It will pay you to look into on-site power...

the savings can be electrifying!

Witt-Armstrong Equipment Company specialists will be happy to consult with you on the engineering and layout of any on-site power installation.

Caterpillar natural gas and diesel engines deliver dependable power with operating costs that can be considerably less than purchased electricity. In addition, they serve the dual purpose of supplying prime power for operating air conditioning, pumps, and other equipment plus the added safeguard of standby power when needed.

Under emergency conditions, Cat engines will provide reliable power for lights, elevators, heating, alarm systems, fire protection and other critical requirements.

DON'T BE LEFT IN THE DARK!
Call or write for complete details about how Cat engines and Witt-Armstrong service can save money and protect businesses from loss caused by power failures.
Fletcher-Thompson Names 3 to New Posts

Richard H. Whiteside

John G. Phelan, P. E., President of Fletcher-Thompson, Inc., Bridgeport based architects and engineers, has announced the promotion of three members of their staff following their recent annual meeting.

Richard H. Whiteside of Fairfield has been elected Vice President and will be responsible for Long Range Planning, New Business Development and Communications. He came to Fletcher-Thompson, Inc., in April of 1970 from the Choate School, Wallingford, Conn., where he served as Director of Development since 1965.

Prior to that he was Vice President of Rancho Bernardo, Inc., a community development corporation in San Diego, California, now Avco Community Developers, Inc., a subsidiary of the Avco Corp. While associated with Rancho Bernardo, Inc., Whiteside headed the planning, development and management of retirement community development for the firm and was instrumental in establishing the first condominium construction in the City of San Diego.

Whiteside is a graduate of the Choate School, Wallingford, Connecticut and Princeton University where he graduated in 1948 with a B.A. degree in architecture.

S. Terry Philcox, Chief Field Engineer for Fletcher-Thompson, Inc., was named an Associate of the firm, to head a new Contract Administration Services Department with...
if it has four walls, we can air condition it!

Carrier

installation and service for buildings of every size and shape!

New construction or reconversion . . . hotel, motel, apartment, office building, shopping center or industrial plant . . . we can do the job right. Our equipment? Carrier, the finest and widest air conditioning line on the market. Our personnel? Experts factory-trained in installation and service. In short, we're specialists. Call us - let us show you what we can do for you!

MASSACHUSETTS

ARLINGTON
Electro Heating & Air Conditioning, Inc.
33 Pleasant View Road
Tel. 876-2400

BOSTON
American Air Conditioning Company
21 Botchelder Street
Tel. 442-6900

CHARLESTOWN
Farina Corporation
24 Spice Street
Tel. 242-4432

DANVERS
Stewart & Prince
3 Electronics Avenue
Tel. 774-1018

FALL RIVER
James T. Hughes Sheet Metal Works
459 Alden Street
Tel. 677-9661

LYNN
Max Sontz Company
82 Sanderson Avenue
Tel. 599-2700

WORCESTER
Thermo Engineering, Inc.
13 Mason Street
Tel. 737-4568

RHODE ISLAND
ABCO, Inc.
729 School Street
Tel. (401) 725-7650

Authorized Carrier distributor: Distributor Corporation of New England
Cambridge, Mass. (617) 868-2300

S. Terry Philcox

responsibility for estimating, contractor qualification, plan checking, shop drawings, construction supervision coordination and management.

Among the major construction projects now being administered by this department are Bridgeport Community Mental Health Hospital, St. Vincent's Hospital, a production plant for Scovill Manufacturing Co., in Watertown, Ridgefield High School and the Shelton plant for Philips Medical Systems, Inc., a division of North American Philips Corp.

Philcox is a native of Norwalk, Conn. He graduated from the Norwalk High School in 1951 and the University of Miami, Coral Gables, Florida, where he received a Bachelor of Science degree in Architectural Engineering in 1956. After his graduation, Philcox joined Fletcher-Thompson, Inc., as a structural design draftsman. He left in 1957 to serve for two years in the U. S. Army Corp of Engineers and returned thereafter. In 1963 he took a leave of absence to conduct field inspection of New York World's Fair construction for Hamel & Langer, Consulting Engineers, returning in 1964 to continue in the capacity as field inspector for Fletcher-Thompson, Inc. He was named Chief Field Engineer in 1970.

Philcox is a member of the Connecticut Society of Professional Engineers, Inc., serves on the Industrial Practices Committee of the Connecticut Building Congress and is licensed in Connecticut and New York State.

