Ceilings that give spaces a quiet sense of drama.

Crossgate™ Acoustical Ceilings

If it's drama you're looking for, no other acoustical ceilings give it to you quite like the Crossgate Collection. Introduce any one into an interior, and you create a contemporary look that's unique among commercial ceilings.

The effect is sweeping and dramatic. But its creation is simple. The original Crossgate design uses 2'x2' semiconcealed panels scored to simulate 6" linear strips. Then cross-scored with a continuous pattern and painted in one of four subtle earth tones or four accent colors.

Two new designs—Crossgate-Linear and Crossgate-Grid—feature regular edges on all four sides. This allows the design elements to project dramatically beneath the grid, resulting in deeply etched, gracefully powerful visuals. These designs are available in the four earth tones.

Let Crossgate dramatize your next commercial design. For further details, write: Armstrong, Dept. 34NPA, P.O. Box 3001, Lancaster, PA 17604.

FROM THE INDOOR WORLD® OF Armstrong
Our finest carpets now
Coordinating carpets for new solutions

You've always had plenty of good reasons to choose Armstrong. Here's another: Carpet Coordinates. Endless options that insure consistently beautiful results. No matter what your design requirements might be.

Carpet Coordinates make it easy to match corridors with conference rooms. Or lobbies with executive suites. You can draw on a variety of constructions—from loop to cut pile to pattern embossed. So along with good-looking, coordinated results, you'll get the performance qualities you need in each area.

To make sure your selections stay beautiful, commercial coordinates by Armstrong are produced with Du Pont Antron® III nylon fiber.

Start exercising your Armstrong options now. For more information on coordinates and other commercial carpets, use your reader service card or call toll-free: 800-233-3823.

IN PENNSYLVANIA, CALL 800-732-0048.

FROM THE INDOOR WORLD OF

Armstrong

Circle No. 318 on Reader Service Card
Progressive Architecture

9 Editorial: Environmental dilemmas

Energy and conservation

81 Introduction: The energy to conserve

Conservation should be part of the architectural design process, not a separate consideration.

82 Glass under glass

The all-glass Hooker Office Building by Cannon Design has an energy-saving double envelope.

86 Yankee independence

Banwell White & Arnold's energy-conserving building for The Forest Society, Concord, N.H., uses local products.

90 Solar dairy

Solar energy helps to heat a dairy in Norway designed by Meierienes Bygnings Konotor.

94 The decorated climate-filtering shed

98 Let them drink wine

Water resources are threatened by wasteful use, leaky city systems, and groundwater contamination. Thomas Vonier

102 Power play

Controlling the extent and time of power use is an important aspect of power conservation. Harvey Bryan

106 Up in the air

Fred Dubin discusses maintaining air quality while conserving energy.

109 Post-industrial architecture

In the Trust Pharmacy, Grants, N.M., and (with J.N. Pease Associates) the Mt. Airy (N.C.) Public Library, Mazria/Schiff & Associates conserve resources.

114 Planning wisdom for an energy-wise town

Active and passive solar systems are used by Sam Davis in the Pajaro housing project, Davis, Calif. Sally Woodbridge

116 Doing energy justice

In the California Department of Justice Building, Marquis Associates has combined high security and low energy use.

Technics

127 Light loads

New developments in lighting result from the need to conserve energy. James R. Benya

133 Bioclimatic chart

134 168 proof?

A wrap-up of the energy-conscious design series that began last April includes a panel discussion.

150 Specifications clinic: From manufacturer's data into specifications.

Departments

10 Views

192 Management personal time

23 News report

Job mart

39 Energy portfolio

200 Directory of advertisers

54 In progress

Reader service card

62 Calendar

Loose subscription card in

149 A/E Systems '83

U.S. and Canadian issues

155 It's the law

159 Books

167 Products and literature

176 Building materials

182 ASES/83

187 P/A in May

Cover: California Department of Justice Building (p. 116), by Marquis Associates. Photo: Peter Aaron © ESTO.
Walls that take hard sounds and hard knocks.

Vinyl Soundsoak™ Acoustical Wall Panels

Whether it's classroom or office, some places are bound to be noisy. And while you can't stop the noise, you can help control it with Vinyl Soundsoak Acoustical Wall Panels.

With an NRC of .55, Soundsoak panels take the edge off hard sounds, making it easier to work in noisy places.

And these easy-to-maintain vinyl-faced panels are damage-resistant to handle hard knocks. Vinyl Soundsoak is available in five natural colors, plus six special-order accents, and blends beautifully with any room decor.

Each of the 30"x9' panels comes with a factory-edge detail designed for quick, neat installation.

Vinyl Soundsoak. The perfect way to design peace and quiet to busy places. For more information, write Armstrong, Dept. NPA, P.O. Box 3001, Lancaster, PA 17604.
Today's steel buildings can be "completed well ahead of schedule, "aesthetically innovative" and "a durable, secure investment."

Daedalus Enterprises Building
Parkland Plaza
Ann Arbor, Michigan
According to the people who own, design and finance them!

Today's steel building systems are looking better than ever. In many ways. In fact, in recent years, nearly half of all contracts for one- and two-story structures up to 150,000 square feet are for pre-engineered steel buildings. And the trend is definitely up. But don't just take our word for it...

Mr. Alan Parker
President
Daedalus Enterprises, Inc.
Ann Arbor

"Daedalus Enterprises, as a world leader in airborne infra-red and multi-spectral equipment for environmental remote sensing studies, needed a headquarters and research building that reflected our leadership image. We're more than satisfied with our steel building. In fact, most people are hard-pressed to tell it's a metal building at all. In addition to good looks, we got a low-cost-per-square-foot advantage. Timing was crucial, too. Since we couldn't start construction until October, we had to get the exterior up fast so work could proceed inside during the cold winter. It worked. And completion was almost two months ahead of schedule. We also got energy efficiency and minimal maintenance. We like the building's clear, flexible interior space—and how easy future expansion will be."

Mr. Michael McKelvey
Architect
Ann Arbor

"This is one of the most successful steel buildings I've seen. Without sacrificing function, we were free to concentrate on appearance and to depart considerably from people's conception of what a steel building is, or used to be. We chose attractive cedar and pre-cast concrete as exterior materials. Actually, almost anything can be used. But there are several other major advantages. The sure predictability of scheduling and cost is very satisfying. Also, steel buildings like this one afford matchless interior flexibility and allow for future expansion. It'll be relatively simple to move an exterior wall back 80' and still use it as an exterior wall."

Mr. Edward Klusowski
Senior Vice President
Michigan National Bank of Detroit
Detroit

"We feel very secure investing in a steel building of this type. We particularly like its flexibility of interior usage. Its durability and low cost of maintenance are also quite attractive to us. And, steel buildings of this design offer broad adaptability for long-term owners to future tenants' differing needs—without excessive conversion costs."

Steel building manufacturers and their local dealers are well aware of your special needs—and will work closely with you in achieving them. You'll quickly discover their ability to provide engineering assistance, realistic pricing and delivery information.
Metal Magic

Bright, durable, and handsomely detailed, metal is the material ideally suited to create magic in today's interiors. Forms & Surfaces range of Etched Metal and Embossed Metal offers this magic to you in stainless steel, bronze, brass and aluminum. Let us help pull the perfect solution out of the hat for the walls, ceilings, columns, doors or elevators of your next interior.
Forms & Surfaces Box 5215 Santa Barbara, CA 93108
(805) 969-4767 969-5033
Environmental dilemmas

"Hungry? Out of work? Eat an environmentalist." So reads the bumper sticker ahead of me on I-95.

What makes so many solid citizens blame our current economic ills on environmentalists? There are many obvious sources of our economic disturbance: staggering changes in the cost of our energy, the drop in our birth rate, shifts in demands of our jobs market, tougher competition among industrialized nations. Many other, more debatable factors have been blamed: short-sighted business management, insufficient growth of productivity, economic burdens of bureaucracy, economic burdens of armaments, abandonment of much of our urban fabric.

Of course it costs a lot to process sewage, to control smoke emissions, to hold up permits for costly nuclear power plants, to dispose of dangerous chemical wastes safely. But isn't the health and safety of the population in general one of the most obvious responsibilities of government? Even if we were to rescind all recent environmental regulations, our underlying body of law demands restitution from the producer of hazards. The situation of the asbestos industry and the recall of cars, foods, and drugs make this clear.

Whatever the fundamentals of environmental law and ethics, we now have an administration dedicated to questioning all regulations and easing the burdens they impose on free enterprise. As we worked on this issue, a series of events riveted public attention on simmering environmental problems. Midwinter floods unleashed deadly amounts of dioxin on the little community of Times Beach, Mo., and the reality of a town that had to be evacuated spotlighted the workings of our Environmental Protection Agency. Congressional and press inquiries soon led to allegations of delayed enforcement, political motivations, and favoritism toward industries. Questions were raised about the effectiveness and morale of government offices undergoing sharp cutbacks in budget and staff. (Compare the Dept. of Energy situation, P/A, March 1983, pp. 106-109.)

The resignation of environmental administrator Anne Burford has by no means suppressed investigative zeal among members of both parties in Congress, the press, and environmental groups. President Reagan has maintained that "environmental extremists" are a threat to be resisted, but he hasn't defined extremism in this area.

Ironically, the environmental awakening of 10-20 years ago is only now being felt in new regulations at the local and state level. In Connecticut we began returning our bottles and cans a couple of years ago. This year the state started a program of testing automobile emissions—a reasonable public concern where we probably have the nation's highest density of idling cars per acre; the law has been attacked as invading an area of private responsibility, but it is being enforced. (My 1976 station wagon passed easily, so the rules aren't unduly tough.)

We in architecture generally followed the public's and 1970's shift away from broad environmental concerns toward the more urgent matter of energy conservation. We have been comfortable in the knowledge that burning less fossil fuel helps improve air quality, but we know that alternative heat sources—coal, nuclear fission, even wood—can raise serious environmental problems.

We are also aware that energy-saving and environmental quality don't always go nicely hand-in-hand. One of the first and most effective strategies for saving energy in buildings is to reduce infiltration and turnover interior air generally; but buildings, occupants, and equipment emit a staggering variety of gases, germs, and some detectable radioactivity, much of which used to get wafted away through ventilation systems. Some of the materials and techniques architects and interior designers depend on may be hazardous within tighter building envelopes. Ventilation requirements, drawn up decades ago in the name of public health, are quite properly being reconsidered, but we're going to have to find out more. Even that energy-conscious single-family house, with the wood stove and the superinsulation, may present health hazards we haven't yet measured.

Architects have an obligation to learn all they can about the impact of design decisions on the environment around their buildings and the occupants inside. Some of the articles in this issue will help to explain what is now known. Architects also have an obligation to press for government support of basic building research, which this administration has virtually eliminated (P/A, March 1983, p. 25). The profession must do everything in its power to see that public policies—and the decisions architects make for their clients—promote long-term health and safety vs. short-term economic payoff.
Stage set and props?
The renovation of the Kramer Residence by architects Machado-Silvetti, P/A December 1982, poses important questions regarding the production of Interior Architecture which were not covered by your review of the work.

Where I can appreciate the (rhetorical) development of the architectural floor plan and elevations, it is the lack of an architectural section that betrays this project. Instead of a permanent architecture, we have props (columns, pilasters, lintels, etc.); that is to say, a stage set. Without any consideration to the reflected ceiling plan, what could have been a truly successful project (realism) is transferred to theater (surrealism). Every light and lamp in the living room and dining room is lit, including the candelabra. How haunting!

This sensation of surrealism—altered permanence—is also evident on the rooftop terraces with the “correction principle” at its best. One only has to look at the false fireplace, the crystal ball, the table with no chairs, and the bottle of wine with four empty glasses to realize that the correction principle is equated with surrealism.

If this project is to advance any serious thought then its first step to a permanent architecture will be by returning the colorful robe seen throughout residence to the Sleeping Gypsy of Monsieur Rousseau.

Joseph P. Martinez, AIA
President
Martinez/Wong & Associates, Inc.
San Diego, Calif.

Sure it looks temporary; it’s an apartment interior. And much of the surrealism is conscious. But we don’t see what is so “haunting” about turning on all the lights; would photographer’s floods alone have lent it a reassuring homogeneity? Lack of a ceiling plan—actually a ceiling plan that is virtually blank—has been quite common in Modern Architecture; hardly remarkable. The robe, though it keeps reappearing in the article, remains in one spot in the apartment.—Editors]

Professional Underwriters identified
A recent It’s the Law column (Jan. 1983 P/A, p. 162) referred to a lawsuit in Michigan: Lehr vs. Professional Underwriters. That lawsuit was instituted in 1938 and involved a firm with no connection whatsoever to Professional Underwriters, Inc., of Southfield, Mich., and three other locations. Founded in 1968, this firm now insures over 500 architectural and engineering firms in 28 states.
Solid, non-porous CORIAN® for easy care and durability in an infinite variety of shapes and edge treatments.

DuPont CORIAN® is a unique design material. Solid, with color and pattern clear through, it can be worked and shaped like a fine hardwood. And yet it is remarkably durable and can avoid the ravaging effects of time and hard use with nothing more than average, day-to-day maintenance. So the special looks you develop in CORIAN will continue to set your designs apart, long after other surfaces show their age.

CORIAN has a subtle, quietly pleasing look. It is satiny smooth and warmly pleasing to the touch. Neutral and compatible. And, totally unlike thin plastic laminates or gel-coated products that can be easily and irreparably damaged, CORIAN is solid and non-porous, so most stains wipe off with a damp cloth.

More stubborn stains, even cigarette burns, rub off with household cleanser. Accidental cuts and scratches can be repaired with fine sandpaper. All of this with no permanent damage to the beauty of CORIAN.

More information.

*CORIAN is a registered trademark for Du Pont's building products. CORIAN pictured here in New Almond, one of three colors complementary to any decor.
Look with other materials—look with Corian.

Combining solid Corian with other materials for unique edge treatments.
(This is new Almond Corian.)

Corian...Solid Beauty That Lasts.
CAN A TAMKO AWAPLAN ROOF STAND UP TO A LEGEND?

Vise-Grip® locking pliers. In the hands of an average tradesman, their legendary strength and voracious teeth will gouge wood, bend steel, and rip tin like butter.

So how much damage could they do to our AWAPLAN modified asphalt roof? We tried twisting, bending, and pulling. Even ripping it. The results?

Twisting for Ambient Flex: No Failure. Bending at 0°F for Cold Flex: No Failure. Pulling for Tensile Strength: No Failure. Ripping (just to be extra mean): No Failure.

In all fairness we then tried the same over-abuse with other roofing materials. The Vise-Grip® locking pliers lived up to their legend. The competition did not.

But why take just our word for it?

PROVE IT TO YOURSELF.

O.K. Tamko, I want to see the results.

☐ Please send the newest AWAPLAN brochure.
☐ Have your sales rep call me.

NAME

TITLE

COMPANY

ADDRESS

CITY/STATE/ZIP

TELEPHONE NUMBER

Mail to: TAMKO Asphalt Products, Inc.
P.O. Box 1404, Joplin, MO 64802 417-624-6644

© 1983 TAMKO Asphalt Products, Inc. Vise-Grip is a registered trademark of Klenk Mfg. Co., Devine, NE 68341
GET TWICE THE INSULATION EFFECTIVENESS WITH ENERMASTER™ ROLLING DOORS

Compare for yourself...

Atlas Enermaster puts in twice the insulation.

It's simple. More insulation means more energy saved, which means a shorter payback period for owners and a more comfortable working environment for employees.

At 1-1/2 inches deep, Enermaster slats are almost twice as deep as any rolling door. At twice the height, they reduce by half the number of slats in a conventional rolling door—doubling the amount of protection provided because they're completely filled with insulation.

And that's not all. Atlas Enermaster is the only rolling door that incorporates a full 3/16 inch thermal break between the exterior and interior faces of the slat... a positive barrier against energy loss due to conduction and convection.

And Enermaster's "foamed in place" polyurethane insulation is the single most effective insulation available today. Most effective because it has the highest resistance (R), and lowest conductivity (K) of all common insulators, and because it's "pumped" in under pressure, expanding into and filling every space inside the slat. It's a total system, giving you more insulation, better insulation and an effective thermal break... all without giving up the storage compactness of a rolling door.

With Atlas you get a quality product, a national network of distributors and installers, a complete line of rolling doors and grille and other unique options.

Call for more information or write to Atlas Door Corp., 116 Truman Drive, Edison, N.J. 08818, (201) 572-5700.

ENERMASTER™
Insulated Rolling Doors for Total Energy Protection

Circle No. 319
THE LOOK OF TAILORED ELEGANCE AND THE PRACTICALITY OF SOLID VINYL

Solid vinyl louvers, EdgeCrafted® by LouverDrape®, are an exciting new vertical blind idea. EdgeCrafting® in complementary colors gives the louvers an accented quality that provides a neatly tailored and boldly decorative look. A look vividly different from plain, single color, solid vinyl louvers.

The EdgeCrafted® accent color is inlaid by LouverDrape®, a permanent part of the louver. Not laminated or painted on, the accent edge is an integral part of the louver formed during the extrusion process.

Solid vinyl louvers, EdgeCrafted® by LouverDrape®, retain the energy efficient advantages on plain LouverDrape solid vinyl louvers. They are extremely effective in rejecting solar heat at the window in the summer and effective reducing the heat loss in winter. And because they are vertical, they collect no more dust than a wall.

SEND FOR ALWAYS INSIST ON 100% LouverDrape QUALITY LouverDrape® LOUVERDRAPE, INC. 1100 COLORADO AVE., DEPT. 4F SANTA MONICA, CA 90401

Circle No. 370 on Reader Service Card
CURTAIN WALLS BY INRYCO
Window walls that are flush or recessed. Surfaces flat or sculptured. Sweeping curves, oblique corners. Colors that are striking or subtle, matte or glossy. All these are possible in low or mid-rise construction with Inryco Curtain Walls.

Send for more information in Catalog 13-1. Write INRYCO, Inc., Suite 4069, P.O. Box 393, Milwaukee, WI 53201. TLX 26683 INRYCO A WMIL

Inryco
an Inland Steel company

Circle No. 356 on Reader Service Card
TO THE COLORLESS WORLD OF COMMERCIAL PLUMBING FIXTURES, KOHLER BRINGS LIFE.

Traditionally, plumbing fixtures for commercial installations have been white. But today, Kohler is leading the switch to color with products that are as colorful as they are practical. Practical for their tough finishes, vandal-proof construction, water-conserving design, and trouble-free operation.

The Serra Ice Floe™ drinking fountain is a case in point. Shown on the opposite page, this beautifully sculptured, vitreous china fountain is available in a variety of refreshing decorator colors. It includes a chiller that's built right into the wall.

The Kingston Water-Guard® toilet, shown here in Swiss Chocolate, features off-the-floor design for easier cleaning of both floor and fixture. Siphon-jet flushing action and efficient rim flush thoroughly clean the bowl with as little as 3 gallons of water.

Next, there's the Bardon Water-Guard® urinal. A wall-hanging, washout urinal of vitreous china, it uses up to 75% less water than conventional urinals.

Eye-catching colors like Aspen Green and Country Grey call attention to the unique, 6-sided design of the rugged Hexsign™ lavatory. Evergreen color is shown with Centura™ faucet in burnished finish.

Our Greenwich™ lavatory, shown in Black Black with a Triton II Water-Guard® faucet, is a wall-mounted, vitreous china fixture with glass-hard surfaces, concealed overflow, and integral soap dish.

Still another popular Kohler color, Cerulean Blue, appears here on our new Rialto Water-Guard® toilet. This one-piece toilet's compact dimensions make it ideal where space is limited. And it's designed to flush with no more than 3 1/2 gallons of water.

Of course, if white is still preferred, it can be particularly attractive when combined with the continental styling of the Chablis™ lavatory and IV Georges Brass™ faucets.

This is just a small sampling of the compelling colors and distinctive design available to you in Kohler's product line. A line that's equally appreciated for its superb performance. For more details, contact your Kohler distributor in the Yellow Pages or write: Kohler Co., Dept. RK4, Kohler, Wisconsin 53044.

Circle No. 365 on Reader Service Card
Actually, Charlie roasts every sunny afternoon. In fact, during July and August he's well done at about 5:00 P.M.

You see, Charlie's desk is next to a south facing window-wall in a nifty, new office building in Virginia. The architect's idea of collecting passive solar energy was great last winter. But this summer Charlie needs help and neither the building's air conditioning nor solar tint glazing are quite up to the task. Sure he could close the blinds. But Mildred over in accounting would complain that she couldn't see the Blue Ridge Mountains just over his left shoulder. And Agnes in sales service would say she can't work in the dark.

If that nifty, new building had a C/S Solar Control system, Charlie wouldn't suffer and Mildred and Agnes would be happier too.

Properly designed and installed, a C/S Solar Control system can reduce a building's skin-load air conditioning requirements by 80% - and much more. In addition, it will lower a high glare-free ambient light gain in summer and full solar heat collection in winter.

A C/S engineer developed the first cantilever sunshade in 1953. Since then we've perfected more than 150 fixed and operating Solar Control systems. All are simple, yet effective and maintenance free.

Our representatives can provide you with case histories, engineering data and system recommendations. Also, a comprehensive technical design manual is available at no obligation, course.

Write for literature.

C/S SOLAR CONTROLS

Construction Specialties, Inc. • Muncy, PA • San Marcos, CA • Mississauga, Ont.

Circle No. 329 on Reader Service Card
Academy honors

The prestigious Rome Prize for Architecture has been awarded by the American Academy in Rome to Frederic Schwartz (Venturi, Rauch & Scott Brown) and to Vinky Evans (I.M. Pei & Partners). Stacy Farriar (Johnson & Richter, Avon, Conn.) received the Rome Prize for Landscape Architecture.

