Without electricity, some American businessmen could still survive.

If you took a half hour or so, you could probably think of several businesses that don't depend very much on electricity.

But the easier job would be listing companies that do—companies whose very existence depends on a reliable source of electric power. The kind of company you probably work for.

And right now, your company and the electric utility industry face a problem. The energy crisis.

Today, the demand for electricity isn't just increasing—it's exploding.

Our best projection is we're going to need twice the power capacity we have right now in just 10 years. Twice. And by 1990, who knows?

Obviously, fulfilling this demand is going to be a difficult task. Just as obviously, fossil fuels aren't going to be able to do the job alone. Oil and gas are in short supply already. And they're irreplaceable. As for nuclear plants, there just aren't enough of them yet. And alternate power resources such as magneto-hydrodynamics and solar energy are in the research stage.

What this adds up to is a problem. A problem we're trying to solve right now. By planning for new plants. By designing a balanced power supply system—that will provide the electricity we need without doing serious injury to our environment.

To do the job, we need something from you. Your support. Your understanding.

The economy of New England has a lot riding on the outcome. And so do you.

Boston Edison Company
Massachusetts Electric
Eastern Utilities Associates and Subsidiaries
New England Gas and Electric System Companies
NEW
HORIZONS OF VERSATILITY

New horizons of versatility are provided for the creative architect through the use of the broadest selection of brick in the industry. Your versatility of design is unlimited because of over 200 variations in color, texture, and size of BELDEN Brick. Your nearest BELDEN Dealer will gladly show you the facts in the form of samples, or write us at P. O. Box 910, Canton, Ohio 44701.
The Advance-Information Monster:
what you don’t know can hurt you.
Even before you begin your project, we can help keep the
monsters from gobbling up your time, your profits, your
best ideas. For one thing, by regularly sending you infor­
mation on new products, new sources, new prices.
And that’s just one monster our Specifier Services
Division can keep off your back.
For a free brochure that tells (and shows) you ten more,
write Mr. Malcolm Korner.

“Monster, stay away from my door.”

AIA Announces Winners
Of 1973 Honor Awards
Twelve structures, from the dra­
matic and light-filled studios and
offices for urban design students at
Harvard University to a serene and
enclosed monastery for Benedictine
monks in Illinois, have been selec­
ted to receive the nation’s highest
awards for architectural excellence —
the 1973 Honor Awards of The
American Institute of Architects.
The winners also include the cor­
porate headquarters of American
Can Company, Fountain Square
Plaza in Cincinnati, and three pri­
vate homes.
Pietro Belluschi, FAIA, winner
of the 1972 AIA Gold Medal and
chairman of the awards jury com­
mented that “sitting in judgment
of work done by one’s peers is a de­
manding and tiring task, done in
what seems to be too short a time,
without exhaustive knowledge of
what inspired or restrained the de­
signer.” But he added, the jury of
five architects believes that “the pre-

Decking & Fence
Stains

Wood decking and wood fencing, popular now as
never before, require a finish both decorative and
durable. Cabot’s Decking & Fence Stains answer the
demand for just such a product. The perfect finish for
porches, sun decks, patios, marinas ... plus fences.

- Available in eleven colors
- Will not rub-off or track-off
- Surface weathers gracefully
- Resists peeling, blistering.

Samuel Cabot Inc.
One Union St., Dept. 594, Boston, Mass. 02108
☐ Send color card on Decking & Fence Stains
☐ Send new Cabot paperback on wood stains.
features

Radcliffe College Faculty Housing
Cambridge, Mass. ... 8
The Woolner Residence
Chilmark, Mass. .. 14
Four New England Architects
Elected to AIA College of Fellows 18
A Room for Sarah Jones 20
Cambridge Designers Win National
Competition ... 23
Faculty Circle Dormitories
Phillips Exeter Academy 24

departments

Notes & Comments ... 2
Index to Advertisers ... 32

Photo Credits: Phokion Karas, Cover & pages 8-13;
Michael Zide, pages 14-17; Norman McGrath, pages
20-22; Wayne Sovems, Jr., pages 24-29.
miated entries well represent the state of the art in 1973."

The Honor Award Winners are (architects in parentheses): George Gund Hall, Harvard Graduate School of Design, Cambridge, Mass. (John Andrews/Anderson/Baldwin, Toronto, Ontario, Canada); St. Francis de Sales Church, Muskegon, Mich. (Marcel Breuer and Herbert Beckhard, New York City); Woolner Residence, Chilmark, Mass. (Edward A. Cuévara, AIA, West Tisbury, Mass.); Julian A. McPhee College Union, California Polytechnic State University, San Luis Obispo, Calif. (Esherick Homsey Dodge and Davis, San Francisco).

