Armstrong gives you another reason to specify commercial Geometric patterns.

Now you can choose a vinyl floor for more than its durability. Armstrong New Era Vinyl Corlon® flooring lets you specify a totally new look in commercial floors. Because New Era is the only inlaid vinyl flooring with geometric designs.

So you get all the advantages of sheet vinyl flooring along with the option to use the small-scale geometric which works in almost any setting or a bolder design based on the popular hollow-square concept.

And there's a wide range of distinctive colorways that coordinate with contemporary interiors to insure New Era's harmonious relationship with your design.

New Era's wider widths give you fewer seams.

New Era is available in rolls 12' wide and up to 75' long, so it can be installed without seams in most rooms. And virtually seamless corridors are possible, too, with specially ordered 9'-wide rolls.

When seams can't be avoided, they can be chemically welded which protects against penetration by moisture and dirt. And results in a continuous flooring surface.

Fewer seams and wider widths mean faster installation in both new and remodeling jobs. And, in remodeling work, that translates to less downtime for the owner.

Good looks that keep looking good.

The high vinyl-resin content makes New Era more resistant to scuffing and damage than most vinyl floors. And most spills wipe right up. Regular maintenance is all that's needed to keep New Era looking its best.

If you want more specific reasons to specify New Era, just contact your local Armstrong representative. He'll show you samples, too. Or, for more information, write Armstrong, Dept. 0CFPA, P.O. Box 3001, Lancaster, PA 17604.
vinyl floors.
ARMSTRONG INTRODUCES COLORTONE™ CEILINGS FOR JUST PENNIES MORE THAN PLAIN WHITE

Today, commercial interiors increasingly reflect a new sense of warmth and an emphasis on color. Now, using new Cortega™ Colortone Ceilings, designers can bring natural colors to their interiors without adding a lot of expense.

Choose from four neutral shades. Or your design may call for the added drama of brown or black. Whichever color you select, Cortega Colortone gives it to you for just pennies more per square foot than ordinary white ceilings.

All six colors, shown below, are available in standard 2' x 4' lay-in panels. And 2' x 2' tegular-edged panels come in the four neutral shades. Coordinated grids are also available. Cortega's mineral fiberboard offers acoustical efficiency in an NRC range of .50 to .60, with the popular textured look of nondirectional fissures.

For a free booklet with more information about these colorful ceilings, write to Armstrong, Dept. 02NPA P.O. Box 3001, Lancaster, PA 17604. Or use the reader service number below.

You'll see how easy it is to add color to the ceiling without turning the bottom line red.
Editorial: Plans for the new year

Architectural design

45 Introduction: Thinking tall
Highrise buildings, which originated in the U.S., are found worldwide. Emphasis now is on form and structure analysis.

46 Form and circumstance
Current design is a break from the box; accompanying changing shape is an interest in surface texture.

50 Techniques: Structure and circumstance
Many factors influence the built form of tall buildings. Included are examples of several buildings under construction and the engineering answers to the designs.

58 Façade at right angles
Xerox Centre office tower in Chicago, for which C.F. Murphy Associates received a P/A citation in 1978, turns the corner in a sweeping curve, while the entrance maintains human scale.

64 A there in L.A.
Designed by Reibsamen, Nickels & Rex for builder Max Linder, the E.F. Hutton small office building relates to its neighbors, pedestrians, and the people who will work inside.

68 Graceful stylization
Canadian architect Jack Diamond has used bright orange moldings and curved glass offices to set the tone for Alcan Aluminium's corporate offices in Montreal. (By Susan Doublet)

72 On the square
Executive offices in New York, designed by Paul Segal Associates, are arranged like a collection of buildings around a piazza.

76 New Crystal Palace
The Crystal Cathedral for Garden Grove Community Church, by Johnson/Burgee, is a simple, elegant structure of white space frames and glass, enclosing soaring space. By Barbara Goldstein. An energy analysis of the building is included.

86 Shining brow
Copper Development Association's Sun/Tronic house by the Berkus Group architects is intended to operate to a large extent on solar energy systems, both active and passive.

Departments

7 Cover: A detail of the north side of Johnson/ Burger's Crystal Cathedral (p. 76) in Garden Grove, Ca. shows the massive pair of doors in open position. Photo: Marvin Rand.

10 Views
21 News report
40 In progress
95 Books
102 Products and literature
108 Building materials
112 Annual index

120 Job mart
120 Directory of advertisers
122 Reader service card
123 Loose subscription card

Job mart
Directory of advertisers
Reader service card
Loose subscription card

Penton/IPC
Progressive Architecture (USPS 185-880) is published monthly in Reinhold Publishing, A Division of Penton IPC, Philip H. Hubbard, Jr., President, Harry J. Martin, Vice-President, Penton IPC, Thomas L. Dempsey, Chairman, Sal F. Marino, President; N.N. Goodman, Jr., Benjamin L. Hummel, Joseph Lipka, Paul Rohick, Executive Vice-Presidents. Executive and editorial offices, 600 Summer St., Stamford, CT 06901 (203-548-7551).

Subscription information: Send all subscription orders, payments, and changes of address to Progressive Architecture, P.O. Box 90570, Cleveland, OH 44101 (216-686-0000). When filing change of address, give former as well as new address and zip code, and include recent address label if possible. Allow two months for change.

Publisher

Editor
John Morris Dixon, FAIA
Executive Editor
James A. Murphy, AIA
Managing Editor
Barbara McCarthy
Senior Editors
David A. Mortenson, Features, Books
Suzanne Steverson, Features
Assistant Editors
Barbara Rush, AIA, Technics
Associate Editor
Nancy Miller, Interior Design
Copy Editor
Virginia Chaitsfield
Editorial Assistants
Veronica Hartman
Kay Daffron

Graphics
George Coderre, Art Director

Contributing Editors
Norman Coplan, On the square
Josephine H. Drummond, William T. Lehman, AIA, FCSI, Windows, Walls
Barbara Goldstein, On the square

Correspondents
Esther McCoy, Los Angeles
Barbara Goldstein, Los Angeles
Sally Woodbridge, San Francisco
George McAue, St. Louis
Peter Papademetriou, AIA, Houston
Ralph Warber at, AIA, AIP, PE, Mimes
Stuart E. Cohen, AIA, Chicago
Carleton Knight III, Washington
Jon Hayes Carlsten, AIA, Santa Monica
Monica Pidgeon, London
Joanna Baymiller, Minneapolis

Publisher

James J. Hoiverman

Daniel H. Desimone, Business Manager
Louise Brischler, Administrative Assistant
Margaret McGrath, Sales Service
Wilma M. Virgil, Marketing Service
Nancy Lee Gallagher, Promotion Manager
Elizabeth A. Mercede, Promotion Coord.
Lyn Munley, Promotion Assistant
Vicki Nichol, Production Manager
Gloria Adams, Promotion Dir. of Circulation
Mary Ann Safko, Fulfillment Manager
Hetta Rizvi, Customer Service Manager

Penton/IPC
Progressive Architecture (USPS 185-880) is published monthly in Reinhold Publishing, A Division of Penton IPC, Philip H. Hubbard, Jr., President, Harry J. Martin, Vice-President, Penton IPC, Thomas L. Dempsey, Chairman, Sal F. Marino, President; N.N. Goodman, Jr., Benjamin L. Hummel, Joseph Lipka, Paul Rohick, Executive Vice-Presidents. Executive and editorial offices, 600 Summer St., Stamford, CT 06901 (203-548-7551).

Subscription information: Send all subscription orders, payments, and changes of address to Progressive Architecture, P.O. Box 90570, Cleveland, OH 44101 (216-686-0000). When filing change of address, give former as well as new address and zip code, and include recent address label if possible. Allow two months for change.

Publisher reserves right to refuse unqualified subscriptions. Professionals include architectural and engineering firms, manufacturers and engineers, and draftsmen employed in allied fields.

Subscription rates, payable in advance, are:

U.S. Canada Foreign
Professional
year $15 $18 $50
Nonprofessional
year $30 $35 $50
Single copy $6 $6.50 $7

Indexed in Art Index, Architectural Index, Engineering Index. Controlled circulation postage rates paid at Hartford, CT 06114. Volume LXXXI, No. 12. Printed in U.S.A. Copyright © 1980, Penton/IPC.

FACAP / 3100
WHEN THE NEW PHOENIX AIRPORT NEEDED A STREAMLINED CEILING, THE ONE-PIECE LOOK OF ARMSTRONG TRAVERTONE PROVED FIRST-CLASS.

A space-age facility like the Phoenix Sky Harbor International Airport needs a truly elegant ceiling to complement the beauty of its overall design.

So it was no surprise when the architects specified the look of Armstrong Highspire Travertone. Travertone's unique deep-etched surface gives the ceiling an elegant texture that enhances any space. And the distinctive design combines with a sharp square edge to help conceal seams and produce a streamlined monolithic look.

Travertone is made of fire-retardant mineral wool in four deep-etched patterns and six fissured designs. It's the concealed ceiling tile designed to conceal everything except the beauty of your design.

For more information, see Sweet's General Building File 9.1, or write Armstrong, Dept. 08NPA, P.O. Box 3001, Lancaster, PA 17604.

Circle No. 312 on Reader Service Card
The Eggcrate Ceiling: One of a cleanly detailed new group of Ceiling Systems which brings the warmth and beauty of natural wood to contemporary interiors. Modular units are designed for simple installation in standard T-bar suspension systems and feature easy access to the plenum above. Available in fire-rated materials and finishes. Forms & Surfaces Box 5215 Santa Barbara, CA 93108 (805) 969-4767 969-5033
Editorial

Plans for the new year

On the brink of a year in which almost anything may happen, P/A confronts un­predictability with an editorial calendar that identifies key design and technics fea­tures for 1981.

The issue you are holding began to evolve in the spring of 1979—before the Iran hostage crisis or the recent election campaign, before the Picasso exhibition or the eruption of Mt. St. Helens. In the spring of every year, the editors of P/A begin collecting and exchanging editorial ideas. By July, we have agreed upon a basic calendar for features that can benefit from long periods of planning and inquiry, those that are not tied to events such as the completion of a building.

Why so early? Because magazine editors do not really live in the present, but in a timeframe of overlapping months. If you are reading this in mid-December, editorial work on the January issue will be just about completed (we hope!) except for reviewing various stages of proofs from the printer. Major articles for February should be written and in the process of layout, assignments and page allocations for March determined, major subjects for April decided, and editorial pieces falling into place throughout that 1981 calendar.

How do we arrive at our calendar subjects? Each year, scores of subjects are proposed by P/A editors—reflecting, of course, suggestions from readers, correspondents, and other outside contacts. We try to choose subjects on which there is really something new to say, of current interest to readers. We try to balance these so that there will be the least apparent overlap and the broadest range of examples by size, place, building type, etc. And we place them in the calendar—around certain annual theme issues—to yield variety and to reflect our best guesses on completion dates of examples we would like to feature.

Take the “tall buildings” features in this issue, for instance. By early 1979, we were impressed with the unexpected comeback of office construction, including the numerous tall buildings under construction or proposed. We understood that the technical considerations in supporting tall buildings were being reconsidered and refined. Although a minority of architects gets to work on such jobs, we felt tall buildings remain innately interesting to all design professionals—even those who oppose them. We scheduled the subject for December—the farthest outpost of our calendar, because we estimated (correctly in the case of the Xerox building, at least) that this would be the earliest month certain new buildings could be properly shown. Since we expected the examples to include new buildings, of middle-of-the-road Modern design, by established firms, we thought that the subject would be a good one to follow an issue on preservation and remodeling and precede the annual awards issue—an all-projects issue that tends, historically, to include few high-rise buildings.

Our 1981 calendar is built around the four major theme issues we decided early to continue from previous years: Awards (January), Energy-conscious design (April), Interiors (September), and Remodeling/reuse (November). Major design features for other issues include three covering areas of practice—Export/import architecture (March), Architectural research (August), and Architect as Developer (December)—one focusing on a timely building type—Shopping centers (July)—and two taking up approaches to design itself—Regional/vernacular design (June) and the new Classicism (October).

For our Technics series in 1981, articles are scheduled on Moisture control (February), Plastics (March), several energy-related subjects (April), Design for safety (July), Codes and regulations (August), Windows (September), Restoration of concrete (November), and Design for durability (December). Interior technics articles are planned on Indoor planting (May) and Daylight control (November). Other technics articles may be developed during the year to fill calendar gaps deliberately left for them.

We are planning to report in January (next month) on the latest house design competition cosponsored by P/A, Better Homes & Gardens, and the American Plywood Association; in May, we will present the results of the P/A-sponsored furniture competition (which will be displayed at NEOCON, Chicago, in June).

During the year, we hope as well to publish profiles of two or three firms that we feel to be of exceptional interest. And we plan to present a series of feature reports on development efforts in certain cities, where the urban whole seems more significant than the architectural parts.

Planning ahead six to 18 months is, of course, risky. So bear in mind that these are intentions. Circumstances may suggest altering our calendar, or we may just change our editorial minds.

John Marin Dieter
Don Petitt's chairs for Thonet trace their ancestry directly to the important furniture process first invented by Michael Thonet in 1830—molded plywood. And like all Thonet seating, Petitt Ply chairs are as flexible and functional as the materials from which they are made.

In 1978, Thonet introduced Petitt Ply in both arm and side chair models. In 1980, which marked our 150th anniversary, we proudly added the Petitt Ply Conference Chair to this popular collection.
Made of fine oak face and core veneers, the Petitt Ply frames are produced on the only molded plywood press of its kind. This unique technology allows the formation of the group's sculptural, jointless arm/leg configurations.

Petitt Ply's oak veneer is available in a brilliant spectrum of translucent color and wood finishes. Together with Thonet's diverse textile collection, these finishes offer the designer infinite possibilities. The Petitt Ply Collection — furniture that adapts perfectly to the interiors of today and tomorrow.

For more detailed information about the Petitt Ply Collection, please write:

Thonet
Department PM
491 East Princess Street
P.O. Box 1587
York, PA 17405

Petitt Ply Collection

The tradition of today, and tomorrow. Thonet.
Neo-Rationalism: one perspective
The work of Aldo Rossi and the Neo-Rationalists (P/A, Oct. 1980, pp. 49-65) conjures too many images of Italian Fascist architecture to be dismissed as mere coincidence or public ignorance of history. Philosophically, Rossi may choose to align himself with the socialist roots of Gruppo 7, but in practice he has endeavored to revive the axial monumentality and pompous formalism characteristic of this group’s projects for the Mussolini regime.

In fact, it is the work of such architects as Piacentini, Pagano, Guerini, Padula, and other Mussolini collaborators that serves as a basis for Rossi’s formal devices. Those stark façades with oppressively repetitive windows and colonnades, those Neo-Classical volumes stripped of symbolic ornament have their origins in such notorious projects as the University of Rome, the EUR facilities, and the Palace of Labor. To add insult to injury Rossi depicts his forms with haunting surrealist graphics à la de Chirico, thereby creating the most disturbing images the profession has seen since World War II.

The most dangerous aspect of Neo-Rationalism, however, is not its embarrassing historical connection to Fascism, but its fundamental rejection of humanism and empiricism as philosophical bases for design. To the Neo-Rationalist the intellectual search for ideal geometries precludes all input from psychology and sociology; people become mere abstractions to be neatly fitted into platonic forms, or in Rossi’s case, like broken statues in a surrealist painting.

Moshe Dinar, Architect
Arlington, Ma

The article itself answers these objections, if not necessarily to Dinar’s satisfaction. One of Rossi’s objectives is to “unload” Italy’s 1930s buildings of their Fascist connotations. —Editors

September’s bounty
WOW! Barragan and Legorreta in one issue. They are my heroes and you gave me a two for one. Needless to say, I enjoyed your Sept. ’80 publication.
David Hale, AIA
San Francisco, Ca

On the Portland square
In your September 1980 News Report of the Pioneer Courthouse Square Design Competition, there is an inference that the judging of the five schemes was contingent upon satisfying a Federal Grant requirement. I would like to clarify for your readership that the Design Program did not include any requirement for compliance to any federal grant restrictions—nor was the Jury allowed to consider any such requirement in their deliberations. To infer that the “out-of-town” designers missed a requirement is to degrade their program evaluation capabilities. Each and every design was an appropriate and excellent response to the design program and was judged as such.

The federal grant in question is a matching grant for acquisition of the city block which is to become Pioneer Courthouse Square. Specifically, it is a Heritage Conservation and Recreation Service Grant (H.C.R.S.) for development of public open space. The grant regulations do not preclude structures per se, but do require structures and their activities be subservient to, and intensify, the outdoor recreation capability of the Square.

The City Council, in their decision to undertake the competition process, specifically determined not to encumber the design program with federal regulations or restrictions. The Council was prepared to return any and all funds allocated from the federal grant if a design was selected that did not fit within the federal guidelines.

Irrespective of financing, the most significant point in the Jury’s decision is the commitment to a major “open” square as the major feature in the center of our city—not a structure or building. This type of thinking is the reason why designers should come to visit our city, enjoy our commitment to preserving the quality of life of Oregon, and then return to their own areas to try to emulate our efforts and successes.

Donald J. Stastny
Stastny/Graham Architects
Portland, Or

[Mr. Stastny’s explanation is well stated. The fact remains, however, that some participants were encouraged by the competition program to include considerable enclosed space. If it was the jury’s “commitment to a major ‘open’ space” that shaped the decision (rather than financial factors), that “commitment” was at odds with the options the competitors were offered. —Editors]

Bunker Hill: last battle?
The recent article on Bunker Hill Development (Sept. 1980, p. 42) was an interesting and informative annotation of the solutions offered and the selection process for the project. But I fear a most important point was missed entirely.

There are three important assets of the Maguire Proposal offered which may have been overlooked. One, the project was sufficiently excellent in design that it would probably have significantly increased the city’s tourist and convention trade. Two, it would have given Los Angeles a unique skyline of human dimension, one that you don’t have to always be on an airplane or freeway to appreciate. Three, the project would have been an independent source of civic pride and inspiration to the Los Angeles community. It’s the kind of art that gets a second look even after you’ve seen it for years and years.

If the design community believes the Maguire Proposal was the best, then they should be making noise. The group that produced the best design should have had the first opportunity to build, and if financing was thought to be a problem, the city should have made contractual arrangements for release if that team could not build.

To make selections on the basis of proven performance is not good enough, because it inhibits new ideas. Track records will seldom be broken if no one else is really given the opportunity to run.

Paul C. Womack, Principal
Construction Dynamics
San Jose, Ca

[Two points: This was not a design competition, as such, but a competition among development proposals, including their economics. “Track record” does not seem to have been a decisive difference. The “design community”—at least that part that we are in touch with—does not seem to be as committed to the Maguire Proposal as is the writer. —Editors]

Credit extended
Stephen Bonitatibus and Ronni Rosenblatt were codesigners and corenders for John Blatteau’s Les Halles project (P/A, Sept. 1980, p. 39).

Credit correction
The MARTA transit project pictured (P/A, Sept. 1980, p. 222) is the Avondale Station designed by Miller Waltz Diedrich, Architects and Associates, Inc., rather than as credited.
THE DEMAND FOR ITALIAN STYLING IS ABOUT TO REACH NEW HEIGHTS.

AMERICAN-STANDARD ANNOUNCES...
A LINE OF CLASSIC ITALIAN, BEAUTIFULLY TRANSLATED.

Only the international resources of American-Standard could bring you Roma. It is Italian form and American function, artfully combined by American-Standard to offer your market the best of both worlds. Notice the statuesque pedestal lavatory. And the clean continental contours of Roma’s generous whirlpool bath. Even the toilet and bidet have the grace of Italian sculpture. And the coordinated design continues in a unique two-piece toilet and drop-in lavatory... even the fittings are works of art. Roma. If you thought the French accent of Ellisse talked to your market, our new Italian-inspired line is designed to prompt even more response.

Circle No. 308 on Reader Service Card

AMERICAN-STANDARD

European elegance built to your standards.

End of an era in client billing.

Keeping track of client phone charges by manual logging is notoriously ineffective. In fact, industry estimates show that the average architectural or engineering firm absorbs 10 to 15 percent of those charges—simply through doubts about their proper allocations. There’s another loss, too—of professional and clerical time spent in the month’s-end allocation process.

Now the Bell System can provide electronic-age assistance for this chore, with precision and speed that pays off every month. You’ll save time, be certain of collecting a far higher percentage of billable phone charges, and look more professional doing it.

A variety of Bell products and services can be applied, depending on the scale and complexity of your firm’s needs. The answer could be as simple as having one line dedicated to long distance. Or you might need a system that automatically records and allocates charges.

Your Bell System Account Executive can analyze your operations, and bring you a new, more profitable era in client billing. It makes very good sense to put our knowledge of advanced communications to work for your business.

