As in the case of all recent government regulations attempting to control construction, the amendments to the M-4 order which require special authorization for residences over $35,000 in cost and for many types of construction using more than 25 tons of steel, are not at all clear in their application, and leave design professions completely up in the air regarding advice to clients. Local offices of NPA are giving varieties of advice. How liberal will the interpretation be if a house costing more than the $35,000 limit avoids the use of critical materials? No one can answer this today and the architects need an answer.

Principal difficulty is that the client must be persuaded to pay money for architectural services, in order to find out whether or not a structure will be permitted to go ahead. And the final permission or refusal comes, in many cases, from "claimant agencies" which are not really set up to process this sort of application with any speed, let alone intelligent analysis. The Office of Education, for instance, which will process applications for all school buildings, has no architectural or engineering department, and a suddenly acquired skeleton staff will have the power to say yes or no.

Since these claimant agencies will be working against a "bank" of critical materials, to be distributed during a given period until the account runs out, good cynical advice to give architects serving clients with real needs seems to be to get the application in early and get it while it’s to be gotten. Apparent selfishness of this attitude disappears when it is realized that no real survey of needs or knowledge of availability of materials exists.

Example of paradox of present situation: aluminum is now scarce; aluminum windows will almost automatically be turned down in any application now. Then should an architect specify aluminum windows in current work? Probably he should, because aluminum suppliers say crisis will be passed by end of this year and by the time buildings now on preliminary design stage are ready for materials on the site, aluminum may well be available. Yet applications have to be made, now, and... so the circle goes.

In the meantime, work for the design professions seems to be holding up well. Most offices, medium and large, urban and rural, are busy. As predicted, the small firm and the firm not yet well established is suffering badly.

(Continued on page 2)
Progressive Architecture

As this issue goes to press, Congress is still debating the limitation on public housing -- the Administration's recommended 135,000 units has been cut to 5000 by the House, 50,000 by the Senate (75,000 by the Budget Bureau). Chances are that the 50,000 figure will hold, but due to uncertainty some cities are cancelling plans. Chicago Housing Authority, for instance, announces that it has ordered "further architectural work temporarily deferred," on all but one project.

While the construction industry waits Reg 8, describing how the CMP will work in detail, NPA is trying to figure out the next big headache -- how to assign non-CMP materials.

School Executive magazine announces a competition open to architects in the U.S. and Canada, for the design of schools during 1951. A.I.A. approved, the competition will be judged by Robert Hutchins, Walter Kilham, and Morris Ketchum, architects; Ray L. Hamon of the U.S. Office of Education, and Benjamin C. Willis, Buffalo, N.Y., Superintendent of Schools. Inquiries to Walter D. Cocking, 470 Fourth Ave., N.Y.; competition closes December 31.

A successful government agency closed its books in May when HOLC gave a surplus of $14 million to the U.S. Treasury. Established during the depression to rescue individual home owners, HOLC refinanced over a million loans, to the tune of $3% billion, 80.9% of which were saved.

Owens-Corning Fiberglass has now joined Crane and Revere as sponsor of Southwest Research Institute's Housing Research Foundation -- formerly the "Revere Quality House Program."

If you can keep these high-sounding names straight, another organization -- the Building Research Institute -- has been created to support the Building Research Advisory Board. Membership with a sliding scale of dues is open to manufacturers, contractors, associations, professionals. BRAB is doing a good job of co-ordination and advice in the housing research field, and deserves this support.

An Institute for Urban Studies is announced by U. of Pennsylvania, under the guidance of Robert Mitchell and Holmes Perkins, new architectural Dean at Penn. In addition to basic research, the Institute will assist the city of Philadelphia in studying local problems. Several new architectural appointments are also announced by Dean Perkins: Robert L. Geddes, as instructor; Leon Loschetter, from France, as assistant professor, and Stanisława Nowicki, who is moving from North Carolina to take over a new course in Basic Design.

A number of U.S. architects and students of architecture have profited from the Fulbright Awards for cultural exchange with foreign countries. Abroad now under 1950-1951 awards are Charles Burchard of Harvard, Ada Huxtable of the Modern Museum, George E. Smith of Brown.

Report on Size of Elementary School Units by a Public Education Association committee headed by Mrs. Samuel Rosenmann makes the following observations: "self-contained classroom units of 25 pupils each, under a single teacher for the major portion of the day provide the best educational arrangement"; "Elementary schools of more than 20 classroom units tend to have a stifling effect upon the imaginativeness of teachers and children," and finally, "...there is much logic and experience in favor of elementary schools of 350 children."
Here is another completed building in which both designers and owners are enthusiastic about the over-all appearance, and are agreed that Mahon Insulated Metal Walls are more practical and decidedly more economical... it is typical of many industrial and commercial buildings designed in the past nine years for employment of this modern exterior wall construction. Mahon Field Constructed Insulated Metal Walls, with an over-all "U" Factor equivalent to that of a conventional 16" masonry wall, are available in the three distinct exterior patterns shown at left. Walls may be erected up to 50 feet in height without horizontal joints. Prefabricated Insulated Metal Wall Panels are also produced by Mahon and are available in any length up to 30 feet. These Insulated Metal Walls together with a Mahon Steel Deck Roof, provide the ultimate in economy, permanence, and fire-safety in modern construction. See Sweet's Files for complete information or write for Catalog No. B-51-B.
• All exterior marquees are aluminum, by Overly.
• Close-up of aluminum marquee, showing facia and ceiling.

GREATER PITTSBURGH

GENERAL DATA

NAME: Main Terminal Building, Greater Pittsburgh Airport
LOCATION: Moon Township, Coraopolis, Pennsylvania
OWNER: County of Allegheny, Pennsylvania
SIZE: Main building is a half-circle, 460' in diameter; over-all width is 575', over-all length, including south dock, is 1060'.
COST, MAIN BUILDING: Approximately $950 million
FIGHTER BASE: Air Force protection is adjacent.

COUNTY DATA

BOARD OF COUNTY COMMISSIONERS
John J. Kane, Chairman
Harry W. Fowler
Ernest Hillman

DEPARTMENT OF AVIATION
John B. Sweeney, Director
Edward G. Messner, Chief Engineer

ARCHITECTS
The Office of Joseph Hoover, Pittsburgh, Pennsylvania

CONSULTANTS
Parsons, Brinkerhoff, Hall & MacDonald, New York City

ENGINEERS
Lee W. Cook, Structural
E. S. Tower, Plumbing
J. P. Warner, Electrical
T. F. Rockwell, Mechanical
William Murdoch, Sanitary

CONSTRUCTION DATA

GENERAL CONTRACTOR
Dick Construction Company, Pittsburgh, Pennsylvania

OVERLY ALUMINUM FABRICATION AND ERECTION
Air-conditioned Penthouse; Comfort Station, walls and louvers; Coping, and gravel tops; Control Tower; Cornices; Dome on Mirador; Electrical-equipment Room; Elevator Penthouse; Flashings; Marquees; Mirador; Theodolite on Mirador; Ticket Booth, permanent; Vent Caps; Window Soffits

OVERLY STEEL ITEMS
Kalamein Doors; Pressed Steel Frames

(OVERLY ALUMINUM, CONTINUED)

Observation tower also is aluminum, erected by Overly
The Greater Pittsburgh Airport ranks with the nation's largest, and the modern super terminal building pictured on these two pages will meet the expanding needs of this progressive region for a long time to come. West and east docks will be added as needed. Although many innovations are represented architecturally in the design and materials, all were planned for initial and ultimate economy. Overly is proud to have been selected for the prefabricated architectural aluminum work and its installation.
for design...for utility...for economy...

Northern Indiana Crippled Children's Hospital, South Bend, Indiana
Peck, Peck, Peck & Peck, Architects
Skidmore, Owings & Merril, Assoc. Architects
Schumacher & Sons, Contractor

Maternity Hospital, Ann Arbor, Michigan
Lewis J. Sarni, Architect
Bryant & Detwiler, Contractor

Harkness Memorial Hall, Columbia Presbyterian Medical Center, New York City
Voorhees, Walker, Folsom & Smith, Architects
Vermilye-Brown, Contractor

Baptist Hospital, Beaumont, Texas
Wyatt C. Hedrich, Architect
E. F. Farnsworth Co., Inc., Contractor
specify

Adlake

aluminum windows

Yes, their combination of maintenance-free service, complete weather-tightness and handsome, modern appearance makes ADLAKE Aluminum Windows ideal for hospital installation.

For ADLAKE Windows ultimately pay for themselves by eliminating all maintenance costs except routine washing—and they last as long as the hospital itself! What's more, only ADAKE Windows offer the woven-pile weather stripping and patented serrated guides that assure minimum air infiltration and finger-tip control. And they keep their smart good looks and easy operation for life!

Find out how ADLAKE Windows will give better service, and save money for your clients! Drop a card to The Adams & Westlake Company, 1103 N. Michigan, Elkhart, Indiana. No obligation, of course.

Georgia Baptist Hospital, Atlanta, Georgia
Stevens and Wilkinson, Inc., Architects
Henry C. Beck Co., Contractor

THE Adams & Westlake COMPANY
Established 1857—ELKHART, INDIANA—New York-Chicago
HOMASOTE presents

the NOVA Roller Door

—the silent, fingertip flush door for passage ways and closets

—developed through two years of constant research and field testing

Highest in quality . . . simple and inexpensive to install . . . silently responding to fingertip control . . . here is the roller door as you knew it would one day be perfected.

This is a hollow core, flush door—regularly sold in unselected gum, paint grade—which can be painted or stained for many beautiful effects—Black Walnut, African Mahogany, Birch, Red or White Oak.

Nova Roller Doors are light, strong and warp-resistant. They are ideal for closets, basement storage, garage storage, storage walls and removable partitions.

The closet may be one of the standard sizes— or extend the width of the room. Two or more doors enclose it entirely. Instead of opening only part of the closet, as with a swinging door, you have full access. And—you don't waste the valuable floor space needed to accommodate a swinging door.

The Nova Roller Door comes cartoned with special side jambs, head and floor tracks and all hardware installed. In less than one hour's time, one man makes the complete installation.

We urge you to write today for the full details. Kindly include the name of your lumber dealer.

NOVA SALES
Co. TRENTON 3, N. J.

A Novasco Product

A wholly owned subsidiary of the Homasote Company, manufacturers of the oldest and strongest insulating-building board, Wood-textured and Striated panels.
LEGAL EXCEPTION

Dear Editor: Evidently the writer of the newsletter in the May issue of P/A has not read NFA Order M-4 too carefully. As an example of the leniency of the New York regional office he says authorization has been granted for “such items as stores and restaurants, motor courts, banks, office alterations, service stations, etc.—even a mess hall for a Boy Scout camp.”

Under section 15 in a list of prohibited construction the following item appears, “camps (except public and social welfare”). Social Welfare organizations such as the Boy Scouts, therefore, may receive permission to build needed camp structures.

JULIAN H. SALOMON
Camp Consultant
Suffern, N.Y.

GOVERNMENT FEES

Dear Editor: Reference is made to it’s THE LAW in May 1951 P/A. Bernard Tomson compares two $6,000,000 projects which, under the new schedule, would produce a fee of $60,000 less than with the earlier schedule.

It would seem that states such as Tomson speaks of have one table of rates, regardless of the nature of the project. An architect who had a project for a state with a schedule similar to the early one that Tomson quotes, was recently offered a project under the new schedule. The first project had many repetitive identical floors. The second project had nothing that was repetitive and each space required special study. A comparative study of the work involved in each showed that under the second schedule, the architect would be receiving a little less than one half per drawing sheet, than he did under the first schedule.

To realize how short of the usual A.I.A. percentages that state’s schedule falls, we should add to each percentage another third, inasmuch as the state’s work is for design only and the fee for construction supervision is usually 25% of the fee. Thus, for the two $6,000,000 project which Tomson mentions, the inclusive fee would be 3% plus 1%, equals 4%, as distinguished from the usual A.I.A. minimum of from 6% to 7%.

Governments resort to many devices to solve the individual and peculiar needs of the client was handled best. A project was turned up who hooked himself on that item and show on all drawings the equipment throughout. Nevertheless, the agency refuses to include the cost of said equipment in computing the fee.

(C) A project has to be planned on a very uneven site. The design must revolve, therefore, around the consideration of the grades, drainage and so forth. The agency, nevertheless, refuses to include the cost of yard-work in the architect’s fee.

(D) To establish the cost per cubic foot for purposes of fixing the fee, the agency refuses to use the experience figures for similar projects elsewhere. Instead, it computes the fee on the basis of its own experience, which happens to diverse almost exclusively with the simple dormitory-type buildings involving much repetition.

(E) Recently an architect was invited by a department of the Federal Government to design four different hospitals to a given total of beds, and to a predetermined budget. The percentage rate for computing the lump sum fee for design only was 4½%.

An investigation revealed that to construct the required number of beds, it would require at least twice the amount of money which the government had. Therefore, in terms of actual cost, the architect would have had to design these hospitals at the rate of less than 2½% of the cost.

(F) A foreign government asked an architect for a lump sum fee to design a large project, again based on the Government’s own estimated cost. Upon investigation, said architect found that this project would cost three times the Government’s estimate. He computed the fee at 5% of his own construction cost estimate. In no time flat, a sucker turned up who hooked himself on that job at a fee of less than ½ of the 5% proposal. In other words, the second architect took the job at about 1½%.

Few architects make production cost estimates. In no time flat, a sucker turns up who hooked himself on that job at a fee of less than ½ of the 5% proposal. In other words, the second architect took the job at about 1½%.

A foreign government asked an architect for a lump sum fee to design a large project, again based on the Government’s own estimated cost. Upon investigation, said architect found that this project would cost three times the Government’s estimate. He computed the fee at 5% of his own construction cost estimate. In no time flat, a sucker turned up who hooked himself on that job at a fee of less than ½ of the 5% proposal. In other words, the second architect took the job at about 1½%.

Few architects make production cost estimates. In no time flat, a sucker turns up who hooked himself on that job at a fee of less than ½ of the 5% proposal. In other words, the second architect took the job at about 1½%.

TAXATION AS STIMULUS

Dear Editor: May I compliment H. H. Waechter on his excellent letter in your May issue, in regard to co-operatives.

While I do not question any of his statements or philosophy, I think there is a minor revolution brewing as a result of income tax laws. The ability of a “co-operator” to reduce his income tax by deducting the interest and tax payments of his share of the co-operative, has undoubtedly been an extremely important stimulus in the recent development of co-operatives.

It is my hope that this economic stimulus may tend to engender some of the true and basic Rochdale principles.

WILLIAM CHARNEY VLADECK
New York, N.Y.

LAMP COMPETITION

Dear Editor: Concerning the NEWSLETTER in May 1951 P/A: it states that two architects were the only ones who placed in the Museum of Modern Art-Heifetz Company Lamp Competition. Kevin Roche and Frank Greenhaus, Architects, also placed and were awarded a prize. Their entry is to be manufactured by the Heifetz Company.

FRANK GREENHAUS
New York, N.Y.

CO-OPERATIVE DESIGN

Dear Editor: While considerable travel away from home has made me very late in doing so, I do want to compliment you on the very fine article which appeared in the March issue of P/A dealing with the twin houses in Berkeley, California.

The thesis that the architect and landscape architect not only should, but frequently do collaborate successfully in solving the individual and peculiar needs and limitations of the client was handled splendidly. All too often it is thought by all too many that clients in the income bracket of these two brothers must forget about having either house or grounds “tailored-to-measure” by competent professional offices. Berkeley was my home for many years. Its many and steep hills, its vulnerability to earthquakes, its tendency to move down-hill, offer plenty of challenge to the architect, engineer, and landscape architect. Those are small drawbacks, indeed, in a locale that offers so much chance to capture views of the Golden Gate, and of the millions of twinkling lights of fabulous San Francisco.

Perhaps because I have long worked in an organization in which architects,
landscape architects, and engineers work together harmoniously on every project, I was happy at the handling of this story. May I hope that similar stories about co-operation between the design professions will appear regularly, and as a matter of policy, in future issues of P/A? William G. Carnes, Secretary

American Society of Landscape Architects

Bethesda, Md.

LETTERS TO THE SCHOOLMASTER

Readers of "Out of School," the P/A column conducted by Carl Feiss, raise some questions provocative of further discussion.

Dear Mr. Feiss: For the last few days I have been reading and re-reading your latest OUT OF SCHOOL, and, it certainly struck a kindred response within me! Ever since my student days I have been connected with architecture of distinct social significance and the co-operative housing movement—in fact, until the very outbreak of the war—and I feel now a strong and compelling urge to return to this kind of work. I have been wondering, therefore, if you could probably tell me what I should do to find whether there are any chances of my participating in work of the kind you mentioned in your article—in planning, supervision, or research. I could work anywhere in the world except in tropical regions: from my experience in the Persian Gulf Area I found living there very tough going.

I have heard that the U.N. is also doing some important preliminary work on planning and research. It is next to impossible, though, to get any reliable information out here.

Regarding your inquiry as to where one would go to look for a job in foreign parts, may I suggest that you contact directly:

Mr. Jacob Crane
Special Assistant to the Administrator on International Housing Activities

Housing and Home Finance Agency
Washington 25, D. C.

Mr. Anatole Solow, Chief

Section of Housing and City Planning

Division of Labor and Social Affairs

Pan American Union

Washington, D. C.

Mr. Ernest Weissman, Chief

Housing, Town, and Country Planning Section

Social Affairs Department

United Nations Headquarters

East 42nd Street

New York, New York

Anyone making such inquiry should include a life history of training and experience as well as special interest and desired remuneration. This would rapidly expedite consideration.

Carl Feiss

Dear Mr. Feiss: With the draft laws changing the life of the college student, we seem to be pressed to revise some of our educational practices. We have been told in the past to spend more of our time with the less promising students in an effort to maintain the standard of our graduates. Today this directive does not make sense any more as the less-gifted students are going to be lifted out of school by the Army.

We have been striving continuously to increase the duration of the studies leading to a degree in architecture. With the military training consuming more than two years of the average student's life, we expect pressure to reverse this trend and we should be prepared to produce graduates with four-year curricula, without lowering any standards. As far as our present standards are concerned, it was stated by leading practitioners of our trade that our graduates lack knowledge of materials. Complaints were heard about low humanistic standards and self-assured attitudes. We should not assume that all of our graduates are ignorant and burdened with a sense of superiority but the standard, if there is one, is open to question.

Our present method of making the student absorb architectural know-how is based on separating this over-all

(Continued on page 12)
Important to school interiors...

✓ the right color for educational functions

✓ the right material for low maintenance

Suntile offers both!

Better lighting and seeing conditions—better emotional environment for study and play—better school morale! These are improvements you can make in schools with interiors of the right colors. Lower maintenance—longer wear—ease of cleaning—protection from fire! These are advantages you can give to school interiors with the right material.

You can accomplish these much-to-be-desired objectives for the schools you design and build with one product for walls and floors—real clay Suntile.

A new, functionally-correct Suntile color line has been scientifically developed to help schools, and other building interiors, better serve their purposes. In classrooms, cafeterias, laboratories, rest rooms, shower rooms, gymnasiums, corridors and auditoriums, these new Suntile colors can be fitted to the school function.

In these same areas, Suntile will protect the school budget with its permanence, its great resistance to the wear and tear of school traffic, and its simple cleaning with soap and water.

For more information about the new Suntile colors for institutional, industrial and commercial use, ask your Authorized Suntile Dealer for our new color booklet, "Suntile Functional Color Recommendations." Or write us direct, Dept. PA-7, The Cambridge Tile Mfg. Co., P. O. Box 71, Cincinnati 15, Ohio.

Suntile MOTTLED DRESDEN BLUE

A special tile and finish developed for heavy service

Suntile Mottled Dresden Blue is particularly recommended for heavy service in schools, hospitals, industry and commercial establishments. Tests show that blue is a universal favorite. It is cool, fresh and clean looking to the eye. It is soft and restful and provides an ideal background. This Suntile product lends dignified treatment to foyers, lobbies and corridors. In cafeterias, wash rooms, swimming pools, locker rooms, it represents cleanliness itself. The mottled tone helps to overcome monotony, resists soiling and is easy to maintain. Mottled Dresden Blue is a unique addition to the Suntile functional color line developed by The Cambridge Tile Mfg. Co., with the aid of Faber Birren, noted color authority.

COLOR BALANCED

Suntile

A real clay tile
Bright with color
Right for life

WEST COAST OFFICES

470 Alabama Street
San Francisco 10, California

1335 S. La Brea
Los Angeles 19, California

SUNTILE OFFERS YOU BOTH • BETTER TILE • BETTER INSTALLATION

July 1951
I 2 Progressive Architecture

Any effort is made to co-ordinate these schools by specialists unfamiliar with, and not interested in an architectural knowledge into courses in isolated fields. Courses with the design work. Little is done to get the student interested by showing the practical values and the sense of control experienced in theoretical studies. It is only too often true that the good grades in building construction in the college transcript do not signify any ability of detailing nor any knowledge of materials when it comes to applying them in design work. The fallacy of checking knowledge off in the transcript only satisfies the college administration. The architect hiring a graduate straight out of school will seldom consult his grades. He will ask for drawings where he can see how far the applicant can utilize the knowledge he should have. It is a misconception to excuse the lack of co-ordination and practicability as a result of idealism.

Instead of lowering the standards of our graduates to cut down the duration of professional studies we should establish new and more valid standards. Our graduate should be not only a technician who can follow the handbook like a television repair man and copy details from Architectural Graphic Standards and Sweet's file, with lines which will insure an acceptable blueprint. Knowledge of this sort can be learned in an office more adequately than in school. We want a graduate with technical and visual imagination. A man who is able to make progress on his own towards ideals chosen and developed by himself. He has to have judgment in the social as well as in the technical sense.

Though aiming at a highly individual product as a graduate, we are still thinking in terms of mass education. Our curricula are unco-ordinated collections of trade-school training and liberal arts survey courses. New needs have been satisfied by adding new courses. Work-out students wander into classrooms after endless hours of night studies, too tired to think and to absorb information. To shorten the duration of studies without revising our whole approach to architectural education would be impossible. It seems that our whole classroom attitude will have to be changed. We will have to stop aiming out arguments at the lowest common denominator of intelligence. Such practices are wasteful of time and kill the enthusiasm of students with high IQ. We will have to handle students progressively more like individuals, assuring that information is not just dumped on them but carefully filed in their memory in reference to its possible uses. The sequence in which information on architectural know-how can be absorbed best does not follow the same pattern with every student. Only individual attention in an integrated pattern of education can give the maximum efficiency in absorbing information. We cannot, however, let an integrated course in architecture ramble along without control.

More knowledge of psychology is needed for the teaching of architecture than the material offered in a basic survey course taken by most of our instructors as one of their excursions into the field of humanities in their college days. There are but a few instructors in architecture who studied the history of teaching theory and principles of education. These studies being required for education majors in other fields should be at least by optional arrangements available as part of graduate studies in architecture. Teaching architecture is still considered as a sideline and not as a profession in its own right. Our architectural education is changing under present emergency, our ideals of architecture, and our regard for the individual.

GEORGE PETER KELETI
Visiting Instructor
School of Engineering and Architecture
University of Kansas
Lawrence, Kansas
TRULINE ... the "Door-way" to ECONOMY, BEAUTY and DURABILITY

TRULINE Aluminum Doors and Jambs are available. These are the doors that need only one-tenth the installation time of ordinary wood doors...the doors that offer a lifetime of service. They will not warp. They need no paint or maintenance. They offer insulation, fire resistance, sound-proofing. By all means, keep TRULINE Aluminum Doors and Jambs in your plans.

The entire line of TRULINE Aluminum Doors and Jambs is priced competitively to ordinary wood doors and jambs. When such factors as installation time, paint, and maintenance are considered, the advantage of specifying TRULINE is at once apparent.

PATENTS APPLIED FOR

For Residential or Commercial Use

- Fast, easy installation
- Freedom from warp
- Fire resistance
- Insulation
- Sound-proofing
- Lifetime Economy

Some distributorships still available. Write, wire or phone for information.

TRULINE DEVELOPEMENTS
MODERN BUILDING ELEMENTS
9155 Sunset Boulevard, West Hollywood 46, California • BRadshaw 2-3573
How to Stop CONDENSATION!

Prevent Damage to Wood, Plaster, Paint, etc.

As air grows colder, it can hold less vapor. Saturation increases until a dew-point is reached, and condensation occurs. The surface of a material colder than the contacting air it faces, and continuously losing heat on the other side, will continuously extract heat from the air by direct conduction. The denser and bulkier the material, the more heat will it extract and store before attaining room temperature, if it ever does.

For example, if ordinary insulation is installed with air spaces on both surfaces, it continuously absorbs and emits heat rays at a rate of over 90%. If installed without air spaces, there is even more heat flow continuously by direct conduction through solids. Each square foot contains about 363,314 fibers, with surfaces aggregating approximately 46 sq. ft. for condensation formation.

With multiple sheets of accordion aluminum, the sheet nearest the warm room weighs only \(\frac{3}{8}\) oz. per sq. ft., absorbs and emits only 3% heat; thus extracts and stores practically no heat from the air, only enough to attain and remain at room temperature. The additional reflective air spaces on the other side are insignificant heat conductors. The other sheets of aluminum and fiber block convection heat losses to the "cold" side.

No condensation forms on the aluminum surface next to the warm room, for a dew point is never reached. The sheet’s other surface faces a space which is a little colder than the aluminum. Since warmth flows to cold in radiation and conduction, the aluminum will give off a slight amount of heat to the colder space, thereby slightly increasing its vapor retaining capacity; making condensation impossible.

The next reflective space has almost the same temperature as the next aluminum surface, with its slight mass, \(\frac{3}{8}\) oz. per sq. ft. The aluminum absorbs and emits little heat. Its other surface is slightly warmer than the air it faces; again there is no extraction of heat (the REVERSE), no dew point.

With 4 or 6 reflective spaces, there can be no dew point anywhere on or in such aluminum insulation. Should rain leak in, it will be slowly expelled as vapor, since exterior walls, in comparison to aluminum have a far greater permeability than the required minimum 1 to 5 ratio. Because aluminum is impervious to vapor flow, condensation on under surfaces of roofs and inner surfaces of outer walls is minimized.

THERMAL FACTORS, TYPE 6 INFRA

Up-Heat \(c_089, R 11.23\) equals 4½" DRY Rockwool
Wall-Heat \(c_073, R 13.69\) equals 5½" DRY Rockwool
Down Heat \(c_044, R 22.72\) equals 9" DRY Rockwool
VAPOR PERMEABILITY equals ZERO

INFRA INSULATION, INC.
10 Murray Street New York, N. Y.
Telephone: Cortlandt 7-3833

INFRA INSULATION, INC.
10 Murray Street, New York, N. Y. Dept. P7
Please send me FREE, U.S. Bur. of Standards booklet:
"Moisture Condensation in Building Walls."
Name ____________________________
Firm ____________________________
Address __________________________
Send Prices of Infra Insulations ☐
Send Sample ☐
The succession of graphic analyses, plan sketches, cubage estimates and diagrams, study model, more and more exact plans, outline specifications, cost estimates, and then preliminary elevations and perspectives, that Isadore Rosenfield, New York architect and hospital consultant, produced initially when designing North Shore Hospital, Nassau County, Long Island, demonstrates an orderly process of architectural development toward the client's needs and preferences. As Rosenfield is especially concerned about the more precise and realistic handling of an architectural assignment in the very preliminary stages, he has recounted his design steps on this job as a "case study of preliminary planning."

Explaining that he considers the preliminary stage of a project terminated only when the project has been developed to the point of beginning working drawings, Rosenfield comments:

"In the usual practice, a preliminary set comprises a scheme in which the spaces assigned to the various functions roughly correspond to the architect's experience, or to the experience of others as gleaned from architectural publications, and more often taken from Public Health Service standards. Spaces for functions with which the architect happens not to be familiar, or for which sources are not available, are frequently assigned on an emotional basis: the architect feels that so-and-so much space would seem reasonable, or looks good. Under these conditions, a great deal of emphasis is placed on alluring perspectives designed to "sell" the project to the client.

"Once the scheme is accepted, the architect buckles down to find the real nature of his project through the development of drawings which are referred to as functional layouts or prefinals, etc. Here, for the first time, the architect begins to find out what must happen in each space; what spaces will be required behind the scenes for pipes, ducts, conduits, valves, etc.; what kind of a structural system would answer requirements; and how the project could

The perspective of North Shore Hospital (above) was drawn long after basic plan decisions were made and the architect had assembled his plan elements in the isometric study (right), without "skin" and avoiding commitment as to appearance.
The simplicity of the single-line plan sketches that
Rosenfield calls preliminary-preliminaries is indicated
just above. The same portion of the plan, as further
developed in the final when the architect has con­
sidered mechanical and structural requirements as well
as functional needs, reflects the increased complexity.
The perspective [top] was not attempted until all
major plan considerations had been settled by the
architect and client.

be made to look like the alluring per­
spective.

"In a complex building, such as a
hospital, the architect almost invariably
finds at this stage that he needs a
great deal more space laterally (and
frequently vertically) than his prelimin­
aries indicated. In fact, this is always
taken for granted! However, more
cubage means more cost. The architect
is embarrassed with his client, because
he has to break the "bad news" of
greater costs than expected, and his
excuse is that it is impossible to fore­
tell what cubage would be required with
any degree of accuracy.

"Such procedure is frequently more
embarrassing to the hospital Board (in
any case the owner) than to the archi­
tect. The increase in cubage and con­
sequent cost between the scheme and
the development is frequently such as
to cause amputative abbreviation and,
indeed, the abandonment of the project.
It also means that the architect has to
make repeated re-studies, at an unfore­
seen cost to himself.

"We frequently see in the architec­
tural press and in exhibitions, most
sumptuous hospital schemes. I used to
regard them with great envy. 'Why,' I
used to say to myself, 'do I not have
wealthy clients who would permit me
the same luxurious abandon?' Almost
invariably, I would later find that what
was shown was a wild dream which
never became a reality, or which termin­
ated in a pitiful stump.

preliminary-preliminary

"The North Shore Hospital began, as
do all of my projects, with what I call
a preliminary-preliminary or a com­
prehensive study. In this stage the draw­
How MATICO SOLVED this Major FLOORING PROBLEM

PROBLEM:
Secure a low-cost flooring that meets rigid hospital requirements for durability, sanitation, odor-free characteristics, quietness, resilience underfoot and cheerful color.

MATICO Asphalt Tile Flooring solved this problem ideally, because MATICO offers these outstanding advantages:

TOP QUALITY—You can always specify MATICO with full confidence it will deliver outstanding performance. Its quality is controlled throughout.

DURABILITY—Even under conditions where traffic is heaviest, MATICO assures long-lasting wear.

ECONOMY—MATICO is the most economical luxury flooring available today. It costs less initially... saves on maintenance as well.

SANITATION—Because MATICO is easy to clean and keep clean and is odor-free, it is ideal for hospitals where sanitation is of prime importance.

QUIETNESS—Unusual resilience keeps noise in wards and corridors to a minimum. And MATICO helps prevent fatigue, too, because it’s comfortable underfoot.

RICH COLORS—Cheerful, colorful decor is recognized for its important therapeutic value. MATICO’s 27 rich, clear colors—including new pastel “Petal Tones”—offer unlimited design possibilities.

The outstanding advantages that make MATICO ideal for hospitals, also make MATICO first choice for every type of installation. Today, more and more architects and builders are selecting performance-proved MATICO Asphalt Tile Flooring for important projects everywhere. Be sure to consider MATICO when next you select asphalt tile flooring.

More than 350,000 feet of quality-controlled MATICO is used throughout Albany Veterans’ Hospital. 11 stories high, this new hospital features the most modern medical equipment.

ALBANY VETERANS’ HOSPITAL, ALBANY, N. Y.
Associated Architects: Eggbe & Higgins
Green & James
General Contractor: Ring Construction Corporation
Flooring Contractor: Circle Floor Co., Inc.

1,000 beds for patients from the Bronx to the Canadian border and most of New England are provided by this $20,000,000 veterans’ hospital. Above, a view of one of the wards where MATICO is used.

HEAVY TRAFFIC in Patients’ Lounge doesn’t faze rugged MATICO Asphalt Tile. Note how MATICO harmonizes perfectly with modern furnishings.

Get to know MATICO... See our insert in Sweet’s File Architectural, section 13g/MAS.
For free samples, write us on your business stationery.

Mastic Tile Corporation of America
Member: Asphalt Tile Institute
Factories: Newburgh, N. Y. • Long Beach, Calif.

Precision tested
to conform to Federal specifications for Flexure Indentation Curling Impact
ings are single-line indications of spaces, drawn (frequently freehand) over a grid of uniform spans and column bays derived from previous experience. All features which are new, or which I think should be re-studied, are re-studied immediately at a large scale with all equipment shown and all clearances for plumbing, etc., indicated before they are incorporated into the single-line drawings.