The NEA mid-career fellowships were awarded to the following individuals by field: Adele Chatfield-Taylor (Landmarks Preservation Foundation, New York), urban design and planning; Anna Bliss Bliss & Campbell, Salt Lake City, interior design; Turner Brooks (Vermont) and Anthony Ames (Atlanta), architecture. George Hines (president, GSW, Chicago) received the Graham Foundation mid-career fellowship in architecture.

Do you speak Italian?
The American Academy in Rome (headquarters, New York) is accepting applications for the position of Director of the academy. The Director, who is responsible for planning and administering Academy operations, also serves as liaison to Italian institutions and other national academies in Rome and Italy.

The current director, Sophie Consagra, will replace Calvin Rand as Academy President next January.

Sizing into Aspen's crystal ball

Tackling a topic cryptically entitled 'The Future Isn't What It Used To Be,' the 33rd annual International Design Conference in Aspen, Colo., will convene June 12-17. The 1983 Steering Committee—Jane Thompson, planner and architectural writer; Milton Glaser, graphic designer; and Ralph Caplan, communications design consultant—plan a provocative inquiry into changing patterns of expectation and their impact on design.

Those called upon to present their forecasts for the future include Gerald Edelman, a molecular biologist and Nobel laureate; Steven Jobs, co-founder and chairman of the Board of Apple Computer; Robert Hughes, Time magazine art critic and creator of the TV series 'The Shock of the New'; and Dollar Brand (Abdullah Ibrahim), a South African jazz pianist and composer.

The conference will be immortalized in a time capsule, to be assembled, sealed and buried in Aspen. Conference get to determine the proper contents, burial ceremony, and site marker.

Parson's post filled

James Wines, president and co-founder with Ison Sky of SITE, has been named chairman of the Department of Environmental Design at Parsons School of Design, New York, and will take up the post in September of this year.

The recipient of numerous fellowships and awards for his architecture, sculpture, and graphic art, Wines was recently honored by the National Endowment Design Pencil points continued on page 59.

Harvard Gate Competition

For its forthcoming fifth issue, the Harvard Architectural Review sponsored an open competition for a gate to its university. The gate, never intended to be built, is sited at the Quincy Street boundary between town and gown, where many of the university's more famous buildings of the 19th and 20th centuries face off in a battle of the styles: Richardson's Sever Hall and Le Corbusier's Carpenter Center; Coolidge, Shepley, Bulfinch & Abbott's Fogg Art Museum and James Stirling's new Fogg Addition; Ware and Van Brunt's Memorial Hall and John Andrews' Godd Hall.

The competition proposed the theme of "precedent and invention," but the 311 entries, for the most part created by younger architects and students, indicated a marked preference for precedent over invention. The jury, composed of architects Henry Cobb, J. Kaj Bin Robertson, Ed Jones, Stanley Tigerman, and Susana Torre and professors Laurie Olin and Anthony Vidler, seemed less than enchanted with this respectful attitude toward the past. Most projects that merely imitated prestigious or familiar models were eliminated, as were the clever caricatures of a croquet wicket or Harvard goal posts.

The jury's public deliberations on February 19 revealed an understandably desire to punish the "pastichers" and to praise more urbanistic solutions that respected the site. Fourth-place winner Frederic Schwartz produced the only serious proposal to restructure the irregular and messy crossroads with two gatehouses and a triangular traffic island. Craig Spangler and Stephen Bartlett, also fourth-place winners, strung lanterns, globes, and lions along a corridor-shaped place formed of Vienna-inspired pillars. Third-place winners Cary Tamarkin, Timothy Teckler, and Steve Johnson were criticized for their privatization of Quincy Street, which they closed to cars; yet their landscape plan earned praise.

The second-place winner by Sandra Parett, Andrew Roth, and William Ryan was, to judge from crowd reaction, a favorite for first. Inventive graphics showed nighttime and daytime views of their monumental obelisk, implanted in the amorphous intersection, as a landmark. The first prize was awarded to Thomas Bartels for an adaptation of the competition poster. His brief manifesto termed the new gate superfluous; instead Lamont Library was to be razed to unblock an existing McKim, Mead & White gate, and a new building proposed on Quincy Street. Bartels's argument, "invention is an attitude that respects the site," was considered a unique critical comment on the competition. Yet a twin project from the same school, Virginia Polytechnic Insti...
News report continued from page 23

Washington update: DOE's energy priorities

The Department of Energy (DOE) recently released its budget for FY 1984, and unfortunately for proponents of energy-efficient buildings, it contained few surprises. The FY 1984 budget signals once again DOE's apparently firm resolve to spend very little on building-related research and to focus its remaining programs only on long-term, high-risk research. The budget does imply that DOE may not feel able to pull out of the energy-conservation and solar-research arena as quickly as it tried to last year, when it offered to spend only $22 million on all conservation programs and zero on its active and passive programs. Instead, Congress appropriated over $420 million for FY 1983, an indication of its continuing disagreement with DOE over the importance of these programs.

This year's budget confirms DOE Secretary Hodel's success in convincing the Office of Management and Budget (OMB), which controls DOE's purse strings, that the conservation programs merited a larger budget. The budget numbers also reflect the secretary's recognition that he needs to fulfill the promise made during his Senate confirmation hearing: "to pursue a more balanced energy policy."

Two years have given DOE ample time to reshape completely the conservation and solar programs. Setting Congressional and popular dissent aside, DOE moved to implement strictly both the Reagan Administration's belief that the federal government should be less involved in all energy activities and OMB's policy of funding only the long-term, high-risk, high-payoff research that industry is unlikely to undertake. DOE has terminated all other ongoing research that does not fit these criteria and applied its stringent rules to research in the conservation and solar programs. The FY 1984 proposed building-related activities leave no doubt that DOE is intent on completing the transition from a program that supports a mix of basic and applied research, as well as demonstration and commercialization activities, to one that has a very strict emphasis on materials, components, and other generic research activities, with no distinctions made between residential and nonresidential construction.

The proposed lineup for 1984

- Whole buildings research: No further activities in the areas of multifamily buildings or field research validation for small office buildings.
- Ventilation and indoor air quality: No additional research on indoor air pollution.
- Diagnostic tools for commercial buildings: DOE 2 and DOE 2 Users News terminated.
- Passive and hybrid solar: The passive and hybrid program eliminated, with some activities moved to the Solar Heating Technology Program. Most of the $5.6 million allocated for passive activities to be spent on long-term materials and technology transfer phases (storage, and heat transfer). Only 20 percent to be spent on natural ventilation and daylighting research. Design tools development, performance monitoring and technology transfer eliminated.

The building community has been far from silent about the fundamental reorientation of these programs. During the past two years, many industry organizations have tried to convince DOE that the fragmented nature of the building community prevents it from taking over many of the applied research activities that were previously supported by DOE. Organizations that have an energy program have tried to negotiate with OMB for a more-balanced program to no avail. DOE's own Energy Research Advisory Board (ERAB) concurred with this view in a report urging greater recognition of the industry's structure and advocating more industry participation in the planning and technology transfer phases of DOE's programs. Even the final report from the President's own Commission on Housing recommended that the federal government should continue to fund research on total building performance.

Recently, the House Science and Technology Committee has stepped up its oversight of federal building-related research programs. Earlier this year, the house committee convened a workshop with the purpose of establishing a national agenda on building energy research. The participants reiterated the need for performance monitoring, design tools development, and more research on indoor air quality, passive solar strategies, and whole building performance. DOE participated in this workshop with the hopes of obtaining "shopping list" of research projects, but ended up hearing again that the industry wants a balanced program.

Even though Secretary Hodel has been more conciliatory toward the conservation programs than his predecessor, the chances of reversing or modifying the direction of the building-related research programs are negligible. The Congress could reduce the department's discretion over its funding by specifying a line-by-line appropriations bill to these programs, or it could establish a advisory commission on building energy research. Both alternatives, however, leave the details of program planning to the department, which so far has heeded no outside advice save that of the President and OMB.

Top: second-prize design by S. Paret, A. Roth, W. Ryan; above: 4th prize design by F. Schwartz.

Hélène Lipstadt is a Cambridge, Mass., social historian and architectural writer.
Some energy advocates suggest the only real solution is more concerted political action by those building industry organizations that will support a federal role in energy conservation and solar research. Proponents of this solution note that support on Capitol Hill for renewable energy is broad, but it has been focused sufficiently to affect major policy directions taken by the administration. The chances for that level of political activity are slim for several reasons. The economic health of the construction industry makes other legislative issues a much higher priority for these organizations. Many legislative representatives still refrain from speaking out against the administration’s treatment of energy programs because their companies originally endorsed the resident’s campaign themes of less federal spending and less federal regulation. Furthermore, the political functionality of the industries that benefit from a national policy that encourages the use of energy conservation and renewable energy technologies are null when compared with the level of contributions made by the traditional energy industries. Nevertheless, many frustrated industry representatives perceive a real need for an industry-wide political action committee that could effectively represent, in DOE and in Congress, the pressing energy concerns of product and equipment manufacturers, the design and construction community, and the owners and users of America’s buildings.

Daylighting

In Phoenix

Some 450 daylighting and energy enthusiasts flocked to Phoenix, Ariz., to participate in the 1983 International Daylighting Conference, Feb. 16-18. Many were surprised and pleased over the course of the three-day conference to conclude that here (at last) was an energy-related subject in which architects, researchers, utility executives, government officials, and even real estate developers could find common ground.

In a series of alternating plenary and chat sessions, participants exchanged ideas, examined new daylighting technologies, and exchanged ideas and information on topics as diverse as Alvar Aalto’s skillful exploitation of daylight (Richard Peters, Berkeley) and the latest efforts to produce “user-friendly” computer programs for daylighting analysis during design development (Harvey Bryan and David Rinkel, MIT, and Claude Robbins, ERI). It was refreshing to hear daylighting researchers concede that energy economics alone cannot provide reasons compelling enough to turn to daylighting. “It is clear,” said Lawrence Berkeley laboratory’s Stephen Selkowitz, one of the two conference cochairmen, “that the visual quality of environments and their architectural properties are the important factors.” Heartening to some was the tribute paid to the contributions of research to design, notably by architect Scott Ellinwood of Ventura, Calif., whose innovative office building for a California canning company “would not have been possible without the useful and nonbiased research that has come from the government.”

Selkowitz and cochairman Harrison Fraker, Jr., summed up at various points the main themes of the conference. Often-mentioned topics of concern included the need for better information on the actual performance of various daylighting strategies, the significant links between lighting and worker productivity, and the paucity of information documenting the efficacy of various lighting control systems.

The impact of increased computer and CRT use on office lighting was mentioned repeatedly as a subject in need of further study, but the topic received little in the way of detailed treatment in the technical papers. The tradeoffs and interactions between light and thermal energy systems were also identified as areas of lingering difficulty.

One session was devoted to reports from foreign attendees on developments in daylighting research abroad. One particularly impressive report from the United Kingdom attributed the increase in available solar energy to the country’s aggressive clean air efforts.

Sponsors of the conference were the AIA, ASHRAE, the Edison Electric Institute, the Electric Power Research Institute, the Illuminating Engineering Society, Lawrence Berkeley Laboratory, Oak Ridge National Laboratory, the U.S. Department of Energy and the Commission Internationale de l’Eclairage. Proceedings of the conference have been published and are available from the AIA. [Thomas Vonier]

Hollein design for Wittmann.

Hollein headboard

Hans Hollein has designed a second piece of furniture. His first was a vanity (P/A, May 1982); his latest is a bed with curved headboard and suspended side tables, designed for Franz Wittmann, Austria. It is to be unveiled at the 1983 Cologne Furniture Fair.

Constructed of Wawona burl wood, mother of pearl, gilded aluminum, pink acrylic, marble laminate, and built-in Philips lamps, the bed is at the very least a lavish item. The ensemble is available in two sizes with four different bed units. The bedspread’s vaguely Navaho motifs are patterned in chintz and skin of water snake.

Two-stage competition for German Energy Center

Essen, a major city in the industrial Ruhr area of West Germany, has for the past two years been planning a center devoted to the study and demonstration of energy issues. The city staged a two-part competition for the design of this German Energy Center, with the first phase held in 1981, and the second stage to take place this year. Invited to participate in the first phase were architects Hans Hollein of Vienna, Harald Deimann of Munster, Planungsgruppe Me dium of Hamburg, Bernd Faske and Vladimir Nikolic of Kassel, and Erich Schneider-Wessling of Cologne, each with associated engineers and energy consultants.

The 220,000-square-foot Energy Center will have three functions: a natural science and technology museum with demonstration areas, archives, and 90,000 square feet of exhibition space; a forum for technological and scientific interchange; and an interdisciplinary research institute. Close to half a million visitors are expected to visit the museum yearly, 50 percent of them students. The architects were asked to propose [News report continued on page 28]
WE SHOOT FOR MORE THAN THE STATE OF THE ART.
Because there's always the moon. Always that point far beyond the norm to reach for. To perfect, through innovative engineering.

For example, Amalite's newest products reflect how we squeeze superiority out of the state of the art.

Our new Express Set Glazing System, ESS, is designed for quick and simple installation. Minimum labor, modest cost.

The new, thermally improved Ribbon Window Framing System, NRG, gives extraordinary energy saving performance by restricting heat transfer. And is also designed to minimize labor in installation.

And the new Framing System for Insulated Glass, TWS-II. Its interior insulating capabilities provide remarkable performance against air and water infiltration. And again, labor-saving installation.

The reason Amalite doesn't sit still is why we're growing. We're never satisfied with new. Only best.

It's your satisfaction we're after. AMARLITE®Anaconda

A unit of ANACONDA ALUMINUM Company

Circle No. 322 on Reader Service Card
News report continued from page 25

concepts for the functional, structural, and energy organization of the center, to search for innovative ideas, and to present an overall design that would both respond sympathetically to the Old Essen neighborhood where it is to be sited, and symbolize “Energy.”

Hollein's proposal features a semi-circular underground museum that radiates from a circular “oasis,” a linear research building, a library tower, and an energy park with a wind generator. His energy strategy uses a hydraulic system for heating, supplemented by gas heat pumps, and stores heat under the oasis and under a tower. Daylight floods into the glazed entry spine and oasis, while underground exhibitions spaces demonstrate the historical development of artificial light sources.

Faske and Nikolic propose a giant pyramid enclosing the museum, with an elaborate envelope that allows natural ventilation, shading, and insulation, depending on the configuration of its “air and sun collecting” louvers.

Deilmann groups all functions within a single rectangular building form, and supplements active and passive solar features with heat cogenerated as a by-product of nearby industrial waste. All five participants, in fact, combine a variety of energy strategies, and they are all invited back to develop their ideas further in the next phase. [SD]

German Energy Center Competition. Top: Faske and Nikolic entry; bottom: Hollein entry.

Manville claims fund established

In August 1982, the Manville Corporation and its subsidiaries filed plans for reorganization pursuant to Chapter 11 of the United States Bankruptcy Code. This move resulted from the extraordinary financial burden of present and anticipated litigation related to the asbestos health issue. While Manville is authorized to continue business as usual during its reorganization, and while warranties and guarantees remain in full effect, the company sought a way to reassure customers of their protection.

To that end, Manville established a separate multi-million dollar third party trust fund in January, with the Mellon Bank of Pittsburgh as the fund trustee. The fund, plus its investment interest, will be held as a reserve for payment of provisional claims connected with roofing materials and fiberglass building insulation should Manville ever be unable to fulfill its business obligations.

The basis for deciding the proper amount for the fund was an actuarial analysis of claims on roofing and insulation warranties and guarantees over the company's history. Assets in the fund are calculated to equal approximately one-and-one-half times the amount Manville typically has paid on such claims in the past. [JM]

Nathaniel Owings: Solid gold

Nathaniel Owings' 79 years have not diminished his capacity for speaking his mind: "We are corrupting nearly everything we touch," said the 1983 AIA Gold Medalist at a recent luncheon held in his honor. "Everywhere we look there is poisoning and desecration of the environment, and I intend to press this matter on the Institute.”

Owings will have a chance to do so during the New Orleans AIA convention at which he will accept the Institute's highest honor, the Gold Medal. Describing himself as an uncharacteristic and unlikely recipient of the award, Owings compared the honor to that of another environmentalist and Gold Medal winner, Clarence Stein. He has no intentions to urge on the AIA creation of an entire division—on a par with practice, design, and education—devoted to the environment.

Owings, the AIA's 44th medalist and a founding partner of Skidmore Owings & Merrill, was appointed in 1962 by President Kennedy to chair Washington's Pennsylvania Avenue Commission. He held that post for 20 years and during that time solidified his position as one of America's foremost conservationists. "I conclude," Owings said, "that if architects don't take this on, nobody else will... not engineers, not businessmen, not the government. Buildings can come down and we will live on, but the environment is fundamental to all that is worthwhile in life.”

[Thomas Vonier]

[News report continued on page 33]
ParPower. The energy-saver from NuTone.

ParPower's patented dual reflector system produces as much center beam illumination from an ordinary 100W lamp as a 150W PAR 38 in a conventional fixture. The same illumination from only two-thirds the energy.
The unique design also helps lamps stay cooler and last longer.

ParPower From NuTone's complete track and recessed collection. See your NuTone lighting distributor Or write NuTone, Dept PA 4, P.O. Box 1580, Cinti., OH 45201.

NuTone
Housing Group
Scovill
Featuring the exclusive ParPower.
Ugly, leaky, drafty windows put a valuable building in a poor frame of mind. Replace them! With the windows that stay beautiful and weathertight regardless of time exposure.
Dash. that eyesore can become a vision of beauty, that
energy-waster a snug-fitting insulator... With the Andersen Window Replacement System.
The System easily replaces any style window (wood or metal) with a slender Andersen® Perma-Shield® window.
A stock Andersen window. So, unlike expensive tonto-mades, it’s available immediately. In hundreds of sizes.
A custom-fit Andersen window. Our 90-page "How-to" guide and specially designed installation aids assure it.
A carefree, energy-tight window. Vinyl-sheathed ma-Shield windows don’t need painting and stay beautiful regardless of time exposure. Their excellent air-infiltration rating and double-pane insulating glass ensure weathertight energy efficiency.
A quality window. That has been our hallmark for nearly 80 years. We aren’t about to compromise it.
See Sweet’s File 8.16/An. and 8.22/An. or visit an Andersen distributor or dealer (listed in the Yellow Pages under Windows).
You’ll discover—in a flash—that when it comes to quality replacement windows, Andersen is America’s frame of reference.

Andersen® Windowwalls®
Andersen Corporation
BAXTER MINNESOTA 56008

Circle No. 316 on Reader Service Card
A government building by the 1981 Sullivan Award winners.

ELEVATORS BY DOVER

A purposely informal organization of elements distinguishes the Skagit County Administration Building in Mount Vernon, Washington. Designed to promote ease of access and open government, the building houses six county departments and three public hearing rooms on a downtown courthouse block. Two Dover Elevators help smooth the flow of inter-floor traffic. For more information on Dover Traction and Voldraulic® Elevators for low, mid- and high-rise buildings, write Dover Corporation, Elevator Division, Dept. 686, P.O. Box 2177, Memphis, Tennessee 38101.

DOVER The elevator innovators.

Skagit County Administration Building, Mount Vernon, Wash.
Architects: The Henry Klein Partnership, Mount Vernon.
(formerly Nelse Mortensen, Inc.)
Dover Elevators sold and installed by Sound Elevator Company,
Seattle.
Passive Solar Design Competition

Six of the seven winners of the Second National Passive Solar Design Competition (AIA, Oct. 1982, pp. 28-29) are shown here (the seventh is featured on p. 86). They illustrate the diversity of current energy-conscious design.

1a, b Con Edison Demonstration House, Briarcliff, N.Y.; Architect: Alfredo De Vido, New York; Solar consultants: Princeton Energy Group, Princeton, N.J. Commissioned by Con Edison to demonstrate methods of saving energy, this well-insulated house (R-27 walls, R-30 ceilings) features movable insulation, extensive south glazing sized according to the thermal mass and shaded by trees to prevent overheating in summer, an attached greenhouse with a 6-inch concrete slab for direct gain, a heat exchanger, and a solar domestic hot water system. The architects anticipate a 40 percent saving in energy over a house with conventional climate controls.

2 Wildwood Place Residential Townhouses, Seattle, Wash.; Architect: Eric Meng Associates, Seattle, Wash. These eleven townhouses, clustered around a south-facing court, have stepped plans and sections to maximize their solar exposure. Each has an attached sunspace, a 4-inch concrete floor slab, with balcony and roof decks of hollow concrete planks through which hot (or cool) air is circulated, cross ventilation, and exterior shades and overhangs designed to cool the houses in summer. Roof-top light-scoops compensate for the lack of north-facing windows.

3a, b Lake House, Micanopy, Fla.; Architect: Donald W. Haase, Gainesville, Fla. Located beside a lake in a hot, humid climate, this house uses exterior shading and natural ventilation as its primary cooling strategies. Ceiling fans pull cool air through the porch windows and exhaust warm air through the open stair tower. Woodstoves and an attached greenhouse warm the house in winter. The house lends itself to seasonal zoning, with a large, enclosed kitchen serving as the winter living room, and a large, screened porch for summer activities.

4 San Francisco Residence; Architect: William Leddy, San Francisco; Structural: Robert Kendall, Lafayette, Calif.; Mechanical: Edward Jaredy, San Francisco; Solar: Douglas Taylor, San Francisco. This expansion and retrofit improves upon an undistinguished house on a narrow, sloping site and accommodates its limited solar exposure by placing the sunspace on the third floor. There, a return air duct moves heated air to rock-bed storage in the garage. An existing gas-fired, forced-air furnace backs up the solar hot air system. Domestic hot water is also solar generated. At the back of the house is a canvas-shaded, south-facing outdoor room, whose cooler air is drawn into the house through operable windows to replace warm air exhausted through a ridge vent.

