragut St., Kensington, Md.
Harrer, Anthony F., 2659 Conn. Ave., N.W., Washington, D.C.
Hartig, Karl W., 1111 Western St., N.W., Washington, D.C.
Herman, R. T., 2310 Calvert St., N.W., Washington, D.C.
Jorgensen, Leif, R. M. S. 1st., Rockville, Md.
Kelley, Lyman C., 4733 Roosevelt Rd., Washington, D.C.
Orr, James A., 5034 9th St., N.W., Washington, D.C.
King, Robert L., 815 17th St., N.W., Washington, D.C.
Knigge, Eugene John, Dartmouth College, Hanover, N. H.
LaCasse, Arnold C., 611 16th St., N.W., Washington, D.C.
Lindberg, Condye, Geo. L., 9th Nival District, Great Lakes, Illinois.
Lemmon, Joseph S., 818 Old Georgetown Rd., Bethesda, Md.
Martin, Ernest C., Mt. Olivet Cemetery, Washington, D.C.
Mauri, Talie B., 3056 Washleaven Plwy., Washington, D.C.
McCraw, James S., Box 112, Falls Church, Va.
Meakin, Howard W., 1820 27th St., N.W., Washington, D.C.
Morgan, J. L., 3 South 3rd St., N. W., Washington, D.C.
Ottman, George E., 1740 N. X.N. Violin Court, Norven, Va.
Satterlee, John W., 1418 10th St., N.W., Washington, D.C.
Stark, John, 400 Coffee Ave., Asheville, N.C.
Stumpf, Julian E., 1407 Newton St., N.E., Washington, D.C.
Sorenson, L. R., 4413 Chestnut St., Bethesda, Md.
Southworth, F. W., F. U. University Club, 1135 16th St., N.W., Wash., D.C.
Steagall, W. R., 764 14th St., N.W., Washington, D.C.
Stevens, A. L., 1790 R St., S.E., Washington, D.C.
Swafford, Jos., 623 28th St., Southeast, City, Md.
Sayer, Harold, 1417 Florida St., Arlington, Va.
Taylor, Wilbur R., 3201 N. Western St., Washington, D.C.
Thomas, Eliot D., 5520 33rd St., N.W., Washington, D.C.
Urban, S. C., 3041 R Street, N.W., Washington, D.C.
Waterman, Thomas T., 304 Seward St., S. E., Washington, D.C.
White, H. W. 1717 13th St., N.W., Washington, D.C.
Welch, Allan, 501 26th St., N.W., Washington, D.C.
White, George E., 2711 Hooey St., Alexandria, Va.
Williams, Charles W., 560 12th St., N.W., Washington, D.C.
Zirpel, Walter C., 3043 N. Military Road, Arlington, Va.

DEPARTMENT OF ARCHITECTURE
Bureau of Chemistry and Engineering

Alfonso, Joseph F., 6132 Florida St., Chevy Chase, Md.
Cadmia, Walter G., 1733 N. St., N.W., Washington, D.C.
Humes, W. O., 737 12th St., N.W., Washington, D.C.
Ploph, George C., 206 Bryant St., N.E.

Forest Service
Grohen, Ellis W., 2015 Luzerne St., Silver Spring, Md.
Hollister, Charles W., 219 S. Joyce St., Mt. Rainier, Md.

ASSOCIATION OF FEDERAL ARCHITECTS, OFFICERS
Branch
Phone

Albert G. Bear, Pres., Vet. Admin. 598
A. P. Elliott, Sec., Vet. Admin. 2211
A. A. Gustafson, Treasurer, Navy Dept. 2219

BOARD OF DIRECTORS
W. Ellis Groom, Agriculture 6310
W. C. Silber, Coast Guard 6310
A. J. Williamson, Coast Guard 6310
Ellbert Peels, Nat'l. Housing 2294
Lieut. Henry E. Ewing, Vet. Admin. 2294
David Leckie, Pub. Buildings 2294
Marshall Schaffer, Public Health 2294

ASSOCIATION OF FEDERAL ARCHITECTS
MEMBERSHIP COMMITTEE
1943-1944

Branch
Phone

Franklyn E. Warner, Chair, War Dept. 72752

THE FEDERAL ARCHITECT • JULY, 1943

Page 35
Here is shown a birds-eye and detail view of the Hospital for Prince George's County, Maryland, designed by Kear, Ross, and Walton, under the direction of the Emergency Operations Unit of the Public Buildings Administration.
Sparta Brick is manufactured from a fine quality clay and is fired in a variation of colors and shades.

