Braintree, Mass.
We're going to take 7000 people for a ride.

When the John Hancock Tower Building opens, it's going to open up a lot of new opportunities.

Of course, it won't make any difference if there's room at the top, if there's no way to get there.

But there will be, aboard the 30 double-deck elevators. Elevators powered by electricity.

And electric power will not only take people for a ride, it will also give them light, and heat, and energy to run their typewriters, copying machines and other electric office equipment.

Progress and power go hand in hand. We need power to help industry produce new products and power to provide energy for the many electric appliances we use at home.

And that's not all we need power for. As we enhance our efforts to save our environment, we're going to need electric power for recycling plants, sewage conversion facilities, and other ecological projects.

All this adds up to a lot of work. That's why electric companies are already planning for the 1980's; working to provide the power we all need, while maintaining the clean atmosphere we all want.

Yet, some people continue to ask, "Who uses all this electricity? Why do we need all these new power plants?"

Maybe people on the way up don't realize how much electricity they need to get there.

Boston Edison Company
Mass. Electric
Eastern Utilities Associates and Subsidiaries
New England Gas and Electric System Companies.
Span-Deck, off-site fabricated, hollow core, reinforced pre-stressed concrete panels raise profits because they arrive custom cut to length ready to drop in. As a matter of fact they are also ready to paint, carpet, panel or be used as they are.

Span-Deck is produced in 8 foot widths, either 8 or 12 inches thick with a smooth soffit for floors and walls or with an acoustical soffit especially appropriate for exposed ceiling.

The hollow cores assist in providing mechanical connectors and also serve for air and heat transmission.

Span-Deck is strong, fire-resistant with excellent acoustical properties. Winter or summer as walls or floors it installs fast and easily. The difference can be profits.
Birch Burdette Long Prize
Awarded to Steve Oles

Steve Oles of the Newton, Massachusetts office of Interface Architects has won for the second time the Birch Burdette Long Memorial Prize, a national competition in architectural delineation held annually since 1928 by the Architectural League of New York.

The competition and subsequent exhibition were held in the A.I.A. state headquarters in New York City, where the jury included designer Ivan Chermayeff and architects Bernard P. Spring and Richard Meier.

This year there were two prizes, both of which were won by Oles' two Prismacolor black pencil drawings of I. M. Pei's National Gallery East Building in Washington (New England Architect Dec. '71).

Former winners of the prize include Theodore Kautzky, Hugh Ferriss and Helmut Jacoby. The 1968 prize was awarded to Oles for a pencil rendering of a theater of his own design.
features

Braintree High School
Braintree, Mass. ... 4
St. Matthew's Catholic Church
Hampden, Maine .. 10
The Eliot Pratt Center
Springfield, Vt. ... 12
Hampton National Bank
Hampton, N.H. .. 18

departments

Notes & Comments .. 2
Index to Advertisers 28

Photo Credits: John Maguire, Cover, lower (Braintree High School), pages 4-9; Hutchins Photography, Cover, upper right (The Eliot Pratt Center), pages 12-17; Herndon Associates, Cover, upper left (Hampton National Bank), pages 18-21; Roberts, page 2 (R. Clayton Kantz).

Editorial & Sales Office:
Three Sheafe Street
Portsmouth, N.H. 03801
Telephone: 603-436-4503

Published monthly by the
Walsh Publishing Corporation,
Three Sheafe Street Portsmouth, N.H. 03801. No article appearing in this issue may be reprinted in whole or in part without permission of the publisher.

Controlled circulation postage paid at Portland, Maine. Postmaster: Please send Form 3579 to NEW ENGLAND ARCHITECT, P.O. Box 900, Portsmouth, N.H.

Fifty Cents A Copy
Subscription: Five Dollars Per Year.

Publisher
James F. Walsh
Editor
James Bolquerin
Assistant Editor
Mary H. Arnett
Editorial Staff
Peter Randall
Richard Licingstone
General Manager
Herbert F. Georges
Advertising Sales:
Ruth & Carl Downs
Advertising Production
Anne Cullen
Art Director
Herb Rauh
Circulation Manager
Marjorie Henderson
WHEN in June of 1968 architects Rich, Lang & Coté, Inc., of Boston, began working with the Town of Braintree to design a high school facility, seven different proposals were studied, including additions to existing school buildings as well as new structures located in various sections of town. The proposal adopted by the town which appeared to have the most merit educationally was a new four year high school on a ninety-acre site at the north end of Sunset Lake. An educational consultant working with the school administration submitted
a program which called for a building of 460,000 square feet or 162 square feet per pupil. The preliminary designs were developed and the cost was estimated at $16,900,000. When the project was presented to the town meeting in March of 1969, the town voted to proceed with the planning of a four-year high school on the Sunset Lake site, but a twelve million dollar construction cost ceiling was imposed on the project.

