We have a delivery system to make sure her delivery system delivers. It's called NEPEX.

When Farmer Henderson puts his electric milking machine to work, his prize Guernsey delivers.

And so does NEPEX—the master control center that coordinates all major electric power transmission and generation facilities in New England.

It's an important job.

Millions of people depend on a reliable supply of electric power. So do thousands of businesses and businessmen—including Farmer Henderson.

The system that keeps things reliable is headquartered in Springfield, Massachusetts—and works through four satellite centers located throughout the region. The mission: to monitor the operation of the participating utilities and get the power to where it's needed. Instantly.

To do the job, NEPEX simultaneously directs the output of some 150 steam-electric generation stations (both fossil and nuclear), 24 hydroelectric plants, and more. And it must do so every second of every day.

It isn't too farfetched to compare the difficulty of this task to that of putting a man on the moon. Certainly, the equipment is straight from science fiction—sophisticated enough to update some 2300 items of information every two seconds. All backed by dozens of highly skilled specialists.

NEPEX. It's one of the things your electric utilities are doing to give you service you can rely on.

Whether you're in a city, a town or down on the farm—it's good to know it's there.

Delivering.

Boston Edison Company
Massachusetts Electric
Eastern Utilities Associates and Subsidiaries
New England Gas and Electric System Companies
SONOTUBE

Fibre Forms: The fastest, most economical way to form concrete columns, piers and footings.

Sonotube fibre forms are made from many layers of high quality fibre, spirally wound and laminated with a special adhesive. The inside coatings vary according to designated uses.

Because these forms are lightweight, they can be placed and braced easily. Standard sizes can be placed manually. And only a minimum amount of light lumber is required for bracing.

There are no fabricating or assembly costs either, because Sonotube fibre forms are one-piece units. They can be cut or sawed right on the job to fit beams and allow for utility outlets.

And because they're disposable, all the forms can be poured at one time. There are no form inventories or cleaning and re-shipping costs.

The built-in "moisture barrier" provides uniform "wet curing." And once the concrete has cured, the forms can be stripped quickly with an electric saw or simple hand tool.

Finally, Sonotube forms come in a wide variety of sizes. Inside diameters range from 6" to 48". Standard lengths are 18', with shorter or longer lengths (up to 48') available on request.
If it has 4 walls, we can air condition it!

New construction or reconversion ... hotel, motel, apartment, office building, shopping center or industrial plant ... we can do the job right. Our equipment? Carrier, the finest and widest air conditioning line on the market. Our personnel? Experts factory-trained in installation and service. In short, we're specialists. Call us—let us show you what we can do for you!

American Air Conditioning Co.
21 Batchelder St., Boston, Mass. 02119
Tel: (617) 442-6900

SPAULDING BRICK COMPANY, INC.
Distributors of Brick and Structural Tile

120 MIDDLESEX AVENUE, SOMERVILLE, MASSACHUSETTS

WINTER HILL STATION
BOSTON, MASSACHUSETTS 02145
666-3200

CHARTER MEMBER National Association of Brick Distributors

Dudley, Walsh & Moyer

Richard H. Dudley, AIA, William H. Walsh, AIA, and Marshall M. Major, P.E., have opened a new firm at 194 North Main Street, Concord, N.H., for the practice of architecture and engineering.

George Ormond Lloyd

Maine Architect George Ormon Lloyd has moved his practice from an office at home to new quarters in the Coe Building, 15 Cross Street, Bangor.

Kallinich Heads
Conn. Building Congress

Robert W. Kallinich of J. H. Hogan, Inc., New Haven, was elected president of the Connecticut Building Congress at the recent annual meeting at Restland Farm, Northford.

Elected to the board of directors for three-year terms were William Dwyer of Architects Planning Team, Waterbury; Charles J. Monahan of Earl R. Smith, Inc., Bridgeport; and Paul S. Strubell of Northeastern Ventilating, New Britain.

Continuing to serve on the board of directors are Robert A. Sapack of Architects Planning Team, Waterbury; Roscoe D. Smith of W. J. Megin, Inc., Naugatuck; Clifton J. Cotter of M. J. Daly and Sons, Inc., Waterbury, all two years. Angelo J. M. Giardini of The Associated Construction Co., Hartford; Rodney Midford of Standard Builders, Inc., Hartford; and Stuart Tillinghast of Blanchard and Tillinghast, Architects, New Haven, all one year.
features

Mason & Frey Win ASLA Award 5
Beacon Hill Home
 Boston, Mass. 6
Mills Residence
 Wilton, Conn. 10
T.A.C. Wins Johns-Mansville
 World Headquarters Competition 16
Roney Awarded Rotch Travelling Scholarship ... 22
Manchester Federal Savings and Loan Association Branch Bank,
 Manchester, N.H. 24

Departments

Notes & Comments 2
Index to Advertisers 32

Photo Credits: Hutchins Photography (Beacon Hill Home), Cover & Pages 6-9; Martin Tornallyay (Mills Residence), 10-15; Eric M. Sanford (Manchester Federal Savings and Loan Association Branch Bank), 24-26; Charles N. Pratt, 29.