And: Beach House, Santa Cruz, Calif. (MLTW/Moore Turnbull, San Francisco); Fountain Square Plaza, Cincinnati, Ohio (RTKL Associates Inc., Baltimore, Md.); American Can Company, Greenwich, Conn. (Skidmore, Owings & Merrill, New York City); Time & Life Building, Chicago (Harry Weese & Associates, Chicago).

A brief description of and jury comments on Honor Award-winning facilities designed by New England architects appear elsewhere in this issue.
What's a good day's work... 400, 700, or 1,000 bricks a day?

They all are. It's common for bricklayers to lay 400 bricks one day and 1,000 the next. Why? Is one a bad day and the other a good one? Not at all. The wall itself determines how many bricks per day. Thin brick walls with ornamental bonds and many openings—the kind frequently used these days—just naturally take longer to build than the thick, solid walls common 50 years ago.

The fact is that bricklayers are laying more brick than ever before. For instance, a 1910 building cost handbook said, "400 bricks a day for veneering a frame house is a good day's work." Today, it's common for bricklayers to lay 500 or more bricks per day on veneer walls.

A recent survey of mason contractors showed that bricklayers average about 725 bricks per day. That's one brick every 40 seconds. It means lifting almost two tons in an eight-hour day. (It also produces a cheaper—often more than 50% cheaper—permanent wall than do competitive materials.)

That's a good day's work.
THE CONNECTICUT BLUE CROSS BUILDING featured in the April issue of the NEW ENGLAND ARCHITECT was designed by C. E. Maguire, Inc., (see letter to the editor) whose offices are located at 60 First Avenue, Waltham, Mass.

If it has 4 walls, we can air condition it!

New construction or reconversion . . . hotel, motel, apartment, office building, shopping center or industrial plant . . . we can do the job right. Our equipment? Carrier, the finest and widest air conditioning line on the market. Our personnel? Experts factory-trained in installation and service. In short, we're specialists. Call us—let us show you what we can do for you!

American Air Conditioning Co.
21 Batchelder St., Boston, Mass. 02119
Tel: (617) 442-6900

SPAULDING BRICK COMPANY, INC.

Distributors of Brick and Structural Tile

120 MIDDLESEX AVENUE, SOMERVILLE, MASSACHUSETTS

WINTER HILL STATION
BOSTON, MASSACHUSETTS 02145
666-3200

CHARTER MEMBER
National Association of Brick Distributors

Letters:

Wrong Address

Dear Editor:

Just a short reminder that C. E. Maguire Inc. is a Waltham-based firm with no office in North Haven, Conn., as indicated in the April issue of the NEW ENGLAND ARCHITECT.

The error regarding our address on the title page of the Connecticut Blue Cross article was the only flaw in an otherwise excellent presentation.

Again, thank you for your interest in our firm's work.

Charles Chaloff
Architectural Dept. Manager
Waltham, Mass.

EDITOR'S NOTE: Here's hoping the photo and caption above help set the record straight.

C. E. Maguire, a subsidiary of Combustion Engineering, Inc., is one of the largest full-line architectural-engineering-planning firms in New England. Founded in 1938, the firm presently employs a staff of more than 500 professional and support members with offices in Providence, R.I., Waltham, Mass., Wethersfield, Miami and San Juan, Puerto Rico.

Out-of-Print Book Sought

Dear Editor:

Any help would be appreciated. Thank you.

Richard Stark
Milwaukee, Wisc.

EDITOR'S NOTE: Address replies to Richard Stark, 1218 East Kane Place, Milwaukee, Wisc. 53202.

Bricklaying Contest Set

Carmine D'Olimpio, President of the Massachusetts State Conference Branch of the Bricklayers, Masons and Plasterers International Union, announces that the State Conference, through all the local unions in the state, will sponsor the annual Bricklaying Apprentice Contest at 9:00 a.m. on Saturday, June 2, 1973, on the Mall in Shoppers World, Framingham.
Searson Appointed To Panel of Arbitrators

Born in Boston, Massachusetts, he is a graduate of the Rhode Island School of Design, and a registered architect in Massachusetts, New Hampshire and Rhode Island, with national certification from the National Council of Architectural Registration Boards.

Mr. Searson is a corporate member of the American Institute of Architects, and a member of the Board of Directors for the Boston Society of Architects.

Robert J. Searson, Jr.