It is furnished in Brick (2 1/4 x 8) and double Brick (5 x 8) sizes and in 3 3/4 or 1 3/4 thickness.

Salt Glazed Brick or smooth buff face Brick are furnished in two faces and two ends glazed but only one face is guaranteed. Two face walls should be erected with two single face units bonded.

Samples of colors will be cheerfully furnished upon request.

For further information write or call our home office:

UNITED STATES QUARRY TILE COMPANY, EAST SPARTA, OHIO

Page 38
CHARLES LOUIS BORIE
of Zantsinger, Borie and Medary
by
PAUL P. CRET
(Reprinted from the Pennsylvania Gazette)

The death of Charles Borie is a great loss for the city of Philadelphia and for the art world. He loved the city of his birth, and wanted her to become fairer and more worthy of admiration. This was a constructive, not a smug, effect. In his constant efforts to promote those amenities which art brings to our lives, he never adopted the aggressive tone of the professional reformer. For forty years, he led in an up-hill fight to add some beauty to a world too apt to choose economy in beauty and extravagance in profit. And this in spite of the fact that his education and early training pointed in an altogether different direction. It is a far cry from the counting house to an architectural career. How he passed from one to the other—what might be called his road to Damascus—had its beginning one day when his architect, Wilson Eyre, came to help him plan his house and grounds at Rydal. The manner in which Eyre went at it, discussing with him all its features and possibilities, was in truth the curtain raiser on what was to become his life work. At that time, Borie was thirty, and to many it might have seemed too late to make a new start, but his enthusiasm was that of a convert, and one whose conversion never lost its initial impetus. He associated himself with two other Pennsylvania alumni of high standing in their profession, C. C. Zantsinger and Milton B. Medary, and some notable buildings stand today as evidence of their long, fruitful, and harmonious collaboration.

At first, he confined himself to that portion of an architect's duties which are closer to business and not dependent on special training. But his keen and newly awakened interest led him to explore many of the inviting bypaths which converge into the finished design and completed building. Polychromy, sculptural decoration, typography, heraldry and craftsmanship, each in turn attracted his attention and exploration. His constant attempt to escape from the burden of a narrow routine expressed a fundamental need in his nature. Even in his daily walk from his town residence to his office, he tried to vary the habitual itinerary by following small streets where fresh aspects might break the monotony of a fixed route in a gridiron-planned city.

Charles Borie's magnetic and cheerful presence will be sadly missed on the many boards and in the numerous societies to which he gave his time without stint and without thought of personal gain. The frankness of his views carried no sting, for however positive were his opinions, he was completely devoid of any animus towards those who differed from him. To meet him was to feel at once the kindness, spontaneity and humanity of his nature. Probably his greatest contribution, less tangible than structures in stone, though no less important, is the part he played in the average business meeting—he was the leaven in that generally rather heavy dough. Here, his genuine love of better things found its opportunity, and his influence can be seen in almost all the efforts made by the present generation in Philadelphia for a better organized and pleasanter city. In this role of animator or stimulator, his loss to the community is irreparable.

It is not necessary to recall here what is known to all—his long and faithful service as a University trustee, as a director of the University Museum, of the Fairmount Park Art Association, and many other organizations, professional and charitable. His real influence was not due merely to the charm of his personality but to the fact that those who met him and listened to him over the years were convinced that here was that rare person, a public servant whose motives were never rooted in vanity, in personal gain or in lust for power.

Among the Government architectural offices which have multiplied since the Federal Works Agency was set up to prevent multiplicity in Government architectural office is the efficient Coast Guard office.