Editorial & Sales Office:
Three Sheafe Street
Portsmouth, N.H. 03801
Telephone: 603-436-4503
OSHA Documentation Is Protection
Architects and Engineers Told

Document everything. That is a lawyer's advice to architects and engineers who are trying to assess their responsibility — and potential liability — under the Occupational Safety and Health Act of 1970.

The lawyer was Gerald W. Farquhar, a speaker at the AIA-sponsored conference, "The Architect, the Engineer, and OSHA," held in Washington, D.C.

Under OSHA, the design professional has three areas of responsibility, according to conference speaker David Coleman, a professional engineer, of Framingham, Mass. These areas involve him as an employer whose workplace must conform to OSHA standards; as an employer who sends employees to building sites; and as the designer for a client whose building must comply with the Act.

It is the last two which are most likely to cause problems — problems, Farquhar said, which can be largely avoided by thorough documentation of attempts to comply with OSHA in the design and construction phases of projects.

Farquhar is a consulting attorney to the Office of Professional Liability Research for Victor O. Schinnerer and Co. Inc., the national underwriting managers for the AIA and NSPE sponsored professional liability insurance program. He advised designers to communicate fully with clients to determine the final use of the building. They should do this for clients who will use the building for their own employees; where the client intends to lease the building the designer should determine the tenants' uses as well as he can. In this way the designer can do as much as possible to make the building free of OSHA violations. Should violations later be alleged or cited, the designer will be able to demonstrate his efforts to design a complying building, thus decreasing his chances of being held liable. In addition, very early in the project the designer should notify clients of his and their own responsibilities under OSHA and advise clients of possible costs involved in OSHA compliance. Every transaction should be documented in writing and filed.

To avoid possible liability for an OSHA violation on the job site, the designer should make his own employees fully aware of OSHA provisions. (The designer's responsibility to become fully familiar with OSHA provisions was stressed throughout the conference.)

If an architect's or engineer's representative observes a possible on-site violation by the contractor (by law and contract the party responsible for safety and health on the building site) he should immediately note the violation, relay this information to the job superintendent and leave the site. The client (Continued on page 27)
The entire complex has a commanding view of the Battenkill River Valley. Lying at the base of Mount Equinox, it is surrounded by mountains on all sides.

The Belmont, Massachusetts firm of Mason and Frey, Landscape Architects, has won a Merit Award in the 1973 Professional Awards Program sponsored by the American Society of Landscape Architects.

Announced at the ASLA Annual Meeting in Mackinac Island, Michigan, the firm's project, Murray Hill at Manchester, entered in the Housing category of the competition, was selected for its restraint and concern for natural views which subsequently enhance the treatment of the entire environment.

The owner of the project is Mr. Wilson Prophet, Jr. The Architects were Deck House and Deck Associates and the Contractors were Dailey Construction Company, John T. Wall, Landscape Contractor, and Baker's Nurseries, Inc.

Murray Hill at Manchester is a 72-unit, 24-acre condominium complex located on a steep hillside overlooking the town center. The entire complex has a commanding view of the Battenkill River Valley. Lying at the base of Mount Equinox, it is surrounded by mountains on all sides. The geographical, climatological amenities of the area have made Manchester a major year-round resort area and cultural center for more than a century.

A design responsibility was placed upon the collaboration of both an architect and landscape architect to recognize and minimize adverse development effects, it was noted. Care was taken to insure that the original character of the site would be maintained and that the developmental program would become a complementary part of the surrounding environment.
MERIT AWARD

BEACON HILL HOME
BOSTON, MASS.
Childs Bertman Tseckares Associates of Boston was one of twenty winners in the annual Homes for Better Living Awards Program for 1973. The program — the largest and oldest in the United States — is sponsored by the American Institute of Architects in cooperation with House & Home, a McGraw Hill trade publication. Other New England winners were Gilbert Switzer & Associates of New Haven, Conn. (N.E.A. July 1973) and Willis N. Mills, Jr., of Wilton, Conn. (Pages 10-15 of this issue).

The home designed by Childs Bertman Tseckares is a redesign of a 19th century stable at the bottom of Beacon Hill in Boston. Under Historic District controls, alteration of the facade was strictly prohibited, and no openings were possible in the other walls, giving rise to a design with clerestory and courtyard lighting. The courtyard is a traditional theme.

The interior courtyard, open to the sky, has a surface of ironspot pavers.

Childs Bertman Tseckares Associates
Boston
in this residential area, which here is developed into a dynamic center of expanding space and enlivened by its fountain and plantings.

Elsewhere in the house natural light enters from above through light shafts and colored clerestory and skylight walls, echoing this theme.