Also named an Associate was David Del. Coffin, R.A. of Fletcher-Thompson (Continued on page 27)
Nine New England Architects Elected To AIA College of Fellows 5
Children's Hospital Medical Center
Boston, Mass. ... 8
Avco Everett Research Laboratory
Everett, Mass. ... 13
Design Research Building
Cambridge, Mass. 14
The Dana Place
Pinkham Notch, N.H. 15
B.S.A. Award for Historic Preservation
Presented to John Codman 20
Church of St. John the Evangelist
New Britain, Conn. 22

Notes & Comments 1
On The Drawing Board 19
Index to Advertisers 28

Photo Credits: Phokion Karas, Cover (Children's Hospital Medical Center), pages 8-12, & 13;
Corbit's Studio, pages 1 (Whiteside) & 27 (Collin); Dan Bernstein (Field), Paul Koby (Geddis) and Joan Goody (Goody), 5;
Vincent Weston Studio (Phelan) and George M. Cushing (Sprout), 6; Malcolm McVickar (Avco),
13; Hillel Burger (Design Research), 14;
David-Thomas (Central Fire Headquarters), 19;
George M. Cushing, 21;
Charles N. Pratt, pages 22-26;
Gorchev & Gorchev, 28.
GE Zoneline Cooling-Heating systems blend in functionally, architecturally...

...and you can see installations now in Boston

GE's exciting, through-the-wall Zoneline units blend handsomely, quietly with their surroundings both inside and out. At the same time, they offer several important advantages over most central plant systems:

- Initial investment economy
- Individual heating and cooling comfort control
- Operating and maintenance economy
- Ease of specification and application
- Opportunities for individual metering

Because of GE Zoneline's versatility, hundreds of unique and highly efficient applications have been made — among them apartments, motels, hotels, nursing homes, hospitals, schools and offices.

Whatever your application — for new construction or remodeling — high, medium or low-rise, you can easily specify a GE Zoneline system. There's a Zoneline model to do the job — beautifully, effectively, economically.

For information on where to see GE Zoneline installations in Boston, call 329-2900. For catalog and complete specifications, simply fill in the coupon and return today.

GENERAL ELECTRIC
Appliance and Television Sales Division

Contract Sales Department
General Electric Company
346 University Avenue
Westwood, Massachusetts 02090

Yes! Please send me complete information on GE Zoneline Cooling/Heating Systems.

Name__________________________
Firm___________________________
City________________State______Zip_________
Nine New England Architects Elected to College of Fellows

Nine New England architects have been elected to membership in the College of Fellows of The American Institute of Architects.

Apart from the Gold Medal, which may be presented each year to one architect from any part of the world, Fellowship is the highest honor the Institute can bestow on its members. All Fellows of the AIA may use the initials FAIA following their names to symbolize the esteem in which they are held by their peers.

Investiture of newly-elected Fellows, 62 in all, was scheduled to take place in Detroit during the 24,000-member Institute’s annual convention.

Hermann Field, an urban and institutional planner and designer, is an exponent of the thesis that architects must be concerned with larger environmental and social issues if the profession is to fulfill responsibly its primary design function.

He got his start in the profession in the late '40s with appointment as planning director for Cleveland College of Western Reserve University. He was in the midst of developing a downtown educational center on Cleveland's Public Square and Mall when a Cold War incident interrupted the project. He was kidnapped in Poland in 1949 and disappeared for five years during which he was confined in a cellar.

On regaining his freedom, Field returned to this country to resume his career. His major work began in 1961 with appointment as director of the Planning Office at the Tufts-New England Medical Center in Boston.

In the past 10 years he has set in motion a series of planning and design initiatives for institutional growth, closely integrated with the replanning and redevelopment of the surrounding inner urban neighb-
borhood, as part of a total planning and urban renewal strategy. A major component of the effort is an innovative elementary school, actually a joint occupancy complex combining school and community resources center, with special relevance to inner-city area redevelopment.

Field also has served as president of the Interfaith Housing Corporation of Cambridge, formed by 11 churches to sponsor construction of moderate- and low-income housing under various federally subsidized programs.

Field is also co-author of two novels, Angry Harvest and Duck Lane, which appeared also in a number of foreign language editions, the former as a 1962 selection of the European Bookclub.

William Geddis, executive director and vice president of The Architects Collaborative (TAC), has been active both in domestic and international practice.

He directed a TAC design team for Nauset Regional High School, Eastham, Mass., a project which recently received a citation from the American Association of School Administrators. He and his firm have designed several new towns in Saudi Arabia in recent years.

Geddis is a former chairman and secretary of the Massachusetts Architectural Registration Board and in 1970 was elected president of the National Council of Architectural Registration Boards.

Marvin Goody's career has included many facets of architecture — teaching, research, and private practice, as well as considerable service to the profession and public.

In research, the staggered truss system for steel construction he developed at Massachusetts Institute of Technology now is being used widely in this country and abroad. Numerous features of an all-plastic house he designed for Monsanto Chemical Corporation have been incorporated in conventional housing construction, notably the all-plastic molded fiberglass bathroom.

In collaboration with the Tishman Research Corp., Goody has researched and recommended various cost-saving construction techniques for New York State's Urban Development Corp. to use in building 25,000

A panelist on a weekly television show, "What in the World," a travel and cultural quiz, Huntington was re-elected to the West Hartford Town Council in 1969. He was Mayor of West Hartford (First Democratic Mayor under present Town Charter) from 1967-1969; Minority Leader West Hartford Town Council (1963-1967); Member of the West Hartford Town Council in 1961; unsuccessful candidate (Dem.) for State Legislature, 1958, and Member of the Windsor Conn. Public Bldg. Commission in 1947-1949.

