LOW OVERHEAD
• • • UNDERFOOT
SUMMITVILLE
QUARRY TILE

Wherever extreme durability and low maintenance are desired, nothing
surpasses Summitville Quarry Tile. They are fire-proof, water-proof, acid-
proof, never require waxing and the beautiful natural colors will never fade.

Summitville Quarry Tile is ideal for schools, institutions, commercial and
industrial buildings. Available in six natural earth colors and a wide range
of sizes and trim units. For full information check the yellow pages for
your Ceramic Tile Contractor or write direct.

SUMMITVILLE RED BABYLONIAN SUNLO FALCON GRAY OXFORD GRAY PALOMINO

MEMBER, TILE COUNCIL OF AMERICA, INCORPORATED
For brighter, easier-to-maintain walls, it's Koroseal

In hospitals, motels and office buildings, Koroseal fabric-backed vinyl wall coverings have advantages, both immediate and long-range. Koroseal blends with other materials such as stone, tile, wood, marble and paint. Quality textures and rich colors add luxury. And, best of all, Koroseal wall coverings retain their sparkling beauty for years with a minimum of maintenance. They are washable with soap and water, resist scuffs and stains and are flame-proofed. Installed cost is surprisingly low. For more information or swatches, write Dept. PA-12. B.F.Goodrich Industrial Products Company, Marietta, Ohio.
For vertical transportation in low-rise buildings, hydraulic power is today's best value.
Architecturally, the modern Rotary Oildraulic Elevator is an aid to design.
In the economics of construction, it's a money-saving item of building equipment because it reduces construction costs.
Building-owner value results from high efficiency of the Oildraulic Elevator power unit, dependability and smooth, quiet performance.

Design advantages—There's no need for a machinery penthouse since the elevator is pushed up from below by an oil-hydraulic plunger. Roof lines can be perfectly flat... or formed as desired for architectural beauty.
Within the structure, space is saved through absence of elevator counterweights; better utilization of space is achieved because of latitude permitted in location of the power unit.

Construction advantages—The expense of building an elevator penthouse is eliminated.

Since the elevator is self-supporting on its oil-hydraulic plunger, lighter, less costly shaft sidewalls are possible. Installation of the Rotary Oildraulic Elevator involves minimum interference with the work of other building trades.

Owner advantages—The relative simplicity of the Oildraulic system reduces maintenance and assures dependable, economical operation. Rotary Oildraulic Elevators are available with speeds and controls to satisfy the traffic volume and pattern of any building to six stories. Modern cabs and entrances enhance any interior design.

For complete information, or assistance on plans and specifications, contact your Rotary Oildraulic Elevator Distributor listed in the phone book yellow pages. See our catalog in Sweet's Files.

DOVER CORPORATION, ELEVATOR DIVISION
Memphis, Tennessee • Chatham, Ontario

First name in oil-hydraulic passenger and freight elevators—industrial lifting devices—auto lift.

Rotary Oildraulic Elevators—**Passenger and Freight**

For more information, circle No. 374
Light in Weight, Esthetically Appealing, Corrosion Resistant, Heat Resistant, Shock Resistant, Easy to Install, Readily Available, and LOW IN COST. Why install anything but DURCON when it comes to chemical laboratory sinks?

THE DURIRON COMPANY, INC. DAYTON 1, OHIO

For more information, turn to Reader Service card, circle No. 329
THIS MONTH IN P/A

The World's Largest Architectural Circulation

49 NEWS REPORT (For Full Contents, See Page 49)
Departures in theater design seen in Ford Foundation projects . . . Le Corbusier's design for Harvard Visual Arts Center . . . New York AIA proposes plan for mall between Bryant and Central Parks . . . PERSONALITIES: Lady spec chief . . . WASHINGTON/FINANCIAL NEWS . . . ARCHITECTURAL BULLETINS . . . PRODUCTS: Carbon steel spandrels and shapely acoustic control . . . MANUFACTURERS' DATA.

108 EDITORIAL FEATURES (For Full Contents, See Page 107)
Peter Collins introduces P/A presentation of three churches by discussing the several ways in which church form may be significant . . . New Manhattan building lends elegance to shabby surroundings . . . Essay in pictures and text of a West Coast garden . . . A trend-breaking bank . . . IDD presents carefully planned home for the aged . . . Giurgola's design for offices near Philadelphia uses several structural systems and plastic expressions . . . Jan Rowan reports on Volkswagen town: its history, its planning concepts, and the resulting urban environment . . . M & M discusses Yale's new rare book and manuscript library . . . How noise reduction percentage is expressed for a given acoustic treatment.

162 VIEWS
164 BOOK REVIEWS: Our Structural Achievement
166 SPECIFICATIONS CLINIC: Specifications Writing Procedures
By Harold J. Rosen
168 IT'S THE LAW: Architect's Role Defined: Part 1
By Bernard Tomson and Norman Coplan
170 MECHANICAL ENGINEERING CRITIQUE: Controlled Lighting
By William J. McGuinness

216 JOBS AND MEN
220 DIRECTORY OF PRODUCT ADVERTISERS
222 P.S.: The Nature of Cities

PROGRESSIVE ARCHITECTURE published monthly by REINHOLD PUBLISHING CORPORATION, 430 Park Avenue, New York 22, N.Y. Ralph W. Reinhold, Chairman of the Board; Philip H. Hubbard, President and Treasurer; Kathleen Starke, Secretary and Assistant Treasurer; Donald Hoagland, Merle F. Lue, Fred P. Peters, D. Bradford Wilkin, William P. Winsor, Vice-Presidents. Executive and Editorial offices, 430 Park Avenue, New York 22, N.Y. Subscriptions payable in advance. Subscription prices to those who, by title, are architects, engineers, specifications writers, designers or draftsmen, and to Government departments, trade associations, members of the armed forces, architectural schools and students—$5.00 for one year, $8.00 for two years, $10.00 for three years. Above prices are applicable in U.S., U.S. Possessions, and Canada. All practicing architects and engineers outside U.S., U.S. Possessions, and Canada—$10.00 for one year, $16.00 for two years, $20.00 for three years. All others—$20.00 a year. Single copy—$1.00; special issues—$2.00 per copy. Printed by Publishers Printing Company, New York, N.Y. Copyright 1961. Reinhold Publishing Corporation, Trade Mark Reg. All rights reserved. Indexed in Art Index, Architectural Index. Second-class postage paid at New York, N.Y. VOLUME XI, No. 12
who answers the architect's questions?

The answer: NADD salesmen. They reduce wear and tear on architects by providing accurate data for structural clay products. They bring new uses of clay products to the attention of designers. They keep abreast of technological advances via self-education and industry schooling. After a sale is made, they follow through on delivery dates and assume responsibility for client satisfaction.

Your NADD salesman is pledged to put into practice the NADD Code of Service. Call on him for conscientious help.

NADD
National Association of Distributors and Dealers of Structural Clay Products

W A S H I N G T O N, 7, D. C.

ALABAMA
Birmingham ... LeVaux L. Stephenson, Jr. Co.

COLOMBIA
Chicago Thomas Moulding Brick Co.

WASHINGTON
Atlanta Cushwa Brick

Wilmington RoteM

INDIANA
Wheaton Gretna Material Sales Corp.

ILLINOIS
Atlanta Robert

DISTRICT OF COLUMBIA
Birmingham lovick J. Stephenson, Jr. Co

ALABAMA
Atlanta A. J. Bohr Co.

MARYLAND
Baltimore The Beckman Supply Co.

KANSAS
Kansas City Saron-Caldana Corp.

MISSOURI
Kansas City Town Clay Products Co.

MISSISSIPPI
Gulfport Georgia Clay Products Co.

MICHIGAN
Detroit Decker-Gehrke Brick Co.

MINNESOTA
Mason City The Goodwin Companies

MISSOURI
St. Louis National Brick Co.

MISSISSIPPI
St. Louis National Brick Co.

NEW HAMPSHIRE
Boston Colonial Builders Supply Co.

NEW JERSEY
Brooklyn D. G. Fowden Co.

NEW YORK
Binghamton Binghamton Brick Co.

OHIO
Akron John & Cooper Co.

OKLAHOMA
Tulsa McAlister & Son

ONTARIO
Chatham Watson Concrete Products, Inc.

PENNSYLVANIA
Philadelphia Milliken Clay Products Agency

RHODE ISLAND
Providence P. L. Corrie, Ltd.

RHODE ISLAND
Providence P. L. Corrie, Ltd.

TENNESSEE
Knoxville Whitaker & Son

TEXAS
Dallas J. W. Kempner, Inc.

VIRGINIA
Richmond A. J. Schaner Co.

WASHINGTON
Seattle Metropolitan Supply Co.

WEST VIRGINIA
Charleston . West Virginia Brick Co.

WISCONSIN
Milwaukee Wisconsin Clay Products Co.

WISCONSIN
Milwaukee Wisconsin Clay Products Co.

WISCONSIN
Milwaukee Wisconsin Clay Products Co.

In the interest of better service to the construction industry, these companies have contributed to this advertisement.

For more information, turn to Reader Service card, circle No. 361.

DECEMBER 1961 P/A
The Dramatic Texture of Fabric . . . The Gleaming Beauty of Glass . . . now artfully combined in

NEW BURLAP BY MISSISSIPPI

Exceedingly brilliant and sparkling, highly obscure, new Burlap, figured glass by Mississippi has excellent diffusing properties and its functional and decorative applications are limited only by the imagination. Use it lavishly or sparingly and gain light, drama, distinction. Burlap glass is available at your nearby quality glass distributor. Free sample on request.

MISSISSIPPI GLASS COMPANY
88 Angelica St. • St. Louis 7, Missouri
NEW YORK • CHICAGO • FULLERTON, CALIFORNIA

Recommended primarily for partitions; also shower doors and stalls, and kindred uses.
over 10,000 installations of SUPERIOR SEATING

The best clue to brand quality is the number of times it is chosen. More than 10,000 churches across the land have our seating. Skilled craftsmen aided by the most modern technological equipment produce pew and chancel furniture to fit your specifications. And a heritage of quality follows each piece from selection of wood to completed installation.

See how well Southern Desk honors your insistence upon design coordination, perfection of detail. Write for brochure with installations in color: Dept. PA121, Southern Desk Co., Hickory, N. C.

For more information, turn to Reader Service card, circle No. 399

Grace Evangelical Lutheran Church
St. Petersburg, Florida
Architect:
John Randal McDonald, A.I.A.
Indian Rocks Beach, Florida

Hickory, North Carolina
A DIVISION OF DREXEL ENTERPRISES, INC.
What the Well-Dressed GLASS will wear...

New HERRINGBONE Pattern...
Sets the Pace for the Smartest Interiors

A linear pattern of jewel-like radiance, the contrasting light and dark stripes and arresting diagonal configuration of HERRINGBONE® combine with perfection of finish as the finest achievement of the rolled glass manufacturer's art. Architects, designers and decorators will discover in its warm, glowing beauty a versatile glass that never loses its individuality and whose charm and freshness lift it out of the ordinary. Recommended for the separation of living areas in the modern home, commercial partitions and wherever else transmitted light should become a vibrant, interesting part of the decorating scheme.

MISSISSIPPI GLASS COMPANY
88 Angelica St. • St. Louis 7, Missouri
Distributors in Principal Cities of the United States and Canada

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Approx. Light Transmittance</th>
<th>Weight Unpacked Lbs.-sq. Ft.</th>
<th>Maximum Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼"</td>
<td>84.5%</td>
<td>2.0</td>
<td>48 x 132</td>
</tr>
<tr>
<td>½"</td>
<td>82.0%</td>
<td>2.8</td>
<td>60 x 132</td>
</tr>
</tbody>
</table>

Free sample on request.

For more information, turn to Reader Service card; circle No. 359

DECEMBER 1961 P/A
Loadbearing Fenmarks is a pre-engineered roof-wall system that combines Fenmark steel curtainwall with steel cellular roof panels. Together they form one structural element. Only sheer partition walls or end walls are needed to take the lateral load. Structural steel is eliminated. Design time is reduced and on-the-job labor costs are cut.

Change No. 2: A completely weathertight envelope. Because steel expands and contracts at half the rate of aluminum, sealing Fenmark steel curtainwall is greatly simplified. In fact, so successful has Fenmark been that there have been no reports of any leakage on any Fenmark structure.

Change No. 3: Narrow sight-lines. Fenmark mullions are steel, so they can be narrow without sacrificing needed strength. Aluminum curtainwalls require larger mullions to compensate for wind loading conditions.

Change No. 4: Stainless-steel beauty . . . at the cost of aluminum. The Fenmark steel curtainwall system may be completely capped with stainless steel. The cost complete:
near the price of aluminum curtainwall. The effect: elegant, durable stainless-steel curtainwall. Or you may choose plain or porcelainized aluminum capping.

Change No. 5: Extra-strength structure: Steel has three times the strength of aluminum. It will withstand wind loads that are simply not possible with similarly shaped aluminum curtainwall. Fenestra's Fenmark steel curtainwall also offers greater resistance to fire than aluminum.

Fenmark is a proven curtainwall system. If you have not already investigated this better kind of curtainwall, call our local sales engineer (he's listed in the Yellow Pages), see Sweets File 3h/Fe or write: Fenestra Incorporated, Dept. PA-121, 220 Delaware Ave., Buffalo 2, New York.

For more information, turn to Reader Service card, circle No. 333
Fenestra changes...
in roofs...in floors

with longer span structural panels—to 35'—that double as acoustical ceilings

...in roofs... in floors

with a "big cell" for electrical capacity
many times larger than other systems

This longer span "D" panel eliminates the need for bar joists. It cuts costs, too, by performing five different building functions: acoustical correction, insulation and roofing support, integral lighting, long-span structure, and finished ceiling. This ceiling is permanent; there is no tile to ever become loose or unsightly.

For spans up to 32', Fenestra's "stiffened web" design LS deck gives you an exceptional weight-to-strength ratio for maximum economy. LS deck can be left exposed. Or the ceiling can be finished at any time after construction with recessed lights or lay-in acoustical tile.

Fenestra offers a full line of detention, protection and safety screens for hospitals, clinics, commercial buildings and schools. Frames can be either aluminum or steel. Screens are manufactured to any size. +++

Look to Fenestra for new concepts in building materials. See Sweets File; call your Fenestra man (he's in the Yellow Pages); or write Fenestra Incorporated, Dept. PA-121, 220 Delaware Ave., Buffalo 2, N. Y. (Panels and Guard Screens); or 4040 W. 20th St., Erie, Pa. (Doors).

For more information on roofs circle No. 334, for more information on doors circle No. 335
CONCEPTS

... in doors

with metal doors that can be delivered in 200,000 variations within days

The key is local distributor modification of doors and frames. You get the door and frame you want, the glass-light, louver, and hardware you want. Delivery is cut to a matter of days. You get quality and advanced design, too, because the basic doors—with seamless full-flush styling—are manufactured by Fenestra.

Revolution in size, too. New Fenestra 7'2" modular door for masonry block construction matches courses exactly. Installation time is reduced up to 45 minutes per opening, because you never need to cut blocks to fit head space.
Individual room control! With gas-fired Norman Schoolroom Systems, teachers have complete control of the heat and ventilation in their areas. Units are attractively housed in functional work and shelf areas. Operation is independent of any central system.

New school saves $18,000 in first cost with GAS-fired NORMAN SCHOOLROOM SYSTEMS

The lowest bid for the originally specified construction of the Ashton Elementary School in Cumberland, R.I., turned out to be 10% greater than the building appropriation. The School Committee solved this problem by changing their heating plan to individual, gas-fired Norman Heating and Ventilating Systems. Result: ideal heating within the budget appropriation.

The change to Norman Schoolroom Systems saved $18,000 in first cost and reduced estimated operating costs by more than 35%. These economies made it possible to build the school just as desired, and with all the benefits of clean, quiet, safe, dependable gas heat.

Each Norman gas-fired unit supplies heat rapidly when and where needed, blends fresh outside air with recirculated room air, and distributes tempered air evenly along and out from exposed walls. With individual units there's no need to heat the entire building when only a few rooms are in use. Thrifty gas keeps fuel cost low.

Complete information about gas-fired Norman Products for school comfort is yours for the asking. Call your local Gas Company, or write to NORMAN PRODUCTS CO., 1151 Chesapeake Avenue, Columbus 12, Ohio.

American Gas Association
FOR HEATING...
GAS IS GOOD BUSINESS!
WHEN THE INVITING WARMTH OF CALIFORNIA REDWOOD is made an integral part of the architect's design, buildings such as hospitals and schools have a charming naturalness rather than a forbidding "institutional look". Budget-conscious building committees also look with favor upon CRA Certified Kiln Dried redwood's well justified reputation for durability and easy, economical maintenance. If you do not have an up-dated copy of "The Architect's Redwood File", write Department A-8 on your business letterhead.

All the wonderful warmth of wood is best expressed in redwood.

CALIFORNIA REDWOOD ASSOCIATION • 576 SACRAMENTO STREET • SAN FRANCISCO

CRA - TRADMARKED CERTIFIED KILN DRIED REDWOOD
"Column-free on the inside" is the way the architect describes this exciting and wholly utilitarian structure. It is the Physical Education Building of the Central Washington College of Education, Ellensburg, Washington. It is 150 ft wide by 390 ft long and contains, among other things, a main gymnasium, upper gymnasium, field house, swimming pool, apparatus room, two four-wall handball courts, two classrooms, 14 offices and, locker rooms, dressing rooms, etc.

The suspended roof is actually floating, being slip-fastened to the exterior walls. There are twenty-eight 80-ft high prestressed concrete pylons. Each supports two pairs of 1-5/16 in. prestretched, galvanized bridge strands, which suspend the entire roof structure. The 56 cables, averaging 404 ft in length, were prestretched and accurately marked for all attachment points at Roebling's plant. This resulted in an easy, economical field erection procedure.

Its 99,500 sq ft of floor space cost $14.15 per sq ft, including architect's fee and 4% sales tax, which is below average for a building of this size.

These basic details are indicative of the wide and varied benefits common to all suspended roof structures. Airline terminals and hangars, plants, gymnasiums, civic auditoriums — all are enjoying the free space afforded by suspended roofs.

Roebling's great experience with steel in tension leads naturally to its active role in the suspended roof field. Our findings, theories and interest in its every phase are offered to you at any time. Should you wish further details on this particular structure, or information of any nature dealing with suspended roofs, please do not hesitate to write Roebling's Bridge Division, Trenton 2, New Jersey.
accessories
make the bath...

The matchless quality of Hall-Mack accessories strikes a tone of elegance and charm that makes your bath one of the most cherished rooms in your home.

And best of all, there's a Hall-Mack line of bathroom accessories to complement every style and decor... to fit any budget.

HALL-MACK COMPANY
division of Textron Inc.
1380 W. Washington Blvd., Los Angeles 7, Calif.

☐ Please send your free color booklet on bathroom planning.

Name__________________________

Address________________________

City_________________Zone________State________

For more information, turn to Reader Service card, circle No. 340
4-Hour Fire Code met by Armstrong Acoustical Fire Guard Ceiling in Rehabilitation Center

Excellent fire protection was the prime reason the architects specified Armstrong Acoustical Fire Guard for this Treatment Building. Installed on a TDR Suspension System, this dense mineral-wool tile combines with the floor assembly to provide a 4-hour rating as required by the federal building code. Its noise reduction qualities are also of great value, as in the occupational therapy room above.

Entrance lobby at left.

Armstrong ACOUSTICAL CEILINGS
First in fire-retardant acoustical ceilings

TECHNICAL DATA: U. L. RATED: Armstrong Acoustical Fire Guard offers one- to four-hour rated fire protection for structural components. SAVES MONEY, CONSTRUCTION TIME: Up to 30¢ per sq. ft. by eliminating intermediate fire protection; often earns lower insurance rates; up to two months' time through dry installation. SUSPENSION SYSTEMS: For tile: TDR, Zee; for new Lay-In units (24" x 24" x 5/8" and 24" x 48" x 5/8"): Fire Guard grid system. CHOICE OF DESIGNS: Fissured (shown), Classic, Full Random. For full information, call your Acoustical Contractor, your Armstrong District Office, or write Armstrong Cork Co., 4210 Watson Street, Lancaster, Pa.

Renderings by Helmut Jacoby
"Framed in stainless and topped with ColorRold" will be key words for Chicago's United Insurance Company of America Building now under construction. Approximately 200,000 lbs. of lifetime stainless steel is being fabricated for 1800 window frames, anchor plates for the marble siding, roof flashing, and installations in the first and observation floors.

The crowning touch of beauty in the exterior design is a series of ornamental stainless steel louvers around the four sides of the fortieth floor, providing fresh air for the air conditioning system. They are formed of Gray ColorRold® color-coated stainless steel.

No building is too large or small to benefit from the lustrous beauty and care-free life of stainless steel—the truly first-class architectural material.

Our catalogs are listed in SWEET'S

WASHINGTON STEEL CORPORATION
Washington, Pa.

Architect: Shaw-Metz and Associates, 208 S. LaSalle St., Chicago, Illinois
General Contractor: A. L. Jackson & Company, Chicago, Illinois
Fabricator: Flour City Architectural Division, Hupp Corporation, Minneapolis, Minn.
Let the label above guide you to dome skylights of highest quality and dependability. It's the mark of PLEXIGLAS® ... the acrylic plastic that assures completely successful performance in light transmittance, daylight control, heat-light ratio, surface brightness and outdoor stability. Domes of PLEXIGLAS have been time-tested through years of service on schools and industrial buildings throughout the nation.

Insist on domes of PLEXIGLAS—approved as dome material by the Building Officials Conference of America (Report No. 54-12A) and the International Conference of Building Officials (Report No. 1084.1). PLEXIGLAS, made only by Rohm & Haas, is used by the dome skylight manufacturers listed below.

PLEXIGLAS DOME SKYLIGHT MANUFACTURERS

HOWE ENGINEERING CO. INC.
5800 E. Massachusetts Ave.
Indianapolis, Ind.

KIEKHAEFER CORP.
P. O. Box 608
St. Cloud, Florida

MID-SOUTH INDUSTRIES INC.
6000 Main St.
Columbia, S. C.

NATURALITE INC.
5115 E. Grand Ave.
Dallas, Texas

THE PAM CO.
Airport Drive
Hillsdale, Michigan

THE PAM CO.
1951 N.W. Wilson St.
Portland, Oregon

PLEXTECO INC.
P. O. Box 9123
8721 Market St.
Houston 11, Texas

PLASTIC ENGINEERING CO.
OF TULSA, 510 No. Sheridan
P. O. Box 15855
Tulsa 4, Okla.

PLASTICRAFTS INC.
2800 North Speer Blvd.
Denver 11, Colo.

SKYIO INC.
3210 Van Owen Blvd.
Burbank, Calif.

SOUTHWESTERN PLASTICS CO.
5615 Rice Ave.
Houston 36, Texas

E. VAN NOORDEN CO.
100 Magazine Ave.
Boston 19, Mass.

PLEXIGLAS

DECEMBER 1961 P/A

For more information, turn to Reader Service card, circ'e No. 373
Throughout the centuries of Christendom, the church spire and the cross have served as an inspiration and an invitation to worship. Modern forms of architectural design, however, invite religious symbolism to adopt new shapes and still retain its traditional spiritual meaning. Overly has pioneered new fabrication techniques for spires and crosses, artfully combining the symbolic "welcome to worship" with the church's architecture—in effect, crafting an inspiration.

How to craft an inspiration

Creative craftsmanship has been the basis of Overly's 70 years of cooperation with the architect. Overly has pre-fabricated and erected spires and crosses in every State of the Union, each built to precise architectural specifications in order to harmonize with the church architecture. For assistance with your next church or church-related structure, you'll want to talk to Overly—The Architect's Craftsman.

Overly Manufacturing Company

Greensburg, Pennsylvania
St. Louis 19, Missouri
Los Angeles 39, California

For complete references on Christian symbolism, send for the 36-page booklet, "The Cross, A Symbol of Faith," and a 28-page brochure on spires, "Pointing to God."

For more information, turn to Reader Service card, circle No. 365
PPG SOLARGRAY® Plate Glass pays big dividends in new Harris Bank Building

More than an acre of PPG SOLARGRAY Polished Plate Glass is at work in the Harris Trust and Savings Bank Building in Chicago. Combining utility with beauty, PPG SOLARGRAY truly is “at work.”

PPG SOLARGRAY is contributing to interior comfort in the Harris Bank Building because it is a heat-absorbing and glare-reducing plate glass. Its soft gray tint absorbs about 50% of the sun’s heat and substantially reduces the amount of sun glare entering the building. Yet it permits plenty of light to come through, allowing a proper balance of natural and artificial lighting. And SOLARGRAY provides this glare-and heat-control with a neutral gray tint that requires no special interior color planning.

While SOLARGRAY was developed to control the sun’s heat and glare, its delicate color adds beauty to any building. The use of PPG SOLARGRAY Plate Glass in the Harris Bank Building helps give the building its distinctive beauty.

Other PPG Glass Products in the building include ½” clear Polished Plate Glass and, for accent, white suede finish PPG CARRARA® Structural Glass that will retain its color and beauty permanently. Your Pittsburgh Plate Glass architectural representative will give you specific data on any PPG product. For a quick look, check the Pittsburgh Glass Products Catalog in Sweet’s.

Architects-Engineers: Skidmore, Owings & Merrill, Chicago, Ill.
Contractor: Turner Construction Co.
Glazed by: Hooker Glass and Paint Manufacturing Company

For more information, turn to Reader Service card, circle No. 391

PPG SOLARGRAY Polished Plate Glass does double duty in The Harris Trust and Savings Bank Building. It reduces glare and heat... and provides distinctive beauty.
Factory Balanced – Ready to Use

NEW ANEMOSTAT
Mechanical Constant Volume Boxes, Type HV

Designed and developed for today's high velocity dual duct air conditioning systems, the Anemostat single motor HV mixing box is unexcelled for material, quality and performance. Pre-balanced and factory calibrated to operate consistently within ±5% of required air quantities, the Anemostat HV unit is ready for immediate operation upon installation.

The Anemostat HV mixing box requires only one pneumatic operator; the mechanical constant volume device* does the rest. This all metal device offers these unique design and construction features:
1. Built to last a life time, with corrosion-resistant parts, it requires no maintenance.
2. Allows for simple field adjustment to meet changing air requirements.
3. Operating engineers don't have to worry about replacing worn fabrics, nor is there any perforated metal to clog and impede efficiency.

The Anemostat HV mixing box is available for a wide range of air capacities. Write for Anemostat Bulletin Mech-70 today.

*Patent Applied For

ANEMOSTAT®
ANEMOSTAT CORPORATION OF AMERICA
SUBSIDIARY OF DYNAMICS CORPORATION OF AMERICA
Factory and General Offices:
888 North Keyser Avenue, Scranton, Pa.
National Sales Office: 25 West 43rd Street, New York 36, N. Y.
Representatives in Principal Cities

For more information, turn to Reader Service card, circle No. 320

DECEMBER 1961 P/A
For information on split block, see your local concrete block producer.

Atlas Masonry Cement provides the right mortar

Split block is one of the most popular of the decorative types of masonry, with its rough texture and rugged contours that so closely resemble natural stone. It is available as a veneer block or a load-bearing unit in various sizes and colors. Use it for exterior and interior walls, partitions, chimneys, fireplaces, planters, etc. To lay up split block or any type of masonry, ATLAS MASONRY CEMENT continues to be the preferred cement for mortar. It produces a smooth, workable mix... saves labor... cuts waste... helps assure a good bond... gives durable mortar joints that are uniform in color. Complies with ASTM & Federal Specifications. For information on masonry cement, write: Universal Atlas, Dept. M, 100 Park Avenue, New York 17, N.Y.

Universal Atlas Cement
Division of
United States Steel
No building is better than its weakest joint—or the material used to make it watertight. Sealant based on THIOKOL liquid polysulfide polymer does more than fill joints and shed water...it adds structural strength, unique among caulking compounds. Custom-applied to the job on the job, polysulfide-type sealant conforms automatically to all joints regardless of size or shape. No cutting, no splicing, no vulcanizing, no compression is ever required to produce and maintain a watertight seal. Worrisome departures from original joint design which inevitably occur between drafting board and construction site can be compensated for instantly. Sealant containing THIOKOL polysulfide polymer welds itself chemically to all building materials in any combination. Expansion up to 100% cannot break its steel-grip bond, while its outstanding resistance to sun, freezing, moisture, ozone, chemicals and aging assures trouble-free weatherproofing for extended periods of time. ASA Specification A 116.1 sets quality and performance standards for polysulfide-type sealant. Make it your guide on your next assignment. There is only one polysulfide polymer. And it's produced by Thiokol.
TO SAFEGUARD YOUR REPUTATION, SPECIFY PRODUCTS OF FTI MEMBERS

Members of the FTI protect your reputation as well as their own by means of an enlightened program of quality control, and aggressive pursuit of improvement in structural glazed and unglazed facing tile.

Through standardization of colors, shapes and sizes, through cooperation with the Modular Building Standards Association, through provision of product information (including precise descriptions of physical properties, performance characteristics, and specifications), these responsible manufacturers save you planning time . . . help minimize installation time and waste.

By means of continual testing, rigid quality control is maintained. By means of research, quality is improved and new architectural needs are met. Institute engineers offer technical aid, help solve design installation problems. Increased production by Institute members meets job schedules and design needs.

Only members of the FTI underwrite the costs of this constructive program; only members of the FTI support this long-range point of view that helps architects perform efficiently, enables the building industry to deliver the best possible end product. Only members of the FTI merit your support.

For further information, contact the Facing Tile Institute or the sales offices of the member companies listed above. In the interest of better facing tile construction, these companies have contributed to this advertisement.

FACING TILE INSTITUTE
1520 18th Street, N.W., Washington 6, D. C.

Beauty • Sanitation • Low Maintenance • Structural Stability • Color Range • Thru-the-wall • Modular • Flexibility

For more information, turn to Reader Service card, circle No. 331

DECEMBER 1961 P/A
Best way to provide service openings in any wall or ceiling: Specify Milcor Steel Access Doors. You have five styles and thirteen popular sizes from which to select. (Special sizes also furnished.) Each style offers maximum suitability for a particular type of surface. The new Style B door, for example, has a recessed panel with established plaster grounds so it can be covered by acoustical plaster. It thus contributes sound control and preserves the attractive texture of the surrounding plaster area. All styles are easy to install and operate. See Sweet's section 16j/In. Or write for catalog 210.

The industry’s most complete line of access doors

You can stake your reputation on a Milcor installation

Milcor Metal Lath and Trim Products, Member of the Steel Family

Inland Steel Products Company, DEPT. L, 4069 W. BURNHAM ST., MILWAUKEE 1, WIS.
BALTIMORE, BUFFALO, CHICAGO, CINCINNATI, CLEVELAND, DETROIT, KANSAS CITY, LOS ANGELES, MILWAUKEE, NEW ORLEANS, NEW YORK, ST. LOUIS
3 Engineered Ceiling-Deck Systems with Acoustone®

Mineral Acoustical Ceiling Tile by U.S.G.
3 Fully-tested Fire Ratings...

It's Mineral! It's Fissured! It's Beautiful! A sure solution to your fire-rating problems is ACOUSTONE Mineral Acoustical Ceiling Tile by U.S.G. This handsome, economical, all-purpose tile is available in two styles for systems that are UL-rated for 1-, 1½- and 2-hour fire protection. It may be specified for wood-joist and bar-joist construction.

ACOUSTONE, the original incombustible mineral acoustical ceiling tile, is the standard of the building industry. It provides unmatched sound control. Clients admire its easy care. ACOUSTONE ceilings may be washed with ordinary cleaners—and may be painted, if desired, without noticeable impairment of sound absorption.

On your next project, specify one of the ACOUSTONE Ceiling Systems described here.

CALL A SOUND-CONTROL EXPERT, your qualified acoustical contractor, for advice and technical information on ACOUSTONE fire-rated and sound-engineered ceiling-deck systems.

Get the facts on fire ratings

Mail this coupon today, or call your nearest U.S.G. acoustical contractor or U.S.G. representative.

United States Gypsum, Dept. PA-12, 300 W. Adams St., Chicago 6, Ill. Please send my FREE copy of the new FIRE-RATED ACOUSTONE brochure.
With walls of Ceramic Veneer,

color and cleanliness are "designed-in" for generations

Time, traffic, dirt and grime have little effect on the fire-glazed finish of Ceramic Veneer. Interiors of this modern architectural terra cotta require only soap-and-water washings to retain their original richness and beauty indefinitely. Exterior treatments — plain surfaces, polychrome panels or sculpture need only normal rainfall to keep clean and colorful. Besides minimum maintenance, Ceramic Veneer provides other important advantages — moderate initial cost, proved permanence and unrivalled versatility of color, form and texture. Whatever your specifications, every unit, large or small, is custom-made and faithfully reproduced by Federal Seaboard craftsmen. For complete information including new solar screen and color guide brochures, write us today. Without charge we will gladly furnish construction detail, data, advice and estimates on preliminary sketches involving Ceramic Veneer.
NOW AVAILABLE!