The building measures 22' x 70' and is heated by electric radiant ceilings. It is centrally air-conditioned.

The owners, a middle aged couple with two sons living away from home, wanted to return from the

First Floor Plan

The owners wanted a contemporary vocabulary, but with enough restraint to be compatible with some antiques and older style furnishings.
Under Historic District controls, alteration of the facade was strictly prohibited, and no openings were possible in the other walls, giving rise to a design with clerestory and courtyard lighting.

suburbs to urban living within a short walk of the client’s business.
Requirements included accommodations for frequent visits by a handicapped relative (bedroom and bath suite on first floor).

In addition, the owners wanted a contemporary vocabulary, but with enough restraint to be compatible with some antiques and older style furnishings. The Historic District restraints and site limitations in conjunction with the client’s own program resulted in an introverted environment within an environment. The resulting tight and efficient program solution includes case work designed by the architects to maximize space usage.

All walls, except for the front facade, were raised in height and some sections of the existing second floor and roof were utilized in the redesigned structure.

Supergraphics designed by the architects tie the first and second floors together via a skylighted well. Colors from the center outward are yellow, light blue and purple, on a white background.

The interior courtyard, open to the sky, has a surface of ironspot pavers and contains a twenty-year-old espaliered yew on a brick wall.

August, 1973
WILLIS N. Mills, of Wilton, Conn., was one of twenty winners in the annual Homes for Better Living Awards Program for 1973. The program — the largest and oldest for residential design in the United States — is sponsored by the American Institute of Architects in cooperation with House & Home, a McGraw Hill trade publication for the housing and light construction industry and American Home, a Downe Publishing magazine. The program was instituted 18 years ago to inspire excellence in originality of architectural design and use of building materials.

Over 400 entries were submitted this year in the program’s three categories: custom-designed houses for specific clients, houses designed for sale and multifamily housing.

The Mills residence is located on a sloping, wooded two-acre site. Privacy — both physical and acoustical — desired by the architect’s family, which includes four children ages 6 to 16 years, led to a two-level solution with parents and daughter on main living level and three sons and playroom on lower level.

Willis N. Mills, Jr.
Wilton, Conn.
The approach view from the road overlooks the roofscape, particularly in winter, which suggested the design of three shed roofed wings pinwheeling around a square flat roofed entry hall.

Interior finishes include oak strip floors, white painted gypsum board, and natural finish fir door frames and trim.
Glass areas concentrated along one wall give a major focus to each space and preserve large wall areas for art.
Views into surrounding woodlands in three directions give each wing — living, dining-kitchen, and bedroom — a different orientation and add variety of outlook.

The sloping site permitted access to grade from each level. Views into surrounding woodlands in three directions give each wing — living, dining-kitchen, and bedroom — a different orientation and add variety of outlook.

The approach view from the road overlooks the roofscape, particularly in winter, which suggested the design of three shed roofed wings pinwheeling around a square flat roofed entry hall. The garage, a fourth shed roofed form, defines the entrance court and also screens the view to a neighboring residence.
Glass areas are held back from the building perimeter for sun control, ease of window washing, and eliminate the need for curtains.
Wood shingle roofs and weathered 1 x 4 vertical cedar siding harmonize with the natural setting.

Glass areas concentrated along one wall give a major focus to each space and preserve large wall areas for art. Glass areas are held back from the building perimeter for sun control, ease of window washing, and eliminate the need for curtains.

Interior finishes include oak strip floors, white painted gypsum board, and natural finish fir door frames and trim. Electric heating is via radiant gypsum board ceilings with supplementary floor units below sliding glass doors.

Area: 3,000 square feet plus 2-car garage.

Engineer: Sanford O. Hess, Greenwich, Conn.

TAC WINS JOHNS-MANVILLE
WORLD HEADQUARTERS
DESIGN COMPETITION

Principals of the team: William J. Geddis & Joseph Hoskins
Project Architect: John Sheehy
Architects: Michael Gebhardt, Valdis G. Smits, Alexis Morgan,
Michael Miller, and Robert deWolfe, Landscape Architect.

General Jury Comments:
Given a landscape this remarkable, it is probably not surprising that the most important element in the Jury's judgment process involved the use of the site. A competitor's philosophy and response to nature and his feeling for the setting was clearly evident in his solution.

His attitudes toward access, parking, and siting of structures had to be the prime determinants in establishing his concept. Few seemed successful in this respect, demonstrating that urban architects given a natural setting of this scope and dimension can experience difficulty with the quintessential problem of the manmade environment meeting nature. This being the crux of the matter, one scheme is clearly outstanding.

Some chose to site their complexes in the open, visible from long distances; others to put them against a backdrop of the foothills where they tend to disappear.

Some schemes seemed to have been exports from urban situations; too few were unique to this site. Some showed isolated building blocks or wings which, while providing more perimeter, caused difficulty with the requirement of free flowing space, and by their complexity seemed less compatible with the broad sweep and serenity of the valley.