Mr. Robert J. Searson, Jr., AIA, a resident of Canton, Massachusetts, has been appointed to the Panel of Arbitrators for the American Arbitration Association.

Mr. Searson, an associate with the firm of Sasaki, Dawson, DeMay Associates, Watertown, Massachusetts, will serve as an Arbitrator in cases involving the construction industry.

Framed and un-framed Room Identification Signs. Standard and custom designs.

Plus a complete line of Cast Bronze Plaques.

Specify product line of interest — catalog will be sent.

LYNN BULLETIN & DIRECTORY BOARD MFG. CO.
230 ALBANY ST., CAMBRIDGE, MASS. 02139 (617) 864-8050

Engineered Masonry Construction

Structural Concrete Masonry Walls and Prefabricated Floor and Roof Slabs

Low Initial Cost • Structural Integrity • Flexibility of Design • Speed of Construction • Improved Sound Control • High Fire Resistance • Reduced Maintenance and Operating Costs

The Plasticrete engineered masonry construction system is particularly well suited to multicell dwellings such as apartments, hotels and student housing. The walls and floors essential to structural integrity inherently yield excellent properties of fire resistance, sound control and permanence . . . characteristics which are most desirable for these building types. No other system can offer all these advantages . . . and economy too! Send for FREE detailed literature.

plasticrete corporation
805 FELLSWAY, MEDFORD, MASSACHUSETTS 02155 • TELEPHONE (617) 391-4700
GENERAL OFFICES: 1883 DIXWELL AVENUE, HAMDEN, CONNECTICUT 06514

May, 1973
Jury Comment: Compact and lively group of units, domestic in scale and appearance; giving an excellent example of how to utilize valuable land in a congested area of a college and in so doing enhance the space between old and new. The exterior is well related to its adjacent surroundings and the interior spaces permit the occupants to decorate as they please.

Architect's Statement: This project began the implementation of a general plan to expand and renew the Radcliffe College Residential Quadrangle.

The problem was to design modest residential facilities that would function as part of one of Harvard-Radcliffe's thirteen College Houses, making it attractive for the families of the house masters and eight other
FACULTY HOUSING
CAMBRIDGE, MASS.

Architects: Ronald Gourley & Carlton R. Richmond, Jr.
Cambridge, Mass.

Contractor: Boutin, Sandonato & Bogue
East Boston, Mass.

May, 1973
Apartments, although dimensionally modest, achieve a spacious feeling by providing through views and open stairways.

members of the faculty or visiting fellows to participate with some four hundred undergraduates and fifteen resident tutors in the life of the house. These facilities were to be located at the extreme north end of the Quadrangle to preserve an open grassy area to the south between themselves and the larger brick dormitories of the undergraduates on which families and students could meet informally to talk and play.

The program called for a mixture of two-, three- and four-bedroom units, some with street floor studies to facilitate quiet teacher-student conferences. (In an endeavor to attract persons active in the arts for residents, the architect succeeded in adding a requirement for some studios to the original program.)

The Masters' House was to function simultaneously as a private residence and a place for a wide range of social gatherings. A direct connection to the dormitories was desired.

The local zoning ordinance required off-street parking for ten cars. **Solution:** the general plan proposes the use of land already owned by the College at a higher density by employing the infill method.
It sites buildings and establishes design principles.

The Faculty Housing is placed to strengthen and complete the street form to the north and to shape courtyards to the south. Carports and walls tie the complex together and with new planting help to suppress the ends of existing dormitories which are much higher than other neighboring buildings. The slight level depression front and rear together with the recessed entry courts suggest separation without making unfriendly barriers.

Residential scale is sought by building height, massing, fenestration, low walls and trellis work; planting which has not yet matured will help further.

Building forms are rectangular and their profiles against the sky — developed — in the New England tradition. Texture, color and materials harmonize with the existing adjacent College buildings.

Apartments, although dimensionally modest, achieve a spacious feeling by providing through views and open stairways. The structure and service cores are repetitive but each apartment offers a different combination of rooms and each has a private outdoor space at both ground and roof levels.

Construction: Load bearing masonry walls — brick exterior, block interior. Wood joist floors and roof supported on joist hangers placed in masonry walls requiring no joist cutting.

Wood stud parapet, studio and
In an endeavor to attract persons active in the arts, the architects succeeded in adding a requirement for studios to the original program.

Carports and walls tie the complex together and with new planting help to suppress the ends of existing dormitories which are much higher than other neighboring buildings.
trash screen walls — surfaced with prefinished redwood plywood.

Wood stud partitions — surfaced with drywall.

Redwood posts, beams, joists for carports and trellises.