News report continued on page 34
5a, b Albany County Airport Terminal, Colonie, N.Y.: Architect: Einhorn, Yaffee, Prescott, Krouner; Consultants: W.S. Fleming Associates, Albany; Scott-Healey Associates, Albany; Parsons-Brinkerhoff, New York. A 176-foot long solar court dominates this terminal expansion. Interior foam-filled louvers in the court are operated by a computer so that, in winter, the sun is allowed to heat the black slate floors and the brick walls, and in summer, the sun is reflected to prevent overheating. A thermal siphoning system, which exhausts hot air in the summer, integrates the solar court's air with high efficiency boilers and a VAV distribution system. That, along with efficient fluorescent lights, ample task lighting, and photoelectric sensors, allows the building to use 75 percent less energy than the adjacent, equally sized terminal.

6 Government Service Insurance System Headquarters Building, Manila, Philippines; Architects: Jorge Y. Ramos & Associates, Manila; The Architects Collaborative, Cambridge, Mass. Its design process as much as the final product distinguishes this 1,350,000 square-foot office building. Wind-tunnel tests, daylighting studies using large-scale models, and computerized thermal analyses helped determine not only the building's long, stepped form, but its north-south orientation reducing heat gain, its notched elevations catching prevailing breezes, and its light shelves and reflective ceilings promoting daylighting. The anticipated energy consumption is 29,000 Btu/sq ft/year. [News report continued on page 39]
Paint by numbers.
1-800-321-8194.

When you want to know something about paint in a hurry, punch our number. Ask us what paint to spec on a transmission tower. Ask us what to spec on a school, office building, motel—whatever you’re building. Ask us anything. You’ll get the answer right away.

The Sherwin-Williams Paint Data Bank is the easy and fast way to get information. You’ll talk with a coatings professional who has the vast resources of our Paint Data Bank at his fingertips. He’ll give you the information you need to know. And he’ll mail you updated product literature—that same day.

Nobody has more tools to serve you better: Our nationwide store chain is your network for the products you need, where you need them. Our field consultants are among the most knowledgeable in the business, trained and backed by the industry’s top technical people. And Data Bank gives you information fast. So just ask us.

Call toll free 1-800-321-8194.
In Ohio, 1-800-362-0903.

Ask Sherwin-Williams
If you're tired of trying to fit windows that are rectangular into spaces that aren't, you should know about Marvin Windows. MARVIN OFFERS SOME NEW ANGLES ON ARCHITECTURAL DESIGN. Many of them can be seen in The Charter at Beaver Creek, Colorado. In addition to casements and double hungs, Marvin offers triangles, trapezoids, octagons, arched tops and more. In fact, no other brand of quality wood windows makes so many shapes and sizes. Marvin Windows are even available with true divided lites. So you can order windows in exactly the style you need to maintain the integrity of your design.

Yet Marvin Windows cost no more than any of the other major brands of wood windows.

BEAUTIFUL WINDOWS. BEAUTIFULLY PUT TOGETHER. The sash, casings and jambs of all Marvin Windows are made of fine-grained Ponderosa pine.
This wood was chosen for its insulating properties and the way in which it accepts a stain and varnish or paint finish.

A Marvin Window not only begins with a high quality wood, there's more of it in a Marvin than in most other wood windows. (For example, our casement has 20 percent more wood in the sash and 22 percent more in the frame than our leading competitor's.) And all exterior wood is deep-treated to protect against rot and decay.

OUR WINDOWS OFFER ATTRACTIVE ENERGY SAVINGS, TOO.

We began offering triple glazing over 20 years ago. And double glazing long before that. Either one offers significant energy savings in summer, as well as winter.

What's more, Marvin Windows are carefully weather-stripped to eliminate drafts and further reduce heating and cooling costs.

MARV-A-GARD ELIMINATES WINDOW PAINS.

Marv-A-Gard is our exclusive maintenance-free exterior available on many styles of Marvin Windows. It's a precision-fit clad exterior that has a specially cured polyester finish that resists rain, hail and blazing sun.

So you can offer your clients a window that's maintenance-free outside and beautiful wood inside.

MARVIN WINDOWS ARE ALWAYS THERE WHEN YOU NEED THEM.

Even though our windows are made to order, we can deliver most shapes and sizes within 10 days from the time we receive your order.

For more information, consult Sweet's General Bldg. File No. 8.16 MAR. Or for a free catalog, write Marvin Windows, Warroad, MN 56763 or call 1-800-346-5128 toll-free. In Minnesota, call 1-800-552-1167.
ALL SINGLE-PLY ROOFING IS NOT CREATED EQUAL!

For an experienced manufacturer with a full line of products and services, it's Gates Engineering. For quality, single-ply roofing systems, it's Gates Engineering. For dependable, high-performance, time-tested single-ply sheet materials, it's Gates Engineering. And what better criteria are there for a building dedicated to the performing arts than the selection of a roofing system unequalled in performance. Our single-ply Neoprene roofing system crowns the impressive architectural centerpiece of the Empire State Plaza in Albany, New York. A pioneer in elastomers since 1939, Gates first single-ply roofing project was completed in 1961...that's over twenty years of successful performance. Our outstanding total systems concept, unsurpassed warranties and superior technical service back-up are second to none. There is no equal to Gates Engineering in

EXPERIENCE· QUALITY· DEPENDABILITY

Gates Engineering Company, Inc.

100 S. West Street P.O. Box 1711, Wilmington, DE 19899
(302) 656-9951
Western Office, 462 West 3440 South, Salt Lake City, UT 84115
(801) 262-7883

Circle No. 344 on Reader Service Card
Energy portfolio

Variations on a theme

Harrison Fraker, Architects, Princeton, N.J., opted for the kit-of-parts approach in their eminently energy-efficient solution(s) for six Mercer County Branch Libraries. The prototypical plan operates as an adjustable series of parallel layers, organized to allow the advantage of linear expansion when required. These layers are anchored by a perpendicular axis, the principal path of movement through the building, which is marked by a pyramidal skylight, a "gazebo" for new books, and a picture window.

The energy solution complements his zoning of programmatic components. Energy elements—clerestory windows, Trombe walls, and thermal storage columns—outline the edges between layers, most notably in the line of glasswall water tubes that form a "loggia" between the reading room "agora" and he stacks. The combined impact of daylighting, natural through-building ventilation, and effective heat storage should reduce energy consumption to an estimated 23,000 Btu/sq ft/year, less than half the recommended BEPS standard of 50,000 Btu/sq ft/year. The system is appropriately flexible, with adjustable artificial lighting, operable windows, and thermal clerestory curtains.

The separation of zones, so clear in plan, is less evident in section and elevation. But the prototypical diagram is carried through in a generally consistent fashion, the extent of the zones adjusted to the branch programs. The branches are further distinguished by rather intricate two-dimension facade designs, color-coded for each site.

Energy ambassadors

Built to commemorate the Tennessee Valley Authority's 50th anniversary, two converted barges are mobile demonstrations of energy and conservation principles. On-board programs illustrating the power authority's past and advocating consumer awareness of energy issues are augmented by the operational example of these energy-efficient barges. The superstructures were fabricated from surplus construction steel at the 1982 World's Fair, where the barges began their journey, and enclosed in lightweight industrial materials. Central skylights illuminate the interiors; operable vertical louvers provide shading and direct the air flow. Large ridge vents permit passive cooling, and photovoltaic power systems provide a portion of the lighting load.

The 10,000-square-foot barges, which were designed by TVA's architectural design division, will visit some 25 sites along the Tennessee and Mississippi Rivers during 1983. With their bright primary colors, festive graphics, and playful profiles, they broadcast the message that energy isn't just practical; it's fun.

USE IT WHEN YOU DON'T WANT YOUR BUILDING TO BE A SOLAR COLLECTOR

Passive solar design with conventional construction is attained by use of this highly reflective film that reflects 90% of the thermal radiation usually absorbed by the roof and stored in the insulation.

PARSEC THERMOSOL-BRITE can benefit your next project by:

- Using NASA's principle of reflecting radiation
- Reducing energy consumption for air conditioning
- Providing a thermal shield to prevent absorption and storage of heat

ASTM E84-80: Flame Spread Index 1
Fuel Contribution 0
Smoke Density 45

Parsec's innovative line of products also includes barriers to stop air infiltration and prevent condensation.

Call Nickey Naumovich, Jr., President, today for more information and receive an attractive metallized, multiple color 1983 calendar for your office.

(800) 527-3454 P. O. Box 38534
In Texas (214) 324-2741 Dallas, Texas 75238
Introducing... the first multi-function window designed and built to meet the specs of a lifetime.

The Performer. New from Kawneer.

The window that does everything.
The Performer, Kawneer's High Performance Inswing Casement Window System can provide the varied range of functions today's buildings require—ventilation, washing from interior, emergency, and fixed glass holding. In addition, The Performer offers light and sound control, as well as state-of-the-art thermal control.

The window that survived everything.
The Performer earned its name by surviving a comprehensive regimen of tests designed to prove its life-cycle claims. Heat loss and gain, sound and light control, as well as condensation resistance were all considered. But, even more important, high performance air and water infiltration resistance, structural performance, corner joinery strength, and even ease of glass replacement factors were also required for The Performer to live up to strict Kawneer standards for a lifetime.

The window that works anywhere.
The Performer is ideal for hospitals, schools, government buildings, office buildings, airport areas, and many other applications where multiple functions would be an added dimension to a building's appeal. For renovation projects, The Performer System can be easily and aesthetically integrated into remodeling, allowing maintenance of the original design charm while meeting contemporary performance standards.

The window that lasts.
Long after the bid is history, the performance of a window will keep appearing on a building's bottom line. The ability of a multi-function window to retain its design integrity through years of service and exposure to the elements is what makes The Performer an important consideration for your next project no matter what your design requirements are.

For more information, contact your Kawneer sales representative, or write: The Kawneer Company, Dept. C, 1105 North Front Street, Niles, MI 49120.

Kawneer
The designer's element

Ventilation

Circle No. 361

Can be washed from interior
Well grounded design

"Embarrassingly ugly projects have been spawned by a very narrow definition of what earth-covered and solar design mean." So concludes the Miller/Hull Partnership, a firm that has designed two striking earth-sheltered houses in Washington State.

The first, a house for a private contractor, stands on a flat, seven-acre site. Poplar trees and earth berms shelter the house's north, east, and west exposures. The south elevation, framed by a broad retaining wall and facing a pond, features a series of glazed garage doors that open to shade the sloped glass roof in summer and close to create a direct gain greenhouse with rock-bed storage in winter. A raised platform, set into the hillside and skewed in plan, contains service and sleeping areas, lighted by round, operable skylights. Ingeniously low-tech, the house suffers mainly from a somewhat tunnellike entrance.

An awkward entrance through the garage also plagues Miller/Hull's second earth-sheltered house. This ranch residence makes the best of its steep site, though, by cutting diagonally across the southwestern slope to face due south. A shallow ramp connects the various levels as they step up the hill; glazed garage doors enclose the concrete ramp, allow-

SAFETY-10™ EXIT WITH STYLE.

The Safety-10 Exit Sign can reduce building operating and maintenance costs without compromising the beauty of any interior. It is available in a wide variety of anodized color frames, to blend into any decor. The Safety-10 operates independently of external power — no energy cost! Yet, it installs in minutes and is completely maintenance-free.

For a closer look, contact us at:

SAUNDERS-ROE DEVELOPMENTS, INC
P.O. Box 5536, Winston-Salem, NC 27103 (919) 765-4521
A member of the Westland Group

SAFETY-10™ is a product of Betalight Research.

Circle No. 392 on Reader Service Card
Weather Shield Windows
Meet The Energy Challenge

Living energy beautifully, creatively. Our complete line of windows, patio doors and steel insulating entrance systems are designed with uncompromising craftsmanship for your commercial or residential building.

For your solar projects, our new SunGain® film between the insulating glass layers has a special anti-reflective coating that allows more sun's energy to pass through. Tri- and quad-pane SunGain units, with glazing up to 1-3/4" thick, are available in standard sizes of Weather Shield wood windows, patio doors and insulated entrance systems.

Select from a wide range of sizes and styles featuring maintenance-free exteriors. Exclusive Weather Shield options, regular or inside glazed, provide maximum selling value and energy efficiency. Inside glazing means security and allows easy replacement of the glass from inside your building.

For easy installation, low maintenance, and energy efficiency—it's wood windows and doors exclusively yours Weather Shield!

Get to know Weather Shield, contact H.J. Koester, Marketing Manager at (715) 248-2100.

© SunGain is a registered trademark of 3M Company, St. Paul, MN 55144.
Changing business environments and technologies require adaptable facilities. When facilities are unable to react effectively to change within the organization, people and companies become less productive.

The American Seating Office Furniture System is designed to respond to the needs of the organization in meeting the challenge of this fast-paced change.

Whether your specific requirements are for:

- Machine integration — display terminals, printers and word processing equipment in the business environment
- Technical environments — laboratories and small assembly areas
- Privacy — floor-to-ceiling walls, and doors, for private offices and conference rooms
- Mass storage — enclosed, dividable components to meet widely varied functional needs
- Acoustical control — sound control in the open plan
- Status differentiation — wood systems with the flexibility of standard product

Or any combination of these, American Seating meets these needs with a single, highly-adaptable furniture system, capable of responding now, and as the organization changes.

Contact us for more information — we can help you identify your firm’s specific facility problems...and solve them. Call 800/253-8104 or write us for more information.

Circle No. 417
Energy for the elderly

The cost-saving advantages of solar design carry an added significance when applied to housing for the elderly. The units of a senior citizens community designed by Kelbaugh & Lee for Roosevelt, N.J., will require only an estimated $75-$125 for electric heat in the winter (the annual solar savings function is projected at 40 percent) and no air conditioning at all in summer, quite a feat given the New Jersey climate.

Kelbaugh & Lee planned the two-acre farmland site to center on a three-story community building that houses common rooms, a kitchen, lockable storage, and laundry facilities. Eight one-story residential dwellings line up in a stiff site arrangement, their unit plans arranged so that all principal living spaces face south, regardless of which way they front. Each unit is organized around a solarium, a space these occupants may use more than most, backed by a masonry wall. In the summer, rising hot air is guided up a "solar chimney" by rotary ventilators. Operable shades double as night insulation and summer shading; water is solar preheated.

The straightforward (and, one hopes by now familiar) principles of passive solar design that organize the units are cloaked in the picturesque forms vaguely Voyseyian cottages. Simple and relatively powerful roof forms may help to compensate for the discrepancy between north and south façades, a difference that is logical but visually disconcerting in most solar housing.

[News report continued on page 50]
Fifteen years of foam panel experience have resulted in the development of Therm-U-Wall — the most advanced factory insulated system on the market today. From conception to production, MOLENCO engineered T-U-W to combine more of the design features architects and owners require:

- **2¼" Panel Thickness.** An extra half inch of foamed-in-place insulation provides greater energy efficiency when compared to conventional systems. The increased thickness also allows greater structural spanning capability.

- **Clipless Side Joint.** T-U-W's channel side joint supplies optimum strength without the use of clips for panel to girt attachment.

- **Standard 30" Panel Widths.** T-U-W's flush, modular look combines clean aesthetics with the added benefit of superior insulating value.

- **Kynar® Finish.** The recognized coating for long life application is MOLENCO's stock finish.

- **Complete line of Accessories.** Extrusions with matching Kynar coatings are available for all trim conditions.

With over 65 years of experience in the metal panel industry, who better than MOLENCO to introduce Therm-U-Wall — the latest in flat, foamed-in-place metal panel technology.

Moncrief-Lenoir Manufacturing Company
P.O. Box 2505 • Houston, Texas 77252-2505

Circle No. 377 on Reader Service Card
Many of the great engineering projects of the last 50 years were conceived on Clearprint drafting papers. Starting with the San Francisco Bay Bridge in 1933 to NASA's Space Shuttle of the '80s.

The intervening years also saw great achievements drafted on Clearprint. From the fierce P-51 Fighter Plane of the '40s to the somewhat less fierce Gillette Blue Blades and razors of the '50s to the urbane convenience of BART (Bay Area Rapid Transit) in the '60s and '70s... America's engineers and architects have drafted the future on Clearprint.

We're looking forward to the next 50 years. The profession has already seen changes with the advent of CAD/CAM. As requirements change, Clearprint will meet the challenge — maintaining our leadership in fine drafting media.

Our 50th anniversary also gives us an opportunity to thank our customers for their continued patronage — and for their ideas that were first expressed on Clearprint paper. In turn we pledge to continue producing the fine drafting papers you've trusted for the past half-century. The same papers that most engineers and architects learned to draft on, the same papers they stay with during their careers.

Circle No. 351 on Reader Service Card
Now there's a fast, easy, economical way to get lettering that meets the same high specifications as your drawings.

Most architects and engineers are perfectionists. They're simply not satisfied with any project until every detail is just right—including the lettering.

Until recently, this attention to detail meant painstaking hours using press-on or mechanical drafting lettering. Or perhaps even hand lettering your drawings, presentations, finished models, and preliminary designs.

Now there's a much faster, easier way to get the professional lettering look you want. It's the remarkable Kroy lettering system.

Kroy lettering is a unique, patented process that prints Typo-Tape.® Simply turn the typedisc to the letter, number, or symbol you want and press the print button. You'll get neatly spaced, good looking lettering on adhesive-backed tape. Peel the tape from its backing, and it's ready to position in place.

Kroy lettering comes in 25 different typestyles, (including Microgramma and Helvetica), and a wide range of sizes from 8-point to 192-point (1/16 to 2 inches). Typestyles and sizes depend on which Kroy lettering machine model is used.

There are four types of specialized Kroy lettering supplies. Kroy 100 provides sharp edgeline definition (at up to 200% enlargement) for photo reproduction.

Kroy 200 Diazo minimizes ghosting, or shadow, during diazo reproduction.

Kroy 300 Labeling and Kroy 400 All-Purpose are suited to a wide variety of lettering projects. Like all Kroy lettering tape, they adhere quickly and easily to virtually any clean, dry surface—even photographs and negatives.

There are five Kroy lettering machine models currently available, including the deluxe Kroy 80® lettering machine pictured here.

Call toll-free 1-800-328-1306 for a free sample of Kroy lettering.

Find out why architects and engineers all over the country are using Kroy lettering in place of slower, more expensive lettering methods. Call toll-free, 1-800-328-1306. (In Minnesota, please phone 612-738-6100.) If you prefer, complete and return the coupon.

We'll send you a free sample of Kroy lettering, and a copy of our latest, full-color brochure. Or, we can arrange for a no-cost, no-obligation demonstration of the Kroy lettering system right in your office. Call or mail the coupon today.

Kroy, Kroy 80® and Typo-Tape® are registered trademarks of Kroy Inc.

Headline set with Kroy® lettering.

Free sample of Kroy® lettering and full-color brochure.

Check one:
☐ Please arrange to have a representative call on me for a no-cost, no-obligation demonstration of the Kroy lettering system.
☐ Please send me a free sample of Kroy lettering, and a copy of your latest brochure.

Name (please print):
Title:
Company:
Address:
City State Zip

Area Code/Number

In order to complete your request we must have your telephone number.

In order to complete your request we must have your telephone number.

Complete this coupon and mail to Kroy Inc., Post Office Box 43716, St. Paul, Minnesota 55164

1887

Circle No. 368 on Reader Service Card

Progressive Architecture 4/83
Exploring architectural ideals

Ungers and Kiss: racquet club.

The absence of a specific site for a prototypical Courtside Racquet and Fitness Club designed by architects Ungers and Kiss may account in part for its neo-platonic idealized form. This simple and yet monumental solution buries eight courts beneath an earth berm and organizes programmatic components in a Greek cross plan that recalls the prototypical building types delineated in Durand’s Precis.

The elegant plan is also energy efficient, and the building’s “super-insulation” attributes are likely to prove cost effective. Savings due to energy conservation over a 30-year period are expected to exceed $24 million. Ventilation utilizes cooling pipes, which penetrate the berms, and the pyramidal section acts as a natural flue. The project’s program complements these energy-saving measures: Courts require little or no daylighting, and punctures through the insulating enclosures are therefore kept at a minimum. Internal heat sources (lights, people, etc.) supply most of the required heat, while continuous occupancy with no weekend shutdown eliminates the need for Monday morning machinery.

The centralized, temple-like pavilion is surrounded by tiled sun decks, exercise areas, and garden quadrants that extend and reinforce the absolute, rectilinear plan. Both “conditioning factory” and country club, this project is rigorous exploration of technological and typological ideals.
If Solakleer increases heat gain in this home by 80%, imagine what it can do in your homes.

You don't have to go to Alaska to realize the dramatic solar efficiency of Solakleer™ glass. We did, to prove a point.

Wherever heating costs exceed cooling costs, Solakleer’s unique low-iron composition demonstrably improves the net energy gain of all windows. When compared to ordinary “clear” double pane, Solakleer transmits 16% more total solar energy—a difference that means a minimum of 25% added heat gain.

For single and multi-family dwellings, as well as low-rise commercial and high-rise residential buildings, Solakleer can deliver fuel heat savings of as much as 33%.† All from a “solar” glass that looks, glazes and costs virtually the same as ordinary “clear.”

Turn your building glass products into passive solar products. For prime, replacement or storm windows, as well as insulated units, laminated skylights, greenhouses and patio doors—improve performance for all exposures with Solakleer energy-efficient glass.

SOLAKLEER™
The clear choice in energy-efficient glass

For the name of your nearest Solakleer manufacturer or distributor, or for more performance data, call or write: Tom Milliot, General Glass International Corp., 542 Main St., New Rochelle, NY 10801. (914) 235-5900.