NEW, COMPLETE STANDARD SPECIFICATIONS and LOAD TABLES

FOR HIGH-STRENGTH OPEN WEB STEEL JOISTS

This 52-page reference manual, reflecting the recently adopted changes in specifications and load tables for three series of high-strength joists, replaces all previous standards. The new specifications and load tables cover three series of joists:

J-Series (replacing the old S-Series), based on a design stress in tension of 22,000 psi
LA-Series (replacing the old L-Series), longspan joists compatible with the new J-Series
H-Series (completely new), high-strength joists made from 50,000 psi minimum yield strength steel

This single edition contains all the information needed for the easy, accurate specification of joists to carry uniform loads on spans of up to 96 feet.

Complimentary copies are available on request.

STEEL JOIST INSTITUTE
ROOM 715, DUPONT CIRCLE BLDG.
WASHINGTON 6, D. C.

STEEL JOIST INSTITUTE
Room 715, DuPont Circle Bldg., Washington 6, D. C.,
Please send me a complimentary copy of the 1962 edition of the Standard Specifications and Load Tables.

Name: __________________________
Address: _______________________
Firm: __________________________
City: __________________________ Zone: ______ State: ____________

For more information, turn to Reader Service card, circle No. 378.
GAS-operated READY-POWER air conditioning costs less than one cent per ton-hour!

In office buildings, clubs, churches, theatres, bowling alleys, stores, factories... for every type of commercial and industrial air conditioning application... gas-operated Ready-Power units condition air with extremely low input per ton-hour. All Ready-Power units average less than 13 cubic feet of natural gas per ton per hour. What’s more, the total operating cost amounts to less than one cent per ton per hour. What makes this possible? Ready-Power air conditioning combines the unmatched fuel economy of gas with a unique variable speed operation. LOAD-MATCH CONTROLS automatically adjust output and fuel consumption to actual cooling requirements. Cooling is constant, as opposed to the ON-OFF operation of some systems.

Get all the facts on the unusual economy, dependability and efficiency of gas-operated Ready-Power Air Conditioning. Call your local Gas Company, or write to The Ready-Power Company, Detroit 14, Michigan.

American Gas Association

FOR AIR CONDITIONING
GAS IS GOOD BUSINESS!
Pavilion theater designed for Ford Foundation study by Edward D. Stone and Eldon Elder has movable roof for bad weather.
Architects: Perkins and Will, Chicago
General Contractor: A. L. Jackson Co., Chicago

Bright facade in the Windy City is this new home office of the Mutual Trust Life Insurance Company. First to introduce colored porcelain-enameled steel curtain walls to downtown Chicago, it marked another first with Autotronic elevators — supervised with an electronic brain. An advanced, draft-free air conditioning system was also installed in this remarkable new building.

No wonder Webster Telecom was specified when modern intercommunications entered the planning! Linking the many departments, divisions and offices is a 135 phone system that provides fast, two-way voice contact — saving steps, time and increasing efficiency.

Telecom is a private dial telephone intercom. Its versatility can be extended with paging, code call, speakerphones, dictation adaptor, conference circuits. It's complete with its own self-contained, automatic switchboard which hides in a corner or closet. Operation is the same as your city phone, wiring is simple, maintenance is low.

Telecom can be purchased, or leased on a low-cost plan. See your Telecom dealer* for details and a demonstration in your office.

* Listed in the Yellow Pages under “Intercommunication Systems”

COMMUNICATIONS DIVISION
WEBSTER ELECTRIC
RACINE, WIS

Telecom — practical for small or large business, industrial use. Fine electronic craftsmanship, 12 beautiful decorator colors, 2 to 400 phone systems.
THE IDEAL THEATER: EIGHT CONCEPTS

NEW YORK, N.Y. In 1959, the Ford Foundation announced a program “intended to assist architects and theater designers in carrying to the design and model phase their ideas for new theaters, including the stage and all technical facilities enhancing its adaptability to the theatrical medium.” Under the program, a number of teams of architects and theater designers were to undertake design and technical research in order to produce plans for “the ideal theater.” The teams chosen, as announced in early 1960, were: Paul Rudolph and Ralph Alswang, Edward L. Barnes and Jo Mielziner, Frederick Kiesler (alone), Peter Blake and David Hays, Edward D. Stone and Eldon Elder, Barrie Greenbie and Elizabeth Harris, Paul Schweikher and George Izenour, and Ben Schlanger and Donald Oenslager. The study by the last-named team, not shown here, was to determine the maximum number of useful and desirable viewing positions that can be included in a proscenium and a non-proscenium type theater. Several of these studies will be presented more fully in the FEBRUARY 1962 P/A. Next month, the Museum of Contemporary Crafts in New York will house an exhibition of the theater designs; an illustrated catalog will be available. The exhibition is sponsored by the American Federation of Arts.

Paul Rudolph and Ralph Alswang designed a theater that makes possible combining various film-projection techniques with live action. The screens have been conceived as continuous surfaces within the theater in that they meld unnoticeably with the performing areas (where they function as projection surfaces or stage lighting) and with the audience area (where they contribute auditorium lighting). Film can be projected from any source—walls, floors, ceilings—to provide, together with the live actors, an exciting, constantly changing spectacle. Sight-lines and wall surfaces have been so arranged that attention is always where it should be: on the performance. According to the designers, “the external form of the building has been determined strictly by the requirements of the individual functions within. The various functional elements [including six projection booths for rear as well as front projection] reveal themselves on the exterior, for the concrete structure is conceived as a poured-in-place continuous concrete entity.” Intimacy of spectators and stage is obtained by dividing the orchestra into a number of sections and the balcony into three sections.

Edward L. Barnes and Jo Mielziner took as their problem the design of a theater for intimate music-drama (as opposed to grand opera; musical comedy, or operetta). The basic concept of their 1000-seat lyric theater is an acoustical canopy of walnut that holds the auditorium and the forestage in a sculptured sound-control envelope. The walnut was chosen for the bright resonance it affords, which is appropriate to a theater of this type. After passing through the high-ceiling lobby, the audience mounts a ramp to enter the auditorium half-way up the angle of seats in the center of the hall. The exterior form of the theater—conceived as two main masses that are truncated, tipped cones representing the stage house and the auditorium housing—reflects the interior by suggesting the lifting heights required for scenery, the cone shape of sight-lines, and the sweep of the stage. Walls consist of sloping columns with a precast concrete skin. Roofs are supported on light steel trusses.
Frederick Kiesler designed for the study a theater-skyscraper complex, “The Universal” (model photos show theater exterior and cutaway interior). The main theater has a capacity of 1600; next to its stage is the foyer of a smaller, 600-capacity theater which, at the same time, can be used as the main lobby of the adjacent 30-story building. The high-rise building would contain a variety of small theaters, TV studios, radio stations, offices for publishers, record companies, and motion-picture producers, as well as seven floors of industrial or art exhibition space. The theater, structure of which is adapted in form from Kiesler’s 1923 Endless Theater, has a ceiling which flows out from the proscenium arch to hood the audience like a shell. The designer states that “the Universal is an endless theater as far as vision and sound are concerned.” Facilities and vertical transportation are carried in three major “communication towers” in the auditorium; one at left, one at right, and one in the rear. Kiesler has eliminated the traditional gridiron from which scenery is flown in favor of what he is certain will become the scene-showing methods of the future: projection, for instance. By mechanically rotating two sections of seats at the front of the auditorium, the stage can be provided with a projecting apron.

The Peter Blake and David Hays project is a flexible, small urban theater. Central concept is a system of related half-levels in the performing-audience areas. These levels, which differ in height by 6 ft, are all open to the entire area, and may be used for seating, acting, as lighting or projection galleries, or for several of these uses simultaneously. They may be bridged by movable stairs, opened to one another or sealed off, or given different heights by use of intermediate partitions. It is therefore possible, within this simple space, to approximate any form, from a theater-in-the-round to a proscenium production; to produce galleries as well as orchestra pits; and even to make the space a motion-picture theater or TV studio. For additional sources of income in a low-yield theater of this kind (maximum seating is 299), a restaurant-bar is provided that may be entered both from the lobby and from the street.
Edward D. Stone and Eldon Elder chose as their problem an open-air theater to meet the growing need for popular informal theater throughout the country. The 2000-seat "pavilion in a park" has steeply pitched arena seating designed to focus the audience's attention on the stage, the apron of which projects into the audience area and is surrounded by it on three sides. Audiences enter the theater from the ambulatory, which rings the public area at the top of the auditorium. Horizontal aisles are thus omitted, and the audience has a feeling of "converging" on the stage. In addition to the forestage, there is an inner, two-level stage, with two entrances separating the forestage from the inner stage. Two lifts increase the flexibility of staging possibilities, and several rows of front seats may be lowered to create an orchestra pit. The roof of the theater is composed of a fixed concrete canopy, 50 ft wide, around the circumference of the building, to which are attached six movable sections that may be opened or closed, depending on the weather.

Barrie Greenbie and Elizabeth Harris, in designing a theater for the dance, employed an open stage and seated the audience in galleries overlooking the action on three sides. The stage is octagonal, with ramps leading from the basement to all eight sides. The three ramps closest to the viewers lead up from under the audience seating. A cyclorama is at the rear of the stage; unlike the conventional, curved form, it is set in three planes, which recall the angularity of the plan. The front ramps can be lowered to provide an orchestra pit, but permanent space for musicians has been provided above the top balcony. The musicians sit on a open-floor grating masked by "an acoustically-transparent ceiling baffle." Above them, an acoustical shell will reflect sound downward into the auditorium from a point equidistant from both dancers and audience. The conductor watches the dancers on a small TV screen. The theater has an open-air roof garden that may be used for refreshments or dining.

Paul Schweikher and George C. Izenour have the only design based on a specific client and site: the drama school complex for Carnegie Institute of Technology. For this program, Izenour developed a three-dimensional modular design for a flexible, mechanical theater. Schweikher modestly describes his contribution as "[housing] the mechanical and electrical systems proposed by George Izenour in a plain, direct way." Actually, his design has a vigor and dignity that will add even more to the luster of a famous drama school. The project is in five main elements: the main theater, the workshop, the studio theater, the experimental theater, and the classroom-faculty unit. The main and studio theaters, workshop, and classroom-faculty building surround an open court, and the experimental theater is underground. The main theater is convertible from arena to apron and to proscenium productions.
CAMBRIDGE, MASS. When Le Corbusier visited these shores last spring, he brought along plans of his first U.S. commission, the Visual Arts Center for Harvard University (p. 71, JUNE, 1961 P/A). The project has now been released, showing a design replete with such characteristic Corbu design elements as the ramp, sun-control baffles, roof terraces, concrete construction, and emphasis on flexible space.

The six-level (including basement) building will house space for work in two- and three-dimensional art, plus work in "light and communication," i.e., sound, motion pictures, photography, etc.

The basement will contain the workshop for light and communications students, together with studios and a lofty lecture hall seating 180.

Main entrance will be on the first level above ground, and the two-dimensional and three-dimensional workshops and studios will be on the second and third levels.

The third level will contain a pedestrian ramp that will penetrate the building to connect Quincy Street to Prescott Street. Pedestrians thus will...
pass through a planted terrace at the virtual horizontal and vertical center of the Visual Arts Center.

The fourth floor will contain space designed to provide a maximum of flexibility for seminars, exhibitions, and experimental projects.

The fifth—penthouse—level will contain the quarters of the director of the Center, studios for visiting artists, and a planted garden.

The entire building will provide about 50,000 sq ft for studies in the visual arts. Interiors will be characterized mainly by the use of movable partitions or cabinets for versatile arrangement of spaces. Exterior walls will feature deep concrete sun baffles that change according to the direction of the façade and that control natural daylighting in the interiors. Due to careful planning for cross-ventilation, it is hoped that air conditioning will be necessary only in the basement areas.

Commenting on his own early experiences and what he intends to do for Harvard, Le Corbusier emphasized the “indispensable, practical and beneficent relations between the hand and the head. The rupture of this collaboration...brought about by mechanism and bureaucracy, has fomented little by little a monstrous society which would be on the decline if no reaction interfered.

"Harvard University's initiative has therefore found in Le Corbusier a ground which is naturally favorable to the implantation of the ideas that constitute the present programme of this University."
Architects Propose Plan to Aerate New York

NEW YORK, N.Y. The New York chapter of AIA, using plans by the firm of Pomerance & Breines, has proposed the creation of a long pedestrian mall in midcity, reaching from Bryant Park (42nd St.) to Central Park (59th St.) between Fifth Avenue and Avenue of the Americas. Support for the plan has been received from the Citizens’ Housing and Planning Council, the Citizens’ Union, and the Municipal Art Society. James Felt, chairman of the City Planning Commission, stated that the plan is “imaginative and deserves serious consideration and thorough study.”

Basically the plan would create, through condemnation of low-grade business sites in the center of the extra-long block between the two avenues, a lengthy pedestrian walkway that would be lined with new shops, stores, cafes, etc. Thus an entire new business frontage would be created on what is now rather undesirable property. A state law now on the books would permit such proceedings. The promenade could be developed piecemeal, as property becomes available; it would not need to follow a direct course, but could follow a meandering route.

SINGLE SAARINEN STRUCTURE HOUSES THEATER, LIBRARY, MUSEUM

NEW YORK, N.Y. An example of an architect and scenic designer collaborating on an actually-commissioned theater is the repertory theater in the Library-Museum building of the Lincoln Center for the Performing Arts, designed by Eero Saarinen Associates with Jo Mielziner as Collaborating Designer. This project will receive complete presentation in FEBRUARY 1962 P/A.

Theater will have a capacity of 1100: 330 in the five-rowed loges, and 770 in the amphitheater-like orchestra. Innumerable sight-line studies were undertaken to assure proper vision from all seats. The stage will be by far the largest for the production of legitimate plays in New York, containing 11,000 sq ft. It will have an expandable proscenium capable of a maximum width of 58 ft. A turntable, 46 ft in diameter, will also be a feature. The stage will have an apron extending 12 ft into the orchestra, which will be joined, when desired, by a “thrust stage” 15 ft deep by 23 ft wide, which can jut into the auditorium further by replacing seven rows of seats.

There also will be a smaller, experimental auditorium in the building.
LEAD'S on top...

in the war
against the elements

On top of the Soldiers and Sailors Memorial Monument on Riverside Drive, roofing faces the wide extremes of New York weather, the relentless attack of city fumes.

Roofing of lead was selected by the monument-maintenance experts of the City's Department of Parks when complete refurbishing of the famous landmark began two years ago. Responsible for over 600 monuments, these men are uniquely conversant with both the economic and aesthetic virtues of many materials. Their reasons for choosing lead: It will not stain adjacent stone, will develop a natural patina that improves with age. Because lead is flexible, it is easier and cheaper to install, conforming obligingly to irregular surfaces. Most of all, lead lasts. It has a greater life expectancy than just about any building on which it might be installed. Note: the hard lead used today has added strength, permitting thinner, lighter sheets while retaining the traditional qualities of lead in construction.

If you're looking for roofing that "takes it"—for any kind of building large or small—by all means look into lead. For more detailed facts or technical assistance, write Lead Industries Association, 292 Madison Ave., New York 17, New York.
PERSONALITIES

When asked how she happened to become that rather unusual personage, a lady chief specifications writer for a major architectural firm, Louise Rowell of Sherwood, Mills & Smith, Stamford, Conn., replied: “I can tell you exactly how it happened. One day back in 1952, Willis Mills told me he thought I had the kind of mind that could turn out good specs. Then he asked me if I would like to become a spec writer. So I said yes first, and then asked him what a specifications writer did, and he told me, and I’ve been doing it ever since.”

Graduated from the unlikely institution—for a spec writer—of Lowthorpe School of Landscape Architecture in Groton, Mass., (later incorporated into Rhode Island School of Design), Miss Rowell worked during the depression for the Historic American Building Survey. When World War II came along, she worked for the Boots Aircraft Nut Corporation, in Connecticut, becoming a draftsman while there. In 1945, during a weekend in Burlington, Vt, she asked for and got a job with the firm of Freeman, French & Freeman (another alumnus of which is P/A’s Editor, Thomas H. Creighton). Returning to Stamford in 1947, she began with the year-old firm of Sherwood, Mills & Smith as a draftsman, and was eventually made chief specifications writer in 1955. She is a member of the metropolitan New York chapter of the Construction Specifications Institute, and two years ago was assistant instructor in a course on spec writing at Columbia University. She is deeply concerned with helping improve standards in architectural specifications writing. “I hate to think of those first specifications I wrote,” she says. “I’ve learned so much since then.”

Dr. Leo L. Beraneck, president of Bolt, Beraneck & Newman, received the Wallace Clement Sabine Award of the Acoustical Society of America for his “internationally recognized achievements in all phases of architectural acoustics” ... Felix Candela was the first of three structural savants delivering the 1961-62 Charles Eliot Norton Lectures at Harvard University; he will be followed by R. Buckminster Fuller and Pier Luigi Nervi ... William W. Wurster is the professional advisor for the competition of the design of a mansion for the governor of California; program is confined to architects resident in that state ... Killingsworth, Brady & Smith got a first prize in the Sixth Sao Paulo Biennial for the design of an office building in Long Beach, Calif.; honorable mentions went to Weed-Johnson Associates for their Coppertone office and warehouse, and Philip Johnson for his shrine in New Harmony ... Joseph W. Lund of Boston is twelfth president of the Urban Land Institute ... Speaking before New York’s West Side Association of Commerce, Robert Moses admitted, “I am not a professional showman or impresario” ... New president of National Electrical Manufacturers Association is Homer L. Travis, Vice-President in Charge of Sales, Kelvin Div., American Motors Corp.

Marcel Breuer was busy recently dividing his time between a major project reaching completion in Minnesota and another major one in France that is in its preliminary phases. The hibitation of the abbey designs and photographs at Minneapolis’s Walker Art Center.

Meanwhile, overseas, Breuer has been commissioned to design large-scale office and garage additions for UNESCO Headquarters in Paris, also designed by him (with Zehrfuss and Nervi). He commented to P/A: “Again the architects are Bernard Zehrfuss, Pier Luigi Nervi and myself. In this case, however, UNESCO feels that the so-called advisory panel of five is not necessary.”

New president of National Insulation Manufacturers Association is F. W. Muller, veep of Gustin-Bacon Manufacturing Company ... Elected New York State Association of Architects president at group’s recent convention was Frederick H. Voss, of Kiff, Colman, Voss & Souder ... Building Stone Institute gave its annual architectural award to Lloyd Morgan ... Architect Donald Barthelme has been named director of the Contemporary Arts Museum in Houston ... New dean of the faculty at Cornell University is Thomas W. Mackesey, former dean of the College of Architecture ... 1961-62 committee chairman of Lake Michigan Region Planning Committee is Paul Frank Jernegan; the committee is composed of architects and planners aligned to keep an eye on plans for the Lake Michigan area ... John R. Hagely is serving his first semester as assistant professor of architecture at the University of Cincinnati’s College of Applied Arts ... Architect Hubamin P. Urnston was one of the winners of the recent competition conducted by Onan division of Studebaker-Packard Corporation to investigate new uses for electric generating plants ... Gold Medal of the Illuminating Engineering Society went to Dr. Deane B. Judd of the National Bureau of Standards for his contributions in the field of color ... Fritz von Grossman of Milwaukee has been re-elected to the Board of Governors of the School Facilities Council of Architecture, Education, and Industry ... Barclay G. Jones is associate professor in the Department of City Planning at Cornell, first appointee by College of Architecture Dean Burnham Kelly under new Dean’s Fund in Architecture ... Vincent G. Kling received the Gold Medal of Philadelphia chapter AIA for the design of McNeil Laboratories, Inc., offices; he got a citation for his proposed Norfolk (Va.) Civic Center.
ANNOUNCING: a competitively priced, high-performance sealer!

From the maker of duct sealers that safeguard some of the world's largest systems comes new 3M® Brand Duct Sealer Standard Grade. This new companion product of 3M Brand Duct Sealer 800 Premium Grade assures tough, flexible, trouble-free seals . . . meets critical established specification requirements . . . and at a competitive price.

3M Brand Duct Sealer Standard Grade resists both oil and water. Films of \(\frac{1}{8} \) thickness remain flexible, even over a 1" mandrel at \(-20^\circ\text{F}\), and withstand continuous heat exposure as high as \(200^\circ\text{F}\). This sealer may be applied by brush, caulking gun or pressure extruding equipment. Surfaces skin over in 5 to 10 minutes, become tack-free in an hour to avoid collecting dirt. 3M Brand Duct Sealer Standard Grade is recommended for both medium- and high-velocity systems.

For insulation, there are 3M Brand Adhesives for every bonding need. Included are a formulation that withstands heat up to \(300^\circ\text{F}\), a non-flammable adhesive that eliminates fire hazards during application, and an economical high-coverage formulation for general use. In addition, 3M provides adhesive products for bonding ceramic, clay, vinyl and rubber tile, as well as wood, laminates and other materials . . . for sealing curtain wall, other external joints and surfaces. For data on the complete line of 3M construction adhesives, see Sweet's Catalog, your nearby distributor or write AC&S Division, 3M Company, Dept. SBC-120, St. Paul 6, Minnesota.

Adhesives, Coatings and Sealers Division

For more information, turn to Reader Service card, circle No. 358
Most Beautiful Bridges

The American Institute of Steel Construction has designated, with the aid of a professional jury, the most beautiful steel bridges opened during 1960. Shown is the winner in Class II, for bridges with fixed spans under 400 ft and costing more than $500,000. It is the Roosevelt Boulevard Bridge over the Schuylkill River in Philadelphia, designed by Richardson, Gordon & Associates and fabricated by the Bethlehem Steel Company.

Jury was composed of Architects A. L. Aydelott, Geoffrey Platt, and George Lindstrom; Thomas S. Buechler, Director of Brooklyn Museum; and Professor Glen W. Holcomb, President of the American Society of Civil Engineers.

How to Go to the Dogs in Style

"This house was designed almost as much for five golden retriever dogs as it was for the people," said Architect Richard W. Snibbe to P/A at the recent opening of his new office in New York. He was speaking of his design for the residence of vacuum cleaner and electronics tycoon Alexander M. Lewyt, which will occupy a splendid site looking out over Long Island Sound to the towers of Manhattan in the distance. Reference to the dogs indicated the nature of the house: a planned and gracious informality (plus comfortable kennels). Separate pavilions—living room, master suite, dining-service, and guest rooms—will be grouped around a sunken garden. All major rooms will face the view. Landscaping by Paschall Campbell will include a 30' x 60' swimming pool. Basic structure will be wood post and beam with stone and stucco exterior walls. Inside, girders and plank ceilings will be exposed against white plaster in all major spaces. Floors will be Mexican tile with hardwood in selected areas. Interiors will be kept muted to act as background for Lewyt's extensive art collection. A stone fireplace dating from 1583 will be installed in the living room.

Successful Bidders Use Diamond Heights Plan

As instructed by the San Francisco Redevelopment Agency, bidders for the Diamond Heights project (p. 37, AUGUST 1961 P/A) based their proposals on four designs that had been screened by a professional jury. The low bidder for the 22-acre area was Peninsula Apartments, Inc., at $4,525,000. Architects on whose proposal the bid was based are B. Clyde Cohen and James K. Levorsen; they presumably will see the job through.
NOT NEW
...JUST PROVEN
MAHON CURTAIN WALL

THE PROJECT
William F. Wyman Station of the Central Maine Power Co. at Yarmouth, Me. A five-year old project that retains its bright-as-tomorrow good looks. Engineers: Jackson & Moreland, Inc. Gen'l Contractor: Sanders Const. Corp.

THE SECTION
Mahon's field-constructed (3-6-3) fluted pattern in green baked-enamel 16-gage galvanized steel with Fiberglas insulation (shown in foreground of three-section photograph). Erection by Mahon.

MAHON BUILDING PRODUCTS
Aluminum or Steel Curtain Wall • Rolling Steel Doors (Standard or Underwriters' labeled) • M-Floors (Steel Cellular Sub-Floors) • Long Span M-Deck (Cellular or Open Beam) • Steel Roof Deck • Acoustical and Troffer Forms • Acoustical Metal Walls, Partitions, and Roof Deck

CONSTRUCTION SERVICES
Structural Steel—Fabrication and Erection • Steel Fabrication—Weldments • Geodesic Domes—Fabrication and Erection

Mahon Insulated-Metal Walls form a highly efficient wall system that is a far cry from flimsy 'low cost wall wraps'. When structural function, clean good looks, ease of erection and minimum maintenance are wall consideration, investigate Mahon. Available in various metals, diverse sections, different finishes, and a rainbow of colors to offer unlimited architectural-design freedom. What's more, Mahon Insulated-Metal Walls are quality-made, corrosion and fire-resistant, invisibly joined, easily sealed and are kept clean by rain showers. They mean true economy and lasting advantages.

Write for informative Wall Catalog W-61, see Sweet's Files, or contact your local Mahon Building Products representative.

THE R. C. MAHON COMPANY
DETROIT 34, MICHIGAN
MANUFACTURING PLANTS—Detroit, Michigan and Torrance, California
SALES-ENGINEERING OFFICES—Detroit, New York, Chicago, Cleveland, San Francisco and Torrance, Calif., Seattle Wash. and E. Orange, N. J.
REPRESENTATIVES IN ALL PRINCIPAL CITIES.

SPEEDING AMERICAN CONSTRUCTION WITH METAL BUILDING PRODUCTS, FABRICATED EQUIPMENT AND ERECTION SERVICES.

MAHON

For more information, turn to Reader Service card, circle No. 353
It's FOAMGLAS® Insulation

...from top to bottom

Starting at the roof, extending down the curtain wall panels, and running beneath walkways, the insulation in the Pennsylvania Electric Company’s new electrically heated general headquarters at Johnstown, Pa., is FOAMGLAS.

On the roof, waterproof, vaporproof FOAMGLAS provides constant insulating efficiency and a firm base for built-up roofing. In the curtain wall panels, this cellular glass insulation is dimensionally stable and rigid to assure flat panels. Under walkways, FOAMGLAS strength and rigidity assures a solid, load-bearing base that won’t need replacement for the life of the installation.

This strong combination of benefits—the benefits that only FOAMGLAS can provide—led to its use in three other Penelec buildings at the same site.

For more information on how FOAMGLAS can work for your applications, write to Pittsburgh Corning Corporation, Dept. AB-121, One Gateway Center, Pittsburgh 22, Pa. In Canada, 3333 Cavendish Blvd., Montreal, Quebec.

FOAMGLAS Roof Insulation is now available in a new 2' x 4' x 1 1/2" board form for fast, economical installation on roofs requiring less than 2" of insulation. Multiple sections of FOAMGLAS are laminated between sheets of kraft-laminated paper to form this easy-to-handle, FOAMGLAS BOARD.

PITTSBURGH CORNING

For more information, turn to Reader Service card, circle No. 368
minum beams up to 15 ft long, and is covered with a skin of glass-fiber-reinforced plastic triangles that measure up to 15 ft on a side. The facility houses what is said to be one of the most sensitive research antennas ever built, a "dish" type 120 ft in diameter.

Diamonds for the Golden Triangle

Exposed structural steel framework will be the design highlight of the proposed IBM Building in Pittsburgh's Gateway Center, by Curtis & Davis. Frame will actually be four gigantic trusses, each covering one side of the building and resting on two reinforced concrete columns. Since the diagonal lines of the frame will direct stress to the concrete columns, all members will either be in compression or tension, a situation in which steel achieves its greatest strength. The X-shaped components of the frame will be factory-assembled in a number of larger sections for erection on site, thereby simplifying construction processes and reducing costs. Steel beams will be covered with a thin skin of stainless steel or aluminum, and the diamond-shaped openings will be filled with alternate rows of clear and opaque glass. The 13-story structure will have an adjacent, two-story underground garage to be topped by a landscaped park (see detail). Building is being financed by Equitable Life Assurance Society (its fifth building in the Center). Structural engineer is Worthington, Skilling, Helle & Jackson; electrical and mechanical engineer is Cary B. Gamble & Associates.

À Nous la Libérte

Many lucky visitors to Seattle's Century 21 Exposition next year will be able to sleep afloat on one of the world's grand old ships. The "Libérté," now on her last commercial voyage, will be tied up at a pier close by the fair grounds for the convenience of expected crowds. Until recently threatened with scrapping, the ship was purchased by a West Coast company with the promise to the French Line that she would never again sail as a commercial liner. Talks are underway with officials of the New York 1964-65 World's Fair to consider the "Libérté" for a floating luxury hotel there, also.

Curvilinear Community on the Potomac

In Washington, D.C., plans have been submitted for a community called the Watergate Development, on the Potomac River, adjacent to Edward D. Stone's proposed Cultural Center. The project will cover about 52 per cent of a more or less triangular site with semicircular and gently curved shapes, leaving room for some landscaped open space and a swimming pool. Three main shapes will make up the group: a semicircular apartment house enclosing two curved rows of town houses; a "semoval" apartment building behind it; and a group with apartment house, office building, and hotel linked in an L-shape. Three curved rows of town houses will be nestled between these three major shapes. The façades of the hotel and apartment houses will be broken up by curved balconies to create pleasing light and shade patterns. Designed by Professor Luigi Moretti of Rome and Milton Fischer of Corning, Moore, Elmore & Fischer of Washington, the project is being privately financed and sponsored mainly by developers called the Societa Generale Immobiliare of Rome. Parking for 1250 cars will be underground so that the ground level can be given over to pedestrians.

How to Succeed in Architecture, etc.

When the curtain goes up on New York's funniest, brightest new musical, "How to Succeed in Business Without Really Trying," it discloses a wry visual comment on the curtain-wall architecture now indigenous to Manhattan's midtown business district. This ultimate in curtain walls (it's a curtain, isn't it?) serves as the background for the introduction of our hero, J. Pierpont Finch (played goofily by Robert Morse), who goes onward and upward from window washer to chief executive of World Wide Wickets through unswerving pursuit of the main chance.

For more information, circle No. 400
SUMMIT BACKS DOWN

The uninhibited décor of New York's new Summit Hotel, which one observer said was obviously designed to make you run for the bar after the first, stunned look, lost out to viewer criticism and is in the process of being toned down with more upholstery, larger rugs, more muted colors. Morris Lapidus (Morris Lapidus, Harle & Leibman), creator of the extrava-

planza, said most criticism came from "sidewalk critics" and not hotel patrons, and that, anyway, New Yorkers are "too rectangular-minded."

New Film

A 22 1/2-minute film on professionalism and engineering entitled "George Spelvin, P. E." has been made available by the National Society of Professional Engineers. It may be borrowed from the society headquarters: 2029 K Street, N.W., Washington 6, D.C.

MERGER, NEW NAME

At a Scottsdale (Ariz.) meeting, the Aluminum Window Manufacturers Association and the Sliding Glass Door & Window Institute jointly announced that they would merge (effective January 15, 1962) into the Architectural Aluminum Manufacturers Association. Consolidation of the groups brings together 106 firms, manufacturing and associate members and approved laboratories.

CORRECTION

On page 66 of the NEWS REPORT [NOVEMBER 1961 P/A], the address of the Boston City Hall Competition was listed as 1 Church Street. The correct address is: Government Center Commission of the City of Boston, 1 Court Street, Boston, Mass.

OBITUARY

Chicago architect and civic leader Daniel H. Burnham was killed in an automobile collision on November 4. Mrs. Burnham died in the same crash.

CALENDAR

"New Materials and Better Home Building" is theme of 17th Annual Short Course in Residential Construction at University of Illinois, January 29 and 30 . . . 12th National Exposition of the Air-Conditioning, Heating and Refrigeration Industry is scheduled for Los Angeles, February 12-15 . . . Annual Conference of the Church Architectural Guild of America will take place in Cleveland, March 20-22 . . . To end on a jolly note: the Architectural Student Association of the University of Minnesota is presenting its first annual Beaux Arts Ball on January 20; theme is "Space Creatures."
ARCHITECTS AND HIGHWAY PLANNING

The Washington uproar over construction of freeways within the downtown heart of the city is much more than a local battle. It has wide national implications.

This clamor is responsible for finally enabling the architect to participate — for the first time on such a broad scale — in highway planning; and it focuses attention, besides, on the great damage that can be done by blind insistence on considering nothing else except the movement of vast numbers of motor vehicles.

The idea that highway and traffic engineers alone shouldn't be left to decide the fate of an entire city and its residents is beginning to get some serious attention.

At immediate issue is a plan for an "inner loop" freeway of up to eight traffic lanes that would cut closely around the monument and business heart of the capital: and construction of freeway-type links to several new offices, on the great damage that can be done by blind insistence on considering nothing else except the movement of vast numbers of motor vehicles.

At issue are plans to unravel the downtown heart of the city's huge Southwest Redevelopment Area, got into the highway act via a commission from the city's consulting engineers (Rummel, Klepper & Kahl of Baltimore) in which she was given freedom to see if architectural planning could soften the blow of a traffic artery partly in open cut and partly in tunnel to connect a new bridge (the Theodore Roosevelt Bridge, now under construction) to the area of parks and monumental office buildings centered around the new State Department building.