Fenestration: Aluminum sliding doors and windows. Bedroom windows slide into wall pocket.

Finishes: Oak parquet and sheet vinyl floors. Painted walls, partitions and ceilings.

Heating: Forced hot water converted from College steam system.

Furniture: Masters’ House only — laminated oak, designed by architect.

Structural Engineers: Souza and True, Cambridge, Mass.

Mechanical Engineer: Leo Brissette, Reading, Mass.

Electrical Engineers: Ronald Gourley, AIA/Carleton R. Richmond Jr., AIA.

The masonry walls are load bearing with brick exterior and block interior.
AIA HONOR AWARD

Architect:
Edward A. Cuetara
West Tisbury, Mass.

Contractor:
Herbert Hancock
Chilmark, Mass.

THE WOOLNER RESIDENCE
MARThA’S VINEYARD, MASS.

Jury Comment: Direct and convincing expression of the New England village: a group of units fitting a rocky site in various levels, answering the country-living desires of the owners. It fits well into the landscape without interfering with the environment.

Architect's Statement: The house had to be adapted to an uneven site consisting of wind-formed sand dunes stabilized by a fragile ground cover of irreplaceable wild cranberry and other indigenous materials with a minimum of disturbance to the land. The house is divided into four units at elevations dictated by the topography and supported entirely on concrete piers allowing for hand excavation exclusively.

It needed to take full advantage of magnificent views to the south and west. The four units therefore, separated according to function, are oriented either east-west or north-south so that each room faces at least one of the major views. The walls located away from the views (i.e. north and east) are largely blank and occasionally project beyond the standard 16-foot width to form “sheds” which house functions not requiring full headroom.
The walls located away from the views are largely blank and occasionally form "sheds" housing functions not requiring full headroom.
The house is divided into four units supported entirely on concrete piers.
The house must be usable in the off-season and capable of being partially closed to simplify heating. This is facilitated by the separation into units since those housing the guest rooms and the studio can be closed off at the entry.

Construction: Floors are 3" fir double tongue and groove fir decking on wood beams supported by round concrete piers. Undersides are covered with rigid insulation. Roof construction 3" laminated cedar decking spanning from central beam to sidewalls. Interior panelling is cedar and exterior walls are white cedar shingles. Roofing is black asphalt shingles or roll roofing in flat areas.

Plumbing has been disposed so that three insulated water entrance points serving the fixtures by piping in spaces within the house can be separately turned off and drained.

Contractor: Herbert R. Hancock, Chilmark, Mass.
FOUR NEW ENGLAND ARCHITECTS Elected TO AIA COLLEGE OF FELLOWS

FOUR New England architects have been elected to the College of Fellows of The American Institute of Architects, including three from the Greater Boston area and one from Connecticut. They are Jean Paul Carlhian and Frederick A. Stahl, both of Boston; Earl R. Flansburgh of Cambridge, and Landis Gores of New Canaan, Conn.

Fellowship is a lifetime honor bestowed for outstanding contribution to the profession. Investiture of the 64 newly elected fellows was scheduled to take place at the 24,000-member Institute's annual convention in San Francisco May 7. (All fellows of the AIA may use the initials FAIA after their names.)

Jean Paul Carlhian
Since 1963, Jean Paul Carlhian has been a partner in the firm of Shepley Bulfinch Richardson and Abbott, which soon will observe the centennial of its establishment in Boston. The firm is the recipient of the AIA's 1973 Architectural Firm Award. The award is given annually to a firm wherein the continuing collaboration among individuals of the firm has been the principal force
in consistently producing distinguished architecture.

Completed works for which he was principally responsible as a design partner include the Brown University Biomedical Complex and Graduate Center (winner of a New England AIA Regional Honor Award), the Middlebury College Music Center, Harvard Business School Executive Development Complex, and the Vassar College Terrace Housing.

Carlhian was on the faculty of the Harvard Graduate School of Design, from 1948 to 1955, and was a visiting critic in the Yale School of Architecture for four terms, between 1958 and 1964. He has also taught at the Rhode Island School of Design. He has been a visiting lecturer at the Boston Architectural Center and at Washington, McGill and Rice Universities, as well as the universities of Toronto and Montreal.

As a member of the AIA’s national committee on design, he was instrumental in establishing two of the Institute’s major awards, the Architecture Critic Medal and Citation and the Twenty-Five Year Award. He was the Institute’s spokesman in the successful campaign to save Grand Central Terminal in New York. Carlhian was on a 1971 task force to save Louis Sullivan’s Stock Exchange Building in Chicago and has served on a number of awards juries. He is a member of both the Back Bay Architectural Commission and the Boston Landmarks Commission.