The architects then began working closely with the administration and the educational consultant to devise a program for housing 2800 pupils in a facility that would meet the requirements of the construction cost ceiling. First, every department in the school had to be reduced in size and then programmed for maximum use efficiency. After two months of careful planning, the educational specifications were accepted by the School Building Assistance Bureau and a new design was developed constituting 380,000 square feet or 135 square feet per pupil.

The plan has four basic parts. To the north, three floors containing the shared facilities: first floor, the
cafeeteria; second floor, the resource center; third floor, the science and business departments. To the south, the academic wing: three floors containing four houses of interchangeable classrooms, administration and guidance areas. To the west, the Arts Building: two floors containing art studios, home economics labs, industrial arts shops, music rooms, and a 320-seat auditorium. To the east, the Physical Education Building: two floors containing one large gym and three smaller gyms, locker rooms, and the central receiving and storage areas for the building. The four parts are connected by two entrance lobbies which serve as academic areas during the day.

A great deal of time was then invested in creating a total building system which included the structur-
The main entrance lobby from the balcony corridor, outside the resource center.

The Fine Arts building from the south, showing the industrial arts shops.

The student locker areas are located off the main corridors. The floors in these areas are carpeted to reduce the noise during class change and bright accent color graphics brighten the walls.
The Physical Education Building contains one large gym and three smaller gyms, locker rooms, and the central receiving and storage areas for the building.

Contractors were consulted as to how the building could be constructed in the least amount of time, thereby saving cost for labor. Materials were considered because of minimum cost, easy installation, and low maintenance. All the mechanical systems — plumbing, heating and electrical were coordinated with the structure to provide an efficient layout for each trade.

The plan was developed on a structural module or grid, and the basic structural material is reinforced concrete. One third of the interior floor space is carpeted and fully air conditioned. One basic light fixture which fits into the structural grid was used in all areas. Only 20% of the building, corridors, toilets, etc., has suspended acoustic tile ceilings as the concrete floor system above is the finished ceiling below. Every element in the design was studied and researched in order to achieve maximum repetition, minimum unit cost, and the least time for installation.

The design was approved in June of 1969, and the working drawings were completed in October. The final construction cost estimate was submitted to the town at $11,600,000. The low bid rendered by Vappi & Company, Inc. totalled $11,537,000 and the second low bid was listed at $11,585,000. The total project cost, including site analysis and all other Building Committee expenses, architect’s fees, equipment and furnishings, resident clerk, and a building contingency of $300,000 was $14,200,000. The town approved the bond issue in January of 1970, and the contractor began clearing the site in March.

The maximum amount of existing shrubbery and trees was saved around the ninety-acre site to provide a natural setting for the building and a visual and acoustic screen from the adjacent residential areas.

The site work included developing thirty-two acres of playfields
and twenty-eight acres of building, parking and access roads. The contract called for the building to be completed in 24 months, or March 1972. The first concrete foundations were set in May of 1970 and the entire structure, including walls, windows and roof finish, was completed in May of 1971. The site work was developed early so that the playfields would have an opportunity to mature before they were put to use.

While supervising the construction of the building, the architects were involved in specifying and bidding $1,750,000 of equipment and furnishings, which included all the departmental equipment and supplies, tables, chairs, clerical machines, ground and custodial machines, and supplies, so that the building would be completely operational.

General Contractor: Vappi & Company Inc., Cambridge; Edward A. Hines — Project Manager; Kevin Hurtin — Project Superintendent.
The church plan is basically two squares 63 feet each side, one at 45 degrees to the other.
The roof structure is four equal wood designed trusses resting on eight counterfront pillars of concrete. The exterior finish is of standard materials consisting of textured mahogany siding, wood sash with permanent plastic finish and black asphalt shingle roof.

The lower level houses the religious education classes. One large area in the center is for church suppers and activities.