She came up with a plan that was hailed by the Planning and Arts groups and by local newspapers (which unfortunately described it rather sparsely as a matter of landscaping, fountains, and fancy wall treatment).

Actually, the plan is much more than fountains and greenery: it is a conscious attempt to get the highway built on a scale and in a manner that will fit into the urban scene, rather than to permit a great, stark gash across this section of the city which would, incidentally, create hard-to-reach islands of buildings.

Says Mrs. Smith: "We have made recommendations for alternate materials and methods which we believe would better relate the [freeway] to the adjacent buildings and parks and minimize its impact. The basic direction of the design is to create the maximum amount of surface at the same level as the surrounding areas and, where this is not possible, to create a visual relationship that brings buildings in proper balance as the frame on either side of an avenue — with entrances visible and comprehensible, rather than cut apart and unrelated."

To P/A, she made the additional comment that architects haven't taken enough interest in highway and city planning, that too often they're concerned only with a single building or group—not with their impact on an entire area or city.

"This is an exciting challenge to me, and to most architects," she said.

Impact of highways on urban planning was also getting attention from another Government agency, the Housing and Home Finance Agency.

Urban Renewal Commissioner William L. Slayton told highway officials that urban transportation planning is a top problem in every city, and must be co-ordinated with renewal work.

He repeated this admonition to urban renewal officials who had gathered in Washington for a meeting of the National Association of Housing and Redevelopment Officials.

In addition, HHFA Commissioner Robert Weaver announced the establishment of a transportation office.

FINANCIAL

With the calendar year pulling to a close, the construction sector of the economy continued to show great strength.

This was probably due to a mild fall and early winter, as well as the generally strong recovery made by business after last winter's very brief recession.

For the distant future, prospects are rosy indeed, if the Department of Commerce's most recent predictions are anywhere near accurate: Commerce said that, by 1975, construction should be grossing $107 billion annually; by the year 2000, annual business should hit $219 billion.

On a closer look, demand for construction work continued strong, despite the normal slackening off toward the end of the year. During October, for instance, electric utilities announced plans for $265.5 million's worth of work in 1962; gas utilities saw $165.4 million's worth; private buyers planned $9.8 billion's worth of new construction, ranging from a $4.5-million hotel-motel and a $2-million heavy water plant to relatively minor enlargement programs.

In the field of municipal finance, voters continued to okay a far larger proportion of construction financing than they rejected—though they were still bearish on municipal office buildings and the like. But spending for schools, waterworks, and sewerage projects rated well with taxpayers: they approved some $8 billion's worth of bonds, mostly for these purposes, within the first nine months of 1961.
L-M Announces Another Graceful Design In The New Styled Mercury Light Family

Line Material's Styled Mercury luminaires are a family of high quality, high intensity lighting units. The latest addition to the Styled Mercury line is the upsweep design installed in the well-lighted street shown above.

These are large, handsome luminaires, styled for Line Material by a noted industrial designer. They will contribute daytime beauty and excellent nighttime lighting to any street, park, mall, public square, or parking area.

Line Material is a leading manufacturer of outdoor lighting designed specifically for the application. L-M also provides competent Lighting Application Service by experienced lighting engineers, available through Authorized L-M Distributors.

Get complete information
Ask your Authorized L-M Distributor for bulletins, or mail the coupon.
These Three California Community Hospitals Achieve Life Long PERMANENCE & DEPENDABILITY With Streamline® COPPER TUBE AND FITTINGS FOR SUPPLY AND DRAINAGE SYSTEMS

"...in operation over two years... the copper drainage system has been entirely trouble-free. We would recommend the use of your system and product in any modern structure."

— Hospital Administrator

In installations that must depend on clog-free, rust-proof, leak-proof, sanitary drainage, Mueller Brass Co. Streamline DWV tube and fittings are the logical choice. When compared with rustable materials, DWV Copper Tube and Fittings are MORE ECONOMICAL to install and will normally OUTLAST THE BUILDING ITSELF.

Write today for new Catalog S-361

MUELLER BRASS CO.
PORT HURON 27, MICHIGAN

For more information, turn to Reader Service card, circle No. 360
ART: RELAX AND ENJOY

Joan Miró, who can introduce humor and movement into a vast blue canvas tenanted only by a long-tailed black creature resembling a Spirochaeta pallida, was the subject of a show of recent (1959-1961) paintings and ceramics at New York’s Pierre Matisse Gallery. The 1969 “Woman and Bird” (shown) represents Miró in his fantastic bent, a tendency of the artist’s well-documented in the exhibition. Observing Miró viewers during a recent visit to the show, this commentator was reminded by their dour mien of the famous story of the child at a Paul Klee exhibition: “Why is everyone so serious?” he cried; “Why aren’t they enjoying the funny pictures?” Must we suffer to “appreciate”?

An abstract sculpture of gold- and bronze-anodized aluminum is the latest addition to the art of the United Nations. The piece, by Ezio Martinelli, has been placed on the outside of the east wall of the General Assembly building, overlooking the rose garden. The sculpture collection was a pet project of the late Secretary General Dag Hammarskjold, and includes two contemporary sculptures by Robert Cronbach and José de Rivera.

Elie Nadelman, best known for his bronzes of natty gents in bowler hats and demure ladies in long dresses, was shown in another medium—drawing—

at the Robert Isaacson Gallery, New York. The drawings are quick, concise studies; some of them are calligraphic in their simplicity and many are strongly reminiscent of the work of Modigliani. “Standing Female Nude,” shown here, dates from the years between 1904 and 1910.

At the Otto Gerson Gallery, a retrospective exhibition of 50 years of sculpture by Jacques Lipchitz gives what is virtually a capsule vision of the development of modern art in this century. Compared to Reder (this season’s vieux terrible whose work was noted in these pages last month), Lipchitz’s art is more intellectual and more truly emotional than that of Reder and immensely superior to it. In a letter to Gerson on the retrospective show, Lipchitz gave his view of the cubist movement in sculpture: “The sculptors, not being any more satisfied with the existing patterns [than the painters], felt the need to blow up the old forms in order to create another puzzle with these blown-up pieces.” Shown here are the earliest (“Head of Mlle. S.,” 1911) and the most recent (“Lesson of a Disaster,” 1961) sculptures in the show.

Chagall’s stained glass windows for the Jerusalem medical center are being shown at the Museum of Modern Art. More complete review will be seen here next month. A preliminary view indicated that Chagall, in touching up the glass before its last firing, may have destroyed some of its more exciting translucent qualities.
Schweikher Space Frame for Pittsburgh International

PITTSBURGH, PA. Visitors to the Pittsburgh International Exhibition of Contemporary Painting and Sculpture, one of the most important continuing U.S. surveys of what is happening in current art, are seeing a new installation for the showing of art in the galleries of the Department of Fine Arts of Carnegie Institute.

Designed by Paul Schweikher, head of the Department of Architecture at Carnegie Institute, the installation utilizes a hung space frame based on the R. Buckminster Fuller concept. The space frame is hung 10 ft below the skylights of the high-ceilinged old gallery, and hovers 14 ft above the floor. Simplicity of construction features a series of “Unistrut” gusset connections. For mounting pictures, double-faced aluminum panels measuring 4 ft by 14 ft (including legs consisting of rubber-tipped jacks) extend between the space frame and the floor. The panels were developed by the architect with the Overly Manufacturing Company. Rearrangement of the lightweight panels is easy and flexible. The new installation has added 800 running feet to the exhibition space of the galleries, and will be retained for the permanent exhibit.

Reaction to the Pittsburgh International, which was assembled by Carnegie Fine Arts Director Gordon Bailey Washburn, has been mixed. Some critics viewing the show have chided it for a certain “safeness” of selection, particularly among the winners (there are a number of prizes and mentions given each time the International is shown). However that may be, Schweikher’s provision for showing art deserves an award for good use of existing space for new purposes. The exhibit will continue through January 7, should you be in Pittsburgh.
Chicago High-Rise Has Carbon Steel Exterior

CHICAGO, ILL. Columns and spandrel beams of the new Continental Center now under construction here are being sheathed in a curtain wall of 3/4"-thick carbon steel plate, welded and painted. Glazing is tinted glass framed in stainless-steel sash. The building was designed by Naess & Murphy of Chicago.

Carbon steel facing plates join high-strength "Man-Ten" columns and other steels for a major role in the economy and design of the building. Covering plates perform double duty: besides exterior frame design, they serve as backup to concrete for fireproofing. Studs are welded to outside of columns and spandrel beams and to back of facing plates; thus serving as reinforcement of concrete when it is poured and vibrated into place between plates and columns and beams. Structure has 42-ft-sq bays, allowing for duplication of sections for beams and cover-plated girders to permit economical fabrication of hundreds of identical floor beams. Extra-long spans provide column-free space. U.S. Steel Corp., 525 William Penn Pl., Pittsburgh 30, Pa.

Life Can Be a Dome of Many-Colored Glass Fiber

NEW YORK, N. Y. A new acoustical ceiling unit, consisting of a shallow domed, 2-ft-sq shape of glass fiber fabric backed, with a binder, by a base of glass fibers, has been introduced by Johns-Manville.

The units, which have also been described as rising "gently to a vaulted center," are of a thickness about one-third that of regulation flat sound-control panels. For all their thinness, however, they are quite strong and rigid. "Acousti-Shell" panels are said to absorb up to 80 per cent of room noise striking them. Acoustical properties are reportedly "unusually high" at all frequencies from 125 to 4000 cycles per second. Flamespread rating is zero. The panels are supported by a light grid section of formed metal sections, which are suspended from the overhead slab by wires or straps. System also includes flat panels for borders, for areas around columns and beams, for spotlight cutouts, and other uses. Standard colors so far are white, blue, and green. On special order, fabrics may be dyed in other colors or printed with custom designs. A J-M spokesman has stated that "many other shapes can—and no doubt will—be considered upon request." Mock-ups shown below illustrate use in different areas. Johns-Manville, 22 E. 40 St., New York 16, N. Y.

On Free Data Card, Circle 100

On Free Data Card, Circle 101
New Technique:
Marble and Metal

The main entrance to the new auditorium of New York’s National Design Center is graced with walls sporting an interesting new design technique: marble embedded with aluminum strips. Designed by industrial designer Walter Dorwin Teague, the walls are of two different marbles—Loredo Scuro (shown) and Imperial Danby. The marble panels were cut to a thickness of 7/8”, with vertical slots cut into the marble, into which metal strips were cemented, flush with the face of the marble. Other materials which can be stripped in include brass, stainless steel, wood, and plastic. Design variations are possible with combinations of inset strips. Marble Industry Board, 41 E. 42 St., New York 17, N. Y.

Acoustical Curtains for School Partitioning

Vertical, electrically operated acoustical curtains are fabricated of vinyl and lead for a high degree of sound control. “LeadX” curtains can be raised out of sight for the creation of a large, unbroken space, or lowered to form smaller, acoustically private rooms. Top roller mechanism is housed in a ceiling enclosure that takes only 18” of space. Manufacturer’s spokesman says ASTM tests have indicated that the greater weight per sq ft and “limpness” of the curtains provide low incidence of sound transmission. Torjessen, Inc., 209 25th Street, Brooklyn 32, N. Y.

Bowl and Ball

A metal hemisphere available in six colors contains three reflector bulbs mounted on swivel bases, which can be concentrated on one spot on the ceiling or can provide an indirect wash. Below it is an opaline sphere that provides direct downlight. Wiring permits the illumination of both units at once or single units independently. Designed by Paul Mayen for Habitat, Inc., 336 Third Ave., New York 10, N. Y.

Prefinished Form Board

New prefinished form board has an embossed white plastic film facing that requires no further field painting, giving a finished look to exposed ceiling areas where a permanent, decorative finish is wanted. The board, which serves as the form for poured-in-place gypsum and lightweight concrete decks, is available in thicknesses of 1”, 1 1/4”, 1 1/4”, and 2”, and in 32” x 42” to 48” in 1/4” increments of length, and 24” x 36” to 96” in 1/2” increments of length. The sound-absorption value of the board is said to compare favorably with more expensive acoustical ceilings, and it provides light reflection of over 75%. The surface may be cleaned with everyday soaps or detergents, clear water, and cleaning agents such as household ammonia. Recent application shown is Frances E. Connors Addition to Livingston Park School, North Brunswick Township, N. J., by Architect Woerner & Woerner. Owens-Corning Fiberglas Corp., 717 Fifth Ave., New York, N. Y.

Something New in Asbestos-Cement

“Permatone Flexboard Trim” is a plastic-coated asbestos and cement composition for use as battens, belts, eave trim, fascia, corner, rake, and skirt boards. Trim may be nailed or sawed, is noncombustible, termite-proof, and will not rot out, crack, or peel. It looks and wears like stone.
To avoid monotony in a series of ceiling-level lighting fixtures, Marco presents the "recessed recess" fixture. A minimum of trim confines the fixture which recedes upward towards aperture or lens. Result: an attractive, though unobtrusive light source performing its task with maximum efficiency. Use coupon below for handsome catalog illustrating over 100 new recessed lighting fixtures.

For more information, circle No. 355
New Unit Combines Gas Heat, Electric Cooling

"Economair Year Round Conditioner" combines an air-cooled, electric, remote air conditioner and a horizontal type, forced-air gas furnace in a weatherproof cabinet measuring 2' x 8' x 4'. The unit has been approved for outside installation by the American Gas Association. Conditioner can be either slab-mounted on the ground level or rooftop-mounted. Presently, there are two models offered: Model 24/55 (2 tons cooling capacity, 55,000 Btu heating capacity), and Model 36/80 (3 tons cooling capacity, 80,000 Btu heating capacity); other models will follow as the line expands. The Payne Furnace Co., P. O. Box 2222, La Puente, Calif.

On Free Data Card, Circle 109

Compact Work Lamp

Tiny, powerful incandescent lamp for close work is 10" high, rests on a base just a bit larger than a packet of cigarettes. Lamp features a miniature reflector with a diameter of 2 1/2" cork insulated for heat control. A five-position switch allows control of intensities from 12.2 to 202 foot candles. Three 6-v General Electric bayonet-type bulbs are provided with each lamp. Another feature is an electrical outlet which may be used for appliances or small electrical tools whether the lamp is on or off. Price is $46.50, in black wrinkle or smooth white enamel. Tensor Electric Development Co., Inc., 1873-1877 Eastern Parkway, Brooklyn 33, N.Y.

On Free Data Card, Circle 108

Gypsum Wallboard Has Vinyl Coating

"Sheetrock" gypsum wallboard takes on a new look with the addition of a vinyl-coated line. Featuring a durable, laminated vinyl surface, the product is designed to provide prefinished, maintenance-free walls for residential, commercial, and institutional buildings. Eight decorative colors and two wood-grain patterns are integrally blended into the laminate to give a nonfading, washable surface. Panels are ½" thick, 4' wide, 8' or 10' long. New extruded-aluminum moldings have permanently bonded finishes to match the wallboard colors and patterns. United States Gypsum Co., 300 W. Adams St., Chicago 6, Ill.

On Free Data Card, Circle 109

Sleeve Filters Out Fluorescent Problems

"Filtersleeve," an entirely new lighting product, is a flexible plastic sleeve that fits over fluorescent tubes to eliminate many fluorescent-lighting problems. The sleeve filters out ultraviolet rays, thereby eliminating costly fading and degradation of merchandise, reducing glare and eye strain, and correcting color distortion. Filtersleeves are available for all standard sizes, are easy to install, and are reusable. They are particularly suited to the new high-intensity or power-groove tubes. The clear plastic film passes 90% of visible light, resulting in a soft, natural, white light. Infropake Corp. of America, Greensboro, N.C.

On Free Data Card, Circle 111

Rectangular Dishwasher Installs Almost Anywhere

Ling-Temco Electronics, Inc., has designed a dishwasher with several innovations. Because of its rectangular shape, it can be installed under counter, on top of counter under cabinets, recessed in a wall, mounted on a wall, or can stand on its own rolling stand. It comes in three sizes, all 30" long: for 6 settings, 13 3/4" deep by 15 1/2" high; for 10, 15" x 18"; for 15, 23" x 18". It creates its own water pressure independent of the water pressure in the house, so that it can be used in the 32 states in which water pressure problems discourage the use of dishwashers. The washing cycle takes only 25 minutes, about half the usual time and uses a "wave of water" principle. The sheets of water washing back and forth slowly over the dishes are said to clean more thoroughly than jets or fountain-like action. At the end of the washing cycle, steam is sent over the dishes and turns to distilled water on contact. This rinses off minerals in the washing water which cause spotting, a fault of many dishwashers. Motor and controls are in a compact unit which can be removed for repair while a substitute unit carries on with the work. In brushed stainless steel, copper-tone, wood-tone, and various colors. Priced from about $200-$280. Ling-Temco Electronics, Inc., Temco Industrial Division, P. O. Box 6191, Dallas 22, Tex.

On Free Data Card, Circle 112

Premolded Sealer Makes ½" Joints

"Sealfastic" premolded sealing material is especially adapted to sealing narrow ½" joints in concrete pavements. The 1"-thick, impregnated polyurethane foam is precompressed (or readily compressed on the job) to a thickness as narrow as ½". After
Industrial washrooms present a unique creative challenge to architects. Day after day, imaginative minds are exploring fresh approaches...creating function and beauty where only function existed before.

Bradley Washfountains and Showers are in the center of this quiet revolution. For no other fixtures give the architect as complete a variety of colors, shapes, and textures — as much creative flexibility. And certainly no other fixtures save more money, space, water, and washing time. Achieve the unique, the dramatic; specify Bradley in preliminary planning. Begin with Bradley!

Bradley Washfountains and Showers provide group facilities for as many as 8 and 6 persons, respectively, in schools and in commercial, industrial, and public buildings everywhere. Your Bradley representative will gladly supply additional facts and assist on specific applications. Or write for latest full-color cat. No. 6004 to: Bradley Washfountain Co., 2277 W. Michigan St., Mil. 1, Wis.
insertion into the joint, it expands laterally to prevent moisture seeping into the subgrade. No adhesives are required, and the sealer may be dropped into place immediately after the joint is sawed. (Photo compares a poured joint sealer and new Sealfastic installed in sawed joints.) Tests indicate that the material lasts almost indefinitely and resists even the heat of jet-aircraft exhaust. National Expansion Joint Co., 1601 Embarcadero, Oakland, Calif.

On Free Data Card, Circle 113

Hardboard Breaks the Color Barrier

For the first time, a hardboard panel is available with a scatter mosaic design in color. "Sandalite," made by an entirely new manufacturing process, has particles in three shades—white, gray, and blue—on a light-blond base tone. The product has a factory-sealed face to protect against stains and abrasion; it is a grainless wood material which is easily worked with ordinary hand tools or power equipment. Sandalite is available in plain panels, in "Forall" (Sandalite faces laminated to a hardboard core), in random plank with a V-groove, in tongue-and-groove panels, and in panels with punched holes. Forest Fiber Products Co., P.O. Box 68, Forest Grove, Ore.

On Free Data Card, Circle 114

Can't Pick a Pack of Push Buttons

Completely new locking device, the "Simplex Push Button Lock," consists of five push buttons and a knob, handle, or lever and no key. It is operated by pressing one or more buttons that have been preset to one of over 1,000 combinations. The device is virtually pick-proof—it cannot be opened by pick-lock, X-ray, stethoscope, or touch. Compact and flexible in design, the lock suggests a wide variety of applications: storage units, closets, medicine chests, liquor cabinets. The mechanism can be engineered to meet specific design requirements. Simplex Lock Corp., 150 Broadway, New York 38, N.Y.

On Free Data Card, Circle 115

Acoustical Door Only 3/4" Thick

Steel door-and-frame package features an acoustical door only 3/4" thick. The slim steel door represents a major departure in door design and construction, and is said to offer the lowest cost, maintenance-free interior door-and-frame combination on the market. The door is prefinished in off-white, baked-on enamel; special gate-type hinges permit it to be hung by one person in a matter of seconds. Sound-deadening foam gives the door a solid feel, insures quiet operation, and blocks out between-room noise. The new door is designed primarily for residential and apartment use; in tests, the door has been slammed 15,000 times—the equivalent of five generations usage—with no effect on door, frame, or surrounding wall. Republic Steel Corp., Truscon Div., 1315 Albert St., Youngstown 1, Ohio.

On Free Data Card, Circle 116

School Heating-Cooling System Controls Air

New concept in heating and cooling of classrooms controls air rather than steam or water. Through a unique full-damper system, Modine’s "SchoolVent" couples impressive performance with built-in economies. System consists of: (1) face-and-bypass insulated damper which directs air through and around heating coil according to comfort requirements; (2) insulated anti-wipe damper which permits complete isolation of coil, eliminating heat pickup from the coil; (3) indoor and outdoor dampers which assure proper blend of fresh and recirculated air. When room is unoccupied, system operates primarily by convection. Face-and-bypass and anti-wipe dampers are open, and fan starts only when temperature drops below predetermined setting. Indoor damper is closed and outdoor damper open. During morning warm-up, fan starts and runs until room temperature reaches daytime setting. Throughout warm-up, all dampers remain in nighttime positions, recirculating room air for maximum heat gain. Eventually, the outdoor damper opens to blend proper amount of fresh with room air. Concurrently, face-and-bypass and anti-wipe dampers automatically adjust to maintain desired room temperature. Modine Manufacturing Co., 1500 Dekoven Ave., Racine, Wis.
Many a modern man finds himself over his depth in a desperate search for refuge from the harassments of noise. At Elof Hansson we prefer to be realistic and come up with functional solutions. Our engineers plunge into the most intricate acoustical problems and emerge with practical, professional methods of sound control for the world of today—and tomorrow.

NOW AVAILABLE! OUR NEW FREE CATALOG OF ALL ELOF HANSSON ACOUSTICAL PRODUCTS

This new 28-page catalog gives you full up-to-the-minute information and data on our complete line of researched and engineered sound control products. It contains illustrations and descriptions of advanced products featuring the latest developments in acoustical engineering, including ratings, specifications and recommended installation methods.

Write for your free copy today—ask for Catalog 62.

See our Catalog in Sweet's Architectural Catalog File.

For more information, turn to Reader Service card, circle No. 341
Control of Air Pollution

Illustrated bulletin, 12 pages, describes the new line of American-Standard electrostatic precipitators for air-pollution problems in industry. Principles of electrostatic operation are described, and all components of the equipment are explained. Several photos of typical applications of the equipment are included. Industrial Div., American-Standard, 8111 Tireman Rd., Detroit 32, Mich.

New Roof Ventilator Reverses Air Flow

Unique "Reversible Roof Ventilator," which can be converted from exhaust to intake at the flick of a switch, is one of several roof ventilators included in new 16-page bulletin. Other types described are two vertical discharge units ("Vertijet" and "Air-jet"), and new low-silhouette "Mushroom Head" unit. Complete details, specifications, dimensions, and performance data are provided. Hartzell Propeller Fan Co., Piqua, Ohio.

Written for Architects

Handbook of Year-Round Air Conditioning, 48 pages, has been prepared especially for architects (at the request of the AIA) by the Producers' Council. Air-conditioning topics considered of greatest interest to architects were incorporated in the booklet, after 75 firms across the country had been contacted. Subjects discussed include architect-client interests, air-conditioning fundamentals, equipment used in modern air conditioning, selection of equipment in relation to building design, factors affecting air-conditioning loads, loads related to glass areas and opaque areas, air distribution for comfort, and sound control. Editor, American Air Facts, American Air Filter Co., Inc., 215 Central Ave., Louisville 8, Ky.

Refrigeration Systems Are Compared, Analyzed

Informative 10-page article entitled "Which Refrigeration System Is Best for Your Job?" has been reprinted. The author is Industrial Refrigeration Consultant for Carrier; his discussion compares major refrigeration systems and gives a typical analysis of installed costs and annual expenses to determine optimum chilling system. Photos and charts accompany the text. Although technical, the article is intended for the experienced layman (building owner or manager) as well as engineer and architect. Carrier Air Conditioning Co., Carrier Parkway, Syracuse, N. Y.

Those Astute'll Know About Butyl

Booklet on butyl rubber and its versatility in building applications is available. Covered in the 8-page booklet are butyl’s use for roofing, roof coating, traffic decking, gasketing, weatherseals and void fillers, floor cushioning, shock- and sound-absorption pads, and water barriers. A
Floor substructure is an engineered grid-support system which offers great strength and rigidity without excessive bulk or weight. Steel stringers are firmly bolted to the patented adjustable “Strato-Tri-Jack,” which utilizes the strength of the triangle to give greater support to the stringer than the conventional type of jack. Strato-Floor, Inc., 795 East 152 St., Cleveland 10, Ohio.

Design Data on Tubing

Handy data item for desk or drafting board is the square cardboard tube which gives pertinent design data on hollow structural tubing. Printed on its sides are tables giving such information as size, weight, area, moment of inertia, section modulus, and radius of gyration for square and rectangular tubing. Other data—lengths, mechanical properties, surface and end finish—are briefly outlined. An accompanying page suggests some of the advantages of hollow structural tubing. National Tube Div., United States Steel Corp., 525 William Penn Place, Pittsburgh 30, Pa.

Colorful Concrete

Catalog, 4 pages, describes “Colorundum,” a ready-to-use powder containing hardeners, coloring, dispersing agents, and binders. Dusted on and troweled into freshly poured concrete, it produces concrete floors that are hard and abrasion-resistant, decorative, and easily maintained. Discussed in catalog are the product’s uses, methods of application, available colors, detailed specifications, and suggested after-treatments. A. C. Horn Companies, Div. Sun Chemical Corp., 2133 85th St., North Bergen, N.J.

Protection of Wood Against Fire and Decay

New 6-page folder discusses “Non-Com” treatment by which lumber and plywood are pressure-impregnated with inorganic chemicals, not only protecting the wood against fire but also against attack by termites and decay. The bulletin shows Non-Com’s economy and minimal maintenance for roof decking, partitions, and wall assemblies; case histories dramatically show the treatment’s permanent advantages. Also cited is the recognition given by insurance, government, and building code officials. Specification and ordering information is provided. Wood Preserving Div., Koppers Co., Inc., 430 7th Ave., Pittsburgh 19, Pa.

DOORS/WINDOWS

Glass-Tinting Material

Cuts Heat, Fade, Glare

New folder on the uses and specification of “Sun-X” glass-tinting material has been made available by the product’s distributor (manufacturer is duPont). Photos show how Sun-X is applied to existing glass areas: the liquid plastic is flowed on (not sprayed or painted) to form a permanent bond with the glass. Diagrams show the extent to which it reduces the transmission of heat, fade, and glare into such buildings as offices, schools, and homes. A list of U.S. dealers is included in the 4-page brochure. Sun-X International, Inc., P.O. Box 6565, Houston 5, Texas.

Continued on page 86
In construction products
Ceco engineering makes the big difference

New 20-story Merchandise Mart Building in Atlanta, Georgia, utilizes Ceco Steeldome construction.
Architect: Edwards & Portman
Engineer: Jack Wilborn
Contractor: Consolidated Realty Investments, Inc.

Typical Steeldome ceiling treatment with acoustical finish on exposed concrete, and acoustical tile in voids.

Dramatic effect is created with "open-grid" used for patio area of newly constructed North Central High School, Miami, Florida.
Architect: Polevitzky, Johnson & Associates
Engineer: H. J. Ross and Associates
Contractor: Thompson & Polizzi Construction Company
You can achieve long spans, heavier loads, unusual ceiling decor when your designs call for...

Ceco Steeldome 2-way concrete joist construction

There's a trend to two-way dome slab construction. From coast to coast you see "waffle-type" exposed ceilings—in commercial buildings, banks, apartments, hospitals, schools, churches, parking garages... in new buildings of every description. Why? Two reasons: (1) two-way dome slab construction permits economical long spans and heavier loads, and (2) the Ceco Steeldome way of forming this construction offers opportunities for unusual interior styling. You can create special ceiling effects at low cost by painting the smooth concrete surfaces, or spraying on acoustical material. You can apply acoustical tile—or design for "open" treatment. There are many possibilities awaiting your skill.

For additional information about Ceco Steeldome construction, as well as one-way construction with flange-forms, adjustables and longforms, ask for your copy of newly published 72-page manual 4002-C, "Monolithic Reinforced Concrete Construction with Ceco Service."

Ceco Steel Products Corporation | 5601 W. 26th Street, Chicago 50, Illinois

textforms • concrete reinforcing • steel joists • curtainwalls, windows, screens, doors
• steel buildings • roofing products • metal lath

For more information, turn to Reader Service card, circle No. 324
New Door Operator Is Electric

New electric automatic door operator has been added to Stanley’s line of pneumatic and hydraulic operators. Features of the “Magic-Door” are presented in 6-page folder. It is compact and economically priced, designed for in-the-header mounting as well as visible mounting, applicable to new or existing doors from 30” to 42” wide. Magic-Door Sales, Dept. PD, Stanley Hardware, Div. of the Stanley Works, 195 Lake St., New Britain, Conn.

On Free Data Card, Circle 212

Single-Glazed Aluminum Windows

Four basic styles of single-glazed aluminum windows have been developed by Fleet for areas and applications where the high-insulating value of its double windows is not required. Units consist of horizontal sliding sash and glass-fiber screening in an extruded-aluminum frame. Styles, as shown on 4-page folder of details, are Twin Slide, Triple Slide, Quad Slide, and Picture Slide. Largest size is 12’-0” x 5’-1”. Fleet of America, Inc., 2015 Walden Ave., Buffalo 25, N.Y.

On Free Data Card, Circle 213

ELECTRICAL EQUIPMENT

Underwater Lighting

New catalog, Section G, includes full data on entire line of cast-bronze, low-voltage, swimming pool lights. The various fixtures are for use in new or existing pools of concrete, gunite, tile, steel, or glass fiber. Also included are fountain, cascade, and pond lights, deck boxes, and fully submersible junction boxes. Specifications and dimensional data are provided. Stonco Electric Products Co., 333 Monroe Ave., Kenilworth, N.J.

On Free Data Card, Circle 214

Portable Lamps for Contract Interiors

Illustrated booklet, 12 pages, shows Nessen portable lamps used in commercial and institutional interiors. A number of examples show how the scope and flexibility of the standard collection can be expanded—to satisfy specific contract lighting requirements, to overcome space restrictions, to provide extra durability, or to meet budget limitations. Photos and drawings depict these “special” lamps in which design and construction have been modified for contract interiors. Nessen Studio Inc., 317 East 34 St., New York 16, N.Y.

On Free Data Card, Circle 215

Football Floodlights

Special manual, 32 pages, contains specifications and installation data on football-field lighting. Included are minimum mounting heights, recommended distances for installation of lighting poles, and suggestions for type and number to suit specific seating capacities. Described and illustrated are all components needed for complete installation. Benjamin Div., Thomas Industries, Inc., 207 East Broadway, Louisville, Ky.

On Free Data Card, Circle 216

Switchgear Savings

Catalog, 16 pages, introduces “revolutionary” low-voltage power switchgear. Completely new from its frame to its ingenious trip device, the “FP” line provides substantial dollar savings in electrical system application. Increased interrupting capacity of 50,000 and 100,000 amp gives benefits of fully rated systems without price penalty; gives low price previously available only in a cascade system, but without the inherent dangers and breaker damage resulting from full
Let the Hillyard "Maintaineer"...an experienced floor specialist...prove to you that the best floor treatments not only give your floors the deepest, most durable beauty—but also prove most economical for your client to maintain.

On TERRAZZO • WOOD • CONCRETE • ASPHALT
VINYL • RUBBER or GYMNASIUM
YOU'LL FINISH AHEAD WITH HILLYARD
ST. JOSEPH, MO.

Write for Hillyard A.I.A. Files...contain draft specifications and treating instructions for each type of flooring.

Branches and Warehouses in Principal Cities

For more information, turn to Reader Service card, circle No. 343
$300

PER SQ. FT.

COST OF NEW HOSPITAL WALL SYSTEM

new construction method utilizes simple system of metal studs, KEYMESH® Paperbacked Lath and spray-on exterior wall; gets 2-hour fire rating.*

*This wall meets the 2-hour fire rating for hospitals.

Architectural and engineering ingenuity create an exciting new development in low-cost wall construction for buildings where fire safety is a prime factor. Schools, hospitals, offices and valuable industrial buildings can all use this method of construction—utilizing Keymesh Paperbacked Lath—profitably. Wall surface is flexible to meet any design requirement: Texture, color and finish. For complete information about applying this simple system to your next job, call your Keystone representative, or write

KEYSTONE STEEL & WIRE COMPANY • Peoria, Illinois

MAKERS OF KEYCORNER • KEYSTRIP • KEYWALL • KEYMESH® AND KEYMESH PAPERBACKED LATH • WELDED WIRE FABRIC • NAILS
Eureka Hospital addition, Eureka, Illinois

Architect: Evan A. Thompson, A.I.A., of Foley / Hackler / Thompson / Lee, Peoria, III.

Plaster Development: L. H. Hobson, Plaster Development Center, Chicago, Ill.

Mechanical Engineer: S. Alan Baird, Peoria, III.

Structural Engineer: Edwin A. Lampitt, Peoria, III.