J. Gerald Phelan, is Chairman of the Board of Fletcher-Thompson, Inc., Bridgeport Architects and Engineers.

A native of Bridgeport, Phelan joined Fletcher-Thompson in 1916 as the firm's first architect, and, for the next twenty-five years, served as the Chief Designer.

He was made Chief Engineer in 1926 and Treasurer and General Manager in 1931. He started his own architectural firm in 1933 for the design of ecclesiastical buildings and ran it concurrently with his Fletcher-Thompson responsibilities.

In 1942, Phelan became President and, as both a registered architect and engineer, guided F-T's fully integrated architectural and engineering staff.

Phelan's prime interest today is in the hospital and health care facilities field. Two local projects pro-
ceeding under his watchful eye are the Bridgeport Community Mental Health Hospital and the $25 million dollar redevelopment program for Bridgeport's St. Vincent's Hospital. In 1970, he turned over the F-T presidency to his son, John G. Phelan, P.E.

Phelan is a member of the National Society of Professional Engineers, past President and past Director of the Connecticut Society of Professional Engineers and is certified by the National Council of Architectural Registration Boards. He is Vice President of the State Architectural Registration Board of which he has been a member for the past 20 years.

William Sprout has been active in service to the profession since he joined AIA in 1936 as a member of multimillion dollar housing project in West Roxbury and South Brookline, Massachusetts known as Hancock Village during the construction and post construction period.

In the public service area, Sprout authored the 1969 report of the Conference on the Future of the Islands, Waters and Shoreline of Boston Harbor. His interest in historic preservation is keen, the restoration of several historic homes in Massachusetts and Vermont having been due to his efforts.

Russell L. Stecker has been an architect in Connecticut for eighteen years and is president of Stecker and Colavecchio Architects, Inc., which has primarily been engaged in planning of educational facilities since its creation in 1964. The firm was

the Boston Society of Architects. In 1941, he joined with others in forming the Massachusetts State Association of Architects, of which he was an original incorporator and director. He has served as secretary since 1945 and treasurer since 1961. He is a former president of the Boston Chapter, Construction Specifications Institute.

For 30 years — from 1935 to 1965, when he retired to devote himself exclusively to private practice — Sprout was staff architect for John Hancock Insurance Co.

When John Hancock undertook a housing program in the late 40's, Sprout was appointed Secretary of the Company's Housing Committee and Supervising Architect for the recently selected by educators at the AASA Convention to receive a citation for the Highcrest Elementary School in Wethersfield.

Stecker graduated with honors from Cornell University (B. Architecture 1949) and spent a year on a fellowship traveling in the United States studying building materials and systems. Much of his public life has been devoted to serving both his profession and community.

As a member of the Connecticut State House of Representatives from 1967 to 1971, he was instrumental in passage of legislation to permit corporate practice of architecture; to limit liability of the Architect to eight years after completion of the building; and to establish a mandatory uniform state building code, first such in the nation. He also helped to gain legislative and executive acceptance of the concept of satellite airports to relieve congestion of the state's main commercial airport, and has encouraged mass transit pilot programs in the capital region.

Stecker is a member of the Connecticut Society of Architects, A.I.A. and past President of the Connecticut Building Congress. He has served on committees of the National A.I.A. for building materials/systems and for production office procedures. He has also assisted the National A.I.A. in influencing federal legislation through his personal contact with Connecticut's Congressional delegates.

Robert Sturgis, an expert on urban design, has been a principal in formulating plans for Boston's extensive downtown urban renewal program, including preservation of the historic Back Bay District, and in developing a new design for Boston's rapid transit system.

He serves additionally as chairman of the Inner Belt Advisory Committee for the Massachusetts Department of Public Works.

As chairman of the Urban Design Committee of the Boston Society of Architects, he is regarded as the conscience of the society for all problems arising in this area. He has headed urban design workshops, led design assistance teams in Michigan and Pennsylvania, and written extensively on the subject.

Sturgis is a partner in the firm of Feloney and Sturgis Architects, Cambridge.

Payson Webber of Rutland, Vt., is a member of the Vermont Chapter of the AIA, which he has served as secretary, vice-president and president.

Webber received a B.S. in Education (magna cum laude) in 1924 from Harvard, where he subsequently received an M. Arch, degree in 1929.

He formed his own firm, Payson Webber, in 1936.

Webber has served as Chairman, Rutland Zoning Comm.; Alderman, Rutland; member and chairman, Rutland Board Zoning Adj.; president Rutland Chamber of Commerce; Rutland City Planning Commission; and member public advisory panel on architects services, General Services Administration, Region 1.

June, 1971
JURY Comment: This building is a lively, street-oriented development resulting in a truly supportive environment for sick children and their visiting parents. It is characterized by horizontal, rather than vertical, zoning of functions. While each building varies in detail, reflecting its function, an overall scale, character, and texture continues throughout the entire Center. The building provides, as a broader gesture, an active street edge which contributes to the quality and life of the surrounding urban area.

