April 1974

Manchester, N.H.

Lunenburg, Mass.

Farmington, Conn.
What kind of energy is not in short supply, is not allocated by Simon, is not subject to foreign embargo, and is not polluting our air?

Nuclear energy. And without it, we'd be suffering a lot more than inconveniences today.

In 1973, 20.4% of New England's electricity was generated by nuclear power plants — which is a higher percentage of generation than in any other part of the country. And that energy came to you regardless of the oil situation.

By using nuclear energy, New England utilities saved over 27 million barrels of fuel oil last year, and saved consumers millions of dollars.

In addition, some major New England utilities have converted to coal, and others are planning to convert where possible. And generating electricity from coal rather than oil can mean savings for all of us.

Nuclear power and coal are New England's most viable alternatives to oil dependency. And they're just two ways the Electric Companies of New England are working to meet your immediate and long range energy needs.

Boston Edison Company
Massachusetts Electric
Eastern Utilities Associates and Subsidiaries
New England Gas and Electric System Companies
Fast, Sure Assembly!

1. Lubricate end of pipe or male end of the fitting thoroughly, all around. J-M Ring-Tite lubricant is supplied.

2. Pull or push together. All Ring-Tite connections are made in this easy way.

Tight, lasting seal

Cut-away view shows rubber rings in final position—assuring tight seal and maximum protection against root growth.

SERVICE

Transite asbestos-cement pipe is designed to handle waste-water in every portion of a piping system. It is used for gravity lines and force mains alike, to carry sewage from its source to treatment and from treatment to outfall.

STANDARD LENGTHS (Nominal)

<table>
<thead>
<tr>
<th>Non-Pressure Pipe</th>
<th>4", 5" & 6"</th>
<th>5' & 10' in classes 1500, 2400 & 3300</th>
</tr>
</thead>
<tbody>
<tr>
<td>8"</td>
<td></td>
<td>10' in class 1500 & 2400, 13' in classes 1500, 2400 & 3300</td>
</tr>
<tr>
<td>10" thru 36"</td>
<td></td>
<td>13' in classes 1500, 2400, 3300, 4000 & 5000</td>
</tr>
</tbody>
</table>

°Manville, N. J. Plant only

Immediately available at our 3 locations. Most sizes of pipe and fittings in stock.
When you're good you have to keep proving it all the time. And we proved again that Reslite is the favorite among schools and colleges by having more installed than any other track surface. When you know the facts you'll understand why:

Our track surface happens to be one of the least expensive to install. "one-third" the cost of most new synthetic surfaces. It's also one of the least expensive to maintain. In fact, there's almost no maintenance at all. Reslite track surfaces are still going strong after 12 years. No synthetic surface has this record – outdoors where it counts.

Reslite has proven performance! Our patented formula of vermiculite rubber particles keeps our tracks resilient for years and running times have usually improved after the installation of a Reslite track.

Complete factory supervision on all installations and design assistance are available to your Architect or Site Planner without charge.

Also available in 8 Plexichrome surface colors.

Call John Wood collect at (617) 547-5300 for more information about the Reslite track record. Or write for your free brochure. Either way, you'll get all the facts about America's Number One Track Surface – Reslite.

The Ritchie Organization, architects, engineers, and planners, has opened a new regional office at 236 Goodwin Crest, Birmingham, Alabama. Associate in charge is Erich R. Griebling, AIA.

"The expansion of our practice to service the growing south central and southeast regions is an important and major step for our firm," said Donald Ritchie, AIA, president of the 65-year-old firm which is based in Chestnut Hill, Mass. The new branch is a general practice office with a specialty in the planning and design of health care facilities. Full architectural, engineering and planning services are available for institutional, commercial and residential building types.

Birmingham's rapid growth within the past decade in both commerce and services was cited as a major determining factor in the firm's move to the city. Since the start of the '70s decade, nearly 100 new businesses have located in a 50-mile radius, attracted by fine land and water transportation facilities, low tax base and low construction costs. Total building awards (dollar value) jumped 218% in the 10-year period ending 1972.

The city is a major regional and national center for medical treatment, teaching, and research. Among the facilities providing the area a total of more than 5,200 beds is the Baptist Medical Centers, the largest hospital system owned by a religious group in the U.S. Currently, The Ritchie Organization is retained as project architects for the Baptist Medical Centers, Birmingham, and the Lakeshore Hospital, Homewood.