Frederick A. Stahl

As a designer, Frederick A. Stahl has been recognized for his capacity to produce buildings that fulfill contemporary requirements while being at the same time responsive to historic character, quality and scale. His design for the $30 million, 34-floor State Street Bank Building won an award from the American Institute of Steel Construction. His Chauncy Town Houses in Cambridge and housing for Boston’s Chinese community received awards from Progressive Architecture magazine.

Stahl was a prime mover in establishment of effective volunteer community planning efforts in the Beacon Hill neighborhood. He is director of the Beacon Hill Civic Association and chairman of its planning committee. Through his leadership the Back Bay Task Force established land use controls that serve to protect the historical and environmental integrity of that area.

He has guided efforts that have restored landmarks of national significance and adapted them to contemporary use. These include The Quincy Market Building, Faneuil Hall Markets area, the Sears Block, Hotel Vendome, and the Park Street Church.

Earl R. Flansburgh

During the past ten years, the Cambridge firm which Earl R. Flansburgh heads has received 15 national or regional design awards for a variety of projects including many schools. Design innovation has been a cornerstone of his practice beginning with a study of school pre-fabrication as a Fulbright Scholar in England in 1957-58. Starting in 1969, Flansburgh and his associates developed for the City of Boston the BOSTCO school systems building program. This program provided for rapid construction of better schools at no increase in cost. The first two demonstration schools for this program were completed last fall.

Last year Flansburgh was elected a Trustee of Cornell University and is the Chairman of Cornell’s College of Architecture Advisory Council. He was on the faculty of Wellesley College for seven years and was a visiting professor of architectural design at MIT in 1965-66. He has been a lecturer at the Radcliffe Institute for Independent Study and has been a guest lecturer at Harvard, MIT and Cornell.

He is currently the Commissioner of Public Affairs of the Boston Society of Architects and is a member of the Board of Directors. He is a member of the American Institute of Architects’ National Committee on Architecture for Education.

Landis Gores

Although Landis Gores is most widely known for his architectural efforts in medium-to-upper bracket private residences, and most recently multi-family housing, he has also designed various commercial and institutional facilities.

An alumnus of the Harvard Graduate School of Design (B.Arch. 1942), Gores graduated from Princeton University summa cum laude in 1939.

A registered architect in the state of Connecticut since 1950, Gores has been in private practice in New Canaan, Conn., since 1952. He was previously associated with Philip C. Johnson, New York City, from 1945 to 1951.

Since becoming a member of the Connecticut Society of Architects, A.I.A., Gores has served as co-chairman of the Chapter Activities Committee, and the Task Force 'The Next Twenty-five Years.' He has also served as chairman of the Visual Education and Environmental Awareness Committee.

Gores served with the U.S. Army from 1942 to 1945 and was a Military Intelligence Reserve Major from 1945 to 1955. He is listed in Who’s Who in America, Who’s Who in the East and American Architects’ Directory.

May, 1973
A ROOM FOR SARAH JONES

NEW YORK, N. Y.

Architect: Owen Beenhouver
Lincoln, Mass.
Site of the Room for Sarah Jones, cited by the American Plywood Association in the special awards category of its 1973 Design Competition, is a small room in a cooperative apartment building.

The bed was made to roll away under the couch inside the playhouse, with the couch to serve as "the bunk."

Site of the Room for Sarah Jones, for which Bay State architect Owen Beenhouwer was recently honored with a citation by the American Plywood Association in the special awards category of its 1973 Design Competition, is a small room in a cooperative apartment building. Its dimensions are approximately 11 by 13 feet; ceiling height 9 feet, 3 inches.

Client requirements included a playhouse, two stories tall, for an active two-year old girl. Also needed were a crib or bed, a bunk, a desk and toy storage area. The playhouse was to be full of fun, both inside

May, 1973

21
Because of the low ceiling, part of the playhouse was left open to allow an upper story without a crowded and dark look inside.

and out, and not to be overwhelming within the small room. Also, the cluttered feeling usually associated with the use of too many pieces of furniture was to be avoided.

Ostensibly simple, the requirements posed several problems: Firstly, the room was too small for the many elements desired; secondly, the ceiling was too low for a two-story playhouse, and thirdly, the fact that the room was being designed for the use of a growing child.

As a solution to the first, the bed was made to roll away under the couch inside the playhouse, with the couch to serve as "the bunk." Because of the low ceiling, part of the playhouse was left open to allow an upper story without a crowded and dark look inside.