Architect's Statement: Work on this medical center has been in progress for over ten years and is still going on. As with many large city hospitals, the problem has involved expansion and change without interrupting the operation of the hospital itself. Also over this time span, the design criteria have changed because of both exterior forces and interior developments in the field of health care. Exterior changes include the widening of streets, moving of the Harvard Power Plant, and the relationship of this to other hospitals in the area and to the Harvard Medical School. Funding of projects also has been a critical determinant in the scheduling and size of construction packages. Therefore, it is evident that the master planning must develop along dynamic lines and be updated constantly.
in view of new criteria. It must be a framework for growth, not a straight jacket.

Certain basic concepts have remained constant, such as a horizontal zoning of functions, rather than the usual vertical zoning. Thus, in the residential area, we find commercial space, a bank, pharmacy, restaurant, and the Harvard Coop, with apartments and motel above. In the main hospital area, a broad base of support facilities connects specialized towers rising above for out-patients and for research. The roof level of this base forms a plaza which eventually will be continuous throughout the medical center.

A consistent architectural character for the buildings has been maintained through the use of building materials — primarily poured-in-place concrete with some precast — and the use of brick pavers at the plaza level. Each building varies in detail reflecting its function, but the general scale and character are maintained throughout. This center is not a building or group of buildings, but rather a living organism, almost a city in microcosm. It probably will never cease growing or changing.

Phase I
Completed 1965
Two-story Basement and Sub-Basement “Pad” to support future construction. Contains mechanical equipment spaces, hyperbaric operating chamber, research laboratory, electrical, plumbing, painting & carpentry shops; diet kitchen, housekeeping personnel toilets, and lockers. Provision is made for future pharmacy work areas and medical records processing and storage. Total area 60,000 s.f. Portion of top of this structure is at existing grade level and is paved for outdoor dining.

Diagnostic and Treatment Center
Completed 1967
An 11-story clinic and doctor’s office which houses 85 examining rooms and 5 treatment rooms. The first level will have a lunch vending area, waiting spaces, interview rooms, pharmacy, and general reception. Three high speed elevators
serve the upper floors. A special conveyor will connect medical records area with control desk on each floor. This build has an area of 119,600 s.f. and rises above the Phase I "Pad" described above.

Clinical Research Center
Completed May 1965
Remodeling of an existing 10-bed ward to a 12-bed research unit with special environmental controls due to metabolic measurements being taken. A clinical laboratory, new kitchen, utility room, director’s and social service offices were included in this project also. This unit was built under a grant from the National Institute of Health.

Children’s Inn
Completed 1968
This project is adjacent to hospital property and shall serve both staff housing need for interns, residents, and graduate students, as well as parents and patients receiving diagnosis or treatment not requiring bed care. The project contains 77 dormitory rooms for single interns and residents, 90 motel rooms for transient accommodations, 156 apartment units and parking for 128 cars. There is also 18,000 s.f. for rental space at street level. The total floor area of project is 197,600 s.f.

Building “C”
This project is an eleven-story addition to the existing in-patient building. It will expand accounting, business, and administration areas, as well as the surgical, x-ray and laboratory floors of the present facility. 80 to 100 beds will be added by this addition. The area of the addition is approximately 150,000 s.f.

Building “G” Basic Pediatric Sciences Building
Completed 1970
This project is a 15-story structure on a land parcel contiguous to the hospital proper. The building is composed of a 12-story tower on a 3-story base. The base level houses entrance and reception areas, research library, animal quarters and animal operating rooms, shipping and receiving areas, and mechanical equipment space. The tower contains research laboratory rooms laid out generally on a 11' x 19' module. In addition to lab space it has also certain special rooms such as cold rooms, constant temperature rooms,
rooms for radioactive work. The total area is 142,000 s.f.

Parking Facility
A seven-story prestressed concrete structure having a capacity of approximately 500 cars. It is designed to be used either as a self-parking facility (449 spaces) or attendant parked (568 spaces). The unit serves hospital staff, outpatients, and visitors.

Blood Transfusion Service
Addition and renovation to existing building. All spaces and equipment necessary for donation, typing and testing storage and refrigeration is provided. The unit has a direct connection via refrigerated dumb waiter to the Hospital Operating Rooms.

Other buildings include: Dining Room and Kitchen Expansions completed in 1964; Laundry Facility & Equipment completed in 1963; Blood Donor Center addition completed in 1962, and Hemoglobin Laboratory Remodelling completed in 1962.
JURY Comment: The positive features of this project are its provision of an introverted environment in an industrial area where outlook is always unpredictable, as well as the general flexibility of a laboratory set up with easy connection to an unique plenum level. The exterior is recognized for its impressive detailing, handsome color, proportions, and siting. The exterior circulation allows frequent visual contact with the exterior to relieve the overall heavy impact of the extreme horizontal extent of the building. This building, as a new element in the landscape, is a positive visual addition in an anonymous industrial landscape, well scaled to adjacent expressway movement.