Supervising the coordination activities of the new Birmingham office with the main office is Lawrence Partridge, AIA. Both Mr. Partridge and Peter M. A. Moyes, AIA, Director of Development for Ritchie, have their offices in Chestnut Hill and make frequent trips.
Which building material will you use? You’ve got energy shortages to think about. Air-conditioning costs. Heat gain through the long, hot summers. Heat loss in the winter months. Heating equipment costs. The whole set of energy-use factors suddenly has become critically important. The building material you use affects all of them.

Compare the energy conserving capability of masonry, for instance, with double-plate glass walls.

At 4:00 P.M. on a hot August day in Washington, D.C., the heat gain through a square foot of west-facing insulated brick and concrete block wall will be 2.2 Btus an hour. The heat gain through a double-plate glass wall in the same location will be 173 Btus a square foot in an hour. A big difference.

Project this differential over 10,000 square feet of wall. You come up with a heat gain through masonry of 22,000 Btuh while the heat gain through double-plate glass is 1,730,000 Btuh.

In the case of the masonry wall, cooling equipment with a two-ton capacity can handle the heat gain. But with the double-plate glass wall, about 143 tons of cooling capacity will be needed.

An analysis of a typical 10-story building shows that over its useful life, the air-conditioning cost for a square foot of our masonry wall will be about 23 cents. For the double-plate glass wall, it will be $7.60.

In a time of one energy crisis after another, masonry makes eminently good sense as a good citizen.

The masonry industry believes that the thermal insulating qualities of masonry are an important economic consideration to building designers, owners and investors, and all citizens.

Masonry walls save on air-conditioning and heating costs. And just as important, they are less expensive to build. The masonry wall we’ve described would have a 38% lower initial cost than the double-plate glass wall.

If you’d like to find out more, write to us and we’ll send you a booklet comparing the thermal insulating qualities of masonry walls with double-plate glass walls, metal panel walls and pre-cast concrete walls.

MASSACHUSETTS MASONRY INSTITUTE
550 Medford Street
Charlestown, Mass. 02129 (617)242-5504
Robert J. Joyce, Executive Director

Please send the booklet comparing insulating qualities of masonry with other building materials.

Name
Title
Company
City State Zip
Nature of Business

April, 1974
DONALD RITCHIE, AIA, president of The Ritchie Organization, heads the architectural engineering and planning firm founded 65 years ago by his father, James H. Ritchie. Mr. Ritchie was educated at Harvard University and the Massachusetts Institute of Technology. He is a member of the American Institute of Architects, the American Hospital Association, and the Birmingham Chamber of Commerce. He also directs the activities of the firm's Ft. Lauderdale, Fla. regional office.

ERICH R. GRIEBLING, AIA, associate in charge of the new office, joined the firm eight years ago after receiving his B. Arch. from Miami (O.) University. He has worked as a project designer in both the main office, and in the Ft. Lauderdale, Fla. regional office. Some of the projects for which he has served as designer are: South Miami (Fla.) Hospital; Mass. Mental Health Center, Boston; Read Memorial Hospital, Hancock, N. Y.; and Memorial Hospital, Sarasota. He is currently project designer for the Baptist Medical Centers, Birmingham, and Lake-shore Hospital, Homewood, Ala.

(Continued on page 25)
features

Heublein Headquarters Building
Farmington, Conn. .. 6

Housing for The Elderly
Lunenburg, Mass. ... 12

Ecology House
Marston Hills, Mass. 16

The Manchester Bank
Manchester, N.H. ... 20

departments

Notes & Comments 2
Index to Advertisers 32

Photo Credits: Charles N. Pratt, bottom photo on cover and pages 6-11 (Heublein Headquarters Building); Lane, pages 16-19 (Ecology House); Jonathan Green, upper left, cover, and pages 20-24 (The Manchester Bank).

Editorial & Sales Office:
Three Sheafe Street
Portsmouth, N.H. 03801
Telephone: 603-436-4503

Published monthly by the
Walsh Publishing Corporation.
Three Sheafe Street Portsmou
N.H. 03001. No article appearing in this issue may be
reprinted in whole or in part
without permission of the
publisher.

Controlled circulation postage paid
at Portland, Maine. Postmaster:
Please send Form 3579 to
NEW ENGLAND ARCHITECT,
P.O. Box 900, Portsmouth, N.H.
Fifty Cents A Copy
Subscription: Five Dollars Per Year.