“These newly determined spaces, together with the spaces previously determined from experience, are then combined into departments and typical nursing units. The departments and the nursing units are then stacked by floors and related to the shape of the terrain, orientation, view, etc. If an old space grid does not meet new requirements, it is modified or abandoned and a new one is established. In any case, all func-

tional spaces, from boiler room to janitors closet, are shown in the preliminary-preliminary stage in accordance with the space that we know will later be actually required.

“No elevation studies are made during this stage. An isometric perspective is drawn, but without an exterior skin. Usually, a similarly conceived model is also prepared at this time, but this, again, makes no commitment as to architecture, and is merely a stacking of the floor plans.

“These studies are actively discussed with the hospital administration, if there is one, and with the medical advisory board and the planning committee of the board. Such roughly made, but realistically composed, studies are susceptible to quick variation and change. When they are finally adopted,
There is an individual lever switch control and a convenience outlet built into each "Dua-Lite".

The Curtis "Glo-Ray," illustrated at the right provides necessary night lighting for hospital rooms, corridors and stair landings. A unique shutter arrangement inside the cover controls the amount of light permitted to pass through the cover glass. A Fresnel lens is utilized to control distribution of the 75-watt lamp used for the direct component. The housing is cast aluminum which is readily painted after installation to blend with the room interior.

Write for Curtis Bulletin 2416 for complete specifications and details.

*"that which is additional to prescription for aiding recovery"
they are accompanied by a cubage estimate based on a cost per cubic-foot current in the area at that time.

"During the preliminary-preliminary stage of development of the North Shore Hospital, because prices were rapidly rising, it appeared that the cost would exceed the anticipated funds. Instead of carrying this threat through the full development of the plans, it was immediately decided which omissions and substitutions should be considered when bids would be taken. These omissible items were to be carried in all drawing stages, but instead of being handled as 'reducing alternates' they were to be handled as 'additive alternates.' Thus, the owner would know from the beginning what the 'basic hospital' is to consist of and what he could add, and in what order he could add items, should the funds be sufficient or not. Additional funds should be available.

final preliminary

"At this stage, all the final suggestions from the owner are incorporated and the studies made with full consciousness of the final building. All the rooms are drawn with all the basic equipment (fixed and mobile) and all the behind-scenes spaces that will be necessary. The structural system is well determined, pursuant to consultation with and study by the structural engineer; and a sheet of architectural and construction details is included with the preliminary set. The behind-scenes spaces allowed are largely determined by ourselves from previous experience, but a mechanical engineer is nevertheless consulted for unusual conditions or new ways of handling old problems.

"In some parts of the country, such as New York, engineers are not part of the architect's organization. In such cases, the architect usually retains professional engineers after his preliminaries are accepted. As he has no engineers on the project during the development of the preliminaries, the preliminaries do not as a rule reflect the engineering realities. In the writer's practice, engineers are engaged and appropriate business arrangements made for the preliminaries, as a consideration separate from final engineering services.

"The large-scale layouts of typical rooms, special rooms and, in any case, of spaces requiring complex hospital equipment, which were made for the preliminary-preliminaries are thoroughly revised at this time; and finally the architecture is studied in an intimate fashion. Until this point the esthetic considerations have been constantly in our minds, but not permitted to assume a position of preeminence until all major plan considerations have been settled. Thus, the final elevations and subsurface..."
The Mengel Company is now able to offer you African Mahogany Flush Doors at prices actually less than you pay for many domestic woods!

Operating its own large logging concession and mill in the best Mahogany section of Africa, Mengel imports this King of Woods in tremendous volume. The savings of these large scale operations are passed on to you.

What's more, when you choose Mengel Mahogany Flush Doors, you're assured of finest construction, guaranteed by the world's largest manufacturer of hardwood products. Mengel Mahogany Flush Doors have been tested and proved in thousands of installations. Better doors cannot be bought!

Let us tell you about the extra quality, the extra luxury, the extra value of Mengel Flush Doors in genuine Mahogany! Mail the coupon for complete information.

The Mengel Company ... America's largest manufacturers of hardwood products • growers and processors of timber • manufacturers of fine furniture • veneers • plywood • flush doors • corrugated containers • kitchen cabinets and wall closets

THE MENGEL COMPANY
Plywood Division, Louisville 1, Ky.

Gentlemen: Please send me full information on Mengel Mahogany Flush Doors—both Hollow Core and Stabilized Solid Core.

Name: ____________________________
Firm: ____________________________
Street: __________________________
City: ____________ State: __________

July 1951 21
Better for structural concrete

Duraplastic is so often specified for structural work because it gives a more plastic, more cohesive mix that is more workable and easy to place. Duraplastic air-entraining portland cement needs less mixing water for any given slump.

Makes more durable concrete

Water-gain and segregation are minimized by the air-entraining feature of Duraplastic. The finished concrete is thus fortified against the effects of freezing-thawing weather and the surface appearance is improved.

Yet Duraplastic* Costs No More

It sells at the same price as regular cement and requires no unusual changes in procedure. Complies with ASTM and Federal Specifications. For descriptive booklet, write Universal Atlas Cement Company (United States Steel Corporation Subsidiary), 100 Park Avenue, New York 17, N.Y.

"Duraplastic" is the registered trade mark of the air-entraining portland cement manufactured by Universal Atlas Cement Company.

OFFICES:

Albany, Birmingham, Boston, Chicago, Dayton, Kansas City, Minneapolis, New York, Philadelphia, Pittsburgh, St. Louis, Waco.

NBC SUMMER SYMPHONY CONCERTS—Sponsored by U. S. Steel Subsidiaries—Sunday Evenings—June to September
Now ... at long last ... fire alarm stations can be as trim, smart, functional as the rest of a modern structure. No need to disfigure walls with ugly, bulky, old-fashioned equipment. Not when you can install Edwards, the first really new fire alarm station in 20 years and the smallest coded station on the market. With a maximum projection of only 1 1/2 inches, Edwards Fire Station literally hugs the wall. Simple, dependable, foolproof, too.

One swift pull of the handle places the call.
No chance of non-alarm due to haste or panic!
CHEAPER IN THE LONG RUN
...the Sheet Metal with HIGH Rust-Resistance

Despite the fact that Toncan Iron may be a little higher in price than common ferrous materials frequently used for the same type of work . . . it is cheaper in the long run both for client and sheet metal contractor. WHY? . . . To quote the men who use it, "... because Toncan Iron works easier on the bench . . . has no hard spots . . . doesn't flake. It lasts longer . . . scores of our jobs have stood up twenty years and more. It is a better buy for our customers."

Not a steel—and not merely a copper-bearing iron—Toncan Iron is the only sheet metal combining refined open hearth iron with twice as much copper as copper-bearing steels and irons, plus molybdenum in the right proportion to bring out the full effectiveness of the copper. See Sweet's Architectural File or write for full information.

REPUBLIC STEEL CORPORATION
GENERAL OFFICES • CLEVELAND 1, OHIO
Export Department: Chrysler Building, New York 17, N.Y.

for more than 40 years . . . HIGHEST RUST-RESISTANCE
OF ALL FERROUS MATERIALS IN ITS PRICE CLASS

COPPER-BEARING STEEL

Open hearth steel + Copper = Ordinary copper-bearing sheets

TONCAN IRON

Open hearth iron + Molybdenum in proper proportion + twice as much copper = TONCAN IRON SHEETS, most rust-resistant ferrous sheets in their price class!

Republic
TONCAN COPPER MOLYBDENUM IRON
— for ducts, gutters, conductor pipes, roofing, siding, tanks, ventilators, skylights, hoods and other sheet metal applications requiring rust-resistance — and for corrugated metal drainage products.
GOOD BRICKWORK = GOOD DESIGN + GOOD WORKMANSHIP + GOOD MATERIALS

"SLUSHING" INVITES LEAKAGE IN BRICKWORK

WE SUGGEST THAT—

Brick should always be so laid that when the brick is shoved into place, the head or cross joint will be filled solid with mortar, without slushing. If the joints are not completely filled, water may leak through the voids to the inside of the building.

The photos at the left show the voids that often result when slushing is used to “fill” a joint. Even when mortar has first been spotted on both corners of the brick, slushing cannot be relied upon to fill the voids completely.

The great plasticity of Brixment enables the bricklayer to throw plenty of mortar onto the brick to be placed — to use plenty of mortar in the bed joint — and still shove the brick easily into position, with excess mortar oozing out all around, and with all voids filled.

BRIXMENT

Brixment mortar has greater plasticity, higher water-retaining capacity and bonding quality, greater resistance to freezing and thawing, and freedom from efflorescence. Because of this combination of advantages, Brixment is the leading masonry cement on the market.

LOUISVILLE CEMENT COMPANY, Incorporated, LOUISVILLE, KENTUCKY
This new door opens upward . . . the operating mechanisms at the ends are positively tied together — resulting in an easy-working door that cannot tip or jam. This all-vertical arrangement takes no floor space in the room. Space-saving, convenience, easy operation, neat appearance, concealment of clothing, protection of personal property, adaptability, strength, durability, high safety factor, reasonable cost — you get all these advantages. Write for Bulletin F-4644.
Look how the strong welded mesh of **Pittsburgh Steeltex** Floor Lath assumes its proper position in a concrete slab.

You can readily see why a slab poured over Pittsburgh Steeltex Floor Lath means a better, stronger floor. It is properly reinforced with embedded galvanized welded wire mesh and properly cured because moisture is retained by tough waterproof backing. Furthermore, construction costs can be cut since work may continue on the floor below while pouring is in progress. For further good reasons to specify Steeltex, see Sweet's or write for our catalog D.S. 133, Dept. PA, Pittsburgh Steel Products Co., Grant Bldg., Pittsburgh 30, Pa.
Steel saved civilization at Augsburg

For 2000 years, the western world has survived vast waves of Asiatic invaders who threatened to destroy it. Repeatedly, the fate of civilization and Christianity has seemed to hang on the outcome of a single battle.

Such a decisive action was fought at Augsburg, South Germany, in 955 A.D. Swarming out of Asia, savage Magyars overran the rich Danube Valley. They ravaged the prosperous lands of Germany, Italy and France. At last, under Otto, King of Saxony, the armored Knights of Christendom rallied. They faced a hundred thousand fierce foes. The battle raged all day. Thousands were slain. At last the tide turned and the Magyars fled. For three days the Knights pursued the scattered enemy, killing or capturing thousands more. Symbolic of the west's predominance in weapons and armor of iron and steel, victory was credited to King Otto's iron-tipped Holy Lance.

Augsburg ended the Magyars' attempts to conquer Europe. They settled down to peaceful living in their valley and within 50 years accepted Christianity. Again, history demonstrated the truism that no people or alliance can establish supremacy unless it first predominates in the production and use of iron and steel.

It is reassuring that America produces twice as much steel as the rest of the world combined. America has the steel to win. We will use enough of it to protect our leadership of a free Christian world.
“Lo-Loss” Busway was chosen for this application because of its proved flexibility as a riser bus in commercial buildings ... its light weight ... its ease of installation. Factory fabricated sections required minimum space and saved installation time—both of prime importance to any modernization job. Now, branch circuit take-offs can be made at various floors, eliminating separate circuits and long conduit-cable runs from the main switchboard. Minimum voltage drop is assured by insulated copper bars on close centers.

Designed to carry current up to 4000 amperes at 600 volts or less, NE Busway is the most economical, convenient, flexible and salvable layout possible for commercial or industrial buildings. Send for information today.
7 KEYS provided by **ART METAL** to speed specification writing and installation planning for all types of **INCANDESCENT LIGHTING**

KEY 1 **PRODUCT**

KEY 2 **CANDLEPOWER DISTRIBUTION CURVES**

KEY 3 **COEFFICIENTS OF UTILIZATION**

KEY 4 **CROSS SECTION DETAILS**

KEY 5 **APPLICATIONS**

KEY 6 **SPECIFICATIONS**

KEY 7 **DATA**

THE ART METAL COMPANY • CLEVELAND 3, OHIO

Manufacturers of Unified Lighting Equipment for Office, Store, School, Hospital and Hotel

Art Metal Unified Lighting standardizes the design, style and finish of each unit, to achieve an architecturally integrated installation.

Write on your letterhead for free catalog, INCANDESCENT UNIFIED LIGHTING
Hospitals using MULTI-VENT

MAYO BROTHERS CLINIC, Rochester, Minnesota
CHICAGO LYING-IN HOSPITAL, Chicago, Illinois
YAKIMA VALLEY MEMORIAL HOSPITAL, Yakima, Wash.
FRESNO COUNTY HOSPITAL, Fresno, California
NEW L. S. PRIMARY CHILDREN'S HOSPITAL, Salt Lake City, Utah
CHICAGO STATE T. B. SANATORIUM, Chicago, Illinois
CHICAGO LYING IN HOSPITAL, Chicago, Illinois
YAKIMA VALEY MEMORIAL HOSPITAL, Yakima, Wash.
FRESNO COUNTY HOSPITAL, Fresno, California
NEW L. S. PRIMARY CHILDREN'S HOSPITAL, Salt Lake City, Utah
CHICAGO STATE T. B. SANATORIUM, Chicago, Illinois
ST. VINCENT'S HOSPITAL, Santa Fe, New Mexico
SAMARITAN HOSPITAL, Ashland, Ohio
NATIONAL INSTITUTE OF HEALTH, Bethesda, Maryland
ROSE MEMORIAL HOSPITAL, Denver, Colorado
ELIZABETH STEEL MAGEE HOSPITAL, Pittsburgh, Penn.
BEAR LAKE MEMORIAL HOSPITAL, Montpelier, Idaho
L. D. S. HOSPITAL X-RAY DIVISION, Salt Lake City, Utah
RAVENSWOOD HOSPITAL, Chicago, Illinois
UNIVERSITY HOSPITAL, Omaha, Nebraska
BENSON SWIFT COUNTY HOSPITAL, Benson, Minnesota
SOUTHSIDE HOSPITAL, Bay Shore, L. I., N. Y.
ANDA T. B. STATE HOSPITAL, Arvada, Minnesota
BINGHAM MEMORIAL HOSPITAL, Blackfoot, Idaho
MOUNT VERNON T. B. HOSPITAL, Mount Vernon, Illinois
PHelps COUNTY HOSPITAL, Rolla, Missouri
MENOMINEE HOSPITAL, Menomonie, Wisconsin
STATE OF WISCONSIN—GENERAL HOSPITAL, University of Wisconsin
ST JOSEPH'S HOSPITAL, Hancock, Michigan
IVINSON HOSPITAL, Laramie, Wyoming
EVABERRY STATE HOSPITAL, Tabora's Patients Building N-10
NEW ROUND PARK HOSPITAL, St. Petersburg, Florida
HEART HOSPITAL, University of Minnesota, Minneapolis, Minn.
JUAB COUNTY HOSPITAL, Nephi, Utah
SOMERSET STATE HOSPITAL, Somerset, Penn.
GILLETTE HOSPITAL, St. Paul, Minnesota
GAISSDEN COUNTY HOSPITAL, Quincy, Florida
UNIVERSITY OF ILLINOIS PHYSICAL ENVIRONMENT LABORATORY Urbana, Illinois
CHESTNUT HILL HOSPITAL, Philadelphia, Pa.
UNIVERSITY OF CALIFORNIA Medical School—Teaching Hospital
PASTEUR MEDICAL BUILDING, Oklahoma City, Okla.
OAKWOOD HOSPITAL, Detroit, Michigan
COLEMAN HOSPITAL, Indianapolis, Indiana
STANISLAUS COUNTY HOSPITAL, Modesto, Calif.
UNIVERSITY OF CALIFORNIA, Virus Laboratory

* See SWEET'S Arch. & Eng. Files or Write for detailed literature and the name of the Multi-Vent sales engineer in your vicinity.

MULTI-VENT DIVISION

THE PYLE-NATIONAL COMPANY
1379 N. KOSTNER AVE., CHICAGO 51, ILL.

Hospital medical staffs and technicians are rapidly recognizing that the Multi-Vent panel is the one air diffuser that can surely meet, even surpass, their rigid air distribution requirements for air conditioning these critical hospital areas. The superlative performance of Multi-Vent in outstanding hospitals throughout the country is proof of Multi-Vent's ability to provide perfect over-all air distribution completely free from drafts and at the same time permit simple, positive, extremely accurate control and uniformity of air movement, temperature, and humidity under the most adverse conditions.

Multi-Vent's unique pressure displacement principle of air distribution is completely free from BLOW or THROW (high velocity injection), the main source of draft hazards... thereby eliminating all of the most serious installation, balancing, and adjustment problems inherent in the velocity injection principle upon which all air diffusers except Multi-Vent depend.

Multi-Vent is by far the best buy for virtually every type of institutional or commercial building, new or old, where true comfort or where uniformity and accurate control of air movement, temperature and humidity are the primary objectives.
All over America, those responsible for building our hospitals are facing a challenging problem. Hospitals must be built quickly...yet materials and manpower are scarce. The need today is to make the fullest use of our total resources...of men...of material...yes, the most effective use of money, too! St. Frances Cabrini Hospital met the need by using Ceco Meyer Steelform Concrete Joist Construction, which provides big savings these three ways:

1. SAVES MEN because less time and labor are required to provide open wood centering and form work.

2. SAVES MONEY by saving concrete...the "dead load" is kept to a minimum. Removable steel forms can be re-used, so only a small rental is charged.

3. SAVES MATERIAL because only a minimum of critical steel is used. Less concrete is necessary than in other concrete floor constructions.

The result...a strong, flexible building capable of absorbing great strain. It's fire-resistant...SAFE; soundproof...QUITE. Ceco, originator of the Steelform method, is first in the field. So when concrete joist construction meets your need call on Ceco...the leader over all.

CECO STEEL PRODUCTS CORPORATION
General Offices: 5601 West 26th Street, Chicago 50, Illinois
Offices, warehouses and fabricating plants in principal cities

In construction products CECO ENGINEERING makes the big difference

Seating Capacity

UNLIMITED

Vinylite

Vinylite RESINS

Bakelite Company, A Division of Union Carbide and Carbon Corporation, 30 East 42nd Street, New York 17, N. Y.

Yes, when upholstery is made of Vinylite Brand Resins, look for unlimited wear by all conventional yardsticks!

Look for unlimited range of colors, too, in smooth or embossed finishes, to suit imaginations not limited by stereotyped ideas on furniture covering and styling.

"Boltaflex" upholstery made from Vinylite Resins is tough and durable. It is waterproof, stain-resistant, alcohol-proof!

In addition, it has a phenomenal ability to withstand aging—without cracking, flaking, or chipping. It is washable with soap—though wiping with a damp cloth usually does the job. It strongly resists oils, greases, alkalies, most strong acids.

Upholstery materials of Vinylite Resins can meet fire-resistance requirements of New York City and Boston. Extremely workable, they shape and drape well around corners, curves, edges—tufting and channeling beautifully—fitting snugly.

These rich, colorful, durable, economical upholstery materials are an outstandingly safe investment for hospitals, cafeterias, institutions, restaurants, cocktail lounges, homes. For more facts and a list of many fabricators of upholstery materials made from Vinylite Brand Resins, write Dept. JD-58.
Pictured above are Lupton Commercial Projected Metal Windows—low cost dependability with long life. They offer more daylighting and better ventilation than any other type of window at comparable cost. Precision-made of hot rolled steel, with ventilators welded for extra strength, they will not shrink, warp or swell. Walls of windows, like these, can mean savings too—often cost less than masonry construction.

When you design—keep Lupton in mind. There is a Lupton Metal Window for every type of building. Backed by over 40 years of experience in the window industry, the Lupton name is your guarantee of a quality product. One you can specify with confidence. You'll find our Catalog in Sweet's—or write direct for your copy.

MICHAEL FLYNN MANUFACTURING CO.
700 East Godfrey Avenue, Philadelphia 24, Penna.
Member of the Metal Window Institute and
Aluminum Window Manufacturers Association
ONLY ONE MOVING PART — Powerful thermostatic motor assembly is easily accessible from the front. Simple and durable construction insures long life and minimum of maintenance.

SAFETY TESTS PROVE

POWERS Type H THERMOSTATIC WATER MIXERS will out-perform all other thermostatic or pressure actuated mixers

Only ONE shower accident may cost many times the price of a Powers mixer. Why settle for anything less than the SAFEST SHOWER MIXER MADE?

Thermostatic SHOWER MIXERS

are SAFE against scalding caused by

1 PRESSURE or 2 TEMPERATURE fluctuations in water supply lines

Safer — because of their quick acting response to any change in temperature setting, pressure or temperature variations in water supply lines. Users report control within ½°F. Greater Comfort — shower temperature remains constant wherever set. No jumpy temperatures. More Economical — POWERS thermostatic mixers promptly deliver showers at the right temperature...no waste of time, hot or cold water.

For new installations or when modernizing obsolete showers...play safe, use Powers type H thermostatic shower mixers.

THE POWERS REGULATOR CO.

OFFICES IN OVER 50 CITIES • SEE YOUR PHONE BOOK

Over 55 Years of Water Temperature Control

CHICAGO 14, ILL., 2781 Greenview Ave. • NEW YORK 17, N. Y., 231 E. 46th St. • LOS ANGELES 5, CAL., 1808 W. Eighth St. • TORONTO, ONT., 195 Spadina Ave. • MEXICO, D. F., Edificio “La Nacional” 601

July 1951
AT THE American Brake Shoe Company's Foundry and Press Room in the Brake Shoe and Castings Division at Meadow Lands, Pa., Architect Harry Lucht of West Englewood, N. J., effectively utilized PC Glass Blocks. Besides admitting an abundance of natural daylight, they heighten the architectural appeal of the building. They eliminate expensive sash maintenance, reduce heating and air-conditioning costs. And, at night, the interior illumination streaming through them affords protection for the surrounding grounds. The construction used in this handsome building is typical of the design used in the PC Vision-Lighting Plan. This plan consists of orientation-keyed areas of PC Functional Glass Blocks—selected for sun or non-sun exposure—used with vision-ventilation areas as required.

ARCHITECT William J. Theo, of St. Louis, Mo., used multiple sizes of PC Glass Blocks in the Painters' Building of that city, to achieve this ingenious decorative effect. Plenty of light is assured for the interior, maintenance of panels is easy, and complete privacy is afforded.

DISTRIBUTED BY PITTSBURGH PLATE GLASS COMPANY; W. P. FULLER & CO. ON THE PACIFIC COAST;
any architectural plan...

effect operating economies... make the most of daylight

THIS NEW air-conditioned building of the Valley National Bank, Winslow, Arizona, was planned to include PC Soft-Lite* Prism Glass Blocks. These glass blocks "make the most of daylight." That means the admittance of floods of natural daylight, softly diffused for employee eye-comfort. The exterior view shows to what extent panels of PC Glass Blocks can complement the architectural plan. And this is true, regardless of the architectural style. Architect: Edward L. Varney, Phoenix, Arizona.

PC Glass Blocks are immediately available... no construction delays

And this includes PC Functional Glass Blocks, especially designed for precision work. These glass blocks contain such features as light-directing prisms on the interior faces of certain patterns, light-spreading corrugations on outside faces, a fibrous glass insert to diffuse still further the light transmitted by the block itself, and the PC Soft-Lite* Edge Treatment, which creates a better, more comfortable "eye-ease" panel appearance. And the new "Clean-Easy Face Finish" provides an important short-cut for cleaning up the excess mortar on the panels after installation.

* T. M. Reg. Applied For.

PITTSBURGH CORNING CORPORATION
PITTSBURGH 22, PA.

The mark of a modern building

HOBBS GLASS LTD. IN CANADA; AND BY LEADING DISTRIBUTORS OF BUILDING MATERIALS EVERYWHERE.
Imagine *yourself* sitting all day in a classroom with a closed-up, smothering atmosphere ... an atmosphere that builds a barrier of lethargy between you and your work.

You can break down that psychological barrier by removing the physical barrier. By opening up that classroom with a room-length, ceiling-high window wall of light-inviting Fenestra® Intermediate Steel Windows for a feeling of freedom ... an atmosphere of alertness.

YOU GET:

- **More Daylight**—An abundance of eye-easy daylight flows over the whole room. Fenestra Steel Windows have more glass area than most windows the same size because their frames are designed to be strong and rigid without being bulky!
- **Controlled Fresh Air**—Vents protect from drafts ... permit ventilation even on rainy days.
- **More See-through Vision**—Nothing destroys the freedom of the view.
- **More Protection from Accidents**—Sill vents keep children from falling out.

Fenestra Steel Windows give your school architectural distinction ... inside and out. And the custodian can wash and screen them from inside! Remember the *triple* savings you get with standardized Fenestra Intermediate Steel Win-

Fenestra

WINDOWS • PANELS • DOORS
dows: Low first cost . . . volume production.
Low installation cost . . . modular sizes. Low
maintenance cost . . . steel lasts.

FENESTRA HOT-DIP GALVANIZING SLASHES
WINDOW MAINTENANCE COSTS
Check on Fenestra Hot-Dip Galvanized Win-
dows. The combination of the strength of
steel and super-protection of the special gal-
vanizing done in Fenestra's automatically
controlled new galvanizing plant puts new
meaning in the term "maintenance-free." No
painting, period!
For further information, call the Fenestra
Representative (listed in your Yellow Phone
Book), or send the coupon.

Free Authoritative Books
BETTER CLASSROOM DAYLIGHTING—Well-illustrated, simply-written, 16-page
guide based on two years of research by well-known Lighting Expert R. L. Biesele.
FENESTRA HOT-DIP GALVANIZING—Illustrated booklet showing how Fenestra
Hot-Dip Galvanizing makes Fenestra Steel Windows stay new.

engineered to cut the waste out of building
BLUE RIDGE

securit

INTERIOR

GLASS DOORS

for beauty!

for privacy!

for light!

NEW... BEAUTIFUL...

BLUE RIDGE securit INTERIOR
There's never been a door like it!

Modern Beauty — this ⅝"-thick door of jewel-like patterned glass adds an exciting touch to modern decoration. Designed for interior use only.

Provides Privacy — keeps people from seeing in, yet lets in light. Can be Satinol® finished for even greater obscurity and diffusion.

LOOK AT THESE EXCITING FEATURES

Really Tough — it's tempered ... 3 to 5 times tougher than non-tempered glass. Should its maximum resistance be exceeded, it does not splinter like ordinary glass, but disintegrates into little crystals.

Comes Complete — with sturdy hinges made especially by Stanley, and with handsome Sargent Hardware.

No Maintenance — never needs refinishing.

Faultless Operation — can't warp or swell or shrink. Easy to open and close. Swings on ball-bearing, single-acting Stanley Hinges.

Thus, the same door can be used right or left hand.

Easily Installed — no cutting, mortising, drilling, tapping or painting. Door is available plain or drilled to take Sargent Door Closers or concealed LCN Closers.

And Not High Priced — you can afford to use this beautiful door in almost any interior.

Reversible — the Muralex glass pattern is the same on both sides.

Look at these exciting features! Really Tough, No Maintenance, Faultless Operation, Easily Installed, and And Not High Priced.

Think of the places you can use these wonderful new doors! Offices, schools, hospitals, homes, all kinds of modern buildings. Mail the coupon for a detailed folder or call your Libbey-Owens-Ford Glass Distributor. Securit Interior Glass Doors are made by the Blue Ridge Glass Corp., Kingsport, Tenn., and sold through L·O·F Distributors.

Look at these installations! See the clean, modern look the Securit Door gives this office. Gives privacy without blotting out light. What a wonderful way to add distinction to a room.

Blue Ridge Sales Division
Libbey·Owens·Ford Glass Company
B-971 Nicholas Building, Toledo 3, Ohio
Please send me your folder on Securit Interior Glass Doors.

Name (please print) __________________________
Address ______________________________________
City________________ State____________________

July 1951 41
Bryant Gas Forced-Air Vertical Furnaces help solve today's important home space problem. They're the long-lived space-savers that can be installed almost anywhere...in basement, utility room or small closet. They require only slightly more than two square feet of floor space in their smaller sizes.

They provide the kind of fully-automatic, trouble-free operation that pays off in economy and user satisfaction. The proof is in thousands of installations in single-family dwellings and in thousands of family units of multi-family housing which have Bryant Personalized Heating.

These slim, efficient Bryant Gas Forced-Air Vertical Furnaces will fit into your plans, will help ease the squeeze...to lower construction costs and provide more living space. Get full details from the Bryant Distributor nearest you or write direct: Bryant Heater Division, Dept. 124, Affiliated Gas Equipment, Inc., 17825 St. Clair Ave., Cleveland 10, Ohio.
Operator can set both artificial sun and traveling photocell to any angle or altitude and read resulting light value. All controls work automatically. Readings are taken at high speed and can be recorded electrically.

Direct sun causes uncomfortable brightness near windows, extreme contrast in other parts of room. Insulux Fenestration directs and spreads daylight to ceiling, keeps brightness at comfortable levels.

He makes "Daylight" to order for Daylight Engineering study

What happens in a building when the "sun" shines on a light-directing block is measured by the photocell traveling on this hoop. On the other side of the glass block shown in the picture an artificial sun can be set to simulate daylight conditions in any season in any geographical location at any time of the day.

These tests are part of the research-in-daylight program at the Daylighting Laboratory, Engineering Research Institute, University of Michigan, where special projects are set up to study methods of obtaining best quality daylight...how to make it do a better lighting job.

One significant better-daylighting result is the development of Insulux Light Directing Glass Block No. 363. This new block controls light so efficiently that a building virtually "turns with the sun." Entire glass areas transmit free daylight from early morning to late afternoon.

A Daylight Engineer will be glad to show you the benefits the new Insulux Glass Block® can bring to your structures. Just write: Daylight Engineering Laboratory, Dept PA7, Box 1035, Toledo 1, Ohio...Insulux Division, American Structural Products Company, Subsidiary of Owens-Illinois Glass Co.

NSU UX FENESTRATION SYSTEMS
—by the leaders of Daylight Engineering
GOLD BOND ANNOUNCES

New, Improved Rock Wool!

Meets FHA specifications! Insures equal distribution of wool—no voids!

Now, you can specify a better insulation—new, improved Gold Bond Rock Wool Batts and Blankets—that are tougher, easier to handle, save building time and cut application costs.

Tested in the field for a year on the Mat-Thick Blankets, this exclusive new design is available on ALL Gold Bond Blankets and Enclosed Batts at no increase in price.

Here are the advantages:

1. Adheres to all 4 sides. The fireproof rock wool center won't slip or sag.
2. Tougher. Reduces tear and damage—another important saving on any job.
3. Easier to handle. Rugged construction means faster application—savings in time and labor.

The drawing above shows the construction details—the built-in vapor barrier at the bottom, with the nailing flange. Note particularly the breather strips on the top. Meets FHA and Building Code requirements.

These extra benefits, combined with the well-known advantages of a mineral fireproof insulation, are now available in all sizes and thicknesses—Mat-Thick, Semi-Thick, and Full-Thick in most areas.

For National Gypsum's new folder describing the full line of Insulation Products, including data on thermal properties and specimen specifications, write Dept.Y for A.I.A. File #37-B.

You'll build or remodel better with Gold Bond

NATIONAL GYPSUM COMPANY • BUFFALO 2, N. Y.
See how much metal and labor is saved in the shorter duct runs with Agitair tailor-made diffusers.

L Shaped area? One diffuser does the work of two. Note the savings.

Save Metal...
Cut Costs... with

AGITAIR®

SQUARE & RECTANGULAR
AIR DIFFUSERS

Compare the diagrams on this page and you'll understand why today — more than ever before — it's important to specify AGITAIR Type R. They are the only diffusers that may be assembled in a variety of patterns to provide blows in one — two — three and four directions, with discharge orifices proportional to the area being served. Yes — you can help overcome the metal shortage and reduce the cost of duct work — without reducing the efficiency of air distribution. Specify AGITAIR . . . the only air diffuser tailor-made for each application.

Write for Complete Data

AIR DEVICES Inc.
17 East 42nd Street New York 17, N. Y.
Air Diffusers • Air Filters • Roof Exhausters

Note savings in number of outlets and length of duct runs with Agitair.

The Only Air Diffuser Tailor-Made for Each Application
Of fire-safe, concrete-frame construction, Miami Beach's fine, new Sans Souci Hotel illustrates a principle which will come in handy in expediting defense structures of all kinds.

For earlier occupancy, this well-handled project was concreted throughout with 'INCOR' 24-HOUR CEMENT. Dependable 'Incor' high early strength made it possible to maintain top-speed schedules with a single set of forms—saving two extra sets which would have been needed for equal speed with ordinary portland cement.

Forms cost plenty, these days, and you will find that 'Incor' savings run into real money—on this job, a tidy saving of $15,000.

Well worth considering, for new factories, additions, warehouses and the like, needed in a hurry to expedite the defense program.

What is the architect's stake in the health of America? Can he shrug off the problem by saying, "Hospitals are designed by specialists ..." or, "There are plenty of standards available for hospital planning ..." or, "When I get a hospital commission, then I’ll do some research ..." or perhaps, "In any event, there aren’t enough doctors and nurses to staff new hospitals even if they were built, so why worry?"

The architect cannot run away from the hospital planning problem. There is much work to be done, and many architects will have to do it. There is much research to be done, and many more designers will have to contribute their abilities. New types of health facilities are being proposed, for which there are no standards.