*Comparing ordinary triple glass to Solakleer triple glass for southern exposure †Based on heating season performance, Madison, Wisconsin
Photograph taken atop Murphy's Dome, Fairbanks, Alaska

Look for us in Sweet's Catalog 8.26a-Ger.
Circle No. 348 on Reader Service Card
Job Site: Cerritos Community Center, Cerritos, CA.
Finish: Cloud White, Plaster White, Celtic Blue, plus two special blue colors.
Contractor: Owens-Corning Interior Contracting Services.
Availability: Alcan Building Products exclusively.
Information: Write Alcan Building Products, P.O. Box 511, Warren, Ohio 44482.
STO INDUSTRIES
INCORPORATED

the originator and world's leading producer of synthetic resin coatings and exterior insulation systems

exterior insulation systems

interior and exterior coatings

prefabricated exterior insulation panel systems

QUALITY LANE, BOX 219, RUTLAND, VERMONT 05701/802-775-8117 / 2189 F FLINTSTONE DRIVE, TUCKER, GEORGIA 30084/404-935-9590

Circle No. 401 on Reader Service Card
The design problem the architect faced was that of creating a beach house on a site 150 ft from the beach, surrounded by asphalt drives, and separated from the sea by a continuous wall of dwellings. To get in the mood, Quigley imagined a scenario in which a tidal wave washed over an existing structure, scattering its elements over the site. The resulting beach-house-cum-pavilions defines a subtle set of inner relationships and reaches for the sea from the raised portions of the site. Other dualities of beach life—cool wind/hot sun, the quiet retreat/the pounding surf, the beach-bum lifestyle/the elitist location, privacy/sociability—are also addressed.

Marketplace Center, Boston, Ma. Architects: WZMH Group Inc., Boston. Situated between the commercially successful Faneuil Hall Marketplace and the upgraded waterfront, Marketplace Center occupies a key site in the redevelopment of Downtown Boston. The three-story complex, with a 17-story tower along State Street, will contain 350,000 sq ft of office space, 50,000 sq ft of commercial and retail space and a 5000-sq-ft Museum of the City of Boston. Facing the Marketplace is a shopping arcade with a semicircular plaza. Passing through the site under a glass-covered canopy, the Walk-to-the-Sea continues a pedestrian route from City Hall to the waterfront.

[News report continued on page 62]
Today, interesting and effective designs are being created with PC GlassBlock™ units from Pittsburgh Corning. PC GlassBlock™ units are used to combine high-tech functionalism and economy with the sensuous appeal of open space and natural illumination. Wide expanses of PC GlassBlock™ panels define space efficiently and attractively. They enclose areas without isolating them, yet maintain privacy.

PC GlassBlock™ units help to control natural light transmission and provide excellent insulating efficiency. By selecting the appropriate pattern or by specifying on-site sand-blasting of the interior surfaces of PC GlassBlock™ windows, an architect can maintain privacy, exploit natural light to the fullest and reduce reliance on artificial illumination. Employing PC GlassBlock™ panels or windows in a new or renovated building can also result in reduced heating and air conditioning requirements and substantial energy savings.

For more information, contact Pittsburgh Corning Corporation, Marketing Department AGB-3, 800 Presque Isle Drive, Pittsburgh, PA 15239, Tel: (412) 327-6100. In Canada: 5075 Yonge Street, Willowdale, Ontario M2N 6C6, Tel: (416) 222-8084.
In quality, variety and availability…

Ford Glass now offers the broadest monolithic line of solar control glass available with extensive heat reduction/light transmission options and coating colors to accent any architectural style.

Sunglas HP Reflective
Our newest high-performance reflective glass can block 80% of the sun’s heat and can also reduce conductive heat loss up to 20% compared to normal glazing. Sunglas HP Reflective is available in both high/low reflectance, with a choice of three coatings, four glass substrates and four light transmission options for a wide spectrum of color/performance choices. Sunglas HP Reflective is available in monolithic, insulating glass, spandrel, heat strengthened, tempered and annealed glass. Sunglas HP Reflective is destined to become the high-performance leader in solar control glass.

Sunglas Reflective
Our popular medium-performance solar control Sunglas Reflective, is available in either Green or Bronze substrate and can block 65% of the sun’s heat. Sunglas Reflective Green also lets in over 40% more natural daylight than its closest competitor. Sunglas Reflective Green with the coating glazed to the outside appears in silver. Sunglas Reflective Green and Bronze can be cut and fabricated. It’s the best choice in medium performance reflective glass.
Sunglas is America's first residential solar control glass that performs and works so well. It blocks up to 94% of the heat while having a high daylight transmission that reduces the need for artificial lighting. Sunglas also costs less than grey or bronze glasses and reduces harmful ultraviolet rays that can cause fading in carpets and drapes. Sunglas is the one solar control glass for looks, performance and price.

Nobody outglasses the Sunglas Line of Solar Control Glass

For quality, variety, selection, availability, price and the Ford Glass ten-year coating warranty, nobody outglasses Ford.

For more information or a detailed brochure of Ford Glass solar control products, call: 1-800-521-6346.
(In Michigan, call collect: 313-568-2300.)

Circle No. 540 on Reader Service Card
Plan Your Grand Opening
With a Whole New CECO Door

Ceco has the doors you need to make grand openings out of your light commercial entrances. Our new Versadoor™ light commercial steel doors come in attractive embossed, flush, and flush-with-raised-plant designs which can add the charm that's missing in so many multi-unit housing and business doorways.

But Versadoor offers more than good looks. It's constructed with 24 gauge galvanized steel face sheets for extra durability and security. A foamed-in-place polyurethane core helps provide an energy efficient R-12.86 insulation rating. And the energy-saving design is made complete by our thermal-barrier edge seams.

The Versadoor is also nonhanded and uses standard Ceco frames — so you have no handing mix-ups at the jobsite. And we can keep more types and sizes in stock. Whether you need left or right handed doors — swing in or out — you can get fast delivery from Ceco's 18 warehouses and over 300 distributors nationwide.

Introduce yourself to Versadoor. Contact: The Ceco Corporation, 1400 Kensington Road, Oak Brook, Illinois 60521.

Circle No. 327 on Reader Service Card
Pencil points continued from page 23

Arts Division with one of three 'Distinguished Designer' awards for 1982. Since 1970, he has lectured at more than 400 colleges, universities, and professional conferences and has taught at the New School for Social Research, Pratt Institute, University of Wisconsin, Cooper Union, Cornell, NYU, and Dartmouth.

New NEA head
New York architect Hugh Hardy has been appointed chairman of the National Endowment for the Arts' 16-member Design Arts Policy Panel.

Cover stories
An exhibit held at the AIA headquarters during the month of March featured the 14 architects who have appeared on the cover of Time between 1923 and 1978.

Any guesses as to who might be next?

Election results
Katherine McCoy has been elected to a two-year term as the national president of the Industrial Designers Society of America.

Currently cochairman of the Department of Design at the Cranbrook Academy of Art in Bloomfield Hills, Mich., McCoy is a partner of McCoy & McCoy Associates, consultants in industrial, exhibit, environmental, and graphic design.

McCoy is the youngest person and first woman elected to the IDSA presidency in its 44-year history.

IDEA award competition
The Industrial Designers Society of America is staging a competition for the design of an award symbolizing its annual Industrial Design Excellence Awards (IDEA) program.

Ideas are awarded to designs in ten categories on the basis of innovative form, use of materials and processes, and benefit to users or manufacturers.

Submissions are due Sept. 6, 1983. For a list of requirements, contact IDSA, 6802 Poplar Pl., Suite 307, McLean, Va. 22101.

Emerging architects
The Architectural League of New York has announced this year's roster of 'Emerging Voices.' The featured architects, selected as much for promise as for performance, will present their work on four successive Tuesday evenings starting April 5.

The series is sponsored again by Krueger and starts off with Thom Mayne and Michael Rotondi of Morphosis, L.A., sharing the podium with Peter Waldman, Houston. The stars of subsequent evenings include David Jones and Guyman Martin of.
The world puts stress on your buildings - heat, cold, up, down-stress that causes movement, and that made coating buildings a real problem because the coating didn't move but the building did. Now there's a coating that moves with structures, and the world. VIP Last-O-Coat® Elastomeric Coatings - #8000 series with 330% elongation - are formulated to meet the dynamic stresses of the real world head on and move with them. They are guaranteed for five full years when applied to manufacturer's specifications. VIP Last-O-Coat® is available in a full range of colors - or can be special mixed. So move with the building - and the world.

A 'National Week of Architecture' will be celebrated in Montreal at the end of May. Sponsored by the Province of Quebec and the Order of Architects of Quebec, Archifête, as it is called, will include exhibitions, seminars, tours, and open-to-the public architectural offices. A colloquium on 'Architecture and Cultural Identity' (a preoccupation in the province) hosted by architectural historian Kenneth Frampton; a discussion on architectural journalism; on energy; and on Art and Building. There will also be a session on architecture for the disabled and the elderly. A festival of architectural films will be held concurrently.

VIP ENTERPRISES, INC.
WATERPROOFING SYSTEMS
SINCE 1940

For more information see SPEC-DATA or SWEET'S Section 7.6.VI. Call Sweet's BUYLINE 800 toll free for our nearest representative.
© VIP 1983

Circle No. 411 on Reader Service Card

“Elevette®

your condos’ most practical status symbol

The “Elevette” home elevator is so distinctive, it puts your condo in a class by itself. But that's the least of its advantages. It's also: Convenient... Instead of trudging up and down stairs, you go from floor to floor with the push of a button (and save all that extra energy for tennis!). Handy... Have something bulky to take up-stairs? “Elevette” does the job quickly, quietly, effortlessly. And best of all... It has published a new issue of stamps depicting "Irish Architecture through the Ages."

For more information see SPEC-DATA or SWEET’S Section 7.6.VI. Call Sweet’s BUYLINE 800 toll free for our nearest representative.
© VIP 1983

Circle No. 355 on Reader Service Card
Free natural light brightens merchandise, cuts energy costs for Skydomed® supermarket

Architects and building owners are beginning to see the light — that FREE sunlight can replace or supplement expensive electric lighting, reducing overall operating costs dramatically. What could make more sense? The fastest way to cut energy costs is to reduce the monthly bill for electricity. And the easiest and most efficient way to do that is to light up the entire area with sunshine, using Wasco Solar Energy Skydomes.

Moreover, merchandise displayed in natural daylight sells better. Products bathed in sunshine simply have more sales appeal. The daylighting concept made sense to Safeway management when they built a 48,000 sq. ft. super store in Tempe, Arizona. Wasco Skydomes provide the primary lighting for this installation, allowing the sun itself to control auxiliary fluorescent lighting, as needed.

Wasco Solar Energy Skydomes offer lighting and thermal performance so significant that they can now be factored — with computer accuracy — into a total environmental control system for any commercial, industrial or institutional building. Wasco systems prove cost effective in any geographical area of the country both in new construction and in retrofit applications.

Write or call Wasco for a free computer analysis of the building you have in mind.

EXCELLENCE IN SKYLIGHTING

WASCO PRODUCTS, INC.
P.O. BOX 351 Sanford, Maine 04073
(207) 324-8060 or P.O. Box 734
Ennis, Texas 75119 (214) 875-2691

Circle No. 412 on Reader Service Card
Calendar

Exhibits

Through Apr. 30. Landmarks Reviewed. Pensacola Museum of Art, Pensacola, Fla.

Through May 22. Paul Gret at Texas: Architectural Drawing and the Image of the University in the 1930s. Archer Huntington Art Gallery, University of Texas at Austin.

April 21-July 30. Great Drawings from the Royal Institute of British Architects. The Drawing Center, 137 Greene St., New York.

May 15-18. London Furniture Show, Earls Court, London. Also, **May 15-19.** Interior Design International, Olympia, London.

Competitions

May 15. Entry deadline, Victerez/ASID design competition. Contact David H. Mann, Inc., 666 Third Ave., New York N.Y. 10017 (212) 867-2720.

May 15. Entry deadline, Olympic Gateway Competition. Contact LA/AIA 8687 Melrose Ave., Los Angeles, Calif 90069.

Sept. 1. Entry deadline, GE Precis Lighting Design Competition (for finished projects). Contact General Electric Co., Specialty Lamp Dept., 537 Park #3372, Cleveland, Ohio 44112.

Conferences, seminars, workshops

June 8-10. A/E Systems '83. Mark Hall, Dallas. Contact A/E Systems Report, P.O. Box 11316, Newington, Conn. 06111 (203) 666-9487.

June 14-17. NEOCON 15, Merchandise Mart, Chicago.

June 24-26. Construction Specification Institute Annual Convention, Kansas City, Mo. Contact CSL, 601 Madison S Alexandria, Va. 22314 (703) 684-030

News report continued from page 54
DELTA® FAUCET INTRODUCES

CERAMIC AND STAINLESS STEEL. THEY’RE THE FORCE BEHIND THE WORKFORCE.™

New Delta Workforce faucets are better equipped for rigorous, on-again, off-again, commercial use. Two-handle faucets have a new, long-lasting ceramic stem and seat. Single-handle models work with an exclusive, stainless steel ball. They’re not only built to last, they offer lower life-cycle costs, too. And to prove it, we’re backing them with a 5-year limited warranty.

The Workforce includes a wide selection of faucets, all with sturdy brass construction and a tough, triple-plated chrome finish. Many are vandal-resistant.

So when you need heavy-duty faucets built to withstand commercial and institutional use and abuse, specify the hard-working Delta Workforce.

To get all the facts and see the entire Workforce line, send us the enclosed coupon.

® WE’RE FIRST BECAUSE WE LAST.™
HANDBOOK OF ENERGY TECHNOLOGY AND ECONOMICS
Edited by Robert A. Meyers
More than 50 experts provide energy technology theory and engineering and economic data for scientists, engineers, economists, planners and managers for the evaluation and comparison of energy technologies, with the view of achieving energy solutions for today and the future.
approx. 1,083 pp. (1-08209-0) 1983 $62.95

ENERGY MANAGEMENT HANDBOOK
Edited by Wayne C. Turner
This practical guide to current techniques and ideas in energy management can help businesses, commercial buildings, and industrial plants to realize cost reductions of up to 60%. Technical material is included only when it is relevant to cost savings. 714 pp. (1-08252-X) 1982 $59.95

ARCHITECTURAL WORKING DRAWINGS, 2nd Ed.
Ralph W. Liebling & Mimi Ford Paul
This unique text offers instruction on the production of working drawings without insisting on any set system of production, allowing students to develop their own adaptations. New edition has 35% more illustrations, latest techniques, new material on the ties between building codes and working drawings.
approx. 416 pp. (1-86649-0) April 1983 $29.95

SIMPLIFIED ENGINEERING FOR ARCHITECTS AND BUILDERS, 5th Ed.
The late Harry Parker; prepared by Harold D. Hufnagel
Offering dozens of handy solutions for structural problems, this classic manual provides a working knowledge of design and procedures.
411 pp. (1-66201-1) 1975 $29.95

BUILDING RENOVATION AND RECYCLING
Edgar Lion
This concise, highly readable handbook describes the three vital phases of building renovation and recycling: analysis, design and construction. The book offers detailed guidelines that are applicable to all building renovations.
132 pp. (1-86644-7) 1982 $27.95

SYSTEMATIC CONSTRUCTION INSPECTION
Ralph W. Liebling
Here is the first book to put the entire inspection system into a coherent perspective. It describes the functions and responsibilities of each professional in the design and construction process, and covers contractual obligations, cost control, and much more.
119 pp. (1-08065-9) 1982 $27.50

BUILDING STRUCTURES PRIMER, 2nd Ed.
James Ambrose
This revision of the widely used guide to the principles of structural design is now written from an architectural rather than mathematical or engineering viewpoint. Includes new material on building foundations, plus expanded exercises.
136 pp. (1-08678-9) 1981 $27.50

HANDBOOK OF CONSTRUCTION RESOURCES AND SUPPORT SERVICES
Edited by Joseph A. MacDonald
A comprehensive directory to the information resources and support services available for solving most engineering and construction problems commonly encountered on a construction project—from preliminary design studies to completed facilities management.
595 pp. (1-09354-8) 1981 $55.95 (paper)

THE ART OF INTERIOR DESIGN, 2nd Ed.
Victoria Klaess Ball
 Totally revised and updated, this edition gives the latest information on materials, fabrics, equipment and techniques for the use of color. Lists of colorants in paints, and sections on the characteristics of textiles, woods, ceramics and glass are among the primary features of this revision.
273 pp. (1-09679-2) 1982 $24.95

HORIZONTAL-SPAN BUILDING STRUCTURES
Wolfgang Schueller
An in-depth treatment of the structural engineering, construction, and architectural design of horizontal-span building structures. The author develops simple analytical techniques for preliminary design of intermediate structures, using descriptive analyses, graphics, and building cases to illustrate the explanations.
594 pp. (1-86756-X) 1982 $39.95

SIMPLIFIED DESIGN OF BUILDING TRUSSES FOR ARCHITECTS AND BUILDERS, 3rd Ed.
The late Harry Parker; prepared by James Ambrose
A major revision and expansion of the classic text that systematically explains how to design trusses. The principal changes in this Third Edition are the addition of algebraic analysis and the expansion of the topic from roof trusses to the general use of trussed structures for buildings.
301 pp. (1-07224-7) 1982 $27.95

BUILDING CONFIGURATION AND SEISMIC DESIGN
Christopher Arnold & Robert Reitherman with Eric Eldesser & Dianne Whitaker
This unique text offers comprehensive coverage of the effects of building form on earthquake resistance. It presents mathematical concepts in graphic form so that they are more accessible to architectural designers and explains the measurement of earthquake forces and their effect on buildings.
296 pp. (1-86138-3) 1982 $39.95

DESIGN FOR SECURITY, 2nd Ed.
Richard J. Healy
A state of the art guide to planning and implementing physical security devices, such as alarms, electronic controls, barriers, vaults, locks and security lighting. This new edition reassesses security in view of new risk: including terrorism, white collar crime and computer crime.
approx. 320 pp. (1-06429-7) March 1983 $39.95

HOUSING, 2nd Ed.
John Macsai, Eugene P. Holland, Harry S. Nachman, James R. Anderson, Jared Shlais & Alfred J. Hidvegi
In a thoroughly revised Second Edition, this down-to-earth sourcebook confronts all the elements that go into successful housing projects and structures. Programming, zoning, building code and budget, energy conservation, fire safety and the elderly user are discussed.
590 pp. (1-08126-4) 1982 $59.95

Ramsey & Sleeper's ARCHITECTURAL GRAPHIC STANDARDS, 7th Ed.
Prepared by the American Institute of Architects
Robert T. Packard, AIA Editor
Universally accepted as the "architect's bible" (Architectural Record), this fully revised Seventh Edition contains approximately 70% new material, including a new chapter on SI metric dimensions and new material on modern energy sources, conservation, site planning, and landscaping.
785 pp. (1-04683-3) 1981 $99.95

Order through your bookstore, or write to Nat Bodian, Dept. 3-1065
FOR BOOK ORDERS ONLY: WILEY-INTERSCIENCE
CALL TOLL FREE
(800) 526-5368
In New Jersey call collect (201) 797-7809
In Canada: 22 Worcester Road
In Rexdale, Ontario M9W 1L1
Order Code #3-1065 Prices subject to change without notice. 092 3-1
Model 540 telephone kiosk, $1195 each in black or clear duranodic aluminum finishes f.o.b. Buffalo or Detroit

Phone Dave McDonough 416 625-1111
Structural Glazed Facing Tile offers permanence and performance only nature can match

While other man-made wall materials may bear a superficial resemblance to Stark SGFT, if you take a closer look, the differences become obvious. SGFT is the only faced masonry material manufactured as a single unit from clay. Because its ceramic glaze is fired in at over 2000° F, SGFT will not chip, peel or fade – even in direct sunlight. And it wipes clean with plain soap and water.

The differences between SGFT and such “copycat” materials as “glazed” concrete block become even more apparent as the years pass. Because of its far superior abrasion resistance (a wear factor of only 15), SGFT can be steam cleaned, subjected to harsh chemicals, even abused for years with no noticeable deterioration in its hard, permanent surface.

And SGFT is a superior structural unit. It has at least two and a half times the loadbearing ability of other hollow masonry units. Yet the installed cost of SGFT is lower in many cases than that of less durable products.

Stark stands alone in offering a unique combination of benefits and cost effectiveness, as the following chart reveals.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost Instr. (per sq. ft.)</th>
<th>Taber Wear Factor</th>
<th>Flame Spread</th>
<th>Smoke Density</th>
<th>Mfg. to ASTM C-126</th>
<th>Minimum Compressive Strength*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGFT</td>
<td>$6.90</td>
<td>less than 15 @ 1000 g 1000 cycles</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>1500 psi</td>
</tr>
<tr>
<td>“Glazed” Concrete Masonry Unit (CMU)</td>
<td>7.10</td>
<td>less than 130 @ 1000 g 500 cycles</td>
<td>under 25</td>
<td>under 50</td>
<td>No</td>
<td>600 psi</td>
</tr>
<tr>
<td>Ceramic Tile/CMU</td>
<td>6.90-8.12</td>
<td>varies</td>
<td>under 25</td>
<td>0</td>
<td>No</td>
<td>600 psi</td>
</tr>
<tr>
<td>Epoxy Painted CMU</td>
<td>up to 6.83</td>
<td>needs repainting</td>
<td>varies</td>
<td>varies</td>
<td>No</td>
<td>600 psi</td>
</tr>
<tr>
<td>Epoxy Painted Drywall/CMU</td>
<td>4.06-9.36</td>
<td>needs repainting</td>
<td>varies</td>
<td>varies</td>
<td>No</td>
<td>600 psi</td>
</tr>
</tbody>
</table>

Sources on request.

*Hollow loadbearing masonry units

Before you specify your next masonry job, see our complete catalog in SWEET’s 4.4/4St. For direct assistance, call our toll-free service hotline: 1-800-321-0662. In Ohio, call collect (216) 488-1211. Stark Ceramics, Inc., P.O. Box 8880, Canton, Ohio 44711.

Circle No. 397 on Reader Service Card
A brilliant career move for executives. The Moving Chair.
The rule is to use metal paneling vertically. But rules are meant to be broken.