Publisher
James F. Walsh

Editor
James Bolquerin

Editorial Staff
Peter Randall
Mary Page

Advertising Production
Mary H. Arnett

Art Director
Herb Rauh

Circulation Manager
Marjorie Henderson

Sales Representatives:
Ruth & Carl Downs
120 Manchester St.
Nashua, N.H. 03060
Phone: 603-882-6715

April, 1974
THE new Heublein corporate headquarters, designed by the West Hartford firm of Russell Gibson von Dohlen Inc., stands as dramatic proof of the architectural adage, “Site dictates solution.”

Given a location on the same hill as another building, one of mammoth proportions, a busy Interstate highway as one of the boundaries,
Architects: Russell Gibson von Dohlen
West Hartford, Conn.

April, 1974
Most of the building's walls are of glass, as in the executive conference room (above).
and a magnificent view of Hartford some ten miles to the east, the architects had to come up with a design that would incorporate each of these elements and at the same time strongly suggest Heublein's corporate philosophy of "serving the world good food and drink."

The solution that evolved was based on the "Mirador" concept, which centers on a view from a hillside or balcony. It was decided to terrace the building into the slope of the hill, thus entirely avoiding the crest of the hill, which was so totally dominated by the massive University of Connecticut Medical Center. By utilizing this terraced effect, the architects were able to employ the Center as a kind of silent partner in the Heublein design concept — a contrapuntal backdrop to the much smaller-scaled new building.

Having strong roots in Hartford, Heublein was anxious not to leave any impression of having "left" the city. With this thought in mind, Russell Gibson von Dohlen oriented the headquarters toward the east, where a splendid vista of the city presented itself beyond a low-wooded area on the site. In this symbolic placement of the building is the relationship between corporation and city continued.

The building itself is on four levels stepped into the hillside, in totality suggestive of a waterfall effect. High turret-like stair-tower columns "guard" each of the ends of the building, accentuating the low profile of the structure and, in a design sense, "holding it together." The three uppermost levels offer a variety of outdoor terraces. Roofs on three levels are fully exposed and also serve as an element of the overall design.

Access to Heublein is from the west, opposite I-84. The entrance drive branches into three service drives, each of which leads to a parking level beneath the building.
External structural material is precast and poured-in-place concrete, much of which is of rough-ribbed texture. The concrete, as well as the exposed aggregate finish stone, is of a substance natural to the area — a pattern followed throughout the building wherever practicable.

Ceilings are coffer type waffle pattern which also play an important role in interior lighting. Because of the manner in which a great deal of the lighting is recessed into the coffers, the ceiling helps to diffuse the light below, thus permitting a variety of lighting situations to be employed. The coffer, in effect, becomes a part of the fixture.

At the entrance to the building, the ribbed concrete walls and red brick walks "flow" from that point through the lobby and out to the terrace, thereby creating a unified effect as well as giving the lobby a sort of breezeway identity. The need for a vestibule is eliminated by the use of a revolving door. The lobby itself is also used as a display area for art and sculpture.

Since the various levels do not stack directly above each other, escalators rather than elevators provide the basic inner transportation system. There is one elevator serving the fourth-floor executive offices from the public level.

The parking areas, located under the building, enable employees to enter their offices directly from their cars. Natural skylight lighting provides a light, airy feeling that is a pleasant relief from the oppressive atmosphere of the typical parking garage. Approximately 130 cars can be accommodated.

Because of the coffer waffle design of most of the ceilings, it was not possible to conceal mechanical ductwork within the ceiling spaces in a fashion customary with most office buildings. For this reason, much of the ductwork is under the floors. Linear diffusers are also used widely throughout the building; these are visible running along walls just below the ceiling level. A total air-conditioning system is installed, and each office has its own separate control for cooling and heating.

There are a number of different lighting systems throughout the building, each one chosen for its special effect. The main fixtures within the concrete coffers were custom designed to throw light down but give only a warm glow to the coffer sides. This fixture is used for general light level, night window lighting and all ceiling light patterns. There is also an adjustable fixture used to add light to work-levels as well as for accent lighting, art lighting and grow lighting for plantings. Other special systems are employed in the lobby, board room, audiovisual room and dining room.

The decision was made to use superb paneling in limited amounts, rather than ordinary paneling on all walls, in offices. The rare African woods are carefully matched extending through doors and furniture. These woods are accented with stainless steel, either brushed or polished, in the form of panels, doors and chair rails.

The lobby stair is an open stair made from stainless steel; the treads are wrapped in carpet. The hand rail contains a cold-cathode light tube to create a continuous effect and to light the stair.

Glass partitions are used to keep an open feel to interior spaces without windows and to give some borrowed light to interior spaces having only direct window access.