The opportunity to build complexes of this kind in isolated natural environments is not new in history, but relatively new in the history of corporations. Therein lies the importance and the challenge.
THE Architects Collaborative Inc. of Cambridge, Massachusetts has won the Design Competition for the Johns-Manville World Headquarters. The building will be constructed on a portion of the company-owned, 10,000-acre Ken-Caryl Ranch southwest of Denver, Colorado.

The announcement was made by W.R. Goodwin, President of Johns-Manville, during the American Institute of Architects (AIA) Annual Convention in San Francisco, California. Goodwin said, "This award selection is a giant step toward achieving J-M's corporate goal of consolidating headquarters operations. The high standards of environmental technology incorporated within the winning design are in keeping with the company's philosophy to develop a headquarters operation that will prove to be a proud addition for Johns-Manville and the State of Colorado".

Accepting the commission for TAC were the principals of the team William J. Geddis of Brookline, Massachusetts and Joseph Hoskins of Weston, Massachusetts along with Architects John Sheehy and Michael Gebhardt, both of Cambridge, Massachusetts.

Speaking for the team, Geddis stated, "The challenge to TAC in the design of the J-M World Headquarters was to create an effective office environment and a dynamic building form which would not destroy the natural site. To preserve the isolated and delicate beauty of the environment was a fundamental design objective. Another was to compact the total building and parking complex using a minimum of land to leave the valley as open and natural as possible. Thus the building is massed in the foreground and spans vehicular access points with concealed terraced parking at the rear. Great expanses of glass bring the magnificent beauty of the valley, the foothills, and the hogbacks into the building. Since all future expansion will be within the building envelope, the footprint for the buildings and parking will remain unchanged."
Nine internationally known architectural firms were invited to participate in the competition which was coordinated and approved by the American Institute of Architects. John B. Rogers, AIA, of the Denver architectural firm, Rogers-Nagel-Langhart, served as professional advisor during the competition.

Members of the five-man jury were Theodore C. Bernardi of San Francisco, California; Robert L. Geddes of Princeton, New Jersey; J-M President W.R. Goodwin of Denver, Colorado; Hubertus J. Mittermann of the U.S.D.A. Forest Service in Denver; and Harry M. Weese, Chairman, of Chicago, Illinois.

Commenting on the TAC design, the Jury stated, "All its elements—parking, terraces, helix ramps, reflecting pools, greenhouse, and wide open ground level space—are combined in a sculptural composition of great interest and variety. Presuming all technical and ecological factors, as well as landscape management, can be handled, this building can become a singular piece of work—one worthy of its site and the aspirations of its user—a proper World Headquarters for the Johns-Manville Corporation, expressive of its concern with the environmental process and its desire to make its own environment a place.
in which to continue its new directions as a World Corporation”.

Bands of insulating glass, sheathed in a polished aluminum insulated skin, extend across the facades that face the valley and key orientations. Because of the intense glare from the sun, glass areas are recessed and shielded by vertical sun screens. A driveway under the Headquarters Building leads to conveniently located parking and connects to pedestrian drop-off areas, sheltered from the wind, to gangways, and to the main reception center. The openness of the ground level, with its courtyards, its pools, and series of pedestrian spaces, provides an inviting welcome to the visitor. The eight floor levels above the ground level have a reinforced concrete structural framing system.

Flexibility and adaptability of all office and work areas is achieved by an integrated modular mechanical and environmental system. Air, lighting, power, communications, sound-deadening panels and partition grids are provided at modules so that interior spaces can be easily changed without interruption of services.

The Headquarters Building is therefore designed to be totally flexible, with large floor areas ideal for

An organized parking system for employees and visitors accommodates a total of 1,700 cars for the first building stage. To minimize the effect of cars on the site, parking is concealed and is conveniently located in two separate areas, close to drop-off points. One area for 1,000 cars consists of the banked terraced decks that are sculptured into the hill behind the World Headquarters Building, and the second, for 700 cars, is the roof of the Headquarters Building.
To preserve the isolated and delicate beauty of the environment was a fundamental design objective. Another was to compact the total building and parking complex using a minimum of land. Great expanses of glass will bring the beauty of the valley, the foothills and the hogbacks into the building.

open planning. Great expanses of glass offer views. Horizontal bands of circulation at the building's perimeter are 20 feet wide and serve as pedestrian concourses, lined with trees and sculpture. Vertical circulation is efficiently handled to all levels by escalators, and passenger and service elevators.