We are one of the healthiest nations in the world and we are better supplied with hospitals than most nations. (Switzerland has 15.8 beds per thousand of population; Great Britain 10.5; the United States 9.9). But being as good as, or even better than others is not good enough.

According to the recent, national, bed count made under the Hill-Burton Act—in the process of which many of our existing hospital beds were found too substandard to be counted—we have about one-half the hospital beds which we should have, even on a rather low standard of beds-per-thousand. To design for the needed beds is the architects’ job.

Actually, the problem of beds is only one part of the whole health problem. Hospital beds should be provided primarily for catastrophic illness, unavoidable surgery, childbirth, and the like. Other “hospital cases” are evidence of our failure to defend the preventive front.

To strengthen the front line, we need health departments to protect the food supply, to provide immunization, to protect the workers from industrial hazards and occupational diseases, and to offer treatment to those still ambulant. It is estimated that 40 million people in the United States live in communities which are not provided with health services. To design these facilities is the architects’ job.

Finally, we need enough well-trained doctors, nurses, and technicians to operate the health facilities and to carry on research and teaching. We are short about 40,000 physicians and 66,000 nurses. To obtain more doctors and nurses we need more medical schools and more facilities for the education of nurses. To design these buildings is the architects’ job.

To study and plan these buildings we would need many more architects, engineers, and draftsmen competent in this field. If we are to be helpful to countries outside our borders we should certainly have to improve our own position, both quantitatively and qualitatively.

Hospital design requires constant specialized study and research based on a body of knowledge that is continually kept up to date. There can be no such body of knowledge accumulated, if each architect is to start each hospital project by a spurt of “research” which often consists of “asking the doctor," who himself does not know.

We need something more and I suggest the formation of a Society of Hospital Planners. At present, the architects who are members of the American Hospital Association and the members of the American Association of Hospital Consultants have no way of sharing their knowledge and experience. Such a Society would immediately have an active agenda, which might include: foundation of a journal exclusively devoted to hospital planning; working for special courses in hospital planning in the schools of architecture; working toward establishment of a national agency to conduct and publish continuing research in the problem of hospital planning.

The architect has had a large part in the development of health standards in the United States. Let him not become smug and bogged down in static standards. Much research lies ahead—and much work.
A Case Study: Massachusetts General Hospital

By Mary Agnes Morel

Massachusetts General Hospital, Boston, one of the country's oldest, has functioned continuously as a private hospital since its first patient was admitted on September 3, 1821. During the 140 years that have elapsed, every advance in medical science and every design cliché have been reflected in its architectural planning. And many of these steps may still be studied in physical form by visiting Fruit Street.

The simple specification given Charles Bulfinch by Massachusetts Medical Society, in 1816, was that the building be "of stone and of that kind called granite." But the famous architect incorporated the latest improvements of the period—a glass dome for surgery, water closets, central heating (with pipes conducting hot air from the basement furnace and water pipes placed next to avoid freezing in winter), and chimneys (which critics felt destroyed the symmetry of the design) to provide ventilation for the wards. On the other hand, patients slept under mosquito nets in summer and the first screens were not installed until 1875. The operating chairs, with heavy straps to secure the (conscious) patient, were of plush; and the private rooms were elegantly furnished with heavy damask lambrequins, gilt cornices, lace draperies, and soft carpets.

The first public demonstration of ether, in 1846, led to a radical change in the hospital. Wings were added at either end of the original building, to care for the increase in surgery cases, and plans were made for the Bigelow Amphitheatre, though it was not to be completed until 1868. In 1872, the first step toward specialized wards was taken when surgical patients were moved to the west end of the Bulfinch building, to be nearer Bigelow.

In 1873, two new wards were built, incorporating the latest ideas of the time. As there was a theory that wards became "hospitalized" (infected) in a certain number of years and should then be discarded, these were temporary structures, with
frames and walls of corrugated iron. Such wards were constructed by M.G.H. until the turn of the century, when the 1899 Annual Report stated that with new aseptic methods hospitals should be usable as long as the structural parts. So a well-designed physical plant (such as the Bulfinch building, which still houses patients) must have a flexibility that will make it adaptable to yet undiscovered methods.

The medical development which most radically changed hospital planning was the introduction of aseptic methods in 1887. A doctor newly returned from Europe first prepared and used aseptic dressings; another staff member devised gauze sponges for use in surgery. The control of infection that resulted converted the Trustees who, in 1888, authorized the erection of Ward "E" for clean surgical cases, with Bradlee operating theater attached. The ward was 82' x 36' 6" and 20 feet high. It had 15 one-bed rooms with a central, eight-foot corridor. Of particular interest to architects is the fact that all interior corners were curved and there were no unnecessary moldings.

The Bradlee Amphitheatre was circular, 18 feet in diameter, with a wall of pressed brick and an asphalt floor. A north skylight (192 square feet) and hammered-glass roof provided light. A balcony for 100 standees, with tiers under the north window accommodating 25 more (as M.G.H. is a teaching hospital, affiliated with Harvard Medical School, this was important), provided for student observers. Bradlee was the first building in the United States for aseptic surgery only. Abdominal surgery without suppuration and brain operations (excluding compound fracture of the skull) were the only cases admitted. Among the rigid controls were: surgical instruments could not be loaned another part of the hospital; doctors must make the rounds of Ward "E" only before visiting the other wards; and no person with even a skin scratch was allowed in either ward or theater. As doctors then operated in street clothes (the fastidious in frock coats), the tremendous success of these small safeguards seems almost unbelievable.

The Nineties brought further medical advances to change hospital planning. Bradlee's success in asepsis led to introduction of the same precautions in general surgery. In 1893, a central sterilizing room for preparation of surgical instruments and dressings was planned. On the research side, increased use of photography, radiography, and bacteriology made a specialized building necessary and the Clinical-Pathology Laboratory was opened in 1896. In this two-story structure (90' x 25') researchers could rent working space for $25 a year. By 1899, more room was needed and the top floor of the Power House taken over. Since then, laboratories have invaded every building of the hospital. Even the handsome new Research Building (opened this spring) cannot accommodate Pathology and Bacteriology, and there are specialized labs in most of the buildings.

Planning of the New Bigelow Operating Rooms began at the end of the century. Completed in 1901, the surfaces (white tile floors, polished marble dadoes, shining brass) made for sterile conditions. The building was completely sealed and air conditioned, air being taken in through ducts, fanned over radiators, and ruffed and wafted by innumerable "punkahs" until it was exhausted on the roof. (Although one defect was that the air intake was so near kitchen vents that cooking odors flavored the otherwise pure atmosphere.) The heating system was not changed until 1928.

Much building since 1900 has been for increased personnel and administrative needs, but construction of patients' quarters has continued for all income groups—Phillips House (1917) for the rich; Baker Memorial (1930) for the middle class; White Memorial (1938) to replace the temporary one-story wards; and Vincent-Burnham Memorial (1947), with special children's wards. The unit planning of work areas and the divided utility rooms (with "clean" and "soiled" areas) in White Memorial reflect design advance of the time. The Research Building (1951) is the latest unit of an over-all plan (developed by Coolidge, Shepley, Bulfinch & Abbott, M.G.H. architects since 1913) to provide integrated research, clinical, and treatment facilities.

Massachusetts General Hospital today, under the guidance of its present director, Dr. Dean A. Clark, is studying the current problem of integrating hospital facilities with community health care, which will, in time, influence future planning, as have other medical advances in the past.
The Present: Hospital Practice Today
By Roy Hudenburg*

Today's hospital architecture is widely influenced by the community's determination to bring to its citizens a quality of medical care considered a decade ago to be idealistic. The forces of mechanization that are responsible for today's high standards of hospital care have, at the same time, raised new problems of hospital operation by elevating living standards, by raiding labor markets on which hospitals formerly relied, and in general making hospital help scarce and expensive. Hence, architectural development of the facilities necessary for that care has been made possible only by wide acceptance of the principles of functional design, by studies looking toward economy, and by a careful analysis of hospital operation and administration.

One of the excellent guides for architects in their approach to hospital planning has been the published work of the Technical Services Branch, Division of Hospital Facilities, U. S. Public Health Service. Carefully worked out plans for particular units of the small and moderate-size hospitals have become accepted guides for room design and have been used freely by architects new to hospital work as well as veteran hospital designers. They have become known as the Public Health Service "Elements of General Hospitals." These "Elements" have generally been used with a high degree of critical selectivity. Particularly it must be realized that they are not intended to solve for the designer the problem of relating one functional area to another.

Federally aided construction of community hospital facilities comprises a substantial part of the total of hospital construction in the United States. In the year ending June 1950, according to best estimates, expenditures for hospital construction in the United States were approximately $802 millions of which $353 millions were being spent as a result of the federal-aid program. The general outlook for the next few years is that the construction of hospitals will owe at least half its volume to the federal program.

The unknown quantity, as this is being written, is what government assistance can be expected in the provision of hospital facilities for population centers that become swol­len by defense activities. The only thing that seems fairly certain at this stage is that no one wants to see a repetition of the sins of shoddy construction that characterized op­eration under the Lanham Act during World War II.

Total war, the obvious manifestation of airborne destruction, requires a high degree of civilian health. Recognition of this principle by planners of strategy promises to offer a high degree of support to hospital maintenance and construction during the emergency.

Civilian health facility requirements are being interpreted to the Defense Production Administration through a division of the Public Health Service of the Federal Sec­urity Agency. In the early stages of the operation of this Claimant Agency, steel, copper, and other materials in short supply have been secured for hospital construction in specific hardship cases.

The Controlled Materials Plan will make available for school and hospi­tal construction a portion of the available strategic materials, following an allocation of steel and copper which was made for hospital and school construction to cover the month of June 1951.

The immediate over-all picture, as well as it can be seen through the flickering light of early defense preparations, is that a hospital board of trustees now considering expansion plans will be extremely popular with the architect. With limitations on other types of construction, and with schools and hospitals assured of assistance in securing materials in short supply, local hospital construction should bulk as a greater percentage of the over-all construction total than ever before.

Entering the realm of pure speculation, it would not be surprising if these combinations of circumstances acted to reduce the level of hospital construction costs, in spite of in­creasing material costs.** Whether or not the opinion is correct, there has been a feeling within the last year that hospital bids have been higher than justified—partly because contractors had to protect themselves against delays due to mate­rial shortages and partly because the contractors were able to keep their crews busily occupied on con­tracts for less exacting buildings.

**Public Health Service reports that hospital construc­tion costs have advanced continuously since the in­ception of the "National Health Program" in 1947—about 9% in the first three years, and another 15% since the outbreak of the Korea­n conflict. Total costs of hospital projects, including all equipment, archi­tects' fee and supervision, but excluding site have in­creased from a national average of $13,500 per bed in 1947 to $17,000 a bed today. PHS experts look for another possible 4% increase during the remainder of 1951.

Particularly noteworthy in the General Acute Hospital for Polk County, Florida—a mod­erate-size general hospital—is the floor plan of the surgical suite, illustrating the trend that Hudenburg mentions in his discussion across the page. By placing the operating rooms in the center, a separate corridor can lead to them from the elevator, and the various work rooms, with good light, approach the concentra­tion of nurses' activities which is proposed later in this issue. The central, sterile supply area is particularly well located in reference to the surgical suite and also for access to the rest of the hospital.

*Secretary, Council on Hospital Planning and Pla­n Operation, American Hospital Association.
The Present: General Hospitals

Study of recent plans which have been approved for federal grants indicates a seeming pattern of new spatial arrangements that appear to be growing more common in small and moderate-size hospitals.

In the smaller hospital, the operating room has descended to the first floor. In many contemporary plans a double-corridor arrangement brings the emergency department, the X-ray department, the fracture room, the cystoscopy room, and surgical facilities all into one hospital wing on the main floor. When the central, sterile supply department is brought into this area or into a closely adjoining area, the arrangement is perfect, from the standpoint of close supervision by the surgical supervisor.

Personnel experts and many hospital administrators for a number of years have been complaining about the architect's propensity for placing such areas as employee restrooms, central, sterile workrooms, and kitchens in basement areas with poor lighting and bad outlook. The repeated pleas and entreaties appear finally to have been taken seriously, and more and more plans for hospitals are appearing with basement use limited to storage, transformer vaults, boiler rooms, and other areas that can have no deleterious effect on employee morale.

The short supply of nursing personnel in relation to demand and the generally increasing cost of hospital care have exerted an interesting evolutionary force on the design of patient areas. As recently as five or six years ago, hospital authorities, recognizing the substantial amount of time spent by the nursing profession in handling bedpans, were advocating utility rooms and handwashing facilities in close proximity to patient rooms. At that time, bath or lavatory facilities adjoining the patient room were considered a luxury.

By 1947, when regulations were adopted under the Federal Hospital Survey and Construction Act to prescribe minimum requirements, it was required to install a lavatory in each patient room. While this was not an unusual practice, it was by no means universal until the nongovernmental advisors of the Public Health Service wrote the requirement into the regulations.

The "Elements" printed in 1946 show typical nursing units with no toilet rooms adjoining the average patient room; only contagious disease units were provided with toilet facilities. This year the Public Health Service has revised its typical nursing-unit elements to show each patient room provided with adjacent toilet facilities. Today the majority of hospitals being constructed are designed with toilets adjoining each patient room and no longer are they regarded as a luxury.

Design evolution in the larger and teaching hospitals, having had less opportunity to show itself, is not yet very clear. Certainly the large ward is disappearing and American hospitals of the future almost universally will have no ward containing more than four beds. Emphasis continues to be put on vertical construction, therefore it is surprising not to find more applications of the vertical conveyor system for pharmacy and sterile supplies.

Better provisions against fire hazards also are very evident in today's hospital planning. Architects' recognition of fire hazards has brought about improved exit design, and recognition of the need for compartmenting hospitals corridors with smoke barriers, so as to provide for safer horizontal movement of the patients in time of fire. Examination of most hospital plans today reveals the architect's familiarity with the provisions of the National Fire Protection Association "Building Exit Code."

Fenestration of the hospital structure still is a ticklish problem for the hospital designer. Proponents of the wall-to-wall strip window seem somewhat less enthusiastic about their wide expanses of window, but generally patient-room windows are bigger than they were in the past. Patient gratitude, if not an honorary award, awaits the architect who solves the problem of controlling the natural light admitted by big hospital windows.

Medical care, hospital care, and hospital design are all in a continuing state of evolution. However, the improved care available to the patient in today's hospital is largely dependent on the work of the architect who has been willing to undertake research for his hospital clients.

R.H.

A. L. Aydelott & Associates, Architects & Engineers

Bartow, Florida
Clearwater County Memorial Hospital in Bagley—First Honor Award at this year's A.I.A. Convention in Chicago—was designed by the architects, from the landscaping to the interior finishes, thus allowing them to accomplish a degree of co-ordination which is unusual in such projects. All patients' rooms (except for isolation) face a most desirable view of Lake Como, through a grove of pine trees. Those same trees serve to screen western sun from the bedrooms. The plan of the building achieves compactness through another use of a double-corridor arrangement, with X-ray, central, sterile supply, and some other areas, in this case, using the central space. Operating rooms are at the far end of one corridor; laboratory at the extremity of the other; and a cross-through makes contact possible. Noisy areas (kitchen, etc.) face away from the patients' rooms, and in addition are finished with acoustical ceiling material.

Central spaces are, of course, air-conditioned. Heating is by a radiant, floor system, using copper pipes to distribute hot water; combined with an underfloor clay-tile pipe distribution system, which feeds tempered air into the corridors at strategic points, to compensate for air-exhaust in toilets and bathrooms.

The structure is light-steel frame with hard-burned brick walls and a structural-steel roof deck. Floors are generally asphalt tile. Double-glazed windows are used throughout.
Location of the nurses' station in a small hospital is most important; here the visual control is remarkable. Not only is the entire nursing unit under direct control, but also the lobby and, by means of windows, the visitors' entrance and the ambulance entrance, are within the range of observation.
Pensacola, Florida

The Baptist Hospital, Pensacola (above) is a 136-bed project now being finished, which utilizes the first floor primarily for administration and out-patient spaces, and the floors above for surgical cases, maternity, and general medical care.

The Magic Valley Memorial Hospital, Twin Falls (below) is located in a section so isolated that the community has to be almost self-sufficient in medical care. For this reason, the hospital has very fully developed in-patient service facilities. The obstetrical department, in particular, is more generous than one would expect (the birth rate in the area is high). The first floor plan (below) is particularly interesting. Again, the double corridor scheme is used to good advantage.

Twin Falls, Idaho
Greenbrae, California

Marin General Hospital, Greenbrae, has been constructed under the provisions of the Hill-Burton Act, as were most of the hospitals illustrated in this issue. It has 100 beds (and 44 bassinets) at present, with plans for a future 100-bed addition. A pleasant, natural setting on a wooded hillside slope has been fully utilized, with existing trees screening service areas. The architect reports much time spent in studying a staggered-bed layout for the patients' rooms, which would give each patient a view regardless of the position of the cubicle curtains; but this was not pressed in the final plans because it had generated so much comment that he feared discussion of its pros and cons might tie up approval of the hospital in endless controversy. First floor contains administration, clinical, X-ray, and laboratory areas; surgery is on the second floor; maternity on the third; and general medical and pediatric cases on the fourth floor.

The surgical suite is worthy of particular notice in this building. Conventional planning standards have been departed from, in the interest of centralizing equipment and work areas, with the central, sterile supply room particularly tied into the surgical function and a high-speed sterilizer for minor sterilizing processes placed in the operating corridor. It is interesting to compare this arrangement with the studies and comments on pages 84 and 85.
The additions to Gregg County Hospital, Longview, illustrate the problems an architect faces when existing buildings are in a community that has outgrown the available health facilities. Here, the solution is a three-story structure that forms a link between an existing two-story in-patient building on the east and a one-story out-patient building to the west. The third floor shown here (above the levels of the two existing buildings) is the maternity unit, with delivery rooms at the north end of the floor and nurse’s station at the center. Eventually, the older hospital building will be wholly replaced by future additions that will be integral in design with the unit shown here. Currently, the old building has been converted into an administrative unit, isolation area, and nursing space for 35 patients.

The new building contains, in addition to 65 beds, service facilities required by all 100 patients, with sufficient space allowed—in kitchen areas, storage, boiler rooms, etc.—to serve the entire future hospital complex. On the first floor are emergency, operating, X-ray, general storage, central sterile supply, kitchen, staff dining, pharmacy, etc. The second floor is the main surgical and nursing floor, with operating rooms at the north end. Continuous fenestration reaches from ceiling height down to 4’ 6” above floor levels; to control glare, a 3’ 6” concrete canopy occurs above all such window areas.
Washington Court House, Ohio

Fayette County Memorial Hospital, Washington Court House, is an instance of the trend toward integrated health facilities within the community. (Compare Crossett Health Center on page 62, and the program and project for community health care which starts on page 86). Here public health offices, clinical services, obstetrical and maternity care, surgery and medical hospitalization are all included under one roof. The diagnostic services (laboratory, X-ray, pharmacy, clinical treatment, etc.) are between the public health offices and the hospital proper, serving as a separation while being available to both activities. The two nursing wings are separated from one another, yet a central nurses' station allows supervision of both at night.

Future expansion at the ends of the hospital wings has been allowed for by an ingenious offset of the operating and delivery rooms. The question of centralized vs. decentralized food service is met in a hospital of this size by the fact that the kitchen can be almost as close to patients' areas as floor pantries would be—in fact, the pantries provided within the nursing units have been found unneeded and are now converted to other uses.
Georgia Baptist Hospital, Atlanta, Georgia

Stevens & Wilkinson, Architects-Engineers
THE PRESENT: GENERAL HOSPITALS

This eight-story, 376 bed addition to an existing hospital (see plot plan) was built while the old hospital remained in operation. The building received an Award of Merit at the recent A.I.A. Convention. To protect east and west windows of the L-shaped structure from solar radiation, the architects utilize an all-over grid, consisting of concrete eyebrows (extensions of the floor slabs) above windows, and a cross-grid of 18-gage aluminum louvers at the level of the meeting rail; vertical, louver panels occur at the columns, 26'-4"-o.c.

Interior views are of the main lobby and the Memorial Waiting Room. Henry C. Beck Company was general contractor.

Photos: (this page) F. S. Lincoln; (all others) Gabriel Benzur
The program was to design a 376-bed addition to an old hospital (229 beds), including within it new central facilities—administration suite, kitchen and food distribution areas, emergency clinic, physiotherapy department, storage space, pharmacy, obstetrical suite, pediatrics department, surgery, central supply, and radiology department—that would be sufficient in area and equipment to serve the existing hospital, as well as the new patient areas.

The middle of the site was occupied by the existing hospital; across a narrow street to the north was a nurses' home, with the Sheffield Cancer Clinic just west of that. Within the new building, in addition to nursing units, are the new radiology, first-aid, and central pharmacy areas (east wing, ground floor); and central kitchen and staff dining areas (north wing, ground floor). Plans of the first floor, the typical nursing floor (second, third, fourth and sixth) and surgery floors (seventh) are shown. The maternity department constitutes the fifth floor.

The building is completely air conditioned by a system operated with steam taken from a central boiler plant and piped to the roof of the new building. Primary air is delivered through high-velocity ducts, secondary air is taken in individual-room units, and the combination is circulated. The architects estimate that the exterior, solar-louver grid saved its cost in air-conditioning equipment, that it will also effect 15 percent savings in operating the system. All patient bedrooms have rubber-tile floors, plaster walls surfaced with plastic covering, and acoustical-tile ceilings. Intercommunication systems include a clock system, doctors' register, doctors' paging, and nurses' call systems.

The architects have reason to be proud of approval of the new building, particularly by those who know it best. For instance, E. B. Peel, administrator of the hospital, writes to tell us that "we feel that this hospital is well planned from the standpoint of utility, economy, and appearance, and we are greatly pleased with results obtained."

EQUIPMENT

The Present: Clinics and Group Practice

Starting as the out-patient department in the general hospital, combining during the last few years with doctors' private offices, and extending now into the fields of preventive medicine and health education, the "clinic" has become a building type that will draw much attention and see much progress in the coming period.

Two primary, concurrent trends have been responsible for the plan studies that are now being made in many quarters; both are illustrated on the following pages. One arises from the desire of public health officials to integrate, within the community, preventive and diagnostic facilities, with sufficient in-patient beds so that reference to nursing care can be facilitated. This tendency results in such a structure as the Crossett Health Center illustrated here. The other trend reflects the desire of private medical practitioners to co-ordinate their services in some "group practice" arrangement. While the original urge was for efficiency and economy (there are obvious advantages to an obstetrician, a gynecologist, and a pediatrician sharing office space and expensive equipment, for instance), in a project such as the Upper Manhattan Medical Group Center, the medical program is for integrated health care, and the architectural plan must reflect an understanding of this.

Crossett, Arkansas

T.H.C.

William Lescaze, Architect
Neergaard, Agnew & Craig, Hospital Consultants
The Crossett Health Center, located in an Alabama lumber town of 5000 population, is designed to serve that community and the rural district within a 50-mile radius. While emphasis is on the clinical facilities, a 56-bed hospital wing and a surgical suite make it an important contribution toward the conception of an integrated community health facility. Clinical and "out-patient" departments are in the fore wing, with physiotherapy, urology, eye, ear, nose, and throat departments, and an unusually complete dental suite. Provisions for radiological diagnosis lie between this area and the surgical suite. The remainder of the nursing area is devoted principally to obstetrics and maternity care, with a general medical nursing suite separated by use of the double-corridor plan which Neergaard has made well known.

These various health activities are combined in a one-story structure which avoids the usual, rigid, pavilion scheme—at the expense, perhaps, of making the surgical suite corridor a passageway from the nursing unit to the administrative and clinical departments. The building is completely air conditioned. Roof overhangs have been carefully studied in relation to penetration of the sun into south-facing bedrooms.

The Crossett Health Center, located in an Alabama lumber town of 5000 population, is designed to serve that community and the rural district within a 50-mile radius. While emphasis is on the clinical facilities, a 56-bed hospital wing and a surgical suite make it an important contribution toward the conception of an integrated community health facility. Clinical and "out-patient" departments are in the fore wing, with physiotherapy, urology, eye, ear, nose, and throat departments, and an unusually complete dental suite. Provisions for radiological diagnosis lie between this area and the surgical suite. The remainder of the nursing area is devoted principally to obstetrics and maternity care, with a general medical nursing suite separated by use of the double-corridor plan which Neergaard has made well known.

These various health activities are combined in a one-story structure which avoids the usual, rigid, pavilion scheme—at the expense, perhaps, of making the surgical suite corridor a passageway from the nursing unit to the administrative and clinical departments. The building is completely air conditioned. Roof overhangs have been carefully studied in relation to penetration of the sun into south-facing bedrooms.

The Crossett Health Center, located in an Alabama lumber town of 5000 population, is designed to serve that community and the rural district within a 50-mile radius. While emphasis is on the clinical facilities, a 56-bed hospital wing and a surgical suite make it an important contribution toward the conception of an integrated community health facility. Clinical and "out-patient" departments are in the fore wing, with physiotherapy, urology, eye, ear, nose, and throat departments, and an unusually complete dental suite. Provisions for radiological diagnosis lie between this area and the surgical suite. The remainder of the nursing area is devoted principally to obstetrics and maternity care, with a general medical nursing suite separated by use of the double-corridor plan which Neergaard has made well known.

These various health activities are combined in a one-story structure which avoids the usual, rigid, pavilion scheme—at the expense, perhaps, of making the surgical suite corridor a passageway from the nursing unit to the administrative and clinical departments. The building is completely air conditioned. Roof overhangs have been carefully studied in relation to penetration of the sun into south-facing bedrooms.

The Crossett Health Center, located in an Alabama lumber town of 5000 population, is designed to serve that community and the rural district within a 50-mile radius. While emphasis is on the clinical facilities, a 56-bed hospital wing and a surgical suite make it an important contribution toward the conception of an integrated community health facility. Clinical and "out-patient" departments are in the fore wing, with physiotherapy, urology, eye, ear, nose, and throat departments, and an unusually complete dental suite. Provisions for radiological diagnosis lie between this area and the surgical suite. The remainder of the nursing area is devoted principally to obstetrics and maternity care, with a general medical nursing suite separated by use of the double-corridor plan which Neergaard has made well known.

These various health activities are combined in a one-story structure which avoids the usual, rigid, pavilion scheme—at the expense, perhaps, of making the surgical suite corridor a passageway from the nursing unit to the administrative and clinical departments. The building is completely air conditioned. Roof overhangs have been carefully studied in relation to penetration of the sun into south-facing bedrooms.
New York, New York

The Health Insurance Plan in the city of New York is a rapidly growing voluntary association of doctors providing health care on a prepayment basis. In most instances doctors participating in H.I.P.—who also have their own independent practices—have preferred to work from their separated offices, to be near the patients' homes. In the Harlem area, however, ten doctors have banded together to build a Center which will be used for H.I.P. work, for joint and separate research, and for their individual practices.

The architects were limited by existing walls on a tight city plot—restrictions which they have overcome to produce a court arrangement and an openness which should be most pleasant. Library and lounge are in the basement. The group business office and general spaces—laboratory, pharmacy, etc.—are near the front of the first floor. The open mezzanine acts as waiting space, as well as access to specialized offices and treatment rooms on the second floor.
Specialized hospitals at the present time are serving more patients in the United States than are general hospitals. In 1948, 60% of the hospital beds in this country (8,377,061) were in specialized hospitals, which included mental institutions and tuberculosis hospitals (the two dominant groups) and other categories such as chronic disease, cancer, neurology, eye, ear, nose and throat, orthopedics, special women's and children's treatment, and convalescent facilities. Within these specialties there are even more restricted fields, such as the "crippled children's" institutions that are shown on following pages.

The reasons for the existence of the special hospital are that the general hospital is not usually fitted for specialized clinical work of this nature and, since many of the "specialized" patients are chronic or nearly chronic in their ailment, they would occupy, for long periods, beds in general hospitals which might otherwise be used for a succession of acute cases.

The architect soon discovers, in planning a specialized hospital, that research and teaching are a large part of the program. Not only are there specific requirements in the planning of treatment rooms, as in tuberculosis hospitals, and special precautions needed, in the case of communicable diseases, but also the opportunity for clinical research in specialized fields, and the need for teaching of doctors, technicians, and nurses, all make this hospital building type much more difficult to design—though admittedly much more interesting than the general hospital.

T.H.C.

The District VI Tuberculosis Hospital, Mobile, illustrates many of the characteristics of this specialized type of building. Since the patients' stay is apt to be long, good orientation of bedrooms is important; light and air are desirable; the openness of the corridor in this scheme is commendable. Flexibility in use of patients' rooms is necessary, as the disease goes through various phases. The primary special treatment—surgical collapse treatment of the lung—requires a pneumothorax suite, with waiting space, treatment room and fluoroscopic examination room, which is provided in the stem of the T, along the corridor to the operating suite.

Tuberculosis Hospital, Mobile, Alabama
Harry Inge Johnstone, Architect
State Hospital, Little Rock, Arkansas

The Arkansas State Hospital, Little Rock, has launched a program of design and construction for care of the mentally ill which is highly regarded by experts in the field as an example of advanced planning in the psycho-neurotic field. On the grounds of the State Hospital will be erected new units for intensive treatment, maximum security, neurology, geriatrics, physical therapy, and, on the more hopeful side, convalescent patients. One reason that the plans have been applauded is that emphasis will be on rehabilitation and recreational activities, such as craft and games. Another is that the institution is planned in relation to a medical center.

The neurological building, plan of which is illustrated, is a 100-bed structure which will operate as a self-contained treatment unit. Hydro and physical therapy are an important part of the treatment, and a therapeutic swimming pool is planned in the center of the building. Dayrooms, recreational areas, and lounges are provided and, since most of the patients are at best semi-ambulatory, toilet facilities and utility areas are provided adjacent to the dayrooms as well as the bedrooms.
The Crippled Children's Hospital, New Orleans, is an instance of the specialized medical problem too often ignored, with the result that general hospital beds are occupied by those better cared for elsewhere. This project will free 116 general hospital beds desperately needed in New Orleans. The new hospital is designed for the rehabilitation and convalescent care of more or less chronic cases. Pediatric examination and treatment will be provided, before and after surgery performed at other hospitals. Hydrotherapy and physical therapy are of utmost importance, with particular attention to occupational therapy. An out-patient clinical facility of more than ordinary size was a necessary provision of the program. Another requirement was demonstration space for teaching interns and nurses.

Ricciuti, Stoffle & Associates, Architects
Northern Indiana Children's Hospital, South Bend, Indiana

Growing largely out of the devotion and persistence of the late Dr. Walter H. Baker of South Bend, who ran a clinic for crippled children in that city, this hospital was built by the State of Indiana, with the Governor and a four-member appointed board acting as the client. The building won an Award of Merit at the A.I.A. Convention this year. In the development of the plans, expert advice was obtained from the director of The Alfred I. DuPont Institute of the Nemours Foundation, Wilmington, Delaware, and from Mrs. Helen E. Young, at that time superintendent of the Shriner's Hospital, Chicago.

In general, the program called for facilities for 100 in-patients, up to 21 years of age, plus an out-patient clinic to serve all northern Indiana. Wards for in-patients are in two parallel, almost identical wings, one for boys and one for girls, with all ward rooms opening out to sunny southern terraces; at the end of each of the wings is a large day-playroom, and these are joined (forming the fourth side of a large courtyard) by a covered porch used in bad weather for outdoor play. In addition, entirely separate from these, is an isolation unit, complete with its own nursing and sterilizing services, consisting of five single bedrooms and one five-bed ward. These are used for newly admitted patients and to avoid the possibility of cross infection. Educational space providing for through-high-school study includes classrooms and a recreation hall (that may be thrown together) and a library.

At the front of the building, in addition to administrative offices, are the main clinic waiting room, examination rooms, and observation areas. Elements used by both in- and out-patients include therapy, surgery, X-ray, pathology lab, and dental department. Dining areas are planned with the premise that about 50 percent of the patients would be able to walk to their meals, with the remainder receiving tray service. A separate wing contains nurses' quarters, opening onto a walled outdoor gym-garden; a small second floor houses the doctors.

Construction is of reinforced concrete and exterior walls are surfaced with large units of native limestone. Peter Schumacher & Sons, Inc., were the general contractors.

Photos: Torkel Korling
CONSTRUCTION

EQUIPMENT

NORTHERN INDIANA CHILDREN'S HOSPITAL

Above—looking from the west-facing entrance vestibule into the main clinic waiting room.

Right—rear portion of clinic waiting room, with doors to examination rooms along wall at right; the door at the far end leads to the administrative-office area and isolation ward.

Within patient areas, there are neither stairs nor ramps, making circulation in wheelchairs as simple as possible. The garden area between the east-extending ward wings is to be fully landscaped, providing considerably more privacy than the current photographs suggest.
Above—the large courtyard formed by the two children’s wards (the wing for boys in background, right), the educational rooms (background, left, with second-story doctors’ quarters, above) and the play porch joining the play rooms of the two wards. In the latter, notice the louvered portion of the ceiling that allows patients to be outdoors in controlled sunlight.