The Coast Guard is now part of the Navy Department, and the key men in this architectural unit are in officer uniform with status in the Reserve. They are properly so located since architects are naturally reserved. At any rate the situation makes for picturesque drafting rooms, the snappy uniforms being quite different from the snook-and-eyeshade brigade we have been accustomed to.

The FEDERAL ARCHITECT • JULY, 1943
ABOUT AFO TILE

Our tile plants are now largely occupied with producing essentials for the war effort. But we still manufacture tile and our laboratories and research staffs continue to develop refinements in the appearance, wear-resistance and general quality of our tile products. The end of the war will find us prepared to resume normal production of A-F-O Tiles. In the meantime, most of our tile products are still available for Government projects.

AMERICAN-FRANKLIN-OLEAN TILES
LANSDALE, PA.

American Encaustic Tiling Co., Inc.
Perth Amboy, N. J.

Franklin Tile Company
Lansdale, Pa.

Olean Tile Company
Olean, N. Y.

(Continued from page 17)

ence in the world than to be ‘clipped’ by the wing of an airplane as you cycle idly along some lovely old country road whose hedges are sweet with eglantine. Nobody can safely predict anything—although everybody I know spends most of his time predicting everything—but I should like to hazard the guess that if this clipping continues at its present rate everybody with any brains at all will give up the bicycle and take to the woods on foot.”

In spite of Mr. Thurber’s discouraging tone, I hope that this keen analysis of the usefulness of the bicycle will strike home and that as many of us as possible will in the future operate their automobiles sparingly, using the three gallons of gas they are able to get every fortnight or so solely to cruise around hunting for the three gallons for the next fortnight. Meanwhile for essential driving marketing and so on, we should be patriotically reminded by Mr. Thurber’s treatise to use the bicycle.

TRAVEL NOTE

Sometimes we go into the offices of the Public Buildings Administration, a considerably dehydrated and reduced organization, which does, nevertheless, retain considerable of its erstwhile cheerfulness and qualified optimism. George Howe is away on a short leave of absence, comparing the humidity of Philadelphia with that of Washington, and the Supervising Architects Office is steaming ahead on a slow bell.
FORMICA column covering, wainscot and counter tops in the Greyhound Bus Terminal at Washington, D. C., contributed a great deal to neat, modern appearance of this unusually good-looking station, designed by Wischmeyer, Arrasmith & Elswick of Louisville.

In the upper photo the lower part of the wainscot is brown Formica with metal trim, and in the lower photo the counter front is the same material, the column covering is dark red Formica, and the counter tops dark gray.

Cleanliness, durability, freedom from upkeep and maintenance make Formica especially adaptable for use in public rooms.

The Formica Insulation Company • 4620 Spring Grove Avenue, Cincinnati, Ohio
YOUR SELECTION OF

Durable Metals

made thousands of homes
more livable, more economical

You specified
ANAconda Brass PIPE
OR COPPER TUBES

RESULT: Owners were saved the inconvenience and expense of pipe repairs and replacements caused by rust. And at the same time they have piping that will deliver a full, rust-free flow of water.

You specified
EVERDUR* METAL HOT
WATER STORAGE TANKS

RESULT: Owners will never experience the unpleasantness of hot water discolored with tank-generated rust. And they have strong, welded, non-rust tanks to give unexcelled service year after year.

You specified
ANAconda COPPER
FLASHINGS AND VALLEYS

RESULT: There can be none of the water damage to a home's interior that rusted metal work so often causes. And, with copper gutters and leaders, the owners have lasting, economical rain disposal systems.

NON-FERROUS product developments which promote efficiency and reduce upkeep will always be the fruit of Anaconda research... a research that is today carrying on with redoubled effort for war purposes... and looking also toward peace, when Anaconda Copper and Brass... in old and new forms of usefulness... will be ready for a booming building industry.

THE AMERICAN BRASS COMPANY
General Offices: Waterbury, Conn.
Subsidiary of Anaconda Copper Mining Company
In Canada: Anaconda American Brass Ltd., New Toronto, Ont.