The interior spaces utilize as many J-M products as possible/specifically: Gypsum wall boards, gypsum core wall partitions, and the J-M movable wall system. A variety of low-maintenance coverings will be considered, including vinyl, wood and fabric. The standard ceiling system, using 4'-6" module, accommodates panels with air handling, fluorescent fixtures, and partitions where required. In special areas, such as the executive offices, execu-
tive dining room, and cafeteria, fixtures are incandescent. All general office floors are carpeted. Floors, however, in the executive offices, executive dining room, and cafeteria are marble slate and carpeted. Draperies and vertical and horizontal blinds are used for light control in special areas. The 800-seat cafeteria gently terraces down four levels beneath a dramatic sloping glass roof which emphasizes the feeling of airiness and provides even greater contact with the natural surroundings. Adjacent to the cafeteria are employee services, including a drug store, barber shop, the Quarter-Century Club, and other facilities. The interior landscape on all floors will be enhanced by plants, to continue the beauty of nature and the site indoors.

The gross floor area of the Headquarters Building is 603,000 square feet, accommodating 1,920 employees in the first stage of building. The building is organized into four major zones of activity: (1) common activity areas; (2) executive and administrative areas; (3) operating groups; and (4) service groups and systems.

An organized parking system for employees and visitors accommodates a total of 1,700 cars for the first building stage. To minimize the effect of cars on the site, parking is concealed and is conveniently located in two separate areas, close to drop-off points. One area for 1,000 cars consists of the banked terraced decks that are sculptured into the hill behind the World Headquarters Building, and the second, for 700 cars, is the roof of the Headquarters Building. All levels are pitched to facilitate drainage and snow removal.

Entering from the access roadway to the World Headquarters Building, separate driveways fan under the building and lead directly to the service area, to the terraced parking decks above grade, and to the roof parking. The roof is reached by two-lane helical ramps with one-way circulation to and from the roof.

Dual helices will provide convenient access for future growth. An economic solution to all-weather, covered parking is recommended for study for second stage growth. The concept is to enclose the terraced deck parking area with a translucent plastic skin supported by a sweeping tensile structure, a fishnet of steel cables. Second stage parking can be built on shelves over the terraced decks without any additional rock excavation.

The soils have certain characteristics relevant to the location of parking. Generally, at lower elevations, the soils are more fragile, but at higher elevations, rock is closer to the surface, and the existence of more granular material makes it less susceptible to erosion.

Approximately twelve percent of the total site is flat enough to accommodate surface parking without requiring major terracing and walls, exposing raw earth slopes, and increasing surface runoff. This area, however, is mainly in the valley floor where existing land use, the natural environment, and visual contact with the natural surroundings. Adjacent to the cafeteria are special areas. The 800-seat cafeteria, executive dining room, and cafeteria, fixture for every 4'-6" x 4'-6" space is a "poke-through" fixture for the floor electrical and telecommunication outlets is a "poke-through" system allowing for infinite flexibility in desk layout and office partitioning to minimize initial coring; sleeves are set in the floor slab on a modular basis.

Foundations generally bear on rock with short piers on footings in areas of cut.

The mechanical systems are designed to provide maximum energy conservation. The building has been designed to utilize direct solar shading and wall and window insulation to keep the heating and refrigeration loads to a minimum. In addition, a centralized refrigeration plant will be utilized in an attempt to transfer heat of light from the interior zones to peripheral zones.

If the parking areas are covered when Stage II building is completed, the building exhaust and relief air, after it has been passing through a heat-recovery cycle, may be discharged into the covered parking structure to temper the ambient air within the structure. The feasibility of using the early as a heat sink both in the summer and winter will also be studied.

The electrical distribution system for the building is 277/480 volt 3 phase-4 wire. Electric closets are provided on a modular basis and contain lighting and appliance panels and 480 volt to 120/208 volt dry-type transformers for light and power branch circuitry serving the floor module.

The lighting system allows one fixture for every 4'-6" x 4'-6" space and is integrated with the mechanical system for maximum flexibility. The electrical distribution system for the floor electrical and telephone outlets is a "poke-through" system allowing for infinite flexibility in desk layout and office partitioning to minimize initial coring; sleeves are set in the floor slab on a modular basis.

Probable Construction Cost: $21,760,000.
Total Site Development Allowance: $2,750,000.
GRAIG D. Roney of Andover, Mass., has been awarded the $10,000 Rotch Travelling Scholarship for his design of a resort development for some 400 guests on a hypothetical site somewhere in the southwestern Mediterranean.

There were sixty-eight requests for information on the 1973 Competition, according to Hugh Stubbins, FAIA, Secretary of the Scholarship Committee. Of these, thirty-two applications were received of which thirty were accepted by the Rotch Committee. Twenty-two submitted solutions to the Preliminary Program which was written by Dean Robert Geddes of Princeton University School of Architecture. The subject was a small neighborhood library.

The Jury for the Preliminary Program were Harry M. Weese, FAIA, Benjamin Thompson, AIA, Ulrich Franzen, FAIA, and W.
Easley Hamner, AIA, Alternate.

The Final Program was written by Professor Joseph Zalewsky of Harvard University Graduate School of Design. Its subject was a resort hotel in the Mediterranean.