The knowledge business
This competition will recognize outstanding furniture and lighting design proposals not yet connected with a particular manufacturer. It is intended to give the design profession a forum to express ideas about the next generation of furniture design. Designers are encouraged to consider the aesthetic and ideological implications for furniture design implied by the current concerns within architecture and other design disciplines. Physical feasibility must be considered, but the design need not be constrained by existing production or marketing practices.

Winning projects will be published in the May issue of P/A and displayed at NEOCON 13, the annual interior design products show at Chicago's Merchandise Mart, June 16-19, 1981. Awards will be presented to winners in an evening program attended by press, designers, and NEOCON manufacturers. A traveling exhibit of winning projects to major cities is also planned.

In addition to the exposure afforded the submissions, the competition will encourage further discourse between the entrants and respected furniture producers. Any ongoing discussions will, of course, be up to the individual designers and manufacturers, but benefit to both is anticipated.

Submissions are invited in all categories including chairs, seating systems and sofas, tables, desks and work stations, storage systems, lighting and miscellaneous furniture pieces. Designations of award and citation may be made by the invited jury, based on overall excellence and advances in the art.

Jury for the competition
Emilio Ambasz, architect, graphic and industrial designer, former curator of design at The Museum of Modern Art, New York;
Mildred S. Friedman, design curator, Walker Art Center, Minneapolis, and editor, *Design Quarterly*;
Michael Graves, FAIA, architect and Professor of Architecture at Princeton University;

Judging will take place in New York City during the month of February. Winners will be notified—confidentially—before March 15. Public announcement of the winners will be made at the presentation ceremony at NEOCON 13 and in the May 1981 issue of P/A. P/A will arrange for coverage of winning entries in national and local press.

Eligibility
1 Architects, interior designers, industrial designers, and design students from all countries may enter one or more submissions.
2 Design must be original, not known to be substantially identical to any existing product design. (continued on next page)
Entry form:

International Conceptual Furniture Competition

Please fill out all parts and submit, intact, with each entry (see paragraph 10 of instructions). Use typewriter, please. Copies of this form may be used.

Entrant:
Address:
Entrant phone number:
Category:

I confirm that the attached entry meets eligibility requirements (paragraphs 1-4) and that stipulations of publication agreement (paragraphs 5-6) will be met. I verify that the submission is entirely the work of those listed on this form (or an attached list as necessary).

Signature ____________________________
Name (typed) ____________________________

Furniture Competition
Progressive Architecture
600 Summer Street, Stamford, CT 06904

Your submission has been received and assigned number:

Entrant:
Address:

(Receipt)

3 Designer must not be under contract to or in negotiation with any manufacturer for this design. Design is not to be submitted to any manufacturer until after P/A announces winners.
4 Design must not have been executed for academic credit.

Publication agreement
5 If the submission should win, the entrant agrees to make available further information, original drawings or model photographs as necessary, for publication in the May 1981 P/A and exhibition at NEOCON in Chicago and other major cities.
6 P/A retains the rights to first publication of winning designs. Designer retains rights to actual design.

Submission requirements
7 Drawing(s) and/or model photo(s) of the design should be mounted on one side only of one 20" x 30" foamcore board presented horizontally.
8 There are no limits to the number of illustrations mounted on the board. No actual models will be accepted.
9 Each submission must include a 5" x 7" index card mounted on the front side of the board with the following information typed on it: intended dimensions of the piece of furniture, color(s), materials, components, brief description of important features, design assumptions and intentions. This information is to be presented in English.
10 Each submission must be accompanied by an entry form, to be found on this page. Reproductions of this form are acceptable. All sections must be filled out (by typewriter, please). Insert entire form into unsealed envelope taped to back of submission board. P/A will seal stub of entry form in envelope before judging.
11 For purposes of jury procedure only, projects are to be assigned by the entrant to a category on entry form. Please identify each entry as one of the following: Chair, Seating System, Sofa, Table, Desk, Work Station, Storage System, Lighting. If necessary, the category "Miscellaneous" may be designated.
12 Entry fee of $10 must accompany each submission, inserted into unsealed envelope containing entry form (see 10 above). Make check or money order (no cash, please) payable to Progressive Architecture.
13 To maintain anonymity, no identification of the entrant may appear on any part of the submission, except on entry form. Designer should attach list of collaborators to be credited as necessary.
14 Submissions become the property of P/A and will not be returned.
15 Deadline for mailing is January 26, 1981. Other methods of delivery are acceptable. Entries must show postmark or other evidence of being en route by deadline. Hand-delivered entries must be received at the address shown here by January 26. In any case, entries sent by mail or other means not received at P/A by February 13, 1981, will be disqualified.

Address entries to:
International Conceptual Furniture Competition
Progressive Architecture
600 Summer Street
Stamford, CT 06904
Moving people in style. Saving energy.
That's the Westinghouse Moduline 100 escalator.

Pleasing big crowds is the specialty of the Park Place Casino Hotel in Atlantic City. And of the Westinghouse Moduline 100 escalator.

Customers were impressed with the dynamic looks of this "Stairway to the Stars" and its spectacular 90-foot glass balustrade.

Hotel managers liked its ability to move a lot of people quickly. Efficiently.

And the quick, trouble-free installation meant the Bally Corporation, owner of this showplace, could open for business sooner. And win in the big race for new business in the "new Las Vegas."

But like building owners and operators all across America, Bally will also be pleased with the substantial energy savings these escalators provide.

Independent tests showed the Moduline 100 saved 30% over conventional escalators going up and a whopping 59% going down with only five passengers. And with more people the savings were even greater.

How does Westinghouse do it?
With a unique one-design concept. Modular units, each with a separate motor and drive, can be interconnected. So you can span a vertical rise to almost limitless height. Separate, parallel, criss-cross or even stacked arrangements are possible. And the compact design reduces the need for massive machine rooms. Building space opens up. That's real design freedom!

To find out more about these people-pleasing people-movers write: Westinghouse Elevator Company, 150 John F. Kennedy Parkway, Short Hills, NJ 07078.

Circle No. 542

The technical leader in people-moving systems.
Texas
Here we are
Guardian now serves the Sunbelt glass market from our brand-new Texas plant.

Guardian recently opened a new float glass plant in Corsicana, Texas, located 60 miles south of Dallas. It's an ideal location, strategically situated, to fully serve your requirements for architectural glass throughout the growing Sunbelt region.

This Texas facility is our second new float plant in two years. Its opening expands our glass manufacturing capacity by 33% and increases our capability of providing Sunbelt area customers the same singular quality service available from our three existing float lines in the West and Midwest.

So, if you're interested in improving the availability and reliability of your glass purchases, go with a growing Guardian. See us in Sweet's section 8.26 GU or write: 3801 South Highway 287, P. O. Box 10001, Corsicana, Texas 75110; or our World Headquarters, 43043 West Nine Mile Road, Northville, MI 48167. Or call: 1-800-521-9040.
Ceramic tile floors and walkways are used in virtually all shopping malls in the U.S. And Gail Unglazed Brickplate has been used far more often for a combination of reasons: **Slip-Resistant**—Gail Unglazed Brickplate has an abrasive surface which helps prevent accidents; **Longer-wearing**—Gail Unglazed Brickplate outlasts others because the vitrified clay body withstands foot-traffic from millions of shoppers; **Economical Maintenance**—non-absorbent body resists acids, oils, chemicals, and other abuses... cleans quickly without heavy scouring or waxing; **Frost-proof**—patterns and colors can be coordinated, indoors and outdoors; **Widest Selection**—a myriad of natural, earthtone colors and sizes (2½ x 10, 4 x 5 x 10, 8 x 8). For more than 85 years, Gail Brickplate has proven itself all over the world under the most severe conditions. For additional information or the name of your local distributor contact one of our four regional sales offices.

Gail Ceramics

1481 North Main Street
Orange, California 92667
Phone: (714) 997-9383

1201 Douglas Avenue
Redwood City, California 94063
Phone: (415) 365-6212

6265 McDonough Drive
Norcross, Georgia 30093
Phone: (404) 448-8304

388 Pompton Avenue
Cedar Grove, New Jersey 07009
Phone: (201) 239-7117

New York: Tightening up on tall buildings

It could make Women's Wear Daily's In and Out list: Incentives are Out, Mandated Controls are In; "Covered Pedestrian Spaces" are Out; "Activity Spaces" are In; Plazas are Out, Setbacks are In. All these and other features actually represent important revisions in the zoning regulations for Midtown Manhattan now being formulated by New York's Department of City Planning.

The searching reassessment the city is undertaking comes during one of the most intensive building booms to occur in Manhattan since the late 1950s. Right now approximately 16 highrises are going up in Midtown Manhattan, with six more planned. The specter of taller and bulkier buildings on smaller sites has caused the same sort of hue and cry that greeted the building of The Equitable Building in 1915. Then the 40-story building of 1.44 million square feet at 120 Broadway cast a shadow for seven acres (three blocks). The complaints of outraged occupants to the north spurred the writing of the first zoning ordinance in the U.S.

Current critics argue that the two essential amenities that the 1916 zoning sought to protect for the urban environment—sunlight and openness—are now being threatened by the more "advanced" incentive zoning regulations introduced over the last 20 years. The 1961 zoning amendments sought to relieve the monotony the ziggurat or stepped-back configuration fostered by the 1916 zoning. Its tower-with-plaza pattern, where height was indirectly limited by Floor Area Ratio, soon started another kind of repetition. The varied incentives of the late 1960s sought to expand the notion of "public amenities" from plazas and arcades to retail malls, "covered pedestrian spaces," "through-block arcades" and even theaters. But buildings got taller, with less light and open space available to the street. Also these "public amenities" were often located inside of buildings where they were harder and harder to find by the public.

The near bankruptcy of the city in 1975, however, resulted in tax breaks and a further loosening of constraints. The special review procedures that were meant to offer a check on incentive zoning allowed the building owner to go after special waivers on setbacks, bulk, and extra floor area. These indulgences, along with the practice of allowing zoning lot mergers for easier land assemblage and air rights transfers to new construction next to landmarks, began to show severe side effects: the "shoehorning" of taller and taller buildings of high density on comparatively small lots and, even more dramatic, the "piggybacking" of new construction on top of buildings not using their full FAR.

Another building pattern also became apparent during the last five years—the building of high towers on narrow cross streets. The 1916 setback zoning, calculated on a ratio of building height and street width, had encouraged highrise towers on the wider avenues. While the FAR measures introduced in 1961 were still lower for the cross streets, recent land pressures have prompted developers to begin encroaching there, aided by zoning lot mergers from higher FAR districts.

Yet another recent incentive to assess the city's zoning rules was the realization that "special district" legislation had some intrinsic flaws. For example, the "Special Theater District" legislation of the late 1960s—devised to keep the theater district intact—was paradoxically resulting in old theaters being torn down for new towers with larger theaters, geared to only the most commercially successful productions.

The complaints and criticisms of recent zoning measures, from citizens' groups as well as members of the City Planning Department, prompted the reassessment. The report was sponsored by the city and the Rockefeller Brothers Fund, the Fund for the City of New York, the J.M. Kaplan Fund, the New York Community Trust, and the Robert Sterling Clark Foundation.

Now what
To relieve some of the pressure from the east side of midtown, where most of the blockbuster development is occurring, the city planning report calls for encouraging new development west-
ward and southward of midtown, particularly along certain "corridors" like 34th Street west, or Eighth Avenue north. At the same time, the prime east-side core between 40th Street and 60th Street from Third to Sixth Avenues will be "stabilized" through tighter zoning regulations.

The proposed regulations affecting stabilization will allow the normal FAR of 15 to go only to 18 with bonuses, instead of the 21.6 allowed now in special areas. The bonus FAR of 5 over the base of 15 is to be limited to certain high-priority amenities such as transit connections, additional pedestrian circulation space to ease congestion, and urban parks. But these will have to occur in areas where they have been "mapped." Elevated and sunken plazas and public gallerias will be dropped as bonusable items. For the currently permissible slew of public amenities known as "through-block arcades" and "covered pedestrian space," a serious overhaul is in order. William H. Whyte, author of the recently published *The Social Life of Small Urban Spaces*, has advised the city on changes in the standards and bonuses.

The city also proposes four mandatory provisions, three of which are not bonusable. These proposals call for the maintenance of significant retail streets, the maintenance of existing strong street walls (see map), and the reduction of pedestrian/vehicular conflict. The fourth mandatory provision for transit stations will receive a bonus.

The path of through-block circulation corridors already begun in the 1970s will be kept, although more strictly mapped for appropriate location. Similarly, open space areas will be mapped, with high priority along Third Avenue and for mid-block locations.

In the theater area, the new zoning will attempt to devise means for saving the old theaters, although that section of the report has not yet been worked out.

The most interesting part, in many ways, and the most controversial of the zoning revisions concerns bulk controls. The city planners and their architectural consultants Davis Brody Associates with Kwartler/Jones Architects went to great lengths to figure out how bulk could be fitted onto city lots while still accommodating both quality of daylight and the immediate context. Two different approaches are being considered. The first one, proposed by the consultants, is based on an intricately calculated performance system that the proposed building would have to satisfy, beyond the prescribed standard for daylight, street wall length, and height.

The second approach, apparently favored by the city, is claimed to be based on a simpler "performance" standard. It defines permissible height and setback rules according to the familiar "sky exposure planes" in relation to street width.

Whatever the method adopted for controlling bulk, the shape of the towers will be affected: controls will, it seems, encourage shorter, squatter buildings with more notches, chamfered sections, and setbacks. In the transfer of air rights, the FAR will be based only on the actual "footprint" or ground space the building occupies, not on land occupied by buildings lending their unused FAR to the new tower.

There will still be a lot of bulk. After all, an 18 FAR is not low-rise, low-density zoning. And there will be continued development along cross streets, except in several isolated instances where blocks will be downzoned. But it seems the "as-of-right" controls could keep the whole game between developers and city more in check.

God is still in the details: we must see how the final report is fleshed out before we can make any accurate predictions. Then we will see what sort of buildings emerge. By that time, of course, the landscape of Midtown will have been changed drastically by current construction. [SS]

Chicago AIA bestows its Annual Awards

This year, the Chicago AIA Awards Program modified its structure and its emphasis. It allowed participation by any architect (not just AIA members), limited project location to the metropolitan area of Chicago, gave only six awards, and stressed the examination of each building's sympathy with, and enhancement of, the urban context, and its satisfaction of social, cultural, and economic expectations. The contextual preoccupation was, at least in part, a response to the controversy over the heavily Post-Modern partiality of last year's jury.

The 1980 jury members were Lee Copeland, FAIA, dean of the University of Pennsylvania Graduate School of Fine Arts; Myron Goldsmith, FAIA; Harry C. Wolf III, FAIA; and James Wood, director of the Art Institute of Chicago. And the winners are:

- Chicago AIA Honor Award: The Fultz Residence, by Hammond Beeby & Babka.
- Chicago AIA Honor Award: Steel and Glass House, by Krueck & Olsen Architects; the Tri-State Center I, by Hammond Beeby & Babka; and the Xerox Centre, by C.F. Murphy Associates.
- Chicago AIA Honor Award: The Trading Room from the Chicago Stock Exchange Building at the Art Institute of Chicago (original architect Adler & Sullivan), restoration by John Vinci-Lawrence Kenny; and the Carson, Pirie Scott & Company building (original architect Louis Sullivan), restoration by John Vinci.

In addition, the Twenty-five Year Award was given to Crown Hall, the Illinois Institute of Technology, by Mies van der Rohe (with Pace Associates); and Service Awards were bestowed upon Alfred Caldwell, Carl W. Condit, Franz Lipp, Matthew L. Rockwell, and Paul Theobald & Company.

For the first time, the Chicago AIA awarded Citations of Merit for interior architecture. These went to Tilton & Lewis Associates for three completed projects—their own offices, the restoration and remodeling of Wright's Johnson's Wax Administration Building in Racine, WI, and law offices in Chicago; to Kenneth A. Schroeder Associates for the Mergenthaler Linotype Lofts; to O'Donnell Wickland Pigozzi Architects for the Poplar Creek Public Library interiors; and to Harry Weese & Associates for the Steelcase Showroom in Chicago.
CRITERIA:
ULTIMATE PERFORMANCE

TCS
Architects have become increasingly aware that a metal roof can become a welcome departure from the commonplace and an important aspect of contemporary expression.

When that departure is created by TCS, terne-coated stainless steel, as exemplified by the beautiful, new headquarters of Square D Company in Palatine, Illinois, this exciting new material permits the visually significant roof to become an important basic component of design.

TCS is unique among roofing materials. It has inherent adaptability to form and function, is maintenance free, and weathers to a predictable, warm gray. May we send you substantiating evidence?

Call us toll-free 800-624-6906

FOLLANSBEE
FOLLANSBEE STEEL CORPORATION
FOLLANSBEE, WEST VIRGINIA

Headquarters Building, Square D Company, Palatine, Illinois
Architects: Leob, Schlossman & Hackl, Chicago, Illinois
Roofer: E. W. Olson, Chicago, Illinois

Circle No. 318 on Reader Service Card
Beauty without compromise.
That’s the way it is with Andersen® Perma-Shield® windows and gliding doors. There’s no sacrificing beauty for low maintenance, or style for energy savings, or anything for anything else.

For these Perma-Shield windows and gliding doors are built on a tradition of over 75 years of quality craftsmanship. It shows in the character of their clean, classic lines. In the way they suit any style, commercial or residential, traditional or contemporary.

And, most of all, it shows in Andersen’s use of such tough window materials as a layer of long-lasting rigid vinyl over a solid wood core. To save on maintenance. And save repainting every few years.

The windows and gliding doors save handsomely on heating costs, too. The use of double-pane insulating glass in a snug-fitting design that’s at least two times more weathertight than the industry air-infiltration standard* requires.

With Andersen, there simply are no compromises.
Ask your dealer or distributor to tell you more. For details see Sweet’s File 8.16/An, or write us. Andersen Corp., Box 12, Bayport, MN 55003

Low-maintenance features vary by product. *NWMA I.S. 275 & I.S. 370

The beautiful way to save fuel®

Andersen Windowwalls

Circle No. 309 on Reader Service Card
Atlanta's new air terminal stresses efficiency

Atlanta is one of the most important land-locked transportation centers in the world. Transportation has always been the reason for its existence: first, in the 1850s, the railroads intersected at the southern toe of the Appalachians; then the major highways were built parallel to the rails; and finally, the major southern air transportation link was located here, at Hartsfield International Airport. To accommodate a volume of passengers second only to Chicago's O'Hare Airport, the Midfield Terminal officially opened in September of this year, on schedule, under budget, and boasting a 30 percent participation by minority-owned businesses. A terminal is a place where people and things make a transfer from one mode of transportation to another, and the many interfaces (arrival, ticketing, security checks, baggage disposal, and departure) must be made as smoothly and efficiently as possible. The airport design team of Stevens & Wilkinson, Smith, Hinchman & Grylls/Minority Airport Planners & Planners of Atlanta has creatively approached these necessary interfaces. They have placed the terminal between the airport's two major runways, thereby making the landing-to-gate transition efficient. They have collected the gates along four linear concourses, perpendicular to the runways and spaced 1000 ft apart, allowing two full-sized planes to pass each other while docking occurs on both sides.

A 4000-ft-long underground spine, alive with passageways, subway cars, and passenger and baggage conveyer belts, connects these four concourses, and at the end of this spine are located the parallel arrival and departure terminals. This arrangement has resulted in a clear definition for the transition from air to ground transportation, and gives ample room for the loading and unloading of cars, taxis, and buses. The plan also allows for an interface with rapid transportation: the station for MARTA (Metropolitan Atlanta Rapid Transit Authority) has been built at the end of the terminal, and the rail connection will be activated in 1985.

While the transition from air travel to ground transportation is a clear one, it is also lengthy. In fact, the layout works best for transferring the 72 percent of the passengers who never leave the concourses; the other 28 percent, those who use the arrival and departure terminals, must cover thousands of feet between concourses and terminal.

The art program

A $450,000 art program has collected works by internationally known artists, including Richard Serra, Harry Bertoia, Andy Goldsworthy, and Stephen Antonakis of New York; the prominent black artist Sam Gilliam of Washington; and Curtis Paterson and Sam Bruno of Atlanta. The works of art are located where they have a captive audience, in the main ticketing and baggage claim lobbies and over the escalators. Unfortunately, the lighting and placement of some of the pieces are disturbing; in the escalator wells the artwork, inadequately lit, is seen only while in constant motion, a frustrating experience; and in the main lobbies the art is placed above the windows, and must compete with the sun's glare.