Right—lounge of nurses’ quarters, in the south wing of the building; through the windows at right is the walled gym-garden.
THE PRESENT: SPECIALIZED HOSPITALS

Left—one of the playrooms at the east end of a ward wing; covered porch beyond.

Below—hydrotherapy room, with Hubbard tank in foreground and pool beyond.

Bottom of page—south elevation of one of the in-patient wards, showing roof overhang for sun control, concrete terrace for patients' beds and wheelchairs.
Two recently completed Veterans Administration Hospitals: right—Franklin Delano Roosevelt Veterans Hospital, Montrose, New York, designed by the VA staff; below—Brooklyn Veterans Hospital, Brooklyn, New York, designed by Skidmore, Owings & Merrill.

Photo below: Martin Helfer

The Veterans Administration Hospital program begun in postwar years, with Congressional authorization in 1946, has had a substantial impact on hospital design in the United States, although as of 1951 it has ceased to be a factor of construction significance. Nearly 40,000 additional beds in some 70 new institutions were added to existing veterans' facilities for health care, and the first part of this huge program was given out to private architectural firms throughout the country. The work of the civilian architect in this program contributed materially to elevation of the standards in this type of institutional care, particularly in the field of neuro-psychiatry.

Now that many of the buildings in the original program are reaching completion, the job for the private architect in this field seems to be over. The Veterans Administration has called upon the last unit of available medical personnel for staffing such facilities, and will not expand further. Any additional construction will be limited to existing stations and will be designed by VA engineering personnel.

ROY HUDENBURG

The Present: VA Hospitals
Right—the main approach (west) front, with emergency, admitting, and outpatient departments; labs, X-ray, physical therapy facilities, and operating rooms, in lower wing at left; nursing units (480 beds) in tall block at right. This hospital won an Award of Merit at this year’s A.I.A. Convention. Below—view from south, showing the tiers of sun-flooded nursing units. Merritt-Chapman & Scott Corporation was the general contractor.

Photos: Ben Schnall
Below—the close-up view reveals the bold pattern on the south front formed by the brick-surfaced reinforced concrete frame, 4-unit aluminum sash, and continuous 2'-6" cantilevers above windows.

Bottom—main entrance lobby, with O.P.D. waiting room at far end. Terrazzo floor, marble-surfaced wall, acoustic-tile ceiling, stem-mounted combined-type light fixtures.

The Veterans Administration's program was for a 480-bed hospital to include, besides general medical beds, the following specialized facilities: 60 beds for neurological and neurosis patients; 32 beds for "disturbed" psychiatric cases; 42 beds for "quiet" psychiatric patients; 10 isolation beds; and 10 beds for women patients. Since the average stay in the hospital is 37 days, with 50 percent of the patients more or less ambulant, there also had to be provisions for social, occupational, and recreational activities.

The original project for this hospital was shown in November 1946 P/A. The general scheme remains the same, though the budget required elimination of certain features, such as a large auditorium and chapel, and the VA decided to eliminate numerous balconies intended for patients' use.

On the page opposite are shown plans for the First (main entrance), Fifth (typical nursing units), and Eighth (disturbed psychiatric) floors. Briefly, the other floors contain:

- **Basement**: admitting and emergency departments; garages, boiler room, laundry, main kitchen, employees' dining, delivery-receiving.
- **Second**: main cafeteria, library and recreation rooms; chapel and assembly rooms; radio rooms, music rooms, staff dining; medical library; chaplains' rooms; physical therapy department; X-ray; radiography, X-ray therapy.
- **Third**: two complete nursing units (private rooms, semi-private rooms and 16-bed wards); doctors' offices; exam rooms; supply rooms; basal metabolism; cardiology; hospital labs.
- **Fourth**: two nursing units (in south wing); six operating rooms (north wing), one equipped with a viewing gallery; cystoscopy; endoscopy, ear, eye, nose, and throat suites. The operating section is air conditioned and mechanically ventilated.
- **Sixth**: identical with the Fifth Floor.
- **Seventh**: neurological and neurosis patients—with layout generally like the typical nursing floors, except for detention screens and shatterproof glass areas.
- **Ninth**: quiet psychiatric patients—most patients in 4-bed rooms and wards; as on the eighth floor, there is a separate dining room.
- **Tenth**: two sections—one for isolation cases; the other for women patients; large promenade deck.
- **Eleventh**: interns' and visiting doctors' quarters, with lounge, library, promenade decks, etc.
CONSTRUCTION

The main cafeteria (above) is in the center of the second floor, on the south front. Through the outsloping windows is glimpsed the broad view of wooded hills that all patients’ rooms command across the 5½-acre hilltop site. Quarry-tile floor, glazed structural units on wall, acoustic-tile ceiling.
Below—serving pantry on north wall of fifth-floor nursing unit; elevator in rear corner; dumbwaiters in wall at left.

Right—a typical, 16-bed Riggs ward, at the east and west ends of typical nursing-unit floors. Asphalt-tile floor, terrazzo-cove base, plaster walls, acoustic-tile ceiling, shaded ceiling-mounted light fixtures to allow individual use without disturbing other patients.

Left—one of the six operating rooms in the north wing of the fourth floor (in the northwest corner, with a mezzanine gallery for visiting doctors to observe through a continuous, concave glass area, provided for clarity). Sterilizing equipment and scrub-up rooms occur between each pair of operating rooms. The entire operating section is air-conditioned and mechanically ventilated, in addition to having mechanically operated windows admitting north light, that will be used for ventilation in emergencies.

Right—nurses’ station at intersection of corridors in a typical nursing unit. The curved front (and curved wall opposite) offer ample room for regular hospital traffic. Asphalt-tile flooring; glazed, structural unit-base and wainscot up to 5 feet in height; plaster, above; acoustic-tile ceiling.

THE PRESENT: VA HOSPITALS
Top—waiting room, at entrance to physical therapy, X-ray therapy, X-ray, and radiography departments, in north wing of second floor.

Immediately above—corridor along the private rooms for interns on the eleventh floor; doors at end lead out to roof terrace.

Right—typical south-facing intern’s room, with door out to promenade deck. Each pair of rooms has a shower room and toilet.
Selected Details

General Hospital, St. Lo, France, by Nelson-Gilbert-Sebillotte, architects, Paris. With this Selected Detail from a hospital abroad which is attracting much attention, P/A's study of The Architect and the Health of America moves from the Present to the speculative Future. Paul Nelson's earlier studies of operating rooms were a first step beyond present planning standards, and in St. Lo he is developing them further.

Some of the advanced thinking in the United States, on operating rooms and on nursing units and on the broad subject of community health care, are presented on following pages.
Most hospitals of the past were designed with a singleness of purpose, usually nursing care which could not be given at home; later, major surgery and finally diagnostic services were added, until they took on the multiplicity of functions that characterize our present-day institutions. The scope of intramural and extramural health and medical activities has been so extensive that today no more than 15% of the total area of a hospital is used for direct nursing care. Yet such a ration only begins to approximate actual and growing needs.

The hospital of the future will become a community health facility. (See pages 86-91.) In addition to functioning for the acutely ill and long-term patient, the hospital will develop far more facility for integration of ambulatory (out-patient) and in-patient care, for preventive, rehabilitational and social services, for research, teaching, home-care and public health activities. The physician will be drawn into closer relationship with his hospital. It becomes apparent, therefore, that the hospital of the future will combine most of the advance practice of medicine within its walls.

The hospital of the future will concentrate service facilities in central cores, leaving the periphery for patient comfort. (See pages 83 and 84.) We have been installing multiple sub-sterilization and utility rooms in operating suites, out-patient departments, and on nursing floors. With highly developed mechanical communication arteries, sufficient floor storage and adequate central services, we can eliminate these expensive duplications and at the same time gain greater efficiency, economy, and control. It has become increasingly apparent that we can no longer afford the luxury of inefficient hospitals. Unfortunately, the postwar period has seen a conformity of pattern, almost a monotony of design, in most of the medium- and small-size hospitals. Hospital design featuring double corridors, staggered bays to increase light and ventilation, circular, semi-circular, and elliptical layouts for nursing floors, operating suites and other services, which now seem to be innovations, will become commonplace as time goes on.

The hospital of the future must be flexible so that it can provide for a communal life where the patient may best benefit from it, or for privacy and isolation where such is necessary. Large wards are already a thing of the past. We must break with the slavish devotion to fully partitioned space for all functions. In order to provide light, ventilation and flexibility, while still retaining the separateness of function and control which partitions and doors provide, we must open and combine related areas. The use of newer materials will help make such developments possible and will, at the same time, allow for greater use of color and imaginative design, thereby creating more beautiful, spacious and livable interiors.

The hospital of the future must humanize its patient, working and recreational areas. Progress in architecture and design, together with progress in administrative and organizational patterns can accomplish this. Integration of services, concentration of equipment, minimum communication distances which retain sufficient unit size for good supervision, maximum mechanical progress and greater flexibility of design are trends toward this end.

Is it too much to expect that these functional improvements may also result in a new architectural beauty for hospitals? The administrator is not nearly so concerned as the architect with exterior esthetics, but it would indeed be a pleasure to administer a hospital which, while combining a high degree of utility and assurance of a high quality of medical care, was also a beautiful structure.

We see here an approach to the nursing unit which reduces nurses' walking distances and should increase efficiency and result in economy of operation. It is based on a semi-circle, which in various combinations lends itself to a number of interesting possibilities. Utility facilities and nurses' work areas are concentrated in a "core" which is readily accessible to all parts of the nursing floor. The distance from this central core to the farthest patient's bed appears never to exceed 50 feet and on the average would be less.

This unit has the advantage of providing two separate approaches to the nursing unit from the major cross corridor without making of the unit itself a through corridor. At the same time, however, it is not a cul-de-sac. A very quiet atmosphere for patient care should result.

As with all planning in depth, mechanical ventilation is required for the interior rooms of the core. In the unit shown, however, it is theoretically possible to provide supplementary air circulation through a ventilating flue exhausting through the roof, which should draw air from the core, the interior corridor, and the patients' rooms. The circular form in combination either with rectangular or other circular units would lend itself to the care of acutely ill patients (particularly if the nursing service is organized on a group nursing basis), could be combined with a non-acute patients' division, as shown in the upper sketch, and could enjoy a good relationship with nearby ancillary services such as X-ray, laboratories, occupational and physical therapy, and out-patient department.

Floor area per bed and cubage per bed are slightly larger than in more standard plans. However, the periphery is greatly reduced and this should make the construction cost, on a unit basis, comparable. As a matter of fact, some of the toilet and utility facilities shown in the core could be reduced, thus reducing cubage.

Although the designs shown here indicate 4-bed or 2-bed interchangeable rooms, it is theoretically possible to use single or double bedrooms exclusively if desired. The shape of the patients' rooms, being wider at the window side than at the corridor side should increase light and ventilation, and assure that no two patients are facing one another.

*Executive Director, Long Island Jewish Hospital.
It might be suggested that one of the weaknesses in the plan is that the patients' rooms furthest from the nursing station are not visible from that point and therefore traffic control is weak; visitor traffic would have to be centralized at the intersection of two nursing units or controlled on the main floor. In practice, however, nurses are usually too busy to exert visual control over movement in and out of patients' rooms, and an auditory communication system helps somewhat in reducing traffic movement of this type. One has to balance values in analyzing plans. An ideal scheme would provide for all things, but reduction of distances and immediate accessibility of utilities is of far greater importance than visibility of corridor areas.

E.D.R.
a proposal for surgical care

by Basil Yurchenco, architect

Starting from the same basic assumption that Neufeld does, Yurchenco has developed both a suggested nursing unit (above) and a surgical suite fitted into the same modular envelope (acrosspage). First, a word about the staggered perimeter of the plan: the designer suggests a modular construction unit (17' x 23'-9") based on a grid of 4'-9" squares. This unit, as the nursing floor plan indicates, could be subdivided and erected in staggered fashion so that two outside walls always would have full light. Next, his aims have been to decrease walking distances (a factor which appeals strongly to nurses with whom it has been discussed) by ranging the patients' rooms around a central work area; and to concentrate equipment, so far as possible, in one location.

The diagrammatic sketches (left) show: at the top—the surgical nursing floor scheme which has become conventional: patients' rooms in a row facing desirable orientation; nurses' work areas for the nursing unit far distant from some rooms; work areas in conjunction with the operating rooms scattered along the surgical corridor. Traffic flow of nurses, doctors, and patients must obviously be complicated and conflicting.

Below that—the nursing unit centered on a "core" (as Neufeld calls it on the preceding pages) around which the patients' rooms could be grouped.

Lower diagram—a scheme for the operating suite which is developed within Yurchenco's modular plan on the next page. Nurses' work areas are continuous, and are at the opposite end of the operating rooms from the patients' (and doctors') approach. To solve the traffic problem, interior operating rooms become necessary, and the (psychological) objection to this is answered by a plate glass wall above the wainscot, to provide borrowed light for the interior rooms.
The plans which Yurchenco has devised are indeed very provocative. For some time we have been talking about developing plans for a hospital which would emphasize the functional nature of the institution. For too long a time we have adapted hospital purposes to the general type of building. It is indeed encouraging to see a plan which attempts to emphasize the function which takes place within the hospital.

This is particularly important in regards to the operating suite. Because of the diversity of personnel and staff which is necessary in the operating room it has always been difficult to achieve a set-up which met all of the requirements from the standpoint of the patient and personnel. The inclusion of such an advantage in the plan makes it a very desirable one.

There is no question that this is not the final plan, but there is so much advantage in the proposed plan that all of us should consider it very seriously with the hope that eventually we can achieve such a functional layout without disturbance to the patient and personnel. This is undoubtedly a new approach, but one which seems to be based on sound principles.

Dr. Pastore's comments are most gratifying, but I am sure there will not be complete agreement on the part of doctors, nurses, and administrators about details of this or any other proposed scheme. For instance, further studies would undoubtedly not only widen the area of scrub-up alcoves but possibly screen them from the patients' passage to surgery.

However, it seems to me that the important thing to note is that we are now entering a period when hospital planning will be directed toward the patient on an individual level. With team nursing, when the patient is not an abstract, impersonal organism to be processed to health, but part of a skillfully interwoven group of patients and staff, the old production-line plan of rooms facing an institutional corridor is obviously inadequate.

The following design assumptions were made in developing the proposed surgical suite plan:

Cystoscopy to adjoin X-ray.
All sterilization work excepting instruments to be done in central sterile supply on floor below.
Traffic of patients, doctors, and nurses to be separated from all other work.
Sub-utilities alcoved from main nurses' work area to house sink, high-speed sterilizer, blanket warmer, immediate supplies.
A central inventory to be located adjacent to nurses' work area.
Linens chute to be contained in glass-enclosed janitors' alcove.
Administration and clinical areas to be at admission point.

Basil Yurchenco
The following pages present an approach toward integrating a number of health facilities which generally function separately today. Here a program is presented by words and drawings; and on the pages that follow a project is shown, based on this program, developed by architectural students at North Carolina State College.

The shortcomings of the present individual facilities, on which the suggestion for improvement is based, are these:

Activities such as detection and prevention of illness have been performed by public health officers and nurses, scattered through the region, who cannot concentrate on a specific group of the population. For social work, rehabilitation, adjustment, and correction, co-ordination has been lacking between the institution that could provide such treatment and the group that needs it. Group clinics and grouped doctors offices have developed in various places, but the clinic's relation to the hospitalized patient has been slight, and the group clinic has been detached from rehabilitational and corrective public health facilities. The hospital now deals mainly with the sick, who become detached from the community. The clinical aspect of the hospital has been over-emphasized and other amenities which would prevent illness have not been provided for. The small hospital becomes a necessity if the clinician, the public health officer and the patient are to be brought back into relationship to the community; yet until now there have been real obstacles to maintaining and staffing a small hospital.

How, then, can these deficiencies be corrected and the various health facilities housed for co-ordinated activity?
The pediatric group, placed on the ground floor, will be adjacent to the playgrounds, an arrangement which will prevent the complete detachment of the sick child from his healthy friends and from nature; the pediatric unit will also be close to the classrooms, workshops and adjustment facilities of the rehabilitation floor, which, it is expected, will be used at night by adults in the community. Surgical and general medical patients, if ambulant, will use the rehabilitation and social center and the grounds, and enjoy the closeness of their neighbors and friends.

The general practitioners and various specialists in the doctors' unit will function in the usual way but in addition, they will receive indigent cases, formerly cleared through the social services of either health center or community social welfare, and who, in this set-up, will come to the doctors' offices as any other patient, without distinction. The doctors will be freed from the burden of having to acquire expensive apparatus and can use the facilities of the central core as share-holders of the community health unit. They will have easy and constant contact with their sick, and with the public health unit, and with the rehabilitation facilities as well. They will be able to function in a preventive as well as a curative manner. Their mutual closeness will enable them to consult with each other and function medically in an integrated manner.

Doctors will, because of their convenient association, increasingly tend to do research, closely connected with the local needs and endemic conditions of the community. This kind of research will help the physician enhance his position in medicine, and will be of great value to the nation as a whole. Clinical and post-graduate teaching may thus be made available on a much larger scale, and be less expensive than it is today. A number of such integrated groups of health units may easily serve to provide pre-clinical teaching if a relatively simple student structure is placed conveniently in relation to an existing university and major medical center in the region. This system may ease the lack of medical teaching facilities, and utilize more efficiently the available medical scientific potential throughout the nation, which at present is being largely lost for lack of proper integration. Moreover it is becoming apparent that the medical student—the future physician—must be taught not only to become a good clinician, but an over-all health-conscious man; and this can only be achieved through early association with health problems on a community level.

The old-age home, located nearby, with a small chronic patients unit, will use the core of the complex as an infirmary for medications, and the rehabilitational unit for guidance and support. All the age—children, adults and the aged—who mingle in the compound, and enjoy the recreational activities and closeness of the young and healthy, the cycle thus created promises to engender psychological conditions highly beneficial to the health status of the community—conditions that could never have been achieved in a hospital alone or in any one of those units separately.

The integration of the chronic patient in a well-organized unit, where clinical as well as rehabilitational care is available, is of great value. Medical science and research necessitates the study of a closed cycle of health conditions from the inception of life to old-age and its concomitant chronic debilitating deterioration.

The point of contact between social, rehabilitational, and public health activities should result in an area for public health education for the community. Public health officers, physicians, parents, teachers, and guest speakers will guide the community in general attitudes. The auditorium will be used also for clinical and post-graduate teaching, as well as for social activities within the community.

Public health officers and nurses, freed from their city office environment, will be closer to medicine in action and be able to activate their thinking, and function in concert with the social workers in direct relation to the community. The social workers, so strengthened through direct participation in public health activities, will be able to widen the scope of their work, and relate the case of the individual to the general problem of the community and its over-all social environment.

Civilian defense, a necessity at present widely studied and discussed, needing a convenient location and especially a close connection with emergency surgical and general medical facilities, could use such units as discussed above to advantage, not only in time of emergency, but also for continuous Red Cross and blood donor requirements. Should a temporary need arise, emergency pavilions could be erected nearby in time of war or disaster, thus using satisfactorily the available medical and clinical potential.

Health insurance plan organizations might also welcome such a system as it helps keep the less seriously ill patient out of a major institution, where high expenses accrue easily on the not serious and serious patient alike. The preventive function of such a health organization may prove to be one of the strongest attractions for health insurance organizations such as Blue Cross and others, and it would not be surprising to receive from amongst them moral and financial support for its realization.
The project shown on these pages is a fifth-year problem in the School of Design, North Carolina State College, by Robert William Sawyer, assisted by Jesse Raymond Norris, Jr. The study was under the direction of Joseph Neufeld, visiting critic, and George W. Qualls, Instructor. The model was made by Fred M. Taylor and Roger L. Jackson.

commentary

by Cecil G. Shops, M.D., M.P.H.*

The solution presented here to the problem of providing a community health facility is an exciting one. It brings together in integrated fashion the physical facilities required by a wide range of personnel in order to provide a broad spectrum of services, all of which have an important contribution to make towards the health of the community. What is proposed here, therefore, is a central resource for most of the purposeful health activities of a community—a physical plant which for want of a better name I have called the "community health facility" (words of much broader connotation than the present meaning of "hospital"). The health and welfare of the community are influenced by a great many factors—physical, emotional, social. Positive health services for a community involve the joint effort of many skills and much apparatus, all of which is most effective when closely integrated. Is there a logical basis for such an inter-related grouping of units and services, of skilled personnel, equipment, and facilities?

The changes in the functions of hospitals during recent decades are well known. The early hospitals of the past were usually of a rather unsavory type, designed for the "sick and suffering poor." That great early American physician, Dr. Benjamin Rush, described them as "the sinks of human life." Gradually, and with increasing speed in the past fifty years, the hospital has been evolving toward becoming the nerve center of most of the health activities of the community, essential for the proper treatment of all major illness. Soon it began to take on other functions such as the performance of complicated diagnostic procedures, and the treatment of ambulatory patients. It has also become an important center for research and for education. Increasingly important preventive functions are performed by the present day hospital such as the routine chest X-ray for tuberculosis and blood test for syphilis for all patients. The hospital, therefore, has a much broadened usefulness and has functions which extend beyond the care of the sick.

The work and problems of the medical practitioner have also changed greatly in recent decades. The increasing complexity of medical knowledge has made it necessary for physicians to specialize. New, expensive, and complicated laboratory facilities have been developed. To meet this new situation, doctors in all parts of the United States have formed teams known as group medical practice clinics. By pooling their special fields of knowledge, they are able to give better care to their patients. In addition, they not only share the cost of expensive laboratory and other equipment, but also have the joint use of ancillary personnel such as nurses and technicians. There is very little doubt that some form of group practice will be the dominant pattern of medical practice in the future.

Profound changes in the responsibilities and activities of public health departments have also been taking place. Achievements in community sanitation and communicable disease control have not only increased human longevity but have made possible the development of public health programs aimed at improving individual health through immunization, health supervision, and health education. It has been necessary for health departments to provide treatment for such diseases as tuberculosis and syphilis and, also, to provide facilities for early diagnosis and sometimes treatment of such major chronic conditions as heart disease. These developments have made clear the need for close relationships with hospitals and practicing physicians.

The role of social factors in the diagnosis and treatment of disease is becoming more fully recognized. As a result, provision is increasingly being made in health planning for personnel and facilities for social diagnosis, social therapy, and the social activity of patients. Rehabilitation is at last enjoying more and more attention as the "third phase of medical care." The social component of health and sickness and of the rehabilitation phase of health services needs attention, not only in the hospital but also in private practice and in the work of the health department.

The developments which have been briefly outlined seem to bespeak the planning of a community health facility which provides the physical integration conducive to functional integration of the personnel, facilities, and services described. While the solution at first perhaps seems rather complex, it should in reality simplify a good many of the problems now faced. The problem of maintenance of the expensive "core" of facilities in terms of cost and the availability of trained personnel is made easier because of its centralized character making possible its full use by all units. Over-all, it would therefore be less costly to equip and operate. The referral of patients to the various types of personnel and facilities is simplified by such proximity. Provision for patients who have chronic illness in a building which is easily accessible to all the units is in keeping with generally accepted thinking today. Flexibility of function is essential in order to slow down the obsolescence rate of the facility.

*Associate Professor of Public Health Administration, School of Public Health, University of North Carolina.
Some of the interrelationships which this project indicates can be found in many American communities, but unification of facilities for all the functions described here has, to my knowledge, not yet been achieved anywhere in the United States. Yet the logic of an integrated grouping of health facilities and functions is dictated by our present-day recognition of the essential unity of the task of health services. There is an increasingly recognized need for those who represent different phases to work together constantly and in accordance with a jointly developed comprehensive program. Dr. E. H. L. Corwin, eminent American hospital authority, has said that the hospital expresses the state of civilization of a nation. Is it too much to expect that we are perhaps now ready to give physical expression to our widely held concept of the interdependence of the many facets of health services?

C.G.S.
Hospital Structure
By Julian Smariga

Within the framework of the hospital structure, space must be provided for all component medical, nursing, and treatment facilities. An efficiently operated hospital cannot be enclosed by an ill-conceived structure. In order to develop a satisfactory solution, architects as well as engineers must be familiar with the functional requirements of all hospital departments and with the location, nature, and services of all related equipment.

It is not believed that the hospital of the future will change radically in its exterior shape. According to present trends, the wing-type plan or some variation thereof (whose transverse section consists of a corridor with rooms on one or both sides) is expected to continue its functional superiority. The development and use of newer structural materials and methods of construction, however, will influence the relationship of various elements or facilities within the hospital. For the successful adaptation of newer building techniques, closer co-operation between the architect and structural, mechanical, and electrical engineers is mandatory.

Economic necessity requires that hospital buildings last a long time. A glance at the record of existing hospitals verifies the fact that many have long outlasted their life expectancy. The majority of these buildings have undoubtedly been remodeled several times. Too frequently, each effort at remodeling or altering the existing building was severely limited by the restrictions inherent in the structure.

With changing medical concepts, the discovery and application of new drugs; improved nursing techniques, and other developments in the science of healing, it is probable that today's hospital structure will not fit tomorrow's health needs in the same ratio as the buildings of yesterday are proving inefficient at the present time. It is essential, therefore, that planners recognize this fact and that they provide a structural scheme which will permit a maximum degree of flexibility without compromising today's functional needs.

By using some of the newer materials more advantageously and perhaps by looking ahead to the development of other necessary products, we may realize a number of differing functional structural arrangements for hospital buildings.

long span construction

Figure 1 illustrates a form of long span construction in which the floor system spans from exterior wall to exterior wall. This system features the elimination of interior columns, flexibility in planning of interior partitions, and increased space for the design and installation of mechanical and electrical services. This last consideration is highly important in a hospital building as these services comprise approximately one-third of the total construction cost—a value considerably higher than found in the usual commercial type building. To facilitate field work in connection with these services, much more space is required than is considered necessary for an ordinary structure.

A variation of the long span concept which provides better structural advantages is shown in Figure 2. As the corridor height is generally made lower than the adjacent rooms, and as the web spaces in a truss-type frame will conveniently accommodate piping, the truss outline illustrated seems like a
logical development. The resulting sloping ceiling may offer definite advantages for natural lighting and ventilation.

The spacing of the transverse truss frames should be based on a modular dimension which will be indicated by the room size and arrangement. Longitudinal floor beams may be light steel joists. Since the columns in this scheme would take more load and be larger than usual, it is recommended that they project outside of the building wall rather than inside. The extensive use of lightweight, nonload bearing interior partitions and lightweight plaster aggregates will help to achieve structural economy by materially reducing the dead load.

cantilever frame

A structural scheme with varying possibilities is offered in Figure 3. Basically, it consists of a transverse rigid frame with cantilever extensions to support the exterior wall. In this system, it is recommended that the frames be spaced on a module of two rooms. The rigid interior column layout will dominate the plan, but a number of hospital types can be well served with little effort or compromise by this structural method.

The exterior wall becomes a continuous curtain completely unaffected by the structural frame. Insulated metal or precast concrete panels could easily and effectively be used with this method. The window design and construction may be very flexible—it is limited only by the necessity of providing a satisfactory juncture with the necessary transverse partitions.

The haunched transverse frame is a very effective structural system as it supplies the structural material in direct proportion to the need; either steel or reinforced concrete may be used. Further, the reduced frame depth at the center, in conjunction with the lowered ceiling of the corridor, offers a highly desirable volume of usable space for the mechanical services.

floor slab variations

For irregular plan outlines with non-repetitive bay spacings, it becomes necessary to use a framing scheme which allows some latitude in column placement. Figure 4 shows a flat-plate system which has a floor of uniform thickness throughout and contains columns of constant section from floor to ceiling. A slab-band type of framing, where the interior girders are wide and shallow and the floor slab spans in the direction perpendicular to the lines of the girders, may also be used to advantage. In either case, exterior column lines need not line up with interior columns. Minor offsets of interior column lines can also be accommodated. It is also possible to locate floor openings with considerable freedom. The ceiling finish in certain areas may be eliminated, although a large portion of the hospital will require a furred ceiling (with a minimum clearance of about 12") to conceal piping, duct work, and conduits. The many advantages of smooth ceilings with simplified formwork, uniform partition height, and minimum interference with architectural layout are quite apparent.

flush girder

An alternate structural possibility along conventional lines for irregular outlines, is indicated in Figure 5. The flush ceiling features are obtained in this slab and joist scheme by using wide girders of the same depth as the floor construction. This embodies essentially the same characteristics as the flat plate discussed in the previous paragraph. It is more economical of material but does increase the floor construction thickness and does require a ceiling finish in all rooms.

Figure 3

Figure 4

Figure 5
Electrical Engineering in the Hospital
By C. E. Daniel*

Continued increase in the electrical demand of hospitals is strong evidence of higher lighting standards and greater utilization of new and improved electrical equipment in these structures. Most hospitals of the past have been lighted by incandescent fixtures and, although effective as dust-catchers, they were inefficient as lighting units. At the same time, fluorescent lights were unpopular because of their slow start, flicker, and color. Now that these objections have been removed, however, fluorescent lights are now being installed much more frequently and are ideally suited for many hospital areas. A recessed unit—with frame mounted flush with the ceiling and enclosed by a convex lens—gives uniform illumination with low intensity at the fixture, eliminates glare, and has no provision for dust-catching. When mounted perpendicular to the direction of traffic, the lenses refract light in the direction of the corridor and help to reduce its apparent length. The same unit in greater lengths, when mounted in the ceiling directly above working areas, has proven satisfactory for laboratories, utility rooms, pantries, kitchens, and work rooms. This unit is very suitable for secondary lighting in both operating and delivery rooms. Cold cathode fixtures are highly satisfactory for bed rooms as they have a very low surface brightness which reduces glare to a minimum; their exceptionally long life is also in their favor.

*Consulting Engineer, Member A.I.E.E.

Above—ceiling fixtures with fluorescent lamps and convex lenses are successful for secondary lighting in operating and delivery rooms. Structural glass wall surfacing permits easy cleaning and sanitation. Photo: courtesy of Libbey-Owens-Ford Glass Co.

Right—standard nurses' calls should be combined with the intercommunication system to help reduce the number of trips to patients' rooms. Photo: Gabriel Benzer

Most operating, delivery, labor, and recovery rooms are now air conditioned and some hospitals have been air conditioned throughout; however, very few of these have been designed with available electrical adjuncts to increase their operating and medical efficiency. It has generally been considered necessary to cool 100 percent hot air from outside for fear of cross-infection which might result from reusing air from the hospital area. However, if proper precautions are followed, 80 percent of the air used in a hospital air-conditioning system may be safely recirculated to reduce materially the size of the plant, the cost of operation, and at the same time to improve the quality by recirculating air from the conditioned areas where it is cooler and dryer. This economy is made possible by passing the air through an electrostatic filter which removes practically all dust and pollen from both the fresh air and recirculated air. Most bacteria carried in the air stream are on the dust particles or droplets removed by the filter. Should additional precautions be considered desirable, the filtered air may be passed through a bank of germicidal ultra-violet ray lamps which will kill 90 percent of any bacteria that might be present. One precaution which must be considered where air is recirculated from operating rooms is to locate the filter outside the operating area and to take the air from the ceiling or outside; this will prevent a concentration of gas which would be explosive.

Larger and faster elevators are being considered as standard equipment to accommodate larger equipment and to maintain an even flow of traffic and service. Until recently, the 5'-4" x 8' x 0" platform was considered ample, but now the 5'-6" x 8'-4" platform is believed necessary by many administrators. Service cars with 6'-0" x 9'-0" platforms are being used to carry a greater number of food and tray carts and to reduce the number of trips required. Dumbwaiters are more generally used to distribute prescriptions, sterile supplies, utensils, etc. Pneumatic tube systems also save labor and time in the distribution of prescriptions, records, and orders—particularly from nursing units to the pharmacy, office, store room, or housekeeper.

Provision should be made so that the portable X-ray machine may be used in any part of the hospital. Special heavy duty receptacles are required throughout the corridors of the nursing units. This receptacle should be the 30-ampere 3-point type with ground wire and 100-110 volt circuit; these same outlets may be used for polishing or vacuum machines.

Electrical kitchen equipment is cooler, cleaner, and more adaptable to close automatic temperature control; cooking odors can be reduced and it is not necessary to provide for gases of combustion. Contemporary built-in heating units have a longer life and can be brought to desired temperature more quickly than older ones; electrical warming units in cafeterias and serving pantries...
can be automatically maintained at different temperatures without adding vapor or excess heat to the room. With electrical ovens, heat from above and below can be maintained accurately to provide different temperatures for either as desired.

Although infra-red lamps have been used elsewhere for cooking, food warming, and drying dishes, they have not yet been so used in hospitals, to the knowledge of this writer. More refrigeration space must be provided in new hospitals for frozen foods—both those purchased and those prepared and frozen in the hospital. The electric heater appears to be most efficient in thawing and warming frozen foods quickly.