The Jury for the Final Program were Peter Blake, FAIA, B. Sumner Gruzen, FAIA, and William J. Conklin, FAIA.

The 1973 Rotch Travelling Scholarship Committee is comprised of Francis B. Sellew, FAIA, Permanent Member, Hugh Shepley, FAIA, Donald Gillespie, FAIA and Hugh Stubbins, FAIA, Secretary.

Roney, who is employed by the architectural firm of Pietro Belluschi/Jung-Brannen of Boston, received a Masters of Architecture degree from the Massachusetts Institute of Technology in 1971. He received a Bachelor of Architecture degree from the University of Minnesota in 1961.

Problems posed in the program included the following:

Guest Housing — Every room with shower, toilet and wash basin. Terrace or balcony desirable; Rooms for double occupancy (125); Rooms for single occupancy (25); Family units — occupancy for 4 persons (50).

Staff Housing — Manager's apartment or house (3 bedrooms); Assistant Manager (2-bedroom apt.); Social Director (2-bedroom apt.); Bookkeeper (2-bedroom apt.); Nurse (1-bedroom apt.); Secretary (1 bedroom apt.); Janitor (2-bedroom apt.); Chauffer/ Mechanic (2-bedroom apt.); 40 service staff of both sexes (10 single rooms and 30 double rooms).

Lounge and Shops: 1 drug store and variety shop; 1 sports equipment and bike rental shop; small library with writing tables; multi purpose room — movies, theatricals, hoppings, etc.
THE Manchester Federal Savings and Loan Association has opened its first branch banking facility in the heart of downtown Manchester, N.H., according to Frederick E. Haigis, President. A renovation to an existing space measuring seventeen by ninety-eight feet, the facility is a unique solution to a difficult design problem; for despite obvious physical limitations, the program dictated spatial requirements for six Tellers’ Stations, Public Lobby, Receptionist, Conference Room, Branch Manager, Employees Lounge, Toilets, and Storage.

The Tellers’ area is separated from the Public Lobby by a serpentinized counter finished in white plastic laminate and vertical hardwood battens. Overhead lighting is accomplished by recessed fluorescent fixtures designed to wash the sprayed plaster vaulted ceiling panels.

The Reception area boasts a radial desk designed to recall the form and detail of the Tellers’ counter. Backdrop for the area is a full height and width mirrored wall, reflecting the face brick from the opposite wall.

The Conference Room is appointed with hardwood flooring, placed vertically on the rear wall, adjacent to and contrasting gently with brick veneer of the existing party wall. Off-white upholstery of the seating picks up the white laminate and solid oak casework, as well as the inlaid circular conference table.

Architects:

Kenneth E. Parry Associates
Quincy, Mass.
The Employees' Lounge at the lower level sets a leisurely atmosphere with continuous background music, soft lounge furniture and subtle lighting, supplemented by natural light from a skylight above. Storage areas and Lower Atrium, containing tropical plants and carefully placed units of feather rock. The wall facing the sidewalk above is mirrored glass, giving the illusion of unlimited depth to the garden. Both adjacent walls are brick veneer, further contributing to the effectiveness of the mirror.

Through the bridge entrance above, the public is invited to view the garden from a brick paved sidewalk at Elm Street as well as through the facility's sculptural entrance incised in glass, wood and bronze aluminum. The visual feature of the bank is, of course, the waterfall. The fascination of water cascading alternately from seven semi-circular dishes holds the interest of the many passers by.

General Contractor for the project was Harvey Construction Co., Inc. of Manchester, N.H.

Consultants included Engineers Incorporated of Needham, Mass., Lighting and Electrical; General Electric Weathertron, Mechanical; and Umberto Motroni of Old Colony Landscape Service, Inc., Weymouth, Mass.

Design Architect: Kenneth F. Parry.

Project Manager: John Zona III.

Through the bridge entrance above, the public is invited to view the garden from a brick paved sidewalk at Elm Street as well as through the facility's sculptural entrance incised in glass, wood and bronze aluminum.
OSHA (Cont'd from page 4)

should then be informed of these actions. In almost every case the client should insist that the contractor correct the violation.

These actions also should be fully documented, and the procedure should be followed for every job on which OSHA standards apply.

The significance of Farquhar's remarks lie, of course, in OSHA's complexity. Also, as Jasper Hawkins, chairman of the AIA Codes and Standards Committee, pointed out, design professionals encounter problems with OSHA's retroactive provisions, its language and interpretation, its conflicts with existing building codes, its appeals and consultation procedures, its provisions for establishing state occupational and occupant safety.

Other speakers included Alan Burch, director of the Department of Safety of the International Union of Operating Engineers; Rep. William A. Steiger (R.-Wis.), coauthor of the Act; Thomas C. Brown, director of Federal and State Operations of the Occupational Safety and Health Administration; and Chain Robbins, deputy assistant Secretary of Labor and administrator of OSHA.