ST. Matthew's Catholic Church in Hampden, Maine, which was dedicated last month, is the newest religious structure in the Bangor area.

The church plan is basically two squares, 63 feet each side, one at 45 degrees to the other. The roof structure is four equal wood designed trusses resting on eight counterfront pillars of concrete. The exterior finish is of standard materials consisting of textured mahogany siding, wood sash with permanent plastic finish and black asphalt shingle roof.

The church is designed in two levels. The lower level houses the religious education classes with six classrooms. One large area in the center is for church suppers and activities.

The total square footage is 10,800 with about 5,000 square feet in the lower level. The church building cost $180,000 not including the furnishings, officials said.

The general contractor was Down East Associates of Bangor. The structural engineers were Cleverdon, Varney and Pike, Boston, Mass., and John Ackerman of Portland was the landscape architect.
THE ELIOT PRATT

GODDARD COLLEGE

Hill Miller
Friedlaender
Hollander
Inc.

Cambridge, Mass.

THE Eliot Pratt Center serves the entire Goddard College Community from its central location off the North Montpelier Road. Envisioned as the gateway to the College, the building houses a variety of facilities which include the central campus telephone switchboard, the college admissions office, the community bookstore, a fully-equipped multi-media learning aids center and the college library.

The college library has an ultimate capacity of 75,000 volumes and has been designed to accommodate one-third of the projected college student population of 750 at seating facilities which include informal lounge areas on both levels, standard library tables, individual open study carrels equipped with audio receivers, typing carrels, microfilm readers, acoustically isolated two-person media carrels equipped for both audio and video reception and a large conference/lecture room for 50.

The learning aids center contains facilities for the production videotapes, a graphics and copy workshop equipped with an offset press, a photographic laboratory housing darkroom facilities for both color and black and white film and an in-house audio/visual communications center capable of transmitting audio and video signals to receivers located in the media carrels and elsewhere throughout the building.

The building is organized around a central sky-lit two-story high exhibition area which is immediately visible from the circulation desk.
Natural red oak was used for all handrails, doors, special partitions, panelling and the end covers for all metal bookstacks.

Individual open study carrels on the south side of the upper level.

The basic materials used are plain reinforced concrete columns, exposed concrete waffle-slab floor and roof construction, and Dartmouth Colonial waterstruck brick in the exterior masonry walls and infill panels.
This dramatic space serves to unify the two main levels and to bring natural light into the central core of the building. In general, the allocation of spaces within the library follows the concept of placing the noisiest and most public areas adjacent to the main entrance, with the most private and quiet areas located along the far perimeter of the building.

The basic materials used in The Eliot Pratt Center are plain reinforced concrete columns, exposed concrete waffle-slab floor and roof construction, Dartmouth Colonial waterstruck brick in the exterior masonry walls and infill panels, scored buff-colored concrete block for the interior masonry walls and a bright orange carpet throughout the library and learning aids center. Natural red oak has been used for all handrails, doors, special partitions and panelling and the end covers for all metal bookstacks. In so far as possible, this wood has also been used for most of the furniture and equipment.

Only the radio-television studio is air-conditioned. The entire building is heated with in-duct electric coils which supply warm air to both the Upper and Lower Levels from duct space located above the acoustical-tile ceiling which is suspended below the Upper Level floor slab. The building is equipped with an automatic fire-alarm system and a
The building is organized around a central sky-lit two-story high exhibition area which is immediately visible from the circulation desk.

October, 1972
HAMPTON NATIONAL

Hampton, N.H.
The new main office building of the Hampton National Bank of Hampton, N.H., which was designed in conjunction with the president, Mr. William S. Treat, is a two-story facility sheathed in polished, Italian white marble with large window areas of dual-glazed glass set in anodized bronze frames. The marble and glass facade is broken by white precast concrete fluted pilasters to the full height of the building.

Large window areas of dual-glazed glass set in anodized bronze frames permit the interior of the building to be lighted with natural glare-free light.

Extensive landscaping around the bank featuring traditional New England flowers and plants further dram-
The marble and glass facade is broken by precast concrete white fluted pilasters to the full height of the building.

atizes the marble structure. Concealed exterior lighting illuminates the building and landscaping at night.

The building consists of three full floors with a total area of 15,000 square feet.