The image of an airport

Critics bemoan Midfield Terminal's blandness and lack of human scale, and they nostalgically point to the grandeur of earlier transportation centers, such as McKim, Mead & White's Pennsylvania Station in New York. While architects at the turn of the century deemed the Baths of Caracalla an appropriate symbol for railroad transportation, we must search anew today for inspirational precedents to symbolize the superhuman power and speed of air travel. Pier Luigi Nervi expressed a superhuman scale in his New York Port Authority bus terminal at the end of the George Washington Bridge: aerial views show it ready to catapult up the cables of the bridge and over the river! Eino Saarinen gave flight eloquent expression at Dulles Airport: its catenary slings invert the vaults of Caracalla. But the Atlanta architects, aiming for (and achieving) an airport completed on time and under budget, were more concerned with efficiency, technology, and simplicity than with poetry. Indeed it may be argued that at an airport, where the passenger experiences many tense situations (anxiety over finding the proper gate, arriving on time, and, perhaps, the dangers of flying), the reassuring expression of efficiency, technology, and simplicity may be the most appropriate tone to take.

The concept of the Atlanta airport is as monumentally simple as its program is complex. Its scale can best be understood from high altitudes, while moving at great speeds; at ground level and at walking speed, the scale cannot be grasped. But the linearity of the plan, while relentlessly drawn out, is reassuring and reminds the passenger of a highway, where variations are few but are of major importance when they occur. That association is comforting, because it assures the passenger that the destination, even if unseen, can definitely be expected. The main terminal building at Atlanta projects an image of a great winged ob-ject ready to take off from the deck of a huge carrier, but in the rest of the complex the symbolism is based upon 20th-Century technology: like a computer, the brilliance of the work is hidden beneath the "casing" of the concrete runways.

Midfield Terminal, a complex whose top priority is efficiency, will be judged by how it serves the 42 million users anticipated this year. In an age of concern over the consumption of energy and the expenditure of public funds, an effort to seek an unobtrusive, simple, and efficient solution to a complicated problem should be commended.

[News report continued on page 28]
A dash of dazzle in a shopping center.

ELEVATOR BY DOVER

It's quite a trip for shoppers when they move from the main level to the promenade level of the Rolling Acres Mall in West Akron. Designer James B. Heller of Kevea J. Kekst Associates combined glass, chrome, and incandescent lamps to create a "vista" elevator that dazzles and delights. At the heart of these glamorous trappings is a Dover IVo Elevator, the high-quality, pre-engineered Oildrumatic® elevator made for add-on or new construction of three stories or less. For more information on the complete Dover line of traction and hydraulic elevators, write Dover Corporation, Elevator Division, P.O. Box 2177, Dept. B, Memphis, Tenn. 38101.

Dover
The elevator innovators.
Love and hate for trouble-plagued tower

Boston's love/hate affair with the John Hancock building still smolders, eight years after the first mysterious fracture of its placid glass façade. This fall, the insurance company added to the ongoing saga of I.M. Pei's 52-story structure, by installing 10,344 electronic sensors, one per window, to keep tabs on the spot the change in tone that forecasts a popping window.

Now this job is done electrically. The sensors, each about the size of a 50-cent piece, alert a control center to the danger (about 55 fractures have occurred in the last five years). If the sensors are activated, the building crew bounces to the rescue: they reverse the mechanical monitors, a small battery of masonry structures of the Back Bay area, and all object to the windswept effect it induces, still many appreciate and point with pride to the cool blue shaft which catches the sparkle of the Boston sky and reflects the architecture of the neighborhood. [Jane Holtz Kay]

Jane Holtz Kay is a Boston journalist and author of Lost Boston.

Urban Land Institute: Choices for the 80s

The October meeting in New York of the Urban Land Institute was the occasion for the unveiling of the semifinal version of the organization's report and recommendations on "Development Choices for the 80s," drawn up with support from the U.S. Department of HUD. An organization primarily of developers, ULI invites numerous government officials, architects, planners, and academicians to participate in its activities. The "council" that drafted the "Choices" report included all of these and was co-chaired by Harold S. Jensen of Metropolitan Structures, Chicago, and Governor Bruce Babbitt of Arizona.

After a series of analyses, forums, and site visits carried out all over the country, the council came up with several succinct objectives for "the nation's communities": they should be more compact, both in newly developing areas and in existing urban areas; land uses should be arranged with an eye to access by public transit, walking, and other modes; new useful urban areas should be accelerated; a balance should be sought between employment and residential uses, both in existing centers and in new satellite communities.

The objectives may be hard to fault, but the required policy changes will be up to literally thousands of government bodies at all levels. So the recommendations are full of political implications. They do not, for instance, directly challenge the right of suburbs to limit restrictive of development.

Nevertheless, architects tend to be guided by Pei's pristine sculpture. And while many find the glass tower intrusive among the lower, predominantly masonry structures of the Back Bay area, and all object to the windswept effect it induces, still many appreciate and point with pride to the cool blue shaft which catches the sparkle of the Boston sky and reflects the architecture of the neighborhood. [Jane Holtz Kay]

Jensen spoke of the current "havoc" in the financial markets, which diverts money away from real estate financing, thus making development more difficult and expensive. Governor Babbitt stressed the social implications of this situation, which is causing a whole generation of young people to be "dealt out of the housing market." There were no illusions that the good old days of easy development were natural or that they would return; Babbitt and others made clear that development was once encouraged by road-building, loan, and tax programs that are now receding into history. Water supplies and the need to preserve farm land were cited as realistic and pressing constraints on development.

HUD Secretary Moon Landrieu stressed the importance of bringing state governments back into the shaping of development programs that have been too long worked out directly between municipalities and Washington. He urged the audience to face the fact that government is involved in certain functions—for instance, heavy industry, and even much retail activity—and that discrimination is still a crucial obstacle to effective development and redevelopment processes. He cited the risk that we might rebuild our cities "so that they look better," a futile gesture unless we can generate a "healthy spirit for people who live there."

Architect Beverly Willis of San Francisco, one of the few design professionals on the council, emphasized that innovative, sensitive planning and design were crucial to the "urban village" kind of development the council was advocating. Without good design, she warned, such developments could be "disaster."

Among the many workshops held during the three-day conference, one entitled "Fight or Flight" was particularly revealing of the current dilemma. One of the few design professionals on the council, emphasized that innovative, sensitive planning and design were crucial to the "urban village" kind of development the council was advocating. Without good design, she warned, such developments could be "disaster."

The session focused on three very different situations in the New York Metropolitan area (which conference attendees had had opportunities to tour): the burgeoning old suburb of Stamford, Ct; the retail core of Brooklyn, struggling to revitalize; and the all-new privately sponsored satellite community growing up in the Hackensack Meadowlands of New Jersey.

Another workshop focused on "An 80s Dilemma: Can the South Bronx be Saved?" Edward J. Logue, former president of UDC and executive director of the South Bronx Redevelopment Project, reported on the goals and the accomplishments of the project, and leaders of interest groups in the area presented their views as to what still needs to be done. Father Gigante, president of the SEPCO Development Corporation, which has helped develop 669 new and renovated apartments, stressed the pressing need for housing. While 550 units are presently under construction, and 1600 units within a square mile (News report continued on page 32)
Your best ideas look better
with Rayflect™

ACT is known for quality. Our superior coating techniques provide excellent solar rejection ratios, in turn allowing your clients to save valuable energy dollars. For maximum energy efficiency, Rayflect coatings re-radiate infra-red and ultraviolet light. Whether you spec clear, gray, bronze or blue-green, our coatings reduce glare and provide more uniform daylighting in work areas. Outside, the uniformity of Rayflect color assures minimal checkerboarding and distortion effects.

ACT is known for service, too. We back our products with a limited 10-year warranty against peeling, cracking or deterioration. We'll work closely with you from initial specs to final delivery, making sure your order is handled efficiently and filled quickly — the way you like to do business.

Make your good ideas better than ever. With Rayflect, from Advanced Coating Technology. The more you look the better we look.

For more information, see Sweets #8.26, or write:

Advanced Coating Technology, Inc.
Rayflect Division, A subsidiary of Worthington Industries, Inc.
306 Beasley Drive, Franklin, Tennessee 37064 • 615-790-6001 • Telex 55-5145

Circle No. 305 on Reader Service Card
Introducing ConCentrnx

Synchronized Articulation.

Only ConCentrnx offers this new body support concept. A unique pivotal design allows the chair to follow natural body movements in leaning forward or back. Feet stay firmly on the floor throughout the full tilt range. Result—less fatigue, blood flow is not interrupted. Since the seat pan drops as the user leans back, knees aren’t pinched under the worksurface and line-of-sight is not changed.

Touch-Adjust Control Panel.

(A) Back attitude control. This button locks the chair in an upright position, or puts ConCentrnx in the full-tilt mode. (B) Pneumatic height control. Available as an optional adjustment to automatically adjust seat height. (C) Seat attitude control. No other chair offers this feature. The seat front is adjustable from five degrees to eight degrees, or any position in between.

(D) Personal comfort control. This small knob permits tension adjustment to exactly suit individual body weight and height.

Human Factors benefits—six features to help people work better.

These benefits begin with the size of the chair itself. ConCentrnx has been precisely scaled so that its narrower back gives people elbow room on the job. And a smaller size—less space.

Sixteen styles.

ConCentrnx is available in a choice of manager’s or operator’s model in sixteen styles, six shell colors, six monochromatic color combinations. You can choose from three arm options in the manager’s model, cantilever arm or armless in the operator’s model, and more than 250 fabrics, including the new Steelcase Counterpoint Collection.

Fits 5th to 95th percentile.

People come in all sizes. And ConCentrnx is designed to fit nearly all of them. ConCentrnx fits different jobs as well as different people. The importance of this is underscored by the new Lou Harris Poll findings—"86% of office workers use a chair that’s like that of other workers...even those who do different work."
The 'workstation' of the 70's is obsolete, along with shorthand, carbon copies, and the fountain pen.

In its place are Control Centers, the new work areas of the 80's, systems furniture-oriented with consoles to accommodate CRT terminals, interactive printers, digital plotters, and related equipment so vital in today's computerized offices.

And the seating for the Control Center operator is even more vital, requiring more than average support and comfort; greater freedom of movement and more and easier comfort/function adjustments.

For a close look at this new seating concept, visit your Steelcase Regional Office, or see your Steelcase representative.

Steelcase

For worldwide product, service, and sales information, write P.O. Box 1967, Grand Rapids, MI 49501. Call toll-free 800-447-4700. In. Illinois, 800-322-4400.
area are expected to be completed in the next three years, Father Gigante expressed doubts about real governmental commitment, despite grandiose promises. On the other hand, Jessie Rattley, councilwoman from Newport News, Va, denounced the continual carping about governmental shortcomings and made a plea for positive action. Edmund Bacon, one of the panel moderators, closed the session with a speech about the importance of the South Bronx Project.

Other workshops included a discussion on trends in recreational transportation patterns; plan analysis sessions on Leareno in Reno, Nv, the Village at Squaw Valley, Ca, and the town center of Radisson, NY; and a panel on historic preservation/downtown redevelopment.

Exhibit of Paul P. Cret drawings

An exhibition of original drawings on tissue from the office of Paul P. Cret, architect for the Century of Progress Exposition of 1933, will open in Philadelphia at the AIA on December 8. The exhibit, which will run through January, originated at the Rhode Island School of Design. It was prepared by Elizabeth Grossman and Judith Wolin with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia.

The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—from New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—from New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—from New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—从 New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—从 New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—从 New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—从 New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.

Planning for the Century of Progress Exposition, Chicago's Second World's Fair, began in 1928. The Fair's organizing committee had the assistance of many well-known architects—从 New York, Harvey Wiley Corbett, Raymond Hood, and Ralph Walker; from San Francisco, Arthur Brown; from Chicago, Edward H. Bennett, Hubert Burnham, and John A. Holabird; and from Philadelphia, Paul P. Cret—to plan the layout and design the major exposition buildings.

To judge from the coverage in the architectural press, the 1933 Century of Progress Exposition was the most provocative event of its decade. Opening in the depths of the Depression with the special cooperation of John F. Harbeson. The thirty drawings in the show are on loan from H2L2 of Philadelphia. The current exhibition includes preliminary site plans for the fair and early schemes for Cret's Hall of Science building. Most of the works, however, are design development drawings for the Hall of Science, done in colored pencil at scales varying from \(\frac{1}{16} \) in. to \(\frac{1}{4} \) in. per 1 ft.
Perhaps the most important new door closer since 1900:

THE RIXSON
Heritage

Model 2000-I (Interior)
Model 2000-E (Exterior)

Superb door control.
More durable, reliable and versatile than any other closer not imbedded in a concrete floor.

STRONGEST SURFACE CLOSER EVER OFFERED
Assures life cycle economy... reduced maintenance... long term reliability.

• Exclusive one-piece cast iron closer body... cold rolled steel arm... heavy gauge, welded steel cover.

• Exceptional hydraulic capacity and oversized piston, with brass needle valves.

SUPERIOR, EXTREMELY RELIABLE CONTROL
Easy to open, guaranteed to close; protects hardware, door, frame and passersby.

• Unique field-adjustable backcheck system for degree—pre-set at 75° but easily adjusted from 65° to full door opening, regardless of arm application.

• Independent, fully adjustable latch and stroke valves.

EXCELLENT, TIMELESS APPEARANCE
Adaptable to any architectural design or environment. Steel cover and arm readily accept all painted and plated finishes.

• Aesthetically proportioned total closer cover.

UNIQUE STRAIGHT ARM further enhances appearance.

UNIQUE, DESIGN SPECIFICATION SIMPLICITY
Remarkable capabilities of two basic models (identical in appearance) assure proper, uniform selection, with uncommon ease.

• Model 2000 I (interior):
Narrow stile, narrow projection model to complement quality aesthetics in virtually all interior applications. With on-site "power conversion" feature to modify closing force for unusual conditions. Available for parallel arm or top jamb mounting.

• Model 2000 E (exterior):
A rugged, equally attractive model with narrow profile, suitable for exterior use and particularly demanding interior applications. "Power conversion" feature allows modification of closing forces on-site. Available for parallel arm or top jamb mounting.

RIXSON-FIREMARK
A DIVISION OF
CONRAC CORPORATION

9100 West Belmont Avenue
Franklin Park, Illinois 60131
and Rexdale, Ontario—
312/671 5670

Circle No. 332 on Reader Service Card
To Retrofit Is To Replace.
To Specify A Disco® Window Is To Resurrect.

No other window does more to give the old, new life. Or to bring the beauty of the past in line with the energy and maintenance needs of the present.

It’s no idle boast. Each of our window systems is custom engineered to compliment the architectural integrity of the buildings we retrofit. We take great pride in bringing to the past, the advantages of futuristic performance.

Thermal windows, like our T-2001, dramatically reduce air and water infiltration, eliminate drafts and cold spots, and assure superior sound attenuation. They literally create a new living environment in old buildings.

Because of their superior thermal efficiency (U value as low as .42) they also reduce HVAC requirements and can trim the cost of other phases of a retrofit project.

In every way, they continue to save over the “new life” of the building. Because of their operable design, they can be cleaned from inside. Fully enclosed, narrow slat venetian blinds are virtually maintenance free. Solid construction and anodized finish guarantee that there will never be rot, rust or a need to replace again.

If you’re thinking of resurrection instead of mere retrofit, think of DISCO, the customized window system which reduces the energy and maintenance costs of the present without offending the beauty of the past.

Write or call today for a free copy of "WINDOWS," a question of cost vs. worth. Should you want to meet with a DISCO architectural representative or require aid with drawings or specifications, contact George Zinser, DISCO Aluminum Products Company, P.O. Box 1019, Selma, Alabama 36701, (205) 875-9283. Teletyper. (205) 875-3577. TWX: 810-744-3341.

new in its relationship to the environment. The other architects either need
the challenge of real life to pull the best
out of themselves, or need the total
freedom of unreality to produce vi-
sionary work. Pelli, for example, a mas-
ter at rising to occasions, obviously felt
he had little occasion to rise to, and de-
gined a set of toys. Moore's house was
more paper-thin than usual. Price's Ar-
chigram design certainly was not vi-
sionary. Gregotti’s house is hardly worth
mentioning. Eisenman’s design was for
sculpture, and he has produced better
sculpture. And Isozaki's house would
have been beautiful, with breathtaking
spaces, if he had not had to pack it with
"real" necessities of living. Perhaps,
to these architects, this was just another
drawing show, and while their presenta-
tion methods have increased in sophisti-
cation (witness Moore's shadow box
technique, and Isozaki's gorgeous cast
lead plates) their architectural ideas
displayed here have not.

Public education and inspiration.
Here, in fact, lies the show's greatest ac-
complishment. Nothing is so electrify-
ing to many as consumerism, the possi-
bility of acquiring goods. In finding a
new method to market the idea of archi-
tecture, the Sale organizers have in-
creased the public's involvement in ar-
culture. Education and inspiration =
publicity: mission accomplished.

[Susan Doubilet]

Calendar

Exhibitions

Through Jan. 18. Expressionism—a
German Intuition, 1905-1920. The Sol-
onmon R. Guggenheim Museum, 1071
Fifth Ave., New York.
Through March 31. Holabird & Roche
and Holabird & Root: The First Two
Generations. The Chicago Historical
Society, Clark St. at North Ave.,
Chicago.

Dec. 5-Jan. 10. The architectural pho-
tography of Ezra Stoller. Max Protetch
Gallery, 37 W. 57 St., New York, NY.

Dec. 6-Jan. 10. Project show by Richard
Fleischner, site sculptor. Max Protetch
Gallery, New York.

Jan. 16-Feb. 7. The work of Leon Krier.
Max Protetch Gallery, New York.

Through Mar. 15. Japanese exhibit and
lecture tour honoring Walter Gropius
began in November in Tokyo and is
continuing as follows: Dec. 9-21:
Fukuoka City Museum, Fukuoka; Jan.
12-24: Osaka City Modern Museum,
Osaka; Mar. 4-15: Hokkaido Modern
Museum, Sapporo. For information
contact Diana Miller, The Architects
Collaborative, 46 Brattle St., Cam-
bridge, MA 02138.

Competition deadlines

Dec. 19. Registration deadline for par-
cipation in competition to design a
Vietnam Veterans Memorial in Wash-
ington, DC. For more information write
Vietnam Veterans Memorial Fund,
Attn.: Design Competition, Suite 806,
1730 M Street, NW, Washington, DC
20036.

Jan. 1. Entry deadline for the American
Wood Council's Western and Southern
Regional design awards program for
nonresidential wood buildings. Infor-
mation is available from the American
Wood Council, Suite 500, 1619 Massa-
echusetts Ave., NW, Washington, DC
20036.

Jan. 26. Mailing deadline for Interna-
tional Conceptional Furniture Design
Competition, sponsored by Progressive
Architecture. For information see p. 13 or
contact Furniture Competition, Progressive
Architecture, 600 Summer St.,
Stamford, CT 06904.

Conferences, seminars, meetings

Jan. 18-20. Architects' Seismic Seminar,
sponsored by the Northern Nevada
Chapter of the AIA and the Graduate
School of Architecture, University of
Utah, limited registration. Contact
Raymond Hellmann, 137 Vassar St.,
Reno, NV 89502 (702) 329-8461.

Jan. 23-25. The 37th convention of
Alpha Rho Chi, the national profes-
sional architectural fraternity, at the
University of Houston. Contact R.W.
Burford, AIA, 3333 Eastside St., Suite
142, Houston, TX 77008.

Apr. 1-6. The 34th annual meeting of
the Society of Architectural Historians,
Empress Hotel, Victoria, BC. Contact
The Society of Architectural Historians,
1700 Walnut St., Philadelphia Pa 19103
(215) 735-0224.

[News report continued on page 40]
The face that won’t show its age

When you specify Stark Structural Glazed Facing Tile, you design for the future. Because even after 25 years of use - and abuse - walls like these at the Summit Junior High School will still look like new.

Because it never needs painting, SGFT reduces maintenance significantly over the life of the building. And it resists stains, marks and chemicals better than any other wall material.

Impervious, fire resistant, thermal efficient

During manufacture, Stark SGFT is kiln-fired at over 2000° F. So it won't burn, spread flames or emit toxic fumes.

SGFT is available in a wide range of colors. For lower price and quick delivery, select a Stark Quick Start Color and specify standard stretchers from floor to ceiling. Eliminate all unnecessary shapes and fittings.

In areas such as gymnasiums and swimming pools where noise control is important, choose Stark acoustical tile. Face perforations with fiberglass pads let the wall, rather than the ceiling, absorb the sound.

High interest rates, rising building and investment belt-tightening are but we do have the answer to your

Tuffak

the cost effective

TUFFAK CM-2 is cost effective because:

- It's virtually unbreakable, so you don't have to worry about breakage problems.

- It's abrasion resistant, so that you can clean it without worrying about scratching.

- It's chemical resistant, so you don't have to use any special cleaners or be concerned about the effects of airborne dirt and chemicals.

- It stands up to the blazing summer sun with its damaging ultraviolet rays, as well as to rain, sleet, hail and snow — and still retains its optical clarity over a long period of time.