In addition to the AIA, the conference was sponsored by the American Society of Civil Engineers, the Consulting Engineers Council of the U.S. (as of July 1, the American Consulting Engineers Council), and the National Society of Professional Engineers. More than 300 architects and engineers attended.

Bednarski*Stein, Inc.

Incorporation of the partnership of John F. Bednarski and Arthur L. Stein, Jr., architects of Greenfield, Mass., has been announced. The firm's new name is Bednarski*Stein, Inc. and its offices will remain in the two-level structure on Adams Road designed and built by the partners in 1969.

Originally known as Bednarski*Falconer*Stein, Architects, when it was founded in Greenfield 13 years ago, the firm was reorganized in 1966.

Bednarski*Stein, Inc. has three architects on its staff, in addition to the two principals. They are Pierre A. Belhumeur, James F. Gerou, Jr., and Michael L. Czarniecki.
Retirement condominiums in a small New England town

New London, N.H., is a charming, small college town, located in the Sunapee Lakes Region just two hours from Boston. It has long been considered a most desirable community in which to retire. A limited number of distinctive condominium residences have now been carefully blended into this delightful environment. The result is a unique way of life that combines the advantages of condominium ownership with a rich colonial heritage and intellectually stimulating surroundings. Send for our illustrated brochure.

Country condominiums at... Hilltop Place

BOX 16, NEW LONDON, N.H. 03257

St. Magnus Associates, developers of St. Magnus Condominium in Hampton, New Hampshire, announce the opening of a model unit in this ocean-view group of 26 luxury homes. Located across from the Ruth G. Stimson Seashore Park and Hampton’s four-mile-long sandy beach, St. Magnus Condominium will be ready for year-round enjoyment beginning this summer.

These three-bedroom, three-level homes, ranging in price from $44,500 to $56,500, offer many unusual features. Architect Hamish Fraser, a native of Scotland and a graduate of Edinburgh University there, brought a fresh, imaginative approach to his design. Bedrooms are on the ground floor, with the bathroom between, and an extra convenience — storage space under the stairway. The second floor makes the most of sunlight.
sea breezes and ocean views for
daytime living. Besides a combined
living-dining area measuring 16 by
25 feet, the second floor includes a
breakfast area off the all-electric
dishwasher, plus a lavatory with large
closet.
Most welcome to families with
children, hobbyists, and those who
work at home: a third-floor balcony-
loft containing a large multi-purpose
room as well as a generous storage
area. A skylight makes this extra
room a pleasant place to work or
play.
Each of the 26 homes, grouped in
three buildings, has its own 16 by
15-foot patio. Off the living-dining
area lies a sun deck — all afford­
ing a panoramic ocean view. All
units share all common facilities,
including St. Magnus's private swim­
mom pool.

Russell Gibson von Dohlen
Cited for Design Excellence

Russell Gibson von Dohlen Inc.,
architects, have been named win­
ners of two Merit Awards for ex­
cellence in church design.
Judges at the National Interfaith
Conference on Religion and Archi­
tecture, held June 4-6 in Minne­
apolis, granted the awards for de­
sign of the Church of the Blessed
Sacrament, East Hartford, (New
England Architect, April, 1973), and
the Church of Saint Peter Claver,
West Hartford. Only three other
Merit Awards were voted at the
conference.
In commending the Church of the
Blessed Sacrament, the jury cited it
as "an excellent example of a proj­
et calling for a modest budget, re­
sulting in a utilitarian building of
honesty, integrity and simplicity,
providing substantial flexibility."
The Church of Saint Peter Claver
was characterized as having "great
strength without being oppressive"
and was further described as "a ro­
mantic enclosure with excellent de­
tailing in a traditional atmosphere."

Steel for Pulp Dryer
Fabricated by B & M

Georgia-Pacific Corporation has
just completed and begun operat­ing
a new 500-tons-per-day pulp
dryer at Woodland, Maine. The new
August, 1973
dryer, named the “Flying Yankee,” replaces an older machine and sharply upgrades the company’s hardwood and softwood pulps under a new “St. Crois” trade name.

One million, two hundred sixty-two thousand pounds of structural steel was fabricated by Bancroft and Martin of South Portland for columns and trusses in the 83 x 320-foot main pulp dryer building. The concrete work required two hundred sixty-five thousand pounds of Bancroft & Martin’s reinforcing bar. The steel columns were 27 inches wide, 55 feet 8 inches long and weighed 160 pounds per foot. It required 850 gallons to paint the steel before it was shipped. In all, Bancroft and Martin put over 7,000 man-hours into engineering, fabricating and shipping.

C-E Gold Reflective Window Walls Ordered for Hartford Financial Center

C-E Glass, a division of Combustion Engineering, Inc., has received an order to supply the gold reflective window walls to be installed in the new 29-story First Financial Center in Hartford, Conn. The order for more than 205,000 square feet of gold reflective glass is the largest ever received by C-E Glass.