For a bold, streamlined look, the arch called for metal paneling to be wrapped at Hertz's new airport facility in Los Angeles horizontally. Then he called on Steelite. But we did more than just supply the paneling. Our engineering staff came up with an innovative solution for curving it with warping the surface or cracking the coating...
Innovation is nothing new to Steelite. We were the first company to successfully roll-form galvanized steel for the building panel market. And that was over 20 years ago. Others followed. But today, nothing performs our Corrstar® protected metal. It’s industry standard for combating corrosion. That’s because our first rule is to set the highest standards in research and development. Quality control. Craftsmanship. Service. And that’s one rule we never bend.

For more about Steelite and our products, write Steelite, Inc., 1010 Ohio River Boulevard, Pittsburgh, PA 15202. Or call (412) 734-2600.
Bradley products deliver long-lasting, worry-free performance in high-usage washrooms.

When a washroom fixture works, you never hear about it. When it doesn't, you never hear the end of it. That's why Bradley products are designed to provide durable, long-lasting performance, year after year.

As a matter of fact, there are Bradley Washfountains that are still in active use after more than forty years. And kids defending school titles are soaping up in the same group showers their parents used.

Long-lasting, durable performance is the key to everything Bradley makes. Safety fixtures. Metering faucets. Modular wash centers and a full line of washroom accessories.

Up front planning with a Bradley rep will assure peak function and operating cost savings for any application. He will translate long-lasting product performance into peace of mind for you, once the job is done. To find out more about how Bradley can make your high-usage washrooms work better longer, contact: Bradley Corporation, 9101 Fountain Blvd., Menomonee Falls, WI 53051. 1 414 251-6000.

We get the job done better.
CPT word processors speak 15 human languages.

Arabic Spanish English German Portuguese
Dutch Modern Greek Danish Afrikaans Norwegian
French Finnish Italian Swedish Katakana
And 7 electronic ones.

Japanese

CPT word processors speak 15 human languages. of people whose jobs require them to speak the universal languages of the computer, CPT offers seven to choose from. So a CPT word processor can be used in place of a personal or micro-computer.

CPT word processors even speak the languages of other office machines.

With CPT's planned Office Dialog Link™ network, CPT word processors will talk to computers, electronic mail and data networks, typesetters, and more.

No wonder CPT Corporation is one of the fastest growing word processor manufacturers in the world.

Everywhere we go, we speak the language.

Get a free 28-page copy of Word Processing - A Step At A Time™ Packed with useful advice.

Mail to: CPT Information Service, P.O. Box 3900, Peoria, IL 61614.
Or call 800-447-4700 (In Alaska, 907-277-3527. In Hawaii, 808-448-7781.)

Name
Title
Company
Address
City State Zip
Phone
PA-35
The easy way to automate your office.
WE REROOF
WHAT OTHERS JUST
COVER UP

GAFTEMP® INSULATION
GAF offers one of the widest lines of roof insulation products in the industry. Under the GAFTEMP® name, you'll find six different insulations to choose from as the important first step of the Super System. Here, we're starting with GAFTEMP Isotherm insulation, a non-composite board made up of asphalt-coated facers bonded to a core of isocyanurate foam. No lower "U" value is available in any other FM Class I rated product of equivalent thickness. It's lightweight, easy to handle, and fast to install.

GAFGLAS® STRATAVENT® (Vent Ply)
The GAF® GAFGLAS® Vent Ply roofing system has been engineered to reduce the destructive effects of moisture vapor trapped beneath the surface of a built-up roof. Granules on the underside of the Stratavent Base Sheet provide venting against trapped moisture vapor. Moisture won't rot, shrink, or expand it. It's easy to apply and can be specified for any roof deck. Since it's rolled out dry, it yields significant savings in asphalt labor. Carries the U.L. Type G 2 BUR.

GAFTITE FASTENERS
An important part of the GAF® Super System roofing is the GAFTITE Roof Insulation Fastening System. It's the time-saving, and the money-saving, way to lock insulation down to stay. No more bitumen or other adhesives. No more hot mopping. No more nailing. 50% less labor. Quick and easy installation with half as many fasteners as most traditional nailing methods. Fewer problems during installation and after, with positive protection against wind uplift, vibration, and construction movement. Factory-Mutual Approved Systems.
FGLAS ® PLY 4
GLAS ® PLY 4 glass ply roofing is the superior membrane for all-up roofs in all climatic zones. I like the ease of application. It’s in weight and rolls out fast, so your cost will be lower. It has high tensile strength; great dimensional stability; resists blistering, fishmouthing. Interply adhesion is excellent. GLAS ® PLY 4 roofing sheet meets Spec, SS-R-620B Type III requires, and exceeds ASTM D2178 Type carries the U.L. Type G-1 BUR label.

GAFGLAS ® FLASHING & VENT STACKS
The best roofs deserve the best flashing —GAFGLAS ® Flashing. The specially formulated long fiber glass mat and heavy asphalt coating give maximum protection from the elements and insure long lasting strength and durability. It’s easy to install using GAF ® Jetblack® Flashite Cement, the asphalt plastic cement that’s unequalled for long lasting adhesion. And for maximum moisture protection, you’ll want to install GAF ® Vent Stacks that let warm air and vapor from the sun-heated roof out, and keep cool outside air from coming in.

A SUPER ROOF
The Super System provides many ways to finish off a roof—with GAFGLAS ® Mineral Surfaced Cap Sheet, GAF ® Mineral-Shield Granules and Mastic, GAF ® Fibered Aluminum coating, GAF ® Weather-Coat Emulsion, or GAF ® Special Roofing Bitumen or Roofing Asphalt and aggregate. Whichever way you choose, you’ll have a Super Roof that solves problems, and not just a cover-up.

Reroofing is more than just covering up an old roof with material. It requires a carefully executed plan of determining specific problems, selecting the correct products, and placing the system down with proper application procedures. At GAF, we pride ourselves in reroofing with a time-proven built-up roofing Super System. Shown here are only a few of GAF’s roofing products, which also include complete single-ply roofing systems and residential asphalt roofing shingles.

Write or call today for complete details: GAF CORPORATION, Building Materials Group, 140 West 51 Street, New York, NY 10020. Phone: (212) 621-5000.

© 1983 GAF CORPORATION
We believe in quality.

In 1969, when we introduced the concept of an exterior insulation and finish system to the United States, we set high standards for ourselves and our product, Dryvit® Outsulation®.

We had to prove our wall system could perform as well, or better, than traditional materials. And so our commitment to stringent testing and quality control was born.

We believe no one has invested more time and effort in wide-range R&D and testing than we have over the years. And these are some of the reasons why the Dryvit System has earned your trust.

We offer technical support in the field and at the planning stage.

Our national field service staff is on call to help you. And design assistance is available from our technical staff and R&D department. Our distributors are also nearby for fast local assistance.

Four plants with modern batching facilities and custom color service are strategically located for fast delivery.

You can trust the Dryvit Difference when you need it.

A proven formula goes into our Finish coat and cementitious adhesive.

We employ a 100% pure acrylic polymer formula when making the adhesives and coatings that form part of the Dryvit System. We know there is no substitute for the performance level of 100% pure acrylic co-polymer. We know that other formulas are less expensive, but we also know that valuable properties such as flexibility, color-retention, moisture-resistance, alkali-stability and wet adhesion are lost in an impure formula.

And you may have full confidence that we intend to maintain our high standards of product quality.

Demanding fire and structural testing go beyond code minimums.

The Dryvit System is recognized by all three model code agencies: ICBO, BOCA, SBCCI.

But we've put our System to even further testing by subjecting it to Full Scale Fire Tests with 1500 and 1250 pound fire sources, as well as the Factory Mutual Corner Test.

Positive and negative wind load testing has been conducted on full scale wall assemblies in accordance with ASTM E330 procedures.

You can have confidence in the performance of Dryvit even under demanding conditions.

Now, read about the Dryvit Difference on these recent projects.

Trust our proven performance. It's true.
RUST WAS EARNED.

GUDMUND BERGE, Partner-in-Charge (left)
SCOTT BAUMLER, Project Architect
Mandeville and Berge, Architects and Engineers

We capitalized on our working knowledge of Dryvit when designing Bay Vista."

"We used waste heat generated by office lights and computers to assist in heating the residential tower. The swimming pool stores captured heat so it can be used at night. The steel stud panelized system provided the insulated exterior cavity wall required for hydronic loop piping. And due to its substantial 3-dimensional flexibility, solved a variety of other architectural and passive solar requirements.

The results benefit both the residential and office users with lower operating costs."

For high-traffic areas, Dryvit has developed a special impact system — Panzer® Mesh.

For schools, shopping centers and public buildings — wherever substantial impact resistance is indicated — Panzer Mesh is an appropriate choice.

This heavy duty fiberglass mesh adds its strength to the standard reinforcing mesh normally incorporated within the Dryvit System.

Entranceways, balconies and most walkways benefit from the architect’s concern about providing this extra margin of rugged durability at people level.

Yamhill Marketplace: the newest "old" place in Portland, OR.

Architect Richard Ragland of Ragland Hagerman Partnership turned to the Dryvit System when he had to fit a new building into the 1890 surroundings of the Yamhill Historic District.

Working with pre-fabricated Dryvit panels, he designed a building totally at home with its neighbors. Authentic details were created with specially carved shapes made from Dryvit Insulation Board. Custom colors (rose and putty) complete the old warehouse effect.

Dryvit offers its Finish coat in 21 standard colors and 4 basic textures and will also formulate any special color you require. And with the design opportunities afforded by dimensional shapes, Dryvit’s flexibility knows no bounds.

Over 40,000 Buildings stand as testament to Dryvit’s performance.

Over 30 years of Dryvit experience in this country and Europe offer peace of mind to the developer and architect specifying Dryvit. When this experience is added to the wealth of testing and technical support that comes with the System, you can understand — yes, there is indeed a Dryvit Difference!

Call or write for detailed information.

DRYVIT SYSTEM, INC.
One Energy Way, P.O. Box 1014
West Warwick, RI 02893 (401) 822-4100
Plant Locations: West Warwick, RI; Tulsa, OK; Columbus, GA; Woodlake, CA

Look for Dryvit in the General Building File of Sweets Catalog under Section 7.13/DR

Circle No. 335 on Reader Service Card
CALL FOR ENTRIES

Once again Owens-Corning Fiberglas® is offering architects and engineers the opportunity to demonstrate their brilliance in energy-conscious design.

A NEW EMPHASIS. This year we are encouraging the submission of entries in our new single-family residential and commercial retrofit categories in addition to prior design classifications.

A WHO'S WHO OF JUDGES. The judges are widely recognized leaders in the fields of architecture and engineering.

12th ANNUAL OWENS-CORNING FIBERGLAS ENERGY CONSERVATION AWARDS

TO ENTER. We welcome entries from individuals or teams of registered architects and professional engineers practicing in the United States.
Your entry must be a commissioned project in the design stage, under construction or completed.
For your entry kit or more information, write E.M.E. Meeks, Owens-Corning Fiberglas Corp., Fiberglas Tower, Toledo, Ohio 43659. Or call (419) 248-7357.
Entries must be received no later than August 26, 1983.

©O.C.F. Corp 1983
Ful-O-Mite IDF

the exterior insulation system from H.B. Fuller
that sets new performance standards.

Ful-O-Mite IDF is the most beautiful way we know to beat the heat of summer and the chill of winter.

Ful-O-Mite IDF has the strength to withstand impact, while having the flexibility to accommodate building movement without cracking. Ful-O-Mite IDF meets fire code requirements. The system stands up to airborne pollutants and salt spray. Tested by independent laboratories, under the most rigorous conditions, Ful-O-Mite IDF surpassed the leading competitive exterior insulation decorative finishes for strength and durability.

Ful-O-Mite IDF gives a building a beautiful appearance while providing long-lasting durability. This exterior insulation system forms a solid barrier against weather’s worst: keeping winter’s freezing temperatures and summer’s scorching heat outside, where they belong. A difference made obvious in occupant comfort and reduced utility bills.

How does H.B. Fuller do it?

We are the only company to develop a latex polymer raw material specifically designed for our own product. In our finish coat, this latex promotes a tougher, harder cure, increasing its resistance to weather.

At H.B. Fuller, developing our own resins is just part of our commitment to providing our customers quality, consistency and compatibility within the bonding system.

The primer coat of Ful-O-Mite IDF by H.B. Fuller has extremely fast grab power. You can eliminate the need for a baseboard when installing the foam. Embedding the reinforcing fiberglass mesh is a lot easier too! The finish coat has a longer open time, and offers freeze/thaw stability in the pail and in its cured state. You’re assured a quality product at the job site.

If you’d like to get the facts on Ful-O-Mite IDF, write to: H.B. Fuller, Attn: Ful-O-Mite IDF, Department M, 315 South Hicks Road, Palatine, IL 60067 or call (800) 323-7407 or if in Illinois, call (312) 358-9500 and request a free copy of the test results.

*insulation decorative finish

H.B. Fuller Company

Circle No. 345 on Reader Service Card
Haworth provides lighting equal to the task.

Office tasks and the lighting to support them should not restrict interior design. TriAmbient™ Lighting by Haworth expands design options. Easily. Economically. Efficiently. Attractively. Fluorescent task and ambient fixtures; and High Intensity Discharge (H.I.D.) freestanding and panel-supported ambient lights allow tasteful, tailored solutions. For accent, vertical display, task or ambient illumination, all fully integrated with Haworth’s TriCircuit ERA-1™ pre-wired panels. For design options that are equal to any task, consider TriAmbient Lighting by Haworth.

Send for the "TriAmbient Lighting Package". Write: Haworth, Inc., One Haworth Center, Holland, MI 49423

Circle No. 352
Despite, and in some cases because of, Federal utbacks, energy-conscious design has broadened its conservation perspective, expanded its quantitative grasp, and improved its architectural aesthetics. It’s an accomplishment worthy of attention.

Conservation is inherent in the design process. If we define conservation not simply as the protection of resources, but as the search for the best and most efficient use of resources, materials, and products, then almost every decision made in the course of designing and detailing a building employs its principle. That may help to explain why conservation pervades current architectural practice, ranging from the obvious conservation of energy and of buildings to the less apparent conservation motive that underlies Post-Modernism—the conservation of historic form.

Thinking of conservation in this way—as a basis for making architectural decisions rather than as just a personal value or a social goal—raises the possibility of unifying what have been isolated aspects of the conservation movement. The conservation of energy and of historic structures, efforts which once seemed incompatible, now seem anything but that in light of research showing how demolition wastes energy and how historic buildings can do a creditable job of saving it. And the conservation of energy, one of the prime generators of architectural form prior to the Modern movement, offers Post-Modernism an economic argument for its aesthetics, if that aesthetic would only better utilize its energy-saving potential.

Those sentiments prompted our expansion of the April “energy” issue to encompass the idea of conservation. The intent is not to diminish the importance of energy conservation, but to explore its broader architectural implications as well as its connection with other conservation efforts. The articles, for example, on the conservation of water, power, and indoor air quality (p. 98) show how energy both affects and is affected by topics as varied as waste disposal, utility rates, and human health.

Energy-conscious design, itself, has begun to take a broader conservation stance. For instance, the California Department of Justice Building (p. 116) addresses the conservation of water; the Trust Pharmacy and Mt. Airy Library (p. 109), the conservation of power; and the Society for the Protection of New Hampshire Forests building (p. 86), the conservation of transportation energy. Energy-conscious design has also broadened its architectural ambitions, tackling unusual programs, as in the Norwegian Dairy (p. 90); large-scale commissions, as in the Hooker Chemical Company’s headquarters (p. 82); low budgets, as in the Princeton Professional Park (p. 94); and constricted sites, as in the Pajaro Housing (p. 114).

A broader vision, however, always raises new questions. How will advances in technology—in lighting (p. 127), say, or in a host of other products (p. 167)—affect energy-conscious design? Will they mesh with other passive design strategies, or will they encourage a dependence upon technology to the neglect of architectural solutions to our energy problems? How will the nationwide concern for declining worker productivity affect energy-conscious design? Will energy costs, relatively low when compared with the high square-foot costs of salaries, remain an issue for corporate clients who fear inconveniencing their employees (p. 25)? How will the government’s energy policies (p. 24) affect not just short-term funding but long-term training and research? Will programs such as the DOE-funded energy-conscious design series (p. 134) continue under private sponsorship, or will they flounder in an already fragmented building industry? What are the larger political implications of energy-conscious design? Will the conservation of resources on a global scale, discussed in Martin Pawley’s Building For Tomorrow (reviewed on p. 159), overcome political obstacles that far exceed those architectural in nature?

Whatever its economic or political future, energy-conscious design still faces an aesthetic stigma within the architectural profession. At one time, that prejudice might have been justified, for the development of conservation strategies in the past decade did pre-empt other architectural concerns. Their integration, though, has proceeded rapidly as the energy-conscious community has broadened its aesthetic aspirations and as the larger architectural community has acknowledged energy issues. The projects in this issue reflect that change. They show what conservation, as a basis for architectural decision-making, can accomplish. [Thomas Fisher]
In a building of Miesian inspiration, the notorious all-glass curtain wall is transformed into an energy-saving double envelope.

Prominently sited in the urban renewal landscape of Downtown Niagara Falls, the Hooker building has the freestanding Euclidean form and the sleek, ordered surfaces associated with the heyday of Modernism—and with the flood tide of energy consumption. In fact, Hooker is a remarkable adaptation of the Miesian curtain-walled form as a model of energy conservation.

When Cannon Design got this commission, back in 1978, it was clear that Hooker wanted a symbol of its commitment to reviving the core of Niagara Falls. The site was not only highly visible, but offered views of the Niagara River in three directions, so the architects sought an alternative to the constricted window areas then prescribed as a reaction to energy shortages. Assured of unobstructed solar access, they recognized that daylighted interiors offered opportunities for major energy savings, if only heat loss through the glass could be kept low. Pooling their own architecture and engineering skills with the talents of consulting firms (see Data), Cannon came up with a double-envelope scheme.

The key to the design is the 4-foot-wide void between an outer wall of green-tinted insulating glass and an inner wall of clear single glazing. Heat that builds up in this gap under sunny conditions can be vented at the roof. Louvers within the void are adjustable to keep out direct rays; they can be closed entirely at night to keep heat in. Daylight, dispersed by the louvers, provides ample illumination of the outer 15 feet of the office floors—44 percent of their usable area.

P/A's Energy Analysis of the building as designed (April 1980, p. 105) showed Hooker's heating load to be only about 2 percent of that for a "conventional" building of the same volume, and its cooling loads only about 19 percent. These remarkable savings were attributed in part to the virtual elimination of infiltration—a great advantage in this exposed location.

Although calculations were confirmed in full-scale mock-ups, Cannon principal-in-charge Mark Mendell recalls that the double-envelope design demanded courage on the clients' part: "It worked on paper, but there was no real model to show them—and these were people who would not have bought a car in its first model year."

One of the operating advantages that could not be adequately predicted was the movement of air around the building between the envelope layers. The designers got what they hoped for: Under the most extreme conditions (sunny, very cold, windy), temperature in the buffer space varies 10°F from bottom to top; convection currents reach around the corners, holding the temperature difference between north and south sides to 15°F, almost (i.e., the average temperature between envelopes might be 68°F on the south, 53°F on the north).

Energy performance of the building has been affected significantly by changes in use since the building was programmed (changes that also underscored the adaptability of the square, column-free floor layouts). The location here of a major computer installation working around the clock, has doubled the building's demand for power (which is plentiful in Niagara Falls). The spread of the office day beyond the anticipated eight hours has increased the use of artificial lighting. The additional heat generated has eliminated the heating demand altogether; the gas-fire boiler has literally never been used for heat. And the louvers are never closed except during rare weekends when the computers are shut down and the weather is very cold.

Clean machine

In detailing this energy tour de force, Cannon Design chose a vocabulary of simple cross sections and hidden connections. Even give its minimal form and regular structure, this building could have had more Constructivistic detailing, emphasizing structural sections and connections, perhaps with colors—an approach illustrated in the nearby Winter
ted on axis of the Rainbow
ridge from Canada, the build-
g stands amidst tourist parking
(aerial photo, opposite) with
views of Niagara River and
orge to south, west, and north.
enclosed footbridge leads to a
king garage with indoor links
shops, Wintergarden, and
tel. Entrance front (this page)
ces east, toward other build-
gs. Night view reveals louvers
d inner glazed wall, only
rly visible by day through
er layer of green glass.
Hooker Office Building

Inside double envelope, louvers eight inches apart control sun; airfoil shapes temper light-dark contrast and diffuse light into offices. Corner office (below) may have louvers at different angles—from horizontal to 45 degrees down, on different exposures. In lobby (bottom), louvers and outer glazing are cut away to leave clear glass around entrance.

garden by Cesar Pelli (P/A, Aug. 1978, pp. 72-79). This would have underscored, rather than understated, the building's unconventional concept.

As it is, only the louvers introduce some unaccustomed hardware. These off-the-shelf components, intended to control air in large ducts, span the 15 feet between columns and provide full shade at a vertical spacing of 8 inches, enough of a gap to afford an unobstructed view from close up; their airfoil sections have no aerodynamic use here, but turn out to be excellent for dispersing light. The louver system seems to present little distraction to workers inside, after the first couple of weeks.

The green glass, which transmits 80 percent of visible light, has no noticeable effect on views or indoor colors. From outside, the greenish glass and the white grids on and behind it emphasize the transparency of the envelope; gray or bronze tones would have contrasted with the sky and looked more opaque.

Every aspect of the exterior underlines its regularity and unity. The glazed bridge that connects it to a parking garage is clear and tubular and held away from the main cube to preserve its integrity. The main ground-floor entry (which gets less traffic) has been subtly but effectively marked by carving away the tinted and louvered layers to expose a rectangle of clear glazing.