Architect's Statement: The client's need was for a building which would bring together, in an efficient and attractive working environment, a variety of previously scattered research programs, and thus encourage interdisciplinary "mix," a factor considered vital to the laboratory's continued growth. The site, surrounded by highways and commercial development, is a former tidal marsh requiring pile foundations.

The large floor area and parking requirement on the relatively small in-town site, unstable sub-soil condition, and need for flexibility in layout of laboratories and services were the primary influences on the final solution. Taking advantage of pile foundations, the entire structure is raised off the ground, thus recouping nearly the entire building area for parking beneath. Long spans above the parking are framed with trusses and their depth utilized to provide continuous service space below laboratory floors.

The basic planning module is a square "block," defined by exterior walls and fire walls required by code. The blocks are of the maximum size permitted by code, and essentially loft space, fixed elements being limited to stair towers and columns. Closely linked blocks make better use of small site and improve internal communications. A system of peripheral corridors and cross streets daylight the public spaces and permit views from many interior vantage points. Glass walls look into a landscaped central court in contrast to the deliberately limited view at the building perimeter.

Jury Comment: The life of this building extends to the life of the street and makes a lively contribution as they become one in mutual reinforcement. The complete visibility of the interior through the simply detailed all-glass walls makes the merchandise the expression of the building. It is a very fitting idea for a retail building in this location, but it could be an arrogant intrusion on neighborhood privacy if used with less discernment and more mundane motives.

Architect's Statement: This is headquarters for a retail store specializing in imported home furnishings. It has three retail floors and two office floors in 27,000 square feet.

A special image was sought in the elemental simplicity of a non-building, a structure which would itself disappear and re-emerge as the world inside, where products themselves demonstrate a total environment of design and color.

An innovative glazing detail allowed glass to be used as a totally unbroken surface. The all-glass facade exploits this potential for both reflection and transparency by taking the form of a faceted prism, which can glisten with changing light and movement or disappear when night illumination dramatizes the whole interior. Open, transparent corners preserve vistas through the building and invite shoppers to enter where the brick paving extends indoors into a high airy lobby, not unlike a plaza where a festive street bazaar is in progress.

The interior is arranged for continuous, flexible selling space with maximum visibility of all goods. Five selling levels in a stepped arrangement meet at the central stair well, from which most departments are openly visible. Bays and indents in the prismatic form create natural display areas on all floors, where room-like groupings can be seen equally well by customers and passersby. Other merchandise is displayed from continuous ceiling fins, which provide flexible lighting and unrestricted use of overhead space. Displays and special fixtures were designed by the architect.

Dana Place
Pinkham Notch, N.H.

Surrounded by 600,000 acres of National Forest at the foot of Mount Washington, the highest mountain in the northeast, Dana Place at Pinkham Notch, Jackson, N.H., is located in the very heart of one of the most magnificent recreational areas in New England. The crystal clear Ellis River cascades for more than a mile through its 300 acres of woodland and meadow and the variety of nearby hiking and climbing trails in the Mount Washington and Presidential Range have made it a tourist mecca for more than a hundred years.

It is, in short, a place that's difficult to describe without sounding like a cliché-laden brochure promising "advantages" that few resort communities can deliver. The Pinkham Notch area itself has perhaps the greatest annual snowfall in the east, averaging 14 feet and exceeding
The ski season is long, usually beginning in November and lasting through April at Tuckerman’s Ravine, which offers the only alpine skiing east of Pinkham Notch. AREA B consists of forty acres of forest land on the east side of Route 16 bounded by Route 16 on the west and the White Mountain National Forest on all other boundaries. The area is entirely contained on the eastern slope of the foothills constituting Pinkham Notch. AREA B is thus adjacent to, but isolated from, the continual properties of the Dana Place which gives it the distinction of immediate access to, and yet complete privacy from, the continual development of the properties of the Dana Place.

The natural boundaries of Route 16 and the White Mountain National Forest are fixed and development of properties abutting AREA B are thus entirely controlled and predictable. AREA B has consequently been designated as that land to be developed as individual one family residential type buildings for family occupancy with the approximate general distribution of one acre of land per residence.

"The design concept of site development is to basically preserve and maintain the heavily wooded and sloping character of the site," according to Thomas Van Aarle and Michael Gebhart, principals of A Design Association. "This is first achieved by the density of building which allocates approximately one acre per family and assures that heavily wooded areas with their natural environment intact may entirely surround each building."

Buildings are carefully sited off the roads and hidden by the trees so that when traversing a road you are still experiencing the natural environment to its utmost and privacy is guaranteed for the people in homes. Consequently, site clearance will be held to a minimum and large expanses of planted areas such as lawns are not part of the design concept.

The building design intent is to provide direction by establishing parameters and limitations within which each owner may express and fulfill his design needs in any one of several design features. The limitations and parameters are based on the New England tradition of residential type buildings interpreted within the context of a contemporary idiom.

The point of departure of the New England tradition is basic, simple architectural forms consisting of flat surfaces, and pitched roofs and a light wood frame type of construction.