According to C-E, reflective glass provides energy conservation due to low transmittance of solar energy and high insulating efficiency. “Against summer heat, gold reflective glass rejects over 90 per cent of the infra-red solar energy,” it reports. “The infrared portion of the light spectrum is the largest source of interior heat gain; therefore, reflective glass cuts air conditioning requirements.”

The First Financial Center, scheduled for 1974 occupancy at the southwest corner of Main and Pearl Streets, Hartford, was designed by Neumhau & Taylor, Houston, Texas architects. Gilbane Building Co., Providence, R. I., is the general contractor and Starline, Inc., Carencro, La., will be the curtain-wall and glazing contractor.
uled for 1974 occupancy at the south­west corner of Main and Pearl Streets, was designed by Neuhaus & Taylor, Houston, Texas architects. Gilbane Building Co., Providence, R. I., is the general contractor and Starline, Inc., Carencro, La., will be the curtain-wall and glazing contractor.

Combustion Engineering provides a broad range of energy equipment including fossil fueled and nuclear steam generating systems, petroleum and gas production processing equipment, refractories, minerals, pollution control systems, screening equipment, building products, tempered safety glass, nuclear components, and designs petroleum, chemical and petrochemical process facilities.

Vappi to Build
$40 Million Terminal

Cambridge builder Vappi & Company, Inc., has been awarded a contract to construct the new $40 million South Terminal at Logan International Airport, according to Mass-

(Continued on Next Page)

Customized Concrete Masonry

Architects no longer are limited to selecting their block units from a catalog. With the introduction of customized concrete masonry, the architect can design his own units. Customized masonry provides for the architect the ability to use block, long famed for its economy, fire safety, insulating qualities and local availability, in a way that is as personal as his own signature.
(Continued from page 31)

port (Massachusetts Port Authority) Executive Director Edward J. King.

The new terminal will include a 2700-car parking garage.

The Vappi company, a subsidiary of Technical Operations, Inc., will begin work on the project immediately and expects it to be completed in the fall of 1976.

Designed by architects John Carl Warnecke of New York and Desmond & Lord of Boston, the mammoth two-story terminal will contain about a million and a half square feet of space. Framed in structural steel it will be of concrete slab construction with metal decks and precast spandrel beams. The parking garage will be built of precast concrete.
Behind This Door...

THERE IS A STORY OF INTEREST TO ARCHITECTS

This is not an ordinary garage door! It is a FIMBEL OVERHEAD TYPE DOOR, crafted with precision and flair for Architectural Design. Called "Raised and Routed" — the door shown above has the rich look of hand-carved wood panels.

Any of our Contemporary Doors offers unlimited expression of individual taste — through the use of Glass Craftsmanship in Sunburst, Diamond, Cathedral — among others — and Wrought Iron in Modern Style or Authentic Colonial.

There is a Fimbel Door for Every Type Home ... to blend with its natural setting. While the "Capri" and "Fanlite" Models, for example, are suited to the home of today — the FIMBEL ENGINEERING DEPARTMENT welcomes the challenge of the older traditional home.

In a Colonial Decor, one might prefer the "old barn look". You could choose a weathered "Herringbone" pattern. Or, our Residential Flush Models adapt easily to arched-head or clipped-corner openings ... lending old style simplicity and clean lines to the traditional.

Through Creative Engineering we can custom-build to specifications for unusual applications ... Residential, Commercial, and Industrial.

We use only the finest materials — in Wood, Fiberglass, Aluminum, and Steel.

All Workmanship and Products are fully guaranteed — including the Electric Operators and Remote Electronic Controls. Heavy duty Components are totally enclosed.

Manufacturing and Servicing Overhead Type Doors since 1924 — we will soon be celebrating our 50th Anniversary!

Free Estimates & Quotations ——— For Technical Information ——— see Sweet's 1973 Catalog

FIMBEL DOOR CORPORATION

The Nashua, N.H. Factory 24 Fox Street P. O. Box 848 Tel. 603-882-9786

Distributors and Dealers in principal New England cities

Other factories located at: HILLSIDE, NEW JERSEY • WHITEHOUSE, NEW JERSEY • EGG HARBOR CITY, NEW JERSEY
How to conserve and save money.

Upgrade existing equipment to increase production and save fuel.

By doing so, you'll not only conserve natural gas for yourself, but you'll save money too. Try following these five simple things that will save everyone natural gas. And you money.

1. Install modern temperature and air/gas ratio control devices that eliminate manual adjustments.
2. Substitute sealed-in burners for open hole furnace firing.
3. Return steam condensate to gas-fired boilers.
4. Substitute power burners for large atmospheric combustion systems.
5. Apply additional insulation, particularly on exterior surfaces.

The Natural Gas Companies of Massachusetts

Your Gas Company representative will be glad to consult with you on any of these projects.