Cannon has put its energy experience to work on other buildings: their Norstar Building in Downtown Buffalo, with a less adventurous daylighting concept, has won an OCI Award (P/A, Jan. 1985, p. 21). Asked whether Cannon has considered the double envelope for subsequent projects, Cannon engineer Alan Sloan answers that it is "always under consideration, but it's not a panacea." For a double-envelope to work, he explains, you need special circumstances—all present here: an open site, a commercial function, and infiltration as a major factor. Asked about the "payback" period for the double envelope, Sloan objects that the concept of payback fails to recognize offsetting savings such as, in this case, cutting the mechanical systems contract about in half. The building came in for less than the client's original budget, he says. "We paid no premium for the double envelope, so no payback is due."

For now, Hooker remains the landmark application of the double-envelope concept—and serene proof that high energy performance need not call for unconventional forms. [John Morris Dixon]
Detailing of double envelope involved many subtleties: white aircraft paint on louvers yields best light diffusion and least heat gain; beige carpet in “raceways” (center photo) looks clean and reassuring from inside; light sensors to control tilt of louvers are carefully placed in pairs to discount mullion shadows; delayed response cancels effect of passing clouds.

Data
Project: Hooker Chemical Corporate Office Building, Niagara Falls, N.Y.
Site: 2.3 acres of open urban renewal land, on axis of bridge linking U.S. and Canada, overlooking Niagara River gorge.
Program: corporate offices of 161,150 sq ft plus 41,300 sq ft of commercial and office rental.
Structural system: steel frame, metal deck.
Mechanical system: electrically driven centrifugal chillers, from which heat is recovered all year; gas-fired boiler; low-pressure variable air volume distribution; all systems (solar shielding, HVAC, fire alarm, security, etc.) integrated through computerized automation system.
Major materials: double-envelope tinted and clear glass curtain walls; aluminum louvers; coffered ceiling-lighting systems (see Building materials, p. 176).
Consulting architects: Hellmuth, Obata & Kassabaum.
General contractor: Siegfried-Scrufari Joint Venture.
Costs: $12,500,000 (bid, Jan. 1980), about $62 per sq ft.
Photos: Barbara Elliott Martin, except as noted.
A demonstration project on several levels, a new office teaches as well as conserves.

Yankee independence

It is almost axiomatic that a building for an organization called the Society for the Protection of New Hampshire Forests would have to be designed as a showcase for some ideals, or products, or both. Their new home, designed by Banwell White & Arnold, displays both, with quiet vigor. As C. Stuart White, Jr., said in a talk to the International Solar Architecture Conference in Cannes in December, "You can't get much more elemental than sun and water and earth. . . . We have been removed from elementary considerations in architecture for the last 30 years or so, particularly in the U.S., and it seems time to get back to them."

In this Conservation Center for the Society, White has used wood products from only New England forests, and set out to demonstrate energy-conserving solar design in a convincing way. It was the Society's wish to demonstrate New England capability to provide forest products for the Center, thus saving transportation energy. The glue-laminated beams and columns mark the first commercial use of New England spruce, and diagonal sheathing boards were substituted for the usual plywood—a western product. Further use of wood is in the auxiliary wood-burning boiler, designed to burn wood pellets; it is made in Denmark, as are the aluminum baseboard radiation units.

However well it serves to demonstrate the usefulness of New England-grown forest products, the Center excels in the other goal set for it: energy management and conservation. Long and relatively narrow, the building's plan axis is in the east-west direction, sited on a high bluff overlooking Concord and the Merrimack River. The program called for the facility to be about 7000 square feet, with work space for 20, a lecture space, reception and book sale area, and lavatories.

It was to be 40-60 percent solar heated, using wood auxiliary heat, and demonstrate energy conservation in design.

Three distinct strategies have been used in the building, manifesting themselves in different plan areas. These are a double-wall convective-loop conference/lecture area, direct-gain reception area, and daylighted office space. In the conference space, a south-facing sunspace heats the air, and according to monitoring by the Brookhaven labs, produces a definite flow of warm air around the inner envelope. The monitoring also notes discernable backflow at night, about 22 ft³ at most. An additional wood stove provides any needed auxiliary heat, using about a record of wood per year. A double envelop was decided upon here because any direct gain would make the room difficult to use for showing slides.

In the adjoining reception area, however 489 square feet of south-facing, vertical double glazing allows insolation to be stored in the dark slate and concrete floor and in phase-change materials in the ceiling. These phase-change materials, or eutectic salts, in bags laid into metal deck panels to bette transmit heat stored from direct gain through high windows. With a low melting point (73°F in this case), these materials absorb and store heat as they liquify; when the temperature around them drops and they begin to solidify again, they give off the stored heat.

Most active of the areas of the building are the work room, secretarial areas, and office. Here a whole array of solar and other tactics come into play. The two most prominent, visually, are actually one form combining two functions—the roof ridge, with its summer venting louver, and its large aperture vertical clerestory. The vent is obviously for passive off unwanted heat in summer, and the reason for the large aperture is to get maximum winter sun penetration deep into the building. The light also gives daylighting to more of the building, cutting down on the need for electric light.

Water-filled translucent fiberglass tub and the back (north) wall receive the most direct sunshine, through clerestories, with tubes diffusing the light to the spaces beyond. As with the salts, both the water and the walls surfaces store the heat until called on to r
Sloped glazing is used only in the greenhouse attached to an existing, retrofitted farmhouse (above). Large clerestory aperture (facing page, top) is to bring sunlight deeper into the building than would otherwise be the case. Part of the energy is stored in water-filled tubes (top left) or in dark slate and concrete floors (facing page, bottom). The bermed north wall (below left) is topped by a continuous vent for summer circulation.
Diather into the space as it cools. Phase-change material is used in the workroom ceiling, with some located in sills for direct gain, and again above a dark green metal deck; by means of reflecting adjustable window louvres between double glazing, incoming sunlight is directed up to the deck for later redistribution.

Heated air is drawn from the clerestory through an intake, and passed through a continuous ceiling plenum down to and rough insulated stack bond block walls on the bermed north side. The mortar inside of these block walls has been removed to provide air passage to an 8-inch air space under the floor. Fan units under the corridor draw air out and exhaust it, with its heat removed, toward the clerestory again. In summer, of course, the warm air is vented, and an awning shades the clerestory.

As has been discovered by a number of designers now working with capturing the right amount—and not too much—of the heat from sunlight, one key is to use vertical glass and the sun's natural seasonal angles as a control. Angled glazing only collects its maximum amount in seasons when it is not wanted, with reduced efficiency in cold winter months when the sun is low. White notes that on a clear day in Concord vertical glazing will transmit more than twice as many Btu's in January as in June. Because of its relatively low pitch, the workroom roof has been aluminum coated to reflect light onto clerestory interiors for increased diffused light in work areas and offices.

Night insulating shutters, originally to have been installed at the Center, were not included because of budget considerations. Despite that fact, the building's 48 monitoring sensors report that the facility is exceeding expectations. Even with none of the planned shades, and given the nonautomated data logging procedures, performance is good. It appears to those monitoring the results that the Center is exceeding a 60 percent solar contribution, while using only 23,500 Btu/sq ft/year in auxiliary energy for lighting, heating, and office machines.

Since the original goal for office spaces by BEPS standards was 55,000, the Center has set an impressive track record. And it has done it in a non-muscle-flexing way, creating what appears to be a nice place to inhabit for a workday. [Jim Murphy]

Data
Project: Conservation Center, Society for the Protection of New Hampshire Forests, Concord, N.H.
Architect: Banwell White & Arnold, Hanover, N.H.
C. Stuart White, architect in charge, with Peter Lovell.
Site: heavily wooded, about 80 acres, on a high, south-facing bluff overlooking Concord and the Merrimack River.
Program: offices, reception, and lecture facilities; 7050 sq ft excluding retrofitted farmhouse.
Structural system: laminated spruce columns and beams.
Mechanical system: passive solar with auxiliary wood-pellet-fired boiler, radiant baseboard distribution, and wood stove.
Major materials: wood frame, clapboards, shingles, and floor; slate floor at reception area (see Building materials, p. 176).
Consultants: Robert O. Smith, consulting engineer; Paul Goldberg, structural engineer; Richard Heldt, computer analysis.
General contractor: Trumbull-Nelson Construction Co.
Cost: $540,000 ($76.60 per sq ft).
Photography: Robert Perron, except as noted.
In Norway, standard building components have been used for a solar heating system in a facility for milk processing and dairy offices, and the system has proven competitive with the region’s low hydroelectric power costs.

The south side of the dairy (above) faces a public area. Immediately behind the low-emissivity glass walls is the main circulation spine, which is equipped with absorbing/reflecting Venetian blinds, and doubles as the solar system zone. The main entrance is at the west side (facing page) next to the mechanical room.

In a region where the climate is similar to that of Juneau, Alaska, architect Dag Borgen of Meierienes Bygnings Kontor has used standard building systems for a cost-effective solar system. In the 14,000-square-foot milk processing plant and offices for Indre Østfold Meieri, the client wanted the building’s functions exposed to a public area to its south. For the architect, the major problem was how to combine an entirely open south elevation with low energy consumption, and how to make the result competitive with low-cost hydroelectric power of the area.

By integrating the solar heating system components into the building’s volume and normal functions, Borgen reports, the building itself could carry most of the solar investment costs. And by designing the collector as a “climate-responsive and transparent-variable” south wall, its thermal performance would respond according to changes in the heat demand within the facility.

The building is constructed of reinforced concrete frame with precast perforated (for air distribution) floor slabs. It is enclosed with panels of low-emissivity glass, and mineral wool-insulated stainless steel. The major elements of the solar system zone, which runs across the two-story south façade of the building, are a series of absorbing/reflecting Venetian blinds at each level of the building between two double-glazed curtain walls. The air ducts within the zone are linked to a standard HVAC system at one end, and to an isolated ground-level salt hydrate heat storage unit at the other. The blinds are of the standard external type that are reflective on one side and absorptive on the other, thus making it possible to vary the amount of...
transmitted, absorbed, and reflected light at the south side. As a consequence, the collector can be operated at optimum adjustments to variations in radiation intensity, inside heat, and light and heat-storage demand. This translates into a system for isolated/direct gain, for preheating of ventilation air, for night insulation and summer shading.

Thanks to the salt hydrate crystals' melting point of 80 F, the operational temperature of the system remains low, with temperatures within the solar collector zone rising to a maximum of only 88 F for efficient use. This means that the solar zone can also be used for purposes other than its primary function, and particularly that it could be used for pedestrian circulation. It is not being used in that manner yet, but it is designed for it and will be so used depending upon climate measurements of the building. At present, the solar zone is used as a "technical vertical ceiling" for the HVAC system, in which the main ducts are connected to secondary ducts within the perforated concrete floor slabs, for air distribution throughout the building.

Although about 60 percent of the heat demand is currently met by hydroelectric power, computer simulations indicate that the building will consume 25 percent less auxiliary energy than a similar building with a 10 percent window-area-to-floor-area ratio, with three layers of glazing, and 8-inch-thick mineral wool walls and roof. Time will tell. If all works out as planned, the building will not only be highly energy efficient, but also an all-too-rare proof that energy efficiency can, in fact, be combined with high formal design. [David Morton]
SUMMER SHADING
NIGHT INSULATION
Almost every surface of this professional office complex works to conserve and adapt natural energy, producing a quick payback on the investment for energy features as well as a very pleasant environment.

"The most important influence on energy design decisions for Princeton Professional Park," say architect Harrison Fraker and the Princeton Energy Group, "was the principle of using the building form and envelope as a dynamic filter between climate and the natural provision of comfort." The recently completed project, honored in the Fifth National Passive Conference in 1980, employs atriums for passive solar gain, ventilation, and daylight; it uses an evaporative roof-spraying system not only for daytime heat rejection, but also for nighttime production of storable cool air; and it has an underslab rockbed, which the architects claim to be the largest of its sort in the world. To optimize the efficient interaction of the hybrid passive cooling and solar heating systems and the backup electric heat pumps, a microcomputer controller is used.

The architects were not given a lavish budget to construct this 64,000-square-foot office complex; quite the contrary. The client was willing to spend only $37 per square foot—the low end of commercial building quality—and would accept an add-on cost for solar design if it would show a full return in energy saving within five years. For financial and energy economy, the architects developed a profile with two single-story 45-foot-wide sheds sloping upwards to a central double-acrylic-covered atrium. Each shed is made up of 8-foot-wide, plywood-faced, prefabricated structural wood panels spanned by 36-inch-deep wood trusses—an extremely simple structural system to assemble. The basic rental module is 24 feet wide, or 1100 square feet.

Rather than scattering several double shed-cum-atrium buildings over the entire site, as originally intended, Fraker decided to emphasize the act of entering. He established one long and striking entrance façade, stuccoed and trellised, behind which three parallel double-shed buildings extend about 22 feet. The parking, then, is grouped at the western front of the site, and each building is entered through a pedimented portico echoing the atrium behind. The atriums are enclosed spaces with a semi-outdoor feeling; they are paved and planted, and their air is unconditioned. Offices are entered from the atriums, and secondary office exits lead to garden zones between the buildings. A cross-axis to the buildings, a central path leads across the site, meandering through the gardens and the building. This path cuts each atrium at its midpoint, where practical elements—ventilating cupola, fire walls—serve the dramatic function of punctuating the spaces. Unfortunately, because of budget limitations, the interior "paths" have become dull gypboard corridors rather than the sophisticated, curved, glass-blocked environments originally intended (see axonometric). Other eliminated features—the architectural details elaborating the plywood sides along the garden and the atrium—have left the buildings an honest expression of what they are: a natural, somewhat rustic enclosure with a sophisticated face.

The energy moves

Fraker and PEG, armed with the recent experience of developing passive and hybrid heating, cooling, and daylighting components for Butler preengineered metal building, teamed up with Princeton architects Short and Ford to design similar features into the Princeton Professional Park. They won a grant for solar design and analysis computer analysis, test models, and where possible double-shed buildings extend about 22 feet. The parking, then, is grouped at the western front of the site, and each building is entered through a pedimented portico echoing the atrium behind. The atriums are enclosed spaces with a semi-outdoor feeling; they are paved and planted, and their air is unconditioned. Offices are entered from the atriums, and secondary office exits lead to garden zones between the buildings. A cross-axis to the buildings, a central path leads across the site, meandering through the gardens and the building. This path cuts each atrium at its midpoint, where practical elements—ventilating cupola, fire walls—serve the dramatic function of punctuating the spaces. Unfortunately, because of budget limitations, the interior "paths" have become dull gypboard corridors rather than the sophisticated, curved, glass-blocked environments originally intended (see axonometric). Other eliminated features—the architectural details elaborating the plywood sides along the garden and the atrium—have left the buildings an honest expression of what they are: a natural, somewhat rustic enclosure with a sophisticated face.

The energy moves

Fraker and PEG, armed with the recent experience of developing passive and hybrid heating, cooling, and daylighting components for Butler preengineered metal building, teamed up with Princeton architects Short and Ford to design similar features into the Princeton Professional Park. They won a grant for solar design and analysis computer analysis, test models, and where possible...
The front of the building—actually, three parallel buildings—is a key to its architectural intentions and major energy-conserving features. It employs urban elements and materials, greeting visitors with a firm stuccoed front and pedimented porticos, as well as garden references—trellises, and gates (not yet complete)—extending across the gardens between each building section. The pedimented porticoes echo the atriums behind them, the major climate-buffering elements of the project, and are themselves repeated in the form of the centrally located ventilating cupolas.
was insufficient, intuition to develop the design and predict its performance. Predictions were compared with documented costs in a traditional “base case” building to prove the point with the client.

Daylight is admitted to the offices through exterior and atrium walls, the larger window surfaces occurring at the atrium side to minimize heat loss. Tenants have a choice for their ceiling configuration. They can use the full slope of the truss, thereby receiving light directly from the clerestory atrium windows (single thickness Kalwall panels). Or they can suspend translucent panels horizontally at the eight-foot height, filtering the clerestory light. Of course, they may also install an opaque suspended ceiling and forgo the clerestory lighting, but any additional energy costs above an allowance provided by the owner—and each space is metered indi-
The atrium (right). A medical office (above) that uses the full height of the sloped truss.

Data
Project: Princeton Professional Park, Princeton, N.J.
Architects: Joint venture: Harrison Fraker, Architects, Princeton (H. Fraker, partner in charge; S.J. Aronson, office interiors)—schematic design and design development; Short & Short, Architects, Princeton (J. Short, managing partner; S. Jomeschuk, job captain)—construction documents through administration.
Site: 10.7 acres.
Program: 64,000 sq ft net office space; surface parking.
Structural system: poured concrete slab on grade; 8-ft modular panelized wood stud bearing walls; wood trusses. Steel columns in atriums for wind load.
Mechanical system: hybrid active cooling and solar heating systems including evaporative roof spraying, passive solar atrium, underslab rockbed, ½-ton back-up heat pumps.
General contractor: The Karlil Group.
Costs: $3,550,000, including labor costs and site work.
Photography: Robert Perron.

Dually—comes directly from the tenant’s pocket. Tenants can opt for automatic lighting control, either continuous dimming or on-off switching activated by photocell. Under the atrium skylights, white insulating curtains automatically cover the south sides during clear summer days and both sides during winter nights.

Heat collected in the atrium by day is stored in a rockbed underlying the entire 64,000-square-foot office slab, and is distributed by radiation and by a forced air system. Individual fans couple the rockbed/solar loop with backup heat pumps, two ½-ton units (for compactness and flexibility) per rental module.

Cooling is achieved through ventilation and evaporative roof spraying. Air is exhausted from the offices into the atrium and from there mechanically via the cupola fan. The roof spraying functions in two ways: conventionally, by rejecting heat by day; and innovatively, by cooling the air that circulates under the metal roof during the night and storing it in the rockbed to precool return air during the day. The underroof air loop, however, is tricky. It depends on a perfect vapor barrier to prevent the build-up of humidity, which is a lot to ask in this type of ordinary construction. The architects are waiting to see whether the system will hold up.

The individual mechanical system in each 1100-square-foot rental space is run by a microprocessor-controlled relay panel to produce heating or cooling from the least energy intensive source (cooling first from outside air, heating first from the atrium; then from the rockbed, and last, the heat pump).

The passive cooling and solar heating features added $8 per square foot to the stipulated $37 of the “base building.” But energy costs are predicted to be 54¢/sq ft/year, compared to $2.14 for the base building. This represents a five-year payback on the $8 investment, just what the client was willing to accept. Potential tenants seem to be attracted by the energy features. Moreover, Princeton Professional Park is a very pleasant place to be. [Susan Doublet]
Let them drink wine

Thomas Vonier

What energy was for the 1970s and is still today, water may be for the 1980s and beyond, only more so.

Energy resources and water resources are not unrelated, but there are some significant differences between them, and in the reasons we have to be concerned about them. To begin with, "shortages" of water cannot be dismissed as the nefarious handiwork of government bureaucrats, international cartels, or political adversaries in far-off lands. The difficulties we experience with water stem from sources much closer to home, both literally and figuratively.

Casting a major share of the blame on profligate living styles works much more convincingly for water than it does for energy. Few alternatives to the family automobile may be within the grasp of most Americans, but the same case cannot be made when it comes to the wasteful use of water. Many water-conserving alternatives exist—at low cost and with little loss of convenience.

There's another difference. Water has a much closer relationship to human survival than energy. Speaking perhaps more graphically than many would who share her concerns, Texas architect D. Susan O'Brien nonetheless sums up the basis of concerns about water: "A man can go 30 days without food, 3 days without water and 3 minutes without air. You don't mess around about water...this is a subject that gets people riled."

She ought to know. Like many places, Texas has been hit by the combined forces of growth in population and industry, and scarcer water supplies. She and many others see water as the major issue of the decade (it may already be too late, some have concluded), demanding attention and even crusading at all levels of personal and professional activity.

Of course concerns about water resources are not new. Many severe droughts have been experienced during this century, and several are within recent memory, in areas generally regarded as water-rich. New York City, where the average annual rainfall is estimated to amount to only about 40 percent of the municipality's indoor water needs, went through its most serious water shortage in January 1981. This prompted major emergency measures and an alarming cover story about the national water crisis in Newsweek a month later.

There is evidence that the problem is no longer, if it ever was, one that will advance and recede with rainfall and the water table. Even the brouhaha over the nation's disintegrating infrastructure has touched on water. Eroded and leaking pipes in the water supply systems of Boston and Pittsburgh are held responsible for the loss of as much as a quarter of those cities' total supplies. St. Louis, Philadelphia, Chicago, and a host of others are not far behind.

Groundwater contamination

The reasons for our problems with water are many and complicated. They start with people and industries in unprecedented concentrations, and most recently in areas that have never had abundant water supplies. Many studies resist definition of the water resource problem as a national problem suggesting that it results mainly from local and regional issues that have only local and regional resolutions. Nonetheless, when proposals are floated to build a water pipeline from the Great Lakes to a region roughly following the lines of the Louisiana Purchase you know there is a national dilemma some where.

Acting aggressively, under orders from Congress and prior administrations, the Environmental Protection Agency took groundwater pollution as a national malady and cited several major sources:

- Leaking underground storage tanks, particularly for gasoline, which tend to be placed in populous areas.
- Improper handling, storage, treatment and disposal of municipal wastes.
- Salt runoff from street deicing.
- Improper handling and disposal of hazardous industrial solvents and waste especially synthetic organic compounds that are being found increasingly in public water supplies.
- Fertilizer and pesticide runoffs from agriculture.
- Saltwater encroachment caused by over pumping of adjacent freshwater supplies.