The dining area has been designed with the intention of providing an entirely different environment from the work areas. Carpeting and furniture are unique to this part of the building. Diners have a pleasant view of one of the terraces, and plantings abound. Skylighting in the kitchen focuses on the food display areas and adds eye appeal to them.

Each of the three terraces has its own identity. The executive-level terrace has plantings which are mostly delicate evergreens. The public terrace outside the dining area has more fragrant plantings which complement the aroma of food eaten on the terrace. The first-level terrace is mostly water and is closed to traffic. Each terrace pool is filtered and chlorinated as if it were a swimming pool, even though the pools are only eight inches deep.

Flexibility plays a key role in office layout as it does throughout the building. There are three different office partition layouts within each thirty-foot bay, all on a module of five feet. Mechanical and electrical interchanges permit changes of floor layout or the moving of furniture within an office.

Special shades were developed to admit light and at the same time minimize glare. Special fabric and heavy-tension rollers were employed. All windows are fixed, contain anodized aluminum frames and feature bronze-tinted glass.

The building has a completed audiovisual system. Some rooms contain rear-projection screens for movies and slides. Background music in secretarial areas comes from concealed speakers. In all, there are four separate yet integrated systems.

Russell Gibson von Dohlen architects believe that a kind of timelessness has been achieved by unity of design, and that the Heublein headquarters will remain modern many years from now.
A

unattractive abandoned gravel pit seemed a sorry beginning for the first public housing in a small town which wasn't really sure that it was ready to accept an apartment complex of any kind. However, all traces of the gravel pit were removed, and a small community of contemporary design emerged from the surroundings of woods and fields. The imaginative design created
This state-aided housing project for the elderly was built on a six-acre site in an old gravel pit on the edge of a rural community. Six houses, each of which contains eight similar apartments are grouped around a central court, at one side of which is a Community Building for social gathering of the tenants and their guests.

FOR THE ELDERLY
LUNENBURG
MASS.

by the architect has neither the look nor the feel of public housing. Part of the field was left undisturbed, and vegetable gardens belonging to the tenants now flourish there. A small brook adds to the landscape, and a grove of pine trees provides pleasantly cool shade for just sitting in summer. The tenants have found that they have not had to abandon the habits of a lifetime in a small town in order to attain the ad-
The centrally located Community Building remains the focal point of the community, and is the scene of constant activity — much of it organized and presided over by the tenants themselves — but mostly just as a place to find company when one is lonely.

The town in general is very much pleased and even surprised that contemporary architecture can be at once so attractive and practical.

Six houses, each of which contains eight similar apartments, are grouped around a central court, at one side of which is a Community Building for social gathering of the tenants and their guests.

Each apartment includes a living-dining area and a sleeping area separated by a screen partition open at top and sides for a more spacious effect, with alcove kitchen, bath and storage facilities. Each first floor apartment has a small private terrace, above which is an open wood deck serving the second floor unit. The Community Building houses a large social hall with gen-

Construction is simple, with concrete foundation and wood frames. Rough textured white stucco was selected for exterior walls to avoid the maintenance problems of wood siding.
erous storage for coats, card tables and books, a kitchen, toilets, a central office and a utility and storage room. It is flanked on one side by a raised deck and on another by a broad brick terrace.

Construction is simple, with concrete foundation and wood frames. The dwelling unit floors are framed over crawl spaces, but the Community Building floor is a concrete slab on grade. Walls and ceilings are of painted sheetrock; floors are sheet vinyl in kitchens and bathrooms, and are carpeted elsewhere.

Windows are vinyl-coated wood, and roofs are covered with asphalt shingles. Rough textured white stucco was selected for exterior walls, to avoid the maintenance problems of wood siding and the pretentiousness of brick in this setting. Exterior trim is stained dark green. There are no boiler rooms, since the project is all-electric. Water heaters are under the stairs, and exhaust fans in the attics.

The landscaping has been designed to provide year-round pleasure to the tenants, with roses, flowering trees and colorful foliage set against the existing fields and woods around the project. Individual garden plots are encouraged as well.

ECOLOGY HOUSE
MARSTON HILLS, MASS.

Architect:
John Barnard & Son
Osterville, Mass.

One enters the house by walking down stairs from ground level into an atrium, a brick-paved opening that offers a garden, a place to sun bathe or dine outdoors.
The basic floor plan of the house (right) was for the smallest unit the architect considered practical, but he has stock designs for two and three-bedroom models available and will custom design for any purpose.

The Ecology House, built by R. Arthur Williams on Race Lane in Marston Hills, Mass., represents the culmination of one man's prolonged preoccupation with many social and environmental problems, including conservation of land in dense metropolitan areas, conservation of wood products, the needs for privacy and the need for low cost housing.