General Contractor: O. Frank Heinz Construction Co., Inc., Peoria, Illinois

Plastering Contractor: J. J. Kinsella & Son, Peoria, Ill.

(Note: Construction costs in Eureka, Ill., are approximately the same as those in Chicago, a high-cost construction area.)

For more information, turn to Reader Service card, circle No. 349
Inside Window Washing

with the Fleetlite double hung Monumen-tilt!

For conventional and curtain wall high rise buildings, the monumental double hung aluminum window that can be fully screened and still cleaned at floor level from inside the building.

SHORT SPECIFICATIONS

MATERIAL — Extruded Aluminum alloy 6063-T5 with a minimum tensile of 22,000 psi.

DESIGN FEATURES — Sash have glass-frames hinged at the lower rail. For inside cleaning, glass-frames pivot “hopper style” when in the lower position. Continuous head and sill for mullioned units.

HARDWARE — Removable spiral type balances. Glass-frames lock into sash by concealed cam locks. Installation anchors of heavy gauge steel.

SASH DOUBLE WEATHER-STRIPPED with wool pile. Glass-frames continuously weather-stripped to sash.

AIR IN-FILTRATION not to exceed 56 cubic feet per minute per foot of crack length under static air pressure equal to winds of 25 mph velocity.

GLAZING up to and including 1/2" insulating glass.

MAXIMUM SIZE 4'6" x 8'0".

SCREENS — Fiberglass, half or full length available.

FINISH — Lustrous satin-like surface. Anodized if specified.

Complete specifications and full size details available upon request.

For more information, circle No. 336

Simplicity of Design in Luminaires

Brochure, 12 pages, illustrates some of the fluorescent and incandescent luminaires for architectural application produced by Gotham. Each luminaire is the result of intensive optical development and photometric testing; manufacturer’s stated aims are design simplicity and excellence of performance. Among the fixtures shown are recessed downlights, recessed accent lights, and recessed fluorescent troffers. Full dimensional data is given. Gotham Lighting Corp., 37-01 31st St., Long Island City 1, N.Y.

On Free Data Card, Circle 218

Emergency Lighting

Illustrated technical handbook is available on Exide’s line of automatic battery-powered “Lightguard” equipment that provides emergency lighting automatically and instantaneously when normal electrical power fails. The 8-page handbook gives complete descriptions of the equipment. Methods are suggested for providing emergency lighting in two adjacent areas, in stairwells, or in separate rooms by means of a single emergency unit and remotely connected lamps. Also valuable in planning adequate lighting protection is a graph of a typical installation showing the light intensities of a single Lightguard lamp at various dis-

For more information, circle No. 317
An Exciting Glass
for the contemporary church
and cathedral

PAYNE
MODERN
MOSAIC
GLASS
Available
in 100's
of colors

Illustrated
is one of a series
of windows in
the Cathedral of
St. Joseph,
Hartford,
Connecticut.

Eggers & Higgins,
New York, Architects

Each piece
expertly chipped,
creates jewel­
like effect.

Designs submitted—
nationwide service.

The Studios of
George L. PAYNE
15 PRINCE STREET, PATERSON 26, NEW JERSEY
AMERICA ENGLAND FRANCE

FOR MORE INFORMATION, TURN TO READER SERVICE CARD, CIRCLE NO. 388
WAYNE INDOOR SEATING SYSTEMS
work wonders on any school budget

Durable Wayne Model 30 folding bleacher.
Economy seating in the folding bleacher class.

Leader in luxury seating at a popular price.
Wayne Model 50 Rolling Gymstand.

Deluxe Model 70 continuous rolling gymstand.
Finest money can buy!

WAYNE IRON WORKS - WAYNE, PA.
For more information, circle No. 385

Fixture Support Systems
Catalog, 24 pages, describes the "Power-Strut" system of surface raceways and electrical supports. The complete line includes many economical features: a broad range of continuous slot channel that assures perfect alignment and fits any need, heavy or light; an adjustable nut that makes assembly quick and simple; a wide variety of electrical fittings that provide maximum holding strength and are designed to minimize installation time. Catalog illustrates the various fluorescent fixture hanging systems, typical electrical support applications, and all the accessories and fittings. Power-Strut Div. of Van Huffel Products, Inc., Warren, Ohio.

FINISHERS/PROTECTORS

Avoiding Wet Basements
Use of "Jennite J-16" to eliminate wet basement walls is described in new technical bulletin. Applied in conjunction with fabric on the outside of foundations, Jennite forms a tough, waterproof, seamless membrane that will not rot or deteriorate. Curing of the sealed membrane requires 24 hours before backfilling of soil can begin. Maintenance Inc., Wooster, Ohio.

Paint Products and Specs
New catalog on "100% Pure Paints" has been issued. Comprising 50 pages, the catalog gives complete product information, as well as architectural specifications, suggestions for good painting, and a Federal specifications chart. Products are indexed for easy reference by use: interior finishes (flat, semigloss, high, floor finishes) and exterior finishes (wood, metal, masonry, primers, solvents). Staley Paint Manufacturing Co., 5245 Manchester Ave., St. Louis 10, Mo.

All About Epoxies
Those Fabulous Epoxies, an 8-page article, analyzes the epoxy-coating field objectively, pointing out the advantages and disadvantages of epoxies as compared with conventional paints. It explains to the architect what he can expect of epoxies, and where he should (and should not) specify them. The five "Proco" systems for various film thicknesses and desired results are outlined, and sample specifications are provided. Protective Coatings, Inc., 807 North Fremont Ave., Tampa 1, Fla.

SPECIAL EQUIPMENT

Latest Standards for Open-Web Joists
Standard Specifications and Load Tables: Open-Web Steel Joists, 1962 edition, is a 52-page revision and expansion of previous data. During the past year, extensive research has culminated in several important new standards—for H-series high-strength joists based on minimum yield of 50,000 psi; for a new J-series (supplanting the former S-Series) based on a minimum yield strength of 36,000 psi; and for a revised L-series (to be known as LA-series) providing the structural and design advantages of A36 steel. Descriptions and uses are presented, along with comprehensive specifications and load tables. Steel Joist Institute, DuPont Circle Building, 1346 Connecticut Ave., N. Y., Washington 6, D. C.
PROGRESSIVE ARCHITECTURE NEWS REPORT

HOWARD MILLER
BUILT-IN CLOCKS
DESIGNED BY GEORGE NELSON

Each of these six new built-in clocks features distinctive and dimensional hour markers. The Howard Miller built-in clock line offers a wide selection of hour markers and finishes in sizes from 9" to 36" affording maximum design freedom. Custom clocks also manufactured to your specifications.

For descriptive literature, write:
HOWARD MILLER CLOCK CO.
BUILT-IN DIVISION / ZEELAND, MICHIGAN

For more information, turn to Reader Service card, circle No. 357

Your best means of support for data processing equipment is Strong, Rigid FREE-ACCESS ELAFLOR

Ask your computer manufacturer what he thinks—then specify. Write for illustrated literature.

LISKEY ALUMINUM, INC.
Friendship International Airport, Box 506, Glen Burnie, Maryland. Also manufactured in Canada, England and Western Europe. Sales agents and contract installers in principal cities.

For more information, turn to Reader Service card, circle No. 390

Another New Reinhold Book for Architects . . .

LETTERING ON BUILDINGS
By NICOLETE GRAY

This exceptional book deals with lettering as applied to all kinds of buildings. The author, an internationally acknowledged authority on the history of letter forms, clearly shows in this timely and extensive study the relationship between lettering and architecture itself. In this new approach to the subject she examines and illustrates the history and development of letter forms from Roman times to our own day. This leads to an outline of a comprehensive theory of lettering which, as a starting point, illuminates a new way of looking at problems and possibilities for the present and the future. Illustrations throw light on many existing 19th and 20th century examples of all kinds of lettering in situ and demonstrate with the accompanying text how present-day architects and designers can successfully tackle the task of integrating lettering on and in many kinds of buildings.

Order Now from
REINHOLD PUBLISHING CORPORATION
Dept. M-924, 430 Park Avenue, New York 22, N. Y.

192 pages
270 illustrations
5 1/2 x 9
$7.50
Styrofoam simplifies construction of insulated...

- THIN-SHELL ROOFS
- CONCRETE CURTAIN WALLS
- CAVITY WALLS
- Poured concrete and block walls
STYROFOAM®
solves design problems, speeds construction
... and adds permanent insulating values!

Styrofoam brand insulation board provides triple benefits for commercial building construction. Proved by long use, Styrofoam retains superior insulating values year after year. It permits use of new, more efficient techniques and cuts the time and cost of insulated construction.

Styrofoam insulation is both a superior insulating material and a rigid structural material. Styrofoam has a low "K" factor that stays low, because water and water vapor don't penetrate it and build up inside. Buildings stay more uniformly warm (or cool) and dry in any weather, saving on heating and cooling costs.

Styrofoam insulation makes new techniques practical. For example, lightweight, insulated concrete curtain walls can be produced quickly using Styrofoam as the core. Positive keying action to concrete minimizes need for fasteners or ties. The final concrete-insulation-concrete "sandwich" is strong, lightweight and economical.

For thin-shell application, Styrofoam insulation is a valuable construction material and insulation. For form work of all kinds, it serves as form liner, permanent insulation, and vapor barrier applied in a single step! The use of Styrofoam in this way provides a minimum 70% reduction in heat loss.

Insulating plaster base—Styrofoam insulation eliminates the need for furring and lathing when insulating masonry walls. Just adhere Styrofoam to the wall with portland cement mortar, then apply plaster or wallboard, if you wish. The use of Styrofoam as an-insulating plaster base provides 35 to 45% reduction in heat loss.

Cavity-wall buildings stay warm and dry when Styrofoam insulation is in the cavity. Simply adhere it to the outside face of the inner wythe. Because of its high resistance to water vapor, Styrofoam eliminates the need to build in a separate vapor barrier. The addition of Styrofoam to cavity-wall construction provides a 50 to 60% reduction in heat loss.

Low-cost Styrofoam has no food value to attract insects, and will not rot. Installation and handling are quick and easy. For more information on Dow Building Products, write THE DOW CHEMICAL COMPANY, Midland, Mich., Plastics Sales Dept. 1502EB12.

Styrofoam is a registered trademark of The Dow Chemical Company. It is applied only to the homogeneous expanded polystyrene made according to an exclusive Dow process. Styrofoam brand insulation board is available only from Dow and its authorized representatives.

THE DOW CHEMICAL COMPANY
Midland, Michigan

For more information, turn to Reader Service card, circle No. 328
Section AA. At American Concrete Institute in Detroit, warm or cool air flows from supply duct, through Flexicore hollow cell, and is exhausted into room at outside wall.

Section BB. Electrical wiring runs from panel box, through header, then through Flexicore hollow cell to floor outlet. Similar system is provided for telephone.

Section CC. Selected cells are used for electrical, telephone, and for air ducts. Electrical fittings by Conduflor Corp., Cleveland.

First Floor Framing. Corridor floor was cast in place with corridor bearing walls. Flexicore clear-spans from corridor walls to outside walls.

Hollow cells in Flexicore precast, fireproof floors are used for electrical and telephone wiring, and as air ducts for warm air heating, air conditioning and ventilating at American Concrete Institute Headquarters, Detroit.

For more information on this project, ask for Flexicore Facts No. 82. Write The Flexicore Co., Inc., Dayton, Ohio, the Flexicore Manufacturers Association, 297 S. High St., Columbus 15, Ohio or look under “Flexicore” in the white pages of your telephone book.
Ceilings unlimited!

Eastern’s new exposed Modular-Grid suspension system provides new worlds of design opportunities!

Boxed in by ordinary ceiling grid patterns? Eastern’s new Modular-Grid offers virtually limitless pattern specification, providing choice of six flange widths, every half-inch from 1\(\frac{1}{2}\)" to 4", and cross tee attachment at any point along the runner. Different flange widths can be combined within the same module. Partition and mullion design can be carried into the ceiling area, where desired. In addition, Modular-Grid’s double-web design means greater structural support ... and Eastern’s dual cam action end-clips eliminate tools, literally make tee members a snap to install. Detailed specs and prices yours on request; write Eastern today!

See our catalog in Sweets

Eastern Products Corporation, Acoustical Division 1601 Wicomico Street, Baltimore 30, Md.
Here are a few of the many buildings which make imaginative use of Johns-Manville materials for exterior walls. In each case, beauty and efficiency were achieved economically. Not visible in these photographs — but there, all the same — are such important benefits as fast, easy installation and permanence in service.

For more than a century, Johns-Manville research has led in the development of quality building materials. If you are planning a new building . . . modernizing an old building . . . or putting up new additions to an existing building . . . you will find many solid advantages in J-M products.
These modern buildings use one of the following Johns-Manville materials for exterior walls.

J-M TRANSITOP®—a “3-in-1” panel that serves as outside wall, inside wall and insulation. Between facings of asbestos Flexboard® is a rigid, durable core of insulation. Transitop panels are 4 ft. wide by up to 12 ft. long, thicknesses to 2 in.

J-M CORRUGATED TRANSITE®—a corrugated asbestos-cement sheet that has stone-like resistance to fire, weather and wear. It is decorative and requires no painting or similar maintenance. Sheets are 42 in. wide and up to 12 ft. long.

J-M CORRULUX®—a translucent building panel of fiber glass-reinforced plastic. Shatterproof ... either corrugated or flat ... in wide range of colors. Widths up to 42 in., lengths up to 12 ft.—even longer, on special order.

For more information, write to Johns-Manville, Dept. PA-12, Box 158, New York 16, New York. In Canada, address Port Credit, Ont. Offices throughout the world. Cable: Johnmanvil.
PUT THE SPARKLE BACK IN STORES—OFFICES—SCHOOLS WITH NEW WAFFLETEX®

Several years in development . . . now exclusive with Day-Brite! WAFFLETEX outmodes ordinary plastic egg-crate louvers by surpassing them in appearance, lighting efficiency and ease of maintenance. Use new Day-Brite WAFFLETEX whenever you want to breathe new beauty, new sparkle into offices, schools, or stores—while providing the finest in comfort illumination. Available in recessed or surface-mounted units. For complete information, contact your Day-Brite representative listed in the Yellow Pages.

Day-Brite Lighting, Incorporated, 6260 North Broadway, St. Louis, Missouri, and Santa Clara, California. In Canada: Amalgamated Electric Corporation, Ltd., Toronto 6, Ontario.

NATION'S LARGEST MANUFACTURER OF COMMERCIAL AND INDUSTRIAL LIGHTING EQUIPMENT

For more information, turn to Reader Service card, circle No. 396
ALL THE FEATURES OF EGG-CRATE LOUVERS...

PLUS

* NO FLAT, WASHED-OUT LOOK—there's just a hint of sparkle in WAFFLTEX...just enough to bring refreshing new life to monotonously pale ceilings. The aluminum tinting on the bottom edges of WAFFLTEX thin louvers avoids that egg-shell look and gives WAFFLTEX a distinctive modern coloring more in keeping with today's interior decorating trends.

* WAFFLTEX KEEPS FIXTURES CLEAN, too, because the lamps are completely enclosed! No dust accumulates on the lamps. Light can get out but no bugs can get in.

* NEAT, CLEAN APPEARANCE—small, all-over pattern suggests texture subtly without attracting attention.

* MINIMIZES DIRECT GLARE with small dimension louvering. Lamps are well shielded for minimum brightness.

* PRISMATIC CONTROL OF REFLECTED GLARE—thousands of tiny prisms diffuse lamp images and assure comfortable, evenly distributed light.

* FLEXIBILITY OF DESIGN—pattern is non-directional so you can place WAFFLTEX-enclosed fixtures perpendicular to one another without destroying simplicity of appearance.
HOW TO SIMPLIFY INSTALLATION OF PIPE AND CONDUIT

One of the many advantages of designing with Bethlehem open-web steel joists is the ease with which you can install pipe and conduit. As shown above, the open-webs make it so simple to pass through pipe, wires, heating lines—in any direction. And installation of recessed lighting fixtures, plus their wiring, is also simplified.

Steel joists are incombustible, and they can't warp or sag. Termites can't eat them. Bethlehem joists are completely fabricated in the shop, reach the job site ready for immediate placing.

Full details on steel joists, and Slabform, Bethlehem's solid steel centering that can save you money and material, are available at any Bethlehem sales office. We'll be glad to talk over your building plans with you.
An especially fine example of modern commercial architecture, the Libbey-Owens-Ford Building* in Toledo is equipped with a specially planned Johnson Air Conditioning Control System. Within the new glass-clad structure, Johnson thermostats provide personalized comfort control for the occupants of each office.

For centralized supervision of the six central fan air conditioning systems and related equipment, there is a Johnson Control Center in the engineer's office. The panel provides continuous visual indication of fan and pump operations and of air and water temperatures at all key control points in the systems. Selected data are automatically recorded at the center.

Such precise supervision and control assure a consistently ideal thermal environment for business efficiency and make possible operating economies that substantially reduce air conditioning costs.

For 76 years Johnson Pneumatic Control has been first choice among leading buildings of all types and sizes. Next time you have a control problem, ask your local Johnson representative for his recommendations. There is no obligation. Johnson Service Company, Milwaukee 1, Wisconsin. 110 Direct Branch Offices.

*Skidmore, Owings & Merrill, architects, New York; Guy B. Panero, mechanical engineer, New York; George A. Fuller Co., general contractor, New York; Stanley Carter Co., mechanical contractor, Toledo. Top photo by Hedrich-Blessing.
Moisture constantly seeks the fatal point of access into every type of construction. Wasco Flashings bar the way. Today buildings can be permanently protected against water damage... at a cost rarely exceeding five hundredths of one percent of total construction investment... with Wasco Flashing.

Wasco's complete line of flashing materials covers all through-wall and spandrel applications. You may specify from among Wasco's 14 different flashings including copper, fabric, copper-lead, fabric, plastic and aluminum. For exceptional flashing problems you are invited to consult Wasco's engineering staff.

For more information, turn to Reader Service card, circle No. 384
EDITORIAL FEATURES

Cover ROOF PLAN, Protestant Episcopal Cathedral at Monrovia, Liberia (page 116)
Frontispiece GINGER LEAVES (Asarum Caudatum), Portrait of a Garden (page 138)
Photo: Morley Baer

108 FORM IN CHURCHES
109 WHAT IS SIGNIFICANT FORM? by Peter Collins
114 THREE SIGNIFICANT EXAMPLES: Church at Tampere, Finland, Reima Pietila, Architect; Protestant Episcopal Cathedral at Monrovia, Liberia, Arthur Swift and Partners, Architects; University Reformed Church at Ann Arbor, Michigan, Birkerts & Straub, Architects
122 OFFICES NEAR PHILADELPHIA: American Center for Insurance Education, Bryn Mawr, Pennsylvania; Mitchell & Giurgola Associates, Architect; Schulez & Padlasky, Structural Engineers; Fred S. Dubin Associates, Mechanical Engineers
130 SELECTED DETAIL: Wall Detail: American Center for Insurance Education
132 NEW GERMAN TOWN by Jan C. Rowan
138 PORTRAIT OF A GARDEN: RELATED DESIGN FIELDS: Lawrence Halprin & Associates, Landscape Architects
144 NEW FACE ON 14th STREET: Painting Industry Welfare Building, New York, New York; Mayer, Whittlesey & Glass, Architects
146 SOLID ENCLOSURE FOR SECURITIES: Whitehaven Branch, Union Planters National Bank, Whitehaven, Tennessee; A. L. Aydelott & Associates, Architects
152 YALE'S NEW VAULT: MATERIAL/STRUCTURAL ANALYSIS: The Beinecke Rare Book and Manuscript Library, Yale University, New Haven, Connecticut; Skidmore, Owings & Merrill, Architects-Engineers; Paul Weidlinger, Consulting Structural Engineer
160 NOISE REDUCTION PERCENTAGES by Clayford T. Grimm
FORM IN CHURCHES
What Is Significant Form?

BY PETER COLLINS
A widely published critic and Associate Professor of Architecture at McGill University, Montreal, discusses the several ways in which the form of a religious building may be significant. He raises many challenging questions concerning the validity of symbolism, structural expression, and functional planning in the design of churches.

If the term “significant form”—so popular in the jargon of art criticism—means anything in architecture (and there is no guarantee that it does, since buildings, unlike painting and sculpture, are a necessity, and thus derive all their essential significance from the mere fact that they are there), it may presumably mean one of four things. First, it may mean that the form is “expressive” of the structural system and materials used. Second, it may mean that the form is “suggestive” of the activities which go on inside. Third, it may mean that the form “symbolizes” some spiritual value. And last, it may mean that the form “invites attention from a select and initiated group of people.” All these meanings of “significant” are implied in the Oxford Dictionary, and I propose to examine each one of them in turn.

First: church architecture as deriving significance from the expression of structure. This might appear to mean that to satisfy the standards of modern architecture, a church should display its structural surfaces internally, and wherever possible externally, and that the structural system and materials should be exploited to the absolute limits of resistance, as ascertained by calculation. But this is not the case. Perret’s church at Le Raincy fulfills these conditions admirably, yet in the May 1960 issue of the Architectural Review (p. 329) it was described as being drenched in historicism, and “certainly not modern.”

A true example of what orthodox opinion regards as “modern” ecclesiastical architecture, if one can judge from the extent it is publicized, is the chapel at Ronchamp, where thick rubble walls are covered with stucco, and the shape of the vault was, according to Le Corbusier, inspired by a crab shell he picked up on a Long Island beach.

It may even be questioned today whether the “expression of structure” really means, for the practicing architect, even the expression of an actual structure, or whether we are not reverting, so help us, to the old and much derided method of imitating “ideal” structural systems in other materials, like McKim, Mead & White, or, if one prefers it, the ancient Greeks. One needs a keen eye to distinguish which of the walls at Ronchamp is of rubble, and which is a two-inch-thick, sprayed-concrete shell on a reinforced-concrete frame. Similarly, it is not uncommon to see what appear to be “folded plate” roofs constructed of steel trusses, and in one recent example in Montreal (a synagogue), the steelwork supporting the timber “folded plates” was disguised on the outside by false windows that appear to butt against the underside of the “slab.”

This sort of subterfuge stems inevitably from the fact that by “significant” most architects really mean “contemporary,” and by “contemporary” they really mean, as regards structural fashions, the forms which engineers like Nervi are currently constructing. But Nervi and his colleagues are mainly concerned with spans of the order of two or three hundred feet, it not more, whereas, except in the most unusual circumstances (such as the new subterranean basilica at Lourdes), churches rarely need larger spans than St. Peter’s, Rome. As a result, if “contemporary” structural virtuosity is to be exploited aesthetically, it must be by imitation, and “significant form” then becomes formalism, which is of no real significance at all. Probably the only way today’s church architects have any chance of emulating medieval feats of structural daring, without sacrificing their
legitimate desire to do something genuinely contemporary, is by using medieval materials in new ways, as by employing laminated wood. There is clearly no structural virtuosity displayed in the roof at Ronchamp, even though Le Corbusier wrote that "the dear faithful concrete was shaped perhaps with temerity but certainly with courage"; for as Nervi has pointed out, the essence of tectonic virtuosity is correctness and economy. Genuine contemporary architecture not only uses every technological advantage appropriate to the circumstances, but excludes both wasteful structural systems and systems more appropriate to structures of greater span. The concrete roof at Ronchamp is certainly daring, but so is the show at the Folies Bergère.

The second way by which churches can have "significant form" is when their exterior compositions suggest the ceremonies which go on inside. This type of expression, unlike the last, probably had little meaning for medieval architects (who even seem to have been relatively indifferent toward the artistic unity of their church exteriors, as compared with the interior spaces), but it is still very much part of the philosophy of modern design. Some theorists, such as Sir John Summerson, have even gone so far as to suggest that the expression of new planning arrangements is the very essence of modern architecture, and that the revolutionary changes which have occurred in architecture since 1920 derive essentially from the changes which have occurred in modern planning needs.

The dilemma which this philosophy presents to the contemporary church architect is twofold. Firstly, since no structural partitions are needed in churches, and their planning...
requirements are imprecise, it is impossible to draw up any program which will give an unequivocal lead as to the volumes and proportions needed. A number of textbooks have been written, of course, that explain the various regulations laid down by Canon Law, but these concern more properly what is called “church furniture,” and have little decisive influence on tectonic compositions. The second aspect of the dilemma is that the function of a church is essentially traditional, whereas the “functionalist” theory is only valid on the assumption that the planning requirements of all buildings have radically changed within recent years. How then can a church avoid being “drenched in historicism,” or be unequivocally modern, when nave and chancel, altar and congregation, have been in the same relative position for fourteen centuries, and the ceremonies performed there are, from the very nature of religious dogmas, always the same?

The architect who wishes not only to be contemporary, but to demonstrate that he is a member-in-good-standing of the avant-garde, has two choices. Either he can make arbitrary changes in the traditional arrangement, by deliberately disposing the congregation and altar asymmetrically, or placing both in positions and spaces they have never, for good, practical reasons, occupied before. Or he can adopt a Revivalist attitude comparable to that in vogue in the early 19th Century, and revert to a more primitive form of plan.

This latter approach is the one most usually adopted because it is supported by many priests and laymen who believe in a return to a more primitive liturgical arrangement so as to integrate public worship more fully into the mystical life of the Church. Architecturally, it is quite valid, and in several instances (among the most notable being the recent competition for Liverpool Cathedral), has provided the opportunity for some novel compositions. It does not, however, solve the problem of how to create “significant form” for congregations that still prefer a way of worship they are accustomed to, and which is in fact “contemporary” in the strict, evolutionary sense of the term.

A third sense in which the forms of church architecture can become “significant” is by symbolically expressing some spiritual value. Symbolism is obviously an important feature in religious painting and sculpture; indeed, according to Susanne Langer, symbolism is the key to all philosophy and all the arts. Moreover, since the iconological researches of Erwin Panofsky have brought to light so many examples of symbolism hitherto unrecorded in art history, it may be thought that Mrs. Langer’s theory is fully substantiated, and that symbolism is a key to architecture as well. Yet nothing could be further from the truth, for it is a fatal mistake to copy the Renaissance error of treating painting, sculpture, and architecture as interchangeable disciplines with common values, or to assume that one can evolve a universal and all-inclusive “theory of art.”

Symbolic compositions have no valid architectural significance for the simple reason that they are meaningless in terms of the phenomenological appreciation of space. Symbolic plans are of course of very great antiquity, although the most obvious (namely the cruciform plan) was only used in the larger medieval churches, and probably originated, not in places of worship, but in sepulchral chapels, such as the tomb of Galla Placidia at Ravenna, or the Church of the Holy Apostles in...
Madison: a church roof may express "the attitude of hands in prayer."

New Orleans: "a tower...as everyone knows, 'points a finger to God.'"

Stamford: making the building into "a symbolic abstract ornament in itself."
Constantinople (on which St. Mark's, Venice, was based). Symbolic planning was popular in advanced intellectual circles during the Renaissance, when Platonic philosophers and amateur theorists like Alberti fostered the adoption of "ideal shapes," such as circles and spheres, irrespective of the function the buildings were to serve. But the real popularity of such plans occurred after the introduction of *Prix de Rome* competitions, when even the most obtuse members of a jury could savor the significance of a symbolic design. McGill University recently acquired—as a curiosity—a drawing for "A Temple for the Holy Trinity," which is almost certainly a student project for the French Academy school's design program of January 1783, and in which three porches are arranged equilaterally around a central rotunda in the most approved BoulleÂ§esque manner. Two years ago, one of the thesis designs submitted at McGill was for a star-shaped synagogue planned on the basis of a "shield of David." *Plus ca change, plus c'est la mÊme chose.*

Symbolic detailing, like cruciform planning, is also of very great antiquity, but less of a tradition than might be supposed. During the initial era of persecution, it was not uncommon for Christians to adorn the subterranean quarries, in which they secretly worshipped, with crudely drawn pictorial symbols; but once church architecture began to flourish, isolated symbols vanished, and in no period before our own would it have been thought an act of creative genius simply to scrawl "Mary" on a sheet of glass. During the Middle Ages, and after the Renaissance, symbolic ornament was rare, if by this term we exclude wall-painting, statuary, and colored glass. In the Gothic period, detailing consisted either of moldings or (in very lavish churches) carved enrichments of more or less conventionalized natural forms. In the post-Renaissance period, symbolic ornament was rarely feasible except when using the Doric Order (i.e., on the metopes), and this was seldom employed because of the difficulty of achieving an orderly arrangement of triglyphs when turning corners, or when using double columns. The one symbol most sedulously avoided by the architects of all periods before 1800 was the cross, which was considered both too sacred and too obvious to be proliferated over the surfaces of walls. Today, the cross is the only decorative motif which architects ever adopt (probably because it can be drawn with a tee-square) and is, as they say, a "must" in patterned brickwork or precast concrete screens. The most valid reproach one can make concerning Notre Dame du Raincy is that instead of emulating the sophisticated abstractions of medieval tracery, Perret followed Early Christian precedents by incorporating cruciform elements in his *claustra*, and even made cruciform assemblages of these elements within the over-all pattern of his translucent walls.

The only symbolic alternative to detailing is to make the composition of the building into some sort of a symbolic abstract ornament in itself. "Abstract Art," wrote Le Corbusier, "which rightly nourishes so many passions in these days, is the *raison d'Être* of Ronchamp, the language of architecture, the compass needle pointing to that space which is beyond written description." Such a justification is intellectually unchallengeable, for as Paul Rudolph pointed out: "The important thing about Ronchamp is that it speaks to many kinds of people, as a chapel should." In other words, it says everything to everybody, and anything to anybody, and as one character said to Alice in Wonderland, "... means exactly what I want it to mean, neither more nor less." A church roof may express, as Frank Lloyd Wright said of one of his last churches, "the attitude of the hands in prayer"; and if an architect cannot think of a symbolic roof-shape, he can always introduce a tower, which, as everyone knows, "points a finger to God." The Toronto City Hall points two fingers to God.

My own view as regards all this is that if the term "significant form" means anything at all in contemporary architecture, it means that the forms "invite attention from a select and initiated group of people," namely the editors of architectural magazines. In this sense, "significant form" for architects means the same thing as "style" for the readers of *The Motorist or Vogue*: an arbitrary shape designed by a professional stylist as the accepted image of how a thing ought to look next year. "Significant form" in house design corresponds to what the real-estate salesman calls "The House of the Future," just as "significant form" in dress design means simply "next year's dress." There is no doubt that one has to be a genius to be able to forecast what next year's dresses will look like; but everybody knows what next year's chasubles or copes will look like, because the shapes have remained virtually unchanged for a millennium.

Perhaps the only really profound remark which Le Corbusier ever made about another architect's work was his comment with respect to Notre Dame du Raincy that the section was not simply the section through a church, "but the section through any industrial or sacred hall where economy has been pushed to its limits." In fact, the only way architectural form can ever be significant is by being economical; not in the sense of cheap, but in the sense used by the poet Racine when he said that "style is thought expressed with the minimum of words." "Architecture," wrote the French Academy Professor of Architecture two centuries ago, as architecture was dying, "is like literature: the simple style is preferable to an inflated style. Architecture is like poetry: by the beauty of its proportions, and the choice of its arrangement, it is sufficient unto itself."

CREDITS *Page 108*: Steeple, Grace Church, New York, James Reavick, Architect (Photo: Robert Paster); *Page 110*: Church of Notre Dame, Le Raincy, France, Auguste Perret, Architect (Photo: Yves Guilmault); Entry in the competition for the Roman Catholic Cathedral, Liverpool, England, by Clive Entwistle (not the winning design); *Page 113*: Meeting House of the First Unitarian Society of Madison, Wisconsin, Frank Lloyd Wright, Architect (Photo: Ezra Stoller); St. Frances Cabrini Roman Catholic Church, New Orleans, Louisiana, under construction, Curtis & Davis, Architects (Photo of model: Frank Lotz Miller); First Presbyterian Church, Stamford, Connecticut, Harrison & Abramovitz and Sherwood, Mills & Smith, Architects (Photo: Joseph Molitor).
Three Significant Examples

In the foregoing discussion, Peter Collins has concluded that architectural form is significant if it "invites the attention" of the editors of architectural journals.

We present here a few projects that invited—and held—our attention; we leave it to the reader to decide whether they are significant for more than mere stylishness.
Church at Tampere, Finland

Architect Reima Pietila's novel yet dignified design won the competition for the design of a church for a new quarter of Finland's second largest city, Tampere, located in the interior of the country northwest of Helsinki, has a population of about 120,000; it has been growing steadily in recent years due to the expansion of its textile and metallurgical industries.

The major elements of the structure are the concrete bearing walls, which are divided into short, curving segments. They will be constructed of poured-in-place concrete, using sliding forms. The narrow separations between these wall segments will be filled in with compositions of wood, concrete, copper, and glass. An open belfry is set on the flat copper roof above the main entrance.

The irregular form of the church proper is echoed in the auxiliary spaces. A sacristy, a chapel, schoolrooms, and meeting rooms are housed in low-roofed elements clustered about the base of the 70-ft-high concrete walls. The floors of these rooms vary slightly in elevation, following the gentle slopes downward from the church.