For hospitals with low electrical rates, electrical radiant-panel heating should be considered. Such a system has all of the advantages of hot-water radiant heating or convection methods, but does not require provisions for the installation of radiators, radiant coils, risers, and the attendant dangers of leaks which may be possible. For such a system, it is recommended that the electrical resistance wires be placed in the plaster of the ceiling. This high-resistance wire transmits heat to the plaster at a maximum temperature of 120° F. The room temperature would be regulated by varying the electrical current to the heating wires as the outside temperature required. Such a system would give the hospital all the advantages of panel heating without the special provisions for pipes and their maintenance. With electrical cooking, electrical sterilizers, and electrical hot water heaters, there would be no need for a boiler plant.

The shortage of nurses, which is apparent with us to stay, justifies the use of any electrical system which will assist the nurse in caring for more patients without reducing nursing standard.

Some Observations on Mechanical Engineering

By Ernest F. W. Franck

Although hot-water radiant heating has become better recognized as being suitable for hospitals, the majority of those under construction today still do not possess this heating method. Panel systems are particularly suited to mental and tuberculosis hospitals. When installed in the former type of building, the absence of cast-iron radiators, convectors, or ventilating grilles has an obvious advantage; when installed in the latter, a considerable amount of outdoor ventilation can be afforded the patient without undue loss of body temperature—provided that the panel coils are in the ceiling areas. It is not advocated that coils be used in the hospital floor, as the amount of shading such coils might receive in the form of special floor covering, carpets, furniture, and so on, would make it impossible to maintain a predetermined temperature in the rooms. Further, research has shown that floor coils are objectionable from a psychological standpoint. In recent years, many hospitals have shown economical operation by the use of radiant heating; and with the advances made in the fabrication of coils, the cost should be no higher than that of cast-iron radiator systems.

Installation of piping systems to convey oxygen is becoming universally adopted. Oxygen outlets should be provided at the bedside for all patients' areas, as well as for nurseries and recovery rooms. Although there are different types of outlet fittings, the concealed type is preferred. The supply of oxygen can most economically be derived from a cascade or similar bulk storage unit. As this equipment is not available in all communities, local conditions will determine which supply is most suitable.

Vacuum systems have been extended to the bedside in recent years; they should also be installed in the surgical department, treatment rooms, and some of the medical wards, as well as in operating and delivery rooms. Suction machines, as vacuum inducers, are preferable to water-operating aspirator fittings which in many cases have not been able to produce enough suction.

Although it has become good practice to install automatic sprinkler systems in the laundry, linen storage, X-ray storage, kitchen storage, general and bulk storage rooms, paint shops, carpenter shops, and other locations, the benefit derived from their installation in the form of lower insurance rates will frequently determine whether or not they are provided.
As this article is being written, those who manufacture and sell hospital equipment, as well as those who specify and use it, find themselves in a confused situation due to the allocation of materials for defense purposes. The manufacturer does not know what products he will be permitted materials for, nor when he will be allowed to deliver. The architect and engineer find it even more impossible to know what can be specified. All of us hope that the new Controlled Materials Plan will help solve some of these problems.

During the past ten months, equipment prices have risen as much as 25 to 35 percent. At the same time, many substitute materials have appeared in hospital equipment—sometimes legitimately, even by direction of NPA—sometimes, it must be sadly admitted, to take obvious advantage of the situation.

One should not get the impression that all substitute materials are poor substitutes. Many of the developments during the last war—in the use of synthetics and plastics, for instance—have been the basis for permanent improvements in equipment for health care, by effecting economies in the amount of material, by using less labor in manufacture, and by providing longer life and at least as good performance.

However, it is unfortunate that the architect is called on to make decisions in his specifications about many products of which he cannot be completely sure, just at a time when there are more hospitals on the drawing boards and under construction than at any time in our history. Where there is waste and false economy and the substitution of unsatisfactory materials, these things will not become evident until a good many years from now. Since the health of America is an important aspect of civic defense, and since the manufacture of hospital equipment uses a comparatively negligible weight of the scarce materials, it is to be hoped that we will not be forced to such measures as the use of corrosive materials on wet surfaces where, in hospital planning, there is no economical substitute.

For these reasons, very little advice can be given at the present time on specification of hospital equipment by quality. There are trends in modern hospital planning, however, which make it reasonable to point to certain new or improved items of equipment because of their functional usefulness.

The tendencies in hospital administration and medical care that affect planning and the selection of equipment are these:

1. More attention to the complete comfort of the patient.
2. More attention to the saving of time by hospital personnel.
3. More attention to the centralization of expensive equipment.

These things are not inconsistent. As devices and equipment become available which save the time of nurses, technicians, and others, obviously more thoughtful care can be given to the patient around whom the hospital revolves. Hospital equipment is expensive, and the trend to centralize it in “cores”—such as the now commonly accepted central sterile supply room—not only saves capital investment, but in its turn saves time and reduces personnel requirements.

With regard to patient care, we have left behind the period of white sterility and austere discomfort in patient furniture and furnishings, and we are avoiding (let us hope) the other extreme of over-decorated patients’ rooms. The trend is toward well-designed, comfortable, contemporary furniture, which works as well as the familiar metal equipment painted white and is psychologically much more satisfactory. A number of additional furniture manufacturers are getting into the hospital field, and will undoubtedly give some of the old-line firms stiff competition from now on. One of the most interesting developments is the patient’s bed. The functional problem here has always been that a hospital bed must be higher than normal, for the purpose of medical care and examination. This has resulted in a bed uncomfortably high for the patient’s use—an important factor in these days of early ambulation. A number of designs are now on the market which make it possible to lower and raise the bed as needed or desired, so that it can be a technical working platform for the nurse and the doctor, and a piece of furniture that is good looking and usable for the patient. Costs are still high, and not until enough administrators have settled on new “standards” for such a piece of furniture will production be large enough to overcome this shortcoming.

The patient’s bedside light has always been an unsolved problem. Again, the double function of providing a soft but satisfactory reading light for the person in bed and a good working light for the nurse and the doctor has caused difficulty, but now there are several solutions by way of adjustable lights, or direct-indirect lights, that approach a solution to the problem.

Well-designed space for the storage of patients’ clothes, the provision of chairs which will be comfortable for visitors and at the same time useful for a patient beginning again to help himself around the room, and even such seemingly unimportant things as drop-leaves at the ends of dressers to provide additional flower space when it is needed, are other recent advances in the field of improved standards for the comfort and relaxation of the patient.

Time-saving equipment which every new hospital should consider would in-
There are still many unresolved problems connected with the theory of centralized equipment. For instance, while it would seem sensible to provide central ice-cube manufacturing equipment, the cost of hauling it may soon offset the original capital saving. Food service equipment is the most controversial matter at present; the school of thought that says a central system directly under the supervision of a dietician and a chef is the only way good food can be assured without fabulous cost, and, on the other hand, the school that insists on as much decentralization as possible, with much cooking done directly on the patients' floor, may ultimately get together in agreement on the aircraft food system which delivers hot food and cold trays to a distribution point in the nursing unit, where it can be served up almost at the bedside. New equipment is being designed and is promised soon which will make this system feasible.

Equipment in the operating room still revolves around the matter of minimizing (let us hope eliminating) operating room explosions. However, with all the studies that have been made, equipment needs to be revised. It does no good to provide explosion-proof electrical outlets and then furnish them with "pigtailed" that will take any standard plug. There would seem to be a good future for a permanently fixed, pedestal-type operating table, which would eliminate the necessity for many temporary plug-ins for the services required.

In fact, many other items of equipment for hospital use should be reconsidered, if not totally redesigned. Perhaps this is a time when a few dollars in cash prizes might produce interesting and useful results. Could not some manufacturers and some hospitals get together to sponsor a competition calling for time-saving and economy-producing ideas within the framework of the conception of greater patient comfort at lower administration cost? The forward-looking ideas which are presented in this issue of Progressive Architecture should surely be matched by better designed equipment for the health of America.
for the patient's room

Right—steel-chest compartment, attached to and below foot of bed, can be easily removed for sterilizing. Crank spring operates bottom of bed and provides a wide range of positions for specialized needs. Both cranks can be easily operated by one attendant.

Photo: courtesy of Superior Sleeprite Corp.

Left—combined bedside cabinet and dresser designed for small hospital room. Plunger type lock on distant side of cabinet locks top drawer; master key kept at the nurses' station. Dimensions are: 18" x 24" and 36" high.

Photo: courtesy of Hospital Furniture, Inc.

Above—light for patient or ward room provides indirect illumination for general lighting as well as direct downlight for reading. The cast-aluminum housing can be painted after installation, if desired.

Photo: courtesy of Curtis Lighting, Inc.

Left—the designer of this patient's room chair has realized that good head support is often desirable during stages of convalescence. Seat and back are of solid plastic; legs may be laminated birch or maple.

Photo: courtesy of Thonet Industries, Inc.
Above—perforated acoustical tiles, air diffusers, and luminous ceiling panels have been well integrated in this operating room. A track-mounted, overhead dome light is still considered by many the best light source for the operating table.

Photo: courtesy of Anemostat Corp. of America

X-ray therapy

Right—this 2,000,000-volt X-ray machine was recently installed in a New York hospital for research and treatment of cancer. The apparatus is contained in a 30-foot high, circular shaft housed in a vault built of concrete walls up to 4 feet thick.

Left—three machines are combined in one, all-purpose X-ray unit for varying degrees of therapy. A high intensity of radiation is possible, due largely to the use of beryllium, instead of the less transparent glass for the "window" of the tube, making possible treatment of twice the number of patients per day than with equipment of earlier design.

Photos: courtesy of General Electric X-Ray Corp.

Below—a new, compact air conditioner for hospital installation provides both heating and cooling, control of humidity and dehumidification whenever required. The unit is almost completely noiseless, and requires a minimum of space in the basement or utility room.

Photo: courtesy of Servel, Inc.
Left—as this stainless-steel, automatic washer is mounted at floor level, no trench is required. Slide-out feature eliminates unloading drudgery for employees; reaching and lifting heavy wash-loads from bottom of cylinder is unnecessary.

Right—linens of any size from 20" to 120" wide and from 24" to 108" long are automatically measured and folded with this equipment. Folder takes work directly off the flatwork ironer and can be used with any standard ironer.

Photos: courtesy of Troy Laundry Machinery

Right—the height of the spray head on this washfountain permits easy washing of patient's arm up to the elbow. Constructed of iron and finished in vitreous enamel, this unit is suitable for first-aid rooms and for surgeons' scrub-up sinks. It is foot-controlled and hands touch nothing but running water.

Photo: courtesy of Bradley Washfountain Co.

Below—among other specialized plumbing equipment used in the hospital is the surgeons' lavatory. This bowl has instrument trays at the sides and is fitted with chrome elbow controls.

Photo: courtesy of American Radiator & Standard Sanitary Corp.

Below—mounted on a single pedestal, all piping and valves of this autopsy table are concealed from view. Continuous flow of water plays over entire inner surface of the trough. Its 36" width is wider than most tables for this service.

Photo: courtesy of S. Blickman, Inc.
Above—in addition to its thermal insulation value, double glazing may also be used to advantage for acoustical insulation. In this installation, the nursery window wall not only screens out disturbing noises, but also prevents the infiltration of dust and other impurities.

Photo: courtesy of Libbey-Owens-Ford Glass Co.

Above—with this packaged psychiatric window, no bars or grilles are needed. Window comes with hardware, metal casing, and choice of detention screen, protective and safety screen, or insect screen. Ventilators swing out from bottom and down from the top, permitting exterior of window to be cleaned from room side.

Photo: courtesy of Detroit Steel Products Co.

Below—another efficient use of glass-fiber insulation in the hospital is for steam, condensate, and hot and cold water lines. This type of pipe covering is moisture resistant, light in weight, noncombustible, and immune to rot and decay.

Photo: courtesy of Owens-Corning Fiberglas Corp.

Above—there are many opportunities for the use of movable steel partitions in the hospital. While initially more expensive, their washability makes them more easily maintained than conventional plaster walls. Their resistance to oils and chemical stains makes them particularly useful for laboratories and vocational therapy rooms.

Photo: courtesy of E. F. Hauserman Co.

Left—this holder arm permits a door to be held open at three points for ventilation as well as passage through. The first two points are at approximately 10 and 45 degrees, the third is adjustable from 90 to 135 degrees.

Photo: courtesy of Lockwood Hardware Co.
MANUFACTURERS’ LITERATURE FOR THE

Editors' Note: Items starred are particularly noteworthy, due to immediate and widespread interest in their contents, to the conciseness and clarity with which information is presented, to announcement of a new, important product, or to some other factor which makes them especially valuable.

air and temperature control

Catalog offering full line of low and high pressure steel boilers for heating, power, and process steam. Types, dimensions, technical data, drawings. Also, brochure on oil or gas fired boilers for hospitals, schools, and other large structures. Typical installation photos. Kewanee Boiler Corp., Kewanee, Ill.: 1-108. Kewanee Boilers, AIA 30C (80)

1-109. Kewanee Steel Boilers (856)

1-110. Zoned Controlled Heating Systems (WTS), 8-p. illus. booklet describing modulated steam heating system divided into structural individual units, in accordance with exposure of different building areas, building height, or type of occupancy; steam supply to each zone controlled for any flow rate desired. Method of operation, control equipment, installation diagrams. Hoffman Speciality Co., Webster-Tallmadge Systems Div., Indianapolis, Ind.

construction

3-96. Terrazzo and Mosaic, AIA 23-E. Information kit containing full data and specifications for terrazzo flooring; includes bulletins on floor safeguard against static explosion hazards, installation of radiant heating systems in terrazzo, and terrazzo maintenance. National Terrazzo & Mosaic Assn., 711 14 St., N.W., Washington 5, D.C.

4-105. Awnings by Gate City, 4-p. illus. folder. Advantages of draft­free awning windows for hospitals. Comparison data, details, specifications for complete unit and for hardware, sizes. Gate City Sash and Door Co., Fort Lauderdale, Fla.

4-106. LCN No. 304, AIA 27-B (948-649-351), 4-p. illus. folder. Description of concealed, overhead door closer for use only with interior metal doors and frames. Installation diagram, dimensions. LCN Closers, Inc., Princeton, Ill.

4-107. Flush Doors, AIA 19-E-1, 8-p. booklet illustrating both solid and hollow core, flush wood doors for apartments, hotels, institutions, etc.; also, fire and sound resistant doors and X-ray doors equipped with lead sheet set between divided wood core. Light opening details, glazing specifications. Roddis plywood Corp., Marshfield, Wis.

19-139. Elements of Hospital Plumbing (AD1794R), 24-p. booklet. Hospital plumbing fixtures—sinks, water closets, lavatories, etc.—constructed of Stainless and Stee top of which not abraded by heat, cold, acids, and alkalis.

9-51. Institution Furnishings (50), 28-p. illus. catalog offering line of welded steel furniture for hospitals, school dormitories, hotels, etc. Dimensions, samples of finishes and colors. Superior Sleeprite Corp., 2219 S. Halsted St., Chicago 8, Ill.

sanitation, water supply, drainage

19-139. Elements of Hospital Plumbing (AD1794R), 24-p. booklet. Hospital plumbing fixtures—sinks, water closets, lavatories, etc.—constructed of Stainless and Steel top of which not abraded by heat, cold, acids, and alkalis.

specialized equipment

Two booklets, one describing various kinds of hospital signaling equipment; the other, containing typical specifications and wiring diagrams for signaling, communication, and protective systems.
DESIGN OF HOSPITALS

Auth Electric Co., 34-20 45 St., Long Island City 1, N.Y.:

19-145. Hospital Signaling Systems, AIA 31-1 (170)

19-144. Architects' Typical Specifications (170)

19-146. Physiotherapy and Hydrotherapy Equipment in Stainless Steel (6 HYC), 12-p. bulletin. Illustrations of metal underwater treatment tanks, silt baths, irrigation tables, utility stands, etc. Brief descriptions. S. Blickman, Inc., Weehawken, N.J.

19-147. Sani-Dri, AIA 31-L (1119), 4-p. illus. brochure on electric hair and hand dryers, in wall-mounted or pedestal models, for public areas. Advantages, specifications, photos. Chicago Hardware Foundry Co., North Chicago 1, Ill.

Set of data sheets on signaling and communication systems, and protection equipment for hospitals. Types, index. Also, 4-p. folder describing newly designed, single-action fire alarm box and controls. Specifications. Edwards & Co., Norwalk, Conn.

19-148. Hospital Signal Systems

19-149. New Fire Alarm

Folder describing types of respirators for adults and infants, and polio rocking bed to aid respiration during transition from "iron lung" to outer area. Other folder shows three models of resuscitators and metal support unit for attachment to operating table during prone-position surgery. J. H. Emerson Co., 22 Cottage Park Ave., Cambridge 40, Mass.

19-150. Emerson Resuscitator (HPF-750Q)

19-151. Emerson Rocking Bed (HPF-750Q-B)

19-153. Maxicon (8A3181), 14-p. illus. booklet describing X-ray unit comprised of components that can be assembled in various combinations to provide whatever X-ray facilities required. Features, diagram indicating dimensions, components parts. General Electric X-Ray Corp., 4855 Electric Ave., Milwaukee 14, Wis.

19-155. Interdepartmental Communication for Hospitals (101), 4-p. folder on pneumatic tube system that will deliver messages, prescriptions, and small objects such as medicines and some instruments. Method of operation, advantages. Grover Co., 26512 W. Eight Mile Rd., Detroit 19, Mich.

19-156. Blood Bank, circular describing cylindrically designed refrigerator, 7'-6" in height, for blood storage; seven revolving shelves adjustable to any bottle height. Specifications. Jewett Refrigerator Co., Inc., Buffalo 13, N.Y.

vertical traffic

22-5. Hospital Highways (B-3816), 8-p. booklet. Requirements of hospital elevator installations and mechanical equipment to meet traffic demand. Types of elevator machines, illustrations. Westinghouse Electric Corp., 150 Pacific Ave., Jersey City 4, N.J.

(To obtain literature coupon must be used by 9/1/51)

PROGRESSIVE ARCHITECTURE, 330 West 42nd Street, New York 18, N. Y.
I should like a copy of each piece of Manufacturer's Literature circled below.
We request students to send their inquiries directly to the manufacturers.

1-108	1-109	1-110	3-92	3-93	3-94	3-95	3-96
4-104	4-105	4-106	4-107	4-108	5-69	5-70	5-90
19-143	19-144	19-145	19-146	19-147	19-148	19-149	19-150

Name

Firm

Mailing Address

City STATE

[Home Business]

July 1951
Innes Shoe Store, on Wilshire Boulevard in Los Angeles, draws customers from the street (lower photo) and the parking lot (upper photo). Both fronts are designed to bring in business. The ultimate in "open" design—the glass front is rolled back out of sight when the store is open for business.

Architect: Burton A. Schutt, Los Angeles.

Which is the back door?

Neither. Both doors are main entrances—planned to bring in customers.

In designing today's shopping centers, plan to bring business in from two directions—the street and an adjacent parking lot. The back door is no longer an alley door in many stores. It's an important link between the store and extra business.

The new store developments are taking double advantage of the pulling power of a Visual Front—the "open" front that lets people see in so more will come in. And it's a means of rejuvenating old shopping centers which have lost their appeal.

The double Visual Front opens up new design possibilities—permits an interesting correlation of parking facilities and shopping areas.

For information on materials for Visual Fronts see your Libbey-Owens-Ford Glass Distributor. And write for a copy of our Visual Fronts book.
Easy on the eyes,
Easy on the budget,
Easy to obtain
... that's
ENDURO-ASHLAR

Architectural Terra Cotta!

Today's accelerated trend to Enduro-Ashlar Architectural Terra Cotta is due to its plasticity of form, color and texture. It can be custom-made in an unlimited range of ceramic colors, in units large or small, for interiors or exteriors, plain surfaces or decorative sculpture. Since it is not classified as a critical material, you can count on delivery as specified. Ease of maintenance is still another advantage of this time-proved terra cotta... for its original richness and beauty can be retained indefinitely by simple soap-and-water washings. So, whatever the project you now are planning—monumental, industrial or mercantile construction, or modernization—investigate all the exclusive advantages offered by Enduro-Ashlar Architectural Terra Cotta.

Construction detail, data, color samples, estimates, advice on preliminary sketches will be furnished promptly without charge. Send your inquiry today.

FEDERAL SEABOARD TERRA COTTA CORPORATION
10 EAST 40th STREET, NEW YORK 16, N. Y.
Plants at Perth Amboy and South Amboy, N. J.
selected details

HUNTER RESIDENCE, Hanover, N. H.
E. H. & M. K. HUNTER, ARCHITECTS

GEORGE C. PAINTER RESIDENCE, Kittanning, Pa.
C. HORBOSTEL, ARCHITECT
AT THE HEART OF GOOD CONSTRUCTION YOU WILL USUALLY FIND
MACOMBER NAILABLE STEEL PRODUCTS

REDUCING CONCRETE COSTS • REDUCING LABOR COSTS • SPEEDING UP ESSENTIAL CONSTRUCTION

This universally accepted type of structure gives the designer unlimited freedom and the builder the type of products his men know how to handle best.

STANDARDIZED STEEL BUILDING PRODUCTS
MACOMBER • INCORPORATED
CANTON, OHIO

V BAR JOISTS • LONGSPANS • BOWSTRING TRUSSES • STEEL DECK
selected details

CLARK RESIDENCE, Palm Springs, Calif.

CLARK & FREY, ARCHITECTS
Just Six Seconds... that's all
in the new AMERICAN-Standard

AMERICAN-Standard
First in heating...first in plumbing
The new American-Standard Warm Air Heating Catalogue is packed with detailed information about a complete line of top-quality heating equipment. Yet it is so compact . . . so simply arranged . . . that you can find full information about any product in six seconds time. (That's how long it takes to turn from main index to selector guide to visual unit.)

All product information—installation and application data, dimensions, construction details, cutaway illustrations, etc.—is always in the same place on each page, making it easy for you to compare models and select the best one for your job. No wading through unrelated material . . . you can turn directly to the exact information you want.

The extensive line of warm air heating products by American-Standard includes winter air conditioners, warm air furnaces, and conversion burners—plus the new Mayfair Summer Air Conditioner and the electronic Magne-filter Air Cleaner. Whatever the type of installation . . . or the type of fuel to be used . . . a wide range of models allows you the widest latitude in designing and styling. Contact the American-Standard sales office serving you for further information on American-Standard products and the new Warm Air Heating Catalogue. American Radiator & Standard Sanitary Corporation, P. O. Box 1226, Pittsburgh 30, Pa.
For floors that are quiet,

The rich appearance of Nairn Linoleum counts more heavily than ever in modern rooms ... note how effective Nairn insist on the 4-square features of

Only the best of everything goes into America's beautiful school buildings! Naturally, then, Nairn Linoleum was chosen for the floors in Euclid Senior High School. It was selected because it stands up under the toughest wear—and keeps its beauty. Because it's quiet, restful, and resilient ... because it's quick and easy to clean ... and because both installation and upkeep costs spell true economy.

NAIRN LINOLEUM

© 1951 Congoleum-Nairn Inc.
sturdy, easy to clean...

Nairn Linoleum!

1. Long Life
2. Enduring Beauty
3. Easy Maintenance
4. True Resilience

For FLOORS and WALLS

1. The new impressive-looking Euclid Senior High School, a fine example of current trends, incorporates every sound modern idea for a handsome and efficient education building.

2. Notice the striking decorative effect achieved by the linoleum border in this double room. The room can be adjusted to various uses by closing or opening the flexible partition.

3. Quiet counts in a floor in a library — and here is Nairn Veltone in the well lighted, roomy, comfortable library at Euclid Senior High School.
Largest combination laboratory-hospital building of its kind in the United States. Designed in the shape of a Lorraine Cross, its central stem is 780 feet long by 84 feet wide and is flanked by six wings, each 54 feet long. The 14 story structure contains approximately 1,266,000 square feet of floor space and has a volume of 16,465,000 cubic feet. National Institutes of Health is the research arm of Public Health Service, Federal Security Agency.

Clinical Research Center, National Institutes of Health

Designed and Supervised by Public Building Service, General Service Administration, for National Institutes of Health.

FINISHING HARDWARE

HOSPITALS RECENTLY

MIDDLETOWN STATE HOMEOPATHIC HOSPITAL (Bldg. 119), Middletown, N.Y. • PROVIDENCE CATHOLIC HOSPITAL, Mobile, Ala. • PHIPPS CLINIC, JOHNS HOPKINS HOSPITAL, Baltimore, Md. • ILLINOIS RESEARCH HOSPITAL, Chicago, Ill. • CONTINUED TREATMENT BLDG., ST. ELIZABETH

LOCKWOOD HARDWARE MANUFACTURING CO.,

The following are a few of the Lockwood products especially

ILLUSTRATIONS (left to right)

- Lockwood's new Heavy Duty Key'n Knob Set ... made with functions for all installations.
- Heavy Duty Standardized mortise cylinder lockset (5100 series) with concealed screw trim.
- Heavy Duty Cylinder Deadlock with Flush Door Pull.
Notable accomplishment of a 96 man team of architectural designers and specification writers in conception. A tribute to the diligent supervision of the Corps of Engineers in execution. Lockwood is justly proud of its part in furnishing the standard and specialized finishing hardware for this fine example of modern hospital construction. Lockwood — a name distinguished for 73 years of progressive service, has become a by-word for teamwork on the part of its dealers, the architectural profession and the construction industry.

for the NATION’S OUTSTANDING HOSPITALS

LOCKWOOD EQUIPPED

WASHINGTON, D.C. • MEMORIAL HOSPITAL, Athol, Mass. • BETH ISRAEL HOSPITAL, Boston, Mass. • PUUMAILE HOSPITAL, Hilo, Hawaii, T.H. • GENERAL HOSPITAL, Wilmington, Calif. • SAN SABA HOSPITAL, San Saba, Texas • LOVELAND MEMORIAL HOSPITAL, Loveland, Colo. • APPLING COUNTY HOSPITAL, Baxley, Ga. • NURSES’ TRAINING SCHOOL, BURBANK HOSPITAL, Fitchburg, Mass.

FITCHBURG, MASSACHUSETTS, U. S. A.

adaptable for use on the Nation’s Modern Hospital Buildings.

ILLUSTRATIONS

(left to right)

• Asylum Deadlock with Door Pull and Key outside, Push Plate only inside.

• Heavy Duty Cylinder Deadlock in combination with Arm Pull.

• Ball Bearing Door Closer with Automatic Hold-open Arm Attachment.
One job ... one cost ... with Roddiscraft quality plywood

One job — one cost — no need for redecorating — little maintenance — a permanent job that will pay off in the years ahead. A Roddiscraft paneling job will last as long as the building itself. Shortages of paint, paper and labor don’t worry the owner of a building with Roddiscraft paneled walls. Maintenance is negligible — finish is permanent. Add to this the dividends of matched veneers in a wide variety of native and foreign hardwoods, and you have beauty, utility and long-range economy.

Choose your requirements from warehouse stocks of Birch, Maple, Walnut, Oak, Mahogany, Prima Vera, Avodire, Blonde Limba, Chen Chen, Gum, Knotty Pine and Douglas Fir. Or ask your Roddiscraft representative to show you the Roddiscraft Veneer Sample Book containing fifty-one actual veneer samples.

For a characteristics and cost comparison of the veneers most widely used, see Sweet's Architectural File, Page 50, or write for the folder, “Roddiscraft Hardwood Plywoods for the Quality Trade.”

Roddiscoft
RODDIS PLYWOOD CORPORATION
MARSHFIELD, WISCONSIN

NATIONWIDE Roddiscraft WAREHOUSE SERVICE
Cambridge, Mass. • Charlotte, N. C. • Chicago, Ill. • Cincinnati, Ohio • Dallas, Texas • Detroit, Michigan • Houston, Texas • Kansas City, Kan. • New Hyde Park, L. I., N. Y. • Los Angeles, Calif. • Louisville, Ky. • Marshfield, Wis. • Milwaukee, Wis. • New York, N. Y. • Port Newark, N. J. • Philadelphia, Pa. • St. Louis, Mo. • San Antonio, Texas • San Francisco, Calif.
SYNTHESIS OF THEORIES

Landscape for Living. Garrett Eckbo. Architectural Record, 119 W. 40 St., New York, N.Y., 1950. 262 pp., illus. $10

It seems ludicrous that it should be necessary to write a book telling the world that the earth ought to be planned in the best interest of the people who inhabit it. That such a book is necessary reveals the enormity of the problem. The author traces in amazing detail and completeness the intricate pattern of professional, social, and commercial influences on landscape design in earlier periods, and shows the resultant conflicts of thought in today's professional practice.

With even more completeness and detail, he outlines, referentially, the contemporary scene of thought, action, and personality. The author continues with an analysis of all those questions about landscape that architects have been idly asking for a decade—everything from curved lines vs. geometry and the esthetics of planting, to prognostication of things to come. He even discusses fragrance and tree pruning. In a book which pretends to such a comprehensive treatment of the landscape scene, it is remarkable that the illustrations should come almost entirely from the files of Eckbo, Roybtone & Williams. Even so, the book would clearly have benefited from a stricter editing of both illustrations and text. But the purpose seems to be to hide nothing and let the reader be his own editor. This has a documentary kind of virtue and is consistent with several of the theses.

For this is a book of many theses, well organized; and spurious only in its philosophic-political aspects. In fact, it is a book of re-capitulation: an attempt to synthesize the most progressive theories of landscape design, from any source. In text, the author does not pretend to originality of thought or exclusiveness of production, but offers rather an accumulation of ideas and direction of a well established kinetic movement. This gives the book stature beyond personality; which is its saving grace and at the same time its denouement, because it lends authority to conclusions that are righteous, but leaves the hollow ring of a campaign speech.

At one point, under theory, the (Continued on page 118)
author deals a devastating thrust at the notorious, if authoritarian, sterility and eclecticism that passed for thought in academic circles before 1930 (and that still controls the entrenched, large-scale state and municipal landscape work). He simply quotes from an ancient issue of The Landscape Architect's Quarterly a juicy passage to the effect that in this great, wide, beautiful, wonderful America there is hardly any conceivable landscape situation or demand that could not find its architectural solution by adapting an architectural form already developed in a European precedent.

Landscape for Living is written on an infinitely higher plane of thought. It would certainly be difficult or impossible to quote any passage out of context that would lend itself to such ridicule. And yet, within context and on a different plane, there lies a similar boomerang potential. For, in effect, the author says that in this same wide-eyed, beautiful, wonderful America, there is hardly any conceivable human urge—creative or menial, individualistic or gregarious—that could not be fitted fruitfully into the pattern of the proper flexible socio-political organization whose purpose would be to devise a Garden of Eden for “the People.” Whether this would be based on European precedent is not clear.

At another point, the author makes a strategic withdrawal into the 19th Century by practically paraphrasing the Romantic-Christian lines of Robert Browning to read, “Man’s theory should (and usually does) exceed his practice—else what’s heaven for?” One might almost prefer a more complete withdrawal into the ancient Oriental philosophy that theory (or Heaven) ought not to be so elevated that it cannot be lived; and practice, therefore, suffered in guilt, for not achieving the ideal.

More generally, Landscape for Living is most interesting when talking shop; the materials and tools of the craft. The author never descends to the garden-club level, but perhaps pursues more detail than is consistent with reader interest. The broad analysis of landscape problems and scope has a currency that is both notable and news-worthy.

There is an excellent bibliography. a must for all students of the subject. But no clean-cutting index! Essentially, the author is unable to accomplish at least one of his many theses: that design in its broadest application is the resolving of conflict on any level. For within these pages the conflict between the individual and his attempt at self-effacement still shines rather brightly. Certainly a shorter and more useful, but perhaps even great book on landscape might have resulted with this conflict resolved. But the probability of achieving in the open market what is so difficult individually is somewhat remote.

JAMES C. ROSE

(Continued on page 120)
There are many good reasons for the growing trend toward modern, one-story schools of wood. More and more American communities are finding these structures offer an immediate and economical solution to today's classroom shortage.

You can confidently recommend one-story schools of West Coast Woods because they are attractive and practical... readily adaptable to future needs. Moreover, they are safe...ground level doors permit rapid evacuation in case of emergency. From every standpoint, you'll find it makes good sense to build one-story schools of West Coast Woods.

There's a RIGHT WAY to do everything...Build RIGHT with WEST COAST WOODS

Douglas Fir
West Coast Hemlock
Western Red Cedar
Sitka Spruce

Lumber of Quality Produced by Members,
WEST COAST LUMBERMEN'S ASSOCIATION

WEST COAST LUMBERMEN'S ASSOCIATION, Room No. 35
1410 S. W. Morrison, Portland 5, Oregon

Please send free copy of "Today's Better Schools Are Built of Wood."

Name __

Address __

City ___________________________ Zone _______ State ____________________

July 1951 119
When office modernization increases the need for more available outlets

Plugmold it!

It's a fact, the modern office today depends more than ever before on electrically operated business machines. If you are presented with the ever-growing problem of providing closely-spaced, correctly located outlets for the handy plug-in of electric typewriters, dictating machines, tabulating machines, desk lamps, (and for the electrical equipment in your drafting room and engineering department, too) ... your answer is 1900 PLUGMOLD. Easy to install on the surface above baseboard or at chair rail height, 1900 PLUGMOLD is ideal for original wiring in new construction and the extension of present circuits in existing buildings. No longer any need for multiple plugs, unsightly extension cords or makeshift hookups with PLUGMOLD... the safe, attractive way to make those necessary wiring improvements. Modernize wiring the modern way... install PLUGMOLD.