The large bed, which was designed to serve an older child, was made very low to the ground to avoid the need for a crib (no danger if the child falls out). The desk was made adjustable in height (three slots at two-inch increments for height adjustment as the child grows).

Plywood used: Birch veneer DF plywood, A/B ¼" thickness, paint grade.

The reasons given by the architect for the use of plywood included the following: (1) Need for planar material to make large simple one-piece surfaces with cut-outs; (2) Need for material that is light, strong in large areas, easily worked, holds paint well; (3) Need for a strong material to allow safe structure for climbing without requiring a heavy unsightly framework within the small interior space of the playhouse.
CAMBRIDGE DESIGNERS WIN NATIONAL COMPETITION

CAMBRIDGE, Massachusetts designers have won both first and third prizes in a national competition for design of a "Street Park" intended to revive a deteriorating neighborhood in Pittsburgh, Pennsylvania.

Sponsored by the Pittsburgh Urban Development Authority, the Manchester Street Park competition drew entries from all parts of the country. First prize of $4,000 was won by Kyu Sung Woo, with Hong Bin Kang, John G. Williams, Jaime Freixa, and Vladimir Janovsky. Mr. Woo will also consult on further development and implementation of the park design. The third prize of $1,500 went to a team composed of Bobby C. Poole, William M. Simmers, and Edwin J. Woll. (Second prize was won by a group of entrants from Oklahoma.)

Mr. Woo’s winning entry emphasized movement and flexibility, with mobile vendors plugged in at regular intervals along a bicycle-pedestrian spine.

The Poole-Simmers-Woll entry focused on opening up the central portion of the park to create an indoor/outdoor social center for the neighborhood, with the layout of housing around this center emphasizing the connection to a nearby shopping area.

Both groups are presently employed by the firm of Sert, Jackson and Associates, Inc., of Cambridge,
"ONE of the constant problems of boarding school life is the relationship between faculty and students," it was noted by Charles W. Pratt, Instructor of English at Phillips Exeter Academy, when plans were being formulated for new dormitories. "Both wish independence and privacy; at the same time both wish contact."

The Faculty Circle Dormitories reflect a full awareness of this need. The complex of two-story small scale living units for boys and faculty consists of two dormitories and five separate faculty houses. Both dorms and houses have interior courtyards and are connected by a master study.

The dorms are quiet and easy to administer without reliance on an authoritative stance. They provide attractive spaces for community activities. Most important, they are places where students enjoy living.

One of the school's earliest and most important decisions was to keep the buildings residential in style and arrangement. The architects have laid out two irregular shaped two-story structures which follow the natural rise and fall of the site. From the outside, the slightly pitched roofs give the impression of a cluster of individual houses. Although they are modern in design, the buildings are remarkably compatible with nearby frame dwellings. Yet, because of the brick walls, the dormitories are a gentle reflection of the other Academy buildings across the street.

Inside the buildings, the residential pattern is maintained as much for the students as for their advisers. There are no long corridors lined on each side by almost identical rooms. Instead, each building contains collections of four-or five-student rooms on each side of a short, private hallway and are separated by half-flights of stairs from the nearest similar area. Each dormitory group is, in effect, a community of smaller groups.

The two new dormitories contain recreational space to allow the students to relax and to feel a sense of community. The Common Room is
Architects:
Campbell, Aldrich and Nulty
Boston

General Contractor:
H. P. Cummings Construction Co.
Ware, Mass.

From the outside, the slightly pitched roofs give the impression of a cluster of individual houses.
attractive with large fireplaces and wooden doors, adorned with rugs which can be rolled up if necessary. One wall is completely of glass, with sliding doors opening to a courtyard area, to create indoor-outdoor space for dormitory parties, dances, or other gatherings. There are also separate game, television and smoking rooms.

There is also easy access to the dormitories and faculty apartments. In fact, the Committee and the architects have made it possible for students to have two routes into the faculty apartments: one, through the "Official" door leading directly to the master's study; the other, through a door leading into the living area. Faculty apartments, however, have been placed at the extremities of the buildings. Student entrances are at the centers so that faculty families can have privacy and an outdoor living space of their own ...

The student rooms boast a variety of types and sizes. Economy demanded that they not be large — the typical room is about 140 square feet per boy — although they are somewhat larger than the 105-110 square feet that has been the aver-

Each building contains collections of four or five student rooms on each side of a short, private hallway and are separated by half-flights of stairs from the nearest similar area.
Because of the brick walls, the dormitories are a gentle reflection of the other buildings across the street.