In addition to the private offices of bank executives, there are seven teller stations, a large vault with space for 2,000 safe deposit boxes, and a loan office with a separate entrance for after hour loan business.

The banking area on the second floor is devoted to such banking services as accounting, bookkeeping, records, data processing, and directors' board room. A portion of the second floor level is available for professional tenants who have a private entrance off the main foyer.

The basement level contains a reception lobby, employees' lounge, a storage vault, mechanical equipment, and a large area for public functions.

A mezzanine gallery gives the lobby area a vertical dimension of the full height of the building with a chandelier designed especially for the bank. The building is fully carpeted except for terrazzo flooring in the foyer. A spiral stairway leads from the main banking floor to the gallery and also to the basement.

Interior walls are covered with choice wood paneling and the attractive decor is highlighted by specially designed lighting arrangements. Background music through an integrated sound system complement the spacious working areas.

Maximum comfort and climate control is achieved through a com-
pletely modern heating and air conditioning system.

The approach to the main entrance to the bank building is across an attractively landscaped pedestrian plaza leading to the bank from Winnacunnet Road.

A walk-up window to serve customers after hours is in the enclosed foyer at the main entrance.

The generous parking area accommodates up to forty-five automobiles.

Two drive-up windows are available for customers who prefer to do their banking from their vehicles.

The bank has 260 feet of frontage on Winnacunnet Road and about an acre and a half of land for its new building.

A home on the westerly side has been purchased by the bank and will eventually be removed to permit completion of the landscaping and parking.

General contractors were Seppala and Aho of New Ipswich, New Hampshire.

Consultants included Albee, Harold and Hirth, Structural; William Ginnis, Mechanical; and Sam Zax, Electrical; Umberto Motroni of the Old Colony Landscaping Service, landscaping.

Interior walls are covered with choice wood paneling and the decor is highlighted by specially designed lighting arrangements.

Large window areas of dual-glazed tinted glass set in anodized bronze frames permit the interior of the building to be lighted with a natural glare-free light.
Site preparation at Brook Village North began last October (1971) on 56 acres just outside Nashua near the Massachusetts line. The first apartment was occupied on August 5, 1972. The modular units are the first to be constructed by the General Electric Company outside of the Operation BREAKTHROUGH prototype sites for which they were created.

DESIGNED FOR YOU

Our new banking headquarters at 100 Winnacunnet Road, Hampton Center, is waiting to serve you. It offers Full Service Banking Convenience, with both walk-up and drive-up windows as well as ample customer parking. Our lobby is open from 8 to 5, Monday through Thursday, and from 8 to 7 p.m. Friday. In addition to our beautiful new main bank, we also have two convenient branch offices: North Hampton Shopping Center, Seabrook Shopping Plaza.

Member, F.D.I.C.

"People you can count on."

BREAKTHROUGH Prototype

Units Built By GE

Dedicated in Nashua, N.H.

The 160 garden apartments comprising Brook Village North in Nashua, N.H., are the first to be constructed by the General Electric Company outside of the Operation BREAKTHROUGH prototype sites for which they were created, and the first Operation BREAKTHROUGH-type units completely occupied in the six-state New England region.

The Nashua project, which was dedicated last month, is owned by First Equity Associates, a Boston realty development firm. The housing modules were manufactured by GE's Re-entry and Environmental Systems Division plant near Philadelphia, Pa.

The modular apartments have automated cast-plaster walls reinforced by galvanized steel members, which provide the sound-proof quality and the beauty of conventional wet plaster walls, but with greater dimensional accuracy and structural strength, according to Jerry Rubin, First Equity's president. The cast-plaster wall system is a direct spinoff from RESD's extensive research and development of aerospace materials.

The units also feature the use of a central utility core that incorporates polyvinyl pipes for the water and drainage systems. The centralization of the complete mechanical and electrical distribution system in the "wet" wall, as the utility core is termed, allows for rapid construction, erection and utilization of the apartments.

SAWYER

Professional Interior Designer
Consultant to Architects

1705 Elm St.
Manchester, N.H. 03104
623-3853

New England Architect
(Continued from page 2)
of California, where he was Senior
Architect and organized and di­
rected the development of building
systems projects for the nine cam­
uses of the University.
Mr. Kantz holds a B.S. degree in
Architectural Engineering from
Kansas State University and an M.A.
degree in Architecture and Urban
Design from Cranbrook Academy.
Mr. Kantz and his family will reside
in Barrington.