The guiding idea of the design was to conceive the building as an organic whole, as one conceives a piece of sculpture. The architect concentrated on expressing both the nature of the construction material and the spiritual character appropriate to the religious center of a neighborhood.
Protestant Episcopal Cathedral
at Monrovia, Liberia

Architects Arthur Swift and Partners of London drew their inspiration for this design from a statement by American engineer Mario Salvadori, which characterizes the ideal church as "a jewel which represents the integration of feelings, of form, of structure, of all that makes for a complete expression of religious feelings in the materials of architecture."

A strong practical factor in determining the form of the building was the limited size of the downtown site—82 ft x 132 ft. To meet the program requirements, the architects planned space for the congregation on two levels: a tiered seating area for the 800 people expected at ordinary services and an area below it to accommodate 200 more on special occasions. The location of the altar between the two levels of seating, at the geometrical focus of the plan, tends to create a feeling of unity in the space.

The entrance from the main street will be by a flight of stairs passing over a reflecting pool. The lower level, reached by stairs from the secondary street, contains a chapel, a baptistry, classrooms, and rooms for the clergy.

The cathedral will be constructed of poured-in-place reinforced concrete and will be surfaced with mosaic tile on the exterior and continuous bas-reliefs on the interior. The spire, which will extend up from the peak of the building and down inside to a point above the altar, will be constructed of metal with an infilling of colored glass. It will provide the primary source of light for the interior.
University Reformed Church at Ann Arbor, Michigan

For a location on the periphery of the University of Michigan campus, Birkerts & Straub have designed a church of classical serenity. The site runs through a block occupied mainly by large university buildings, one end facing toward the center of the campus and the other adjoining a residential neighborhood; major streets run along both ends.

The entire plan will be symmetrical about the axis of a street leading to the church from the university. The tall form of the church proper will be located at the head of this street and the lower Sunday school wings will occupy the other end of the site.

Those who approach from the campus will walk around the body of the church to an entrance foyer located between the two main sections of the building. Those who come from the nearby residential area or from parking areas at that end of the site will reach the entrance through a court extending along the main axis between the two wings of the Sunday school.

The program required church seating for 500 worshipers, a social hall, and 16 rooms for classes and meetings. Since a large part of these facilities were required for university students, who contribute relatively little financially, the church had to be economical to build and suitable for construction in stages.

The church proper will be built in the first stage of development, with the social hall beneath it used temporarily for classrooms. This block will be constructed entirely of poured-in-place concrete. The structure will be supported by a series of concrete bents running the length of the church, rising in steps from the bearing walls along either side to a high point along the central axis.

Concrete fins between them will act as stiffeners to prevent horizontal deflection. The entire system will actually function organically as a structural honeycomb. There will be no windows in the church except for thin vertical openings, filled with colored glass, in the front wall. (The wider openings at the corners are for required fire-exits.) Skylights between the fins will be composed of a plastic enclosure on the outside and decorative glass on the underside. Artificial lighting will be located between these two planes. The exterior will have an exposed concrete surface with controlled aggregate; the interior will be of whitewashed concrete.

The Sunday school will include two floors, similar in layout. It will have bearing walls of concrete block. The exterior will be faced with brick, with contrasting precast concrete fascia and window trim that will recall the forms of the concrete fins on the church proper. The interior will be of exposed brick and concrete block.
There are entrances from major streets at both ends of the church. Approaching from the town, one enters through an axial court between the wings of the Sunday school (photo on facing page); coming from the university, one faces the tall back wall of the sanctuary (right), then follows shaded walks to the entrance doors (below).
Offices Near Philadelphia
The designers of this building hope that its “appearance and substance stem from the observance of the order of the building’s operation, from the architectural identity of the component parts expressed also in their hierarchy, and from the appropriate employment of precast-concrete technology.”

The building houses offices of several organizations, whose function is to administer, promote, and regulate educational programs and professional societies of the life and casualty insurance industry. The four floors of the two-story wings were apportioned among the different organizations. The wings are terminated by service spaces and stair towers, around which future expansion can take place. The center core contains spaces that are used jointly, and serves as both a link and a separator between the organizations.

The 10-acre site is at the edge of a high-income residential area and is suburban in character. It boasts rich vegetation dominated by a large linden tree. The building has been placed along a ridge that dominates the site, and positioned so as to eliminate the need for tree demolition. It thus commands extensive views, has a natural rise to the entrance level, and is also related to the topographical mark represented by the linden tree.

Differences between the nature of an office area, which requires spaces of standard dimensions, and the nature of other areas, suggested different design and construction approaches. This has been clearly expressed in the appearance of the building.

The structural system is an integration of cast-in-place-, precast-, and precast/pretensioned-concrete components; cellular-steel floor panels; and masonry cavity walls. A small-scale process of construc-
tion was used for the core elements and for the end towers, where manual fitting operations were required; there, concrete floor slabs bear on brick-masonry cavity walls. Office areas, on the other hand, which are column-free loft spaces, have walls of precast-concrete structural units which also serve as window frames. These were designed to provide rigidity with a minimum of weight for ease of forming, transportation, and erection. Continuity was achieved by poured-concrete filler and dowels extending between the upper halves of the 10' x 25' framing units. To insure proper weathering, flat surfaces were avoided. In addition to carrying precast-pretensioned floor beams, the unit frames contain gray glass held in place by metal channels sealed with a polysulphide compound.

Second floor and roof construction in office wings is cellular-steel decking placed longitudinally. This structural system was chosen because it could easily be integrated with the heating and air conditioning and also offered advantages in terms of erection, trade use, and maintenance. Further, due to their loftlike character, the office areas were appropriate for an industrialized-type construction resulting in the achievement of an architectural character through expression of the basic members of construction.

Although there were no departures from standard erection procedures, the complementary practices produced a balanced timing of the differing processes of construction. Most of the materials used were traditional ones, but were applied in accordance with advanced technology. Precast structural/window units have hard-smooth surfaces made possible by the use of steel forms and intense vibration of the mix. Majority of exposed cast-in-place, reinforced-concrete elements on both the exterior and the interior, including bottoms of floor slabs, have bush-hammered surfaces which weather evenly and reveal the aggregate character of the material.

The cellular panels of the second floor and roof, the hollow-insulated masonry columns on the outside of the structure, and the horizontal masonry chases running around the building, were basic building units which readily served as means of transporting air to various sections of the building. The cellular decking provides direct conveyance of air without need of
The several construction systems employed have been expressed on both the exterior and the interior. Views of the main entrance (left) and reception area (below) show load-bearing cavity walls of dark red brick and bush-hammering of most areas of cast-in-place concrete components. Precast-concrete wall panels of the office wings (left and facing page) were cast in metal forms and have a smooth finish. Acoustically treated luminous ceilings and movable metal partitions with acoustical filters are used in the offices. Window glass is tinted solar gray. Metal window mullions are painted gray, charcoal gray, and blue. Exterior metal cover plates for the vertical air ducts are also painted blue.
1 Air-distribution vertical duct
2 Precast-concrete unit 10' x 25'
3 Air-distribution horizontal duct
4 Air return
5 Air-return shaft
6 Fresh-air intake
7 To air filters
ductwork above the suspended ceiling. Ductwork is, however, installed in the masonry columns and chases. The advantage of using it in the latter is that both of these architectural/structural features are arranged on the modular scheme determined by the office layout. The location of air-supply outlets, in order to complement the flexibility of the modular scheme, should also be located on a similar modular pattern. Consequently, the fusion of these two concepts lends itself well to the delivery of supply air to rooms via these masonry chases.

To reduce the noise level produced by this high-velocity air system, the main supply-fan cooling chamber and heater chamber are located in the basement in a reinforced, insulated, concrete room. Major equipment consists of a direct gas-fired heater, a 76-ton direct expansion refrigeration unit, and an evaporative condenser located on the roof and concealed by an open-brick screen.

In the basement, the high-velocity hot- and cold-air ducts run exposed at the ceiling to blender boxes, also exposed in the ceiling. Separate blender boxes serve the various zones. Single ducts run from blender boxes through masonry columns and chases, and furnish air to rooms through induction-type floor diffusers. These air-to-air induction diffusers use the primary air supply to pull a predetermined percentage of ambient room air into the diffuser, to be mixed with the primary supply and introduced into the room at a desirable temperature and quantity. By using this type of diffuser, smaller quantities of high-temperature air (or cold air on the cooling cycle) are handled by the ductwork system; this results in smaller duct sizes and facilitates their integration with the architectural design.

A suspended louver ceiling is used to light the main office areas; however, no ductwork runs above this ceiling. Return air rises through the louvers, picking up a large portion of the heat from the lights, and passes through openings in the cellular floor. It is then conveyed by the cellular floor to the masonry column shafts. A portion of the air in these shafts goes to the main return-air masonry trench under the basement floor, which brings the air back to the main circulating fan. Excess air is exhausted directly from the shafts at roof level. Fresh air is also brought in at roof level through one masonry shaft which conducts the air to the main supply fan in the basement.

The cost of the building was $21.20 per sq ft for a total bid of $579,568.
AMERICAN CENTER FOR INSURANCE EDUCATION: Bryn Mawr, Pa.
MITCHELL & GIURGOLA ASSOCIATES, Architect

SELECTED DETAIL
WALL SECTION
NEW GERMAN TOWN
BY JAN C. ROWAN

Although much has been written about several "new towns," especially the post-war British satellite towns, there exists one "new town" that seems to have been ignored. In this article, P/A's Managing Editor reports on his recent visit to the West German town of Wolfsburg.

In the northern part of Germany, in the State of Lower Saxon, lies a rapidly growing manufacturing town called Wolfsburg. Its population today is 65,000. It has only one industry—a huge factory producing Volkswagen cars. It was founded 23 years ago, but most of the buildings were constructed within the last ten years. It is not an outgrowth of a larger town, but was built as a separate entity away from metropolitan areas. It is the only independent town planned and built in the 20th Century—and therefore the only truly "new town"—in West Germany.

The beginnings of the town can be traced to Adolf Hitler's craze for motorcars—one of his less harmful obsessions. In 1933, he commissioned Ferdinand Porsche, the automotive genius, to create the impossible—a "people's car" that would have a cruising speed of 60 mph (and thus be suitable for the new "Führer's motorways"), that would consume not more than one gallon of gasoline every 40 miles, that would seat four to five people ("for we cannot part children from their parents"), that would have an air-cooled system ("for not every country doctor owns a garage"), and that would cost not more than an average motorcycle. Impossible as the assignment was, Porsche submitted one year later a sketch of a car that in all essentials resembled the future Volkswagen. In spite of the industry's skepticism about the economic feasibility of the car, the project was pushed further by Porsche's dogged determination to achieve the impossible and by Hitler's equally dogged propaganda about a car in every German pot. In 1936, Porsche delivered the first prototypes. In 1937, Hitler gave orders to start planning a new car factory. It was to be financed by the German Labor Front, and the newly formed "Strength-through-Joy" automobile society began selling "saving coupons" to prospective purchasers.

Since Hitler's plans envisioned an ultimate production goal of 1,000,000 cars a year, both the size of the factory and the number of workers needed to produce the cars had to be considerable. In the congested industrial areas of Germany, there was not enough room for an enterprise that required some 15,000 acres of land for extensive manufacturing facilities...
and for living accommodations for thousands of workers and their families.

The site finally chosen was in Lower Saxony: a relatively sparsely populated, partly agricultural and partly wooded flatland, nearly 200 miles east of the iron and coal district of the Ruhr. Some 150 people living in a small hamlet, and a count living in an ancient castle named Wolfsburg, were the only residents in the area. There were within the site, however, an important canal, a railroad, and an existing network of roads; and a proposed "autobahn" was to run nearby. Moreover, the site was fairly centrally located within the prewar boundaries, just north of densely populated Central Germany, and there was a desire to industrialize this underdeveloped northern hinterland.

Peter Koller, a young planner (30 years old at the time) who was chosen to design the new town, also defended the isolation of the site by pointing out that one can build a new town only where a town does not already exist and where no nearby town would interfere with its growth. Within a few months, he jelled the master plan. In May 1938, the foundations for the factory were laid and the new town began.

In 1940, the factory started production—but of military vehicles instead of "people's cars." In 1941, after only a small portion of Koller's plan was executed, construction of permanent buildings was stopped.

Thus at the end of World War II, the "new town" consisted of a bombed-out factory, a small area built in 1938-41, and a group of barracks erected for slave labor during the war. It also found itself eight miles from a new border between the two Germanys. Since none of the Allies were interested either in the ruined factory or in Porsche's automotive concept, the sudden popularity of the Volkswagen car and the tremendous growth of the company (today, production is fourth-largest in the world: over 1,000,000 cars a year) makes a fascinating success story. But the town itself is also of considerable interest, as it exhibits all the symptoms of both the planned and the unplanned city-scape.

Koller's 1938 master plan (facing page) was for a town of 90,000 inhabitants. The basic concept consisted of creating a fascist acropolis on the highest point in the landscape—a centrally located hill and thus a natural topographical mark. He proposed to build there the Nazi party buildings, a theater, a great hall, and a palace of culture. Terraces were to lead down to the parade grounds (a monumental street 300 feet wide) and to the town hall. Other major streets followed the contours in a U-shaped pattern and embraced the strength-through-joy acropolis. Built-up areas were to be developed in a conventional city-block pattern with uniform-height, similar-looking, neo-classic, brick structures forming street facades. A considerable amount of wooded land, however, was to be devoted to parks and recreation areas.

The 1938 plan was, therefore, a strange mixture of political and urban philosophies. It envisioned a barrack-like, classless, green city dominated by a monumental pseudocivic center. Although the town was to supply every German with a car, its major streets were designed more for viewing the party headquarters from every angle than for dense and fast auto traffic. Nor was the separation of traffic and pedestrians considered in the layout of both the major and minor streets.

The plan, however, did have a central idea. In spite of the inevitable visual contrast with the mile-long "Chinese wall" of the factory north of the canal-railroad lines, the group of major buildings on the crest would have served as a powerful fulcrum giving identity and cohesion to the urban ensemble.

The postwar decade (1945-55) was a period of uncertainty. The potential growth of the town, now named Wolfsburg, was underestimated, and the master plan was revised twice: first for a city of 35,000, then for a city of 65,000. In the meantime, the town grew faster than anticipated. It was during this period that much construction unrelated to any definite urban concept took place.

In 1955, Koller was called back and prepared the final master plan. Events somehow caught up with the original dimensional concept, and the final plan resembles the first one in the ultimate number of inhabitants considered as the increasing population to this size, the existing maximum desirable, i.e., 90,000. By limiting the "green city" concept could be preserved. Except for this, the planning approach was changed considerably.

The dominating cluster of civic buildings on the hill and the concentric street system were abandoned; instead, the town hall and a community building were placed around a plaza on the "main street," a commercial strip that developed during the hectic, postwar growth and where all the principal stores are located (photos this page). The major streets follow the old layout only where topography justified it; otherwise they were repositioned to suit the needs of fast auto traffic between the various parts of town and were treated mostly as limited-access parkways. Minor streets branch off from
Typical aerial view (above) shows parkways and residential neighborhoods surrounded by preserved woods; center of town and older sections are to the right; factory is at top of photo. Closer view (below) shows character of a new neighborhood and the hospital placed at highest point in the landscape; “main street” is at top of photo.
Mostly low-rise, with some high-rise apartment houses. In most cases, an attempt has been made to separate pedestrians from autos and to create continuous greenways within each neighborhood. Extensive efforts have been made to separate pedestrians from autos and to create continuous greenways within each neighborhood. Extensive parks, mostly preserved woods, flank the parkways and meander between the neighborhoods.

Therefore, in its latest phase, Wolfsburg, developed in a pattern considered ideal by current urban design standards: a spread-out parkland crisscrossed by parkways and dotted by islands of loosely built, garden-like residential communities. Now that 75 per cent of the town has been completed, one can sense already the visual and social results brought about by this design approach.

According to Koller, the decisive point of the new plan was the "omission of the crest with its party buildings, which were to overlook, imperialistically, the town." This is true. But the decision for the omission seems to have been prompted more by the new political climate than by a strong urban concept.

In Wolfsburg, as well as in other German cities, most of the people making major decisions today were reared in the Bismarck-Hitler tradition of a socially oriented but regimented society with strong overtones of monumental bureaucracy. This tradition was reflected in a tendency toward pompous classicism. In the postwar denazification ("let's be democratic") period, the old values were eagerly discarded. In terms of political philosophy, this is all for the good. But is it all for the good in terms of urban planning and architecture?

Berlin, for instance, used to be a city with character. It was not a friendly city, but its wide, symmetrical, uniformly built, monumental avenues, radiating from equally symmetrical and monumental circles, gave it a strong urban skeleton and created a rigid pomposity that was typical of prewar Berlin. Today this pattern is being broken up. New superhighways fight with old avenues, and the old avenues themselves are being destroyed by new buildings that seem intent on negating as much as possible the formality of the original concept (photo right, above). From an aesthetic point of view, the destruction of an existing urban structure could be justified only if the new structure replacing the old one were not only more desirable, but also at least equally positive. This, however, does not seem to be the case in Berlin, or in other German cities including Wolfsburg; nor is it the case in numerous other towns being rebuilt throughout the world.

The most prominent landmark in Wolfsburg today is the factory, now considerably expanded; its new 14-story administration building, crested by a neon sign, dominates the landscape both day and night (photo page 132). The old castle and hamlet are engulfed by and unrelated to the urban spread that surrounds them. The "main street," with its extreme width, open ends, and the lack of any consistent architectural idea, is a sort of elongated shopping center with off-street parking (photos page 135). The central topographical swell, now topped by a spread-out hospital—a building with a social but not visual significance—has lost its value as an urban fulcrum (photos at left), and the new civic center, now thinned out and located on the "main street," is not a significant enough substitute (photo page 135). This leaves only the residential parklands—these airy, sunny, and verdant neighborhoods.

Thus Wolfsburg is a city without true urbanity, without exterior rooms so to speak. It is, one might say, a suburb that has no city—a classless community of middle-class citizens devoted to the ideals of mass industrial output and mass fresh-air life.

Statistics confirm this: Wolfsburg has higher wages and a greater number of cars per capita than other towns in Germany; it also has the greatest number of births and the greatest number of children. Wolfsburg, therefore, is a healthy, booming, well-to-do town; but it is also a town where the major daytime recreation is a stroll in the woods, and statistics would indicate its major night-time recreation.

Although a considerable amount of cultural activity, such as art shows and symphony concerts, is imported into Wolfsburg, a question seems to pose itself: in the days to come, will Wolfsburg ever export some other contribution to civilization besides its excellent cars. The same question could be asked of other cities throughout the world, including those in the U.S.A., whose urban character results from a philosophy that places economic wealth, automobile traffic, and verdant spaces as ingredients to be most valued in life.

Therefore, those whose ideal of urban life is antiurban would find Wolfsburg to be a most pleasant town in which to live. But those who feel that an urban environment should be truly urban would find Wolfsburg to be hardly a city at all; and they would go back home with another strong case of "new town blues."
Portrait of a Garden

Several years ago Lawrence Halprin and Associates designed a garden for photographer Morley Baer in Berkeley, California. The planting is now settled in and photographer Baer has made a series of pictures that give a sense of mood and show the poetic images that landscape architect Halprin feels gardens should generate. The photographs give the overall feeling of the garden, and then focus on intimate, small-scale, atmospheric details—the things a person feels and sees as he walks around in a garden. P/A presents this photographic essay by the garden’s owner along with a verbal description by the designer.

The garden is in Greenwood Common, a development we designed which has 12 small properties surrounding a central green. A part of each property was taken off to make up the common, which is kept for children's play and general openness. Each property has its own small garden; the Baers' garden is at the end, among some tall, 75-year-old pines, and looks out toward the view of San Francisco.
We designed the carport as a gateway — not only as a shelter for automobiles. After the openness of the common, this closes you in — a shaft of sunlight comes down only between the canopy and the fence that secludes the garden.

You walk down under a covered passageway to the front door through a small entrance court that is shaded and mysterious.

The floor is paved with gravels and small-leaved ferns and azaleas, and is canopied overhead with the dappled shade of leaves.
Inside the garden the scale changes; part of it explodes out toward the great view of San Francisco and the Bay...

...but part of it is very closed—
toward the back are the great pine trees.
As a person walks around in the garden, he sees and touches small-scale, intimate details. (1) White azaleas, strawberry leaves, and dew-covered ginger leaves (Asarum caudatum) crop out of the brown tanbark and arch over the redwood. (2) Spikey-leaved Liriope graminifolia light their battle of spears over the redwood planting beds. Rocks from the beaches and delicate, found objects are placed on the brick in the court to bring a sense of other worlds into the garden. (3) An Asparagus fern (Asparagus plumosus) resembling a water plant has an affinity with a seawashed stone. (4) An evergreen California live oak (Quercus agrifolia) shelters a transparent bird bath and a bonsai Japanese split-leaf red maple about 30-years old. (5) In the springtime, under the great pine trees, the hanging umbrellas of cherry blossoms are not only a visual but an olfactory delight. Flowering cherry (Prunus Akebono) blossoms are pale pink fading to white; beneath them, small-leaved cyclamen with white flowers arch out toward the light. (6) Next to the house, a covered trellis makes a transition with its white wisteria, which drapes over the 2 x 6’s darkened by the wind. (7) The garden is paved in red brick laid in sand, and like a rug in the middle of it, Irish Moss carpets the center. A small gnarled pine was planted here to echo the tall, old ones and to bring them down to garden scale.
A single narrow building in a row of shabby discount houses on a deteriorating commercial street has been thoroughly remodeled to reflect the architects' belief that "the first function of every urban building is to play a constructive role in the city."

Behind its new face, the building houses organizations sponsored jointly by the painting industry and the painters' unions. The first floor is devoted to a dental clinic and the upper floors to office space. The rebuilt interior includes new first and mezzanine floors of flat slab constructions; existing wood framing was retained for the upper floors.

Before remodeling, the building looked exactly like its neighbor to the west (to the left in photos). The new south façade consists of a curtain wall of bronze with gray glass windows and an outer structure, entirely of bronze, supporting sunshades and catwalks. Circular windows of red glass and panels of Verde Antique marble, exposed on both sides, are incorporated in the first floor wall.

The frame of the inner wall is made up of extruded sections; the outer members are formed from bronze sheet and reinforced with steel. All bronze has been given a medium statuary finish with a clear lacquer protective film, which is expected to last for years if treated periodically with lemon oil.

The design of this curtain wall is related to the style of the old cast-iron buildings of lower Manhattan, some of which face it across the street. It is the architects' hope that, by recalling their qualities, they can stimulate greater respect for these older neighbors.
SOLID ENCLOSURE FOR SECURITIES

WHITEHAVEN BRANCH, UNION PLANTERS NATIONAL BANK • WHITEHAVEN, TENNESSEE • A. L. AYDELOTT & ASSOCIATES, ARCHITECTS

The program for this small branch bank, located in a shopping center, called for the usual banking facilities and for access on all sides; this latter requirement ultimately determined the design of the formal, rectangular building. The bank has a steel-framed structure with brick panels and with masonry grilles that partially enclose planting areas (facing page, right) at the main entry. By turning against the current trend of glass-walled banks and presenting a solid enclosure, the building achieves a physical expression of the true business of banking—the safekeeping of wealth.

Like a symbolic fortress, the bank is set in a shallow moat; bridges for pedestrian access span the moat on three sides of the building. Two drive-in teller windows are located on the shopping-center side.

On the interior, warm wood paneling and patterned terrazzo flooring give an appearance of some affluence that should inspire confidence in the bank's customers. A folded, lightweight concrete roof floats above a clerestory that admits light to the main banking area. From the outside, the roof defines the public interior space and also adds a modern crenellation to the small keep.
Open Passage for the Handicapped
One of the initial decisions concerning the hospital shown on these pages was that it be planned to facilitate the utmost mobility of handicapped persons. The majority of patients are old people with physical or mental handicaps whose chronic illnesses require treatment for extended periods. The program, therefore, required a combination of hospital and hotel planning and of housing for the aged. Every effort was made to create an environment that would offset the handicaps of patients by providing for their physical safety and emotional security.

All patients’ rooms open onto balconies (facing page) that provide protected outdoor recreation areas for walking and visiting neighbors and for pot gardening. A recessed sill at the sliding balcony doors facilitates the movement of bed and wheelchair patients to the outside.

On the interior, patients’ rooms are grouped into suites of one single and one double room with a shared toilet area. Several suites with a sitting area have been provided for married couples. The
Folding doors, which will stay open at any position and which can be locked, cover ample closets for long residency. The toilet areas have an open closet (top right) with adjustable hooks.

DATA: descriptions and sources of the major materials and furnishings shown.

PATIENTS' ROOMS
Floors: sheet rubber/marbleized white/RCA Rubber Co.
Walls: plaster/painted/white; wall area behind beds color co-ordinated with draperies.
Ceilings: acoustic plaster/off-white/National Gypsum Co.; underneath side of beams painted/color co-ordinated with wall behind beds.
Doors: folding/floor-to-ceiling/vinyl/beige, green, deep green, yellow, mustard, rust/Modernfold Door Co., Inc.
Equipment: air-conditioning unit/heating and cooling/Warren-Webster Co.; two-way intercom/DuKane Corp.
Lighting: fluorescent strips/beam-hung/Work-O-Lite.
Built-ins: wardrobe fittings/drawers, dressing counter, luggage and shoe rack/birch/custom-made/Baldwin Lumber Co.

TOILET AREAS
Walls: sheet rubber/marbleized white/RCA Rubber Co.
Mirrors: Ketchum Mfg. Co.
Handrails: aluminum/tubular/Meat Bros.
Toilets: American Radiator & Standard Sanitary Corp.
Basins: maritime type/American Radiator & Standard Sanitary Corp.
plan of the suite is spacious and open with wide doorways that permit constant but unobtrusive supervision of patients, and easy passage of beds and equipment.

To take maximum advantage of these wide openings, floor-to-ceiling folding doors are used in all areas that are accessible to patients. They permit wide doorways without wasting the space required to open a swinging door; they eliminate the ever-present danger of pushing a door into the path of an approaching patient; and they are easier to open for patients on crutches or in wheelchairs. Doors to rooms have acoustic liners for sound control and two see-through panels—one set at a convenient height for standing persons and a lower one for patients in wheelchairs.

For easy orientation, each suite is color-keyed so that patients need not remember numbers. The key color—beige, green, yellow, mustard, deep green, or rust—is carried throughout the suite on the door to the hallway, the door to the double room, the outside panel of the balcony door (facing page, below left), and in some cases the draperies and the wall behind the beds. The doors to all toilet areas are blue to facilitate finding them anywhere in the building.

Physical safety and general comfort of patients has been insured also by the choice and placement of equipment. Every room is wired for telephone, for bedside night lights and call buttons, for two-way speaking intercom between patient and nurse, and for the installation of television cameras to monitor patients from the nurses’ station. In the toilet areas, wash basins and mirrors are set at a height convenient to wheelchair as well as to standing patients; grab bars are provided on the side walls. The basins have rounded corners so that wheelchair patients will not bump their elbows. Faucets are controlled by a single lever that can be operated by wrist or arm as easily as by fingers, and a ball finial on the lever is provided to make the operation more comfortable for arthritic patients. There is a nearby emergency call button.

When there is sympathetic understanding of older people, such as this planning demonstrates, the hospital directors feel that medical services can be a satisfying experience both to the physician and the patient.
YALE’S NEW VAULT:
Material/Structural Analysis
Since the approval of preliminary designs for Yale University's rare book and manuscript library (announced in November 1960 P/A), considerable refinement in planning and structural design has taken place. This report brings the reader up to date on the final selection of materials and presents a detailed analysis of its unique structural design.

Foundation work is now well under way for The Beinecke Rare Book and Manuscript Library, one of the most significant buildings in Yale's internationally known program of postwar contemporary structures. The commission for this unusual vaultlike structure was awarded to Architects Skidmore, Owings & Merrill. Their solution reflects the closest kind of creative collaboration between architect and consulting structural engineer, which has resulted in a contemporary design complementary to the diverse eclectic styles found in its venerable nearby neighbors.

The library has been placed on a 200' x 350' plaza, surrounded by the freshman dining hall, student dormitories, law-school buildings, and a secret-society temple, all neo-classic or gothic in character. Although fresh in architectural concept, the library has been designed primarily of components that have been around for a long time, some for eons. The five basic materials are: Vermont granite, translucent marble from an ancient Aegean island, cast stone, bronze, and structural steel.

The parti is a simple one. In addition to storing and protecting Yale's prodigious collection of priceless books, manuscripts, and maps, the day-to-day use of the building will be as an exhibition area and research center. People coming to the library will enter the building at ground level. Casual visitors will walk up one flight of stairs to an exhibition hall where glass-enclosed stacks, containing one quarter of the library's 800,000 books, are visible, as are individual small display cases located around the periphery of the hall at floor level. Seating arrangements are found at both ends of the hall. Researchers and proven scholars with legitimate claims to use the rare documents proceed directly to court level, one flight below ground, where, after being screened for identity, they are permitted entrance to the guarded reading room. Also found at court level are administrative facilities, curators' offices surrounding three sides of the sunken court and lightwell (to contain sculptural forms carved of marble that are currently being developed by Isamu Noguchi), spaces for staff functions, card-index files, additional stack areas, laboratories, and so on. The basement level is devoted entirely to storage of books.

The predominant mass of this design is the voluminous exhibition hall: a
cathedral-like enclosure extending 130 ft in length, 86 ft in width, and 58 ft in height. This reticulated, rectangular prism, which at night will release a soft emanation of light, has only four corner points of support, which terminate in steel cylindrical pin connections. These are located 8 ft above plaza level atop reinforced-concrete piers that extend to bedrock some 50 ft below grade. The major architectural characteristic of each elevation is a network formed by Greek-type crosses whose over-all dimensions are 8'-8" x 8'-8". The length of each arm was determined by the basic module of the building and surrounding plaza, which in turn was established by the 4'-4" spacing of the stack ranges. Framing for each façade is a structural-steel, multilayered Vierendeel truss that supports live and dead loads coming from the roof and floor of the exhibition hall, as well as carrying its own weight plus that of its fireproofing and protective materials for the steel.

Woodbury White granite—the same material that will be used to pave the 70,000 sq ft plaza as well as its surrounding enclosing walls—has been specified to cover the exterior of the steel framing. Specimens of this stone, obtained from a quarry in northern Vermont that has not been worked in many years, have been found to be extremely durable, and well satisfy aesthetic requirements of color and texture established by the architects. The quarry will be reopened solely for the purpose of providing the facing and paving material for this monument.

Translucent marble, the glazing material to be set within the octagonal voids established by the Vierendeel grid, has been chosen for the warm-white, soft light that it will provide, for the visual delight of its golden-cloud pattern, and for the useful property it possesses of eliminating direct light rays that can have a damaging effect on the books. Onyx samples from Turkey, Mexico, Peru, and Algeria were considered for specification, but all were found to have limitations in color, pattern, size (four 4' x 4' panels are considered optimum for the infill between crosses), or availability, as in the case of the quarry in Algeria that is located in an active combat zone. Most promising marble to date has been located at the island of Naxos, which undoubtedly provided building stone for many of the temples of antiquity, as well as the great sculptures of ancient Greece. Metal sash for the translucent panels will be bronze anodized aluminum with a liquid polysulfide sealant. Aluminum was specified in place of bronze, since oxidation from the latter would have discolored the marble. Interior surfaces of the trusses are protected by cast stone with exposed white granite aggregate. A full-size, two-bay mock-up is currently being observed and tested at
Long Island City. Among other factors to be determined will be the final thickness of the marble specifications: 3/4 in., 1 in., or 1 1/4 in. for the desired degree of light transmission—day or night.

Six stories of the stack tower rise within the center of the hall and surround a reinforced-concrete core. This enclosed shaft, which measures 35' x 60' and is 50 ft above ground-floor level, will have a constant relative humidity and temperature of 50 per cent and 70°F respectively. Its surrounding curtain wall is of polished plate glass held in place by extruded bronze frames and neoprene seals encasing steel mullions. Lighting, air conditioning, and acoustics are controlled in the coffered ceilings. Optimum acoustic qualities, as one might wish for an auditorium, were not essential. Instead, a "stonelike" quality, as described by the architects and their consultants, Bolt, Beranek & Newman, was achieved. Downlights within the coffers can provide a variable lighting intensity, depending on the time of day and the requirements of individuals using the hall. Night lighting will in general be soft. Forty-watt recessed lights located in the decks of the central stacks will cause the stack column to gleam from the reflected light of the illuminated bindings of the books. Individual display cases containing rare books and manuscripts will provide small jewels of light at eye-level. As the reading room is the only area where scholars have access to the books, it will have the same controlled environment as the stacks. Wood egg-crate lighting provides 90 ft-c of illumination; carpeting provides the necessary acoustical control. Glare, which might otherwise enter the reading room and curators' offices surrounding the sunken court light-well, is reduced by the installation of gray insulating glass, and vertical blinds.