I

Downstairs, large windows extending almost to the floor help give the rooms a feeling of spaciousness, a feature that is especially attractive at the rear of the buildings where the windows provide a view of a wooded glen.

The second floor rooms have high ceilings — up to 17 feet — under pitched roofs; and in some rooms there are "loft areas" extending over the adjoining hallways. The loft areas are elevated and reached by ladders.

Materials: Load bearing masonry walls and concrete slabs are used throughout with exterior walls faced in brick. Roof is standing seam metal over matched boarding. Boys rooms are finished painted block and concrete with carpeted floors. Faculty rooms are finished in painted plaster with wood floors. Metal sash is used throughout.
Dorms and houses have interior courtyards connected by a master study. Large windows extending almost to the floor help give the rooms a feeling of spaciousness.

The second floor rooms have high ceilings — up to 17 feet — under pitched roofs.

Job Captain: Robert A. Broder.
Consultants: LeMessurier Associates, Structural Engineers; Francis Associates, Mechanical and Electrical Engineers.
Load bearing masonry walls and concrete slabs were used throughout with exterior walls faced in brick.
EARLY AMERICAN WROUGHT IRON

A unique collection of hand-finished Suffolk Latches to compliment the decor of any colonial building. Based on authentic colonial designs, all latches include hand-forged thumbpieces and back assemblies, yet may be easily adapted to modern lock sets. Also available, a large and varied assortment of hand-finished strap hinges, hinge plates, cabinet and door hardware.

Visit our display room on Powers Street, just off Route 101A, in Milford, N.H.

THE OLD SMITHY SHOP
P.O. Box 226, POWERS STREET
MILFORD, NEW HAMPSHIRE 03055
TELEPHONE: 603-673-2199

LATHING, PLASTERING & SPRAY FIREPROOFING

Francis P. Connor & Son, Inc.
18 HARBOR AVE. - NASHUA, N.H. - 603-589-1164

"WE CAN GET YOU PLASTERED"

Ralph T. Rowland

Ralph T. Rowland, AIA, of Cheshire, Connecticut, has been elected a Vice President and Director of Fletcher-Thompson, Inc., Connecticut's largest architectural and engineering firm, and will head the firm's newly founded Project Management Division.

Mr. Rowland joined Fletcher-Thompson in 1964 following seven years of heading his own firm in the New Haven area. With more than 25 years of experience in architecture, he has served as project architect and project manager for numerous assignments in the educational, commercial, housing, industrial and health care fields and, until recently, was project manager for the $35 million replacement program for St. Vincent's Hospital currently under construction in Bridgeport.

Current Fletcher-Thompson projects which will be the responsibility of the new Division of Project Management include general offices and laboratories at the Corporate Center for Dow Corning Corporation in Midland, Michigan; a large warehouse addition for Chesebrough-Pond's, Inc., in Jefferson City, Missouri; a new Fire Headquarters in Bridgeport and a Police Building in Fairfield, Connecticut; additions to two Elementary Schools in Stamford, Connecticut; and the administration building at the New Campus of Western Connecticut State Col-
Mr. Rowland studied engineering at Manhattan College and architecture at Columbia University. He is a registered architect in Connecticut and New York and is certified by the National Council of Architectural Registration Boards. He served with the Navy’s Seabees in World War II, after which he was employed by architect-engineer firms in New York and Connecticut.

Mr. Rowland is a member of the American Institute of Architects, (AIA) and The Institute’s Committee on Architecture for Health. A member of the Connecticut Society of Architects, he has served since 1966 as Chairman of the Editorial Committee of Connecticut Architect Magazine, having previously served as Secretary, Vice President and President of the Society. He is a member of the Bridgeport Association of Architects and its Executive Board. He is also a member of the American Association of Hospital Planning and the American Society of Planning Officials. In 1966 he was cited by the AIA for “Contribution to the Profession of Architecture”.

Mr. Rowland is a member of the
Central Naugatuck Valley Regional Planning Agency, having served as Chairman in 1969; a member of the Hamden Chamber of Commerce, where he held the offices of Director, Vice President and President, and is a former member of the Cheshire Planning Commission and the Cheshire Community Development Action Plan (CDAP) Agency.

Mr. Rowland is married to the former Bernice Cannizzo of Jackson Heights, N.Y. They are the parents of three sons and a daughter.

Store Front Glass & Glazing Contractors
Distributors Erectors
For Windows and Curtain Walls

IN MANCHESTER, NEW HAMPSHIRE

Central Fire Station: Glass and Glazing.

Hillsboro County Court House: Glass and Glazing.