Locashio & Boselli
Associates at SM&M

Locashio (left) & Boselli

Philip M. Locashio and Reynold
C. Boselli have recently been made
associates of the Cambridge archi­
tectural and engineering firm,
Symmes, Maini & McKee Inc.
Mr. Locashio, who received a
Bachelor's Degree in Architecture
from the University of Illinois in
1959, was previously with Caudill,
(Continued on page 26)

NEW HAMPSHIRE'S
OWN PAINT MANUFACTURER
FOR MORE THAN A QUARTER
OF A CENTURY

Paints for the Home
(including Authentic Colonial Colors
which have a nation-wide reputation)

Paints to Specification for
Commerce, Institutions & Industry

FLETCHER'S
PAINT WORKS
Route 101
Milford, N.H.
Factory Branch Stores in
Concord, Laconia, Keene, Lebanon
Woodsville, Hampton, Milford
Littleton (Littleton Hardware)
ALL IN NEW HAMPSHIRE

SPLIT
CONCRETE BLOCK
the strength of stone
... a beauty of its own!

Architects choose split-faced concrete
masonry primarily because of its color
control and the attractive appearance it
presents. The wide choice of matrix
color and stone aggregate that can be
incorporated into the total design is a
major factor in the decision to use split-
faced concrete masonry.

DURACRETE BLOCK CO., INC.
MANCHESTER, N.H. — MANUFACTURERS OF CEMENT BLOCKS

PPG INDUSTRIES
GLASS, GLAZING & ALUMINUM WINDOWS
& ENTRANCES
for
NEW ENGLAND COLLEGE — Henniker, N.H.
BRATTLEBORO H.S. — Brattleboro, Vt.

PPG INDUSTRIES, INC. / 100 CAHILL AVE. /
MANCHESTER, NEW HAMPSHIRE 03103/AREA 603/624-4386
Contract and Supply Glass Division

October, 1972
MANUFACTURING OVERHEAD TYPE DOORS SINCE 1924 – PRESENTS

ELECTRIC OPERATORS
AND ELECTRONIC CONTROLS

For Residential, Commercial & Industrial Installations

FEATURED: MODEL WR
operates all residential doors up to 18' wide by 8' high

HEAVY DUTY CONSTRUCTION – PLUS POWERFUL CHAIN DRIVE
Operator Components are Totally Enclosed and GUARANTEED FOR ONE YEAR!

OPEN, CLOSE & LOCK YOUR GARAGE WITH PUSH-BUTTON CONVENIENCE
From The Comfort & Safety Of Your Vehicle
PORTABLE TRANSISTORIZED RADIO CONTROLS

For Technical Information — see Sweet’s 1973 Catalog

Standard Installations are routine. However, if you do have a door problem, the FIMBEL ENGINEERING DEPARTMENT can meet unusual specifications. Free estimates.

FIMBEL DOOR CORPORATION
The Nashua, N.H. Factory – 24 Fox Street – P. O. Box 848 – Tel. 603-882-9786

Distributors and Dealers in principal New England cities

Other factories located at: HILLSIDE, NEW JERSEY • WHITEHOUSE, NEW JERSEY • EGG HARBOR CITY, NEW JERSEY
Warm is going barefoot in January.

The colder it is outside, the more you need the gentle, even warmth of clean gas heat. Gas heat makes you feel cozy and taken care of. No cold spots and it's always there when you need it. Gas heat is thrifty. And gas is the clean heat that doesn't dirty the air indoors or out. It helps you have a clean, comfortable home—and a cleaner world for babies to grow up in.

Gas, clean energy for today and tomorrow

October, 1972
Rowlett & Scott and Hugh Stubbins and Associates. A registered architect in the States of Massachusetts and New York, he is certified by the National Council of Architectural Registration Boards and is a former design faculty member of the Boston Architectural Center. Mr. Boselli, who attended Northeastern University, was formerly with Stone & Webster Engineering Corp., Arlwood Corp. and Universal Foods Systems.

O'Connor Appointed
MMI Executive
Director

John P. O'Connor

John P. O'Connor, former Executive Director of the New England Concrete Masonry Association, has been appointed Executive Director (Continued on page 28)
The lowest cost long term, turn-key,* parking structures available.