The building form minimizes the amount of exterior surface and glass area, due to the harsh weather conditions and climatic change; the building forms tend toward efficient self-contained spaces approaching a cube shape. Other native New England architectural forms have been incorporated into the design vocabulary, including the vertical aesthetic of the form of a lighthouse as found on the New England seacoast or a silo in farm buildings.

Three building design concepts have thus been developed consisting of DESIGN 10, DESIGN 20, and DESIGN 30 based on the traditional values of buildings native to the region and community which provide for weekend needs and conveniences of living. The three designs present a point of departure for the individual owner, each can easily be modified and customized to accommodate several different program types and to adapt to the individual features of each building site. The intent is to provide a framework of reference for the individual land owner which will guarantee him of his property, the properties immediately surrounding his and the kind of physical environment of which he will become a member and in which he will participate.

DESIGN 10 is a two-story residence with living and dining spaces on the first floor and sleeping areas on the second floor. The design consists of two rectangular forms in plan joined by a link which forms the entry. A third form enclosing the stair completes vertical composition.

From the exterior the combination of forms gives the building a unique architectural distinction and interest. By customizing, the basic design concept can be adapted to basic program types and the floor levels...
DESIGN 20 consists of the following program requirements: Living Room, 16' x 18'; Dining Room, 9' x 12'; Kitchen, 9' x 12'; Bedroom, 12' x 12'; Bedroom, 10' x 14'; Bunk Room, 10' x 15'; Mud Room, 5' x 7'; Bath, 5' x 7'; Bath, 5' x 7'; Bath, 5' x 7'. Total: 1,088 net square feet.

DESIGN 10 consists of the following program requirements: Living Room, 14' x 24'; Dining Room, 9' x 12'; Kitchen, 9' x 12'; Master Bedroom, 11' x 14'; Bedroom, 11' x 14'; Bedroom, 10' x 13'; Bedroom, 10' x 13'; Family Room, 14' x 17'; Loft, 11' x 11'; Bath, 5' x 7'; 1-1/2 Bath, 8' x 11'. Total: 1,633 net square feet.

of the two rectangular forms can be adjusted to occur on one level or different levels and can thus be adapted to flat or sloping sites.

The interior rooms are designed so that the two forms can have separate entrances from the link and thus be isolated and serve as two separate units. One would consist of the living room, dining room, kitchen, two bedrooms and bath facilities with its own stair. The other would consist of a family room, two bedrooms and a bath.

The two floors could be joined by a small circular stair and cooking facilities would make the unit entirely self-sufficient. The living room features include a large masonry fireplace, a high loft ceiling, a dropped living room, and a sun deck opening off the living room.

By customizing, the design may accommodate various program types. By building only one of the basic rectangular forms, a basic bedroom unit results. With further revision this could be a three-bedroom unit. By building the second form on one floor only, a building could then con-
stist of four or five bedrooms, or two or three bedrooms with a family room. When this form is two floors, as shown in DESIGN 10, it can accommodate four bedrooms with a family room. With some revision another bedroom could be added.

DESIGN 20 organizes the rooms and interior spaces in a vertical manner rather than the customary horizontal fashion. This results in a striking architectural exterior as a tower house consisting of two slender vertical shafts. The design concept results in several unique features.

On a heavily wooded site, for example, a minimum amount of the site clearing and removal of trees would have to be done to accommodate the foundation and the natural environment could remain intact.

The top floors could have unique and exciting views looking over and sometimes through the tree tops which could not be possible with a lower type of building. All rooms can have views in three and four directions (north, south, east, and west), while in traditional designs rooms are often restricted to views in one or two directions.

A flat sun deck on the roof of one of the shafts would receive the maximum amount of direct sunlight, afford private sunbathing, and have excellent views. Ideally DESIGN 20 would be located on a heavily wooded and steeply sloping site with rooms located with views in the direction of the slope. The building would then be entered from the opposite side of the views from high ground such that the entry would occur in the approximate middle of the vertical dimensions of the tower. Circulation on the stairs to and from the entry and rooms would be minimized in its vertical direction.

By customizing DESIGN 20, within the scope of the design concept and intent, numerous program types may be accommodated and many variations of the design may be realized.

Presently under construction is DESIGN 30, which incorporates some of the features and advantages of both the horizontal concept of DESIGN 10 and the vertical concept of DESIGN 20. It achieves its architectural interest from the external by being a simple, direct, straightforward architectural form.

It is in the development of the interior and the organization of rooms about a high, open interior loft space over the living area that DESIGN 30 achieves its architectural distinction and its difference from DESIGN 10 and DESIGN 20 can be most readily realized.

The dropped living room with a high loft ceiling and a skylight overhead, rooms and balconies overlooking the center space and a sun deck opening off it form the focus and core of the design concept.

Alongside the entrance on one side is a mud room to store skis and winter gear, on the other side a stair connects the floors above and below. From here you may walk down a small flight of stairs to the dropped living room or continue straight ahead to the dining room and small bar which is a raised floor overlooking the living room.

The floor above consists of the bedrooms and a bath. Above that is a sleeping loft. A small hall connecting the bedrooms and bath forms a balcony overlooking the living room and doors or shutters on one bedroom wall allow this room to open into and look on and through the glass wall opposite the central shaft space.