Durable, clear, hard coating

TUFFAK CM-2 sheet has a durable clear, hard coating that provides the maximum protection against these “other” punishments that window glazing is subjected to, while the standard polycarbonate substrate takes care of the big problem... breakage.
costs, increasing liability claims, problems we can't solve...

window glazing headaches:

CM-2
COATED POLYCARBONATE SHEET

glazing material

"We installed TUFFAK CM-2 because we wanted a material that was not only vandal resistant, but one that would be weatherable and easy to maintain."

Joseph G. Koehler, Principal
Upper Moreland Junior High School
Willow Grove, PA

Meets safety standards
TUFFAK CM-2 meets all the requirements of a safety glazing material as defined by the Consumer Product Safety Commission's Architectural Glazing Materials Safety Standard (16 CFR 1201), Categories 1 and 2, and the requirements for light transmitting plastic under building codes.

Get the facts before you buy
CIRCLE THE READER SERVICE NUMBER before you buy or specify a window glazing material to solve your breakage or vandalism problems and get all the facts on TUFFAK CM-2. Other polycarbonates may be as tough, but none are more durable or more cost effective!
WASHROOM DIRECTIONS are reference manuals designed to guide specifiers in selecting the right Parker equipment for use in each of a wide variety of washroom categories. The stainless steel units in this washroom were taken from a WASHROOM DIRECTIONS checklist of essential and optional surface mounted units for use in a girls' room in a school. They include:

- TOWEL DISPENSER — No. 694
- WASTE RECEPTACLE — No. 603
- FEMININE NAPKIN DISPENSER — No. 6933SM
- MIRROR-SHELF COMBINATION — No. 53020S
- SOAP DISPENSER — No. 30-SS

If surface mounted units are not desired, WASHROOM DIRECTIONS also provides checklists for recessed, space-saving, barrier-free and concealall washroom designs. Send for your WASHROOM DIRECTIONS and find out how easy specifying Parker units can be, whatever direction your washroom plans are taking.

In progress

Theater, Long Island University, Greenvale, NY. Architects: Mitchell/Giurgola Architects, New York. In February 1978, a storm caused a roof collapse at the 1970 auditorium/held house of the C.W. Post Center, Long Island University. The University decided to rebuild the “Dome,” as it was called, with greater performance potential, and while the circular plan and perimeter walls are being retained, the building will now hold a multipurpose hall seating 2200. The acoustical shortcomings of the circle will be overcome by the use of a series of angled walls, reflective “ribbons” overhead, and acoustical treatment of the perimeter walls. Tiered and sloped seating, two major building columns on stage, and special lighting will provide visual focus. Proscenium arch and other masking controls will enable modification of the stage configuration. Construction is steel frame clad with aluminum panels, enlivened with red joint lines between panels, blue trim, and runway lights atop the building.

The Overseas Tower, Miami, FL. Architects: Arquitectonica International Corp., Coral Gables, FL. This six-story, 38,000-sq-ft office building will serve as headquarters for an international trading and finance company. It is located at the entrance to one of the man-made peninsulas in a new industrial park, Fingerlakes Commercenter, near Miami International Airport. The main organizing element of the building is a brightly colored, 12-ft-thick wall containing the service core. A small section of the wall occurs on the other side of the peninsula access road. On the front, a glass triangular prism houses a 24-hour teller and forms the entrance to the bank lobby. On the lake side, a glass cylindrical segment contains the office spaces. The entrance to the office lobby is an oversized glass doorway in the front facade. At the ground level, a cutout in the thick wall accommodates a drive-through teller, and at the fifth floor, a two-story cutout provides a terrace for office employees.

Write today for free sample of one of world’s best roof insulations:

Permalite® Pk® Plus perlite/urethane/perlite 3-part composite roof insulation

Specify it when you want long-life insulation having a “C” value of .10 or better for industrial/commercial roofs.

• Permalite Pk Plus is a true sandwich board. The top and bottom perlite layers maintain the efficiency of the polyurethane core by protecting it from the effects of high rooftop temperature changes. The top perlite layer also protects the core from hot asphalt during membrane application. And both perlite layers contribute to the dimensional stability of the insulation panel and help dissipate both heat and moisture during application. SEND FOR FREE SAMPLE.

290 PRATT ST., MERIDEN, CT 06450
TEL: 203-235-6365
Circle No. 328 on Reader Service Card

GREFCO, Inc./Building Products Division
GENERAL OFFICE: 3450 Wilshire Blvd., Los Angeles, CA 90010
SALES OFFICE: 2905 Butterfield Road, Oak Brook, IL 60521 (312) 654-4500

A subsidiary of General Refractories Company

Circle No. 321 on Reader Service Card
Now Paraline linear ceilings go where none have gone before.

The best test of a product is its ability to perform where others fail. Paraline ceilings are built better so you can specify them in more places than other linear metal ceiling systems.

Paraline ceilings are available in both low cost, high strength steel, or moisture and corrosion resistant aluminum.

Paraline ceilings are available in a wide range of colors and textures with either open or closed reveals.

If you need a fire-rated system, Paraline system is the only one you can buy.

Paraline square edge pans have been shown to be three times stronger than round edge designs.

Paraline system's exclusive grid and locking design eliminates lift and lateral shifting in both positive and negative pressure conditions. You can install Paraline even in severe wind load areas.

At last. There's a linear ceiling that goes where your imagination takes you. Find out more. Talk with your Donn representative or write for full specifications.

Donn makes sense.

DONN CORPORATION
1000 Crocker Road
Westlake, Ohio 44145 • (216) 871-1000

Circle No. 316 on Reader Service Card
DELAYED CLOSING HELPS THE HANDICAPPED

LCN Delayed Action Smoothee® Closers delay the closing of the door making it easier for the handicapped, the elderly, and staff to enter and exit. Models available for push side, pull side and over door mountings. Call (815/875-3311) or write LCN for the correct sizing of door controls to provide easier entry by the handicapped.

All-weather hydraulic fluid for consistent operation.

Heavy duty, cast iron cylinder and forged steel arm.

Sizes 2 thru 5, 50% adjustable spring power.

Duration of delay is adjustable.

Streamline Smoothee design.

Full rack and pinion hydraulic action.

Aide opens door.

Delivering cycle commences allowing sufficient pass-through time for aide and patient.

Delayed action releases and door begins closing cycle.

Door closes. General and latching speeds adjustable to suit interior or exterior conditions.
Send us your best house design. If it wins, we'll build it.

If you're an architect, engineer, designer, builder or student, you're eligible to enter our new design contest.

Object: to recognize innovations in housing.

First prize is $5,000 and the chance to see your ideas constructed and featured in Better Homes and Gardens and Progressive Architecture.

We're looking for single-family house designs that are appealing, economical to build and energy efficient. They must also demonstrate noteworthy aesthetic and structural uses of softwood plywood.

You can get rules and entry forms three ways. Send in the coupon. Call (206) 565-6600. Or write Innovations in Housing, P.O. Box 11700, Tacoma, WA 98411.

But do it soon. Because all entries are due March 16, 1981.

Innovations in Housing
Dept. PA-120, P.O. Box 11700
Tacoma, WA 98411

Please send me _____ entry forms.

Name
Address
City
State
Zip
FOCUS LOUNGE
Ergonomically Designed Lounge Seating

Showrooms:
Chicago 312/644-8144
Philadelphia 609/467-1423
New York 212/753-6161
Dallas 214/242-8592
Los Angeles 213/854-1882
Curved glass walls (above) enclose central executive offices, stepped back for views and draped for privacy. Extruded aluminum light fixtures (right) are suspended over the corridor, which culminates in a storage cabinet.
Alcan Aluminium offices, Montreal

Glass walls around 1 offices and 2 small conference rooms allow views and light penetration.

3 Wood frame for special curved glass. 4 Executive offices.

5 Boardroom. 6 Corridor with rounded wood molding and reflector lights. 7 Reception area, with burgundy leather seating, custom-designed desk, and logo on hand-etched aluminum panel.

8 Secretarial stations surround glazed offices.
Data
Project: Alcan Corporate Headquarters, Place Ville Marie, Montreal, Quebec.
Program: interior renovation of 72,000 sq ft on the 28th and 29th floors of I.M. Pei's 1960s office building, providing general and executive offices, reception area, and conference rooms.
Major materials: glass in wood frames, gypsum board, carpeting, drapery, existing fluorescent lighting fixtures, and custom-designed suspended aluminum reflectors. New and refinished white birch desks. Etched aluminum sign and custom-designed aluminum hardware.
Client: Alcan Smelters & Chemicals Ltd.
Consultants: mechanical & electrical: Rybka Smith & Ginsler; acoustical: Davidson & Associates.
General contractor: P & R Desjardins Construction Inc.
Costs: $15 per sq ft, exclusive of carpet and furniture.
Paul Segal Associates weaves together the intersecting grids of New York in high level offices that are themselves arranged as an urban intersection.

In an almost literal interpretation of the design-interiors-as-if-they-were-miniature-cities approach, these offices are modeled after an Italian piazza. The idea is hardly odd, as Classical architecture from the Renaissance on generally conceived of urban design in architectural terms with the sky as an imagined roof.

The Segal-designed offices are on the top floor of a 1917 Albert Kahn building in New York. The elevator opens directly onto the piazza, a lobby area occupying the entire middle of the floor. This piazza is paved in slate, and the rooms around are treated as if they were buildings. The walls are articulated in long, horizontal gray panels like the rusticated stone bases of important Classical buildings, with niches as windows.

The entrances to the three senior officers' suites are abstracted façades. Each is composed of a section of wall, a column, a beam, and a light box that stands for both door and window. These are assembled to accentuate the distinctiveness and thus symbolic value of each element. The wall is natural oak and actually consists of two walls meeting at a corner. The column is round and rust color. The beam is square and oak, separated from the wall by a reveal. The light box is framed in pale gray-green steel that in fact has the identical section as the window walls of Wright's Falling Water and owes the same debts to Chareau and Corbusier. Each "façade" stands slightly in front of the wall, marking each suite as a separate building.

The same elements are played large for the presidential suite at the end. The propylea becomes an entire reception room, edged in window wall. Its whole side, which is the entrance to the rest of the suite, becomes a play on the little gateways, but in reverse, with a full-size column, window-wall entry into the next office, and duct "beam." The rusticated paneling of the piazza, meanwhile, has eroded into the receptionist's desk. (The rest of the presidential suite was unfortunately furnished in typical model home style by another designer.)

Other elements facing or in the piazza are treated similarly. The elevator wall is given a cornicelike molding. The main reception desk and guest closets are embraced in an overall frame. The smaller assistants' offices, across the piazza, are grouped together with a tiny vestibule and large, framed translucent windows onto the square.

There are no lighting fixtures in the piazza except for the small grids of downlights over the waiting area and main reception desk. Otherwise, light comes from the "buildings"
Executive offices, New York

in a reversal of inside and outside. Hidden bulbs within the cornice molding wash the elevator wall with light. More hidden bulbs fill the niches with light and aim rays up from the gateways. Real sunlight comes in from the offices through the light boxes.

City within a city
Complicating the urban imagery are the very real urban constraints of its location at one of the intersections of Manhattan's rectilinear grid and its one major diagonal, Broadway. The two grids within the building make for angles of intersection largely taken up by bathrooms, kitchens, corridors, and the triangular form of the piazza itself. But at each end the architects have dealt with the configuration in a clear and public way.

Next to the elevator is an alcove acquiring one edge from the diagonal and one from the rectilinear grid. The waiting area is inserted here. Incisions cut into the walls, creating shelves, allow both grids to be simultaneously expressed. (The effect is also to pull the walls away from the furniture, making the alcove seem roomier). At the other end, the two grids are resolved in a single pivot point, the last column.

Making that column the pivot point required that the interior partitions of the offices line up with it. What this added in generosity of proportion to the piazza and geometric serenity, it subtracted in space from the offices. The protruding gateways serve to move closets and doorswings into the common area, thereby permitting side chairs in the secretarial offices. The thick zone between piazza and offices, almost corrugated by niches and closets, is intended to have acoustical advantages as well.

The colors—black slate, pinkish cream walls, pale green steel and baseboards, mauve radiators and window frames, rust decorative columns and gray actual columns, wool wallcoverings and carpeting inside offices—are of the increasingly popular palette revived and tuned by Michael Graves. "We chose color," says one of the project designers, Michael Canter, "for an association with traditional elegance. We wanted the air of having stood still since just after World War II."

All in all, the piazza is a strong symbol for the organization (which wishes to remain anonymous for publication) whose top officials are housed here, and the niches will be filled with old photographs and memorabilia from its illustrious and colorful past.

The design intentions and vocabulary are rather different from the Segal firm's earlier work and represent the growth of the firm from two partners to 13 architects and Segal's policy that each should be allowed to follow his own direction. These offices have been on their boards for 2½ years, through innumerable designs. The built one is largely the concept originally of James Biber, a graduate of Cornell; and later Michael Canter, a graduate of Cooper Union. [Nory Miller]
This page: The lobby waiting area (top) fits into an alcove next to the elevators, expressing both rectilinear and diagonal grids. Bottom: Gateway to an executive office.

Facing page: Where elements intersect with the lobby, they are detailed as buildings on the square. Reception desk and guest closets are embraced by a frame (top) that defines them within the space. The elevator wall (middle) is given a cornicelike molding. Bottom left: The gateway to the president's suite, his reception area, is a blown-up version of the other gateways. Bottom right: Executive office with desk designed by the architect.

Data
Project: offices, New York.
Program: executive offices and conference room on top floor of 1917 Albert Kahn building.
Major materials: gypsum board, slate floor, oak, steel frame window wall.
Contractor: H.S. Hochberg & Son.
Costs: withheld at request of client.
Photography: Darwin K. Davidson, Norman McGrath.
Crystal Cathedral, Garden Grove, Ca

New Crystal Palace

Barbara Goldstein

The most talked of building of the year is Johnson/Burgee's Crystal Cathedral, which has just been completed in California.

On a busy commercial strip amid the fast-food restaurants, shopping centers and crackerbox houses of Orange County, Philip Johnson has created a masterpiece, an inspiring new church for a remarkable and visionary patron. The Crystal Cathedral, designed for the Reverend Robert H. Schuller's Garden Grove Community Church, is as contemporary and forward-looking in its approach to architecture as is its minister's approach to religion. The building is simple, elegant, and spectacular, a tribute to a lively Christian congregation in the heart of Southern California.

Reverend Robert H. Schuller moved to California in the early 1950s, an Iowa farmboy with a vision of building a Christian congregation in Southern California. He began preaching his message from the snack-bar roof at the Orange Drive-In Theatre; but by 1959 his congregation was large enough to need a major building, the Garden Grove Community Church, designed by Richard Neutra. This was a tasteful linear structure of wood, steel, glass, and stone, flanked by a reflecting pool. Soon the congregation grew, and new buildings grew around the church, forming a lushly landscaped courtyard dominated by a 14-story campanile, the Tower of Hope, designed by Dion Neutra.

In the early days of his ministry, maintaining the tradition of drive-in religion, Schuller encouraged those who could not come into the church to worship from their cars. Maintaining this tradition, the Crystal Cathedral has 300 parking spaces for congregants who wish to worship in their cars.

Schuller's message is simple: he believes that the basic human problem is lack of self-esteem, and that communication is the key to human understanding. He calls his followers Possibility Thinkers. A psychologist by training, he takes a populist approach to religion and has an astute awareness of the power of the media. Beginning as a minister of the highways, he has graduated to the airways; his television audience is in the millions and the Hour of Power is broadcast in 177 cities.

In 1975, when the Garden Grove congregation had outgrown the 1400 seats in the expanded Neutra building, Schuller thought of building a new church. He had read a magazine article about Philip Johnson's Fort Worth water gardens and went to see them. Initially Schuller thought that Johnson was a landscape architect who might design the grounds around the new church, but when he later learned that Johnson was an eminent architect, he commissioned him to design the building.

Johnson had never heard of Schuller, either, but their meeting was providential. Here was the marriage of two great optimists, patron and architect—a match made in heaven. Johnson now describes the commission as "a fantasy building for a fantasy client."

Reverend Schuller believes that architecture is basically "anti-human," that it is an intrusion. He feels that man's basic problem is that he is out of his natural habitat, the Garden of Eden, and that this situation prevents trust and communication. He feels that a church should "tranquilize"; it should awaken the senses, uplift the spirit, and allow the individual to see the heavens above. The ideal church would be a park where people could sit in communion with nature.

Schuller described his attitude to Johnson, encouraging him to let his imagination soar. In fact, Schuller considered Johnson's original proposal of a church with only a glass roof to be too conservative. He urged Johnson to redesign it with completely transparent cladding, stating that the view of traffic and surrounding life was all part of God's world. He knew about the Crystal Palace, and this convinced him that his dream was possible.

The Crystal Cathedral, with its lacy transparent structure and its mirror-glass cladding, certainly fulfills much of Schuller's dream. It allows its congregants to see the sky as well as the world around them. Its great pivoting doors admit the breeze and the fog, and its huge embracing space promotes a sense of community. Without a doubt, the soaring space, enclosed by a uniform web of white space-frame trusses, inspires a sense of awe. Being inside this building is literally an uplifting experience.

The exterior of the building succeeds on a symbolic level, too, at least when seen at a distance. It is a building rich in imagery and metaphor despite its seemingly abstract geometry. First sight of the Cathedral is the view from the freeway; from there it appears like two glistening pyramids stacked against

God, if you want it built, provide the cash and I'll take the criticism. —Rev. Robert H. Schuller
The massive pair of doors at the north side of the church (right and below) are not an entry, but a "window" that allows worshipers, who listen to the sermon in their cars outside, to see the Reverend Schuller inside.
one another, the downward slope of the north roof reflecting a triangle of sky, a subliminal reference to the Trinity. As one draws closer, the building appears like a mirrored tabernacle, with invisible guy wires pulling it taut against the earth. Its surface color and pattern constantly change, reflecting the conditions of the atmosphere: in early morning it glitters, by noon it seems opaque. Although its cladding is in the commercial vernacular of the area, it is unmistakably a church. The embracing nature of its forms and the cross of the Neutra campanile peaking above give clear indication it is a place of worship.

The Cathedral presents continually changing meanings as one drives past it on the surface roads. The downward sloping wings of the north and south elevations and the sharp angles of the east and west corners exaggerate its scale, creating an illusion of greater length. From across the street, the high, blank north façade recalls the rear of a drive-in screen, its flat surface facing away from the road. Once the gigantic doors begin to part, however, they can only be seen as the tablets of the Ten Commandments—that’s strong, an apocalyptic imagery for an abstract construction!

The building also recalls airplanes and spaceships. The chevron patterns of the vent windows and the downward pitch of the wings create an impression of flight. The building looks as if it might take off any second, an appropriate gesture for a ministry of the air. In fact, the building utilizes space technology to the extent that the pivotal doors use the same opening mechanism as the doors at Cape Canaveral.

Inside, the image of upward motion is further reinforced by the sweep of the triangular balconies. The seating and aisle pattern describes arrows pointing up to the sky; and these carry the vision ever upward to the ridge of the roof and beyond. Overhead, 11,000 Mylar stars, suspended from the frame, catch the movement of the sun, each commemorating a building donor.

The plan
The church is also unusual in plan; rather than being a cruciform plan with an extended nave and short transept, the plan is reversed. The building’s perimeter describes an elongated four-pointed star, and the 207-ft nave comprises the short axis, while the transept is twice the length at 415 ft. Straight rows of seating on the ground floor and the frame formed by the balconies reinforce the square space of the lower-level seating. The plan is both formal and symmetrical, and the space presses in toward the pulpit, creating a surprisingly intimate effect within such a vast volume.

The juxtaposition of the Crystal Cathedral at a right angle to the Neutra Church creates a monumental forecourt, where people can stroll from their parked cars into worship services. Although this façade is far less interesting than the façade that faces the road, it is enlivened by the fractured reflections of Neutra’s church and the Tower of Hope. There is just enough room between the street façade and the road to accommodate 300 drive-in congregants. The location of the opening doors on this side of the building not only offers them a limited view into the cathedral, it also bathes the Reverend Schuller in a flattering morning light, enhancing his image on television.

The Crystal Cathedral is unquestionably modern, a reassuring gesture from Philip Johnson; and its simplicity and conceptual clarity make it one of his most successful buildings. Certainly it is the most magnificent interior space he has designed. Whereas in Pittsburgh he is building a Gothic cathedral for commerce, here he has created an entirely fresh but unambiguous form for religion.

Design sources
There are some interesting sources for the design of this building, which Johnson has synthesized into far more than the sum of their parts. In describing the building he has referred to both Norman Foster’s Sainsbury Centre for the Visual Arts (P/IA, Feb. 1979, p. 49), and Mies Van der Rohe’s Friedrichstrasse, the triangular glass office tower proposal in Berlin. Viewed from certain sides, the elongation of perspective resulting from its prismatic plan does give the cathedral a striking resemblance to Mies’s building. A lesser known predecessor, and one of which Johnson may have been unaware, is Bruce Goff’s 1950 design for the Crystal Chapel in Norman, Ok. Here, Goff proposed an all-glass roof, based in plan on a three-pointed star. Like the Crystal Cathedral, it was ventilated by drawing hot air up through the peaked roof; it also proposed cooling the air by the use of outdoor pools. The Crystal Cathedral, however, is unique in its internal volumetric organization, and that is the outstanding aspect of its design.