Volume Indoor Parking offers a total turn-key* guaranteed price for garage development utilizing the most modern steel and concrete permanent long-term construction system.

Volume Indoor Parking guaranteed turn-key prices always include:
- Electrical to the building line
- Plumbing and drainage to the building line
- Specially designed automobile safety bumpers
- Wide driving aisles
- Terrazzo stair treads and architectural aluminum handrails on all main pedestrian staircases
- Attractive street front facades
- One-way ramps for single direction traffic
- All engineering
- All architects fees

Full design capabilities
- The V.I.P. building system conforms with any local building code, including any fire and live load restrictions.
- Its architectural flexibility allows for any required architectural design to fit site and traffic requirements.
- It is the ideal building system for multi-purpose structures giving full advantage to valuable air rights for additional high-rise retail, office, or motel levels.
- Economical short spans from 17' to clear spans of more than 60' are available.
- Car stall widths from 7'8" (valet parking) to more than 10' for deluxe self-parking facilities are equally feasible.

Extended services
- Volume Indoor Parking can include in your turn-key price:
 - City-wide and area feasibility studies
 - Site analysis and appraisal
 - Operating systems planning
 - Operating equipment, including installation
 - Project management studies

Volume Indoor Parking can handle many financing possibilities:
1. We will sell a turn-key project directly to you.
2. We will build and lease a structure to responsible developers.
3. We will function as developers and construct, own, and operate.

Send for complimentary full color information kit.

R. E. Bean
CONSTRUCTION CO., INC.
25 Roxbury St., Keene, N.H. 03431 Tel: 352-1774

October, 1972
Opening doors for the handicapped involves more than just being polite.

Hire the handicapped.

PUBLIC ADVERTISING SYSTEM
A DIVISION OF THE SCHOOL OF VISUAL ARTS

(Continued from page 26)

One major focus of Institute activities will be engineered masonry. With the latest versions of the Boston Building Code and the BOCA Code allowing rational design of masonry bearing walls, designers have been quick to take advantage of the traditional masonry virtues in new thin-wall, high-rise structures. As a former design engineer with the National Concrete Masonry Association, Mr. O'Connor is well-qualified to provide technical assistance in this field.

The Institute’s Board of Trustees includes representatives of the Associated General Contractors of Massachusetts, the Building Trades Employers Associations of eastern and western Massachusetts, the Mason Contractors Association of Massachusetts, and the Worcester General Building Contractors Association. Serving as an Advisory Board are Mr. Thomas McIntyre, Vice President of the Bricklayers, Masons and Plasterers International Union, and Business Agents from the Massachusetts State Conference of the BM&PIU.

The Institute is located at 755 Boylston Street in Boston (phone 617-262-0020) and welcomes inquiries from architects.
New England thrives on it

Oil. It's a priceless commodity that absolutely costs less than other fuels. It's the fuel you want. If you look beyond the initial installation to the many years of significant savings during the life of the building. Maybe that's the reason why 8 out of 10 Yankee homes and industries are powered by oil. In fact, in New England 70% of all electricity is fueled by — that’s right — oil! So it comes as no surprise that architectural firms who do their homework continue to favor oil over any other fuel. They know that oil requires minimal maintenance, can be depended upon, and meets all sulfur requirements set by the states to improve the environment.

Sprague knows it, too. We're New England's largest marketer of home heating and residual oils. We didn't get to be number one by offering anything less than the finest in quality oils and service. And while sporadic shortages threaten all types of energy levels elsewhere, they don't threaten us. We've just added a 10,500,000 gallon home heating oil tank to our Atlantic Terminal Sales division in Newington, New Hampshire. It's the largest No. 2 oil tank in New England.

And a lot more oil for New England to thrive on.
7 Ways Natural Gas Equipment and Systems can save you money.

1. Convert liquid under-firing to immersion heaters from under-firing to immersion or submersion heating. 2. Use furnaces to pre-heat incoming material. 3. Install gas water heaters adjacent to the point of use. 4. Convert large batch type processes to continuous operation. 5. Convert from indirect to direct firing wherever feasible. 6. Substitute direct flame impingement or infrared processing for chamber-type heating (where suitable). 7. Use continuous equipment which returns process heating conveyors within the heated chambers. This saves fuel and eliminates the necessity for continual reheating.

Your Gas Company representative will be glad to help you start any of these projects.

The Natural Gas Companies of Massachusetts