3 BASIC PLUGMOLD SYSTEMS

1900 — Light duty plug-in anywhere wiring system, for outlet convenience. Available wired, unwired or as SNAPICOLL.

2100 — A plug-in-anywhere wiring system with a capacity larger than 1900. Furnished unwired.

3000 — Heavy duty plug-in anywhere system for industrial applications. Also serves as branch feeder system.

THE WIREMOLD COMPANY
HARTFORD 10, CONNECTICUT

REVIEWS

(Continued from page 118)

WHAT HOME IS

Guide to Easier Living, Mary and Russel Wright. Simon & Schuster, Inc., 1230 Sixth Ave., New York 20, N.Y., 1951. 199 pp., illus. $2.95

This book can increase the enjoyment of your home life by making household chores fewer in number, and simplifying those which must be done. It is literally a tour through the present-day American home, room by room, function by function. It makes an examination of floors, walls, and furniture; of housekeeping and entertaining of guests. It offers a host of workable labor-saving ideas, suggestions and concrete information applicable in our every day life.

After reading some of the authors' new ideas on keeping house, you suddenly become aware of the number of household tasks that must be performed daily and how little time there is left for the average family to enjoy its home together. It is reported that in a large city, routine household tasks take up more than 80 hours a week; a rural housewife averages 61 hours— which is somewhat better but still startlingly far behind the accepted 40-hour work week of business and industry.

The book includes a section of charts giving comparative evaluations — in terms of ease of maintenance and length of use for floor, furniture, wall coverings, and furniture casters. There is also a full listing of names and addresses of manufacturers and distributors of more than 100 of the new and often hard-to-find products described in this volume. The purpose of this book is best described in the authors' own words: "In short, we believe that a formal dinner served on bone china by lackeys, with antique crystal and old lace and candlelight, isn't in the same league with the relaxation and friendly warmth, the comfort and gaiety, and the much better digestion of a meal free of servants and strain, served at the kitchen table." V.S.K.

COURAGE AND ENTERPRISE

Interracial Housing. Morton Deutsch and Mary Evans Collins. The University of Minnesota Press, Minneapolis 14, Minn., April 1951. 175 pp., $3

This is an important book for those who feel public housing should do more

(Continued on page 122)
Announcing THE NEW CHASE
ONE-PIECE THRU-WALL COPPER FLASHING
and CAP FLASHING RECEIVER

DRAINAGE CONTROL. Continuous channels running transversely through the wall permit fast drainage. This feature also provides for expansion and contraction.

MORE EFFICIENT CAP FLASHING. The added rigidity of cold rolled counter flashing eliminates the necessity of locking the cap flashing to the base flashing.

CAP FLASHING RECEIVER. Locks the cap flashing securely and permanently. The Cap Flashing Receiver also provides a guide to position the flashing during installation.

Here is a full weight copper thru-wall flashing (with a 3-way bond!) that combines an integral cap flashing receiver. The design* of this receiver permits the easy installation of cap flashing after the base flashing and roof are installed, without plugs or wedges to keep the receiver open. And since the cap flashing is never bent after it is inserted and locked in, it can be formed of cold rolled copper. The result: a neater, more watertight installation at reasonable cost.

Investigate the advantages of this outstanding development for flashing building walls. Send for free folder giving details and specifications.

* Patent Pending

Chase BRASS & COPPER
WATERBURY 20, CONNECTICUT • SUBSIDIARY OF KENNECOTT COPPER CORPORATION

Albany, Atlanta, Baltimore, Boston, Chicago, Cincinnati, Cleveland, Dallas, Denver, Detroit, Houston, Indianapolis, Kansas City, Ma., Madison, Minneapolils, Milwaukee, Minneapolis, Newark, New Orleans, New York, Philadelphia, Pittsburgh, Providence, Rochester, St. Louis, San Francisco, Seattle, Waterbury, (sales office only)
for Privacy in Hospitals or anywhere . . .

specify "Modernfold" doors

Here's how a hospital ward gets privacy . . . whenever it's needed. With the "Modernfold" accordion-type doors closed, the patient has a private room, undisturbed by other patients. With the doors folded against the wall, the room is one undivided ward.

no limit to application

And you can specify "Modernfold" doors wherever privacy is needed . . . in schools, stores, clubs, restaurants, hotels and homes. Thanks to the beauty, efficiency, and investment value of "Modernfold" doors, architects have been using them since 1936. Also, small "Modernfold" doors are used in small normal openings where their accordion-like action saves about 8 square feet of floor space over a conventional door.

smart, distinctive in appearance

Whenever you specify "Modernfold" doors, you are sure of outstanding beauty. Vinyl coverings and colors harmonize with any color scheme. Flame resistant . . . and no chipping, peeling or cracking! Only soap and water required for cleaning! Under this sturdy covering is a precision built frame of lifetime steel. Maintenance costs are practically nothing, and doors last for years and years.

Find out about the low cost and many advantages of "Modernfold" doors today . . . by looking up our installing distributor under "doors" in your classified telephone book . . . or mail coupon.

For the full "Modernfold" story see our insert in "Sweet's."

NEW CASTLE PRODUCTS
New Castle, Indiana

In Canada: Modernfold Doors, 1460 Bishop Street, Montreal

the doors that fold like an accordion

modernfold DOORS
by NEW CASTLE

REVIEWS

(Continued from page 120)

than perpetuate existing patterns of racial discrimination. It is well known that the "non-discrimination" clauses of the housing act are more honored in the breach than the observance. Some cities, however, have faced this problem courageously; book others have compromised; while the majority have frankly accepted the local prejudices. This book is a comparative study of the effects of courage and enterprise on the tenants of four projects. Two of these projects are fully inter-racial, with white and negro tenants located in the same buildings. The other two are "bi-racial," by which is meant the tenants share the project but are segregated into separate buildings in two halves of the project. It is a study that every member of local Authorities should read, and the FHA underwriters too.

Unfortunately, it is not easy reading. The peculiar language of sociology is (as they might say) inclined to produce a major retraction of the attention determinants with resultant casual drooping of the eyelids. Which is too bad, because the story told is important. I hope, for their next book, the authors will seek the assistance of Alexander Crosby, whose "In These 10 Cities" is a vivid and forceful presentation of what slums, ghettos and discrimination really mean and what is really being done about them.

HENRY S. CHURCHILL, F.A.I.A.

PASSIVE OBSTINACY

When the Conquistadors and their company of fervent missionary priests sought to convert the Indians of Mexico, they confidently relied on the pictures and sculptural representations that had been successful for centuries to spread Christianity among illiterates in Europe. So submissive were the Indians that the proud invaders seemed to be unconscious that native pagan symbols were readily found in the art works produced under the aegis of the Church. Thus the richness of Mexican sculpture and church decoration reveals the passive obstinacy of the Indians in clinging to older beliefs—as well as the often-praised charm of the free interpretation, by the anonymous artists, of familiar Church subjects.

C.M.
INDUSTRY'S HIGHEST HONOR AWARDED TO CRAWFORD DOOR COMPANY

"For Leadership in Research, Engineering, Design and Manufacture in the Garage Door Field" our company and our products have won the Merit Award of the American Society of Industrial Engineers.

This is the first time that the Society has granted its award to any door.

More than anything we could say, the judgment of this independent, impartial and competent body testifies to the excellence of Crawford Marvel-Lift Doors.

CRAWFORD DOOR COMPANY
70-401 St. Jean • Detroit 14, Michigan

Crawford Marvel-Lift Doors and Operators
Industrial • Commercial • Residential

FABRICATING PLANTS in Portland, Tacoma, Los Angeles, San Francisco, Dallas, Kansas City, Chattanooga, Milwaukee, Hudson, Cadillac and Ottawa, Canada.

DISTRIBUTING WAREHOUSES in 79 major cities.
SALES AND SERVICE companies everywhere.
REVIEWS

(Continued from page 122)

LIGHTING REFERENCE

Whether information or ideas are passed to another by the spoken or written word, the background of the speaker or author can greatly influence the clarity with which the subject is presented. A broad practical appreciation of lighting problems and a thorough knowledge of the theoretical aspects are two reasons why Professor Kraehenbuehl’s new edition of Electrical Illumination is a useful reference for lighting designers and architects.

Emphasis early in the book on the architect’s point of view, followed in several chapters by examples of lighting methods with particular appreciation of the architectural aspects involved, are reasons why the architects will find the book a very usable reference in connection with their lighting problems. The book is primarily a text for student use, presenting fundamental principles and derivations; for others some of the material might well have been omitted, particularly from the standpoint of present day practice. Some of the data are not strictly the latest; the footcandle standards are not up-to-date, being largely the thinking of 15 years ago, before World War II experience demonstrated the value of much higher levels.

The author is to be commended for the addition of new material relating to glare, since this has unfortunately been a major handicap of many otherwise excellent lighting designs. All information on visual comfort is especially timely today, with a new appreciation of the part played by lighting in industrial production for defense and other requirements, and keeping in mind also the trend to higher and higher lighting levels for optimum output. There is also the associated need for avoiding direct and reflected glare from improperly placed lighting units, and for recognizing the unsuitability of some designs for the particular location in question.

With new experience by industry of the value of color in modern plant design, both from the standpoint of its visual comfort as well as the physiological features relating to improved morale, the chapter on color and shadow is a most timely reference; discussion of the functional aspects makes the expanded material complete and authentic.

Included in the extensive material on lighting methods is an extended discussion of louvered and other large-area ceiling sources which have created new interest among those specifying illumination for public buildings, offices, and other areas.

Although the section on light control is largely built around filament sources, it is basically good as to the principles which may be employed. When adapted to the present wide and general use of fluorescent lamps, this chapter provides a useful guide for a variety of lighting techniques. Many problems, particularly pointed toward solution by engineering students, are included.

The chapter on the maintenance of lighting systems is most commendable in view of the importance of this subject particularly in these days when conservation of critical materials and manpower is the rule in industry. Unfortunately the examples of lighting economics are based largely on 1939 prices for lamps and energy. By substituting today’s lamp prices, lumen outputs, and life performances, a much more favorable picture of the advantages of fluorescent lamp systems will be obtained.

C. E. Egelé
As compared to the cost of conventional barracks construction, estimated at $2,300 per man, the cost of the nonconventional barracks illustrated above is only an estimated $1,485 per man (just $1.11 per cubic foot)!

And this barracks at Offutt Air Force Base, Omaha, Nebraska, *is* something special. Flyers of the Strategic Air Command fly "around the clock." As some sleep, others are "taking off." So army engineers are giving them 2-man rooms for peaceful quiet and privacy, better and more convenient bath facilities, a pleasantly place in every way—all at $1.11 per cubic foot... a saving of one-third. How?

First, they erect a steel frame. Then into the frame go Fenestra "C" Panels to form curtain walls. These strong, lightweight steel sandwiches packed with glass fiber insulation are 16 inches by 14 feet and can be placed by two men. They form a finished, prime-painted, noncombustible outside and inside wall at the same time. After three courses of "C" Panels, in goes a 14-foot window assembly including Fenestra Steel Windows. Then more panels and up leaps the building!

No mason, no carpenter, no lather, no plasterer. Just a steel worker and a painter, period!

Floors, ceilings and roof are Fenestra "AD" Panels, cellular, with a smooth, flat surface top and bottom. This "AD" Panel floor is topped with two inches of concrete and finished in asphalt tile. And the bottom of the panels forms a finished, prime-painted, noncombustible ceiling for the rooms below.

Think of the advantages in using structural material that also forms finished walls and ceilings. No wonder building costs were cut one-third!

Make Those Same Savings Yourself. Call the Fenestra Representative today (he's listed under "Fenestra Building Products Company" in your Yellow Phone Book). Or mail the coupon.

Fenestra PANELS • DOORS • WINDOWS engineered to cut the waste out of building

"D" Panels for floors, roofs, ceilings. Standard width 16". Depth 1½" to 7½".

Acoustical "AD" Panels for ceiling-silencer-roof. Width 16". Depth up to 7½".

"C" Insulated Wall Panels, Standard width 16". The depth is 3½".
"The trouble with professional men, especially architects, is that they have too many inhibitions. They can always think of a reason why you can't do this and you can't do that."

Harry S. Truman, as reported by John Hersey, *The New Yorker*, April 28, 1951

When I was down in Florida some weeks ago, slumming around in my usual way, I saw some buildings I liked and a lot I didn't. But I'd say, off-hand and not for quoting, that there's a spirit about the place that makes for good incubating of architects. Like parts of Texas and parts of California, parts of Florida are taking architecture along with the sun and the sea, the fish, and the palm trees, and the blondes—all in their stride. You just can't look at the University of Miami without howls of delight. You want to go out and buy drinks for "Archie" Manley, Bob Weed, and Bob Little—and cheer. Of course, they buy them for you first, but the idea is still a good one.

Anyway, being excited by what I saw that was good and having talked to a few native youngsters who were doing things, I bumped into William T. Arnett, dean of the College of Architecture and Allied Arts, University of Florida, Gainesville (way up north, practically in Yankee Land). I recalled my promise to you all, honey chillun, that I would, from time to time, interlard these lean pages with the rich wisdom of some of those who practice what I can only preach. So, I asked Dean Arnett to start this issue.

Curricula in catalogues are dry stuff. Schedules and course descriptions are the bare skeleton on which a training program is hung. But the prospective student who reads these orderly and dull publications seldom knows that there is human interest and understanding behind the sterile course numbers, credit hours, and prerequisites. Universities are in grave error in thinking that these badly written, ponderous, or flimsy publications are stimuli to expectant youth. It is only because youth is perpetually eager and seldom to be discouraged that it triumphs over the dullest of typography, the most minute and indecipherable script, the most banal course names and descriptions. Youth, in hopeful incandescence, finds a reason for standing in long registration lines and paying the fees.

Now I have not seen a catalogue from the University of Florida in several years, so what I say here is not meant to apply there, but it seems to me that every dean would be wise to hand out to every inquiring prospect a nicely printed paper, no longer than the one you are about to read and one as direct, as clear-cut, and as human. For a statement of this kind is more important than the catalogue: it sums up the whys and wherefores. It places emphasis without falling back on credit hours and other academic folder-rol and gives the student a chance to make an intellectual decision. But let Dean Arnett speak:

Dear Carl: I am glad to send you the statement you requested about the work

(Continued on page 128)

Radiant Heating Too Hot to Handle?

NOT WHEN YOU SPECIFY TERRAZZO

Proved by hundreds of installations, TERRAZZO's advantages include:

1) a smooth, colorful and durable finish unaffected by embedded heating pipes; 2) superior heat-conductivity of the marble chip and portland cement content. Any one of the usual tube materials—copper, iron or steel—may be utilized.

Marble-hard, concrete-durable TERRAZZO requires no refinishing, no painting, no costly repairs. Specify TERRAZZO—and you build economy as well as heating facilities into your floors.

THE NATIONAL TERRAZZO AND MOSAIC ASSOCIATION, INC.

711 14th Street, N.W. Dept. H Washington 5, D. C.
With Kodagraph Autopositive Paper
—the revolutionary material that produces positive photographic intermediates directly; that can be handled in room light . . . exposed in a direct-process or blueprint machine, or vacuum frame . . . processed in standard photographic solutions.

1. Redrafting time saved. IBM reduces costly retracing in showing various wiring arrangements on standard plug-board panel drawings. Autopositives of the panel drawings are made. Then the draftsman simply adds the different wiring diagrams. Thus, print-making masters (with dense black photographic lines on a white, evenly translucent paper base) are produced in a fraction of the time complete retracing would require.

2. Blueprints can be reproduced directly. These prints are used to exchange design information between IBM's plants in Endicott and Poughkeepsie, N. Y. Whenever extra copies are needed for the shop—in either plant—there's no problem; Autopositives are made from the prints . . . and from these intermediates the required number of shop-prints are produced at uniform, practical machine speeds.

3. Opaques no problem. Through the use of reflex-printing techniques, Autopositive Paper reproductions are also made of charts, graphs, paste-ups of line drawings, and other types of opaque originals—including "two-sided" documents.

With Kodagraph Autopositive Film
—which is handled, exposed, and processed like Kodagraph Autopositive Paper, but whose base is famous Kodak safety film—highly translucent, tough, matte-surfaced (to take pen or pencil notations).

4. Old drawings are reclaimed. Some old IBM drawings which are discolored, weak in detail, and slow-printing are reproduced on Kodagraph Autopositive Film. This material does a superb job of cleaning up backgrounds . . . intensifying line detail—and IBM gets new, long-lasting intermediates which deliver sharp, clean prints at top machine speeds.

5. Halftones are copied. When limited runs are sufficient, IBM uses Autopositive Film to reproduce halftones and other printed illustrations in its instruction handbooks. This high-contrast material holds the finest line . . . keeps close lines from filling in. As a result, the direct-process prints produced from these intermediates are amazingly sharp.

Kodagraph Autopositive Materials
“THE BIG NEW PLUS” in engineering drawing reproduction

Write today for a free copy of "Modern Drawing and Document Reproduction." It gives complete details on the revolutionary line of Kodagraph Reproduction Materials, which you, or your local blueprinter, can process conveniently, economically.

EASTMAN KODAK COMPANY
Industrial Photographic Division, Rochester 4, N. Y.

Gentlemen: Please send me a copy of your illustrated booklet giving the facts on Kodagraph Reproduction Materials.

Name (please print) Position

Company

Street

City Zone State

Mail coupon for free booklet

Kodak TRADE-MARK
THE ONLY FORM FOR
STEEL JOIST CONCRETE
FLOORS AND ROOFS

Corruform

ECONOMICAL
CORRUFORM sheets are easily placed. Fasteners are positive for all common joists and beams. Lapping is automatic. No sag or material waste. Concrete is placed and finished by common practice.

SAFE
CORRUFORM is nearly twice as strong as ordinary steel of equal weight. Tough tempered to spring back under abuse. Provides a secure form for trades and concrete—no side pull on joists, beams, or walls.

CLEAN
CORRUFORM is true and level. No cleanup necessary on floors below, no unsightly leakage. Bright, decorative corrugated pattern for exposed ceilings. Corruform is available plain, galvanized or vinyl-primed for painting.

SPECIFICATION
Standard weight Corruform with 2 3/16 inch wide, 1/2 inch deep corrugations. Weight .72 lbs. per sq. foot. Guaranteed average strength of 100,000 psi. — single test minimum strength 95,000 psi.

GRANCO STEEL PRODUCTS CO.
(Subsidiary of GRANITE CITY STEEL CO.)
Granite City, Illinois

out of school
(Continued from page 126)

at the University of Florida for students who are planning to enter the general practice of architecture. Since 1925, when the program in architecture was first established here, there has been a belief at Florida that what happened to a student during his formative years was probably more important than what happened to a sheet of illustration board. Therefore, this statement will deal with our philosophy and objectives in architectural education, rather than with examples of student work.

The purpose of the professional program in architecture at the University of Florida is "to prepare students to become general practitioners in the towns and cities of Florida and the South, to open their own offices, and to participate fully in the affairs of their city, county, and state." The fact that we are one of the larger schools in the country—we have 362 students in architecture this year—places on us major educational responsibilities. Hence, through a periodic process of self-evaluation, we seek continually to perfect our methods of accomplishment.

This is true not only of the immediate objective of stimulating and guiding students in their own liberal and technical self-development to the end that they may lay a broad foundation for future growth, but also of the broader ultimate objective of improving man's physical environment.

The University of Florida, as you know, is organized on the basis of a Lower Division, an Upper Division, and a Graduate School. In architecture, the work of the Lower Division occupies the first two years, and the work of the Upper Division the third, fourth, and fifth years. The Graduate Program occupies an additional year, but in this statement we will not concern ourselves with that work.

A core program of general education is provided for all beginning students at the University of Florida. This Lower Division program includes those phases of basic education which "should be the common possession ... of educated persons as individuals and as citizens in a free society." During the first two years at Florida, a student's time is devoted to the objectives of general education and to those of basic professional preparation.

In the years immediately following 1930, the idea began to develop at Florida that the traditional programs of beginning courses in the various colleges were not meeting the needs of freshmen and sophomores in a satisfac-
Do you specify

FOR FLAWLESS CARPET BEAUTY SPECIFY

Smoothedge

TACKLESS INSTALLATION

NO TACK MARKS HERE

Smooth flowing beauty at carpet edges, even at doorways and hearths. No ugly tack marks, scallops, dirt-catching indentations or ridges.

Specify Smoothedge Tackless Installation.

HOW SMOOTHEDGE WORKS

Smoothedge gripper holds the carpet firmly and invisibly from beneath. Carpet is securely hooked at one wall, then stretched and hooked at the opposite wall.

Tack marks, ripples and lumps are eliminated — you see nothing but beautiful carpet.

And when you want the carpet up it's as easy as opening a zipper.

No special provisions are required in plans for either wood or concrete floors.

TACK MARKS?

YOU DO if your clients' carpets are installed by the old fashioned turn-and-tack method.

Avoid this

Tack marks never improved the appearance of lovely wall-to-wall carpet. Even the best turn-and-tack job can't hide these hard-to-clean indentations.

Specify Smoothedge Tackless Installation.

EASY TO SPECIFY — AVAILABLE NATIONALLY

Handed by over 4,000 carpet retailers and by 68 carpet distributors. Recommended by leading carpet mills for wall-to-wall carpet installation.

THE ROBERTS CO., Dept. PS-7
1536 N. Indiana St., Los Angeles 63, Calif.

Please send me Smoothedge A.I.A. file □ Installation Manual □ Names of nearest contractors □

Name ____________________________
Address __________________________
City ____________________________ Zone ______ State ______

SEND FOR FULL DETAILS, A.I.A. FILE AND NAMES OF INSTALLATION CONTRACTORS NEAREST YOU.
When you specify JUST Line Stainless Steel equipment for any new building or modernization project, you can be sure that your clients will receive the utmost in—

Simplified Planning— Because JUST Line Stainless Steel equipment is custom built to your specifications, it simplifies planning and meets every individual requirement.

Sanitation—The rust-acid-and-stain-resistant surfaces of stainless steel assure the utmost in sanitation.

Lifetime Service . . . Utility—JUST Line engineering and craftsmanship and electrically welded construction combined with the highest quality of materials, assure uninterrupted service at lowest installation and maintenance costs.

Modern Design—JUST LINE Stainless Steel equipment is the recognized leader in modern design.

JUST Line Stainless Steel Equipment is ideal for Government and private institutions, laboratories, hospitals, schools and industrial plants.

Four JUST Line Installations:
The four installations illustrated here show the wide variety of equipment we are able to furnish you: Sterile Laboratories, The Upjohn Co.; Instrument Cabinet, Hines Veterans' Hospital; Sterile Storage Room, Hotel Dieu Hospital; Domestic Science Class Room High School.

Write today for new illustrated Catalog A 751. It contains Architects' Specifications, Construction Details, numerous installations and other valuable information.

Out of School

(Continued from page 129)

...tory way. Half or more of the entering students, it was found, would remain in college for only one or two years, and for them the old introductory courses had little meaning without the advanced courses in the same field. For the students who would continue to graduation, the old introductory courses failed to develop comprehensive viewpoints.

Therefore, in 1935 the University of Florida, in order to meet in a better way the problems of beginning students, organized a new University College in which all freshmen and sophomores were enrolled. In this Lower Division college was set up a program of six comprehensive courses designed to lead the student to greater understanding of the world in which he would live and assume responsibility, and intended to remove ignorance and the fears, superstitions, and prejudices which originate in the unknown in nature, in science, and in human behavior.

The six integrated courses in the general education program are centered in the following areas:

1. The Social Sciences (American Institutions)
2. The Physical Sciences
3. English (Reading, Speaking and Writing)
4. Mathematics and Logic
5. The Humanities
6. The Biological Sciences.

In these integrated courses no attempt is made to survey large areas. The new integration is as detailed as the old, but the materials selected may cut across former departmental lines. An attempt is made to introduce the student to the great areas of human thought and achievement, but there is "a new selection, a purposeful order, and a new emphasis." Two brief summaries will serve to illustrate the scope of the work:

In the first comprehensive course, American Institutions, the student has one lecture and three discussion sections each week throughout the year. The underlying themes of the course are: How did American civilization come to be what it is? What is happening to that civilization today? Can it reconcile its older and simpler concepts of democracy and equality of opportunity with an increasingly complex industrial society?

In the fifth course, The Humanities, the student likewise has four class meetings a week during the entire year. The work is designed to help the student achieve a more mature understanding of his cultural heritage, and an enlarged appreciation of the enduring values which give meaning and purpose to life. Beginning with a study of the humanities and contemporary life— including, among other things, such major topics as city planning and the Florida architecture of Frank Lloyd Wright—

(Continued on page 134)
Only Kentile Rubber Tile gives your clients these 3 big advantages!

1. **Exclusive Themetile**
 Decorative inserts that can make a Kentile Rubber Tile floor the only one of its kind.

2. **Many Luxury Colors**
 Lighter, brighter beauty to harmonize with any residential or commercial color plan or decorative scheme.

3. **Cushioned Beauty**
 The quiet and comfort of rubber underfoot cushions each step... banishes aching muscles from housewife, sales help, customer or factory worker.

The following literature is available on request and is designed to aid in the specifying of floors and walls for residential or commercial building or remodeling.

- Architects specifications
- Recommended and not recommended uses for Kentile Rubber Tile
- 4-page, 4-color folder showing Rubber Tile installations and reproductions of color line

Please write the Kentile, Inc. office nearest you.

SPECIFY KENTILE RUBBER TILE BY NAME because of its...

- **Appearance**—This durable flooring offers a full selection of modern, decorator colors for all residential or commercial interiors.
- **Installability**—Can be applied over any interior smooth wood, metal or concrete surface not exposed to greases and oils—even below finish grade in contact with the earth if waterproofing membrane is used.
- **Availability**—Over 3,000 Kentile dealers throughout the country assure prompt attention to your needs.
- **Service**—Nine conveniently-located Kentile, Inc. offices; a nationwide system of trained representatives; plus comprehensive technical literature to help solve any flooring problem.
- **Low Cost**—Prices depend on size and condition of floor, thicknesses chosen and freight rates. Estimates available from any Kentile Dealer—listed under flooring in your classified phone directory.
If you haven’t checked the beauty, convenience, and low cost of Mengelux fancy-face plywood, you’re missing one of today’s best building-material bets! Mengelux is hardwood plywood with fancy faces of Mahogany, Walnut, Oak or Birch. It’s available in large 48” by 96” panels and in other standard stock sizes. It is quality-built and precision-cut to perfect dimensions. Installation of Mengelux is a matter of hours, not days. And the result is an exciting eye-opener — wood-paneled walls which many people say are far more beautiful than costly “architectural panels”!

Where fancy faces are not needed, Mengelbord fills the bill, completely, economically! It is 1/4”, 3-ply hardwood plywood with one-piece Gum face, for painted, stained or natural finishes. Cuts and works cleanly. Free from grain-raising. No patches. Available in 48” by 96” panels and in other standard stock sizes. Most panels are all-white or nearly all-white.

Check up now on Mengelux and Mengelbord! Samples, and addresses of dealers and distributors, gladly sent on request.

Plywood Division, THE MENGEL COMPANY, Louisville 1, Ky.

The Mengel Company ... America’s largest manufacturer of hardwood products • growers and processors of timber • manufacturers of fine furniture • plywood • flush doors • veneers • corrugated containers • kitchen cabinets and wall closets
MODERN LINES distinguish the store with the Brasco Front. In complete harmony with advanced ideas in design treatment Brasco store front sections present clean cut profiles unmarred by deep, grime-catching recesses. The unobtrusive beauty and rich appearance of the construction blends perfectly with structural glass and other modern facings.

For improved Sellvision* our sash members are reduced in height to enlarge the areas of visibility. The deeper and more uniform Brasco glass grip is fully maintained in all sashes and bars. Even the largest plates are held firmly and securely, without strain or undue pressure.

Assembly and glazing are speeded by our exclusive setting mechanism which operates with ease and precision. Installations require stock size millwork only. In both heavy gauge stainless steel and anodized aluminum our wide variety of handsome, interchangeable assemblies offers distinctive, soundly engineered construction for every store front requirement. For complete catalog and full size details portfolio address Dept. P 107.

*©

A COMPLETE LINE FOR EVERY DESIGN

BRASCO MANUFACTURING CO.

HARVEY (Chicago Suburb) ILLINOIS

Specialists in Metal Store Front Construction for more than 40 Years

July 1951
also began to develop at Florida that the traditional beginning courses in architecture were not meeting the needs of professional students in a satisfactory way. The old, introductory courses in freehand drawing, geometric drawing, and design required three separate (and generally unrelated) motivations for the beginning student in architecture. Would it not be possible and desirable (we asked ourselves) to provide a single course in architecture which would cut across the artificial boundaries of the old educational compartments?

After studying the problem for some time, we decided to establish a single comprehensive course in the fundamentals of architecture. The motivation for this course, we believed, ought to be on design in a broad sense. Such a program was put into effect at Florida, in 1935.

The work in fundamentals of architecture consisted of a series of beginning projects, each of which involved an analysis of human actions and needs, the design of a simple building to meet those needs, and a study of the problems entailed. Emphasis was placed upon the design of buildings to meet the requirements of people. Drawing of all kinds was taught, not in a formal manner, but as an incidental accompaniment to design. These comprehensive projects originally occupied nine hours a week, for two years.

The idea of leading the student to put primary emphasis on people and their needs, and to think in terms of building rather than in terms of drawing, was successful. But it seemed perhaps we were placing too much emphasis on technical proficiency and not enough on broad viewpoints. There was danger, we felt, in concentrating too much on the how of architecture at the possible expense of the why.

Experimental approaches were tried and, last year, we undertook a revised program somewhat broader than before. In this, orientation and visual perception are undertaken as an introduction to basic design, and building technology becomes a more closely organized part of the work of the Lower Division.

The work now begins with a survey to provide an insight into the several fields of design, a basis for the selection of a career in the arts of design, and an understanding of the social and economic influences and universal principles in the visual arts. Following this, vision and graphics are explored in an effort to develop the intelligence and train the judgment, so that the student may better learn to see, to think, and to feel.

During the second year the student begins his fundamental work in basic design, in organic planning, and in building technology. Here he studies the basic influences that natural and social environment, materials, and psychological and physical functions exert in man's development of shelter; is introduced to the concepts of analysis and synthesis; and undertakes his first projects in design. At the same time, he is approaching the design and construction of buildings through a study of the nature of building materials, the elements of structure, and the loads on building frames. This work in building technology is based on the principles of logic, of mathematics, and of the physical sciences introduced in the general courses of the freshman year.

Upon completion of the Lower Division program, the student undertakes the professional work of the third, fourth, and fifth years. Here all of the instruction in architecture is carried on by...
For lobbies and public areas where first impressions are created, Armstrong's Rubber Tile contributes outstanding floor beauty. The rich colors are enhanced by sharply defined marbleization. A new, exclusive Armstrong adhesive permits the installation of Armstrong’s Rubber Tile Floors over grade-level concrete slabs.

Reception Lobby
Dr. Pepper Company, Dallas, Texas
Thomas, Jameson, & Merrill, Architects
out of school

(Continued from page 134)

means of a succession of projects, each of which involves the design of a building and a study of the problems involved in the process. This plan for the integrated study of architecture has been developing at Florida since 1965, when its first was employed.

The old methods of separate and unrelated courses, we believed, were not meeting the problems of professional students in architecture in a satisfactory way. Why, for example, was it necessary to have an architectural curriculum made from a patchwork of courses intended oftimes for non-architects? Why was it necessary, in the study of structures, to spend all but the last year “getting ready to commence to begin”? Why was it necessary to see the building, but not the streets; to examine the brick, but be unaware of the wall?

In the integrated professional program we have developed at the University of Florida, there are no separate “courses”, and design, delineation, history, construction, and structures are inseparable parts of the larger problem of building design. The Upper Division projects are non-competitive in character, and solutions are presented by means of research studies, preliminary sketches, design models, presentation drawings, material schedules, construction details, and structural computations, supplemented on occasion by working drawings and specifications.

In a descriptive panel on the University of Florida prepared by John L. R. Grand, head of the Department of Architecture, for inclusion in the Architectural League of New York exhibition of architectural education, some three years ago, the symbol of the spectrum in a circle was used to illustrate the idea of architecture integrated. Our objectives at Florida, as stated in the exhibition, are: “To Teach Architecture as a Unity by reducing the fragmentation of subject matter to a minimum—blending all into a correlated whole. . . . To Provide a Milieu for Achievement so each may travel at his own speed according to ambition, experience, and proficiency. . . . To Enlarge The Vision for perception, conception, creation.”

In the final semester, the mature student at Florida is permitted considerable flexibility in planning his terminal program. He may elect a thesis in architecture; or a thesis in planning with work in sociology, political science, and economics; or, if he desires, the entire semester may be devoted to work in other colleges of the university.