The building is innovative in both appearance and environmental systems; it is “high-tech, low energy.” Like the Sainsbury Centre, it uses a triodetic steel frame to support the roof and walls, a system of reflective panels to reduce solar gain, and it is naturally cooled. However, here the comparisons stop. Whereas Foster’s structure relied on a Miesian philosophy of structural minimalism, the
The south side of the church faces the major parking area and the earlier church and administration building, which are reflected in the mirrored façade. Major pedestrian entries are at the extreme east (immediate left) and west (directly above) points of the church (see plan left).
Crystal Cathedral rejoices in its extravagant use of structure. As Johnson stated, "What's important is what we have done with structure, not what structure has done to us."

Environmental systems

The environmental systems, too, are very sophisticated. There is absolutely no mechanical heating or cooling system in the main auditorium of the church, although the acres of basement office and rehearsal spaces are climate controlled. The cathedral space operates as a solar chimney, and the ambient temperature within it derives entirely from its form and engineering. The mirror-glass cladding reflects most of the sun, admitting only a small amount of heat and light. The roof of the cathedral's north wing rises high above the south slope, forming a vented vertical face. This heats up the top area of the building, in turn drawing the cool air up from the bottom and out, like a chimney.

The atmosphere inside the building is very pleasant as a result of the filtered sunlight and movement of air. The mirror glass admits only eight percent of the sun's rays, bathing everything in a warm glow. In spring and autumn, the morning fog rolls into the building, creating a cloudy veil over the congregants. On stormy days, there will be both the sight and sound of rain (perhaps a mixed blessing). On the hottest summer days, the interior will undoubtedly be warm, but it will be cooler than the outside air.

The interior

Many aspects of the building's interior are inspired, and the overall sensuality of the space is almost overwhelming. The concrete framework that supports the seating is clean and elegant, its sparkling, bush-hammered surface making it seem as if it were rough hewn from marble. The balconies are entirely independent of the steel lattice structure, and their insertion into the corners of the building, forming entrance canopies and vestibules along their undersides, is masterful. In fact,
Crystal Cathedral, Garden Grove, Ca

the entrance sequence is beautifully designed to prepare congregants for the space to come. On approach, one is dwarfed by the surface and scale of the building, its flat, shiny walls pressing down toward the plaza. The entrance slots are inviting, however, and passing through their wide openings, one is in an entry zone of shifting, lacy shadow patterns playing on the terrazzo floors and massive concrete columns. The canopy overhead slopes down, pulling the participant into the larger space.

The interior surfaces create a sense of warmth in what might otherwise seem like an ice palace. All the surfaces are tinted in pale, earth-related colors. The sand-colored terrazzo floors and pale oak pews are delicate, while the rose-colored granite chancel is almost erotic in its veined fleshiness. The polished-granite altar furniture, recalling that of Aalto's church at Riola (P.A., March 1979, p. 57), help adjust the eye to the scale of the minister and choir.

Criticisms

This is a building designed to facilitate spectacle; the religious services are choreographed to perfection, fitting well the format of televised replay. Before the services, the outside fountains dance in front of the massive doors. The choir files in, begins a chorale and these fountains subside. The massive doors swing open, the inside fountains rise in response: Reverend Schuller raises his arms to the congregants in their cars and begins the morning prayers. So theatrical is the nature of the ritual and space, that the congregation applauds the organist and weekly fountains subside. The massive doors swing open, the inside fountains rise in response: Reverend Schuller raises his arms to the congregants in their cars and begins the morning prayers. So theatrical is the nature of the ritual and space, that the congregation applauds the organist and weekly response: Reverend Schuller raises his arms to the congregants in their cars and begins the morning prayers. So theatrical is the nature of the ritual and space, that the congregation applauds the organist and weekly response: Reverend Schuller raises his arms to the congregants in their cars and begins the morning prayers. So theatrical is the nature of the ritual and space, that the congregation applauds the organist and weekly response: Reverend Schuller raises his arms to the congregants in their cars and begins the morning prayers. So theatrical is the nature of the ritual and space, that the congregation applauds the organist and weekly

Conclusion

It has been said that a cynic is a person who knows the price of everything and the value of nothing. It would be easy to criticize the Crystal Cathedral because of its cost, extravagance, or monumentality, but this would be inappropriate. It is true that the building cost $16 million; however, it was built by an enormous congregation, which donated its money to see this monument realized. The funds were raised bit by bit, with congregants “subsidizing” commemorative windows, “pillars of steel,” seats, and Mylar stars. And it serves its congregants as a symbol of hope, dreams and possibilities.

Philip Johnson has been quoted as saying that he would work for the devil if he were offered a good enough commission. It seems that he's better when working for God. □

Data

Project: Garden Grove Community Church (Crystal Cathedral), Garden Grove, Ca.
Architects: Johnson/Burgee; Albert C. Martin & Associates, consulting.
Site: 19½ acres in flat, residential development.
Program: church sanctuary of nontraditional design, in which services are videotaped for international distribution. Section of exterior wall facing parking to be capable of opening. Auxiliary services on lower level.
Structural system: exposed steel space frame on reinforced concrete foundation.
Major materials: aluminum frame with reflective glass curtain wall; architectural concrete for balconies; rossio-alicante marble and oak panels in platform area.
Mechanical system: sanctuary partially heated with warm air; natural ventilation with operable vents in lower wall and clerestory. Lower level air conditioned with variable air volume; gas-fired hot water boiler; 70-ton chiller.
Consultants: Johnson/Burgee, the Richard Beeson Co., landscape; Johnson/Burgee, interior; Severud-Perrone-Sturman-Bandel, structural; Consenini Associates, mechanical; Klepper Marshall King Associates, acoustical; Claude R. Engel, lighting; A.C. Martin & Associates, civil and architectural.
Client: Garden Grove Community Church.
Costs: $16 million excluding fees.
Photos: Marvin Rand.
This analysis was prepared in the Center for Planning and Development Research, College of Environmental Design, University of California, Berkeley; Vladimir Bazjanac, Ph.D., Project Director. The work is funded by the U.S. Department of Energy.

The analysis of the Crystal Cathedral in Garden Grove, Ca, focuses primarily on the performance of the glass-enclosed nave, which is not conditioned. It examines the temperature fluctuation inside this space and compares it to ranges of comfort for the congregation. It also investigates different strategies of natural ventilation and the impact of different glazing types on occupant comfort.

The unconditioned portion of the building provides an environment thermally more comfortable than the outside, except when the outside temperature is excessively high. The temperature inside the nave is consistently higher than the temperature outside. The extent of this difference depends on the season (it is greater during cold days than during hot days), and on the strategy of opening the windows and the tall, revolving door, which are employed for the natural ventilation of the building. Besides being higher, the inside temperature follows the fluctuations in outside temperature quite closely, because of the relatively low overall thermal mass of the building.

The building is occupied during two separate periods of the day: in the morning and in the evening. Services are held only on Sundays, and occasional speaking engagements and rock concerts are planned for weekday evenings. The analysis of thermal comfort during hours of service is extended to every day of the year to account for all circumstances in the annual variation of weather.

The nave is more likely to be too cold than too hot; space heating may be required at times to improve the comfort of the congregation. The probability that the inside temperature will fall within the comfort range of 68-78 F is 41 percent during morning service hours (between 8 A.M. and 1 P.M.). The probability for the same comfort during evening service (between 6 P.M. and 10 P.M.) is 42 percent. If the comfort range is extended to 60-85 F, the probabilities increase to 88 percent and 83 percent during morning and evening service hours, respectively. These probabilities take into account the changes in weather for a full year during the morning and evening service hours. They are also based on the use of the best strategy for natural ventilation.

The analysis of natural ventilation examines three typical strategies of operating windows and the tall door: daytime-only ventilation, nighttime-only ventilation, and 24-hours-a-day ventilation. The last of these strategies performs best, as it offers the highest probabilities of comfort during service hours. The venting strategies are assumed to be in effect only during the cooling season (May through October). Venting during the heating season would further increase the need to heat the space.

The analysis of the performance of different glazing types examines three glazing solutions. Glazing as built is single-pane, state-of-the-art heat-rejecting glass with 10 percent solar transmission. The other two investigated alternatives are a single-pane, heat-absorbing gray glass with 31 percent solar transmission, and double-pane assembly (blue-green on the outside, clear on the inside), with 5 percent total solar transmission. The comparison of performance of different glazings is shown for three Sundays.

The blue-green glass (as built), which allows the transmission of only 10 percent of solar rays, effectively eliminates the need for exterior shading devices. While the structural frame provides additional shading of the nave, this addi-
Daytime ventilation (7AM-8PM)

Daylighting in the building is excellent. The light is diffused and no artificial lighting is needed in the nave during daylight hours, except special lighting for TV during televised events.

The Cathedral is practically surrounded by a large parking lot. The asphalt surface of the lot obviously increases the temperature of the environment that surrounds the building. This effect was not modeled in the simulation of the building's thermal performance. Instead, the CTZ weather tape for Santa Ana was used unmodified to simulate annual weather conditions in the surrounding environment.

The reported temperatures are dry-bulb temperatures. As such, they are only a partial measure of thermal comfort. The actual feeling of comfort during cold periods may be considerably enhanced by widespread sunlight and long-wave radiation from the building itself. Changes in relative humidity in interior space during warm periods may affect the feeling of comfort more than dry-bulb temperatures would indicate. The excessive height of the space will cause some interior vertical circulation of air. The reported temperatures represent the temperatures of the lower areas of the space.

All conditioned spaces are in the basement. They follow a basic officelike schedule of use (9 A.M. to 5 P.M. daily, Monday through Friday). The combined load for heating, cooling, artificial lighting, and user-operated equipment is 778 million Btu, which translates to 50,612 Btu/sq ft of conditioned basement area. If this load is distributed over the entire floor area of the building, it becomes 11,243 Btu/sq ft.

The analysis of the energy performance of this building does not include the performance of mechanical systems in the building. It is based on annual simulations with DOE-2.1, using custom weighting factors. Its accuracy is limited to the accuracy of DOE-2.1 in representing the building's thermal behavior and does not necessarily conform to all of the details of the actual performance of the existing building (P/A, April 1980, p. 100). A detailed report is available upon request.
A long, low house set into a south-facing slope, under broad copper-clad eaves, embodies several ideas about building components, energy use, and lifestyle.

From the street side, it appears to fit discreetly into its suburban Connecticut site, but behind its unassertive front (below) is a house built to challenge prevailing standards in the use of materials and energy in homebuilding. As a demonstration house, the project was intended to incorporate a variety of active and passive energy devices, as well as a number of building components by certain producers. As architects, the Berkus Group of Santa Barbara responded with a design that challenges, as well, the prevailing lifestyle of the Northeast.

Although the exterior form and color of the house have some relationship to the oldest New England saltboxes, the expansive, fluid spaces inside suggest instead the lifestyle of Southern California. Berkus feels, however, that unconfining interior space is particularly needed in northern climates, providing an interior "landscape" for the cold months, one that varies visually with daily and seasonal light changes. He relies on tall and variable ceiling heights as a relatively economical way to get more volume and play of light from a given floor area. And he dramatizes vertical extensions of space by presenting them all to the visitor immediately inside the low main entrance.

In apportioning interior space, the architects have broken sharply from the conventions of the Northeast. The main floor is divided largely into two zones: a master suite that is large and luxurious for a house of this size and a public zone with as many levels and alcoves as a modern stage set. It is easy to relate the master suite to West Coast lifestyle, but in energy terms, the master suite is seen as a private living space to be maintained at normal comfort standards; for the larger public space, intended mainly for entertaining, less demanding comfort standards are acceptable much of the time. Berkus sees this space as an exceptional setting for parties, relishing the dramatic views between clusters of guests in various corners of the space—drawn by the fireplace, the greenhouse, the viewing platform at the top of the curved stair, and the bar tucked beneath it.

The two bedrooms located on the small second floor, though certainly ample—with their own deck—take a relatively minor place in the whole scheme. This house, according to Berkus, is not meant for the conventional family with kids, whose mother stays home—a shrinking group in any case—but primarily for people whose children or guests visit occasionally.

Copper angles, redwood curves

The architects have adopted a limited vocabulary of forms and applied it freely. Reigning over all is a standing-seam copper roof of uniform pitch, but with a variety of ridge and eave heights, extending out in browlike eaves toward the south and folding over the wall toward the ground on the low north walls. The vertical redwood walls chosen to complement the copper break out in several places into cylindrical extensions—most notably at the library and master bath, which slip out from under the roof, revealing their own skylight lids. Cylindrical forms are also taken up in a set of columns, announced in the abstracted Classical pavilion at the entrance; plaster-coated versions are distributed through the main living space—on no regular module—and wood-clad versions appear again in columns on the deck and in the fireplace chimneys.

Soaking up the rays

In keeping with its demonstration objectives, the house incorporates a variety of active and passive systems. The major active components are two banks of flat-plate collectors, 32...
South-facing rear of house (top) displays greenhouse and solar collectors. Photovoltaic bank stands free of house (above). Front entrance (above left) has redwood columns and "capitals" for indirect lighting under distinctive fascia. Columns reappear on rear deck (left, right). Insulating security shutters (right) drop from redwood valances above major south windows.
Sun/Tronic house

Panels totaling 640 sq ft—using copper plates—that are predicted to serve about 45 percent of the house’s space heating and hot water needs. Their placement against the lower portion of the south side, rather than on the roof, allows a 55-degree pitch—favorable at this latitude—and eases maintenance. The 1000-gallon solar-heated water tank can be directed to coils in the domestic hot water tank and in the discharge ducts of the air-to-air heat pumps, which are the principal backup system for both. Electric resistance heaters provide a further backup for both systems.

The principal passive heating device—expected to meet 15 percent of space heating demand—is the greenhouse, 17 ft wide, 8 ft deep, and 15 ft high with well-insulated masonry masses in its floor and end walls. A redwood hot tub and an array of copper tubes, holding 1200 lbs of water, add thermal storage.

The greenhouse can be separated from living areas by doors at the lower level and an insulating shade above. When used for heat gain, however, it is integrated into a thermal circuit involving the adjoining living spaces on both floors. Warmed air is allowed to rise to the peak of the space, where a fan (activated when the peak air is 80-90 F) draws it down an “energy column” and circulates it through cavities in the floors of library and family room before expelling it through grilles. In warm weather, air at the peak can be ejected by an exhaust fan.

The south wall of the master bedroom incorporates a small prototype of a nonmechanical collection system, with pipes for freon embedded in a copper sheet. When the freon vaporizes (at 95 F), it rises up a pipe and through an insulated barrier (R-12) into one of the stack of dark copper tubes that are exposed in the bedroom. As the freon gives up its heat to water in these tubes, it liquefies and flows back to the collector plate. The system is self-regulating, transferring heat more rapidly as solar input increases, and allows transfer one way only. Performance estimates point to a capture of 40-50 percent of incident energy.

Another solar device demonstrated here is the bank of photovoltaic cells mounted on the grounds. It supplies electricity for pumps in the flat-plate solar collector system (producing power just as the system needs it—when the sun shines); any additional capacity of the 1.5 kW array is used to operate other heat distribution fans and pumps. The array also charges a set of lead-acid batteries in the basement, which supply standby power for security systems, emergency lighting, control systems, and heat distribution fans.

Crucial to the energy systems of the house is its exceptional insulation: walls have a combined R-value of 26, and roofs 40; floors, especially those used for heating, are heavily insulated; windows are all double-paned, with thermal-break frames. Large glass areas, most of which face south, are protected by

Pivot point of main living areas is bar and wine cellar in circular, domed space under stair landing.
House was an opportunity to work out details (shown here) for use of copper and for passive solar devices. Nonmechanical collector (photo and drawing, right) uses freon to heat copper tubes which are exposed in master bedroom; made of copper finished dark brown, the stack of 12-in. tubes, 4 ft long, is treated as a sculptural feature.
Sun/Tronic house

Data
Project: Sun/Tronic House, Fairfield County, Ct, by Copper Development Association.
Architects: Berkus Group Architects, Santa Barbara, Ca (Barry Berkus, Richard Thorne, conceptual design; Chris Lessard, design development and project management; Jeff Love, Michael Parlier, production documents).
Client: George Hartley, trustee.
Site: 3 acres at end of cul-de-sac; limited buildable area; slope south from access point to lake; wooded.
Structural system: wood frame; some steel pipe columns and beams; plywood shear walls.
Major materials: redwood siding over 1-in. rigid insulation and fiberglass batt; standing-seam copper roof; double-glazed copper-framed windows; interior walls gypsum board, with plaster on curves (see Building materials, p. 108).
Mechanical system: solar hot water heat, backed up by heat pump and electrical coil heating ducts; passive features include greenhouse, thermal mass floors, copper water-filled tube arrays; recycle system through air-floor for heat from greenhouse and peak of interior; fireplaces with separate air supply and room-heating ducts; copper water supply, single-stack waste and fire sprinkler systems; photovoltaic system to power solar energy pumps and charge batteries for emergency power; computer control of mechanical and electrical systems, alarms, shades, and shutters.
Consultants: Mac II, interiors; Myers & Nelson, structural; Mueller Associates, mechanical; Copper Development Association, various aspects.
General contractor: Walter Smith.
Costs: not available.
Photography: Robert Perron.

motorized, roll-down insulation-security shutters. Sloping skylights and greenhouse glass have roll-down insulating interior shades.

All of the operable devices are controlled and monitored through a central microcomputer, which coordinates preset schedules, input from temperature sensors, etc. It can also be applied to various uses from family shopping lists and accounting to homework.

Domestic showcase
The Copper Development Association, which conceived and built the house, has taken the opportunity to display numerous effective uses of copper, brass, and bronze. Beneath the durable and symbolic copper roof can be found bronze window and door frames, brass railings, a brass-encased fireplace and other features shown here in photos, plus extensive use of copper in mechanical, sprinkler, and electrical systems.

The products of 20 other participating companies are also prominently incorporated. (See Building materials, p. 108, for a list of producers.) For a period of several months, the house will be open by appointment to interested groups. Contact Copper Development Association, Stamford, Ct.
[John Morris Dixon]
Full view of tall, clerestoried living space (top, opposite) is seen from front entrance. Roof swoops down over conversation area (above left) overlooking greenhouse and separated from dining room by 14-ft-long brass fireplace. Semicircular, glass-roofed library (facing page, bottom) is half level below main floor. Kitchen (upper photo, above) has brass gripping insert in sleek white cabinets. Master bedroom (above) has sunken sitting alcove. Adjoining bath (left) shares two-way, glass-enclosed fireplace; separate air supply to fireboxes and circulation of room air through cavities around them makes fireplaces energy effective.
Only U.S.G. offers you a beautiful ceiling for every project.

And now we're going to give you more!

Only U.S.G. makes a line of sound control ceilings this broad, ranging from economical to elegant.

Prestige ACOUSTONE® mineral acoustical ceilings come in a classic natural fissured look with exclusive integral colors as well as with white frosting highlighting the color. Both regular and FIRECODE® AURATONE® panels and tiles are offered in six attractive patterns, all in washable white.

USG® Gypsum Ceiling Panels provide handsome interior and exterior ceilings at economical cost. They can be ordered unfinished, with gleaming white finish that is textured then baked on, and with textured vinyl films in white and in color.

To meet the present and future demand for these sound control ceilings, U.S.G. is making a major investment in production capacities and research into new features and patterns. Our goal is to make it practical for you to specify a U.S.G. ceiling for every one of your projects. And now we have what it takes to meet your job schedule no matter how critical the timing.

Acoustone ceiling in dramatic earthtone.
For the high fashion store, a VISTA SONIC 1" ceiling combining Auratone performance with optical-clarity mirrored surface.

Prestige plus noise and fire resistance

ACOUSTONE® Acoustical Panels and Tiles

The classic, stone-like elegance of ACOUSTONE ceilings is for real, for each tile is cast mineral fiber. Five distinctive patterns are now standard. They come 3/4" thick and from 12x12" to 2'x4'. See your U.S.G. representative for the superior specifications. ACOUSTONE ceilings offer, or write Sound Control Products, 101 S. Wacker Dr., Chicago, Ill. 60606, Dept. PA1280E

UNITED STATES GYPSUM

Circle No. 338 on Reader Service Card
It's Not Serious.
It's Not Really Wool.