Structural Analysis

From the point of view of the structural engineer, Paul Weidlinger, the design of the framing offered many challenges. After intensive investigation, the all-welded frame system was adopted, since it allowed great latitude in the selection of the component structural members required to satisfy economically the architectural requirements. Dimensional limitations precluded the application of bolted or riveted construction that would have resulted in unwieldy joint details. Welding further allowed the designers to take advantage of the gross steel section, as well as providing the benefit of rigid connections with full structural continuity at all joints.

Truss members are welded box sections: top and bottom chords are prismatic,
while the horizontal and vertical members of the crosses are tapered. As the truss system is indeterminate, the magnitude of internal forces and moments can be modified by the shape of the components. The tapered shape provides a relatively uniform distribution of moments and shears and allows the design of modular units. Furthermore, the shape approaches the optimal distribution of materials for the desired form of the truss. In a typical cross, the forces in adjacent flanges are approximately equal and the resultant of these forces therefore acts at about 45 degrees. Diagonal stiffeners assure the most direct transfer of forces without introducing high shears in the web.

The indeterminate character of the multilayered Vierendeel trusses makes analysis extremely difficult. Each girder, in turn, is supported by a single column fixed at its base and hinged at its top. Since the reactions of adjacent trusses on the girder must be equalized, the difference in loads is absorbed by shear forces acting at the ends of each truss. To minimize this transfer of shear, the roof's framing system was designed so that the total load imposed on both the long and short trusses is nearly equal. Since the reactions and end shears can be determined independently of the internal forces, each side of the structure can be analyzed separately.

In the preliminary analysis, the approximate dimensions of structural components were determined by an elastic analysis employing simplifying assumptions. In the final analysis, two separate analyses were made due to the highly unusual character of the trusses. An elastic analysis based on moment distribution was made first. Secondly, a plastic analysis was made to determine the collapse load.

In the elastic analysis, advantage was taken of the fact that the number of unknown redundants is reduced by one quarter because of symmetry of the truss about a horizontal and vertical axis. Loading of the truss is symmetrical about the center line and the loads at a panels point were split into a symmetric and antisymmetric load. The symmetrical load causes only axial forces in the verticals. It is the antisymmetrical load that results in bending moments. Moment distribution, considering sidesway (antisymmetric) mechanisms corresponding to the number of degrees of freedom of the quarter truss, was used to solve for the moments in each member. The system was reduced to seven equations with seven unknowns.
Electronic computers were used for some of the calculations.

In the determination of the collapse load, loads applied at each panel point were taken in proportion to the actual loads. Since these loads were assumed to be concentrated at panel points, only anti-symmetrical mechanisms had to be investigated. The plastic capacity moment in each member was found, and by using the upper bound theorem all collapse mechanisms were examined and the actual collapse load was found. The factor of safety against collapse in terms of this load is 2.6.

Truss deflections were calculated by applying the conjugate beam method to the lower chord. For the long truss, the live load deflection is only $\frac{V_f c}{2500}$ in., or 1/2500th of the span.

Detailed consideration was also given to stresses due to settlement of a support, buckling both in the plane of the truss and out of the plane of the truss, and wind loading and its effect on the buckling load. Although temperature stresses that would be present in the trusses due to the restraint supplied by four fixed supports would not be excessive, the design of the supporting columns for the resultant bending moments proved to be uneconomical. Therefore, bearings under three of the four corner girders were designed to allow expansion of the trusses (see bearing layout plan).

Preliminary design computations indicated that excessive plate thickness would have been required in the highly stressed regions of the truss if a structural steel such as ASTM A7 or A373 were to be used. The higher yield strength and correspondingly higher allowable working stress for both base metal and welded joints, available through the use of a high-strength, low-alloy steel similar to ASTM A242 or A441, reduced these thicknesses to sizes that can be more easily fabricated and would result in reduced welding costs. Furthermore, use of this type of steel would allow a significant reduction in total steel tonnage.

An important consideration in the fabrication of any steel structure is that, in addition to the desired strength properties, the erected structure possess the characteristics of elastic behavior assumed in the design. In a structure such as this one, however, it is impossible to calculate all secondary stresses, particularly in regions of stress concentrations. This is true of most structures, whether the stress concentrations arise as a result of design or of fabrication procedures. Thus it is implied that the material employed in a structure such as this one will behave in regions of high-stress concentration in a...
plastic manner by yielding locally to relieve and redistribute the stresses.

In order to provide assurance that the material used in fabricating the truss will exhibit sufficient notch toughness (to permit plastic yielding at critical points of stress concentration and restraint under the most adverse service conditions), and hence not be easily subject to brittle fracture, the chemical requirements of ASTM A441 steel were modified for the material of this structure. Minimum amounts of manganese and silicon have been specified for all plates over 1 in. Fabrication of the truss and details of design are, in general, governed by the following AISC specs: Specifications for the Design, Fabrication and Erection of Structural Steel for Buildings; Code of Standard Practice for Steel Buildings and Bridges. All welding and welding materials are required to conform to the American Welding Society Specifications for Welded Highway and Railway Bridges. Because of the unusual nature of the welded connections in the truss, the use of a base material not covered by existing welding specifications, and the large number of critical field welded connections, the above specifications have been supplemented by project specifications that contain more specific detailed requirements for the welded fabrication and erection of the structure.

All welding will be done by the manual shielded metal-arc welding process or by submerged arc welding. Before actual fabrication of the truss is undertaken, the contractor will submit for approval a complete program of the sequence of welding for each typical interior truss unit, and for the welding of these units together to form the completed structure.

In order to reduce the necessary field welding to a minimum, it is proposed to erect the truss in large sections: (1) corner section with upstanding legs; (2) top and bottom chords with upstanding legs; (3) vertical units of four crosses. In this way, the only required erection welds are the chord splice and the typical joint between crosses.

Credits. Those having primary responsibility for the library in the firm of SOM are: Gordon Bunshaft, Partner in Charge of Design; David H. Hughes, Partner in Charge in Coordination; and Sherwood Smith, Design Assistant. Builder is George A. Fuller Company.

Structural data in this report has been adapted from a paper All Welded Grid Trusses, which won an award in the recent "Award Program for Progress in Arc Welded Design" sponsored by The James F. Lincoln Arc Welding Foundation. Matthis P. Levy, Associate, and John Tierney, Engineer, of Paul Weidlinger’s office were the award-winning authors of the paper.
NOISE REDUCTION PERCENTAGES

BY CLAYFORD T. GRIMM, P.E.

This author contends that noise reduction may be expressed more comprehensibly as a percentage reduction and demonstrates how it can be determined for a given acoustical treatment.

It has been reported that the Aetna Life Insurance Company reduced typing errors 29 per cent, absenteeism 37.5 per cent, personnel turnover 47 per cent, and machine operators' errors 52 per cent. This accomplishment is attributed to a 14.5 per cent reduction in noise. Whether others can achieve as much by minimizing unwanted sound is conjectural; the evidence is not yet scientifically conclusive. Research in the field of acoustical psychology indicates, however, that noise affects human behavior by producing annoyance, physiological disturbance, and modified efficiency. It is evident that people want a quiet environment and are willing to pay for it.

Some degree of sound reduction can be achieved by the use of acoustically absorptive materials, but the reduction is usually expressed as a reduction in sound pressure level in decibels, which most clients and others find difficult to understand. The knowledge that acoustically absorptive materials reduce noise loudness has led to the unfortunate architectural practice of too much emphasis on the NRC (noise reduction coefficient) of the absorptive materials. Noise reduction may, however, be expressed more comprehensibly as a percentage reduction. This article shows how noise reduction percentage (NRP) is determined for a given acoustical treatment. Graphs, which enable one to make the determination quite readily, are included.

Once sound has been propagated, absorptive materials can theoretically reduce noise loudness by 45 to 60 per cent; however, only 20 to 45 per cent reductions are usually obtained. In general, the ear does not perceive a change in loudness of less than five per cent. In a typical classroom, if a hard plastered ceiling is covered with an acoustical material having a NRC of .55, the noise loudness is reduced by 24 per cent; but increasing the NRC to .65 would provide no audible reduction in loudness. In a typical restaurant, a ceiling NRC of .55 reduces noise level loudness by 22 per cent, as compared with a hard plastered ceiling. The NRC would have to be increased to .75, however, to provide a discernible improvement. Thus, in general, the selection of acoustically absorptive materials only on the basis of a small difference in their NRC is useless. In the NRC range of .40 to .55, a difference in NRC of less than .15 is not usually significant. In comparing NRC's of more than .70, a difference of less than .30 is not usually significant.

The per cent reduction in noise loudness (noise reduction percentage or NRP) that can be achieved by various ceiling NRC's, as compared with hard-plastered ceilings in several typical rooms, is indicated (1). In using this graph, it should be remembered that loudness must be reduced by more than five per cent to be significant.

Noise level is measured in terms of the pressure levels which the human ear can detect. The minimum discernible pressure level (threshold of hearing) is about .000000003 lb per sq in. The threshold of pain on the other end of the scale is about .005 lb per sq in. Since these are such small numbers, and because the range is so great, it is more convenient for acoustical engineers to work on a logarithmic scale. Thus, the decibel scale was invented to express the range of audibility from 0 to 120 decibels.

Acoustical references invariably express noise pressure level and reduction in noise pressure level in decibels. Because of the logarithmic relationship between decibels and pressure, loudness reduction cannot be expressed by percentage reduction in decibels. A drop in noise level from 50 decibels to 40 decibels is not a 20 per cent reduction in loudness, nor is it even close. Since the decibel is a rather abstract quantity, its usefulness in expressing reduction in noise is limited. It is, however, possible to express reduction in noise loudness as a percentage reduction. The use of a percentage does not, however, indicate whether the reduction is sufficient. If the noise is very loud, a large percentage reduction may still leave the noise intolerably loud. Because acceptable noise levels are expressed in decibels, and because the decibel is widely used by acoustical engineers for other purposes, the decibel cannot be ignored, but the noise reduction percentage will be found useful for general discussion.

The loudness of sound is related to the total nerve energy produced by sound in the ear, and then to the brain. Sound-pressure level expressed in decibels may be converted to loudness level measured in phons. But the psychological response to the physiological stimulus is loudness, which is measured in sones. The phons can be mathematically converted to sones and the reduction in loudness may be expressed as a percentage of the reduction in sones.

The total sound absorption in a room may be computed by use of the NRC, though examination of several frequencies is often helpful. Consider for example the classroom described (3). Each surface in the room is itemized. For each surface the area and the NRC are given. The product of the area and the NRC gives the total average absorption for the material in sabins. The absorption of all the materials are added to give the total average absorption for the room in sabins as shown (line 10). Note (in line 9) that a hard-plastered ceiling was used. If this item were replaced with an acoustical material having an NRC of .55, the total absorption would be increased from 342 to 791 sabins. This increase in absorption is conventionally expressed as the ratio of absorption after treatment to absorption before treatment. In this example, the absorption ratio would be 791/342 or 2.31.

Using this absorption ratio, the noise reduction percentage (NRP) can be determined (2). Enter the graph on the lower abscissa with the ratio of sound
absorption after treatment to that before treatment. Proceed vertically to the solid NRP curve and then horizontally to the left ordinate to read the average noise reduction percentage. In the case of the classroom example, the absorption ratio of 2.31 provided a NRP of 24 per cent. A scale is also provided on the lower abscissa to read the noise reduction in decibels. Absorption ratio of 2.31 provides a noise reduction of about 3.5. In the usual case it is more intelligible to say the noise loudness was reduced 24 per cent than to say the sound pressure level was reduced 3.5 decibels.

The acoustical absorption of materials varies with frequency and the NRC is the average of the absorption at 250, 500, 1000, and 2000 cycles per second. If the absorption ratio is computed on the basis of the NRC, then the noise reduction in sones can also be averaged at these four frequencies. The per cent reduction in sones at several frequencies is illustrated (2). The average reduction in sones at frequencies of 250, 500, 1000, and 2000 cycles per second is almost identical to the reduction at a frequency of 500 cycles per second. Thus, the NRP curve coincides with the 500 cycles per second curve.

The case studies shown are for typical rooms having the following properties:

Classroom: 864 sq ft of asphalt tile, 140 sq ft of windows, 280 sq ft of blackboards, 32 pupils, 940 sq ft of concrete block walls.

Stenographic office: 1000 sq ft of floor area with 1400 sq ft of hard plaster walls, and 15 secretaries.

Motel room: Carpeted floor area of 190 sq ft with 437 sq ft of plaster wall and appropriate furniture.

School auditorium: 600 occupied and 50 unoccupied seats, 1152 sq ft of painted concrete block wall, 2010 sq ft of wood wainscot, and 5660 sq ft of asphalt tile floor.

Restaurant: 1225 sq ft of tile floor, about as much wall, wainscot, window, and door area, 100 occupied and 20 unoccupied tables.
Tributes to Eero Saarinen

Dear Editor: Eero Saarinen founded the first true architectural laboratory. His creative, analytical methods of synthesizing architecture are a challenge that all of us should seek to emulate. Although the products of his process will remain and be admired by generations to come, it is the methods of the process that are the more significant. Wright’s message and work had been fulfilled; Saarinen’s had only begun.

DENIS C. SCHMIEDEKE
Dearborn, Mich.

Dear Editor: The loss of Frank Lloyd Wright signified the end of an age, but the end had been in sight to all of us, and the sense of loss at his death was buffered by a sense of completion in his life and work. The great sense of loss at the death of Eero Saarinen is not so softened, and the shock and dismay of those who knew him will dissipate slowly—for some, not at all.

Some architects say that Eero was a man difficult to know, remote and self-sufficient; and perhaps this is true. But his work spoke eloquently for him, and I could never dissociate the man from his work. During the difficult and busy time immediately following the Second World War, we worked together on a campus plan and women’s dormitory for Antioch College, and I often stayed at the Saarinen office for days at a time, spending my nights at the Saarinen home. Eero’s schedule amazed me. He worked on trains, planes, while standing, sitting, talking to associates, and often he worked far into the night. What’s more, it was never too late for him to begin again on a certain job. I remember in particular one night, after a couple of hours of “checking” the completed design for the G.M. Technical Center, he announced excitedly that he thought he had a better design and that it would probably save G.M. $200,000 or $300,000. Although the next morning would produce a “here we go again” from some of his men, his habit of constant restudy, of seeking the best parti, regardless of personal effort and office cost, was the only way he knew.

He was a great draftsman. His skillful left hand could, and frequently did, draw quick, accurate perspectives of any area or feature under discussion. More important, it drew the new form in architecture—a form capturing the architectural essence of our culture.

Once, in a discussion regarding the appropriateness of mixing modern architecture with traditional, Eero stated his belief that only dedicated and talented persons should be architects. He also believed that the architects should personally involve themselves in every commission in the office, instead of delegating the design to an employee. He felt that honesty in materials and structure should be demanded from all of us and that the people manufacturers should know and care enough about their environment not to manufacture or use nail-on simulated brick and stone siding.

Although Eero was a tremendously talented and hard-working architect, he believed and practiced teamwork. After he had developed a scheme that he felt satisfied the program, he personally checked it with his consultants (landscape architect, structural and mechanical engineers, illumination consultants, and so on). Any solid and significant criticism was fully reflected in the final preliminaries. He understood that modern architecture is a compilation of all the planning professions.

It is the recollection of the man himself that makes his passing so meaningful to me. He died before his work was done, before the end of his era. The question now is—can we complete it for him?

MAX G. MERCER
Yellow Springs, Ohio

Detroit: Exceptional Coverage

Dear Editor: Your account of our Detroit “New Generation” [AUGUST 1961 P/A] was exceptional and perceptive. Its presentation reminded me in many ways of your January issue. There are, however, two additional important aspects which
should be included in any introduction of the past decade's history of Detroit. First, lest the profession gain the impression that Detroit is an economic mecca of architectural opportunity, it is necessary to mention that, as the number of new architectural firms increased, the amount of available work decreased at a faster rate. The national economy had much to do with this, but the slowdown and decentralization of the auto industry and its allied suppliers was significant in this decline.

Second, and related to this, there has been a change in the cultural fabric of the metropolitan area. Where once it was the mass-production center of machine products, it is becoming the administrative, technical, and engineering center of product development. This aspect of growth is bringing into the area people of greater education and wider intellectual interests than those of the factory workers. This cultural change is fostering the acceptance of better design, not only in architecture, but also in graphic and industrial design as well. In time, we may even witness a maturity of automobile design.

In lieu of wide economic opportunity, the general incentives to the establishment of so many new firms has been the desire to do better work, to cast off an inhibiting yoke, and to achieve freedom of individual expression.

DENIS C. SCHMIEDEKE
Dearborn, Mich.

Dear Editor: I want to congratulate you on the wonderful coverage of the work of the young architects in the Detroit area. Many local people hardly realized the collective impact of the group's work until they saw your most impressive presentation.

I consider this resource of talent, much of it unfortunately underused in relation to its great potential, as one of our greatest assets in the shaping of a finer city and metropolitan area. It was an unexpected pleasure to find the generous remarks about my efforts to work effectively with the architects of the community.

While I am on this subject, I would like to pay tribute to the almost universal response of the private practitioner, young and old, to the willingness of the city to co-operate with the private practitioner toward a common goal of a broader attack on the design of the community as a whole. It is my conviction that the future image of the city as a whole is the fundamentally important challenge before us at this time.

CHARLES A. BLESSING
Director of City Planning
City of Detroit, Mich.

Dear Editor: I liked very much your presentation of "Detroit's New Generation." If there is anything in your beautiful book that one should particularly mention, it is that Olav Hammerstrom's designs seem more of Scandinavian than Detroit origin. However, I have always been struck by how "international" an architecture based on the use of a certain material can be. Wood, for example, whether used in Scandinavia, the Alps, Russia, Japan, or the West Coast, gives these "regional" expressions a shared meaning.

H. H. WAECHTER
Crewell, Ore.

The Training of Young Architects

Dear Editor: Your "P.S." [SEPTEMBER 1961 P/A] is indeed interesting. The problem of training young architects in practical experience is certainly one that requires deep consideration. I have not tried your dual system of apprentices at low salary plus old-timers at high salary, mainly because my firm is not that large. Perhaps it would be wise for the larger firms to do that; I believe it could have been satisfactory in the several large firms where I once worked before opening my own small practice.

However, the problem is more basic than that. The restlessness of youth is not due to lack of teaching by their master, but to not being able to come in contact with the main activity of architecture. Here in New York, when a student graduates architectural school and applies for a job, employment agencies, many firms, and chief draftsmen often feel that if he has not had any practical experience he cannot even draw a straight line.

A good architect and a good assistant should benefit from one another. Neither should expect that the architect will sit down and always give formal instruction to his staff. There just is not time. The architect should teach by example. He should realize the potential in each assistant and create situations where each individual can develop his own abilities. The assistant should learn by absorbing the activity around him. He should become familiar with all phases of the work.

In our office all doors are open, except in ultraconfidential matters. My assistants know at all times all phases of each project. Each has an entire picture of each problem. The files are available to all.

Because of the ups-and-downs of most firms—and we have both, just like others—many assistants feel insecure. They should not expect ridiculously high salaries. The architect, for his part, must develop confidence in long-term relationships that would in the end develop better architecture and greater professional ability from his assistants. The AIA log book is unnecessary in situations like this.

We believe that a professional approach with each staff member doing his or her own work as an equal on a team—but with the principal having the final say only because the client entrusted him with that responsibility; and somebody has to make decisions anyway—is the best way.

As an indication of the support of the two main members of our team, all of whom have been with me most of the time in my five-year private practice, they have subscribed their names to this letter.

JEFFREY ELLIS ABRIN
TERESITA CANLAS YERNE
NEW YORK, N. Y.

Standardization of Test Procedures

Dear Editor: I read with considerable interest in the AUGUST 1961 P/A the plea by Harold Rosen for the adoption of performance standards in the field of cold-glazed wall surfacings, as well as the article "Cold Glazed Cements" by Albert Swerdlow. These articles raise a problem that concerns the contribution to the field of architectural design of the coating industry as a whole. The need for standardization of test procedures is paramount if architects and owners are to receive the quality products they so desperately need.

Substitution under the "or equal" clause of similar appearing but less expensive products opens a Pandora's box of confusion for the architectural specifications writer. The contributions to architectural design made possible by the chemical industry can be severely retarded when inferior products are "guaranteed for life" by a manufacturing firm soon to go bankrupt.

Recently, when I participated on the Applied Coatings Panel of the National Cinder Concrete Manufacturers conference in Atlantic City, I made a suggestion that is pertinent to the issues raised in this letter. I recommended "that a committee be formed with representatives from among the coatings industry, concrete products industry, and the American Institute of Architects, to select from among recognized test procedures standards of performance to protect the user when specifying and purchasing on-the-job facings."

I pledge my services and the services of the B. B. Chemical Company to the establishment and industry acceptance of suitable standardization.

CHARLES M. FOSGATE
Manager, Product Development
B. B. Chemical Company
Cambridge, Mass.
Our Structural Achievement

BY LEONARD K. EATON

American Building Art: The 19th Century is an important book. Written by Carl Condit, Professor of the History of Science at Northwestern University, it presents a prodigious amount of original research and places the development of American building in a better historical context than any previous work. It is also written from a strongly defined point of view, and is likely to give rise to lively discussion in a good many quarters.

Considering technology as one of the great historical movements of the 19th Century, Professor Condit breaks his treatment of the building art into five categories: (1) the interior building frame consisting of wood, metal, concrete, or combinations thereof; (2) trusses or rigid frames—flat, polygonal, or arched, usually of wood or metal; (3) the reinforced-concrete slab, flat as in a floor or bridge deck, or curved into a shell or dome; (4) the arch rib of metal or concrete; and (5) suspension by wire cable. As the list indicates, Condit pays very little attention to the traditional forms of masonry construction. Hence he devotes almost no space to the substantial achievements of the Greek Revival architects in this area. Their buildings have, after all, been well covered by Talbot Hamlin. Instead, his focus is upon the technological innovators: men who used materials in new ways and solved problems that had not hitherto been posed. Quite naturally, his heroes are men like James B. Eads and John A. Roebling. To these must be added a host of creative personalities whom Condit himself has brought to light: men like Daniel Badger and George Herbert Wyman in architecture, and Timothy Palmer and Albert Fink in bridge construction. Among the exponents of reinforced concrete, he properly gives first place to Ernest Ransome, whose achievements are coming to be more and more widely appreciated.

For architects, the chief interest of this volume will lie in the author’s treatment of the contributions made by the best-known figures in their profession in the 19th Century. It is based on the contention, remarkable at first glance, that buildings of aesthetic distinction rarely display true structural innovations. What, the irate reader is likely to ask, of the technological mastery shown in Adler & Sullivan’s Auditorium, in Burnham & Root’s Reliance Building, and in Holabird & Roche’s Tacoma Building? Condit’s answer is that the really crucial discoveries in the history of iron framing were made in a host of almost anonymous structures, such as the amazing tower built by James Bogardus for the McCullough Shot & Lead Company of New York in 1855; it anticipated William Le Baron Jenney’s skyscraper construction by almost thirty years! Seen in this light, the fine old structures of the Chicago school appear as refinements of an existing building technology rather than as radical innovations. The thoughtful reader will be led to ponder the exact status of certain contemporary curtain-wall structures; many are likely to appear downright “conservative.”

Quite naturally, Condit is led to a most provocative discussion of the relationship between architect and engineer. Here his key figure is unquestionably Louis Sullivan, who in his finest buildings sought not only to incorporate engineering advances but also to symbolize the overwhelming energies released by 19th-Century science and technology. Structures like the Prudential Building in Buffalo and the Carson, Pirie, Scott Store unquestionably pointed the way to the finest works of 20th-Century architecture, and yet still exhibited a crucial deficiency: they did not display “a symbolic image of a cosmos, an encompassing order, civic, natural, or divine.” Sullivan’s problem is, indeed, still very much with us today; an architecture based solely on technological virtuosity is always, as Condit points out, in danger of “... degenerating into a sterile geometry for the very reason that it loses itself in the material culture it ought to transcend.”

The book is beautifully bound and handsomely printed, with a multitude of drawings and scarce photographs. It will well reward every architect interested in the history of the structural art.

In American Building Art: The 20th Century, Carl Condit carries forward his able history of American building technology. Undertaking to control a tremendous mass of material, he tells the story

DECEMBER 1961 P/A
of American structural achievement in steel and reinforced concrete, with minor attention to wood and the light metal alloys. He treats these materials as they occur in buildings, bridges, dams, and metropolitan parkways. Although architects will be particularly interested in the chapters on "Steel Frames" and "Concrete Construction," everyone who has ever thrilled to the sight of a great suspension bridge or been awe-struck by the powerful contour of a monolithic dam will enjoy the author's material on these colossal structures.

Although the book is very tightly constructed, certain chapters inevitably emerge as particularly noteworthy. For this reviewer, the section on steel frames, with its close analysis of welded and riveted structures, was especially convincing. Condit's treatment of the progressive development of this technology in the hands of a series of gifted architects and engineers is fascinating. His summary of this evolution is truly admirable. "The main tendency in structural design," he writes, "has been the progressive simplification of the frame and wind bracing for the purpose of reducing the bearing members to a minimum, standardizing their form as much as possible, and increasing the area of the individual bay." It should be added that the author clearly recognizes the aesthetic failure of most curtain walls built since World War II. Like a number of other critics, he refuses to accept the street of mirrors as a valuable feature of the urban scene.

Also noteworthy is his description of American achievements in the design and construction of our great steel arch and suspension bridges. The dominant impression one receives from these pages is a sense of the heroic. Although the statistics of such an imposing structure as the Golden Gate or Mackinac Bridge are sufficiently striking, even more impressive are the genius and determination of their designers and builders. In this connection, it can be said that one of Condit's accomplishments is to make clear the need for a series of biographies of outstanding American structural engineers. Where, for example, is the much-needed book on Othmar Ammann, whose name constantly recurs in this narrative? We are dealing here with a class of men whose works have literally transformed America, particularly urban America, and yet we know almost nothing about them as individuals. It is impossible to think of cities such as New York, Pittsburgh, and San Francisco apart from their bridges, and yet we are unacquainted with the men who built them. The engineer, standing midway between the artist and the scientist, has received less than his due from the historian.

The entire picture of American engineering and architectural achievement is a curiously uneven one. On the one hand, it is perfectly clear that American dam builders have developed their concrete form "...into installations of such number, size, and intricacy that their supremacy in the field is clearly beyond challenge." Quite understandably, American civil engineers are in demand in almost every noncommunist country in the world today; their only competitors in this line of work are the Dutch, with their hard-won skills in the building of dikes. On the other hand, it is also perfectly clear that the atmosphere of American culture has not been conducive to experimentation in the structural arts. Given the shear quantity of American construction, the number of truly creative designers is unhappily small. In this respect, the contemporary work of R. Buckminster Fuller is particularly notable. In contrast to the timidity of most contemporary engineering work, the daring of Fuller's geodesic domes is remarkable, and Condit quite properly gives him full credit. He is obviously one of the few American engineers whose name can be mentioned in the same breath with Maillart in Switzerland and Freyssinet in France. The only omission from the roster of creative American engineers is the name of Paul Nelson; more might have been said about his remarkable series of experiments with suspended structures during the 20's and 30's, but some omissions in a book of this scope are, after all, inevitable.

The aesthetics of this excellent work are both its strongest and its weakest point. We might expect Condit to evaluate structures on the basis of the traditional engineering categories of economy and elegance, and he does employ these standards in many cases. Thus, after a brilliant discussion of Frank Lloyd Wright's cantilever slab construction in the Johnson Wax Administration Building, he forthrightly declares that, "All these factors indicate an extreme structural redundancy in the internal design of the building." He also, however, uses the currently unfashionable concept of "empathy," the ability of an object to evoke a feeling of identity and sympathy in an observer. Hence, writing Continued on page 174
Specifications Writing Procedures

BY HAROLD J. ROSEN

This column concludes the series of articles in which the author has discussed the "Tentative Proposal for a Manual of Practice for Specifications Writing Methods" promulgated by the Construction Specifications Institute. Rosen is Chief Specifications Writer for Kelly & Gruzen, Architects-Engineers.

In previous articles, we have described recommendations that call for completely new concepts in the presentation of specifications: first, a new format and arrangement of specifications into 20 standard divisions; second, a new Division No. 1, General Requirements, which outlines the general clauses of the specifications that govern the technical divisions; and third, Construction Documents, which create three main elements, namely, the "Bidding Documents," the "Contract Forms," and the "Specifications" that constitute the new arrangement of specifications material.

In this article, we will discuss specifications writing procedures contained in the manual which are, for the most part, restatements of earlier concepts of good specifications writing practice.

To begin, there is a section devoted to the language of specifications. To quote the manual: "A good specification contains the fewest words that can be used to complete the description and make sense." Verbosity and repetition lead to ambiguity. A specification must be precise; quality specifications can be achieved if the writer is clear, correct, and concise. Avoid ambiguous "escape" phrases such as: "in the opinion of the architect"... "to the satisfaction of the architect"... "as directed by the architect"... "as approved by the architect." To the contractor, the above terms mean, "Guess what I will make you do?"

The one essential requirement in writing specifications, aside from technical know-how, is the ability to write good English. Although the "Specifications" is one of the contract documents that becomes a legal document, legal phraseology is not necessary. A statement in good, clear English may be even more definite, unequivocal, and understandable to the superintendent and foreman than legal wording. A more complete discourse on specifications language is contained in H. Griffith Edwards' Specifications.

Another section of the manual is concerned with specifications writing procedures. This includes the work preliminary to the actual writing of the specifications, the outline specifications, the sources of information, the form and arrangement of specifications, and the reproduction and binding of specifications. Again, these procedures deal with time-tested methods such as the use of guide specifications, check lists, work sheets, and catalog files.

Reduced to their simplest form, specifications should be written following some organized system. A good draftsman will develop systematic methods of laying out his drawings. A good office will have logical standards for indication of doors, windows, and the other countless elements of the drawings.

Similarly, a specifications writer must have a system for the preparation of specifications, especially since they must be written after the drawings have almost been completed and the time available is scant. The pressure of time makes a systematic approach essential.

One of the first documents that the specifications writer must have is preliminary, or outline, specifications. This is generally prepared by the project architect or designer, and briefly lists materials and finishes without describing workmanship or fabrication.

The next step is to prepare a complete take-off of every item from the working drawings and, in conjunction with a standard check list, establish the trade sections. The specifications writer can then begin such sections as earthwork, concrete, ceramic tile, and resilient flooring, which are not likely to change during the development of the drawings.

To write these sections, many specifications writers will have their own "guide" or "master" specifications, which they have carefully developed over the years. To be truly effective, these "guides" should not be static, and should be revised as dictated by experience and new developments. Some people refer to these "guides" as "canned specifications." However, it is difficult to see how any specifications writer can do without such a valuable tool, which comprises in essence the sum total of his experiences and his best efforts to write better specifications.

Form and arrangement of specifications material is essential to a workable system. Divisions will be numbered with Arabic numerals 1, 2, 3, 4, and so on. Sections will be numbered with a composite number and alphabetical letter (described in SEPTEMBER 1961 P/A), such as 1A, 1B, 1C, or 2A, 2B, 2C. Articles start with number 1 and go on consecutively. Personally, I take issue with this. I prefer to use a combination of the section number and the article number so that the article number is a composite, such as 3A-08. Page numbers are noted in the upper-right corner containing the section number, section title, and page number as, for example: Section 3B, Forms for Concrete, Page 3. I prefer that the page number be at the bottom of the page and that it combines the section number and page number, such as 7-3.

As a concluding remark to this series of articles, I feel it is of the utmost importance that specifications writers adopt a nationally recognized system of specifications writing methods, inasmuch as no uniform system exists today. The tentative manual is a step in the right direction, and any comments on the proposed manual will be welcomed by the Specifications Methods Committee.

Only by using uniform specifications writing methods, techniques, procedures, arrangements, and language will we advance the cause of CSI's goal—"Better Specifications."
Performance records of millions of Sloan Flush Valves indicate that when Coast Line's building is 50 years old its Sloan Flush Valves will still provide dependable service.

Moreover, Sloan Flush Valve maintenance costs are likely to be among the lowest in the building maintenance budget... (as little as 1½¢ per valve per year!)

Because the Sloan ROYAL is acknowledged as the world's most successful flush valve, attempts have been made to imitate some of its most important features. But why gamble with substitutes when you can plan for the life of the building confidently with Sloan? Specify and insist upon performance-proven, time-tested Sloan Flush Valves.
The continued practice of architecture by the unqualified and incompetent in states which do not have effective licensing laws, the weakening of existing licensing statutes through judicial or administrative interpretation, and the ineffectiveness of enforcement procedures in some states certainly point up and emphasize the need for an articulation and clarification of the architect's appropriate role and function to make clear to the public the significance and importance of the architectural profession.