On this last point alone the statistics are harrowing. All water comes as rain, but as much as 92 percent either evaporates or runs off unused into oceans and tributaries. Fully four-tenths of the water used in the U.S. comes...
The maps from the U.S. Geological Survey (left, top to bottom) show mean annual precipitation, areas vulnerable to drought, mean annual pan evaporation, and approximate temperature of water near the surface of the ground. Drought is exacerbated when evaporation rates peak during the warmer months of April to October, and the vulnerability of it is increasing in areas that previously experienced few difficulties. Class A pan evaporation, shown in the mean annual pan evaporation map, is the measured water lost from a metal pan 4 feet in diameter and 10 inches deep set close to the ground. The map showing approximate temperature of water near the surface of the ground is based on water from nonthermal wells at depths of 30 to 60 feet. Interest is growing in groundwater energy systems, which act as heat- or cool-sinks for space-conditioning systems. The nation's water resources near the surface of the ground appear to be rich in potential for such uses, although some disagreement exists over possible long-term effects on water resources. Water-to-water and air-to-water heat pumps can take great advantage of water temperatures below ground, and water can also be used to precool outside air during the warmest months.
Technics: Water conservation

from underground aquifers from which, in 1980, 21 billion gallons more were withdrawn than went in. And as the fresh water goes out, the salt water comes in, either from the oceans or from underground salt deposits. As little as 3 percent seawater content can render such waters undrinkable for centuries.

Water used within and around buildings seems a small portion of the national total when compared with the goliaths of industry, agriculture, and power-generation. But it is more a question of how the water is used, not how much. Water resource specialists regard home water use as among the most significant sources of groundwater pollution; they estimate that each household uses about 65 gallons of potable water each day, only three of which are actually for cooking or drinking.

The toilet’s revenge

It is not surprising, looking at the statistics, that talk about water conservation quickly turns to talk about toilets. Toilet flushing is responsible for 45 percent of total indoor water use, with the balance (after the 8 percent we swallow each day) going to bathing, laundry, and dishwashing. Very nearly all the water that enters a household is sent right back into the sewers, and nearly 75 percent of it flows through the bathroom.

Although data are scarcer on water uses in nonresidential buildings, there is reason to suspect that “conventional” toilets are a major culprit there, too, and not only because of the inherent wastefulness of flushing. Water closet leakage, says one report, can double water use in a typical hotel. In Chicago’s 110-story Sears Tower, according to the Sloan Valve Company, 1037 stalls were refitted with a device that cuts water flow and remedies leaks. The results: 15.3 million gallons of water saved each year, at dollar savings that repaid the costs of the new devices in a short time. The costs of water, and the energy costs of pumping water within buildings and around communities, are not inconsiderable factors in many places.

Shallow-trap toilets and vacuum-breaker flushing devices are demonstrated watersavers (at 5 or 6 gallons a flush per person per day per household, the numbers mount) and sacrifice little in the way of safety and convenience. Flow-restrictors and house pressure regulators have also made significant contributions. These devices are required in a number of localities today for new developments, and have even been credited with “lifting” moratoriums on new sewer hookups. In a twist that links energy to water, one manufacturer of water-saving toilets has calculated that the “old, outdated full-trap toilet” robs the typical household of 16,500 Btu with each flush, based on the heat embodied in 5 gallons of water.

Beyond the water closet

A near preoccupation with water-saving toilets, flow restrictors, low-water appliances, and other plumbing devices may have obscured several other areas of real opportunity, many of which are likely to be more interesting and stimulating for designers. Studies suggest that water used outside of buildings for lawn and garden irrigation, car washing, and other purposes, is probably at least as significant as water used indoors. Cisterns and other devices used to collect, filter, and store rainwater are still familiar in many parts of the world and appear to have potential in contemporary U.S. applications, provided troubles with acid rainwater can be overcome. Advances have been made in the technology for graywater recycling and “waterless” waste disposal systems, although there is still resistance to these approaches in many quarters. Household water filters are enjoying renewed popularity, even if much changed from their 19th-Century predecessors in England and Europe.

Landscape plans can be examined from at least two vantage points. First, from the consequences for water of a given design approach. D. Susan O’Brien says, “As architects we can and should determine the irrigation needs for a development . . . just a simple practice such as letting the grass grow longer can conserve 50 percent of water use.” The California state transportation department and the state architect’s office have launched a five-year program aimed at planting the state’s freeway system with native, drought-resistant plants, including golden yarrow, na-

The chart showing indoor vs outdoor water use in residences (upper left), compiled by the Department of Environmental Engineering Science at Johns Hopkins University, is based on gallons per day per residence and shows that outdoor uses of water are often more significant than indoor uses. Residences in the study had an average of 3.8 occupants, and an average housing density of 7.6 dwellings per acre. The totals shown are greater than or less than the sum of inside and outside uses because of averaging of consumption over the entire year.

The chart (lower left) shows the quantity and percentage of water used in the average household, and the sometimes dramatic reductions possible with water-conserving fixtures and appliances.

The chart showing indoor vs outdoor water use in residences (upper left), compiled by the Department of Environmental Engineering Science at Johns Hopkins University, is based on gallons per day per residence and shows that outdoor uses of water are often more significant than indoor uses. Residences in the study had an average of 3.8 occupants, and an average housing density of 7.6 dwellings per acre. The totals shown are greater than or less than the sum of inside and outside uses because of averaging of consumption over the entire year.

The chart showing indoor vs outdoor water use in residences (upper left), compiled by the Department of Environmental Engineering Science at Johns Hopkins University, is based on gallons per day per residence and shows that outdoor uses of water are often more significant than indoor uses. Residences in the study had an average of 3.8 occupants, and an average housing density of 7.6 dwellings per acre. The totals shown are greater than or less than the sum of inside and outside uses because of averaging of consumption over the entire year.

The chart showing indoor vs outdoor water use in residences (upper left), compiled by the Department of Environmental Engineering Science at Johns Hopkins University, is based on gallons per day per residence and shows that outdoor uses of water are often more significant than indoor uses. Residences in the study had an average of 3.8 occupants, and an average housing density of 7.6 dwellings per acre. The totals shown are greater than or less than the sum of inside and outside uses because of averaging of consumption over the entire year.
tive holly, chaparral, and sturdy live oak. San Diego water conservationist Wayne Tyson comments that “most of the things you see now, the iceplant and the ivy, are alien to this area and need way too much water.”

The second vantage point from which landscape plans can be examined concerns the handling of water runoff, which is of vital importance. Large roof areas and parking lots present especially challenging design opportunities. Several major companies have found it advantageous to capture water runoff for on-site treatment and storage, citing lower or equal costs and the added benefits of recreational or energy-system ancillary uses.

Waste not, want not
Attitude is a key to this resource dilemma. In other times, even “waste” products were, and in some cultures still are, regarded as valuable resources. And now water must clearly be counted as a resource not to be disposed of lightly. With interest in the use of groundwater for building energy systems mounting, and the costs and availability of potable water called into question almost daily, we can expect architects and their colleagues to be confronted rather directly by the challenge of conservation.

Water-saving approaches and devices appear to be achieving greater currency in new designs, with water-conscious manufacturers making large contributions to the range of choices available. One suspects, however, that shifts of a more fundamental character may need to take place before the challenge is well net. We may not be headed back to the communal baths of the 1800s (although some have taken encouragement in the proliferation of hot-tubs), but there are signs that suggest we’re headed toward what O’Brien calls “the arid-land lifestyle.” Not all of it is discouraging, for, as she points out, we’ll be drinking more wine than water. □

Acknowledgments
We would like to thank the following for their contributions to this article: American Standard; Bradley Corporation; Eljer Plumbing; Ifö Sanitar AB, Sweden; Murray Milne, JCLA; Microphor; Building Research Establishment, U.K.; National Bureau of Standards; Arthur N. Orans, Corvallis, Oregon; J.S. Geological Survey; U.S. Environmental Protection Agency; Sloan Valve Company.

Control of runoff from paved areas (above) is critical to water resource management. Even simple measures like providing rock mulch and low-water plantings in parking areas, with catchment draining, can make a large difference in whether runoff helps or hurts.

A new pathology/toxicology laboratory at SmithKline Beckman Corporation’s pharmaceutical research facility in Upper Merion Township, Pa. (plan, left, process-water heat cycle, below left) calls for the use of nearly 80,000 gallons per day of 200 F water for animal cage washing. Ballinger Architects and Engineers of Philadelphia devised a system that will recapture heat from the wash water. The effluent is used to heat incoming wash water; the new water is heated to 155 F, and heat rejected from the air-conditioning equipment elevates it to the 200 F required. While not quite extracting all of the “graywater” heat, the scheme does reduce the temperature of the discharged water to legal limits without resorting to additional cooling water. Ballinger’s design received an Owens-Corning energy conservation award.
Power conservation

Harvey Bryan

Power conservation rather than energy conservation tends to be the driving force in large commercial building design.

Power is the rate at which energy is used. The concept of power conservation—controlling the extent and timing of the peak demand for electricity—is an extremely important yet often neglected aspect of energy-conscious design. Power conservation is most significant in commercial buildings that have large internal loads (which usually have a high electrical demand), especially in areas of the country where the electric utilities have a demand-sensitive rate structure. In such instances, energy-conscious design strategies should focus primarily on reducing or shifting the building’s peak power demand and secondarily on reducing annual energy consumption. This is not to say that energy conservation and power conservation are competitive or mutually exclusive concerns, but rather that different priorities and perspectives need to be employed when looking at the problems associated with the design of large, internal-load-dominated buildings in many parts of the country.

The recent past

Events of the last decade have made us all aware of the importance of energy as it relates to design practice. Yet there is considerable disagreement as to the best approach that energy-conscious building design should be taking, especially where large commercial buildings are concerned. Early opinion suggested that this type of building should be thermally tight, with as little surface area and as few penetrations as possible. Others disagreed, however, arguing that the issue was one of understanding the energy dynamics rather than legislating tight standards that would later have to be changed. Those taking this position suggested that a performance approach rather than a prescriptive standard would be a much better mechanism in first understanding and later controlling the various energy flows to and from commercial buildings.

Most designers would agree that the performance-based approach is superior to a prescriptive standard. As the performance approach developed, however, it did little in helping to understand the issues associated with energy conservation or, for that matter, power conservation. Many of its developers promoted it for code-making purposes rather than for exploring the tremendous educational potential that such an approach could have provided designers. As a code-making vehicle, the performance approach was limited to determining how much energy a building would consume, i.e., its energy budget (which is usually expressed in Btu/sq ft/year).

The energy budget concept—annual consumed energy measured at the building boundary, divided by the area of the building—was first used in 1975 by the General Services Administration to target energy performance for all new (55,000 Btu/sq ft/year) and existing (75,000 Btu/sq ft/year) federal office buildings. This method of energy accounting (which is properly called an end use energy budget) is the most commonly applied, and the one that is most typically presented in published case studies and building comparisons. Although it is the most widely used method of accounting, it is also the most misunderstood and has often led designers to make poor energy-related design decisions. For example a building that uses 55,000 Btu/sq ft/year measured at the building boundary can be very efficient or inefficient depending upon the fuel that is used. Such a building will be highly efficient if natural gas is used, whereas the opposite will be the case if the building is all-electric. This is because it takes approximately 3 Btu’s of natural gas or fuel oil to generate and deliver 1 Btu of electricity to a building. Thus, by definition, end-use energy budgets exclude all off-site energy subsidies and tend to bias this method of accounting by as much as a factor of three when compared to the actual energy required to operate a building.

Recognizing many of the problems associated with end-use energy budgets, the Department of Energy, through the the proposed Building Energy Performance Standards (BEPS), attempted in 1979 to convert end-use Btu’s into a more meaningful value. DOE proposed that BEPS be based on a source energy budget concept. Annual energy consumed by the building would be broken into fuel type, with each type being multiplied by an appropriate weighting factor (which takes into consideration energy efficiency beyond the building boundary as we as the value to the nation of conserving different fuels), summed, and then divided by the area of the building. Although this method of energy accounting requires more elaborate calculations, it was thought that it increased accuracy would lead to its wide use (even though BEPS did not become law...
There has been little agreement on the appropriate weighting factors, however, especially since the original BEPS weighting factors were based on national averages which neglected many important regional differences. For example, an all-electric building in the Pacific Northwest, where efficient hydroelectric is plentiful, would be penalized equally for using electricity as an all-electric building in the Northeast, where less efficient fossil-fuel-generated electricity prevails. Thus, it has been found that source energy budgets using national weighting factors can be biased by as much as a factor of 2 when comparing the actual energy required to operate buildings by region.

Today, there is a growing shift away from the energy budget approach because it has performed so poorly as a measure of energy performance, especially in buildings that have high electrical demand. Also, many of the costs associated with electrical power generation cannot be accounted for with the energy budget approach. This failure to reflect accurately on issues related to the use of electricity in buildings is of critical importance. It is often the case that upwards of 75 percent of a commercial building's energy needs (all lighting, most equipment, and very often cooling) requires the use of electricity.

To overcome these limitations, many designers are increasingly turning to the use of an annual energy cost approach: annual energy used by a building would again be broken down by fuel type, the electrical component being multiplied by the local utility's cost (in terms of both energy consumption and demand), summed, and then divided by the area of the building. Such an approach more accurately incorporates the embodied energy (source energy) and the embodied capital required to maintain utility capacity which is usually reflected in demand charges. The latter is of considerable importance since few realize that a utility has to invest as much as 20-30¢ in new generating, transmission, and distribution equipment for every dollar spent on new building construction. Thus, for the local utility, and ultimately the building owner who pays the bills, the control of the peak power demand offers tremendous cost and energy savings potential. A recent study by the Solar Energy Research Institute confirms the need to control peak demand; it states: "two to three times more renewable energy can be saved on a national basis by reducing the peak rate of energy use in commercial buildings than by equivalent expenditures that focus on limiting annual energy consumption." As power conservation becomes an issue in energy-conscious commercial building design, many of the recently developed energy conservation strategies that have been based on an energy budget approach need to be examined. For example, increasing the thermal integrity of the building envelope, reducing surface area, reducing window area, etc., makes a great deal of sense for an office building in the Northeast if we look at end-use energy (where a large portion of energy goes for heating). That same set of strategies makes less sense if we look at source energy (where considerably less energy goes for heating), and little sense if we look at energy cost (where relatively little in the way of cost goes for heating). This is not to say that conservation strategies such as increasing the thermal integrity of the building envelope should not be incorporated into any final design, but given limited resources, reducing lighting demand (use of daylighting) and cooling demand (off-peak thermal storage) would be better options to explore.

Extending the building boundaries
If we now extend the building boundaries to include the utility, it becomes necessary to examine briefly the services that it provides. During the first 70 years of this century, electric utilities experienced a rate of growth unparalleled in U.S. industry. Today, the same industry is faced with myriad problems: staggering capital requirements for new equipment, escalating costs for unstable fuel supplies, ever-mounting environmental pressure, decreasing growth rates, and regulatory enforcement of controls on emissions and waste.
Power conservation

This load curve exemplifies the peak daily electrical demand placed on utilities. Utilities now try to lower or shift peak demand with pricing and load management strategies.

This is the daily demand curve for a large, all-electric office building. Buildings are the single largest contributors to peak electrical demand.

This graph charts the typical time-of-day rate structures for summer (dashed line) and winter (solid line).
power management is so dependent on hanging utility rate structures, software will need to be modified. Utilities, for some time, have been aware of the load management potential that these systems offer; it would be a natural extension of its previously mentioned programs if, in the not too distant future, utilities seriously consider the purchase and installation of such equipment in commercial buildings.

2 Daylighting: Since electric lighting is often the single largest user of energy in commercial buildings, much attention has been focused on the energy-saving potential of daylighting (see Tom Vonier’s article, page 5). However, few have recognized the potential that daylighting offers for the control of peak demand; i.e., most utilities peak on hot summer afternoons, which is coincident with peak daylighting availability. The researchers who have studied daylighting’s relationship to peak demand have found that the savings derived from a demand-driven analysis are significantly greater (in some cases several fold) than those derived from an energy-driven analysis. Thus, many of the aims being made for daylighting may be on the conservative side. Designers choosing to use their daylighting designs on a demand approach can significantly reduce their analysis effort. Whereas an energy approach requires detailed daylighting analyses that then must be integrated into a thermal analysis model (usually one of the large computer s, such as DOE-2 or BLAST), a demand approach requires only a few calculations usually for a few hours during a summer afternoon. Lighting control hardware is also significantly cheaper for a demand-driven daylighting design, which uses simple on-off switching, rather than the more expensive dimming control that results from an energy-driven daylighting design.

The considerable interest that daylighting attracting has prompted several utilities to begin exploring daylighting as a load management strategy (two of the nine sponsors of a recently held International Daylighting Conference in Phoenix were from the utility industry). Utilities are interested in daylighting because, through the installation of simple on-off relays connected to perimeter office lighting (which would be activated by a light signal), they can control a significant portion of their load.

3 Off-peak thermal storage: As more utilities shift to demand-sensitive pricing, off-peak thermal storage is increasingly being used to take advantage of cheap, off-peak power to generate thermal energy (usually for cooling purposes), which is then stored for use during the peak periods of the day. Off-peak thermal storage can take the form either centralized (usually in the basement) or decentralized (storage in the building itself). Either arrangement involves a considerable design effort, although techniques for the design of centralized storage systems have advanced more rapidly than those for decentralized storage. Decentralized storage, however, may prove to be considerably cheaper for a demand-driven daylighting design.

4 On-site power generation: As utility cost and unreliability increase, many large building owners may choose to generate their own on-site power. In 1981, 16 of Con Edison’s largest customers, with a total peak load of 26,000 kW, chose to install their own on-site generating facilities. On-site power generation can be defined as either a total energy option (a building’s entire energy and power needs being provided by on-site equipment) or a selective power option (a selective portion of the power needs of a building will be provided by on-site equipment). Each option has a significantly different level of cost and benefit that must be thoroughly analyzed. Today, on-site power generation is a strategy that is feasible only for the very large building owner. Recent changes in federal law as well as technological advances, though, may make on-site power generation attractive to even small building owners.

Utilities obviously discourage privately owned on-site power generation (although they may at times encourage selective power generation); therefore, anyone contemplating such a facility will need to do legal as well as technical homework.

Conclusion

Architects are increasingly being asked by building owners to reduce energy costs. Minimizing peak power demand provides the largest cost savings in the shortest amount of time and at the least expense to the owner. In the late 1970s, architects made the difference between energy-conserving buildings that worked and those that did not. Today, we have the same challenge before us in power conservation.

Acknowledgments

Thanks are due to the following architects, researchers, and organizations for sharing their information: Brandt Andersson, Lawrence Berkeley Laboratory; Charles Benton, Georgia Tech; Harrison Fraker, Princeton Energy Group; James Jewell, Electric Power Research Institute; R. Christopher Mathis, Owens-Corning Fiberglas; Claude Robbins, Solar Energy Research Institute; Steve Selkowitz, Lawrence Berkeley Laboratory; and William J. Whiddon, William J. Whiddon & Associates.
The conservation of energy and indoor air quality need not be conflicting goals. Both the causes and cures of indoor pollution are diverse and often surprisingly simple.

Fred S. Dubin, P.E., president of Dubin-Bloome Associates P.C. and a leading energy consultant well known to P/A readers, has been studying indoor air pollution as part of a transdisciplinary team under the auspices of the Canadian Government. In the following conversation with P/A Technics Editor Tom Fisher, Dubin describes that study and discusses what is known and still unknown about indoor air quality.

Fisher: Why has there been so much interest in indoor air pollution in the past few years?

Dubin: There are several reasons. First, people have been getting sick in buildings. Studies by Lawrence Berkeley Laboratories and Harvard's School of Public Health have shown that indoor air is frequently more contaminated than the air outside. Since people spend 80 to 90 percent of their time indoors, that contamination is bound to create health problems.

Half of the students and faculty in an Oakland high school experienced eye irritation, difficulty breathing, headaches, skin irritations, and nausea. Elevated formaldehyde levels were recorded in the building. In Maine's Department of Transportation building, workers developed coughs, colds, stiffness, and in one case, a lung disorder, which were linked to the fraying of fiberglass ducts. It's sometimes difficult, though, to get definitive answers because of the sensitivity of lawsuits.

On one floor of Simon and Schuster's offices in New York, about 160 people experienced symptoms. They were moved to another building, the floor was remodeled, and no further problems were reported, although we're still not sure what was the cause.

Second, the publicity surrounding the air quality problems in California's Bateson Building has led some to question the effect energy conservation has on indoor air quality. A 1971 study, funded by OSHA, found high levels of indoor pollutants in non-energy-conscious buildings. But conservation can be a contributing factor if the number of air changes is reduced or, as in the Bateson Building, people move in during the initial outgassing of materials and before the energy systems have been adjusted.

Third, while there has always been indoor pollution, improvements in the quality and sensitivity of instruments have enabled us to detect and measure contaminants with more precision. What's different now from even a few years ago is our ability to analyze the problem.

Fisher: What are some of the major indoor air contaminants and their sources?

Dubin: The major sources are building materials, its contents, and its occupants. Among the building materials, you get radon and other radioactive elements from stone and concrete, formaldehyde from particleboard and certain insulations, and organic pollutants from glues and adhesives. There are also asbestos in fire retardants and lead in mercury in paint.

Among a building's contents, combustion appliances for heating and cooking give off formaldehyde, nitric oxide, nitrogen dioxide, and carbon monoxide. Copy machines emit radon while synthetic fabrics outgas various organic contaminants.

Occupants, of course, give off moisture. But it is their activities, however, that are most harmful: carbon monoxide from tobacco smoke, fluorocarbons and vinyl chloride from aerosol spray devices, organic pollutants from cleaning products, and carbon monoxide and lead from automobile exhaust.

Health effects

Fisher: What are some of the known health effects of those pollutants?

Dubin: Tolerances vary widely among people, for their sensitivity depends upon their genetic susceptibility to certain diseases and the duration and concentration of the exposure to a pollutant. We still need to define, in medical terms, what's safe and what isn't safe, at what concentrations and under what conditions, because the complete elimination of indoor pollution may not be practical or economically feasible.