"Man has been probing outer space and investigating areas beneath the oceans for some time," architect John E. Barnard, Jr., has noted. "It's time we considered seriously the advantages of building homes and other facilities underground."

Barnard's Ecology House, which could be built on a 50 by 50 lot, provides 1200 square feet of living space. It could be most any size, but for test purposes, the architect felt a one-bedroom, bath, kitchen and generous living-dining room with fireplace was sufficient to prove his point. All rooms but the bathrooms are dominated by nine floor-to-ceiling glass panels to a 300-square-foot atrium.

One enters the house by walking downstairs from ground level into the atrium, a brick-paved opening that offers a garden, a place for sunbathing or outdoor dining. It could be covered with a plastic bubble in the winter for a year-long garden and Barnard is exploring that possibility.

Barnard's wife, Barbara, has decorated in bold splashes of blues and greens. She achieved a dramatic color effect by using two shoji screens, adapted from those used in Japanese homes, hung from ceiling tracks to form one long closet at the end of the living room, practical for storage and as an area to conceal a return air duct.

Barnard feels the effort to build a solar house was never fully exploited. One has no feeling of being underground as one looks toward the garden atrium. In fact, the view is more pleasing than the sights imposed on the average urban or suburban dweller: clotheslines, rubbish barrels, utility poles, traffic or commercialism.

The house is sited with the atrium facing the South. Thus every room...
Photo taken during early stages of construction shows a precast concrete plank being lowered into position.

View from a corner of the living room towards the patio.
is touched by the sun and the lower the sun in the winter, the farther its rays until they touch the pillows in the bedroom.

Except for a plywood shield to cover a fountain pump in the atrium, there is no wood, consequently no maintenance. Walls are poured concrete reinforced with steel rods. Styrofoam insulation is placed outside and also applied over the roof which is composed of eight-inch pre-cast panels. The earth cover is at least 12 inches, and there is a three-ply pitch used instead of tar for waterproofing.

Mechanically, there is no exceptional or complicated equipment beyond air induction and air exhaust, an electronic air filter, dehumidifying gear, and air conditioning. Sewage treatment is handled differently, but not too unusually. Sewage goes into a sump and is then pumped up into a septic tank and finally into a leaching field as in the case of a conventional house not on a sewer line. Instead of a normal 40-pound roof load, the Ecology House roof was designed for a 250 pound per square inch load.

Although the house could be built on a 50 by 50 site, in Marston Mills it was sited to conform with local zoning. If it were not for signs, parking area, and a fence surrounding the atrium, you could drive by and see little change in the natural growth with the exception of a parked car or two.

"It’s obvious," Barnard noted, "that a house of this type would have to be sited properly in relation to the water table and soil conditions, but it could be done on a sloping lot with the atrium opening to a grade, for example. A below ground garage could be part of the layout. It could be adapted for condominium ownership, office space and, of course, there are below grade shopping malls already. I read recently of an entire village in North China built underground."

The cost of the Ecology House, a one-bedroom model, was about $24,900, or just over $20 per square foot of living space. This compared favorably with the $30 per square foot cost of conventional housing. As more bedrooms are added, the unit cost actually decreases.

John Barnard’s Ecology House is not the plastic dome, far out uninspiring type of shelter which, so far, has failed to capture enough interest to become marketable. John does plan to go into production of his below grade dwellings in the near future and his idea is no more preposterous than underground shopping centers, subways, and underground playrooms — all of which have been constructed already.

Quite simply, living like this on a 50 by 50 lot is a pragmatic solution to the housing crisis which affects all of us. It is innovations like this, simple in concept and thorough in planning, that yield maximum results and positive change.

(Reprinted in part courtesy of the Boston Herald Advertiser and Wentworth Institute Alumni News BULLETIN.)
THE MANCHESTER BANK
MANCHESTER, N.H.

Architects: Hugh Stubbins & Associates
Cambridge
PHASE I of the Manchester Bank's expansion program was designed to double the size of the previous facility and offer full commercial banking services to the bank's Southern New Hampshire customers.

The site is located at the intersection of Elm and Spring Streets in the heart of the Central Business District of Manchester, New Hampshire, and is easily accessible by Interstate 93 and U.S. 3 from all major New England cities.