It's Marquesa™ Lana, Amoco Fabrics Company's new carpet face yarn that's teamed to give it the look and feel of wool. But it's polypropylene, so plain soap and water easily removes almost any stain. Its beauty and durability make Marquesa™ Lana the smart choice for any high traffic area. And its low electrostatic build-up makes it perfect even around computers.

Marquesa™ Lana meets any fashion standard of today. But it costs less than any competitive synthetic carpet yarn. The name means "royal wool." Marquesa™ Lana means lower cost, lower maintenance, and the latest of fashion. In a variety of colors and stripes.

Available from only the finest carpet mills.
The modern high-rise, faithfully expressing its programmatic, technical, and formal conditions, has been dumped for not expressing enough in terms of human scale, existing context, or visually and spatially appealing ideas. The current reaction, however, is to mask the tall building, covering it with reflective skin slipcovers, pasting on historically allusive appliqués, or sheathing it in sculpturally notched and chamfered casings.

The crisis does seem to center on the expressive qualities of the skyscraper. If we don’t want skyscrapers to reflect so closely their structural facts or economic realities, what formal solution should emerge? Analyzing the history of the skyscraper as an expressive or symbolic artifact, as well as a technical and economic product, could provide the necessary understanding for a course of action. Charles Jencks begins to undertake this exploration in his book Skyscrapers—Skycities. But he doesn’t go much farther than the classification of past [Books continued on page 99].
The difference is like night and day.

Before, when the cost of energy started to soar, complaints about cold were second only to those about heating costs. Something had to be done, quickly.

After. Installing EXOLITE™ double skinned sheet inside existing windows cut heat loss drastically, stopped complaints even on the coldest winter days.

CONVERTING A FACTORY INTO OFFICES LEFT A LOT OF PITNEY BOWES EMPLOYEES IN STAMFORD, CT, COMPLAINING ABOUT DRAFTS AND THE COLD.

WHEN EXOLITE DOUBLE SKINNED ACRYLIC SHEET WAS INSTALLED OVER EXISTING WINDOWS THE DIFFERENCE IN THE TEMPERATURE WAS LIKE NIGHT AND DAY.

"Before EXOLITE sheet was installed, it was extremely difficult to maintain building temperature," explained Walt Westcott, manager—plant maintenance. "Now the EXOLITE sheet eliminates drafts and looks beautiful, too. The EXOLITE sheet installation took only three days, and shutdown of operations was avoided because the original window casements did not have to be removed."

EXOLITE sheet has an installed cost that is substantially less than many glazing alternatives. Available in clear or bronze, it installs quickly and easily, inside or outside the building. With a U factor twice as good as single pane glass, EXOLITE sheet is the ideal reglazing material for rugged Northern winters.

"The results have been fabulous," says Walt. "The difference is like night and day."

For more information, call (201) 560-0485. Or write CY/RO Industries, 697 Route 46, Clifton, NJ 07015.

CONVERTING A FACTORY INTO OFFICES LEFT A LOT OF PITNEY BOWES EMPLOYEES IN STAMFORD, CT, COMPLAINING ABOUT DRAFTS AND THE COLD.

WHEN EXOLITE DOUBLE SKINNED ACRYLIC SHEET WAS INSTALLED OVER EXISTING WINDOWS THE DIFFERENCE IN THE TEMPERATURE WAS LIKE NIGHT AND DAY.

"Before EXOLITE sheet was installed, it was extremely difficult to maintain building temperature," explained Walt Westcott, manager—plant maintenance. "Now the EXOLITE sheet eliminates drafts and looks beautiful, too. The EXOLITE sheet installation took only three days, and shutdown of operations was avoided because the original window casements did not have to be removed."

EXOLITE sheet has an installed cost that is substantially less than many glazing alternatives. Available in clear or bronze, it installs quickly and easily, inside or outside the building. With a U factor twice as good as single pane glass, EXOLITE sheet is the ideal reglazing material for rugged Northern winters.

"The results have been fabulous," says Walt. "The difference is like night and day."

For more information, call (201) 560-0485. Or write CY/RO Industries, 697 Route 46, Clifton, NJ 07015.
and present formal expressions of tall buildings. The taxonomic urge is harnessed to sift through visual similarities and differences and to arrange his photographic panoply accordingly. After the photographs, the terms “morphology,” “metaphor,” and “typology” are the most prevalent components of the book. Tall buildings adhere to three basic metaphors based on their plans, their massing, and what they do to the sky—“skypricker,” “skyscraper,” and “skycity.” Jencks argues that most of what we call skyscrapers are often “skyprickers,” single shafts pointed into the sky, which emanate from a centralized type of plan with circulation at the core. “Skyscraper” as a label has been denoted in the Jencksian taxonomy and is used only to describe buildings generated from the longitudinal type of plan where circulation points are located off-center and near the ends. If every “skypricker” wants to expand into a “skyscraper” because of economic and formal pressures, the “skyscraper” wants to become a “skycity.” Jencks’s third category. The plan type for “skycity” is a compound one with circulation points located here and there and accommodating all sorts of configurations of towers.

In case we want images and attributes ordered scientifically, there is The Chart. The chart is to a Jencks book what a referral. A glass skin is to a tall building: Simple facts are complicated in order to be then clarified. Here we see the end product, the metaphor (skycity, skypricker) results from a combination of ingredients: morphology (e.g., square, round towers, slabs); surface articulation (e.g., reflective vs absorptive skins); style (Classical, Neo-Gothic); activity (commercial); technology (steel frame); and motivation.

The book attempts to explain the appearance of the tall building as determined by more factors than the usually favored “technical determination” argument. Yet the history of the technique is the most fascinating part of its evolution simply because the early buildings that were contributing to the rise of the modern high-rise often bore few signs saying “skyscraper to come.” Thus Jencks’s brief section recapitulating some of Francisco Mujica’s points in his History of the Skyscraper written in 1929 or Winston Weisman’s essay on skyscrapers in The Rise of an American Architecture still provide the most meat in his lead essay.

As Mujica pointed out in 1929 and Montgomery Schuyler (who is not mentioned by Jencks) in 1909, the initial factor encouraging the breeding of these monsters was not the steel frame but the passenger elevator. The platform elevator, invented in 1850, was first installed in the famous cast-iron Haughwout Building in New York in 1857. The first “passenger” elevator, Schuyler notes, was installed in the Fifth Avenue Hotel on 23rd Street in 1859. It was not until the Equitable Life Insurance Building was erected in 1868 to 1870 in New York that the building design—by Gilman & Kendall and George Post—was affected: the building soared from seven stories instead of the usual easy-to-climb five or six.

In 1873, two New York buildings not only rose higher, but didn’t try to hide height behind scale manipulations of the façade. They were the ten-and-a-half-story Western Union Telegraph Building by George Post and the nine-story Tribune Building by Richard Morris Hunt. Of course, advances in steel construction were necessary so that masonry buildings bolstered by wrought iron pieces could give way to the cheaper, more easily fire-proofed, lightweight structures of steel. The Bessemer process allowed transition in framing from “cage” construction to “skeleton” construction to occur. With cage construction, the metallic frame bore only the weight of the floors, with exterior self-supporting masonry walls; in skeleton construction, walls would rest on the frame as well. Schuyler argues that while William Le Baron Jenney’s Home Fire Insurance Company was the first building (1884) to freely use skeletal metal frame construction, George Post’s interior court for the Produce Exchange in New York showed “skeleton” construction had already arrived.

Mujica doesn’t count the Produce Building because its skeleton was not executed for a tall building, but rather to support four “nearly fireproof” stories. He and others still vote for Home Life as a “first,” a building others see as important.

For inside or out. Prefinished. Ready to lay in.

USG® Gypsum Ceiling Panels

Here’s the lowest-cost way to top large areas without sacrificing appearance and easy maintenance. Because these panels have a core of non-combustible gypsum, they resist fire. Need extra protection? They’re available in FIRECODE® Gypsum Panels, 1/2 or 2-hour fire ratings. Specify your finish: highlight-reflectant, baked-on finish or with hard-abuse vinyl film. Or order it unpainted. For details, see your U.S.G. Representative or write to Sound Control Products, 101 S. Wacker Drive, Chicago, IL 60606, Dept. PA1280G

UNITED STATES GYPSUM

Circle No. 340 on Reader Service Card

Progressive Architecture 12/80

99
WE SAVED THE WORLD TRADE CENTER $240,000.
(And you're just using ordinary lighting?)

When Sylvania SuperSaver™ fluorescents were installed in just one-third of the World Trade Center by the Port Authority, the center saved nearly $240,000 in electricity that year. It was because the SuperSaver consumes less energy than standard F40 fluorescents with a negligible difference in light output. So the costs are much less in the long run. In fact, when it comes to cutting costs on lighting, no one beats Sylvania. We've got five different kinds of fluorescent lamps to help make the most effective use of anyone's lighting. Interested? See your local IED, Independent Electrical Distributor, or write or call GTE Products Corp., Sylvania Lighting Center, Danvers, MA 01923. (617) 777-1900, ext. 2650. These days it's awfully hard to get by with just ordinary lighting.
tant for its early use of steel in beams above the sixth floor.

The first full vision of a skyscraper Mujica credits to Frederick Baumann, who circulated his scheme in a pamphlet in late 1884. Similarly, a Minneapolis architect, Leroy Buffington, published a 28-story continuous frame scheme in Northwestern Architect in 1888. Buffington, who never built his tower, took out a patent on it in 1887 and claimed he was the "inventor" of the skeletal frame. Art historical disputes followed later.

In 1889, Burnham & Root's 10-story Rand McNally building in Chicago was erected—the building Mujica points to as the first all-steel frame skyscraper in the world (although the nullions in the court wall are evidently cast iron). Meanwhile, Bradford Gilbert had designed the 11-story metal frame Tower Building going up in New York in 1888. Because Burnham & Root's Old Masonic Temple, built in 1892 in Chicago, went to 20 stories, Mujica places it as the "most important" steel skyscraper to that date—the first to go taller than the norm established by masonry with cast-iron construction.

Even the formal expression of buildings in those days was subject to "first" disputes. While Chicago was developing its own straightforward formal solutions to the skyscraper, George Post and Bruce Price had adopted the column analog of a tripartite division in the composition of two of their towers. Post's Union Trust Building, completed in 1889, was considered a "first," but Bruce Price's American Surety Building (now Bank of Tokyo) has been considered the clearer example of the column analogy.

Incidentally, Post was to have second thoughts about the skyscraper. In 1894 he proposed at The Architectural League of New York that a law be passed against the skyscraper, which was becoming an eyesore and made the streets unhealthy. In December that year he published this sentiment in the Tribune, saying that skyscrapers would destroy the beauty of cities.

While Jencks's text deals with the mechanical and structural innovations that allowed the tall building to evolve, the excerpts or passages taken from the writings of Mujica and Weisman often need further elaboration. For example Leroy Buffington's design is mentioned without the added information about place, date, or emphasis on the point that the project was not realized. Jencks also omits any serious discussion of zoning legislation and how it affected the configuration of tall buildings. Except for a quote from Weisman in which setback configuration is related to the 1916 zoning law, there is no other discussion about its effects on "morphology's effects on it. The impact of the second Equitable Life Assurance Company building of 1915 is a case in point. The bulk of the 40-story block that replaced the above-mentioned 7-story 1870 Equitable building cast a shadow on the surrounding neighborhood so large that it became a cause célebre leading to the 1916 zoning legislation. Then too, there is the influence of the design of the Seagram Building on the 1961 revised zoning. Form begets constraints which beget form.

The structural history is interesting because what seemed to be the most appropriate expression of the tall building—the glass and steel tower—was eventually to emerge out of these technical forays. When this expression no longer serves us, it raises fundamental questions about the relation between form and structure. Can the formal expression for the tall building evolve that goes beyond the limitations of merely expressing function and technique? Can that expression still acknowledge its basic constituent facts of its structural make-up rather than to masking them over? These questions are not explored in Skyscrapers-Skycities. Rather it remains an exercise in verbally getting on top of a visually diverse landscape through introspection. Although there are a good many photographs and lively captions, nice color reproduction and paper stock, a "quick-take" attitude underlies the book including photographs taken without a perspective control lens and the many typographical errors. [SS]
Balans Activ seating consists of a forward-leaning seat and a leg cushion to prevent sliding. It is said to provide a more comfortable and natural open angle between the torso and legs. The seat allows free mobility while the leg cushion provides a variety of positions for feet and legs. It is easily assembled without tools. HAG USA, Inc.

Leonardo contract chairs, designed by Paul Tuttle, have self-skinned polyurethane foam molded to the seat and back. The foam has self-healing characteristics and is completely washable, making the chairs suitable for restaurants and similar heavy use seating. The three-part chair and four-part stool assemble easily, with parts fastened by screws to a heavy-gauge steel frame. The chairs can be shipped knocked down to reduce shipping costs. Atelier International.

4500 Seating, which will be available in January 1981, includes swivel-tilt and high-back models, secretarial chairs, and arm and armless side chairs. Frames come in seven powder coatings and chromium, with tufted or nontufted cushions and resilient arm caps, either upholstered or unupholstered. Harter Corp.

Geriatric Personal Furnishings System, designed by Joseph A. Koncelik to promote independence of the elderly, includes panel systems, bolsters, overbed table, storage module, desk, and overbed light. The open plan system is intended to encourage those living in nursing homes to help themselves to the extent they are able. Bolsters, which are mounted on each side of the bed, for instance, aid patients in transferring to wheelchairs; they also protect them from injury in the event of a fall against the side of the bed. JG Furniture Systems.

The pop/art collection of giant items, such as crayons, pencils, can opener, cup and saucer, and many others, can be used as freestanding or wall-hung sculptures. They are all hand finished to look like the original objects. Pop/Eye Products, Inc.

Work stations for CRT/VDT and word processing terminals, with prewired electrical raceways, are offered in a wide choice of sizes and options such as flat tops, dropped keyboards, and angle offset keyboards. The individual work stations have height adjustments and come in left- or right-hand models. Structural Concepts.

A gypsum-impregnated flexible wallcovering system, consisting of wallcovering, adhesive, and optional anti-graffiti coating, has a Class A flame spread rating according to ASTM E 84. It is said to be especially suited to installation over masonry surfaces. The manufacturer says that tests indicate that it is suitable for use on thermal mass walls. Flexi-Wall Systems.

The Dantsu Rug Collection is handmade in Japan of 100 percent wool, tufted of six individual strands of yarn. The cut pile is approximately 3/8-in. deep. There are 20 designs available in stock colors and in sizes from 2.3’ x 3.9’ to 12’ x 15’. Design shown is Ryusui Kaede Mon, an interpretation of maple leaves on a mountain stream. Bowater Carpets, U.S.A., Ltd.

Av-Com® audio-visual systems, self-contained in a compact cabinet, can be used freestanding or built in. The unit is front loaded and controlled, eliminating the need for a booth. It can be operated in a lighted room such as a training or conference room, library, or classroom. The optical system is preset, and there is a speaker, a relay system for control of projection equipment, and a projector. Jerome Menell Co.

Drop-in range 58AN-2CXW has an overlapping cooktop for easy cleaning and elimination of dirt-catching cracks between range and cabinet. Surface units have ten heat settings, large and small elements; self-cleaning oven has self-locking racks, a two-piece broiler pan, and an oven timer that can be set to start and stop cooking automatically. Magic Chef, Inc.
Here are two of the best elevator operators in the world.

In their day, white gloved elevator operators were the best way to get from one place to another. Times changed. So much so, that even the mechanical programmers designed for the first automatic elevators became inadequate.

Twelve years ago, Schindler Haughton replaced mechanical programmers with integrated circuits. The equipment was so advanced that this electronic chip could analyze more than 27,000 possible service combinations (and select the best one) in 10 milliseconds. It took our competitors a decade to catch up. Now we have even more advanced microprocessing equipment. It's the best of its kind.

Today, Schindler Haughton is part of the world's second largest elevator company with a full line of geared, gearless and hydraulic elevators and escalators. Each supported by systems that dramatically improve passenger service and reduce operating expenses.

Times have changed. And so have we. But we're still committed to delivering white glove service in a push button world.

We're #2 in the world and going one better.

Circle No. 335 on Reader Service Card

Schindler Haughton
ELEVATOR CORPORATION
Toledo, Ohio 43609
Cerámica Coordinates for custom kitchens coordinate the color of enameled cast-iron sinks with ceramic tile. They are designed so that the sink fits flush with the tile. Sinks are 32" x 21" x 16" double-compartment models punched for spray attachment and suitable for disposer units. American Olean's Encore tile comes in 8" x 8", 8" x 4", or 4" x 4" sizes with color-coordinated grout and bullnose trim. There are four colors available: Sand, Seal, Wheat, and Blue. Eljer Plumbingware.

Circle 111 on reader service card

Cabinets for use in kitchen or bath are offered in a wide choice of styles in light and dark woods, laminates, and wood/laminate combinations. There are base and wall cabinets and drawers, with pulls or knobs to suit cabinet style. Wall cabinets are approximately 26 in. high; working height of bases is 29¾ to 36 in. with base setbacks of 4 in. to allow foot room. Poggenpohl USA Corp.

Circle 112 on reader service card

Lossnay air-to-air total heat exchanger, constructed of cross-laminated plates and fins, is said to recover up to 70 percent of heat normally lost through ventilation. The system is described in a 16-page brochure that provides installation drawings and technical data comparing different systems. The heat exchanger can be used in residential, institutional, commercial, and industrial buildings. Mitsubishi Electric Industrial Products.

Circle 113 on reader service card

AFS power and lighting distribution, compatible with all access floor systems, uses flexible plug-in wiring. Since AFS can be plugged in and unplugged under electrical load, building occupants are not disturbed by power shutdowns. The system, which makes the entire floor area accessible to wall outlets, floor boxes, or electrified furniture, has the capacity to handle future expansion or personnel relocations. 3M Co., Electro-Products Div.

Circle 114 on reader service card

Watt Watcher electronic ballast for energy-saving fluorescent lighting is planned for production beginning early in 1981. The single ballast operating a three-lamp energy-saving fixture is expected to use 30 percent less electrical input than the two ballasts required for standard fixtures operating three lamps (20 percent less than standard fixtures converted to energy-saving lamps). It also operates cooler than a standard fixture by 40 degrees F and weighs 10 percent less than a three-lamp fixture equipped with two standard ballasts. Energy savings are expected in the reduced air-conditioning load and in the ceiling structure required to support the lighter weight fixtures. Thomas Industries, Inc.

Circle 115 on reader service card

Perf-Grip Safety Floor plate, with holes spaced about ¼-in. apart, provides slip-resistant gripping action in all directions. It is available in 16-, 14-, and 11-gauge carbon steel sheet in sizes up to 36" x 120", and in special sizes to fit customer requirements. Applications include such areas as stair treads, inclined ramps, dock plates, landings, work platforms, and walkways. McNichols Co.

Circle 116 on reader service card

Sunwood® is wood pressure treated with Osmose K-33 to which brown has been added. It produces a red-brown color as an alternative to the gray-green resulting from the use of the preservative without added color. Pressure treating protects the wood against termites, rot, and decay. Uses include fencing, decks, and landscape projects such as terracing, planters, and retaining walls. Osmose Wood Preserving Co.

Circle 117 on reader service card

Interior fire doors, UL rated for ¾, 1, and 1½ hours, have mineral cores, hardwood crossbands, and wood veneer or laminate faces. They are suitable for vertical shafts and room and corridor partition openings. Algoma Hardwoods, Inc.

Circle 118 on reader service card

Composite core firedoors have a perimeter edge system of laminated layers of high density, fire-resistant wood fiber that carries a Class A flame-spread rating. The edge construction makes the doors resistant to splitting and hinge-screw pull-out. Hardware reinforcing blocks within the door are also available. Ratings are ¾, 1, and 1½ hours. Cal-Wood Door.

Circle 119 on reader service card

Literature

Ground Mount Precision Uplights are factory prewired and of watertight construction. Below-grade exterior surface is coated for protection against corrosion. Light source can be incandescent, low-voltage incandescent, or HID (mercury vapor, metal halide, or high pressure sodium). Lenses are convex, flush convex or convex with guards, or domed. A 12-page brochure shows the styles and has detail drawings of the units along with product descriptions. Prescolite, Div. of U.S. Industries, Inc.

Circle 200 on reader service card

[Literature continued on page 108]
There are countless reasons why you should turn to high pressure laminate doors from Masonite Commercial Division. Count them. Starting with unsurpassed quality. Performance proven by years of experience on commercial applications from coast to coast. You’re assured of perfect fit and problem-free installation. Fast, economical installation. Then, an unlimited selection of HPL finishes from all major manufacturers and our capability to machine to your specs provides total design flexibility. A choice of 20, 45, 60 and 90 minute labeled doors allows you to match the door to your requirements. If you’re looking for a total opening system with adjustable frames, we have that too. Finally, consider we have two strategically located plants to effectively and efficiently meet construction schedules. All of this and more from Masonite Commercial Division. Member A.W.I. Write for our complete catalog. Or call, toll free 800-321-4404, except Ohio.
Meet the newest members of the APA family of Performance-Rated panels. They're test-proven for residential and other light-frame wall sheathing, roof sheathing and sub-floor applications.