The floor level below the living room consists of a bedroom, bath, and family room or convertible living-bedroom. This floor level is entirely isolated from the rest of the building and provides rooms with complete privacy in contrast to the openness of the floors above.

DESIGN 30, by customizing, revision, and modification can accommodate various program types. The lowest floor, for example, can easily be eliminated to provide a two-bedroom unit with a sleeping loft.

All site work will consist of clearing and grading, excavation, backfill, finish grading and site utilities. Site utilities will include water, electrical, telephone and waste disposal into septic systems and leachfields.

The building will be heated entirely with electrical heat.

Construction will be of a light wood frame type native to the region and community. Foundations will be poured in place concrete or masonry on concrete footings. All walls and surfaces on the exterior of the building will be insulated. Roofing will consist of shingles on sloped or pitched roofs.

Natural, rustic finishes will be used throughout. Exterior rooms will be finished in a similar manner. Flooring generally will be carpeting or wood. Accent areas may be stone or brick. Fireplaces will be of masonry construction. Windows may be either metal or wood frame and operable units will be of a casement, sliding or projected type. Glazing will be polished plate glass. Insulated glass may be provided at the owner's option.

All bathroom fixtures and normal built-in appliances will be provided, as will all wiring and plumbing.
Central Fire Headquarters
The new Central Fire Headquarters for the City of Stamford is to be located on a ¾ acre parcel of land in the urban renewal area. Designed by Weinreich & Masciarelli, Architects, Stamford, the new building will house a fire fighters company, fire department administration offices, and serve as the communications center for the fire department.
A five-bay fire station, it is some 24,320 square feet in total area. Structurally, the building is a steel frame with exterior brick masonry walls.
The second and third floors will be air conditioned.
Completion for the facility is scheduled for early 1972.
Consulting engineers were: Paul J. Pantano, structural, and Tizian Engineering Associates, mechanical.

ON THE DRAWING BOARD

Windham Heights
Ground has been broken for the first major Public Act 236 low and moderate income housing in Connecticut, designed by architect Sidney Sisk of West Hartford. To be known as Windham Heights, the first phase calls for 150 apartment units located in Windham off Route 6. The building cost has been set at $2.5 million by the developers, Windham Heights Associates.
Basically, Public Act 236 allows a developer to obtain a mortgage through the FHA at lesser rates of interest than conventional financial sources. But in return, the developer cannot make more than a six percent profit on original investment equity — this is called a “limited dividend” operation.
AT its meeting last month, the Boston Society of Architects presented its annual Award for Historic Preservation to John Codman, well-known Boston realtor and community leader — "for his long and tenacious devotion to preserving Boston's important past and especially for conceiving and urging into reality the Beacon Hill Historic District and the restoration of the Old Corner Book Store."

Codman has been one of the city's principal real estate brokers and managers for nearly fifty years. His publication in 1956 of "Preservation of Historic Resources by Architectural Control" introduced the concept of historic districts to Massachusetts and led to the landmark legislation which made possible the formation of the Beacon Hill Historic District and the numerous others which now exist in Massachusetts.

Codman has always shown a responsible attitude toward preserving our architectural heritage, the BSA noted, a prime example being his leadership in setting up the means to acquire and rescue from oblivion the Old Corner Book Store, one of Boston's most famous landmarks.

The first Historic Preservation Award, inaugurated last year by the BSA to honor individuals for significant achievements in the preservation of our architectural heritage, went to Richard Cardinal Cushing for the restoration of Bulfinch's St. Stephen's Church on Hanover Street in Boston.
FOR HISTORIC PRESERVATION
PRESENTED TO JOHN CODMAN

(above) The Old Corner Bookstore on the corner of School and Washington Streets in downtown Boston prior to its restoration. (Right) After restoration.

Charles Street in the Beacon Hill Historic District.
CHURCH OF ST. JOHN THE EVANGELIST
New Britain, Conn.

(left) Detail of the Altar of Reservation. (above) Main Entrance. (opposite page) Exterior from Southeast.
Community Award
For Design Excellence

Russell Gibson vonDohlen — West Hartford, Conn.

THE West Hartford architectural firm of Russell Gibson vonDohlen was cited recently for excellence of design of a recently constructed Catholic church. St. John the Evangelist Church, in New Britain, was cited as an outstanding example of private institution construction by the city's Design Review Committee.

The citation was a part of the first annual series of awards for the use of good design and the promotion of beautification in New Britain. Other awards were in the categories of multi-unit residential development, public institution construction, commercial renovation, and special recognition. The award ceremony took place at the New Britain Museum of American Art.

The awards were made by New Britain's Design and Review Committee, which acts as an advisory panel for the city's Redevelopment and City Plan Commissions. The committee's objective is to stimulate the growth and use of good design in New Britain, reportedly the only city in Connecticut to institute a program of awards for excellence of design.