Phase I expansion work included the complete remodeling of an existing building at 1100 Elm Street to provide 30,000 square feet of flexible office space for banking func-

Executive Office
Reception Area

April, 1974
View of tellers counter and "supergraphic" feature wall. Superimposed on the 16-by-48-foot aerial view of the central section of Manchester are 23 photos of people and activities from Manchester and surrounding areas.
tions and also the construction of a 32,000-square-foot addition to the West on two levels, matching the first and second floor heights of the existing building to provide a total area of 62,000 square feet for the projected needs of the Bank and its growing operations.

The foundations, superstructure and core facilities of the low-rise addition have been designed with the capability of constructing six (6) additional levels or 88,500 square feet at a future date. The lower-level of the addition is open to provide covered customer-parking spaces for 32 cars under the building. A Drive-In Teller facility with four (4) automobile positions accessible from Spring Street was also constructed.

Additional parking for customers and employees is provided on Bank property at Canal Street.

A landscaped plaza along Elm Street forms an integral part of the Bank design and its future development to the west. The exterior paving leads indoors into a two-story, skylighted, public circulation concourse for the Main Banking Tellers function. A "supergraphic" feature-wall, 28 feet high and 84 feet long, located behind the tellers' counter, forms the major focal-point within the interior space.

Applied to this feature-wall is a black and white photographic mural comprised of a 16 feet high by 48
feet long aerial photograph of Manchester including the Manchester Bank, the Central Business District, Merrimac River, Amoskeag Mills, and other prominent landmarks. Superimposed over the aerial photograph are other black and white photographs of people and activities that underline the Manchester Bank's commitment as a people-oriented service facility.

The exterior design concept of the Bank utilizes a high performance, reflective and insulating glass. This silver mirror-like material ensures optimum performance values for the owners and users. From indoors the glass reduces solar-heat gain, sky-brightness and glare and increases visual comfort. From the exterior the reflective-skin brings high visibility, elegance and excitement to Elm Street. The mirrored facades, reflective by day, transparent by night, provide a variety of changing reflections and vistas, enhancing the street-level views of the Bank Building and adding a dynamic new element to Manchester's primary business area.

The entire structure is fully air-conditioned and utilizes an integrated air-light ceiling fixture system. Interior finishes include carpeted floors, teak and oak furniture, and the use of bright, high-keyed colors.

General Contractor: Davison Construction Co., Manchester, N.H.
LAWRENCE PARTRIDGE, AIA, coordinator of the new office, joined the firm in 1962. He is a vice president and associate of The Ritchie Organization. He received his B. Arch. from the Catholic University of America, and an M. Arch. from the Massachusetts Institute of Technology. He is working from the Chestnut Hill office and making frequent trips to the new Birmingham branch. He also serves as project architect for the Baptist Medical Centers, Birmingham, and the Lakeshore Hospital, Homewood.

Other current architectural projects under his direction include the Springfield (Mass.) Hospital Medical Center; The Memorial Hospital, Pawtucket, R.I.; Lowell (Mass.) General Hospital; and the Bristol Hospital, Bristol, Conn.

PETER M. A. MOYES, AIA, who is a vice president and associate of the 65-year-old firm, is a member of the American Hospital Association, Construction Specifications Institute, Birmingham Chamber of Commerce, Rotary International, National Panel for the American Arbitration Association, and the International Hospital Federation. He received his civil engineering training at the University of Utah, and graduated from the U.S. Army Command and General Staff College. Some of Mr. Moyes recent projects include: the University of Massachusetts Medical School Teaching Hospital; Pondville Hospital, Walpole, Mass.; Overlook Hospital, Summit, N.J.; and the Hahnemann Hospital, Boston, where he also serves as trustee.

You’ll never know how much good you can do until you do it.

You can help people. In fact, there’s a crying need for you. Your talents. Your training. Your concerns. They make you valuable to your business. They can make you priceless to your community.

If you can spare even a few hours a week, call the Voluntary Action Center in your town. Or write: “Volunteer,” Washington, D.C. 20013.

It’ll do you good to see how much good you can do.

Volunteer.

The National Center for Voluntary Action.

A Public Service of This Magazine & The Advertising Council

JOHN J. REILLY, INC.

875 S. WILLOW ST. MANCHESTER, N.H.
TEL 603-669-4240

ELECTRICAL CONTRACTORS

for

THE MANCHESTER BANK
Solar energy will be more meaningful to students at Grover Cleveland Junior High School in Dorchester, Mass., now that a General Electric Company experimental solar heating system, funded by the National Science Foundation, is providing a portion of the school’s heat.