These panels speak for themselves. A Performance-Rated panel tells you straight off what it can do. Because your main interest is whether it will perform for the use you have in mind. So the trademark tells the panel use; maximum support spacing; thickness; what kind of exposure the panel is designed to withstand; as well as who makes it and its code acceptance.

Performance-Rated panels are available as conventional veneered plywood; as composite panels; or as unveneered panels, which include structural particleboard, waferboard, or oriented strand board.

Introducing APA
These panels say do what
But regardless of composition, all APA Rated panels are manufactured in accordance with APA’s exacting end-use standards. So you can depend on them to perform as they say they will.

More to come.
This is only the beginning. APA is testing and evaluating other panel products. Concrete form panels and siding, for example. In the future they’ll join Sturd-I-Floor® and Performance-Rated Sheathing.

So whatever your needs, look for and insist on the APA trademark. Because it’s your assurance that the manufacturer is committed to APA’s rigorous program of testing and quality control.

If you’d like more information on APA Performance-Rated panels, write us at Dept. PA-120, P.O. Box 11700, Tacoma, Washington 98411.

American Plywood Association

Rated Sheathing. what they do and they say.
Literature continued from page 104

There are several coordinated groups, benches, planters, and trash receptacles. A 28-page brochure illustrates and product profiles, interior plan drawings, and lamp spacing data are also provided. Neo-Ray Lighting.

Circle 201 on reader service card

‘Trilogy Illuminated Ceiling Systems.’ A 28-page brochure illustrates and provides product information about several unusual lighted ceilings. Systems include shielding elements, primary suspension, and lighting. A color chart, product profiles, interior plan drawings, and lamp spacing data are also provided. Neo-Ray Lighting.

Circle 202 on reader service card

Resilient floor tile catalog illustrates several vinyl and asphalt tile patterns in 9-in. and 12-in. squares. The 20-page brochure provides specifications and charts showing tile, feature strip, and cove base colors available in solids and patterns. Arock Floor Products.

Circle 203 on reader service card

Contract Textile Wallcovering catalog contains samples of a collection of 75 patterns in woods, linens, silks, flannels, suedes, and other wallcoverings. For a free copy, write on professional letterhead to Tekitura, 4342 W. 12 St., Houston, TX 77035.

Open-plan office systems and furniture components are presented in five four-color brochures. Three brochures discuss the panels, one covers the modular furniture components, such as shelves, bins, and drawers, and the fifth explains the company's fast delivery program. Panel Concepts, Inc.

Circle 204 on reader service card

Screen and system fabric that is inherently and permanently fireproof, according to the manufacturer, is made from Eastman Kodak's 100 percent Verell® modacrylic fiber. It comes in 20 standard colors and 124 further mist colors. Brochures show color swatches and provide specification data. Homestead Fabrics Inc.

Circle 205 on reader service card

Marble flooring in 6" x 6" x ¼" tiles is available in 14 Italian and French marbles with matching trim. An eight-page brochure shows the tiles in color and illustrates their use in typical areas on walls as well as floors. Marble Technics.

Circle 206 on reader service card

‘Eliminating Electrostatic Shock in Carpet’ is an eight-page brochure that discusses the use of Bekinox® stainless steel fiber or Bekitex® spun nylon/Bekinox fiber in carpets for static control. In some instances, the manufacturer says, a conductive backing is not needed. The steel fiber is incorporated into the yarn during the spinning process and is said to be usable in all spinning processes and with all fibers. Included in the brochure is a suggested performance specification. Bektaert Steel Wire Corp.

Circle 207 on reader service card

Multiple Choice modular seating by Hans Krieks is illustrated in full color in a six-page brochure. Line drawings show the five seat, back, and table module available and installation methods. For a free copy, write on professional letterhead to Helikon Furniture Co., Inc., Taltville, Co 60580.

Circle 208 on reader service card

Genon® Vinyl Wallcovering designer's guide discusses the design process and the advantages of using Genon. It shows in color the patterns and finishes available. Special products include GenFilm® for partition systems, Hercules for covering rough surfaces, and Undercover® wall lining. The 16-page brochure includes physical characteristics and provides general specifications. The General Tire & Rubber Co., GTR Wallcoverings Co.

Circle 209 on reader service card

Business furniture. New, 100-page, four-color catalog includes desks, credenzas, tables, filing cabinets, seating, showcases, and data processing equipment stands and files. In addition to product descriptions and illustrations, there are color selector charts for fabrics, paints, and laminates. Cole Business Furniture, Div. of Litton.

Circle 210 on reader service card

Portable shelters for security and revenue control are described and shown in an eight-page brochure. There are both steel- and wood-framed styles, which come completely wired and with self-leveling feet, requiring only wiring connections to make them usable. There is also a knocked-down model for export. B.I.G. Enterprises.

Circle 211 on reader service card

Building materials

Major materials suppliers for buildings that are featured this month, as they were furnished by the architects.

[Building materials cont. on p. 111]
Tools of the trade.

It can be what you want it to be, do what you want it to do.

Masonry is a thousand colors, textures, shapes and sizes. It creates patterns of light and shadow that move with the sun; it creates a visual mood for the structure. It provides a texture of contrast, or unity—whatever you intend.

Yet with all of the aesthetic freedom masonry gives architects and designers, it remains fundamentally a very practical and economical tool of the trade.

Masonry buildings go up faster so they can be occupied sooner. They have lower maintenance costs, never need painting, virtually no repairing. Masonry walls, because of their mass or density, reduce heating and cooling costs, thus saving energy. And masonry fulfills many functions—structure, enclosure, fire walls, sound barriers, finish walls.

Because masonry lasts, all of these aesthetic and practical advantages are multiplied over the years.

Masonry: Brick, block, tile, stone—craftsmanship.

Tools of the trade. Consider them for your next building.

INTERNATIONAL MASONRY INSTITUTE
(The Bricklayers’ International Union and the Mason Contractors in the U.S. and Canada)
823 Fifteenth St., N.W.
Washington, D.C. 20005
202/783-3908

Circle No. 324 on Reader Service Card
You can count on a dependable supply of gas for the future. Because there's much more gas still underground than we've used so far—enough to last well into the next century. And new sources, like gas from coal, will add to the supply. Beyond that, new technologies are expected to provide efficient gas energy for generations.

Good reasons why more and more architects and engineers are specifying gas. And why most gas utilities are accepting new commercial customers.

Gas energy. It's the least expensive energy for space conditioning today, and it will continue to maintain this competitive advantage in the future.

Gas: The future belongs to the efficient.
Building materials cont. from p. 108

Municipal Control Bldg., Quail Valley Utility District, Missouri City, Tx (July, pp. 58-59).
Olean Central Fire Station, Olean, NY (July, pp. 66-69).
City Administration Bldg., Miami, Fl (Aug., pp. 52-59).

Housing

House for a couple, Cordoba, Spain (Emilio Ambasz) P/A Award (Jan., pp. 94-95).
A Kosher Kitchen for a Suburban Jewish American Princess, Wilmette, IL (Stanley Tigerman & Associates) P/A Award (Jan., pp. 102-103).
House in New Castle City, Delaware (Venturi, Rauch and Scott Brown) P/A Award (Jan., pp. 104-105).
Fried House, Stratford, CT (George Ranalli) P/A cit. (Jan., pp. 106-107).
Residents' Satisfaction in HUD-Assisted Housing: Design and Management Factors (Housing Research and Development Program, Univ. of Illinois) P/A Award (Jan., p. 134).

Artist's Cottage, Woodacre, CA (Gary Scott Kneeland) P/A cit. (Jan., p. 114).
Printing Press Addition, Chicago, IL (Lynn Miller) P/A cit. (Jan., p. 119).
Flores House, Pacific Palisades, CA (Morphosis) P/A cit. (Jan., pp. 120-121).
Telegraph Hill Condominiums, San Francisco, CA (Backen, Arrigoni & Ross, Inc.) P/A cit. (Jan., p. 125).
Frank O. Gehry house, Santa Monica, CA (Morphosis) P/A cit. (Jan., p. 131).
The Dutch Casbahs: New architecture in Holland (Mar., pp. 86-97).
A series of houses by Kazuo Shinohara (May, pp. 100-107).
Ishihara residence, Osaka (May, pp. 108-111).
Horiiuchi residence, Osaka (May, pp. 112-113).
House of Gate, Tokyo (May, pp. 114-117).
Embassy housing in Tokyo (June, pp. 72-73).
House on Chicago's near north side (June, p. 75).

Townhouses in Chicago's Lincoln Park (June, p. 80).
Six townhouses in Hyde Park, completed in 1979 (June, p. 82).
Beasley House, Wisconsin (June, p. 92).
Eleuthera House, Harbour Island, the Bahamas (June, p. 93).
Elderly Housing, Miami, Fl (Aug., pp. 52-59).
Six townhouses on Brickell, Miami, Fl (Aug., pp. 52-59).
Tao Soi Kim residence, Hartford, CT (Aug., pp. 70-73).
Spruce Townhouses, False Creek, Vancouver, BC (Aug., pp. 78-82).
Casa Gilardi, Mexico City (Sept., pp. 138-141).
Blau house, Vienna (Sept., pp. 151-153).
Niramu house, Torami, Japan (Sept., pp. 154-161).
Gallarate housing, Milan (Oct., pp. 50-55).
House in the Hill, Chapel Hill, NC (Oct., pp. 72-75).
Sun/Tronic house, Fairfield County, CT (Dec., pp. 86-91).

Industrial buildings

Evanson Public Works Center, Evanston, IL (Sisco/Lubotsky Associates, Consoer Morgan) P/A cit. (Jan., p. 122).
Municipal Control Building, Quail Valley Utility District, Missouri City, TX (July, pp. 58-59).
Fantoni Furniture Factory, Udine, Italy (Sept., pp. 170-175).
IBM Technical Center, Mexico City (Sept., pp. 184-187).
Unipart warehouse, Coventry, England (Sept., pp. 188-189).

Interior design

Offices for an architectural firm, Boston (Fred Koetter and Susie Kim, Fred Koetter & Associates) P/A cit. (Jan., p. 112).
Banque Bruxelles Lambert, Milan, Italy (Mar., pp. 98-101).
Knoll Introduction (July, pp. 72-73).
Knoll Showroom, NY (July, pp. 74-77).
Knoll Showroom, Boston (July, pp. 78-81).
See feature contents of September issue.

New York University, Midtown Center, New York, NY; University of Pennsylvania offices, Philadelphia, PA (Oct., pp. 66-71).
“The Avante-garde in Russia” installation, Los Angeles, CA (Oct., pp. 76-79).
Alcan Corporate Headquarters, Montreal (Dec., pp. 68-71).
Executive offices, New York (Dec., pp. 72-75).

Mixed-use buildings

American Furniture Mart, Chicago (June, p. 80).
Convention Center Complex, Miami, FL (Aug., pp. 52-59).
Southwest Banking Corp., Miami, FL (Aug., pp. 52-59).
Miami Center, Phase I and II (Aug., pp. 52-59).
World Trade Center, Miami, FL (Aug., pp. 52-59).
Metro-Dade Administration Bldg., Miami, FL (Aug., pp. 52-59).

Intertra, Miami, FL (Aug., pp. 52-59).
Brickell Key, Miami, FL (Aug., pp. 52-59).

Medical facilities

Bayonne Hospital additions and renovations, Bayonne, NJ (Ewing Cole Rizzio Cherry Parsky) P/A cit. (Jan., pp. 124-125).
Methodist Hospital of Indianapolis (June, p. 79).

Museums

Cabrillo Marine Museum, Wilmington, CA (Mar., pp. 78-80).
Metro-Dade Cultural Center, Miami, Fl (Aug., pp. 52-59).
Shokyo Museum, Toyota City, Japan (Sept., pp. 154-161).
“The Avante-garde in Russia” installation, Los Angeles County Museum, Los Angeles, CA (Oct., pp. 76-79).

Offices

Professional offices for an architectural firm, Boson, MA (Fred Koetter & Susie Kim) P/A cit. (Jan., pp. 112-113).
Hooker Office Building, Niagara Falls, NY (Apr., pp. 102-105).
State of Illinois Center (June, p. 74).
One South Wacker, Chicago, IL (June, p. 74).
Herman Miller Health Science Division office building, Grandville, MI (June, p. 76).
Intelsat Headquarters, Chicago, IL (June, p. 78).
L.M. Berry & Co. sales offices, Brookfield, WI (June, p. 83).
Tri-State Center Office Bldg., Northbrook, IL (June, pp. 88-90).
City Administration Bldg., Miami, FL (Aug., pp. 52-59).
Flagship Center, Miami, FL (Aug., pp. 52-59).
IBM Technical Center, Mexico City (Sept., pp. 184-187).
Xerox Centre, Chicago (Dec., pp. 60-63).
Alcan Corporate Headquarters, Montreal (Dec., pp. 68-71).
Executive offices, New York (Dec., pp. 72-75).

Profiles

Hammond, Beeby & Babka (June, pp. 84-93).

Recreational facilities

YWCA Downtown Branch & Metropolitan Office Building, Houston, TX (Taft Architects) P/A cit. (Jan., pp. 116-117).
Planning and Design Guidelines for Child Care Centers and Outdoor Play Environments (Community Design Center) P/A Award (Jan., pp. 132-135).
Shenandoah Solar Recreation Center, Shenandoah, CA (Apr., pp. 158-161).
Juan Ramon Loubriell Stadium, Bayamón, Puerto Rico (May, pp. 118-121).
Recreational Facilities Building, Southern Illinois University, Carbondale, IL (May, pp. 122-125).
King Abdulaziz University Sports Complex, Jeddah, Saudi Arabia (June, p. 119).
Florida Festival, Orlando, FL (June, p. 114).
Franklin Park Zoo, Roxbury, MA (June, p. 114).
Stephen C. O'Connell Center, University of
Florida, Gainesville, Fl (June, pp. 120-121).
Flat Rock Brook Center for Environmental Studies, Englewood, NJ (July, pp. 60-63).

Religious buildings
National Archives Center for the Baha'i Faith of the United States, Wilmette, Il (Stanley Tigerman & Associates) (Jan., p. 108).
Sanctuary addition, Euclid, Oh (July, pp. 70-71).
Bagsvaerd Church, Copenhagen (Sept., pp. 165-169).
Crystal Cathedral, Garden Grove, Ca (Dec., pp. 76-85).

Restaurants
Via Brasil, New York (Feb., pp. 76-78).
Greenhouse, Savannah, Ga (Feb., pp. 79-81).
Orient Express, San Francisco, Ca (Feb., pp. 82-83).
Me & Me Restaurant, Berkeley, Ca (Feb., pp. 84-87).
da Capo Restaurant, Zurich, Switzerland (Sept., pp. 142-147).

Restoration and remodeling
Bayonne Hospital additions and renovations, Bayonne, NJ (Ewing Cole Rrizzo Cherry Parsky) (Jan., p. 124).
Skandia Cinema, Stockholm, Sweden (Feb., pp. 88-97).
Frank O. Gehry house, Santa Monica, Ca (Mar., pp. 81-85).
Refitting for conservation (Apr., pp. 130-131).
American Furniture Mart, Chicago (June, p. 80).
The Mergenthaler, Chicago (June, p. 81).
Knoll Showroom, Boston (July, pp. 78-81).
Miami Beach, Fl (Aug., pp. 60-65).
Boutique Lanvin, Zurich, Switzerland (Sept., pp. 142-147).
See feature contents of November issue.

Technics
Natural hazard design (Feb., pp. 106-114).
Glass fiber reinforced concrete (May, pp. 138-143).
Office seating (May, pp. 126-131).
Fabric structures (June, pp. 110-123).
Electronic design aids (July, pp. 98-103).
Barrier-free requirements (Sept., pp. 206-211).
Suspended ceiling systems (Sept., pp. 220-227).
Fire protection (Oct., pp. 89-99).
How products get designed (Nov., pp. 124-135).
Structuring tall buildings (Dec., pp. 50-57).

Transportation
The Haj Terminal, Jeddah Airport, Saudi Arabia (June, pp. 116-117).
People Mover, Miami, Fl (Aug., pp. 52-59).

Urban design & planning
Design Guidelines, Boston Naval Shipyard at Charlestown, Ma (Boston Redevelopment Authority) P/A cit. (Jan., p. 131).
Urban Design at a Rural Scale, Ashland, Tamworth, Hampshire, NH (W.M. Design Group) P/A cit. (Jan., p. 130).
Boise City Center, Boise, Id (Charles Kober Associates) P/A cit. (Jan., pp. 128-129).
Time for Springfield, Downtown Springfield Revitalization Plan, Springfield, Ma (Anderson Notter Finegold) P/A Award (Jan., pp. 112-127).
The Steps of Providence, RI (Rodolfo Machado and Jorge Silveti) P/A First Award (Jan., pp. 90-93).
The Dutch Casbahs, New architecture in Holland (March, pp. 86-97).
City planning and energy, Going solar in the city (April, pp. 8-9).
Miami Downtown (Aug., pp. 52-59).
Miami Beach (Aug., pp. 60-65).

Architects, designers, engineers, planners
Anderson, John, Associates: SERI Headquarters, Golden, Co (see Table Mountain Architects/Engineers).
Anderson Notter Finegold: Time for Springfield revitalization plan, Springfield, Ma, P/A award (Jan., pp. 126-127).
The Architects Collaborative: TVA complex, Chattanooga, Tn (Apr., pp. 117-121).
Aymonino, Carlo: Italian Rationalists—Gallaratease housing, Milan; High School of Science, Pesaro (Oct., pp. 49-65).
Backen Arrigoni & Ross, Inc.: Telegraph Hill Condominiums, San Francisco, P/A citation (Jan., p. 129).
Ballou-Lery-Felligraff: Flat Rock Brook Center for Environmental Studies, Englewood, NJ (July, pp. 60-63).
Barragán, Luis: Casa Giraldi, Mexico City (Sept., pp. 138-141).
Bauhs & Dring: Townhouses, Lincoln Park, Chicago (June, pp. 89-93).
Beach, Charles: Greenhouse Restaurant, Savannah, Ga (Feb., pp. 79-81).
Boggs, Joseph/Studio (see Dewberry, Nealon & Davis).
Blunden, William A., and Robert A. Barclay Associates: Sanctuary addition, Euclid, Oh (July, pp. 70-71).

Booth, Laurence: Herman Miller Health Science Bldg., Grandville, Mi (June, p. 76).
Boston Redevelopment Authority: Design Guidelines, Boston Naval Shipyard at Charlestown, Ma, P/A citation (Jan., p. 131).
Caudill Rowlett Scott: TVA complex, Chattanooga, Tn (Apr., pp. 117-121); SERI Headquarters, Golden, Co (see Table Mountain Architects/Engineers).

Community Design Center: Planning and Design Guidelines for Child Care Centers and Outdoor Play Environments, P/A award (Jan., pp. 132-133).

Community Design, subs. of Cheezeem Development: Residential and office space in five towers, public park, Brickell Key, Miami, Fl (Aug., pp. 52-59).

Consor/Morgan Architect (see Sisco/Lubotsky Associates).
Davis, Charles and Michael Gelick: L.M. Berry & Co, sales office, Brookfield, Wi (June, pp. 83).
Dewberry, Nealon & Davis and Joseph Boggs/Studio: Automobil Turismo Sport Showroom, Brighton, Ma, P/A citation (Jan., pp. 115).
Downs/Archambault: Sprague Townhouses, Tamworth, Sanbornville, Tilton, Nh (W.M. Design Group) P/A cit. (Jan., p. 130).
ELS Design Group, with Sol-Arc: San Jose State Office Building, San Jose, Ca (Apr., pp. 117-121).
Ewing Cole Rizzio Cherry Parsky: Bayonne Hospital additions and renovations, Bayonne, Nj, P/A citation (Jan., pp. 124-125).
Freeman, Geoffrey: Via Brasil Restaurant, New York (Feb., pp. 76-78).
Fujikawa Conterato Lohan & Associates (see Fitch/Larocca Associates).
Gehry, Frank O., & Associates: Profile Group Headquarters, Los Angeles (Mar., pp. 76-77); Cabrillo Marine Museum, Wilmington, Ca (Mar., pp. 78-80); Frank Gehry House, Santa Monica, Ca (Mar., pp. 81-85); “The Avant-garde in Russia” installation, Los Angeles (Oct., pp. 76-
Johnson/Burgee:ing, St. Albans School, Washington, DC; Prototype Conservation Center, Milford, Pa; Prototype Hertzberger, Herman:pan; Shokyodo Museum, Toyota City, Japanera House, Harbour Island, the Bahamas90); Doane Observatory (June, p. 91); Beas.Office Bldg., Northbrook, Il Qune, pp. 88-77.