The Church of St. John the Evangelist was designed to conform to the new liturgical developments as proclaimed by Vatican Council II. It has a seating capacity of 650 ar-
ranged on two sides of the altar. Hence the congregation is brought closer to the sanctuary. In this manner they are more intimately related to the sacred action.

To further identify the congregation with the Holy Sacrifice the altar is raised only one step and there is no traditional altar rail to separate the priest from the congregation.

The sanctuary is arranged with the Altar in the center foreground, the Ambo to the left, and between them to the rear is the President's Chair. This is a functional arrangement permitting the celebrant to preside over the sacred action, proclaim the Word of God and perform the Eucharistic Sacrifice. It also provides the congregation with an unobstructed view of the action. There is nothing in the sanctuary to distract the attention of the congregation away from the Holy Sacrifice of the Mass, which is the central act of worship.
To the left of the Sanctuary and at the same level is the Tabernacle mounted on a marble slab. Hanging above it is a wire sculpture of a dove representing the Holy Spirit descending.

In the rear of the Church are wooden sculptures of the Blessed Virgin, St. Joseph, and The Stations of the Cross, indicated by wooden crosses with bronze Roman numerals.

The Sacristry is located off the main vestibule of the Church. This permits the priest to proceed down the main isle to the sanctuary pro-

General view of the Nave.
viding greater identity with the con-
gregation who are assembled there
to worship with him.

The parish facility is located di-
rectly below the Church and open
to the exterior due to the sloping
site. This area is a multi-use space
providing for parish functions such
as dinners and meetings as well as
classroom functions through the use
of folding partitions.

Total Project Cost: $400,000.
Building Construction Cost: $352,-
000 (excluding site, including alter-
nates).

Area: 15,000 Square Feet.
Square Foot Cost of Construction:
$23.45.

General Description: Special Fa-
cilities: A church seating 650 with
parish hall below; Structural Sys-
tem: Long span joists and steel deck;
Mechanical Systems: Warm air, gas
fired and air conditioned; Church
Finishes: Veneer oak finish on ceil-
ing, Oriental stucco on walls, car-
peted Nave and Aisles.

Partner in Charge: James F. Rus-
sell.
Project Architect & Designer:
John L. Riley.
Landscape Architects: Maine &
Tillapaugh.
Mechanical Engineer: Peter J.
Dalton & Associates.
Structural Engineer: Bounds &
Griffes.
Liturgical Appointments: Cathe-
dral Studios.

New England Architect
David Del. Coffin

Thompson's new Danbury office. Coffin is returning to the company after having been associated with other Pennsylvania and Connecticut architectural firms.

Coffin holds a bachelor's degree in architecture from the University of Pennsylvania and a master's degree in architecture from Harvard University.

THE RHEEM MANUFACTURING COMPANY
takes great pleasure in announcing the appointment of

NORTHEASTERN HOME SPECIALISTS
Cambridge, Massachusetts

as distributor of Rheem heating and air conditioning equipment and water heaters for Connecticut, Massachusetts, Rhode Island and Southern New Hampshire.

Let us help you with Great things in Comfort! Now that Northeastern Home Specialists and Rheem have joined together, we can help you get a head start in equipment and application information.

Northeastern and Rheem can supply heating equipment for the apartment up to the supermarket. Our air conditioning equipment ranges from one ton to 20 tons, including rooftop units and split systems. And there are water heaters for the home and for commercial application.

We can provide the complete package in comfort from the Belmont top down. So let us help you start great things in comfort!

Just give us a call or drop a line to:

NORTHEASTERN HOME SPECIALISTS

79 Fulkerson Street, Cambridge, Mass. 02141 • (617) 547-2060
Hartford, Conn. WATS line: (203) 527-4136

June, 1971
Worcester Center Garage

The final piece of the largest enclosed parking facility in the world was hoisted and set in place in Worcester, Massachusetts, just 14 months, 2 weeks and 5 days after the first section was erected on January 6, 1970. The capacity of the prestressed concrete structure is 4,300 cars.

The occasion was marked by a special breakfast and “capping-off” ceremony hosted by the Northeast

...
Are you sure you want a great big furnace for your building?

You can spend a lot of money just putting a roof over a big furnace. Electric heat doesn’t use a big furnace. Electric heat also doesn’t use a boiler room. Or a fuel storage space.

You also pay lower installation costs. Lower maintenance costs. Lower cleaning costs.

And if you ever want to expand, you don’t have to touch your existing system. Just add to it.

What’s more, you should wind up with a better design. Because your architect doesn’t have to design the building around the heating system.

So you’ll get a building that’s better.

Boston Edison Company
New England Electric
Eastern Utilities Associates and Subsidiaries
New England Gas and Electric System Companies
Return to the natural.

Architecturally, and every other way, the feeling today is for the real. The basic. The natural.

And what more natural fuel to build into your plans than Natural Gas. It's clean, modern, dependable, economical. Ideal for heating, cooling, just about everything.

Plus Gas equipment is practically maintenance free.

Ask our Commercial-Industrial Specialist to bring you up to date on returning to the natural.

The Natural Gas Companies
of Massachusetts