Under a Research Applied to National Needs (RANN) contract from NSF, GE’s Space Division, Valley Forge, Pa., has modified the school’s conventional electrical heating system to accept supplementary solar heat. About 4,500 square feet of GE experimental solar heat collector panels have been installed on top of the school roof in three rectangular rows.

The system contains approximately 150 panels, each measuring four by eight feet. GE’s solar panels consist of a black, heat-absorbing surface beneath two rigid sheets of clear Lexan plastic. A tubing network inside the black surface is filled with a water/anti-freeze solution. When energy from the sun passes through the plastic, it is absorbed by the dark surface and converted into heat, which in turn is transferred to the liquid. The hot liquid is then pumped through the tubing network to a pair of special solar heat exchangers that work in conjunction with two of the school’s 10 conventional heating units. These solar heat exchangers then heat the air which warms a portion of the building as needed to maintain a comfortable temperature.

Whenever the system generates more heat than is required, surplus hot water will be stored in a 2,000-gallon heat storage tank. From here, the hot water can be pumped to the solar heat exchangers providing heat to the classrooms whenever clouds
REFLECTIONS
of an
IMAGE

The Bank
THE MANCHESTER BANK

Another Project
Completed Ahead
Of Schedule

DAVISON CONSTRUCTION COMPANY, INC.
BUILDERS
MANCHESTER, NEW HAMPSHIRE

April, 1974
obscure the sun and the solar panels are not absorbing heat.

According to D.F. Huebner, General Manager of Energy Systems Programs at the Space Division, the experimental GE system is designed to provide up to 20 per cent of the heat required to warm the three-story school building. This percentage will vary according to such factors as outside temperature, cloudiness, relative humidity and time of day, Huebner indicated.

Grover Cleveland Junior High is one of four U.S. public schools that will be using solar energy as a supplemental heat source this year under the same National Science Foundation project. Other schools are: Timonium Elementary School, Baltimore, Md.; Fauquier County High School, Warrenton, Va., and North View Junior High School, Osseo, Minn. Major GE subcontractors on the Grover Cleveland project include the Ballinger Company, Architect Engineers, Philadelphia, Pa., and the Vappi Company, Cambridge, Mass.

Under another National Science Foundation RANN contract, the GE Space Division and the University of Pennsylvania are one of three industry/university teams conducting feasibility studies on using solar energy to provide heating, air conditioning and hot water for buildings. The primary objective of this multi-phase NSF program will be to stimulate and accelerate widespread use of solar energy wherever it is economically practical. According to an NSF estimate, about one fourth of the energy currently consumed in the U.S. is used for heating and cooling buildings. The Foundation believes that successful completion of its RANN solar energy problems will offer the country a practical, non-polluting and inexhaustible energy alternative.
ENERGY FLOW IN VARIOUS MODES OF OPERATION:

Prime Contractor: General Electric Company; Space Division, Valley Forge, Pa.

Type of Installation: Experimental, roof-mounted, solar energy collector array.

Conventional School Heating System: All-electric, roof-mounted, forced hot air.

Size of Solar Energy Collector Array: Approximately 4,500 square feet.

Number of Solar Panels in System: About 150.

Individual Panel Dimensions and Weight: Length: 8 feet, Width: 4 feet, Thickness: 3½ inches, Area: 32 square feet, Weight: Approximately 100 pounds.

Capacity of Thermal Energy Storage Tank: 2,000 gallons.

Project Cost: $354,000.00.

Panel Geographical Orientation: South facing.

Attitude of Panels: Installed at a 45 degree angle off horizontal.

The experimental roof-top solar heating system erected by General Electric and Vappi & Company is now providing up to 20 percent of the heat required to warm the three-story Grover Cleveland Junior High School in the Dorchester section of Boston. The $350,000 project was funded and managed by the National Science Foundation. Erection of the facility took only seven weeks and photo above shows it as it neared completion.

Heating school rooms using energy provided by solar energy collector panels. This mode is used whenever the amount of heat collected by the panels equals the amount needed in the classrooms.

(Continued on Next Page)
Elegance, rusticity, and natural beauty make Concrete Masonry the ideal building material for wall decoration or pattern. The vast variety of sizes, shapes, colors, textures — play a significant role in specifications for interior walls, party walls, or special accents.

Architects, Builders, Interior Designers — can combine economical regular units for unusual patterns or dramatic relief creations.

Let us provide you with a showcase of ideas for inviting and impressive interior wall fashions — all backed by the traditional inherent qualities of Concrete Masonry.