United Glass & Aluminum Co., Inc.
78 Douglas Street, Manchester, N.H.
Telephone: 603-669-6677

Index To Advertisers

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Air Conditioning Co.</td>
<td>6</td>
</tr>
<tr>
<td>Daniel F. Sullivan Co., Inc.</td>
<td>32</td>
</tr>
<tr>
<td>R. E. Bean Construction Co., Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Bosson-Sawyer</td>
<td>2</td>
</tr>
<tr>
<td>The Belden Brick Company</td>
<td>30</td>
</tr>
<tr>
<td>Frease & Shorr Advertising</td>
<td>31</td>
</tr>
<tr>
<td>Business Equipment Corp.</td>
<td>30</td>
</tr>
<tr>
<td>Clark, Bernard, Husband</td>
<td></td>
</tr>
<tr>
<td>Samuel Cabot, Inc.</td>
<td>2</td>
</tr>
<tr>
<td>D. W. Gardner Advertising, Inc.</td>
<td></td>
</tr>
<tr>
<td>Francis P. Connor & Son, Inc.</td>
<td></td>
</tr>
<tr>
<td>H. P. Cummings Construction Co.</td>
<td></td>
</tr>
<tr>
<td>Four-Power Group</td>
<td></td>
</tr>
<tr>
<td>Ingalls Associates, Inc.</td>
<td></td>
</tr>
<tr>
<td>Local Gas Company</td>
<td></td>
</tr>
<tr>
<td>Harold Cabot & Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>A.P.S. Associates</td>
<td>4</td>
</tr>
<tr>
<td>B. L. Makepeace, Inc.</td>
<td></td>
</tr>
<tr>
<td>Reilly Brown, Inc.</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Masonry Institute</td>
<td>5</td>
</tr>
<tr>
<td>Merrimack Tile Co., Inc.</td>
<td>30</td>
</tr>
<tr>
<td>New England Insulation</td>
<td></td>
</tr>
<tr>
<td>Elliott Advertising</td>
<td></td>
</tr>
<tr>
<td>Old Smithy Shop</td>
<td>30</td>
</tr>
<tr>
<td>Plasticrete Corporation</td>
<td>7</td>
</tr>
<tr>
<td>The Vincent Pacelli Advertising Art Co.</td>
<td></td>
</tr>
<tr>
<td>Seppala & Aho Construction Co., Inc.</td>
<td>31</td>
</tr>
<tr>
<td>Spaulding Brick Company, Inc.</td>
<td>6</td>
</tr>
<tr>
<td>United Glass & Aluminum Co., Inc.</td>
<td>32</td>
</tr>
</tbody>
</table>

R. E. BEAN CONSTRUCTION CO., INC.

Industrial — Commercial — Institutional

25 ROXBURY STREET, KEENE, N.H. — TEL. 352-1774
When is an underground tank installation just like money in the bank?

When the tanks are made of Fiberglas.*

No argument. Steel rusts. Fiberglas doesn't. Fiberglas stays sound underground . . . a permanent investment. And just as important: when a steel tank leaks, the intangible costs of pollution damage can be greater than the cost of replacement. That's why more than 23,000 Fiberglas tanks have been installed nationwide. That's why Fiberglas makes good banking sense . . . why you have to talk to NEI before your next deposit.

And you've recently heard about "energy conservation" . . .

That's our business. Since 1935, our only business. Keeping cold or heat in or out conserves energy, and insulation does the job. Whatever you need in protective insulation, you'll find it at NEI. We cover everything: from a copper tube to an LNG tanker; from −350°F to +2000°F; from Fiberglas to stainless. We think it's time you had all the facts. Get them now from NEI.

Gentlemen: I just might go first glas.

☐ Please have a technical representative call to give me more information on Fiberglas tanks.

☐ Please send me complete information.

Name
Title
Company
Address
City State Zip

New England Insulation

*Trademark Registered Owens-Corning Fiberglas Corporation
7 Ways
Natural Gas Equipment and Systems can save you money.

1. Convert liquid heaters from under-firing to immersion or submersion heating. 2. Use shaft-type melting furnaces to pre-heat incoming material. 3. Install gas water heaters adjacent to the point of use. 4. Convert large batch type processes to continuous operation. 5. Convert from indirect to direct firing wherever feasible. 6. Substitute direct flame impingement or infrared processing for chamber-type heating (where suitable). 7. Use continuous equipment which returns process heating conveyors within the heated chambers. This saves fuel and eliminates the necessity for continual reheating.

Your Gas Company representative will be glad to help you start any of these projects.