Gwathmey/Siegel: Knoll Showroom, Boston (July, pp. 78-81).

Hammond, Beeby & Babka: Firm profile (June, p. 84); Champaign library, Champaign, Il (June, pp. 85-87); Tri-State Center Office Bldg., Northbrook, Il (June, pp. 88-90); Doane Observatory (June, p. 91); Beasley House, Wisconsin (June, p. 92); Eleuthera House, Harbour Island, the Bahamas (June, p. 95).

Hara: Hiroshi: Niramu house, Torami, Japan; Shokkyodo Museum, Toyota City, Japan (Sept., pp. 154-161).

Hausmann, Robert and Trix: Boutique Lanvin and da Capo Restaurant, Zurich, Switzerland (Sept., pp. 142-147).

Hertzberger, Herman: Music Center, Utrecht, Holland (July, pp. 82-89).

Horn, Gerald (Holabird & Root): Intelsat Headquarters design competition entry (June, p. 78).

Howard, Coy: McCafferty Studio, San Pedro, Ca, P/A citation (Jan., p. 110); Gross residence, Hollywood, Ca, P/A citation (Jan., p. 111).

Illinois University of, Housing Research and Development Program: Residents' Satisfaction in HUD-Assisted Housing: Design and Management Factors, P/A award (Jan., p. 134).

Johnson/ Burgee: Crystal Cathedral, Garden Grove, Ca (Dec., pp. 76-85).

Kim, Tai Soo: House, Hartford, Ct (Aug., pp. 72-75).

Kneeland, Gary Scott: Artist's Cottage, Woodlawn, Va, P/A citation (Jan., p. 114).

Kober, Charles, Associates: Boise City Center, Boise, Id, P/A citation (Jan., pp. 128-129).

Koetter, Fred, & Susie Kim: Professional offices for architectural firm, Boston, P/A citation (Jan., pp. 112-113).

Krucek & Olsen: House, Chicago (June, p. 75).

Legorreta, Ricardo: IBM Technical Center, Mexico City (Sept., pp. 184-187).

Lorenz & Williams, Inc.: Arcade Square, Dayton, Oh (Nov., pp. 106-111).

Lorenzi, Dodds & Gunnill: The Bank Center, Pittsburgh, Pa (Nov., pp. 88-91).

Lyon, Fred W., Associated Architects (see Pomeroy, Lebudska Associates).

Machado/Silvetti: The Steps of Providence, Providence, RI, P/A first award (Jan., pp. 90-93).

Meyers, Lynn: Printing Press addition, Chicago, P/A citation (Jan., p. 119).

Mohl, Heinz: Central Pharmacy, Karlsruhe, Germany, (Sept., pp. 148-150).

Morphosis: Flores House, Pacific Palisades, Ca, P/A citation (Jan., pp. 120-121).

Murphy, C.F., Associates: State of Illinois Center, Chicago; One South Wacker, Chicago (June, p. 74); Xerox Centre, Chicago (Dec., pp. 60-63).

Nacht & Lewis Architects: Site One B, Sacramento, Ca (Apr., pp. 117-121).

Newman/Lustig & Associates: Bank, Skokie, Il (June, p. 79).

Optima, Inc.: Six townhouses in Hyde Park, Il (June, p. 82).

Pran, Peter (Schmidt, Garden & Erikson): Facilities Center for the Methodist Hospital, Indianapolis, In (June, p. 79).

Reed, Torres, Beauchamp, Marval, Hato Rey: Juan Ramon Loubriel Stadium, Bayamon, Puerto Rico (May, pp. 118-121).

Rodin, Robert (see Avinash Malhotra).

Rogers-Nagel-Langhart, Inc.: SERI Headquarters, Golden, Co (see Table Mountain Architects/Engineers).

Rossi, Aldo: Italian Rationalists—Gallarate housing, Milan; Elementary School, Fagnano Alto; Teatro del Mundo, Venice (Oct., pp. 49-65).

Schofield & Schofield: Union Terminal, Cincinnati, Oh (Nov., pp. 100-105).

Schoeder, Kenneth: The Mergenthaler, Chicago (June, p. 81).

Seligman, Werner: Olean Central Fire Station, Olean, NY (July, pp. 66-69).

Shinozuka, Kazuo: Houses, Japan (May, pp. 100-107).

Solomon, Daniel/Nycl: Hearst: Orient Express Restaurant, San Francisco (Feb., pp. 82-83); Me & Me Restaurant, Berkeley, Ca (Feb., pp. 84-87).

Stecker/Laba Architects, Inc.: The Richardson, Hartford, Gt, (Nov., pp. 92-95).

Table Mountain Architects/Engineers: SERI Headquarters, Golden, Co (Apr., pp. 126-129).

Taft Architects: YWCA Downtown Branch & Metropolitan Office Bldg., Houston, Tx (Jan., pp. 116-117); Municipal Control Bldg., Quail Valley Utility District, Missouri City, Tx (July, pp. 58-59).

Takeuchi, Arthur: Wendell Smith Elementary School, Chicago (June, p. 73).

Tigerman, Stanley, & Associates: Kosher Kitchen for a Suburban Jewish American Princess, Wilmette, Il, P/A award (Jan., pp. 102-103); National Archives Center for the Bahai's Faith of the U.S., Wilmette, Il, P/A citation (Jan., p. 108); Villa Proeh, Chicago (June, p. 72).

Ueland: Bargsvaer Church, Copenhagen, Denmark (Sept., pp. 165-169).

Valle, Gino: Fantoni Furniture Factory, Udine, Italy (Sept., pp. 170-175).

Venturi, Rauch & Scott Brown: House, New Castle City, De, P/A award (Jan., pp. 104-105); Knoll Showroom, New York (July, pp. 74-77).

W.M. Design Group: Mexico Underwear Bldg., Bowling Green, Ky (June, pp. 72-73).

Weese, Harry: Embassy housing, Tokyo; Union Underwear Bldg., Bowling Green, Ky (June, pp. 72-73).

Wing, Kenneth S., & Associates (see Hugh Gibbs & Donald Gibbs).

Programme Architecture 12:80
Saddlebrook is a great new idea for your next FLORIDA VACATION

It's new! Different! Elegant and exciting!
Saddlebrook, Florida's unique golf and tennis resort.
Why is it unique?
Because you live in a luxurious one, two or three-bedroom condominium suite instead of a hotel room at a comparable price!
Because you play golf on rolling fairways and undulating greens amid lofty pines, stands of cypress sprinkled with sparkling ponds and bayheads. It's "Northern" golf in the South. But that's not all.
There's tennis and swimming and dining and just plain relaxing while you're being pampered by a courteous, magnificently trained staff. Trained to make your vacation at Saddlebrook a genuinely pleasurable experience.
Saddlebrook is no more than 90 minutes away from "almost everything" in Florida . . . Disney World (90 minutes), Busch Gardens (15 minutes), Cypress Gardens (60 minutes), Weeki Wachee (45 minutes), Circus World (60 minutes), Sea World (75 minutes), beaches (50 minutes), just to mention a few attractions.
Just 25 minutes from Tampa's International Airport . . . on Route I-75 . . . there's not a single traffic light between you and our front gate. Drive yourself, or use our limo service.

For a personal condominium resort vacation that offers you a whole lot more and costs you a whole lot less, contact your travel agent. Or call toll free 800/237-7519.
In Florida call 813/973-1111.

Circle No. 329 on Reader Service Card

Saddlebrook
The Golf and Tennis Resort
A Penton/IPC Subsidiary

Saddlebrook
The Golf and Tennis Resort
Wesley Chapel, Florida 33599
Saddlebrook is a great new idea for your next FLORIDA BUSINESS MEETING

Ideally situated on 400 acres of naturally beautiful Florida land just 25 minutes north of Tampa's International Airport.

- Guests live in privately owned, luxurious condominiums instead of hotel rooms.
- All amenities are within walking distance of your condominium suite.

- Ready in the winter of 1981
 - Conference rooms for groups from 10 to 75
 - 100 one, two, and three-bedroom luxury condominium suites
 - Championship 18-hole golf course
 - Clubhouse
 - Pro shop
 - Restaurant and lounge
 - Six tennis courts
 - Swimming pool

- Ready in 1982
 - Facilities for meetings and banquets — groups up to 800 persons, specializing in 300-400 group range
 - Main clubhouse and conference center, close to all sleeping accommodations
 - 400 one, two, and three-bedroom luxury condominium suites
 - Major lake-size swimming pool
 - Golf course expanded to 27 holes
 - Tennis courts expanded to 18 courts
 - Tennis teaching area with tennis pro in attendance

Plan your next business meeting at Saddlebrook.

Call toll free 800/237-7519.
In Florida call 813/973-1111.

Circle No. 550 on Reader Service Card

Saddlebrook
The Golf and Tennis Resort
Wesley Chapel, Florida 33599

A Penton/IPC Subsidiary
Here, for the first time in this century, is an opportunity to re-examine the philosophy of the Beaux-Arts school of architecture.

P/A Book Store

Each book has been selected for its usefulness to you in your professional practice. Prices slightly higher in Canada. Foreign orders must be accompanied by payment. It is not necessary to send payment with the order. Circle appropriate numbers on the Reader Service Cards in the back of this issue, add your name and address and mail. Local sales tax must be included with payment. Prices subject to change.

For faster service, send the card in an envelope to:

Mrs. Hetty Rizvi
Progressive Architecture
600 Summer Street
Stamford, Ct. 06904

P/A Back issues

A limited supply of the following issues of P/A are available at $6.00 per Copy. Check MUST accompany order! Connecticut Residents Add 7 1/2% Sales Tax.

November Remodeling and reuse/Product design
October Italian Rationalists/Fire protection
August Miami and Miami Beach/Office Computers
July Small buildings/Office Computers
June Chicago/Fabric structures
May Japanese houses/Office chairs/GFRC

Send both to:

Mrs. Hetty Rizvi
Progressive Architecture
600 Summer Street
Stamford, Ct. 06904
Environmental Design Educator—to teach in studio, seminar and lecture settings in innovative Interior Design program. Significant experience in design studio teaching required; professional experience desirable. Tenure track position; rank and salary commensurate with experience. Department of Interior Design, School of Home Economics, UNC-G, Greensboro, NC 27412, EOE.

Interior Design Faculty: 1 or 2 positions open at Assistant/Associate professor level, tenure-track, August 1981. Responsibilities include design studio involvement plus areas of special interest. Qualifications include Master’s degree plus design and/or teaching experience. Send resume and official transcripts to Ronald W. Haase, Chairman, Interior Design Search Committee, College of Architecture, 331 GPB, University of Florida, Gainesville, FL 32611. Application deadline: Feb. 27, 1981. U.F. is an Equal Opportunity/Affirmative Action Employer.

Interior Design, University of Texas at Arlington: Faculty position at the School of Architecture and Environmental Design, beginning September 1981. Emphasis is on advanced design and research. UTA is located in the Dallas/Fort Worth area, which offers excellent professional opportunities. Applications and nominations invited for the position of Chairperson, Department of Architecture at the Texas A&M University at College Station. Send detailed resume, names of references to: Alben J. Rutledge, Chair, Architecture Search Committee, University of Texas at Arlington, Box 19108, Arlington, TX 76019. UTA is an Equal Opportunity Employer and welcomes applications from minorities and women.

Iowa State University: Applications and nominations are invited for the position of Chairperson, Department of Architecture at Iowa State University. The Department is a part of a 5 year old College of Design, housed in a new facility which also accommodates the Departments of Interior Design, Community and Regional Planning, and Landscape Architecture. The Chairperson will be responsible for providing a creative and scholarly environment in cooperation with a faculty of 22, administering a unit which includes 600 undergraduate and 45 graduate students and grants the degrees of B.A., B. Arch., and M. Arch. Coordinating programs of instruction, research and continuing education; and representing the Department in its relationships with allied units, College and University administration, the profession and the public. Required are a professional degree in architecture, a record of significant professional or academic achievement demonstrative of the missions of an architecture department and university education. Architectural registration, demonstrated management capabilities and an advanced degree are preferred. The position is a full-time, twelve month appointment with the academic rank of professor with tenure. Salary is negotiable dependent on qualification with a $40,000 minimum. The appointment is open January 1, 1981, although a later starting date is negotiable. Applications should be received by February 17, 1981. Send a letter of application, vita and names of 3 references to: Albert J. Rutledge, Chairman, Architecture Chairperson Search Committee, Office of the Dean, College of Design, Iowa State University, Ames, IA 50011. Iowa State University is an Equal Opportunity/Affirmative Action Employer.

Junior Faculty Positions available in Urban Design and Planning, Harvard University, Graduate School of Design, effective beginning academic 1981-82. Full-time academic ladder positions at the assistant professor level are available for persons with significant professional and academic experience in design. Applicants may apply in both Urban Design and either Architecture or Landscape Architecture. Duties will include: teaching design studio in Urban Design and either Architecture or Landscape Architecture, plus offering basic lecture courses and advanced seminars in one of the areas of theory within these curricula. Preference will be given to candidates with advanced academic preparation as well as teaching and research or practice experience in the areas of teaching specialty. Performance will be evaluated in teaching, creative work in research or design, and administration. Application must be on the form available from the Appointments Committee, Office of Appointments (Committee) Gund Hall, Harvard University, Cambridge, MA, U.S.A. 02138. Please do not send dossiers, additional materials may be requested after initial screening of applications. Applications will be received after November 1, 1980 and the selection process will begin January 1, 1981.

Marketing Specialists: We are representing a large, prestigious A/E firm located in the Southwest interested in locating functional business development specialists to spearhead the marketing and delivery efforts of their Commercial and Industrial divisions. The Commercial Marketer will most likely be an architect accustomed to resolving the architectural problems of business people. The Industrial Marketer will most likely be an architect/engineer committed to becoming a leading authority within the industrial community. Successful candidates must have the entrepreneurial flair required to lend creative direction to their respective arena and have devoted a substantial portion of their career to that area of specialization. Interested candidates are invited to submit a resume to The Coxe Group, Inc., 1900 Chestnut Bldg., Philadelphia, PA 19103. Equal Opportunity Employer.

Project Landscape Architect/Planner: Young aggressive firm is looking for a project landscape architect/planner, strong in design and graphics, minimum of 4 years experience. Part of multi-discipline design corporation. Send resume and work samples to Office Manager, Charles Capps Planners, Inc., 237 Lafayette Street, New Orleans, LA (504) 524-1660. An Equal Opportunity Employer.

Senior Architectural Designer: A design orientated architectural firm with a diverse international practice seeks a Senior Project Designer for its Toronto office. The successful candidate should demonstrate effective team experience in the development of multiple corporate and institutional projects from initial conception through design development. Qualified applicants should submit a detailed resume and salary history to: Box 1361—Progressive Architecture.

Senior Interior Designer: Fast growing interiors department of well established Dallas A&E firm seeks talented, responsible, exceptional interior designer. Five years good experience in commercial interiors required. Projects include major corporate, financial and health care institutions. Responsibilities include client contact, project and personnel management, programming, design, and documentation. Excellent opportunity for advancement. Salary negotiable, consistent with experience and ability. Contact: Director of Interior Design.
The University of Colorado is an Affirmative Action/Affirmative Opportunity Employer.

Situations Wanted

Architect wishes to relocate—Registered North Carolina Architect in private practice wishes to relocate to New England, Rocky Mountains or Pacific Coast areas. Full-range architectural capability, strong in design and presentation, as well as technical disciplines. Varied experience in different types of projects and different construction systems. Seeks responsible position with firm which allows for growth and stability. Willing to negotiate compensation on profit sharing basis.

Box 1561-360, Progressive Architecture.

Architectural Services

Rita Sue Siegel Agency: The leaders in international search and placement of design professionals. Ms. Woody Gibson directs architecture and interior assignments. Please inquire about the range of services we provide.

60 W. 55 Street, NYC 10019, (212) 586-4750.

Unique Personnel Service for professionals: A-E oriented. Nationwide (with Dallas office). Leadership positions only; superior job opportunities and our personal, confidential representation. Inquiries, or resume portfolio to: William E. Engle Assoc., Inc., 909 Investors Trust Bldg., Indianapolis, In 46204.

Notice

Please address all correspondence to box numbered advertisements as follows:

Progressive Architecture
% Box
650 Summer Street
Stamford, Connecticut 06904

Advertising Rates (Effective October '80 issue)

Non-display style: $100 per column inch. Seven lines per inch. Seven words per line. Maximum 4 inches. Column width approximately 2 1/4". No charge for use of box number. Situations Wanted advertisements: $50 per column inch. Noncommissionable.

Display style: $170 per column inch, per your lay-out. Commissionable to recognized advertising agencies.

Check or money order should accompany the advertisement and be mailed to Jobs Mart % Progress Architecture, 600 Summer Street, Stamford, Ct. 06904.

Display style advertisements are also available in fractional page units starting at 1/4 page and running to a full page. Contact Publisher for rates.

Insertions will be accepted no later than the 1st of the month preceding month of publication. Box number replies should be addressed as noted above with the box number placed in lower left hand corner of envelope.

Hickman Gravel Stop prevents leaks at eaves by clamping out the moisture — permanently. It's a complete three-piece system thermally-compatible galvanized water dam, free-floating extruded aluminum fascia, patented compression clamp with neoprene-washed fasteners. Our system excludes water so effectively, nobody's ever found a failure in a Hickman Gravel Stop. And permanent, foolproof protection like this is actually less expensive, installed, than less dependable gravel stops. Next time you're roofing (or re-roofing), specify Hickman and stop worrying.

Hickman's FREE "Roof-Line"...1-800-438-3897

See our catalog (734-H) in Sweet's.

HICKMAN ALUMINUM CONSTRUCTION PRODUCTS

W. P. Hickman Company 175 Sweeten Creek Road
P.O. Box 15005 Asheville, N.C. 28813 (704) 274-4000

Circle No. 323 on Reader Service Card

FREE SOLUTIONS TO BARRIER-FREE DOOR CONTROL

Everything you need to know about "Barrier-Free Door Control" is here. Comparisons between leading brands...feature by feature. Charts and graphs to help you select exactly the right control for your needs. Complete descriptions of fully automatic, semi-automatic and manual controls. A detailed review of the present state of the art and a presentation of the most sophisticated new smoke barrier system ever devised. Phone or write for your free copy of "Solutions To Barrier-Free Door Control."

Circle No. 331 on Reader Service Card
Architects the world over are covering Problem Walls with FLEXI-WALL®.

Flexi-Wall’s Plaster in a Roll™ is the unique one-step solution to covering concrete block, poured masonry, chipped plaster, old tile, drywall, even glass and plastic. When dollars get tight, it’s Flexi-Wall to the rescue. Maximum durability. Goes up like wallpaper, but because it dries as hard as plaster, it covers blemishes and bumps, bridges gaps and voids. Comes in 23 decorator colors. Easy to clean, extremely durable. An optional anti-graffiti covering makes Flexi-Wall perfect for high-traffic areas.

The cost effective Problem Solver that meets your specs and beautifies your design.

- Hospital Approved
- Class A Flame Spread
- Eliminates Lead Paint Hazard
- O Smoke Generation
- Produces No Toxic Fumes
- GSA Contract GS-003-64549
- HUD Contract #DAPHCOM-2878
- City of New York Dept. of Bldgs. #MEA 6-79-M
- See Sweet’s File 913/FL

FREE SAMPLES. CALL OR WRITE TODAY.

NAME ____________________________

FIRM ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE ___________

ZIP ____________________________ PHONE ____________________________

Flexi-Wall is a trademark reg. U.S. and Canada, U.S. and international patents issued; others pending.

Cleveland, Ohio 44115:
614 Superior Ave W 216-696-0300
John F. Kelly, Western Sales Manager

Los Angeles, CA 91406:
16255 Ventura Blvd, Suite 301
213-990-9000
Philip W. Muller, District Manager

Atlanta, Georgia 30326:
3400 Peachtree Road, NE-Suite 811
404-237-5528
Harmon L. Proctor, Regional Vice President

Houston, Texas 77027
2100 West Loop South, Suite 510
713-961-7841
Calvin Clausel, Director

Southeast Operations

United Kingdom
Reading, RG10 OQE, England
Wood Cottage, Sunbeam Row
0 (073 581) 302

Cables:
TEPAC, Reading

Malcolm M. Thiele
Managing Director, U.K.

Tokyo, Japan 160
Banco Media Services
15 Sanyocho, Shinjuku-ku
Genzo Uchida, President

Paris, France
Continental Europe
18 rue Gandon, 92210
St. Cloud, France 602-24-79
Yvonne Melcher, Manager

Orvieto (TR), Italy
via Marcello, La Torretta
(United Kingdom) J3-581-302
Brad Nichols, Representative

Address:

NAME ____________________________

FIRM ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE ___________

ZIP ____________________________ PHONE ____________________________

Circle No. 317 on Reader Service Card