DURACRETE BLOCK CO., INC.
1359 Hooksett Rd. (D. Webster Highway No.) Hooksett, N.H.
Phone (603)625-6411

Heating school and also heating thermal energy storage tank. These two modes could be employed when more heat is being collected by solar panels than is required for heating classrooms.

Frank I. Cody
Company
NEW BUILDINGS BRING NEW IDEAS
Interchange Drive, P. O. Box 268, West Lebanon, N.H. 03784
Telephone 603-298-5758
Heating school rooms using stored energy. This mode could be used for operation during early morning, evening or night periods or during cloudy weather.

Heating thermal energy storage tank. This mode could be used when no heat is required in the classrooms.

THE MacMILLIN FLAG, FLOWN AT THE SITE OF EACH OF OUR CONSTRUCTION PROJECTS, SYMBOLIZES OUR PRIDE IN NEW ENGLAND CRAFTSMANSHIP AND SKILL.

THE MacMILLIN COMPANY, INC.

BUILDERS

KEENE • NEW HAMPSHIRE

Landscaping for
PEASE AIR BASE HOSPITAL
Newington, N.H.
Davison Construction Company, Inc. – GENERAL CONTRACTOR

by

NORTHERN LANDSCAPE, Inc.
Industrial and Commercial Landscaping

468 MERRIMACK ST., METHUEN, MASS. TEL. 617-686-6583
METAL BUILDINGS
constructed to meet your client's needs. We offer a complete turn-key package or metal building only erected to meet your job budget.

WABCO
BUILDING SYSTEMS
Call Dick Steer or Ron Farland today.

WAGHORNE-BROWN COMPANY
P. O. Box 454
Nashua, New Hampshire 03060
Phone: 603-883-0146

NATIONAL PARTITIONS INC.
18 HARBOR AVE., NASHUA, N.H. 603 883-4171
Drywalls For
The Manchester Bank
in NEW HAMPSHIRE & VERMONT

LATHING, PLASTERING & SPRAY FIREPROOFING
Francis P. Connor & Son, Inc.
18 HARBOR AVE. - NASHUA, N.H. - 603-889-1164
Lathering & Plastering
The Manchester Bank

Index
To Advertisers

R. E. Bean Construction Co. Inc. 28
Bosson-Sawyer
California Products 2
Quinn and Johnson, Inc.
Frank T. Cody 30
Francis P. Connor & Son, Inc. 32
Corrievau-Routhier 1
Davison Construction Co. 27
Duracrete Block Co., Inc. 30
Fimbel Door Corp. Cover III
Fletcher's Paint Works 26
Four-Power Group Cover II
Ingalls Associates, Inc.
W. S. Goodrich, Inc. 29
Hussey Products Corp. 4
Jutras Signs 25
Local Gas Company Cover IV
Harold Cabot & Co., Inc.
The MacMillin Company, Inc. 31
B. L. Makepeace Inc. 4
Reilly Brown Inc.
Massachusetts Masonry Institute 3
National Partitions Inc. 32
Northern Landscape, Inc. 31
P.P.G. Industries, Inc. 26
The Young Advertising Agency
John J. Reilly, Inc. 25
Spaulding Brick Company, Inc. 4
A. W. Therrien Co., Inc. 29
United Glass & Aluminum Co., Inc. 25
Waghorne-Brown Company 32
What Makes A Fimbel Door Superior

- Quality Control
- Workmanship and Materials
- Design Flexibility
- Proven Engineering Ability
- Plant Resources and Volume Capability

The making of a Fimbel Door . . .

Our 50th Anniversary: 1924-1974

Free Estimates & Quotations ——— For Technical Information ——— see Sweet's 1974 Catalog

FIMBEL DOOR CORPORATION
The Nashua, N.H. Factory 24 Fox Street P. O. Box 848 Tel. 603-882-9786

Distributors and Dealers in principal New England cities

Other factories located at: HILLSIDE, NEW JERSEY • WHITEHOUSE, NEW JERSEY • EGG HARBOR CITY, NEW JERSEY
How to conserve and save money.

Upgrade existing equipment to increase production and save fuel.

By doing so, you'll not only conserve natural gas for yourself, but you'll save money too. Try following these five simple things that will save everyone natural gas. And you money.

1. Install modern temperature and air/gas ratio control devices that eliminate manual adjustments.
2. Substitute sealed-in burners for open hole furnace firing.
3. Return steam condensate to gas-fired boilers.
4. Substitute power burners for large atmospheric combustion systems.
5. Apply additional insulation, particularly on exterior surfaces.

The Natural Gas Companies of Massachusetts

Your Gas Company representative will be glad to consult with you on any of these projects.