What is the practice of architecture, and why should it be restricted to duly licensed practitioners? These are two questions often asked and seldom adequately answered to the satisfaction and understanding of the public. Many state licensing laws define the practice of architecture and the practice of engineering. These definitions are seldom in terms that differentiate between the two professions, or which furnish specific guidelines to distinguish between the practice of those respective professions. For example, the New York license law, which has served as a model for several other states, defines a person practicing architecture as one who "does perform any professional service such as consultation, investigation, evaluation, planning, design . . . or responsible supervision of construction, in connection with any private or public buildings, structures or projects, or the equipment or utilities thereof, or the accessories thereto, wherein the safeguarding of life, health or property is concerned or involved, when such professional service requires the application of the art and science of construction based upon the principles of mathematics, aesthetics and the physical sciences."

The New York statute defines a person practicing engineering as one "who does perform any professional service, such as consultation, investigation, evaluation, planning, design, or responsible supervision of construction or operation, in connection with any . . . structures, buildings . . . wherein the safeguarding of life, health, or property is concerned or involved, when such professional service requires the application of engineering principles and data."

The application of the art and science of construction by an architect is based in part upon engineering principles, and the application of engineering principles by an engineer includes the application of the art and science of construction based upon the principles of mathematics and physical sciences. Thus the definition of the practice of architecture in this form not only fails to differentiate that practice from engineering, but fails to give full recognition to the architect's functioning as a master planner, co-ordinator, and chief of the construction team.

The National Council of Architectural Registration Boards has been concerned with the usurpation of the practice of architecture by other professional and nonprofessional persons. It was their belief that if a definition could be made that would distinguish between the practice of architecture and engineering, this would be helpful to both professions and would avoid continuing controversy. During their 1961 convention, the Council adopted a model definition of the practice of architecture that seeks to reflect the true role and status of the architect. This definition is as follows:

"In order to safeguard life, health, and property and to promote the public welfare, the practice of architecture in this State is reserved to those persons who have the proper qualifications and have been registered by the Board after examination.

"The practice of architecture is defined as the professional activities of a registered architect. This includes advice concerning and preparation of necessary documents for the design and construction of buildings and their environment, with the principal purpose of providing space for human use whether interior or exterior, permanent or temporary, and including, but not limited to, structures for social, political, and economic service in fulfilling domestic, religious, educational, recreational, memorial, financial, commercial, industrial and governmental needs and the like."

In next month's column, we will discuss the McCamy case in New Jersey in the context of the definition of architecture and engineering as contained in the New Jersey licensing laws as compared to the model definition adopted by the National Council of Architectural Registration Boards.
Wholly concealed bottom hinge is engineered so that door does not rise or lower when opened. Weight of door is fully supported on Zytel bearing, not on cam... a million test openings without wear. Opposing journalized Zytel cam units assure accurate and positive pre-selected door positioning.

EXCLUSIVE ENGINEERING OF Bottom HINGE MEANS Top PERFORMANCE

Why is a hinge so important? Simply because no other compartment component gets as much wear. Door hinges are the real key to long life and low maintenance.

Sanymetal hinges are fully recessed and flush to facilitate cleaning, factory installed for economical compartment installation, engineered for exceptionally long tamper-proof life and along with Sanymetal's integral hinge brackets present the most beautiful appearance.

These are the reasons for Sanymetal's highest quality at lowest in-place cost. If you would like the new imaginative, full-color "Design Studies" just call your Sanymetal representative or write direct.

Sanymetal
world's leading producers of toilet partitions
1721 Urbana Road, Cleveland 12, Ohio

Nameplate identifies every compartment

"For information turn to reader service card Circle No. 302"
Controlled Lighting

BY WILLIAM J. McGUIINNESS
Light-level flexibility in a recently completed commercial building—simplified by the use of autotransformers and fluorescent tubes capable of being dimmed—is discussed by the Chairman, Department of Structural Design, School of Architecture, Pratt Institute.

Control of lighting intensity by the use of dimmers has been increasing rapidly. Reasons for this are not hard to find. On-off operation of a lighting system may be compared to the use of a sound system without volume control. Dimmers provide a flexibility that permits maximum illumination for important seeing tasks, and yet allows the use of subdued lighting when brightness would be undesirable. Modern control equipment using transformers instead of rheostats actually achieves a saving of energy at the lower intensities without generating excess heat. The extension of this facility to the dimming of fluorescent tubes now allows control of all general and special lighting. Wiring for the control of fluorescents uses three wires instead of two because of the interconnection with the ballast.

Dimming has long been standard in spaces where mood is important: cafes, night clubs, and theaters. Increasingly used for residences, it is now also found useful in commercial buildings. Skidmore Owings & Merrill chose it for appropriate use in executive offices, conference rooms, and the directors' board room in the recently completed building for the Harris Trust and Savings Bank in the Chicago Loop. The new structure, which is 23 stories high and 400,000 sq ft in area, just about doubles the facilities of this institution, whose old building stands adjacent. Extensive modernization of the existing structure contributes to a new and efficient banking unit.

Lighting for the new building, even in general work areas, is of interest. Maintaining a level of 65 ft-c, one fluorescent troffer is used in the middle of each 5' x 5' ceiling module. Aluminum dividing and support bars mark off this convenient module for office partitions which can be fixed to the bars. The light fixtures have two 40-w tubes each and are furnished with integral ports for the distribution of warmed or cooled air. Surrounding the luminaries are prefinished glass-fiber panels.

Dimmers are used in executive offices (as illustrated). Fluorescent lights are adjusted by autotransformer light controls. They may be turned up full during a work session, or dimmed to a lower level usually more suitable for private conferences. In either case, the personal taste of the executive may be the guiding factor for the specific light level chosen. When the office is unoccupied for long periods, the lights may be kept on at very low intensity—an economic saving over full brightness and much preferred to the choice of leaving the room dark, suggesting an abandoned space.

On the top floor, a long conference table used by the directors for meetings and for dining is illuminated by concealed incandescent downlights. These are dimmer controlled, as are the lights directly above the marble wall in this room. Thus, attention may be given to adjustment of light level at the table and also that of the architectural features of the room.

Some conference rooms are provided with floating hung ceilings above which bullet-type incandescents wash the walnut-paneled walls with light. In the hung ceiling, recessed incandescents illuminate the working area of the conference table. Both fluorescent and incandescent systems are separately controlled by dimmers.

In this bank building, fluorescent fixtures are by Benjamin Division of Thomas Industries and incandescents by Century Lighting. Dimmer controls are made by The Superior Electric Company.
lasting
low-cost
moisture barriers
"ELECTRO-SHEET"
Copper-bonded products

"Electro-Sheet" is pure, thin copper produced in long, wide rolls by electrodeposition. It won't rust and resists most forms of deterioration. Bonded to high-grade building papers or fabrics... or to asphaltic compounds... it makes concealed flashings you can trust.

"Electro-Sheet" Copper-bonded products are widely used in the hidden trouble spots of buildings: spandrel beams, door and window heads and sills, shower rooms and stalls, parapet walls, etc. They are flexible, easy to handle, and available in rolls up to 60" wide from building supply dealers throughout the United States and Canada.

For more information about Anaconda "Electro-Sheet" and a list of manufacturers of the flashing products, write: Anaconda American Brass Company, Ansonia Division, Ansonia, Connecticut.

"Electro-Sheet" Copper is available bonded on one or both sides.
Since 1818

HOPE'S WINDOW WALLS

STEEL WINDOWS HAVE THE STRENGTH AND RIGIDITY THAT NO OTHER WINDOW CAN MATCH

HOMEWOOD-FLOSSMOOR COMMUNITY HIGH SCHOOL, FLOSSMOOR, ILLINOIS

Perkins & Will, Architects

The Edward Gray Corp., Contractors

This award winning, one-floor-plan school consists of three building units connected by glazed corridors. It provides, in addition to 32 academic classrooms, 14 rooms for special work in fine and industrial arts, laboratory sciences and a library, plus a gymnasium and a cafeteria.

Much valuable use is made of Hope's Single Floor Window Walls with pressed metal sub-frames holding fixed glass and Hope's Heavy Intermediate Projected Windows. Here, as in all school work, the architect is aided by complete freedom in layout for the wide variety of special facilities with provisions for all openings at the most convenient points.

The experienced services of Hope's Engineering Department and Erection Crews assures, to every builder using Hope's Window Walls, the full benefit of Hopes unsurpassed quality. Write for Bulletin Number 169.

HOPE'S WINDOWS, INC., Jamestown, N. Y.

HOPE'S WINDOWS ARE MADE IN AMERICA BY AMERICAN WORKMEN

For more information, turn to Reader Service card, circle No. 344
Better walls start with better mortar. To be sure of top quality, specify mortar made with masonry cement. This cement is a blend of materials that gives a good balance of the desirable properties in mortar. Except for sand and water, everything is delivered in one bag. Mixing calls for no special skills . . . when workability is right, water content is right. It makes a “fat” mortar that promotes better workmanship. Tighter joints, uniform color and dependable strength are assured. For the best in wall performance with any masonry unit—concrete, brick, tile, stone or glass—architects everywhere specify masonry cement. Write for free literature. (U.S. and Canada only.)

PORTLAND CEMENT ASSOCIATION Dept. A12-25, 33 W. Grand Avenue, Chicago 10, Illinois

A national organization to improve and extend the uses of Portland cement and concrete
of the great suspension bridges such as the George Washington and Golden Gate, he observes, "We measure the rest against these, quantitatively and emphatically, and we are right to do so, for they stand as the ultimate mastery of structural techniques in steel. As pure empirical form, there is nothing that can quite match them." On a number of occasions, the reader is uncertain as to what criteria the author is using, and this is a great shame, since he handles both sets with great skill.

This confusion is all the more unfortunate because Condit has a vital message for contemporary architects. His contribution is suggested (but not worked out in detail) in the last chapter, entitled "An Architectural Appraisal." Here he analyzes the structural dilemma of the modern architect. The art of building, he points out, now oscillates between a narrow formalism based on a reduction of architecture to its structural constituents and "the nonarchitecture of the Great Salesroom" based upon a profoundly amoral attitude toward structural design. Between the two extremes, incidentally, Condit's sympathies obviously lie with Mies and the neo-Miesians. He has nothing but scorn for those who think of architecture as a variety of packaging. With fine irony, he quotes the late Robert R. Young on the construction of Grand Central City, "The Central," said this far-sighted railroad tycoon, "is progressing with its plans for a new office building above Grand Central Terminal which every public relations and advertising man in America will be proud of." To the criticism of contemporary architecture Condit brings a technical knowledge and a philosophical equipment that are much needed. He deserves to be widely read.

It remains to be said that the book possesses an attractive format and is well illustrated. In short, it is an important and essential work for any one interested in modern building problems.

Cannibalism of Ideas

Hospitals, Clinics, and Health Centers
Editors of "Architectural Record.
F. W. Dodge Corp., 119 W. 40 St., New York 18, N.Y., 1960, 264 pp., illus. $9.75

Every office tries to keep its files up to date; but with the quantity of material published, and without a skilled librarian, it is often a losing battle. The republication in book form, therefore, of the best crop of current work has some attractiveness. But attractive as the proposition may be—gathering a few pages of this and that from recent years—it does not necessarily make a book. No introductory article, no matter how well written, can increase the intrinsic form or worth.

Perhaps it is naive to ask that a book represent a concept—in particular, one dealing with as complex a matter as hospital planning—at a time when there has scarcely been an issue of a hospital journal or a planning seminar in the last ten years that has not exposed the inadequacies and confusion of current thinking.

Hospitals, Clinics, and Health Centers states on the jacket that it presents "the newest and most effective ideas for planning of hospitals and other medical facilities." Further on it adds that the book is "the clearest and most complete source of information available today." Unfortunately, one must disagree with these statements. At best, the book succeeds in encouraging a kind of cannibalism of ideas, leading to further outrages of planning in a field already full of dismembered organs. No serious architect can afford to indulge in this, and no
NINE B&G® BOOSTER PUMPS PROVIDE CONTROLLED COMFORT IN ST. LAWRENCE SEAWAY CORPORATION'S ADMINISTRATION BUILDING, Massena, N.Y.

The forced circulation hot water equipment in this outstanding office building is made by B&G... Booster Pumps, Flo-Control Valves, Airtrol Systems and Reducing Valves.

The building is divided into nine zones for better temperature control, with each zone served by a B&G Booster. A bronze Booster is used for circulating domestic hot water.

Over 3,500,000 Boosters are in service today... clinching evidence that their superior quality and performance has never been challenged. The reasons why they so completely dominate their field are not hard to find. Above all they are quiet—vibrationless... the prime essentials of a forced hot water circulating pump. They are dependable and profitable—not a cause of endless service and customer dissatisfaction. Sound design and sturdy construction of best materials assure efficient performance for years.

B&G Hydro-Flo Products are made by a company which offers help in any problem of design or installation—and with nation-wide distributors and service organizations.
What's in a name?

the unseen
but all important factor...

DEPENDABILITY...
the reason
leading architects
specify

Cupples

ALUMINUM DOORS
AND ENTRANCES
When you need entrance doors and frames and want dependability of product and service as well as a dependable company behind the product, the name to remember is "Cupples"... a division of ALCOA.

Cupples aluminum entrance doors and frames—both custom and our new "40 line" of stock units—have captured the plaudits of both architects and owners. Precision made from heavy gauge extruded aluminum sections, with hairline joints and a beautiful anodized finish that is guaranteed under bond by Cupples, they are the type of products you'll be proud to specify for any job. And, what's more, they're priced competitively to fit any building budget.

Available as single or double doors with many variations in frame, you have complete design flexibility. Choose from new style offset pivots, butts or concealed overhead closers. Double acting doors on floor closers, as well as stock panic device doors are also available.

Other outstanding features include: Complete flush glazing... No exposed screws... Simplified installation and anchoring... 100% vinyl glazing, front and back... Vinyl sealed expansion mullion... Stock push-pull hardware, interchangeable with custom styled hardware.

Investigate Cupples today and see for yourself why your clients get more for their money when you specify "Entrance Doors and Frames by Cupples."

Write for our catalog or see Sweet's, Section 16a/Cu.
Round Concrete Columns...
beauty and brawn for modern buildings

Impressive in appearance. . . wide range of surface finish possibilities . . . strong, low in cost, little or no maintenance. These are good reasons why round concrete columns make ideal interior and exterior supports in modern buildings.

Increasingly popular from a design standpoint, round concrete columns are economical, too—especially when formed with SONOTUBE Fibre Forms.
Available in several types to meet various requirements, these versatile forms save contractors time, labor and money in a dozen ways!

Include round concrete columns in designs often, and specify the fastest, most economical forming method—SONOTUBE Fibre Forms. Available 6" to 48" I.D., any length.

See our catalog in Sweet's
For complete information and prices, write

SONOCO
Construction Products

For more information, turn to Reader Service card, circle No. 377

For more information, circle No. 381
This lightweight structural framing system cost, in place, 30% less than conventional methods. Key to the economy was the engineer's novel design...combined with lightweight Jones & Laughlin 10-inch Junior Beams, and channels and angles. The combination achieved lightness and ease of construction in Studio Arms IV, a luxury apartment dwelling in Jefferson Parish, a New Orleans suburb. Here's how the designer slashed costs: 1) Girders are Double-Warren trusses fabricated with standard J&L channels as top and bottom chords and standard J&L angles as diagonals. 2) J&L Junior Beam joists are supported in the vertex of the triangle formed by the diagonals of the truss. 3) Beams are spaced on 3-foot centers, spanning 24 feet from truss to truss. Results: Reduction in weight of steel per square foot, flexibility in interior planning, saving of one foot of height per floor. For details call the J&L representative or contact J&L direct.
IBM builds an Open World
It's an inspiration to the scientists, engineers and technicians who work here... a building that's exciting to look at, inviting to enter, and pleasant to work in. There's a built-in atmosphere of freedom that stimulates creativity.

The graceful curving face of the building is L.O.F Parallel-O-Grey® Plate Glass. Huge lights rise uninterrupted from ground level to roof. The neutral grey plate glass blends with the native stone. On bright, sunny days, when its mirrorlike surface reflects changing cloud patterns, the new building seems a part of the landscape.

Natural Viewing
But the beauty of Parallel-O-Grey doesn't stop there. Its surfaces are twin ground to make them more parallel, thus minimizing waviness for better looking, outside and inside.

And from the inside you are not aware that the glass is tinted. The world you see through it looks natural, the true colors unchanged.

Glare and Heat Reduction
Viewing the open world from within is more pleasant because sky glare is reduced to relieve eyestrain. Yet daylight is abundantly sufficient to flood large areas. Parallel-O-Grey transmits approximately 44% of average daylight. And it screens out about 40% of the sun's heat to make interiors more comfortable... to reduce the load on air-conditioning equipment.

Unusual Glass Partitions
For certain partitions in the IBM Research Center, the architects chose a new kind of L.O.F plate glass (see photos). It's the same basic glass used in the facade of the building—L.O.F grey plate glass—so it blends with the outer wall. But only one surface of the partition glass has been ground and polished. Configurations on the other surface give the glass a pleasing, shimmering texture that provides privacy. Yet the glass is translucent enough to borrow and utilize light from adjoining areas.

These glass partitions require no maintenance except occasional washing to keep them attractive.

For more information on Parallel-O-Grey Polished Plate Glass, Rough Grey Plate Glass and other kinds of L.O.F glass for construction, refer to Sweet's Architectural File 26-A, or call your L.O.F Distributor or Dealer (listed in the Yellow Pages). Or write to L.O.F, 45121 Libbey-Owens-Ford Building, Toledo 1, Ohio.
... the widest selection of step lights and night lights available today...

weatherproof enclosed and gasketed... incandescent or fluorescent... all cost aluminum everlasting construction... flawless satin aluminum anodised for permanence... louver guard or while tempered glass or prismatic lens diffuser available in 3 different sizes.

Ask for complete specification data sheets Section A pages 31/32/33/34.

mc Philben LIGHTING
1329 Willoughby Ave., Brooklyn 37, N. Y.

For more information, circle No. 356

Glidorama Custom Aluminum
WINDOW WALLS

Custom fabricated to meet your specific design requirements, Glidorama Window Walls permit easier erection... provide more useable floor space... reduce labor, material and maintenance costs. Available for both monumental and light construction applications—in single and multiple story units.

Glidorama Custom Aluminum
WINDOW WALLS

For more information, circle No. 337
Cut $20 from the ultimate cost of a school building with every square foot of TERRAZZO

Savings in floor maintenance will more than pay entire school construction cost.

A recent study¹ shows that the ultimate cost of Terrazzo is $20 less per square foot than asphalt tile, or more than enough to pay for the entire school construction cost.

Lower maintenance costs of Terrazzo are responsible. The initial cost of floor finishes represents from 1 to 4% of ultimate cost.

A survey² of a number of schools reveals that the annual maintenance cost of Terrazzo is 21c per sq. ft. less than vinyl tile, 53c less than asphalt tile.

Maintenance cost is one of six factors considered in the complete study. The others: (1) value of money (2) price increases (3) initial cost (4) replacement (5) speed of construction. These costs and their incidence over an anticipated life of 50 years were determined and converted to present value³ for ready comparison. The study is summarized in the chart shown at right.

Present Value of Ultimate Costs

<table>
<thead>
<tr>
<th></th>
<th>Terrazzo</th>
<th>Asphalt Tile</th>
<th>Vinyl Tile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial cost</td>
<td>$1.45</td>
<td>$.50</td>
<td>$.75</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>3.50</td>
<td>5.68</td>
<td>4.37</td>
</tr>
<tr>
<td>Replacement costs</td>
<td>.05</td>
<td>.08</td>
<td>.14</td>
</tr>
<tr>
<td>Less speed erection credit</td>
<td>- .00</td>
<td>-.20</td>
<td>-.20</td>
</tr>
<tr>
<td>Total</td>
<td>36.80</td>
<td>56.86</td>
<td>44.46</td>
</tr>
<tr>
<td>Relative ultimate cost</td>
<td>100</td>
<td>154</td>
<td>121</td>
</tr>
</tbody>
</table>

For a free copy of the complete study of ultimate cost write: The National Terrazzo and Mosaic Association, 2000 K Street, N. W., Washington 5, D. C.

³. Present value: means of expressing future payments in terms of today's dollar.

Member Producers' Council

THE NATIONAL TERRAZZO AND MOSAIC ASSOCIATION

N.A.D.A. Building, 2000 K St., N.W., Washington, D.C.
"OVERHEAD DOOR" opens a new door to space control

Doors permit maximum use of space... inside, and outside

"OVERHEAD Doors" make the most of space by making it accessible. They are virtually movable walls that can open the front, back, and sides of a structure—multiply the use of both the building and the land around it.

As exits, "OVERHEAD Doors" can make every part of the lot immediately accessible from the building, allow more design freedom in placing the building on the lot, and permit full development even of a poorly shaped lot. As entrances, "OVERHEAD Doors" supply light and ventilation, as well as access to the inside, making the structure more useful, more adaptable for additional functions. As movable partitions, "OVERHEAD Doors" instantly divide or enlarge rooms to fit varying interior space requirements.

A typical space control application is in the Muncie, Indiana, fire station shown at left. "OVERHEAD Doors" in the front and back of the building provide access to a paved area in the rear, which is used to turn, park, and service the fire engines and other vehicles. In other buildings, this ready access, plus the admission of light and air, can give space valuable extra usability.

Many other new ideas in space control have been developed and tested by Overhead Door Corporation engineers—ideas that result from this company's 40 years of experience in the garage door field.

Get detailed information from your local distributor (see "OVERHEAD Door" in the white pages) for an application you may now be planning, or write to Overhead Door Corporation. General Office: Hartford City, Indiana. Manufacturing Distributors: Dallas, Tex.; Portland, Ore.; Cortland, N.Y.; Hillside, N.J.; Lewis-ton, Pa.; Nashua, N.H. In Canada: Oakville, Ont.

To solve many space control problems—

Viaduct garage. "OVERHEAD DOORS" help make more efficient use of space by providing enclosure as well as access. For example, the addition of doors and block walls can convert unused space beneath a bridge or viaduct into an inexpensive garage for public vehicles.

Movable partitions. Interior "OVER­
HEAD DOORS" can be used to convert small rooms quickly into a large aud­
torium area—and back again. Special flush panel doors that rise into a false ceiling are available with hinges, struts, and jambs concealed.

Convertible-garage-room. An extra "OVERHEAD DOOR" in the back or side wall of a residential garage supplies light and ventilation to make the space livable. With the car removed, the garage quickly becomes a warm-weather workshop, play pavilion, or covered patio.

To solve many space control problems—

Viaduct garage. "OVERHEAD DOORS" help make more efficient use of space by providing enclosure as well as access. For example, the addition of doors and block walls can convert unused space beneath a bridge or viaduct into an inexpensive garage for public vehicles.

Movable partitions. Interior "OVER­
HEAD DOORS" can be used to convert small rooms quickly into a large aud­
torium area—and back again. Special flush panel doors that rise into a false ceiling are available with hinges, struts, and jambs concealed.

Convertible-garage-room. An extra "OVERHEAD DOOR" in the back or side wall of a residential garage supplies light and ventilation to make the space livable. With the car removed, the garage quickly becomes a warm-weather workshop, play pavilion, or covered patio.

THE
"OVERHEAD DOOR"
TRADE MARK

the original upward-acting sectional door... made only by

OVERHEAD DOOR CORPORATION

DECEMBER 1961 P/A

For more information, turn to Reader Service card, circle No. 398
MATERIALS FOR ARCHITECTURE

An Encyclopedic Guide by CALEB HORBOSTEL, A.I.A.

Here, complete in one volume, is the basic technical and scientific data on all materials employed in modern architecture. In a lucid and encyclopedic format, this new reference lists physical and chemical properties—describes types, uses, application methods, history, and manufacture—and analyzes the advantages and limitations of all the major and minor materials of building. Thorough, authoritative, up to date, this eagerly awaited reference work is destined to become an indispensable working tool for every architect and engineer.

624 double-column pages, handy 8 3/4 x 10 3/4 size, with numerous tables, charts, diagrams, and photographs. Special pre-publication offer—price through December 31, 1961: $18.50. (Price after December 31, 1961: $20.00) Mail the coupon to receive your copy for 30 days' free trial.

A Sampling of the 274 Major Categories in this One-Volume Reference Library:

- Abrasives
- Acoustic Materials
- Aluminum
- Aluminum Alloys
- Asbestos
- Asphalt Roofing and Siding
- Beryllium
- Brass
- Brick
- Caulking
- Cement
- Ceramic Tile
- Cobalt
- Color Pigments
- Concrete, Artificial Stone
- Concrete, Reinforced
- Copper
- Dampproofing
- Expansion and Expansion Joints
- Feldspar
- Glass Block
- Glass, Laminated
- Hardware
- Insulating Materials
- Iron
- Lead Linoleum
- Magnesium
- Mesh and Wire Cloth
- Monel
- Nickel
- Paint
- Piling
- Plaster
- Plastics
- Radiation Protection
- Rubber
- Sandblasting
- Soldering
- Steel Pipe
- Steel, Structural
- Tin
- Vanadium
- Weatherstripping
- Wood
- Wood Siding
- Zinc

plus cross references (over 900) to help locate any material, process, finish, etc.

30-DAY FREE TRIAL OFFER AT SPECIAL PRE-PUBLICATION PRICE

REINHOLD PUBLISHING CORPORATION
Dept. M-919, 430 Park Avenue, New York 22, N. Y.

Send me ___ copy (copies) of Hornbostel's Materials for Architecture for 30 days' free trial at the special pre-publication price of $18.50 each. (Special price offer expires Dec. 31, 1961. List price of $20.00 prevails thereafter.)

- [] Purchase price enclosed
- [] Bill me (plus delivery charges)

NAME (please print)
ADDRESS
CITY & ZONE STATE

SAVE MONEY! Enclose total payment with order and Reinhold pays regular delivery charges. Same return privilege guaranteed. Please add 3% sales tax on N. Y. C. orders. Send check or money order only—do not enclose cash!
Saranspun is rapidly going into public places everywhere—hotels, restaurants, hospitals, institutions—installations where draperies are subjected to roughest treatment. Noteworthy for its strength and abrasion-resistance, Saranspun has a soft, linen-like hand that makes it wonderfully workable.

It may be laundered or dry-cleaned according to instructions.

It is available in modern and traditional prints as well as richly-textured solids. Why settle for anything less than Saranspun?

SARANSPUN WOVEN BY: J. P. STEVENS & CO., INC.
SARAN FIBERS PRODUCED BY THE FILAMENT AND YARNS DIVISION OF NATIONAL PLASTIC PRODUCTS COMPANY, INC.
ODENTON, MARYLAND
MANUFACTURERS OF NEVAMAR
BEAUTIFULLY BRIGHT for schools and commercial buildings. Truscon Aluminum Windows are offered in the most complete range of types and sizes—a design to complement every architectural style. Polished white bronze hardware. Tight-sealing vinyl weatherstripping around entire vent perimeters. Send for specifications.
DESIGNED WITH KIDS IN MIND

...Republic Steel Lockers

Begin with crisp, modern lines. Add functional design features—extra roominess, free-flow ventilation, snag-proof construction, positive latching. Built to last with double-leaf 2" hinges, Bonderizing, baked-on enamel finish.

The result: Republic Steel Lockers—the lockers that are designed with kids in mind—the lockers you can specify with full assurance that they'll stay new looking, perform beautifully for years to come.

COMPACT OR FULL-SIZED MODELS

Beautifully built for every type of school requirement, too. Republic lockers are offered in the most complete range of sizes and styles available anywhere. Pictured are three of the most popular types.

Single-tier lockers. Sizes up to 18" x 24" x 72" with a single door, or 24" x 24" x 72" with double doors.

Double-tier lockers. For limited space locations. Sizes up to 15" x 18" x 42".

Box lockers. Dimension variations depend on whether 3, 4, 5, or 6 tier styles are selected.

REPUBLIC STEEL CORPORATION
DEPT. PA-2225-A
1441 REPUBLIC BUILDING • CLEVELAND 1, OHIO

Please send additional information on:
☐ Republic Steel Lockers
☐ Free Locker Planning Assistance
☐ Republic ENDURO Stainless Steel
☐ Truscon Aluminum Windows

Name_________________________Title_________________________
Firm_________________________
Address_______________________
City__________________________Zone_____State__________
NOTICES

New Addresses

ENGINEERS JOINT COUNCIL, United Engineering Center, 345 E. 47 St., New York 17, N.Y.

LEWIS S. GOODFRIEND AND ASSOCIATES, Acoustical Engineers, 48 Notch Road, Little Falls, N.J.

HOWARD R. MEYER, Architect, 2727 Oak Lawn Ave., Dallas 19, Texas.

EDWARD H. NOAKES & ASSOCIATES, Architects, 7805 Old Georgetown Road, Bethesda 14, Md.

Elections, Appointments

JAMES V. BONOMO, named Supervisor of Drafting Room Production in firm of LEACH, CLEVELAND & ASSOCIATES, Architects-Planners-Engineers, Los Angeles, Calif.

CARL S. MEYER, appointed Architectural Consultant for ALLIED CHEMICAL'S BARRETT DIVISION, New York, N.Y.

WILLIAM E. COX, appointed to architectural design staff in firm of THE BALLINGER COMPANY, Architects and Engineers, Philadelphia, Pa.

Crichton C. Callaway, Jr., named Vice-President in charge of Office Building Division in firm of CHARLES LUCKMAN ASSOCIATES, Planner-Architects-Engineers, Los Angeles, Calif.

SHERIDAN G. STANTON, appointed Staff Designer of Architectural Products Division in firm of GLADDING, McBean & Co., Los Angeles, Calif.

HENRY VAN LOON joined the firm of PERKINS & WILL, Architects, White Plains, N.Y.

Expansion

WELTON BECKET AND ASSOCIATES announces a major expansion of the Houston, Texas, office. The 4000-sq-ft addition will provide space for 40 additional draftsman and six project architects.

P/A Congratulates . . .

ROBERT F. HAYES, appointed to Sales Inc., a division of AERONCA CORPORATION, Promotion in firm of BUENDORF-STACEY, TION.

Cramer W. LaPierre elected Executive Vice-President in firm of GENERAL ELECTRIC COMPANY.

Gerald L. Phillippe elected President, Robert L. Skaggs, promoted to manager of form and metal roof deck sales in firm of GRANCO STEEL PRODUCTS COMPANY.

GILBERT L. SMITH, appointed General Sales Manager in firm of REFLECTAL CORPORATION.

J. P. WEYERHAUSER, III, made Manager of Marketing Research and Merchandising of WEYERHAUSEN COMPANY.

DUDLEY DE SOUSA, named Manager of the Commercial Products Division in firm of GRANT PULLEY & HARDWARE CORPORATION.

ROBERT T. EAKIN, appointed Vice-President in the Engineering and Construction Division of KOPPER COMPANY, INC.

Fred H. Edgar, appointed Division Vice-President, Aluminum Sales, of the Metals Division in firm of OLIN MATHIESON CHEMICAL CORPORATION, succeeding DEREK RICHARDSON, who has been named Vice-President, Marketing, of OLIN's Chemicals Division.

WHEN YOU CHANGE YOUR ADDRESS

Please report both new and old addresses directly to P/A five weeks before you move.

PROGRESSIVE ARCHITECTURE
Circulation Department
430 Park Avenue, New York 22, N.Y.

CONSTRUCTION DETAILS

For LCN Overhead Concealed Door Closer Shown on Opposite Page

The LCN Series 200-CP Closer's Main Points:
1. Efficient, full rack-and-pinion, two-speed control
2. Mechanism entirely concealed; arm disappears into door stop on closing
3. Hydraulic back-check prevents door's being thrown violently to damage walls, furniture, door, hinges, etc. Door may open 130°, jamb permitting
4. Hold-open (optional) set at any one of following points: 85°, 90°, 100° or 110°
5. Easy to regulate without removing any part
6. Used with either wood or metal doors and frames

Complete Catalog on Request—No Obligation
or See Sweet's 1961, Sec. 19e/Lc

LCN CLOSERS, PRINCETON, ILLINOIS
A DIVISION OF SCHLAGE LOCK COMPANY
Canada, LCN Closers of Canada, Ltd., P. O. Box 100, Port Credit, Ontario

For more information, turn to Reader Service card, circle No. 351
Modern Door Control by LCN - Closers Concealed in Head Frame

CITY HALL, LANSING, MICHIGAN

LCN CLOSERS, PRINCETON, ILLINOIS

A DIVISION OF SCHAGE LOCK COMPANY

Construction Details on Opposite Page

Lee Black and Kenneth C. Black, Architects
NEW
BARRETT
URETHANE
ROOF INSULATION
PROVED TO BE
TWICE
AS EFFICIENT
AS ITS
NEAREST
COMPETITOR!

And these 7 benefits will tell you why:

1. BARRETT urethane roof insulation has a C value of .13* (average values of its competitors range from .27 to .40).
2. BARRETT urethane is recommended where roof insulation requirements must be the best (such as air conditioned, cold storage and electrically heated buildings).
3. BARRETT urethane, sandwiched between two Barrett asphalt coated and impregnated base sheets, provides roofers

*Insulating efficiency based on 1 inch of foam plus roofing base sheets.
NEW
BARRETT
URETHANE
ROOF INSULATION
PROVED TO BE
TWICE
AS EFFICIENT
AS ITS
NEAREST
COMPETITOR!

with a walk-on, work-on surface (also, helps the urethane retain its insulating value). 4. The only urethane designed for roof insulation. 5. Does not absorb water. 6. Won't bend, buckle, or melt when mopped with hot pitch or asphalt. 7. Acceptable as a base for Barrett bonded roofs! If interested in free samples and more information, write in today!