At Florida, architecture is regarded as something broader than an individual building on a single piece of prop-

No Penthouse!

Several advantages are gained in using Oildraulic Passenger Elevators: (1) You do away with the costly, unsightly penthouse that interferes with building design. (2) The lighter shaftway structure used with the elevator “that’s pushed up” means a substantial saving in construction costs. The powerful hydraulic jack supports the elevator and its load. (3) The compact electric power unit usually requires no special machine room.

The new, pulsation-free Rota-Flow pump makes Oildraulic Elevators the smoothest operating and quietest of all hydraulic elevators.

For Catalog and data file, write
ROTARY LIFT CO.
1016 Kentucky,
Memphis, Tenn.

OILDRAULIC ELEVATORS

See our catalog in Sweet’s

(Continued on page 140)
Cera•ic
e•Vewr

A Non-critical Building Facing—Gives
Permanent Beauty with Real Economy

Good design necessarily includes the very practical
consideration of final application. Within the limits
of form, budget, location and other factors which are
considered during the preliminary phases of a job,
the architect strives for beauty and permanence, plus
practicality and the possibility of actually achieving
his conception. And, more and more often, he selects
Ceramic Veneer as the perfect facing material for inter-
iors and exteriors, both on new construction, and for
remodeling. This machine-perfected terra cotta pro-
vides the combination of exact color, large scale and
light weight needed to transform his visualization into
perfect reality! Gladding, McBean & Co. Design
Engineers are available to architects from planning
stage through drafting and construction. A complete
Ceramic Veneer Handbook forwarded at your request.

Cera•ic Veneer
IS A GLADDING, McBEAN & CO. PRODUCT

Since 1875

Other quality ceramic products include Glazed Structural Units, Hermosa Tru-Joint Tile, Face Brick, Roof Tile,
Floor and Patio Tile, Refractories, Flue Linings, Vitrified Clay Pipe, Franciscan Ware and Franciscan Fine China

OFFICES AT: LOS ANGELES • SAN FRANCISCO • PORTLAND • SEATTLE • SPOKANE
ROCKY MOUNTAIN AFFILIATE: DENVER TERRA COTTA COMPANY

Hibernia Bank, San Mateo, Calif. Hertzka & Knowles, Architects
Jacks & Irvine, General Contractor Wm. A. Rainey & Son, Masonry Contractor

Cera•ic Veneer

July 1951 137
It's a long slow job for BTU's.

TO PENETRATE BALSAM-WOOL

It takes more than one hour for one-quarter of one Btu to pass through one inch of Balsam-Wool® one foot square. This low "k" factor is the reason so many architects specify Balsam-Wool sealed insulation for lasting protection. Complete information— including an A.I.A. folder of application data sheets—is yours for the asking. Write for it today.

Wood Conversion Company,
Dept. 117-71, First National Bank Building, St. Paul 1, Minnesota.

balsam-wool
Sealed Insulation — A Product of Weyerhaeuser
FOR WALLS...Fast

ROBERTSON Q-PANELS

Factory-assembled Q-Panels go up quick—50 sq. ft. in nine minutes. Only a small crew is needed to attach panel to frame. Perfect for powerhouses, administration, research and laboratory buildings. The distinctive fluted surface provides an interesting wall texture.

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>SIZE</th>
<th>INSULATION</th>
<th>FINISHES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Steel—6 lbs./sq. ft.</td>
<td>2' wide; lengths up to 25' depending on material used.</td>
<td>Complete panel is 3 1/4" thick with insulation value superior to a 12" masonry wall with furred plaster. U-factor—.14 in aluminum; .18 in steel.</td>
<td>Steel, aluminum, stainless, Galbestos metal** *Depending on availability.</td>
</tr>
</tbody>
</table>

ROBERTSON G-PANELS

Factory-engineered for quick field assembly, G-Panels provide commercial and industrial buildings with good-looking, maintenance-free walls. G-Panels are insulated, lightweight and capable of long spans to reduce the over-all weight of your building. G-Panels have the advantage of Top-Speed Fastening, a Robertson method by which greater areas of walls can be installed per crew. All work is done from the outside, eliminating interior scaffolding.

<table>
<thead>
<tr>
<th>WEIGHT</th>
<th>SIZE</th>
<th>INSULATION</th>
<th>EXTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 lbs./sq. ft.</td>
<td>12' long, width determined by size of Galbestos sheet.</td>
<td>U-factor—.16</td>
<td>Galbestos metal**</td>
</tr>
</tbody>
</table>

**THIS IS GALBESTOS METAL

Steel sheet with asbestos felt metallically bonded to it. The felt is then impregnated with asphalt and waterproofed. The bond is inseparable, to all purposes forming a new kind of material. Maroon, black or aluminum color; fabricated in a variety of shapes.

Write for Free Q-Panel and G-Panel catalogs

H. H. ROBERTSON CO.

2405 Farmers Bank Building Pittsburgh 22, Pa. Offices in All Principal Cities in the U. S. A. and Canada

World-Wide Building Service

July 1951
The objective of teaching architecture integrated is, in our opinion, more important than the method employed. But such a program should not be undertaken lightly, and in our experience four factors are essential:

First, there must be a sympathetic university administration. As you may have suspected, the University of Florida provides a most favorable educational environment.

Second, there must be an independent college organization. The exact make-up of the organization is probably unimportant, but architecture should be within a group dedicated to the improvement of man’s physical environment and the enrichment of his life.

Third, a faculty of dedicated careerists is essential. Our experience leads us to believe that the faculty ought to be made up of architects of broad background and experience, able to devote their full energies to a career of teaching. An integrated program requires architects who do more than drop in occasionally to give a criticism.

Fourth, and probably most important of all, there must be genuine interest on the part of every member of the faculty in what happens to a student in college and in later life. The fact that 98 percent of our graduates enter architecture or related fields indicates at least a measure of success in this direction.

From time to time we will call on other deans, not to get them in competition or to make insidious comparisons, but just to get quiet summaries of the purpose behind the method. I don’t think we really know enough about why things are done the way they are. I’ll grant that a dean seldom speaks for the entire faculty of any school, nor is he necessarily expert in all of the skills represented in a teaching story, but we expect him to know what is going on, and why.

Soon we will have available to us the statistical results of our first major national survey on education. But no survey can interpret individual or group purpose other than in general opinion summaries. The findings of surveys—unless conducted at regular and frequent intervals—will identify situation at a fixed point in time. They can also establish the development of past trends and possibly make graphs or curves projecting trends into a possible future. But the tabulating of ideas and emotions in education is always going to be difficult, if not impossible, since personalities subject themselves to only a few statistical tables. So, irrespective of what may come out of the important study now reaching completion, I count on a continued need for the analysis of objective behind every training program. After all, no good curriculum or course is any more static than comprehensive architecture itself.

If a faculty seasoned in education is always going to be difficult, if not impossible, since personalities subject themselves to only a few statistical tables. So, irrespective of what may come out of the important study now reaching completion, I count on a continued need for the analysis of objective behind every training program. After all, no good curriculum or course is any more static than comprehensive architecture itself, if a static point is ever reached in either—speedy burial is indicated.

Next month I hope to discuss, in part, the first report of the A.I.A. Commission to Survey Architectural Education and Registration (Dean Burdell’s committee, of which I have spoken before). This first report was given at the A.I.A. Convention in Chicago in May. I am sorry that it takes so long for me to get to the first commentary on this report, but the dates of publication of that report and the deadlines for this column just don’t jibe! I am giving you advance warning, however, that I expect you to read that paper in its entirety before my comments are made. In fact, I’d like to get comments from you on this first report by my deadline for the August issue—but let’s see, that would be by June 15. Time’s a-fleetin’.
21 VETERANS' HOSPITALS
CARRY THIS SEAL ... AUTH ...

... a name that places over 50 years experience and the finest reputation for dependability and integrity behind every job!

Auth Signaling, Protective and Communication Equipment

has been specified and used for Hospitals in every part of the country — installations which include Nurses' Call, Doctors' Paging and Staff Register Systems; Attendants Emergency Alarm Systems for Neuro-Psychiatric Patients; Centrally Controlled Clock Systems; Fire Alarm Systems; Intercommunicating Telephone; Vocalcall Systems for voice communication between patient and nurse; Night Lights and Ground Detector Panels. This and other AUTH equipment has proven its value time and time again when comfort and safety and hospital efficiency are prime considerations.

Write for detailed FREE literature.

AUTH ELECTRIC COMPANY, INC.
34-20 45TH ST., LONG ISLAND CITY 1, NEW YORK

Veterans Administration Hospitals using AUTH equipment:

- Fort Hamilton, Brooklyn, New York
- Altoona, Pennsylvania
- Wilkes Barre, Pennsylvania
- Clarksburg, West Virginia
- Omaha, Nebraska
- Saginaw, Michigan
- Albany, New York
- Spokane, Washington
- Grand Island, Nebraska
- Syracuse, New York
- Madison, Wisconsin
- Bonham, Texas
- Iowa City, Iowa
- Baltimore, Maryland
- Kansas City, Missouri
- Minneapolis, Minnesota
- Boston, Massachusetts
- West Haven, Connecticut
- Pittsburgh, Pennsylvania
- Little Rock, Arkansas
- Manchester, New Hampshire
Last month, this column discussed the extent to which the architect is protected against use or copying of his plans, or reproduction of buildings designed by him where he has not secured statutory protection by registering his work in accordance with the Copyright Act. It was pointed out that his protection ends, once he has made copies of his design available to the public in such a way as to render it common property. Such action, termed "publication" ends the architect's common law right of copyright.

This protection may be extended, however, if he registers his work under the Copyright Act. The Act then supersedes the common law and extends his protection. In effect, it permits the owner to release copies of his design provided he has stamped them with his brand.

The correct definition of a copyright is: the sole right of multiplying copies. Securing a statutory copyright means, therefore, that the copyrighted matter cannot be copied without the author's consent. The law permits the owner of copyrighted matter to print, reprint, publish, copy and sell the copyrighted matter. The owner has also the corollary right to execute and complete the copyrighted work, if it is a model or a design for a work of art.

Architectural plans may fall within either of two categories of work classified as copyrightable. One category (Sec. 5 (g)) includes "works of art, models or designs for works of art." This section is limited to inchoate works of art and would include models or designs of architects. Another category (Sec. 5 (i)) includes "drawings or plastic works of a scientific or technical character." Under Copyright Office Rules, architectural plans and designs for engineering works are included in this classification.

There is no section of the statute which specifically mentions completed architectural works. It is doubtful whether a building or other work of architecture may be copyrighted after it has been completed, as the law in England permits it to be. Authorities on the subject have expressed the opinion, however, that architects may obtain adequate protection against copying of a finished work if they copyright their models or designs.

What are the characteristics which a plan or design must have in order to be protected by copyright? A requirement insisted on by the courts, and considered implicit in the statute, is that works to be protected must be "original". The degree of originality may be very slight, nor must it necessarily be novel. It should not be confused with artistic merit, which is not required. What is required is independent thought and not a mere repetition or copying of the work of others.

All the essential elements of the design may be in common use. It is the arrangement or combination of the elements which makes for originality. In one case, where a design for a memorial had been copyrighted, it was contended by the person alleged to have infringed it, that all of the essential elements were in common use prior to the copyright. The court regarded this as immaterial.
SELECTED FOR
FIRST BAPTIST CHURCH
LONG BEACH, CALIFORNIA

Yes, Crane is the preferred plumbing in churches, too! It is selected for its modern design, lasting beauty and high quality. And when it comes to maintenance costs, Crane plumbing is a great respecter of church budgets.

Among the exclusive advantages of Crane plumbing are the Dial-ese controls that turn with finger-tip pressure, thus reducing wear and consequent dripping. For your clients' satisfaction through the years, always specify Crane, the preferred plumbing. Consult your Crane Branch or Crane Wholesaler.

KENNETH S. WING, Long Beach
ARCHITECT
TOM E. NORCROSS, Long Beach
GENERAL CONTRACTOR
HICKMAN BROS., INC., Long Beach
PLUMBING & HEATING CONTRACTOR
and stated that the combination of elements in the design and their plan or arrangement made the work original. Since the defendants had not shown any work similar to the design or proved that anyone had produced a similar combination of elements, the argument that the work was not copyright-able failed.

With respect to the problem of originality, the court made the following general remarks:

"In truth, in literature, in science and in art, there are, and can be, few, if any, things, which, in an abstract sense, are strictly new and original throughout. It is a great mistake to suppose, because all the materials of a work or some parts of its plans and arrangements and modes of illustration may be found separately, or in a different form, or in a different arrangement, in other distinct works, that therefore, if the plan or arrangement or combination of these materials in another work is new, or for the first time made, the author or compiler is not entitled to a copyright."

By the same token, the copyright law protects also reproductions of existing works in different adaptations, arrangements, or mediums of expression. The protection extends to the old and new matter in combination on the theory that the original work plus new matter constitutes new work. In one instance, a design of a miniature shrine was copyrighted, the principal elements of the design being taken from a shrine established by the Roman Catholic Church. While the various elements embodied in the design were symbols of worship and therefore deemed common property, the arrangement of these elements in an original fashion satisfied the criteria of originality and independent labor so as to permit copyright of the design.

It is important to remember that the copyright law does not protect ideas, but only the media or forms in which they are expressed. It is possible for an idea to be expressed in totally different manners, and it is these different manners of expressing it that are protected. This principle has received consistent expression by the courts but has been misunderstood by authors who have sought protection for ideas and systems rather than for their method of expression.

In the leading case on this subject, an author secured a copyright of a book explaining a system of bookkeeping with illustrations depicting the way the system should be used. The U. S. Supreme Court held that the copyright was not infringed by a book using the same plan as far as the result was concerned but with a different arrangement. The decision indicates that the author of the
MODERN DOOR CONTROL BY LCN • CLOSER CONCEALED IN DOOR

BELL SAVINGS & LOAN ASSOCIATION, CHICAGO, ILLINOIS

LCN CATALOG 11-E ON REQUEST OR SEE SWEET'S • LCN CLOSERS, INC., PRINCETON, ILLINOIS

Johnson & Johnson, Engineers—Architects
Heating
A Great New Hospital

The formal opening of Our Lady of Lourdes Hospital on July 1, 1950, signaled the completion of a $4 million project which is the last word in hospital construction and equipment. Steam was selected for the heating of this great institution—steam harnessed and brought under control with a Webster Moderator System of Steam Heating. An Outdoor Thermostat adjusts the steam supply with temperature changes.

Webster System Radiators, with built-in radiator trap, valve, orifice and union connections, were engineered into sanitary enclosures integrated with the window construction. Metal fronts with grilles are readily removable. Radiator valve provides for positive shut-off, making damper unnecessary.

Operation of the institution is by the Sisters of the Third Order Regular of St. Francis.

An important factor in the success of Webster Heating installations is the friendly service and close cooperation of the authorized Webster Factory Representative. Call him or write for his name.

It's the law

(Continued from page 144)

first book does not have a copyright in the idea of the book, but only in the description of his idea. The rule has since been reiterated that no copyright exists in a plan or method of art, although it may in their description.

A recent case on this point may serve to point up the difference between the right to be protected in an idea and the manner of expressing it. In that case, an engineer had procured a copyright of a drawing showing a novel bridge approach designed to unsnarl traffic congestion. He had presented his drawings before a Municipal Bridge Authority, which subsequently constructed a bridge approach similar to the engineer's design. The engineer then sued the Authority for infringement of his copyrighted drawing.

The court decided that the design had already been conceived and executed from other sources of information, namely, a bridge already constructed in another locality. The court went on to say that even if the Authority had copied his idea, he could not recover for an infringement. His drawing showing a bridge approach would not prevent anyone from using and applying the system of traffic separation set forth in his design. Here again, the engineer's system of traffic separation embodied an idea and this idea anyone could utilize. Before an exclusive right can be obtained in an invention or discovery, the court stated, it must be subject to the examination of the patent office. The court compared the design with a book containing a system of shorthand. There is no copyrightable material in the system itself but the explanation of how to do it is copyrightable.

If the same idea can be expressed in different ways, similarity in composition between a copyrighted and un-copyrighted work does not necessarily lead to the conclusion that the one is a copy of the other. Furthermore, there are many figures and symbols which are not copyrightable since they are in the public domain, that is, available to everyone—as political or religious symbols.

Whether a copyright has been infringed by the reproduction of another work, without the copyright owner's consent, is a question of fact. To begin with, there must be similarities in the two works. The problem is to determine whether the similarities are mere coincidence or are the result of plagiarism, for it often happens that a person has by independent thought and creative ability and labor produced a work of art that bears substantial resemblances.

(Continued on page 148)
Floors are cleaned faster, easier in this modern ladies’ washroom with these off-the-floor fixtures:
1. Wall-hung toilets.
2. Floor flush valves.
3. Wall-hung lavatories.
4. Ceiling-hung partitions.
5. Towel and tissue dispensers, fastened to the wall.

"Keep the fixtures off the floor!"—A sound recommendation from the plant washroom designer who wants his client to have the best in employee health, morale and efficiency...a minimum of absenteeism and wasted man-hours. For example—wall-hung lavatories and toilets with ceiling-hung partitions aid a faster, easier cleaning operation. They reduce illness and absenteeism, too, by doing away with filth-catching corners and crevices, permitting better ventilation.

Labor and administration costs generally eat up 85-95% of a typical operation’s sanitation budget. Stretch this figure out over the life of a building—50 years or more—and you’ll realize the full importance of passing every possible washroom labor saving on to your client in his new building.

Advice on off-the-floor fixtures is only one of many services offered by your Washroom Advisory Service man. Call him in. Get all the details—based on actual experience. He has the know-how gathered by a group of Scott-trained consultants who have serviced over 500,000 washrooms.

Contact Washroom Advisory Service, Scott Paper Company, Chester, Pennsylvania.

Send for FREE Leaflet...
"Plant Washroom Designing"

At no cost or obligation, please send me your study of personnel, traffic and maintenance problems, "Plant Washroom Designing."

Name
Company
Address
City
Zone
State

July 1951
to a work which has been registered as a copyright. The test of infringement, then, is whether an original independent production has been made or whether the work is merely a copy of the original registered work. A “copy” has been described as that which comes so near the original as to give every person seeing it the idea created by the original.

How much copying must there be to result in infringement? The general rule is that copying of some substantial or material portion of the copyrighted work will constitute infringement. Or, stated in another way, it means that it is not necessary that the whole work be copied but it is sufficient if so much is taken that the value of the original work is noticeably diminished or the labors of the author are substantially appropriated by another.

In one case where the design of a miniature shrine had been copyrighted, the court determined that it had not been infringed by the production of another shrine containing the same elements. In this case the elements in the two productions were deemed common property, and the designs, though using the same elements, differed in all details of decoration. The court found little if any similarity between the two designs in the method of arrangement and composition. It stated the following criterion for determining infringement:

"Whether one work is an infringement on copyright covering another work is dependent on whether an ordinary reasonable person would fail to differentiate between the two works or would consider them dissimilar by reasonable observation.”

Whether an architect is protected against copying of uncopyrighted plans when they are published in a magazine, or other periodical which is itself copyrighted, has not been decided by the courts. However, the inference may be drawn from cases involving similar problems that the architect is not protected unless his individual contribution is copyrighted and is so labeled in the magazine.

A copyright notice in a periodical covers everything that is copyrightable in the work, provided that copyright in all of the contents belongs to the one whose name appears on the notice of copyright. If the publication does not have exclusive right to the article or design as owner, then separate notice is required in the part belonging to the contributor.

If the architect submits a plan to a magazine and the plan is accepted and paid for, the plan may become the property of the magazine, and reproduction of it by third persons would constitute infringement for which the magazine, not the author of the design, would have a remedy. If the architect remains the owner, then it would appear that to be protected against copying of his work he should procure a copyright of the work and place a notice of copyright on the design appearing in the periodical. The purpose of the notice is to warn the public against infringement and if it does not appear on each copy of the work reaching the public, the protection afforded by the copyright is lost.

It is clear, then, that an architect is not protected against copying of his work if he has not procured a copyright. The only way he can secure protection is to register his plan or design in accordance with the provisions of the Copyright Act. The degree of protection afforded by a copyright will necessarily depend on the individual situation.
Yes, educators and other school officials are quick to sense how effectively AUTO-LOK Awning Windows play their role in enabling students to get the most out of educational facilities provided. They applaud the 100% weather control these windows make possible; they heartily endorse the elimination of air-infiltration and the manner in which these modern school windows cut down danger of drafts or perilous "cold spots" which invite respiratory ailments and consequent absence from classes.

Students, too, appreciate the "ventilation at all times" -- regardless of the weather outside -- and welcome the spring breezes, the maximum visibility and the abundance of light that AUTO-LOK brings to any classroom.

The operating economies of AUTO-LOK are at once recognized by school boards and staffs. Lower fuel bills. Decreased maintenance costs (for example, the windows are easily cleaned from the inside.) Upkeep expense of any kind is negligible.

The Window with the
"FLOATING SEAL"

No need to mention to architects that the providing of weatherstripping isn't the sole answer to elimination of air-infiltration. However, in AUTO-LOK, vinyl plastic weatherstripping combines with the ingenious locking action of patented, precision hardware to create a "floating seal." The vents are pulled in tight (locked at all four corners) and are compressed against the vinyl plastic -- assuring a tight closure ten times as tight as generally accepted standards - in truth the TIGHTEST CLOSING WINDOWS EVER MADE

Our engineering department, with wide experience in solving window problems, will be glad to assist you in any way.

May we send you, free, informative booklet,
"WHAT IS IMPORTANT IN A WINDOW?"

Please address Dept. PA-7

LUDMAN CORPORATION
P. O. Box 4541
Miami, Florida

Pictured above: Randolph-Macon College
Ashland, Virginia
Arch. -- Merrill C. Lee
Richmond, Virginia
MORE Beauty
FOR HOSPITAL FLOORS

Hillyard’s 3-step treatment on 24 hr. duty in terrazzo corridors at St. Theresa’s Hospital, Waukegan, Ill.

When YOU Specify
HILLYARD’S
3-Step Treatment

- SUPER SHINE-ALL
 — for final clean-up
- ONEX-SEAL
 — for terrazzo, SUPER-HIL-Brite wax for wood, or asphalt tile
- SUPER HIL-TONE
 — for regular maintenance

FEATURES: Produces a bright-looking, attractive finished surface that withstands hardest abuse, that is protection against wear-out. Assures hospitals the low-cost maintenance they seek. . . . Assures architects a finished floor installation of which to be proud. APPROVED: “Anti-slip” by Underwriter’s Laboratories. Recommended by flooring manufacturers and their associates.

Let the HILLYARD MAINTAINER BE YOUR JOB CAPTAIN

He's trained in the technical side of treating floors, schooled to work hand in hand with architects. You can depend on his advice and help to get the job done RIGHT and "ON SCHEDULE." HIS HELP IS FREE!

WRITE FOR FREE FOLDER
on the treatment of terrazzo and cement floors.
Dept. N-7

Page 52
Clearwater County Memorial Hospital—all photos: Photography, Inc.

Page 54
Magic Valley Memorial Hospital—photo: Kehler Photo Shop.

Page 55
Marin General Hospital—rendering: Russell Williams.

Page 57
Fayette County Memorial Hospital—photo: Gregg Photo Studio.

Page 64
Upper Manhattan Medical Group Center—rendering: Robert Schwartz.

Page 65
District VI Tuberculosis Hospital—model: Harry Inge Johnstone; photo: Thigpen Photography.

Page 66

Page 67
Crippled Children’s Hospital—model: James B. Bitlich; photo: Leon Trice.

NOTICES

Exhibit Committee Announced

PHILIP C. JOHNSON and EERO SAARINEN served this year with EDGAR KAUFMANN, JR., Director of “Good Design,” as the Selection Committee for new merchandise for the exhibition which opened in Chicago on June 21.

Current Exhibition

The Akron Art Institute, Akron, Ohio, announces an exhibition of contemporary furniture design by EAMES, NELSON and NOGUCHI for the Herman Miller Furniture Co., through July 25.

New Practices, Partnerships

JAMES B. PANNELL and A. F. BORDELEAUX announce the formation of a partnership under the name of BORDELEAUX-PANNELL, Architects, 410 8th St., N., P.O. Box 1163, Great Falls, Mont.

MARVIN FITCH and DONALD SCHILLER announce the formation of a partnership for the practice of architecture under the name of FITCH & SCHILLER, Architects, 100 W. Chicago Ave., Chicago 10, Ill.
Right you'll be when you pick from 3

Do your plans call for pitched roof? curved roof? flat roof? Right you'll be when you pick from 3! For the U.S.G. line of dependable roof decks includes three completely different types — 1. Poured-in-place gypsum; 2. Precast gypsum; 3. Steel decks. One of the "U.S.G. three" is sure to be right for your purpose.

And because your U.S.G. Representative has had wide experience with all three types of roof decks offered by United States Gypsum, he can recommend the type best suited to your needs.

The years will prove, too, that you're right in selecting strong, lightweight, incombustible roof decks like these. Quick to install. Easy to maintain. Specify U.S.G. and be sure you're RIGHT on your roof. See Sweet's Catalogs for specifications, or contact your U.S.G. representative. He'll give personal attention to your problem.

1 USG Poured-in-place SHEETROCK*® PYROFILL® Roof Deck.

2 USG Steel Roof Deck.

3 USG Precast Metal Edge Gypsum Plank and 3" (Nailing type) Tile.

United States Gypsum
For Building • For Industry
Gypsum • Roof Decks • Insulation • Hardboards • Expanded Metal • Sound Conditioning
Because PLASTIMENT satisfies all four because

- Mixes better
- Handles easier
- Places faster
- Stays durable

"PLASTIMENT is the chemically Retarding Densifier especially developed for concrete work which requires your guarantee. Retards set, densifies mix to provide controlled properties far superior to reference concrete. Designed for use with all types of aggregates and all methods of mixing and placing, PLASTIMENT-Concrete's ease of handling and superior results find ready on-the-job acceptance in every phase of construction. For full details, write or call.

APPROVED: PLASTIMENT and other Sika Products have been tested and approved on Federal, State and Municipal projects, and are approved under Building Codes of principal cities.

Look for this insignia

PLASTIMENT and other Sika Products have been tested and approved on Federal, State and Municipal projects, and are approved under Building Codes of principal cities.

A colleague once referred to the writer as a 'designer of buildings,' as distinguished from an 'architect,' pointing out that I design buildings around their functions, whereas an 'architect' designs a building primarily as art. I am satisfied if my buildings serve their purposes and are pleasant to behold inside and out.

"But to return to the preliminaries, the above documents do not comprise the complete preliminary presentation. In addition, an outline specification is prepared, without resorting to pompous phrases like 'the contractor shall,' describing what the architect's intentions are as to the construction system, materials, finishes, and mechanical and electrical systems.

"Finally the submission has a revised tabulation of cubicage and cost computed at a cost per cubic-foot agreed upon with the owner at the inception of the planning. The author absolutely insists on an agreement as to cost per cubic-foot from the beginning, but he takes no responsibility as to the course of the national economy or international events. He does inform the owner from time to time as to the course of the building-cost index, so that if prices went up, say 10% since the first agreement as to the cost per cubic-foot, the owner could easily compute where the cost of his project stands, within reasonable limits.

"It is interesting to note that under the traditional approach to project development, the cubic of the building almost invariably keeps on rising as the project progresses from stage to stage. With the approach here described, the writer has been able to report consistent, if only minor, reductions in cubicage from one stage of development to the next, unless the owner decided to increase the scope of the project. And that is easily accountable in terms of cubicage and cost. A careful record of such additions is kept by the architect, so that the owner cannot at some later date point an accusing finger at the architect and blame him for the increased cost of the project.

"The author does not mean to imply that the working drawings which follow the preliminaries are exact reproductions of the preliminaries. On the contrary, minor changes continue to be made both on the motion of the owner and by the architect. Even now, at the moment of publication, there is the temptation to revise the preliminaries to have them conform with the latest changes effected in the working drawings, for fear that some reader may discern imperfections. Our better judgment dictates that it is in the nature of things that a preliminary could not be 'letter perfect' as even final drawings are."

I.R.
DESIGN for
Sanitary, Firesafe, Modern
QUIET

Fiberglas® Acoustical Tile is specified more and more, especially where cleanliness and fire safety are musts. This low-cost, incombustible tile offers a unique combination of values:

- Fire Safe
- High Acoustical Value
- Decorative Beauty
- Good Light Reflection
- Ease of Application
- Sanitary
- No Sustenance for Vermin
- Cleanable and Paintable
- Dimensionally Stable
- High Insulation Value
- Low Cost

For complete specification information on Fiberglas Acoustical Tile, see Sweet’s Files—Architectural, OR call your local Fiberglas acoustical contractor, listed in the yellow pages of the phone book.

Owens-Corning Fiberglas Corp., Dept. 63G, Toledo 1, Ohio.
Branch Offices in principal cities.

*Fiberglas is the trade-mark (Reg. U. S. Pat. Off.) of the Owens-Corning Fiberglas Corporation for a variety of products made of or with fibers of glass.
SITUATIONS OPEN

ARCHITECTS, MECHANICAL AND STRUCTURAL ENGINEERS, SPECIFICATIONS WRITERS AND SQUAD LEADERS—for immediate employment in our Omaha and St. Louis offices. Give full particulars, including experience, education and salary requirements. Leo A. Daly Co., 633 Insurance Bldg., Omaha, Nebr.

WANTED—architectural draftsman, structural engineer and specifications writer. State starting salary expected and address Frampton & Bowers, P. O. Box 637, Huntington 11, West Virginia.

ADVERTISING RATES

Standard charge for each unit is Five Dollars, with a maximum of 50 words. In counting words, your complete address (any address) counts as five words, a box number as three words. Two units may be purchased for ten dollars, with a maximum of 100 words. Check or money order should accompany advertisement and be mailed to Jobs and Men, c/o Progressive Architecture, 330 W. 42nd St., New York 18, N. Y. Insertions will be accepted not later than the 1st of the month preceding publication. Box number replies should be addressed as noted above with the box number placed in lower left hand corner of envelope.

ARCHITECTS AND DRAFTSMEN—Experienced in architectural, electrical controls, lighting and power, structural, ventilation, heating, piping or material handling work for consulting engineer’s office. J. Fruchtbaum, 633 Jackson Bldg., Buffalo, N. Y.

SITUATIONS WANTED

Top-Notch Designer—draftsman, man, 33, excellent experience and ability in contemporary design. Capable of handling complete job. Rapid, neat, precise. Desire position of responsibility, reasonably permanent. Box 386, PROGRESSIVE ARCHITECTURE.

ARCHITECTS-DESIGNERS—don’t be burdened with the overhead of draftsmen and space. Let us do your preliminary sketches, details, working drawings, renderings and engineering on housing, institutional and commercial work. All work is done under the supervision of architects and engineers. Architectural Drafting Service, 35 So. Dearborn St., Chicago 3, Ill.

For Aluminum, Steel or Wood Windows

SPECIFY TREMGLAZE

NEEDS NO PAINTING

On aluminum windows, Tremglaze meets Aluminum Window Manufacturers Assn. standards. Completed steel window installations cost no more with Tremglaze than with paint. Save on the paint contract—specify “Painting—the wrong way.” Paint on the window where it belongs.

CALL LOCAL TREMCO MAN—OR WRITE

THE TREMCO MANUFACTURING CO.
CLEVELAND • TORONTO

Products and Methods for Building Construction and Maintenance
Regardless of size, every Hauserman Movable Partition installation is a Hauserman responsibility, throughout its long, cost-saving life.

That's why Hauserman—pioneer in the development of prefabricated steel interiors—since 1917 has maintained a nationwide factory-trained service organization to assist Hauserman users with any rearrangement or service problem.

Undivided responsibility throughout the installation and forever after is only one of the exclusive advantages offered the user of Hauserman Movable Walls. Write for the new 1951 Hauserman catalog which contains the full story in concise, illustrated form. Send for your free copy today.

The E. F. Hauserman Co., 7204 Grant Ave., Cleveland 5, Ohio.
do you know
the TRUTH about ventilators?

Ventilators are usually selected on the basis of their capacity ratings. That makes sense, but do you know that:

1. Capacity ratings of most ventilators are not certified.
2. Capacity ratings of most ventilators are based on horizontal wind tests only.

and...Breidert Air-X-Hausters provide safe, sure ventilation no matter which way the wind blows!

Only such tests can guarantee the capacities a ventilator will deliver under actual operating conditions. No matter which way the wind blows, barring interior negative pressures, the Breidert provides safe, sure ventilation...on roofs, vent flues, chimney tops. Stationary, no moving parts, nothing to jam or get out of order.

HOW YOU CAN GET BETTER RESULTS WITH LESS MONEY

It takes fewer Breiderts to do the job as same size conventional ventilators. (or) You can use the same number of smaller size Breiderts to do the same job as conventional ventilators.

Get all the facts! Write today for complete Engineering Data Book, including certified capacity ratings.

Address Dept. E.

*By Pittsburgh Testing Laboratories

THE G. C. BREIDERT CO.