BARRETT DIVISION
40 Rector Street, New York 6, N. Y.

DECEMBER 1961 P/A

For more information, turn to Reader Service card, circle No. 322

207
ELECTRIC HOT WATER HEAT

TO 2,500,000 B.T.U.

OUTPUT

PRECISION

ELECTRIC HOT WATER HEATING BOILER

COMPLETE UNIT READY FOR INSTALLATION

with circulation hot water system and water chiller for year-round air conditioning.

CONVERSION EASILY ACCOMPLISHED

where other type fuels now used. Suited for home, churches, motels, apartments, hotels, hospitals, commercial buildings, swimming pools, snow melting and domestic hot water for large users. Temperature range — 60 to 250 degrees. Equipped with Sequence and Proportional Controls when desired.

• Every unit tested and inspected 40,948 to 2,500,000 B.T.U. Output.

• All Boilers meet the requirements of the ASME Boiler and Pressure Vessel Code. Natl. Board approved.

No chimney! No odors! No flame! No ducts! No noise!

Write for complete specifications and prices

STACOR EQUIPMENT CO

Manufacturers of Lifetime Quality Drafting Equipment for Schools, Libraries & Industry

341 Emmet Street, Newark 14, N.J. • Bigelow 2-6600

For more information, turn to Reader Service card, circle No. 370

planning a school or library?

get help from these 2 STACOR equipment catalogs

They show space-saving, economical, attractive units... ways in which to use them... features that have made the Stacor name famous for well designed, well made, well accepted equipment.

WRITE, WIRE, PHONE FOR YOUR COPIES TODAY:

from denmark

System Cado

a new approach
by poul cadovius

to designing interiors
write for catalog
or see the first U.S. installation at

System Cado

1130 Third Avenue, New York

other locations:

Royal System, 9400 St. Lawrence Blvd., Montreal, Canada
S. Christian of Copenhagen, Inc., Jackson & Sansome, San Francisco

For more information, turn to Reader Service card, circle No. 375
Here Shadowal Block adds its special accent to a long unbroken wall.

THE WONDERFUL WIZARD OF WALLS: What looks like magic, is really quite simple. Shadowal Block has the pattern built right into the face of the block itself. Ingenious wall patterns, practical as they are beautiful, can be fashioned from just one basic unit. Need some help? Any NCMA member block producer can supply details. And Shadowal Block is available only through him.
When the architectural firm of Leo A. Daly designed their
own building, they specified...

GAS and CARRIER absorption refrigeration for full-time efficiency in year-round air conditioning

The Leo A. Daly Company, having specified gas air conditioning for many of their clients, took their own advice when they designed their spectacular new home offices. For summer cooling, they chose Carrier absorption refrigeration, energized by the same gas-fired boiler that heats in winter.

This puts their gas-fired boiler on a year-round paying basis. Full-time efficiency. The Carrier unit converts low pressure hot water into chilled water for cooling. Operation is quiet, vibration-free, automatic. And thrifty gas keeps fuel costs low.

New high in efficiency at partial loads! An exclusive Carrier solution-capacity-control gives partial load efficiency unsurpassed by any other type of cooling system. Add to this all the advantages of modern gas air conditioning: clean, circulated air, safety, dependability and unbeatable fuel economy.

For full-time efficiency in year-round air conditioning, specify gas and Carrier absorption refrigeration. Call your local Gas Company, or write Carrier Air Conditioning Company, Syracuse 1, N. Y.

American Gas Association

"I like the way this unit automatically adjusts itself to varying loads. I really can't think of an easier system to maintain," says Fred Lodes, Stationary Engineer, shown here at the 80-ton, gas-operated Carrier absorption unit, Leo A. Daly Building, Omaha, Nebraska.

FOR HEATING & COOLING
GAS IS GOOD BUSINESS!
THIS IS THE HARDWARE THAT TOOK THE JAMMING, STICKING, RUBBING, BINDING, CLUTTER, CLATTER & "WHAT'S THE MATTER?" OUT OF DRAPERY INSTALLATIONS.

GRANT 2200

GRANT PULLEY & HARDWARE CORPORATION
Eastern Division/49 High St., West Nyack, N.Y. • Western Division/944 Long Beach Ave., Los Angeles 21, Calif.
Sliding Door Hardware • Drawer Slides • Drapery Hardware Pocket Frames • Pulls • Closet Rods • Special Sliding Hardware

Pinhole Downlights with Designed Optics by Kliegl
...the Great Name in Lighting!

Designed optics ... properly controlled accent and picture lighting from an inconspicuous light source. Kliegl Pinhole Downlights are equipped with adjustable four-way shutters and are fully focussable. They feature a precision, three lens, optical system for high efficiency illumination and sharp beam control without spill light. Every feature of this outstanding Kliegl unit has been specifically designed to enhance and dramatize the natural beauty in a picture or other objets d'art.

Plan to use Kliegl Pinhole Downlights in your next project. In the meantime, for complete information, write for our Architectural Lighting Catalog.

Kliegl BROS.
Universal Electric Stage Lighting Co., Inc.
321 W. 50th St., New York 19, N.Y.

 universalelectricstage.com
Nickel Stainless Steel arch at New York International Airport makes a first impression last.

In they come to Idlewild...tourists, businessmen, royalty and refugees.

One of the first sights to catch their eye is this gleaming parabola of Nickel Stainless Steel.

To the visitor, this majestic structure is an outstanding foretaste of U.S. architecture. To the businessman it suggests the exciting things being done today with Nickel Stainless Steel in modern construction.

What's more, with every re-entry through the International Arrival Building, their favorable first impressions will be reinforced...for years to come.

Perhaps this is the most important fact to remember about architectural forms of Nickel Stainless Steel. Their beauty, their utility are lasting...almost everlasting.

Take the 26,000 square feet of Nickel Stainless Steel sheet that roofs this arch. Ten, twenty, fifty...who knows how many...years from now it will still look beautiful, still defy all that the elements and industrial atmospheres can do to corrode it.

And hardly a moment will pass during all those years that the properties of this Nickel Stainless Steel roofing will not contribute to the beauty and protection of the building. It has the strength to resist wet snow loads and high wind stresses. It has a coefficient of expansion that keeps it well adjusted to contiguous materials, brick, stone, cement. It resists corrosion by leaching mortars. It's virtually self-cleaning in rain. Never needs painting, lacquer, varnish, wax, cleaning nor maintaining, and never shows white corrosion products.

All this with a material so strong, and with such a favorable modulus of elasticity that it may be used in light gauges with safety at low cost!

What are the architectural forms of Nickel Stainless Steels? How can you make the most of them? Get the answers in our new booklet "Architects Guide to Nickel Stainless Steel Flashings."

THE INTERNATIONAL NICKEL COMPANY, INC.
67 Wall Street New York 5, N.Y.
MADE FOR EACH OTHER
THIS CHAIR
THIS DESK
The smooth, clean, sharp lines of an outstanding desk deserve complimentary lines in the chair to which it is mated. This necessary co-ordination is the reason for the new Doric Chair. It was made for the Doric Desk.

The same combination of simple line and plane with top quality craftsmanship is to be found in both chair and desk. Both have a wide, tasteful range of finishes: desk tops of fine grained woods, marble or modern plastics; chair arms finished in wood or matched upholstery, with an assortment of high fashion color fabrics or leathers.

A fine range of office components completes the look of contemporary design—the look that won Doric the 1960 AID Citation of Merit for design achievement. The CJ dealer listed in your yellow pages can give you the complete details on Doric—or write to Corry Jamestown Corporation, Department FA-121, Corry, Pennsylvania.

For more information, turn to Reader Service card, circle No. 387
ARCHITECTURE—Permanent position for gradu­­uate architect, age 35, with graduate school background in production, working experience and knowledge of specifications and some design. Position open immediately with the Navajo Indian Tribe at Farmington, New Mexico. Send information including education, experience, personal qualifications and salary requirements to Head, Design & Construction Department, Navajo Indian Tribe, Window Rock, Arizona.

ARCHITECTURAL DRAFTSMAN— Prefer one that has had some hospital experience. Send reply to 932 Royster Building, Norfolk 10, Virginia, giving age, education, experience, references and salary expected.

ARCHITECTURAL JOB CAPTAINS—DETAILERS—DRAFTSMEN—Permanent positions with established architectural firm doing contemporary architecture. Require graduates of accredited architectural schools with minimum of two years experience under registered architects. Send resume and photograph to Franklin, Curtis & Coleman, 150 Barr Street, Lexington, Kentucky.

ARCHITECTURAL SPECIFICATIONS WRITER—Permanent position now available with established architectural firm for thoroughly qualified and experienced man. Moving minimum of two years experience under registered architect. Salary $140.00 per month. Salary open. Resume and photo to G. Melzer, P. O. Box 793, Cincinnati 1, Ohio.

STRUCTURAL ENGINEER—Architectural, Civil, or Mechanical Engineer interested in conducting research on uses of light-gage steel in commercial and residential structures and associated building applications. Work involves development of program, design analysis, production techniques and performance testing. Background in research or product development desirable. M.S. or B.S. degree required. Large Research Laboratory, Pittsburgh, Pennsylvania. Submit resume and salary requirements to Box #310, PROGRESSIVE ARCHITECTURE.

ARCHITECT—Own office in Queens, N. Y., licensed Eastern States, extensive experience in office production and coordination of all trades, can produce excellent working drawings himself, seeks association or partnership with active small or expanding office in the Metropolitan area. Box #312, PROGRESSIVE ARCHITECTURE.

ARCHITECT—Ten years experience as creative designer with large architectural firm with executive capacity as chief of design; strength of professional ability at sketch level. Seeking associateship or partnership in contemporary minded Midwest firm. 36, married, family, experienced in design and construction. Registered in two Midwest States. Dossier upon request. Box #314, PROGRESSIVE ARCHITECTURE.

ARCHITECT—31, degree, almost married. Returning to U.S. after year of work and study in Brazil. Looks for creative position. Seven years of varied and international experience. West Coast. Johan Van Lenger-Rua Sa Ferreira 228/921, Rio de Janeiro, Brazil.

ARCHITECT—35, registered in Conn., N.CARB, Master of Arch. Harvard University. Married, family. Experienced in design and working drawings for wide variety of projects with top firms. Desires responsible position leading to associateship or partnership within five years. Will consider relocation anywhere. Resume on request. Box #315 PROGRESSIVE ARCHITECTURE.

ARCHITECT—38, registered in Indiana, Illinois, Kansas, Missouri. Over 10 years experience in all phases of professional practice. Desires responsible position leading to associateship or partnership. Will consider relocation anywhere. Resume on request. Box #316 PROGRESSIVE ARCHITECTURE.

ARCHITECTURAL DRAFTSMAN—Desires position with Architect in Florida or Southeast United States. 11 years experience which includes that of job captain on several projects, checking shop drawings, running levels on building sites, and field supervision. Can give excellent references including present employer. Box #317, PROGRESSIVE ARCHITECTURE.

ARCHITECTURAL DRAFTSMAN—36, degree in architecture with well rounded experience in Europe & North America, desires position in small or medium size office. East Coast location preferred. Resume of experience on request. Box #318, PROGRESSIVE ARCHITECTURE.

EXPERIENCED ARCHITECT—Registered, graduate in Architecture & Liberal Arts, several years experience assuming full responsibility for medium size offices, including client contact work. Interested in responsible con-

as explained by the architect:

"The Northern Hard Maple flooring in the gymnasium has been satisfactory in every way. It shows no signs of wear and we would not hesitate to give it highest recommendation. It is truly a beautiful floor and we have had only favorable comments on it."

—L. W. Slack

consensus of coaches (90-to-1):

"MAKE YOUR PLAYING FLOOR MAPLE OR YOU MAKE A MISTAKE!"

Write for Coaches' Survey Summary, available to all Architectural and School People . . . and for MFMA Revised Specifications Manual.

See SWEET'S 13j-Ma.

Beneath the genial glow of a Northern Hard Maple floor are time-proved virtues, enormously important to coaches and players, to building committees, to taxpayers. No other floor, natural or synthetic, has ever matched this finest floor that grows. It is fast under foot, non-slippery, warm and dry. Its brightness emphasizes court lines, for sharper peripheral vision. It's ultra-smooth, for least-possible abrasion in case of tumbles. It's "live," not "dead"—has the true resilience for better bounce, greater resistance to scuffs, scars or dents that gouge or splinter lesser floors.

With easy, routine maintenance, a floor of MFMA Northern Hard Maple will outlast the building ("always a new floor underneath"). In standard strip for nailing and in block and patterned designs for laying in mastic. Write —

MAPLE FLOORING MANUFACTURERS ASSOCIATION
583 Pure Oil Building • 35 E. Wacker Drive • Chicago 1, Illinois

NORTHERN HARD MAPLE
BEECH and BIRCH

For more information, turn to Reader Service card, circle No. 354
Just published! A fascinating and important guide to the industrialization of building techniques

THE TURNING POINT OF BUILDING
Structure and Design

by KONRAD WACHSMANN

Widely hailed throughout Europe, this significant new book is a thorough exposition of mass prefabrication techniques, and the new concepts of planning and building which must be mastered to realize their full potential. Written by a pioneer in prefabrication building techniques, the book will prove of great value to architects, builders, and engineers, as well as to all industries interested in the exciting future of today's revolutionary new construction methods.

PART ONE describes the absorption of industrial techniques into building, accompanied by striking illustrations of the Crystal Palace, the Eiffel Tower, the Brooklyn Bridge, and other important nineteenth-century structures that foreshadowed the new techniques.

PART TWO is devoted to modular coordination and standardization in relation to industry, and stresses what building must become if it is to realize the exciting possibilities of industrialization. Comprehensive chapters cover the new machines, the new factory techniques, and automation; the effect of the new production techniques on site organization and on labor; the engineering aspects of incorporating heating, electrical installations, plumbing, etc. into modern structures; and some of the new techniques of building construction.

PART THREE stresses the adaptation of training, study, and research to emphasize teamwork, and describes and illustrates a number of projects conceived in this "team spirit," including the building panel system, the partition wall system, and space-frame structures.

"A truly modern building simply cannot be built with conventional means," writes Prof. Wachsmann. "Only when [conventional] attitudes have been put aside and the new working tools now offered brought under complete control, will it be possible for buildings to emerge as works of art, born of rational premises, true knowledge, and the genius of the master." This stimulating and indispensable book—lavishly illustrated with both photographs and drawings—surveys the many problems to be solved, and helps point the way to possible solutions.

REINHOLD PUBLISHING CORPORATION
Dept. M-901, 450 Park Avenue, New York 22, N.Y.

Send me a copy of Wachsmann's THE TURNING POINT OF BUILDING for 30 days' free trial (in U.S.A. only) under the following terms:

□ Purchase price enclosed (Reinhold pays regular delivery charges)

□ Bill me (plus delivery charges)

NAME__________________________

ADDRESS__________________________

CITY & ZONE__________________________ STATE__________________________

SAVE MONEY! Enclose $15.00 with order and Reinhold pays regular delivery charges. Some return privilege guaranteed. Please add 3% sales tax on N.Y. C. orders. Send check or money-order only—do not enclose cash!
New York's Summit Hotel

A Creative Design in Monolithic Reinforced Concrete

Monolithic reinforced concrete helped achieve this dramatic, 21-story—800-room, contemporary addition to Manhattan’s hotel scene. By utilizing this versatile construction method, the architects were able to create the unusual S shaped facade and provide greater room flexibility. For every type of building, monolithic reinforced concrete offers unlimited structural advantages. On your next project, utilize the superior design features of this extremely creative material.
<table>
<thead>
<tr>
<th>Company</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerofin Corp.</td>
<td>184</td>
</tr>
<tr>
<td>Air Wall Corp., Subsidiary of Richards-Wilcox</td>
<td>90</td>
</tr>
<tr>
<td>Allegheny Ludlum Steel Corp.</td>
<td>37 thru 44</td>
</tr>
<tr>
<td>Allied Chemical Steel Corp., Barrett Division</td>
<td>206, 207</td>
</tr>
<tr>
<td>American Gas Association</td>
<td>14, 36, 210, 211</td>
</tr>
<tr>
<td>American Olean Tile Co.</td>
<td>46, 47</td>
</tr>
<tr>
<td>American Telephone and Telegraph Co.</td>
<td>181</td>
</tr>
<tr>
<td>Anaconda American Brass Co.</td>
<td>171</td>
</tr>
<tr>
<td>Anemostat Corp. of America</td>
<td>26</td>
</tr>
<tr>
<td>Armstrong Cork Co., Building Products Div.</td>
<td>18, 19</td>
</tr>
<tr>
<td>Armstrong Cork Co., F/A Roofing</td>
<td>65, 66</td>
</tr>
<tr>
<td>Baldwin-Ehret-Hill, Inc.</td>
<td>191</td>
</tr>
<tr>
<td>Barrett Division, Allied Chemical Corp.</td>
<td>206, 207</td>
</tr>
<tr>
<td>Bell & Gossett Co.</td>
<td>175</td>
</tr>
<tr>
<td>Bethlehem Steel Co.</td>
<td>102</td>
</tr>
<tr>
<td>Bradley WashFountain Co.</td>
<td>79</td>
</tr>
<tr>
<td>California Redwood Association</td>
<td>15</td>
</tr>
<tr>
<td>Ceco Steel Products Corp.</td>
<td>84, 85</td>
</tr>
<tr>
<td>Concrete Reinforcing Steel Institute</td>
<td>219</td>
</tr>
<tr>
<td>Corning Glass Works</td>
<td>187</td>
</tr>
<tr>
<td>Corry-Jamestown Corp.</td>
<td>214, 215</td>
</tr>
<tr>
<td>Cupples Products Corp.</td>
<td>176, 177</td>
</tr>
<tr>
<td>Day-Brite Lighting, Inc.</td>
<td>100, 101</td>
</tr>
<tr>
<td>Dover Corp., Rotary Lift Division</td>
<td>2, 3</td>
</tr>
<tr>
<td>Dow Chemical Co.</td>
<td>94, 95</td>
</tr>
<tr>
<td>Duriron Co., Inc.</td>
<td>4</td>
</tr>
<tr>
<td>Eastern Products Corp.</td>
<td>97</td>
</tr>
<tr>
<td>Facing Tile Institute</td>
<td>30</td>
</tr>
<tr>
<td>Federal Seaboard Terra Cotta Corp.</td>
<td>54</td>
</tr>
<tr>
<td>Fenestra, Inc.</td>
<td>10 thru 13</td>
</tr>
<tr>
<td>Fleet of America, Inc.</td>
<td>90</td>
</tr>
<tr>
<td>Flexicore Co., Inc.</td>
<td>96</td>
</tr>
<tr>
<td>Gildorama Division, Whizzer Industries</td>
<td>196</td>
</tr>
<tr>
<td>Glynn-Johnson Corp.</td>
<td>45</td>
</tr>
<tr>
<td>Goodrich, B. F., Co.</td>
<td>1</td>
</tr>
<tr>
<td>Grant Pulley & Hardware Corp.</td>
<td>212</td>
</tr>
<tr>
<td>Guth, Edwin F., Co.</td>
<td>3rd Cover</td>
</tr>
<tr>
<td>Hall-Mack Company</td>
<td>17</td>
</tr>
<tr>
<td>Hansson, Elor, Inc.</td>
<td>81</td>
</tr>
<tr>
<td>Haws Drinking Faucet Co.</td>
<td>174</td>
</tr>
<tr>
<td>Hillyard Chemical Co.</td>
<td>87</td>
</tr>
<tr>
<td>Hopes Windows, Inc.</td>
<td>172</td>
</tr>
<tr>
<td>Hopkins, John Press</td>
<td>221</td>
</tr>
<tr>
<td>Inland Steel Products Co.</td>
<td>31</td>
</tr>
<tr>
<td>International Nickel Co., Inc.</td>
<td>213</td>
</tr>
<tr>
<td>Johns-Manville Corp.</td>
<td>98, 99, 182, 183</td>
</tr>
<tr>
<td>Johnson Service Co.</td>
<td>103</td>
</tr>
<tr>
<td>Jones & Laughlin Steel Corp.</td>
<td>192, 193</td>
</tr>
<tr>
<td>Keystone Steel & Wire Corp.</td>
<td>88, 89</td>
</tr>
<tr>
<td>Kinnear Mfg. Co.</td>
<td>186</td>
</tr>
<tr>
<td>Kliegl Brothers</td>
<td>212</td>
</tr>
<tr>
<td>LCN Closers, Inc.</td>
<td>204, 205</td>
</tr>
<tr>
<td>Lead Industries Association</td>
<td>57</td>
</tr>
<tr>
<td>Lehigh Portland Cement Co.</td>
<td>190</td>
</tr>
<tr>
<td>Libby-Owens-Ford Glass Co.</td>
<td>194, 195</td>
</tr>
<tr>
<td>Line Material Industries, Division of McGraw-Edison Co.</td>
<td>69</td>
</tr>
<tr>
<td>Liskey Aluminum, Inc.</td>
<td>93</td>
</tr>
<tr>
<td>Malhon, R. C., Co.</td>
<td>61</td>
</tr>
<tr>
<td>Maple Flooring Mfrs. Assn.</td>
<td>217</td>
</tr>
<tr>
<td>Marvin Electric Mfg. Co., Inc.</td>
<td>77</td>
</tr>
<tr>
<td>McPhileben Lighting Co.</td>
<td>196</td>
</tr>
<tr>
<td>Miller, Howard Clock Co., Built-In Div.</td>
<td>93</td>
</tr>
<tr>
<td>Minnesota Mining & Mfg. Co.</td>
<td>59</td>
</tr>
<tr>
<td>Mississippi Glass Co.</td>
<td>7, 9</td>
</tr>
<tr>
<td>Moore, P. O., Inc.</td>
<td>188</td>
</tr>
<tr>
<td>Mueller Brass Co.</td>
<td>70</td>
</tr>
<tr>
<td>Natco Corp.</td>
<td>189</td>
</tr>
<tr>
<td>National Association of Dealers and Distributors</td>
<td>6</td>
</tr>
<tr>
<td>National Concrete Masonry Assn.</td>
<td>209</td>
</tr>
<tr>
<td>National Plastic Products Co.</td>
<td>201</td>
</tr>
<tr>
<td>National Terrazzo & Mosaic Assn.</td>
<td>197</td>
</tr>
<tr>
<td>Overhead Door Corp.</td>
<td>193, 199</td>
</tr>
<tr>
<td>Overly Mfg. Co.</td>
<td>22, 23</td>
</tr>
<tr>
<td>Pass & Seymour</td>
<td>91</td>
</tr>
<tr>
<td>Pittsburgh-Corning Corp.—Foamglas</td>
<td>62, 63</td>
</tr>
<tr>
<td>Pittsburgh Plate Glass Company</td>
<td>24, 25</td>
</tr>
<tr>
<td>Portland Cement Association</td>
<td>173</td>
</tr>
<tr>
<td>Precision Parts Corp.</td>
<td>200</td>
</tr>
<tr>
<td>Reinhold Publishing Corp.</td>
<td>93, 200, 218</td>
</tr>
<tr>
<td>Republic Steel Corp.</td>
<td>202, 203</td>
</tr>
<tr>
<td>Robertson Mfg. Co.</td>
<td>185</td>
</tr>
<tr>
<td>Roeblings, John A. Sons, Div. of Colorado Fuel & Iron Corp.</td>
<td>196</td>
</tr>
<tr>
<td>Rohm & Haas Co., Plastics Division</td>
<td>21</td>
</tr>
<tr>
<td>Rotary Lift Division, Dover Corp.</td>
<td>2, 3</td>
</tr>
<tr>
<td>Royal System</td>
<td>208</td>
</tr>
<tr>
<td>Sanynetal Products Company, Inc.</td>
<td>169</td>
</tr>
<tr>
<td>Sloan Valve Co.</td>
<td>167</td>
</tr>
<tr>
<td>Sonoco Products Co.</td>
<td>178</td>
</tr>
<tr>
<td>Southern Desk Co.</td>
<td>8</td>
</tr>
<tr>
<td>Stacer Equipment</td>
<td>200</td>
</tr>
<tr>
<td>Stelco Joint Institute</td>
<td>35</td>
</tr>
<tr>
<td>Studios of George L. Payne</td>
<td>91</td>
</tr>
<tr>
<td>Summitville Tiles, Inc.</td>
<td>2nd Cover</td>
</tr>
<tr>
<td>Thiokol Chemical Corp.</td>
<td>28, 29</td>
</tr>
<tr>
<td>Torjesen, Inc.</td>
<td>72</td>
</tr>
<tr>
<td>Trade Wind</td>
<td>188</td>
</tr>
<tr>
<td>Trinity Div., General Portland Cement Co.</td>
<td>Back Cover</td>
</tr>
<tr>
<td>United States Gypsum Co.</td>
<td>32, 33</td>
</tr>
<tr>
<td>United States Plywood Corp.</td>
<td>179, 180</td>
</tr>
<tr>
<td>Universal Atlas Cement Co., Div. of U.S. Steel Corp.</td>
<td>27</td>
</tr>
</tbody>
</table>

DECEMBER 1961 P/A
SALES, SERVICE, AND CIRCULATION

Progressive Architecture
H. Victor Drum
William R. Evans, Jr.
Sam H. Patterson, Jr.
Joseph M. Scanlon
David N. Whitcombe
Sue Feldman

New York Office
430 Park Ave., New York 22, N.Y.
Murray Hill 8-8600
Robert L. Bassinette
Donald W. Thompson

Pittsburgh Office
Porter Bldg., 601 Grant St., Pittsburgh 19, Pa.
Atlantic 1-9421
Albert E. Mcclimans

Cleveland Office
East-Ohio Building, 1717 E. 9th St., Cleveland 14, Ohio
Prospect 1-4011-12-13
John F. Kelly

Chicago Office
111 W. Washington St., Chicago 2, Ill.
Randolph 6-8497
Charles A. Ullrich
Ralph E. Petersen, Jr.
Carl J. Nolte, Jr.

West Coast Advertising Representatives
Duncan A. Scott & Company
85 Post St., San Francisco 4, Calif.
Garrison 1-7950
Duncan A. Scott, Cyril B. Jobson

Duncan A. Scott & Company
1901 W. 8th St., Los Angeles 57, Calif.
Dunkirk 8-6451
Peter Schulz

Southern Advertising Representative
Robert L. Watkins Associates
505-305 Peachtree Bldg., Atlanta 8, Ga.
Trinity 4-6427
Robert L. Watkins

Executive-Administrative

David Bradford Wilkin
Thomas H. Creighton, FAIA
H. Victor Drum

Mid-century Architecture in America

Honor Awards of the American Institute of Architects, 1949-1961

Foreword by Philip Will, Jr., FAIA

Edited and with an Introduction by Wolf Von Eckardt

256 pages 315 photographs 38 plan drawings 8½" x 11" $12.50

The annual AIA Honor Awards have become the national yardstick for excellence in American architecture. 1961 marks the twelfth year of these Awards, and here for the first time they are published in collected form. Over 200 buildings (54 Honor Awards and 174 Awards of Merit) are shown in stunning photographs and plan drawings: the selection is truly representative of the achievement of modern architecture in America. All building categories are represented in interpretive photos by the best architectural photographers, and a great deal of care has gone into the planning and printing of this handsome volume.

Order from your bookstore or:

THE JOHNS HOPKINS PRESS
Baltimore 18, Maryland
The Nature of Cities is a subject that will be of increasing concern to the architectural profession as it moves more and more into the design of large urban areas in addition to the design of individual buildings. And the nature of cities is the subject of much discussion and debate at the present time. It seems to me that there are two risks facing the architect-planner: one, that he might arbitrarily decide what seems best to him as an urban environment, and foist an unconsidered solution on a citizenry that doesn't seem to care much right now what sort of surroundings it lives in; two, that he might confuse present use for proper use, and insist on maintaining intolerable conditions because "this is the way a city is."

This is not a new problem in architectural design, at any scale. The development of a program, based on a thorough analysis of the way a given space is going to be used, is the normal first step in any design problem. There are always the same two risks I mentioned in the first paragraph: proposing a new, presumably better way to use the space without sufficient objective study; and being unduly influenced by the way the client tells you he uses the space right now. The trick is to find a way to progress (how, otherwise, could schools, hospitals, office buildings, have advanced beyond their 19th-Century forms?) without losing the lessons of history and experience. Most architects reject the role of "giving the client what he wants" (the client usually wants what he has been used to, or what he has seen someone else have) when it is a problem of an individual building; but in city planning, a new and difficult field, they are often tempted to do just that.

There are plenty of sociologists, professional and amateur, to tell us how a city works. The great contribution architects can make to the field of urban planning, it seems to me, will be to devise ways for cities to work better. So the question, "What is the nature of a city?" becomes a terribly important one. Whether the character of a city, as contrasted with nonurban communities, is Megalopolis, a center of culture, a beehive of diverse activities, a series of contrasts of open and closed spaces, an opportunity for unity, a building up from low to high buildings, an aggregation of tall buildings separated by greenery, a series of corridor streets connecting nuclei, a criss-cross of streets and avenues existing in their own right—these are interesting, debatable, unresolved questions to which a great deal of design imagination could be applied right now.

Design imagination. The greatest risk, I think, is to be frightened by the magnitude of the problem into doing obvious things—what the client wants. And the problem is magnified not only by its physical size, but also by the diversity of types, interests, and ways of life of its inhabitants. I would agree to just one premise in the programming of a city: it must provide many productive ways to live. Jane Jacobs, in her book The Death and Life of Great American Cities, describes one way—the way she likes, which is a busy, crowded, extroverted way. I prefer another: a more quiet, introspective manner of living and working in the city. I disagree with Jane's arguments only because she starts from the premise that hers is the only right way. I would hope that an ideal urban environment would let each of us—and many others, with different manners of living—find a satisfactory spot in the city.

There is no doubt that redevelopment plans have begun to fall too much into a pattern—a pattern of large-scale design, which can easily become monotonous. But the answer to that, I think, is not to eliminate planning, or to design to the living conditions that have grown up without planning, but to apply every bit of design talent and imagination of which the architects are capable to the finding of better ways—and many ways—to live in the 20th-Century city. The big job ahead is to discover the nature of the city that we can build—not the nature of the city that is falling apart all over the country.
Sure it looks good, but why specify it?

Gateway’s intrinsic beauty is obvious. But that’s only half the story. Here is the other half — engineering and construction features that make Gateway worthy of your specification. Gateway is not a wrap-a-round. The concave bottom actually hinges separately from the rugged 20-gauge steel ends. Simplifies relamping considerably — one strong panel, not an unwieldy basket, to hinge down.

The steel ends won’t warp; also they add extra rigidity to the fixture in continuous-row mountings, or as individual units. (No glue or piano wire holding it together.) The 4’ or 8’, one-piece tubular plastic side wings with capped ends (minimize dust and dirt from holding conventions therein) offer greater strength and lower side-brightnesses.

The concave Gratelite® bottoms (choice of Pris-moid® or Standard Gratelite) are solidly molded with built-in ultra-violet resistant additives. Both Gratelites feature 3/8” open cubicles — dust and dirt filter thru — doesn’t mar beauty.

All the steel parts, including the channel, are formed from electrolytic, zinc-coated and phosphatized steel.

There’s hardly any chance of their rusting regardless of humidity or climate. Each steel part is finished in the new super hard, super efficient Acrylic enamel. This is the finish automakers use, and say “never needs polishing”. Paint people tell us “it most closely approaches the physical properties of porcelain enamel”.

Of course, each unit includes a CBM/ETL Ballast, plus — we heat test Gateways to insure that ballast-case operating temperatures will not exceed 90°C in a 75°F room ambient temperature. (Add these last 13 words to every specification and watch competitors back away!)

Gateway is available in 2, 3 or 4 lamps — in the same “full-width” fixture — not a corridor looking unit in a carload.

For the final test, write us on your letterhead. We’ll have our salesman show you a “live” demonstration of Gateway. If you just don’t like salesmen, write us and we’ll send our Gateway Brochure. In either case, you’ll like Gateway, a fixture that proves itself.

THE EDWIN F. GUTH CO., 2615 WASHINGTON BLVD., BOX 7079, ST. LOUIS 77, MO.

For more information, turn to Reader Service card, circle No. 339
This is the recently completed Skelly Oil Building, Tulsa. The upper 15 stories are pre-cast concrete curtain wall panels made with grey, green and white aggregates and Trinity White portland cement. They are generally 4'6" x 5' and 4'6" x 8' in size.

The pierced grill surrounding the second floor is 20' high. Panels are 4' x 4' x 8'. White aggregate was used with the Trinity White.

The pre-cast exposed aggregate panels (Mo-Sai) and grilles were made by Harter Marblecrete Stone Co., Oklahoma City. Black & West, Tulsa, were the architects.

Ask for full color book, "Curtain Wall Panels and Facings." Address—111 West Monroe St., Chicago.