3129 San Fernando Road, Los Angeles 65, Calif.
Representatives in principal cities throughout the U.S.

Caldwell Mfg. Co.
ROCHESTER 14, N. Y.

E XCLUSIVE Caldwell feature saves 10 to 12 minutes per installation. Eliminate squeaks and rattles without oiling.

S LASHES transportation load more than 90% by eliminating weights and pulleys. Narrow trim cuts lumber and labor, too.

M ORE than 60 years of fine performance backs each Caldwell guarantee of accurate balance, for the life of the building.

For complete details write today to:

Caldwell Mfg. Co.
ROCHESTER 14, N. Y.

Installed in such prominent hospitals as Veterans, Indianapolis; Mt. Sinai, Minneapolis; Menorah, Kansas City; and Veterans, Denver. Also in such famous buildings as United Nations Secretariat Building, New York; and Shamrock Hotel, Houston, Texas.

Cut Costs

Saved Time

More for the Money

More for the Money
When Pohlmeier & Pohlmeier, Ft. Wayne and Skidmore, Owings & Merrill, architects, designed this hospital for crippled children, the type of patients it was to serve demanded a one-story structure.

A one-story building invariably imposes extra demands on the heating system ... a problem ideally solved by the installation of three oil-fired Kewanee Boilers by O. J. Shoemaker, South Bend.

KEWANEE STEEL BOILERS

- Although spread over many acres, ample steam for this important project is provided by the "500" Series Kewanees, built for 150 lbs. working pressure, and rated to produce an hourly total of 11 million Btu.

Whether a building is large or small and regardless of the fuel used, Kewanee Boilers insure a lifetime of dependable heat with minimum fuel costs. This important feature, plus extremely low upkeep, makes Kewanee Boilers most economical to own.

Ask or write for your copy of the new Kewanee "On the Job" folder which briefly describes a few outstanding Kewanee hospital installations.

KEWANEE BOILER CORPORATION
KEWANEE, ILLINOIS

Eastern District Office: 40 West 40th Street, New York City 18

Cut-a-way KEWANEE "500" Series for Heavy Duty

Two pass 3" tubes provide extra economy even with overloads of 50% above rated capacities.
"It's the most practical rolling door hardware on the market," says C. H. Moody of the Elmer T. Hebert Co., Hardware Specialties, New York City.

"Har-Vey Hardware's smooth, silent operation and simple installation is winning the praise of architects, builders and owners everywhere."

These special features make Har-Vey first for quality and performance all over the nation:

- 100% Rustproof
- Self-lubricating Oilite Bearings
- Engineered for Quick, Easy Installation
- Designed for positive locking
- Quality-made for lifetime wear from superior parts supplied by leading U.S. manufacturers

"Faced with an ever-growing demand for Har-Vey Hardware and an increasingly tight supply situation, Metal Products Corporation is making and will continue to make every effort to satisfy the requirements of its many customers, old and new.

Write for full details today!
Address HARDWARE DIVISION

Metal Products Corporation
807 N. W. 20th St. Miami, Florida

Please send me your free folder on rolling doors & Har-Vey Hardware

NAME ____________________________
COMPANY _________________________
STREET ___________________________
CITY ________________ STATE ________

You built the SAFETY in your building

. . why not use dependable NAME BRAND
Signal and Fire Alarm Systems!

Signals

You can't stop with designing a fire-proof plant or building. As important is the signal system that makes it run. Whether it's audible or visual paging and signaling devices, you're sure when you specify a "Name Brand" for your building "nerve" network. It's safer ... and more dependable.

Fire Alarms

Maybe a fire system works only once—but it can't fail that one time. That's why it's important to specify the best—Faraday Fire Alarm Systems. Stations, Sounding Devices, Control Panels are carefully engineered and assembled to make sure your building is as "safe" as a warning can make it. Next job specify Faraday—it stays dependable.

GO "FIRST CLASS"

Faraday, Inc.

ADRIAN, MICHIGAN

BELLS • BUZZERS • HORNS • CHIMES • ULTRA-VIOLET SANITIZERS • VISUAL AND AUDIBLE PAGING DEVICES AND SYSTEMS
“We can’t go wrong—it’s radiant heated”

Steel pipe is first choice for radiant heating

Among the thrills that come to all of us but “once in a lifetime”, who does not remember that first Christmas together... or the baby’s first birthday cake... or the first brand-new, shining car?

But the biggest thrill of them all came when, hand in hand, we stood before that just purchased home-of-our-own!

Young folks today (and older ones, too) face the same moments of decision that we did when buying or building a new home. But, when they find their dream house is to have Radiant Panel Heating, they know it was designed by those acquainted with the latest in home building ideas. Radiant Heating becomes a symbol of sound value!

And when the Radiant Panel Heating coils are of Steel Pipe, success is assured. For Steel Pipe has all the desirable characteristics of durability, weldability, formability, and maximum economy... proved through more than 60 years of service in domestic heating systems!

A 48-page color booklet “Radiant Panel Heating with Steel Pipe” is yours for the asking. Write for it... it’s free.

COMMITTEE ON STEEL PIPE RESEARCH
AMERICAN IRON AND STEEL INSTITUTE
350 Fifth Avenue, New York 1, N. Y.
25 TYPES • 150 DIFFERENT SIZES!

CHELSEA FANS

—for every industrial, commercial
and residential requirement

Specifying Chelsea Fans is one way
to insure proper ventilation. Write us
today for complete illustrated litera-
ture and information regarding types,
and sizes for defense needs.

Chelsea Industrial Type IND

For large general area ventilation.
Moves large volumes of air under
pressure, overcoming high resis-
tance in hoods and ducts. Sizes
from 24" to 60".

All-Purpose
Fan Type BB

For removing
smoke, steam,
heat, fumes, etc.
Heavy duty, dis-
sect drive fan for
continuous opera-
tion. Recommended
for use against static
pressure. Simple
to install. Sizes
from 10" to 36".

SEND FOR FREE CONTRACTOR'S KIT!

Contains all the information
you need to make ventilating
and cooling installations in
factory, store, office or home
selection of proper fan, in-
stallation hints, etc. No obli-
gation—write Dept. 9.

CHELSEA FAN & BLOWER CO., INC.
PLAINFIELD, NEW JERSEY

ALSO AVAILABLE
IN ALL SIZES

Industrial
Pressure Fans
Penthouse Units
Duct Booster Fans
Octopus Blowers

for removing welding
and other fumes, and
for ventilating con-
fined areas.

Air Blasters
Automatic
Louvers
Pedestal
Man-Cooolers

... The one and only
Artgum brand! It's the
best! Look for the name!

THE ROSENTHAL CO., 45 EAST 17th STREET, NEW YORK 3

marble

saves critical metals
for critical needs!

Marble shoulders new responsibility today
by freeing for critical Army, Navy and Air
Force use, metals which should be conserved
for the national defense program.

You can eliminate the need for metal when
using Marble for toilet or shower partitions.

FREE LITERATURE may be quickly
obtained by stating your needs to:

MARBLE INSTITUTE OF AMERICA, INC.
108 FORSTER AVENUE, MOUNT VERNON, N. Y.

Always
Specify

HAWS

for Highest
Quality

A complete line of coolers, fountains,
faucets, equipment, filters and acces-
sories. A reputation for reliability
since 1909. Check in Sweet's or write
for complete HAWS catalog.

HAWS DRINKING FAUCET CO.
1441 FOURTH STREET (Since 1909) BERKELEY 10, CALIFORNIA
Agents and Sales Representatives in All Principal Cities
Should a hospital

use "second-hand" air?

Suppose you were designing a hospital . . . what kind of air conditioning would you want?

You'd probably want a system that didn't recirculate "used" air. The Carrier Conduit Weathermaster System does away with return ducts, distributes only fresh outside air.

You'd probably want individual temperature control in every patient's room. The Carrier room Weathermaster unit lets you dial the climate you prefer.

You'd certainly want a system that was quiet. The Carrier room Weathermaster unit contains no fans, motors, or other moving parts.

You wouldn't want patients disturbed if the equipment needed servicing. In the Carrier Conduit System, all mechanical components are centralized. All the room units need is a going-over with a vacuum cleaner every six months or so.

With the patients comfortable, you'd consider your responsibility to the hospital administrators.

For them, you'd want a compact air conditioning system, because space costs money. The Carrier Conduit System takes from 75 to 85 percent less space than ordinary duct systems. It eliminates return ducts, replaces supply ducts with small diameter conduits.

You'd want a system that's easy to install. The Carrier conduits are prefabricated, slip together easily. The Carrier Conduit Weathermaster System reduces the usual cutting and patching. Sound good? It is good! Write and we'll tell you even more. Carrier Corporation, Syracuse 1, New York.
Throughout the AIR CONDITIONING Industry—

AEROFIN F I N-T Y P E HEAT-TRANSFER UNITS do the job Better, Faster, Cheaper

AEROFIN CORPORATION
410 South Geddes St., Syracuse 1, N.Y.

Control the Moisture Problem

The INSULITE* “Wall of Protection” controls condensation in walls ... guards against paint failure and other destructive action. Sealed Lok-Joint Lath* on the inside retards vapor flow into the walls. Permeable Bildrite Sheathing* allows the remaining vapor to escape toward the outside. Write for Full Information!

Mad e of Hardy Northern Wood

INSULITE DIVISION, MINNESOTA AND ONTARIO PAPER COMPANY

In your new Swee t's File see section 13i on Bruce Hardwood Floors—

you can see that Trinity White is the whitest white cement!

You'll get fine results with this extra white cement. It's true Portland Cement made to ASTM and Federal Specifications. If your dealer does not have it, write the office nearest you: Trinity Portland Cement Division, General Portland Cement Co., 111 West Monroe St., Chicago; Republic Bank Bldg., Dallas; 816 W. 5th St., Los Angeles.

as white as snow
Maguolo and Quick, Architect-Engineer, developed the plans for the complete group of St. John's hospital buildings: A general hospital, 325 beds, basement and seven floors; a nurses' home, basement and five floors; a laundry building, basement and first floor; a power house. Construction, started in June 1950, will be completed in July 1952.

OTIS ELEVATORING includes all vertical transportation for all buildings and services. The main building has 2 Passenger Elevators, 2 General Service Elevators, 1 Outpatient Elevator, 1 Freight Elevator and 6 Dumbwaiters. The freight elevator will carry supplies from the ground floor to basement storage areas, 2 dumbwaiters will serve the diet kitchen, 2 more will serve the dining room, and 2 will handle sterile supplies and pharmaceuticals. The nurses' home has 1 Passenger and 1 Service Elevator.

A big job? Yes. But easily handled by OTIS under a single responsibility. Why? Because OTIS manufactures a complete line of vertical transportation equipment for hospitals and has a field organization well qualified to work with architects and engineers in solving complex hospital problems.

All, as explained in a new OTIS booklet: *THE MODERN HOSPITAL AND ITS ELEVATOR NEEDS*. A copy will be sent to you, upon request. For further details on Otis equipment, including escalators, call your local OTIS office. Otis Elevator Company, 260 11th Avenue, New York 1, N. Y.
CHANNEL ROOF
DECK SLABS for
use with composi-
tion covering.
NAILING CON-
CRETE SLABS to
hold securely, slate,
tile, copper or other
ornamental roof.

THE LIGHTWEIGHT, PERMANENT, FIRE-
SAFE, NO MAINTENANCE ROOF DECK

ANEMOTHERM
MEASURES
AIR VELOCITY
FROM 10 FPM to 6,000 FPM

AIR TEMPERATURE
FROM 30 F to 155 F

STATIC PRESSURE
FROM 0 to 4 NEG. AND
FROM 0 to 10 POS. IN. W.G

This precision instrument gives vital data on the performance
and efficiency of heating, ventilating and air conditioning sys-
tems. Direct, instantaneous readings.

SEND FOR FREE 4-PAGE FOLDER

Anemostat Corporation of America, Dept. TH-24
10 East 39 Street, New York 16, N. Y.

☐ Please send new 4-page folder on the Anemotherm
 Air Meter.
☐ I would like to have the Anemotherm demonstrated.

Name ____________________________
Company _________________________
Address __________________________

AC 1221

Adaptable
to any plan

ALUMINUM I-BEAM CURTAIN TRACK

ARCHITECTS' CHOICE—because it is so adaptable
to any window or wall treatment on your drawing
board. Saves time, saves labor. Flexible, self-
forming, it can be bent easily right on the job
without kinking or distortion. This saves time
previously lost in extra, at-factory bending. Can
be curved to a radius as small as 1 1/2". Only one
workman needed for long installations. Curtains
traversed by hand or draw cords. Operates
smoothly, easily, quietly.

Write for our complete catalog TODAY.
The Gould-Mersereau Co., Inc.
35 West 44th St., New York 18
Branch: 99 Chauncy St., Boston 11

BEAUTY
VERSATILITY
STRENGTH

Sash No. 58—With
Sill Section No. 80

For strength with beauty, durability with modernity—specify Natcor
Fully Extruded Aluminum Mouldings, the increasingly
popular Natcor Mouldings that have
won acceptance all over the world.
Send for full or 1/2 size details.

Natcor STORE FRONTS
NOW IN TAUNTON, MASSACHUSETTS
PERMACOUSTIC® TILE has an attractive fissured surface with great architectural appeal. The texture obtained by the fissures is distinctive and pleasing and avoids mechanical monotony of appearance.

Because Permacoustic is made of non-critical materials you can plan present and future construction without fear of shortages. Stocks are carried in all the principal cities in the United States.

Made of fireproof rock wool fibres, Permacoustic meets building codes which specify the use of non-combustible acoustical materials.

It's Johns-Manville
PERMACOUSTIC!

Permacoustic is furnished in popular sizes, can be installed by application to existing slabs or ceilings, or can be suspended using a spline system of erection.

Other J-M Acoustical Ceilings include Fibre-tone®, a drilled fibreboard; Sanacoustic®, perforated metal panels backed up with a non-combustible, sound absorbing element; and Transite®, made of perforated, fireproof asbestos. For a free brochure entitled "Sound Control," write today to Johns-Manville, Dept. P.A., Box 158, New York 16, N. Y. In Canada, write 199 Bay Street, Toronto 1, Ontario.

LIFETIME-LOW COST...
GENUINE PORCELAIN ON STEEL

MIRAWAL APPROVED AND NOW BEING SPECIFIED BY U. S. VETERAN'S ADMINISTRATION HEADQUARTERS

FOR WALLS AND CEILINGS OF CORRIDORS . . . OPERATING ROOMS . . . FOOD DISPENSING AND DINING AREAS . . . AUTOPSY ROOMS . . . HYDRO-THERAPY ROOMS . . . LAUNDRY ROOMS . . . ETC.

AVAILABLE FOR IMMEDIATE SHIPMENT IN A WIDE VARIETY OF ATTRACTIVE COLORS.

FOR FURTHER INFORMATION, ON THIS SANITARY VITREOUS WALLBOARD, WRITE BALTIMORE PORCELAIN STEEL CORP. EXCLUSIVE MANUFACTURERS P. O. BOX 921 BALTIMORE 3, MARYLAND

HOW TO HELP YOUR HOSPITAL CLIENTS

Cut down on Nurses' Foot Travel 50% and More!

Executive's NEW Audio-Visual Nurse Call System can do much to help relieve the nursing shortage, improve bedside care, and step up the efficiency of an entire hospital staff!

With Executive, instant voice-to-voice contact can be coordinated with dome-light signalling. Patients calling for nurse are answered directly. When articles are needed, no preliminary trips to investigate are necessary. Nurses' energy and time are concentrated on bedside care, which can be administered more quickly to more patients!

Executive also links vital departments together . . . supplies voice-paging to locate physicians . . . coordinates administrative functions . . . relieves telephone tie-ups . . . gets more work done faster in all departments.

For Wiring Plans and Specifications, Write Dept. G-6

FOR NEW CONSTRUCTION . . .
FOR REMODELING JOBS

HASTINGS aluminum
RUSTPROOF • FIREPROOF • SANITARY
14 DECORATOR COLORS

Alumitile is formed after it is painted. Won't chip, crack, peel or corrode. Enamel finish permanently bonded to aircraft aluminum. Over 25 different shapes and sizes of tile . . . inside and outside corners, bases, caps, stripes, triangles; matching switch plates. Various patterns supply attractive designs. Light in weight, economical.

BEAUTIFUL, DURABLE, VERSATILE

You can recommend this unusual wall facing with utmost confidence.

Serves countless uses for homes, institutions and commercial buildings. Furnishes strength without bulk. There are no unsightly mortar lines to collect dirt and grease. Easy to apply.

NAME__________________________
ADDRESS________________________
CITY_________________________STATE______

Metal Tile Products, Inc.
Dept. 510, Hastings, Michigan

Send free information on Alumitile.
I am an A Architect, O Contractor O Dealer, O Distributor.

Name__________________________
Address________________________
City_________________________State______

Write Today!
Now, more than ever before, it is necessary that constant vigilance is maintained and that every precaution is taken to insure against losses by fire. Records show that many large loss fires result from exposure through ordinary glass windows.

Mississippi Wire Glass* affords constant protection at minimum cost in windows, doors, transoms, skylights, fire escapes, vertical shafts, partitions, exterior walls and all other places where fire or breakage protection is required...helps to avert tragic and costly fire losses that result from exposure through ordinary glass.

Specify Mississippi Wire Glass—the original solid wire glass upon which the Underwriters' Standard was based in 1899...the standard today by which all others are judged. Carried in stock by distributors of quality glass everywhere.

Send For Catalog No. 51
Free Samples on Request.
For details see
Sweet's Architectural File

MISSISSIPPI GLASS COMPANY
88 ANGELICA ST. SAINT LOUIS 7, MO.
NEW YORK • CHICAGO • FULLERTON, CALIF.

WORLD'S LARGEST MANUFACTURER OF ROLLED, FIGURED AND WIRED GLASS

*Approved Fire Retardant No. 32
DIRECTORY OF PRODUCT ADVERTISERS

Adams & Westlake Co. 6, 7
Aerofin Corp. 162
Air Devices, Inc. 45
Allen, W. D., Mfg. Co. 146
American Radiator & Standard Sanitary Corp. 110, 111
American Structural Products Co. 43
Anemosstat Corporation of America 164
Armstrong Cork Co. 135
Art Metal Co., The 30
Auth Electric Co. 141
Bakelite Co., a Division of Union Carbide & Carbon Corp. 33
Baltimore Porcelain Steel Corp. 166
Barber-Colman Co. 26
Bogen, David, Co., Inc. 152
Brisco Mfg. Co. 133
Brodart, G. C., Co. 156
Bruce, E. L., Co. 162
Bryant Heater Division 42
Cabet, Samuel, Inc. 117
Calwell Mfg. Co. 156
Cambridge Tile Mfg. Co. 11
Carrier Corp. 161
Ceco Steel Products Corp. 32
Chase Brass & Copper Co. 121
Chelsea Fan & Blower Co., Inc. 160
Committee on Steel Pipe Research of the American Iron & Steel Institute 159
Congoleum-Nairn Inc. 112, 113
Conner, W. B., Engineering Corp. 166
Crane Co. 143
Crawford Door Co. 123
Curtis Lighting Inc. 19
Duriron Co., Inc. 134
Eastman Kodak Co. 127
Edwards Co., Inc. 23
Electric-Aire Engineering Corp. 150
Executein, Inc. 166
Federal Cement Tile Co. 164
Federal Seaboard Terra Cotta Corp. 106
Fenestra Building Products 38, 39, 125
Flynn, Michael, Mfg. Co. 34
Gladding, McBean & Co. 137
Gould-Messereau Co., Inc. 164
Granco Steel Products Co. 128
Hauserman, E. F., Co. 155
Haws Drinking Faucet Co. 160
Hillyard Sales Co. 150
Infra Insulation, Inc. 14
Inland Steel Products Co. 2nd Cover
Insulite Div., Minnesota & Ontario Paper Co. 162
Johns-Manville Corp. 165
Just Mfg. Co. 130
Kentile, Inc. 131
Kewanee Boiler Co. 157
Laclede Steel Co. 148
LCN Closers, Inc. 145
Libbey-Owens-Ford Glass Co. 40, 41, 104
Lockwood Hardware Mfg. Co. 114, 115
Lone Star Cement Corp. 46
Louisville Cement Co. 25
Lotix Systems, Inc. 140
Ludman Corp. 149
Macomber Inc. 108
Mahon, R. C., Co. 3
Marble Institute of America Inc. 160
Master Builders Co. Back Cover
Mastic Tile Corp. of America 17
Mengel Co. 21, 132
Metal Products Corp. 158
Metal Tile Products Inc. 166
Mississippi Glass Co. 167
Moon Valve Co. 154
Natar Store Fronts 164
National Electric Products Corp. 29
National Gypsum Co. 44
National Terrazzo and Mosaic Association, Inc. 126
New Castle Products 122
Nova Sales Co. 8
Ohio Chemical & Surgical Equipment Co. 10
Otis Elevator Co. 163
Owens Mfg. Co. 4, 5
Owens-Corning Fiberglas Corp. 153
Pecora Paint Co., Inc. 18
Perlite Institute 152
Pittsburgh Plate Glass Co. 36, 37
Pittsburgh Steel Products Co. 27
Powers Regulator Co. 35
Pynne & Co., Inc. 12
Pyle-National Co. 31
Ravena Metal Products Corp. 154
Republic Steel Corp. 24
Revere Copper & Brass, Inc. 3rd Cover
Roberts Co., The 129
Robertson, H. H., Co. 139
Roddis Plywood Corp. 116
Roe, Justus, & Sons, Inc. 136
Rosenthal Co. 160
Rotary Lift Co. 136
Scott Paper Co. 147
Security Fire Door Co. 142
Sedgwick Machine Works 20
Silk Chemical Corp. 152
Sola Electric Co. 144
Sparti Faraday Inc. 158
Swartwout Co. 118
Tremco Mfg. Co., The 154
Trinity Portland Cement Div., General Portland Cement Co. 162
Truline Developments 13
Union Carbide & Carbon Corp., Bakelite Co. 33
United States Gypsum Co. 151
United States Plywood Corp. 169
United States Quarry Tile Co. 124
Universal Atlas Cement Co. 22
Versen, Kurt, Co. 144
Webster, Warren, & Co. 146
West Coast Lumbermen's Association 119
Wilson Engineering Corp. 152
Wiremold Co., The 120
Wood Conversion Co. 138
Youngstown Sheet & Tube Co. 28

ADVERTISING AND EXECUTIVE OFFICES
330 West Forty-Second Street, New York 18, N. Y. BRant 9-4430

JOHN G. BELCHER, Vice President & Publisher
FRANK J. ARMEIT, Production Manager
JOHN CUNNINGHAM, Promotion Manager

NEW YORK OFFICE:
EDWARD D. BOYER, JR., Regional Mgr.
WM. B. REMINGTON, JR., N. Y.-N. J. District Mgr.

CLEVELAND OFFICE:
630 Terminal Tower, Cleve. 13. Prospect 1-5583
BRAD WILKIN, Regional Manager
JOHN W. BATTLES, District Mgr.

WEST COAST ADVERTISING REPRESENTATIVES
San Francisco, Calif.—Duncan Scott & Co., Mills Building, Garfield 1-7950
Los Angeles, Calif.—Duncan Scott & Co., 2970 Wilshire Blvd., Dunkirk 8-4151

168 Progressive Architecture
More than 300 Birch Weldwood Fire Doors are used in the new building for the Rehabilitation Division of The Bellevue Medical Clinic, New York.

Here at last is a fire door that performs its number one function—restricting the spread of fire—yet is so handsome that it can be used in the finest interior.

The secret lies in the unique construction—the choicest of domestic and imported wood veneers are bonded to an incombustible mineral core.

The Weldwood Fire Door is approved for Class "B" and "C" openings by Underwriters' Laboratories, Inc. and the Building Officials Conference of America.

In addition, the Weldwood Fire Door is so dimensionally stable that when properly installed it is guaranteed not to bind or warp for the life of the installation.

Further, it is lighter in weight than other fire doors, which means that it opens and closes more easily.

No wonder Weldwood Fire Doors have the acceptance of fire officials...and are being selected for all kinds of buildings—all over the country. (Including the United Nations Building in New York.)

So, before you specify any door, be SURE to get full details about Weldwood Fire Doors. Write today.

UNITED STATES PLYWOOD CORPORATION
55 West 44th Street, New York 18, N. Y.
Branches in Principal Cities • Distributing Units in Chief Trading Areas
Dealers Everywhere

SPECIFICATIONS

Face Veneers—Face veneers are thoroughly kiln-dried hardwood of standard thickness—1/28"—and smoothly belt-sanded. Rotary-cut unselected birch is standard; other sliced or rotary-cut domestic or foreign woods are available.

Core—The core is made of incombustible Kaylo® composition, having a normal density of 20 pounds per cubic foot. The core sections are joined together with tongue-and-groove joints, as approved by the Underwriters' Laboratories. The core is smoothly sanded prior to application of crossbands and face veneers.

Banding—The banding is of birch, treated with Class "A" fireproofing agent. The top banding is 1/2" thick; the side banding 1/4"; and the bottom banding is 1/2" in thickness, made by laminating two 1/4" pieces.

Crossbands—Crossbands are thoroughly kiln-dried hardwood, 1/16" thick, extending the full width of the door.

Adhesives—The core and edge banding are bonded together with a waterproof resin glue. The entire core is sized on two sides to insure perfect glue bond between core and crossband. The core, crossband and face veneer are bonded with waterproof Tego film phenolic glue by the hot plate process.

Sizes—The thickness of all fire doors is 1 1/2". Available in range of standard sizes up to and including 4' by 7'.

Vision Panel—If required, a vision panel frame for a 10" x 10" light (only size available) shall be provided carton-packed and complete with screws. A baked finish of light brown metal paint is provided on all surfaces. Glazing with 1/4" wire glass shall be done by others.

United States Plywood Corporation carries the most complete line of flush doors on the market including the famous Weldwood Fire Doors, Weldwood Stay-Strate Doors, Weldwood Honeycomb Doors, Mengel Hollow-core Doors, Mengel and Algoma Lumber Core Doors, 1 1/8" and 1 3/4" with a variety of both foreign and domestic face veneers.
It Seems To Me that the A.I.A. Conventions are getting too big and too successful. It used to be that the major pleasure in attending the annual meeting was the casual social contact with everyone else who was there. There were people from all over the country whom one hadn’t seen for at least a year, and one got to see them. Now there are many, many more people from various regions that one would like to see, but there is just too much going on, and all of a sudden the week is over and John has departed along with the rest and you never did have that drink to­gether.

I know that this is not an original observation, and the unexpectedly large turnout in Chicago this year has set the Institute bigwigs to wondering and worrying. One solution proposed is a series of regional conventions, which, if well conducted, would presumably reduce the attendance at the national show. I don’t subscribe to this theory.

It seemed to me that the A.I.A. Convention at Chicago was hurried, and it would have been nice to see the various meeting rooms filled to overflowing. And yet the Convention had some of the aspects of a three-ring circus, with concurrent discussions on Civil Defense matters, Acoustics, and such. And the sessions were too optimistically provided with speakers (who ever believed that four principal speakers and a panel discussion with eight members could be crowded into an afternoon meeting?).

The result inevitably was that there was a certain amount of rush and a certain amount of slipping of scheduled talks. A lot of us wanted to hear Harlan McClure on Education, and he just got passed over. And one whole panel with prepared talks had to be skipped, to the more than slight displeasure of some of the speakers who had beenpersuaded to travel to Chicago. Bill Warren's presentation of Maybeck's work was hurried, and it would have been nice to be able to draw a deep breath after John Burchard's stirring talk on the various aspects of it (and the approach to it is so professionally immature in many instances) that the discussion was ragged and uneven. One of the experts on one of the panels has written me, “I have been so accustomed to find confusion and an apathy about Civil Defense, but that afternoon at the Edgewater Beach was more than I had anticipated.” However, for my money, it was worth attending in order to hear Jaqueline Tyworth the British architect and planner who has been teaching at Yale this year. (P/A will publish some portions of her paper in a subsequent issue).

A great deal of time had to be spent, the better. The boys from Skidmore's office who tried to make that great barn look reasonably decent had an impossible job, and I can't imagine a more depressing atmosphere in which to see the graduates from mere corporate membership made Fellows. If I hadn't met Ruth Mielke hunting for her husband (I was just hunting for something to eat) the whole affair would have been a bigger thing. Walter Bogner dancing outside one's own region will still be an impelling reason to attend the annual Convention.

Another complaint, probably unfair because again I know that the fault is recognized by those who devised the program at Chicago—is the fullness of the program. This year it was a good one (with some exhilarating exceptions to be noted later) and I must admit it was nice to see the various meeting rooms filled to overflowing. And yet the Convention had some of the aspects of a three-ring circus, with concurrent discussions on Civil Defense matters, Acoustics, and such. And the sessions were too optimistically provided with speakers (who ever believed that four principal speakers and a panel discussion with eight members could be crowded into an afternoon meeting?).

The result inevitably was that there was a certain amount of rush and a certain amount of slipping of scheduled talks. A lot of us wanted to hear Harlan McClure on Education, and he just got passed over. And one whole panel with prepared talks had to be skipped, to the more than slight displeasure of some of the speakers who had been persuaded to travel to Chicago. Bill Warren's presentation of Maybeck's work was hurried, and it would have been nice to be able to draw a deep breath after John Burchard's stirring talk on the various aspects of it (and the approach to it is so professionally immature in many instances) that the discussion was ragged and uneven. One of the experts on one of the panels has written me, “I have been so accustomed to find confusion and an apathy about Civil Defense, but that afternoon at the Edgewater Beach was more than I had anticipated.” However, for my money, it was worth attending in order to hear Jaqueline Tyworth the British architect and planner who has been teaching at Yale this year. (P/A will publish some portions of her paper in a subsequent issue).

A great deal of time had to be spent, the better. The boys from Skidmore's office who tried to make that great barn look reasonably decent had an impossible job, and I can't imagine a more depressing atmosphere in which to see the graduates from mere corporate membership made Fellows. If I hadn't met Ruth Mielke hunting for her husband (I was just hunting for something to eat) the whole affair would have been a bigger thing. Walter Bogner dancing outside one's own region will still be an impelling reason to attend the annual Convention.

Another complaint, probably unfair because again I know that the fault is recognized by those who devised the program at Chicago—is the fullness of the program. This year it was a good one (with some exhilarating exceptions to be noted later) and I must admit it was nice to see the various meeting rooms filled to overflowing. And yet the Convention had some of the aspects of a three-ring circus, with concurrent discussions on Civil Defense matters, Acoustics, and such. And the sessions were too optimistically provided with speakers (who ever believed that four principal speakers and a panel discussion with eight members could be crowded into an afternoon meeting?).

The result inevitably was that there was a certain amount of rush and a certain amount of slipping of scheduled talks. A lot of us wanted to hear Harlan McClure on Education, and he just got passed over. And one whole panel with prepared talks had to be skipped, to the more than slight displeasure of some of the speakers who had been persuaded to travel to Chicago. Bill Warren's presentation of Maybeck's work was hurried, and it would have been nice to be able to draw a deep breath after John Burchard's stirring talk on the various aspects of it (and the approach to it is so professionally immature in many instances) that the discussion was ragged and uneven. One of the experts on one of the panels has written me, “I have been so accustomed to find confusion and an apathy about Civil Defense, but that afternoon at the Edgewater Beach was more than I had anticipated.” However, for my money, it was worth attending in order to hear Jaqueline Tyworth the British architect and planner who has been teaching at Yale this year. (P/A will publish some portions of her paper in a subsequent issue).

A great deal of time had to be spent, the better. The boys from Skidmore's office who tried to make that great barn look reasonably decent had an impossible job, and I can't imagine a more depressing atmosphere in which to see the graduates from mere corporate membership made Fellows. If I hadn't met Ruth Mielke hunting for her husband (I was just hunting for something to eat) the whole affair would have been a bigger thing. Walter Bogner dancing outside one's own region will still be an impelling reason to attend the annual Convention.

Personal Reminiscences: Richard Neutra showing up at odd moments of night and day, asking me the last morning to have breakfast with him at 7:00 a.m., and as a postscript to my report of Neutra's crabby personality (except that at one point I thought he might very well have punched someone in the face); Walter Bogner dancing with Jacqueline Ford, who at least had a crutch to hold her up; Bob Cerny and I getting our own pictures taken but not published (I did sneak into Building's May issue behind Ralph Walker's composed profile); Harold Himes catching me at a late breakfast and talking business while I was concentrating on getting a coffee cup off the table; Ellamae League demonstrating that a hostess can be charming while sitting on the floor; Bob Little being told that Miami shirts are not au fait in the Edgewater Beach terraced dining room; Helen Belluschi demonstrating that a dean's wife can be as wary as anyone; Alex Cochran buzzing in and blowing out; Paul Harris giving a fine lecture to Neutra and Belluschi; Marion Manley arranging a deal that didn't come off; Vi Hudnut arranging one that did (he had a ring side table); and the Belding and Housing Society with horror the threat of a number of architectural students; Harris Armstrong and Joe Murphy and Bob Elkington and Hari van Hoefen, among others, working for John Pierpont, who lost; ... sorry, no more space.