The major symptoms of indoor contamination include headaches, nausea, sleepiness, fatigue, rashes, sores, and irritations of the eyes, nose, and throat. Chronic problems include liver damage and lung inflammation from aerosols, kidney and bone marrow damage from lead, cancer from formaldehyde, radon and asbestos, and death from carbon monoxide.

Fisher: How are indoor air contaminants dispersed throughout a building?

Dubin: Pollutants move through a building according to local air circulation and distrib
Controlling indoor pollution

Fisher: How can architects and engineers control the accumulation of indoor pollution?

Dubin: There are a number of fairly simple precautions they can take. Perhaps the most obvious is the avoidance of certain building products that some people find irritating after continuous exposure: plastics, especially polyvinyl chloride; glues and adhesives; composites; foamed plastics, either in rigid insulation or in flexible furniture padding; and rubber products. Materials such as hardwoods, metals, ceramics, concretes, plasters, lass, natural fibers, and baked enamel surfaces might be a partial substitution for such materials.

Electric or solar heating systems avoid the problems of combustion furnaces, although the latter have been successfully used when sealed off from the rest of a building in room vented directly to the outside, with airtight seals and air movement around desks, while directing discharges into the bottom of a partition will increase air movement.

There are a couple of ways of preventing pockets of contamination in an open office space. A six-inch gap between the floor and ceiling of a partition will increase air movement without evacuating all of the heat in a space; that effectiveness, though, is more or less contingent upon the type of contaminant, the type of heat exchanger and its installation.

Increasing the amount of ventilation or air movement is not always the answer. Greater air movement can sometimes increase the outgassing of certain pollutants, and if the rate of chemical reactions is high compared to the rate of air changes, the amount of air movement might have little effect on the concentration of contaminants.

What you have to determine is the relationship between air movement and the quality of indoor and outdoor air. The solution might combine a variety of options: installing heat exchangers, removing contaminating sources, reducing the relative humidity, flushing the building at night—all of which can greatly improve indoor air quality without necessarily reducing energy efficiency.

Fisher: What steps can be taken when the level of outdoor pollution is greater than that indoors?

Dubin: It is important to control natural ventilation, especially when weather stations predict high pollution levels or when construction work, such as installing a built-up roof or painting, is going on nearby. Maintaining a positive building pressure and facing air intakes or entrances away from the prevailing wind or exhaust outlets will reduce infiltration. Updrafts and downdrafts created by adjacent buildings or topography and the negative internal pressures on the leeward side of a structure should also be factored into the location of openings when trying to minimize the effect of external pollution.

Fisher: Does the geographical location of a building affect the level of contaminants?

Dubin: We don't know for sure what effect location has. It is thought that areas near uranium or phosphate mines might expose buildings with poorly sealed or vented basements to higher levels of radon, and that areas near coal-burning sites might expose them to higher levels of sulfur dioxide. But research still needs to be done.

Fisher: What was the nature and intent of the Canadian study you were involved in?

Dubin: First of all, it is a continuing program; it hasn't ended. The Building Sciences Division of Canada's Department of Public Works...
Indoor air quality conservation

formed a transdisciplinary team with members from the public works department, a behavioral scientist, a chemist, a physiologist, and architects and engineers with experience in programming, energy conservation, and building diagnostics.

Three government buildings in Canada's western provinces were studied. Two were office buildings and one combined offices and laboratories. We reviewed plans and specs, operating data from the control systems, and service and maintenance data. In walking through the buildings, we could see evidence of user problems. There were covers over some of the grilles, artificial barriers for privacy, no smoking signs, and baffles over lights that produced glare.

The intent of the study was not solely to determine air quality, occupant habits, or physical deterioration, but to look at total building performance—how one or more individual determinants might affect the others.

Fisher: What were some of your findings and recommendations?

Dubin: We often found that air patterns were not as shown on the drawings, and that there would be a lot more air coming out of certain outlets than shown. Control systems were not always fully utilized for energy management—they were primarily an extension of one individual manipulating the controls as he perceived temperatures. We found a lot of conservation measures, such as shutting off fan and exhaust systems at night, which saves energy but which may have exaggerated indoor pollution. In the combined office and laboratory building, there were higher levels of carbon dioxide and some cross-contamination among floors in the building.

The Department of Public Works is doing further testing: pressurization tests to determine the quantity of air changes, sampling of air distribution with tracer gas, and infrared photography to locate patterns of infiltration.

Major factors of indoor pollution

Dubin: While their findings are not yet conclusive, we can identify some of the major factors that contribute to indoor air pollution. There are the short-circuiting of the ventilation air flow, the improper maintenance of fluorescent lights, the failure to test soils for their radon content, the use of contaminating materials and products without proper ventilation and safety precautions, the improper balance of air systems, partition layouts that create pockets of polluted air, the failure to have an initial ventilation period in a new building prior to occupancy or to plan a frequent flushing of the building's contaminants, the failure to isolate and ventilate noxious activities, and the failure to consider the microclimate's wind patterns or level of pollution when locating openings in a building or when designing its mechanical system.

There is more information on air quality available now than there ever has been, so there is a great deal of material to sift through. But there is still a long way to go.

Research yet to be done

Fisher: What research still needs to be done? **Dubin:** We need to look at the synergistic effect of chemicals combining in the air and, as I mentioned before, at the health effects of long-term exposure to indoor pollutants. We need to look at how pollution affects building materials and how heat exchangers and natural energy sources affect pollution levels. Research into the improvement of diagnostic techniques and equipment is ongoing, but finding the exact relationship among the factors that affect air quality—the amount and distribution of air, the outgassing of materials, the activities of users—is very complex.

Sources of information

Fisher: Where can architects and engineers get more information on the subject, and how can they become more involved?

Dubin: They can write to the Lawrence Berkeley Labs (1 Cyclotron Road, Berkeley, Calif.) or to ASHRAE or ASTM for information. California's Department of Consumer Affairs (Room 500, 1020 N Street, Sacramento, Calif. 95814, $15) published *Clean Your Room, A Compendium On Indoor Pollution*, the National Research Council has a publication entitled *Indoor Pollutants* (available from the National Technical Information Service, 5285 Port Royal Road, Springfield, V.A., 22161, #PB82180563, $40), and the Sandia National Labs has just published *Indoor Air Quality Handbook* (also available from the National Technical Information Service, #SAND-82-1773, $16.50).

The AIA chapter in New York City has a subcommittee on indoor air quality, providing architects with bibliographies and resource material. We've found a great deal of interest among architects.

There's a fair amount of research going on at the federal level, and states have begun to regulate and to restrict or ban the use of certain contaminating materials. While most of the court cases have involved manufacturers and not architects, there is a professional responsibility to become knowledgeable about the subject. It's not just a matter of changing designs or materials; it's a question of changing our perceptions about buildings. There's a growing movement; people are becoming aware of indoor pollution; they're getting involved and looking for answers.

Acknowledgment

We would like to thank Lisa Saurwein for her contributions to this article.
The year 1973 not only brought us the energy crisis; it marked, for architect Ed Mazria, the beginning of a post-industrial age. "For the first time as a people, we realized that resources on this planet are limited." The post-industrial age, in Mazria's view, will integrate the conservation of resources, which characterized pre-industrial societies, with the sophisticated technology of the industrial period. He sees that leading to a greater use of pre-industrial building forms which, in order to maximize natural light and air, used two basic strategies: the narrow plan, with floor widths ranging from one-and-one-half to two times the height of a room, and the large, central space, with lower dependencies and operable windows on all sides. It took the technological developments of the 19th Century to free buildings of their reliance upon natural light and air, and to free architects of pre-industrial forms.

We paid a price, though, for that freedom. With the industrial age came a dependence on the engineer, a preoccupation with style (since technology could construct and condition almost any form), and a heedless exploitation of natural resources. That exploitation also affected human resources. As Mazria puts it, "We created static interior environments that looked and felt the same day and night, winter and summer, thinking that we would get greater productivity out of people. Studies have shown that not to be the case."

The goal of post-industrial architecture, to use Mazria's terms, would be to optimize rather than maximize our physical resources. It would use advanced technology to conserve limited energy and materials, to give the architect greater control of the building process (by better understanding and predicting building performance), and to create more varied working environments. Post-industrial architecture might not look much different from the architecture of the industrial period. "It will be a major form change, not a style change, for it can encompass any style."

By a form change, Mazria means that we will return to the narrower widths and higher central volumes of pre-industrial architecture, although the placement, design, and detail of those forms will be more precise because of our greater understanding of climatic conditions and our greater computational abilities available through computer systems. "Building forms will become more complicated because we will know more about them and what goes on inside them. We'll be able to manipulate them with a lot more information."

Not surprisingly, the work of Mazria/Schiff & Associates follows no one style. It takes its visual cues from adjacent buildings and uses local materials, which Mazria sees as part of a "new regionalism" where decentralized, sustainable communities might produce many of their own building materials and components, thus reducing transportation costs and increasing local employment. That has resulted, in Mazria's case, in buildings that are as unobtrusive in their context as they are conservative in their architectural expression.

Post-industrial architecture

By judging appearances, though, we misconstrue Mazria's intentions, for his ideas most clearly emerge in the form and details of the firm's buildings. Two projects, the Trust Pharmacy in Grants, N.M., and the Mt. Airy Public Library in Mt. Airy, N.C., summarize the basic tenets of post-industrial architecture. The buildings employ the two dominant pre-industrial forms: the narrow plan or the high, central room. They use facing materials either locally manufactured or commonly used in their communities. And they practice energy conservation through a variety of methods, derived not from sophisticated computer modeling, but from Mazria's more intuitive design approach, which uses the computer "as a check upon what we already knew was going to happen."

Trust Pharmacy

The Trust Pharmacy, located along a commercial strip in a small mining town in northern New Mexico, has a large, rectangular retail sales room abutted on two sides by lower subsidiary spaces. The north, east, and west walls have virtually no windows, while the south elevation has glass only at the entry and waiting area. Most of the pharmacy's interior lighting comes from a series of south-facing sawtooth skylights, which run the entire length of the sales room, giving customers the sense of being outdoors, under a canopy of trees, in direct contrast to the sense of enclosure provided by the fluted, concrete block walls. Two perimeter rows of laminated wood columns and beams support the skylights. The beams extend beyond the columns to rest on the block bearing walls, framing
The closed exterior of the Trust Pharmacy (left above), to protect thermal lag and to reduce solar gain, makes the daylit interior (left below) a pleasant surprise. The sawtooth skylights, with their wood baffles (below), diffuse the light entering the retail sales area (right). The clerestory windows between the glue-laminated beams, which let in direct sunlight in winter to heat the concrete floor and block walls, reinforce the preindustrial spatial concept of a single, high volume.

Clerestory windows, which reinforce the idea of a high, central space. The clerestory windows let in sunlight to warm the concrete floors and block walls in winter, while the thermal mass of the exterior walls keeps inside temperatures down in the summer, and the skylights provide an evenly diffused light year round. The diffusing mechanism in the skylights is a series of unevenly spaced wood slats, which block all direct sun angles. At night, fluorescent fixtures with eggcrate grilles illuminate the retail space from recessed housings between the skylights. The ancillary rooms also have artificial illumination, although the sales counter and office receive sufficient natural light during the day.

The building performs quite well. Its thermal mass allows the gas-fired heating system to remain off except for the coldest winter mornings, while the building's daylighting reduces the cooling load enough to permit the use of a low-energy evaporative cooler. The daylit pharmacy has an interior footcandle level comparable to an artificially lit drugstore nearby, for a fraction of the cost.

Mt. Airy Library
Another building type that some think impervious to passive design strategies is the public library, because of the high light levels required for reading and the humidity control needed for the maintenance of books. Mazria/Schiff & Associates and J.N. Pease Associates of Charlotte, N.C., have proven that assumption wrong in the Mt. Airy Public Library. Sited on three acres near the center of Mt. Airy, N.C. (which is noted for its locally quarried white granite), the 14,030-square-foot library had, among its constraints, the preservation of several large oak trees along the northern edge of the property, and visual integration with a new municipal building to its southeast. The library's plan combines a radial organization, with the person at the central circulation desk having visual control of every section of the building, and a layered organization of alternating 4-foot- and 24-foot-wide structural bays. The latter run in an east-west direction, with skylights located above most of the wide bays and mechanical runs, hidden by wooden slats in most of the
Post-industrial architecture will require new graphic techniques, such as Mazria's thermal section (below) of the library. The plan (below) features a series of narrow bays oriented south. The style of the library (above right and opposite) is unassuming, with its exterior using locally available materials.

The library shows the potential conflicts that can arise between a building program and pre-industrial forms: Its site and program did not allow either a narrow linear form or a single high volume. But layering the concrete structure into narrow skylit bays, the architects brought natural light and air to the large floor areas required for stack and reading areas.

The library's exterior consists of flame-colored Mt. Airy granite with recessed windows at entrances and a parapet that encircles the building, concealing the skylights, solar collectors, and heat pumps on the roof. The exterior treatment generally follows that of the adjacent municipal building. A small entrance plaza, off the parking lot, gives access to the circulation desk at the hub of the building and to the multipurpose room, which can be isolated from the rest of the library for nighttime meetings. Another recessed entrance at the north elevation lies at the end of the major north-south circulation spine, which has a complex set of switch-back ramps and stairs that give access to the magazine, stack, and reading areas as they step down the southern slope. The circulation spine separates two daylit zones within the building: One zone, running north-south, contains series of sawtooth skylights that illuminate the circulation desk, reading areas, and reference stacks; the other zone, running east-west, has a butterfly roof with glazed ends and a central light trough that illuminates the open stacks. Those stacks have a fluorescent light grid attached to the upper shelves, which look cumbersome and which produces an annoying glare when viewed from the upper level.
The library offices have their own wing long the north side of the building, enclos-
ig a courtyard used for children's story
ours. With large, south-facing windows and
orth-facing transom lights, the office wing
ceives ample daylight. Less fortunate in
ed local history room—their lack of skylights
and paucity of windows requires artificial il-
)uld not justify the expense of skylights or
even though, in an earlier plan, the children's
were reversed, with
quate natural light for both. Relocating
ictions without moving the skylights above
towards the close relationship of form and
action in passive design, where, unlike ar-
icially controlled environments, a change in
ne almost always requires a change in the
ner.

The library's performance is impressive,
evertheless. With Mt. Airy's hot summers
and mild winters, reducing the building's
ghting and cooling loads became as impor-
tant as heat-conserving strategies. The da-
ghting comes from the sawtooth skylights,
h their diffusing slats, and from the but-
fly roof, which has a reflective light shelf in
ont of the south-facing glass to cast light
nto the white sloping ceiling. Light shelves
act as transoms along all south-facing
winds to shade the vision glass in summer,
reflect light onto the ceilings, and along
ith horizontal blinds, to reduce glare. The
all amount of glazing, only 12 percent of
ie gross floor area, belies the amount of
atural light in the building.

Passive cooling was achieved in three ways.
Shade trees and the light-colored membrane
roof reduce the effect of solar radiation. Op-
erable windows enable natural ventilation,
and thick exterior walls, with 12-inch con-
crete block and 3 inches of granite, provide
ough thermal lag to delay the effect of the
daytime summer sun.

The walls, as well as the tiled concrete floor
slab, store heat that enters through the
south-facing windows during the winter
months. Although passive means provide
much of the library's heating and some of its
cooling, there is a five-zone, air-to-air heat-
pump system as backup. Its programmable
thermostat has an economizer cycle, an over-
ride switch for unscheduled meetings, and a
staggered morning startup to avoid a power
surge during peak demand. Computerized
monitoring equipment records an energy
consumption of 17,069 Btu/sq ft/year which,
even when adjusted for the Resource Utility
Factor of 3.08, is well under the BEPS of
106,000 Btu. Two nearby buildings of ap-
proximately the same date and size use almost
three times as much energy as the library.

Ed Mazria admits that the Trust Pharmacy
and the Mt. Airy Library do not hold the final
"answer to post-industrial architecture. That
is going to happen over a long period of time,
just as industrial architecture developed over
150 years. We're just seeing the early signs of
what is possible." For that possibility to be-
come a reality depends, in part, on our
separating the issues of form and style, on
our distinguishing between post-industrial
architecture and the styles of Post-Modern-
ism. [Thomas Fisher]
Planning wisdom for an energy-wise town

Sally Woodbridge

Architect Sam Davis incorporates active and passive solar features in Pajaro, a housing project in Northern California, while considering the spatial implications of clustering units.

In Davis, Calif., motorists cower before fleets of bicycles. Roofscales of solar collectors are commonplace. Davis proudly calls itself the nation's energy conservation and bicycle capital: Since 1974 an energy conservation building code has mandated south orientation and light-colored walls and roofs, imposed standards for insulation, and restricted exterior glazing, giving credits for various kinds of shading and screening.

Not only are Davis's builders used to working with a variety of energy strategies, but some are also engaged in manufacturing active energy systems. One such is Tandem Energy Systems, the client for the Pajaro solar housing project. Using the Trident system was one of the project's requirements.

Sam Davis, Pajaro's architect, had worked with the system before. Water from the collectors is stored, mixed, and circulated through a concrete floor slab, and each dwelling has its own storage tanks and computer controls. The system requires that the area devoted to collectors equal 20 percent of the floor area of the unit, with benefits in proportion to the amount of floor area on grade.

Dealing with the visual impact of long stretches of rooftop collectors provides a formidable design challenge, compounded in this case by the program, which required that 36 dwellings—in a mix of studios and one-, two-, and three-bedroom units ranging in size from 500 to 2500 square feet—be sited on three flat acres with a parking ratio of 2:1. Fifty percent of the parking was to be enclosed.

The design process began with the decision to give each dwelling a square plan composed of smaller squares, one of which would serve as a private, walled entry court. The dwellings were then organized in two clusters: a front cluster based on four 16' x 16' squares, and a back cluster based on four 18' x 18' squares. Stepping the units in and out on the site provided both compositional variety and central plazas that double as open space and parking, while a strong streetscape and varied rhythms were created by placing the cluster of smaller units at the front of the site.

The little space that remained after the dwellings and cars were accommodated was carefully planned for pedestrian passage between them. The pleasant and practical nature of these transitional spaces results from the skillful arrangement of the clusters, which permits a variety of vantage points as well as clear orientation. The use of unit paving Instead of asphalt also distinguishes the pedestrian/vehicular zones. The only asphalt surface in the project is a narrow service road that loops around the front cluster, giving access to diagonal parking and the inner courts.

The placement of parking space within the Pajaro is a departure from the usual planning principles applied in housing projects in Davis. Although it may be argued that peripheral parking bays give residents their chance for interior landscaping, it is also true that they create an initial impression of closed compound screened by fringes of car At issue are urban design considerations that so far have not been deemed important in Davis.

Over the last decade, the edges of Davis have been steadily converted from open field to housing. The resulting superblock developments have discrete site plans, most of which are based upon independent road systems. A relatively uniform building height furnishes the only continuity from one tract to the next. In this generous but banal suburban landscape, Pajaro shines forth as a "piece," a singular triumph over programmatic constraints and an undistinguished context. Here, the feeling of expansiveness comes from the quality, not the quantity, of space.
The strong geometry of Pajaro's light-colored, stuccoed units (above) is generated by a tight geometric plan. The stepped units create central plazas (right), and recessed south-facing windows increase the plastic effect of the walls. Interiors (below, far right) have high spaces with lofts lighted by clerestory windows with operable sash for cross ventilation. Greenhouses (not shown) on the north elevation invite the winter sun, and may be screened off with movable shades.

Data

Project: Pajaro Solar Housing, Davis, Calif.
Client: Tandem Properties Inc., Davis, Calif.
Site: three flat acres.
Program: 36 units, 500–2500 sq ft; 2:1 parking ratio; 50 percent enclosed.
Structural system: wood frame, concrete slab-on-grade.
Mechanical system: individual solar collectors, storage tanks, computer controls. Slab, containing water pipes, serves as thermal mass for radiant system.
Major materials: exterior, stucco; interior, gypsum board; floors, wood, ceramic tile, vinyl tile, carpet (see Building materials, p. 176).
Consultants: Paul Deering, landscape Architect; David A. Lane & Associates, structural; Nred Energy Systems, mechanical; Larry Somerton, technical development.
General contractor: Tandem Properties, Inc.
Cost: $45.97 per sq ft, including site work.
Photography: Rob Super.
One of several California state buildings employing passive design principles, the Department of Justice Building is unusual in its integration of low energy usage and high security requirements.

Not every building lends itself to resource conservation. The California Department of Justice Building in suburban Sacramento, designed by Marquis Associates, had such strict functional and security requirements that meeting the state's energy consumption standard of 75,000 Btu per square foot per year seemed formidable. For example, the exhaustive program written by architect Bobbie Sue Hood for the state emphasized user control of the building. The program went beyond enumerating the size, use, and relationship of various functions; it stipulated organizational and design criteria, such as having clear entrance and circulation systems, individual climate controls, office clusters of between 12 and 24 workers, a horizontal relationship among departments, and access to outdoor spaces. It also described the security needs of the Justice Department. With crime labs, files, and computer equipment, as well as offices and classrooms for the state's crime-prevention programs, all located within one building, the department feared criminal attacks against the structure or against people entering or leaving. The Justice Department wanted a design, essentially closed on the exterior, with a minimum of horizontal or vertical recesses (to prevent the hiding of bombs and maximum visibility of entrances and parking lots.

The potential conflicts with the state's energy standard quickly became apparent. How could the architects daylight the building to reduce power demand and heat gain without allowing a view from the outside? How could they ventilate the structure to reduce cooling loads without having operable windows? How could they humanize the facility, with employee access to the outdoors without jeopardizing security?

Design solutions

Marquis Associates solved those conflicts with considerable finesse, turning the building inward, with a series of courtyards and double story corridors. The required clarity of entrance was met with a broad concrete wall that leads from the road, past the public parking, to a two-story porchlike concrete structure that extends beyond the one-story reflective glass entry. The same treatment occurs on the other side of the building, where the employees' parking is arranged in a radial pattern to allow surveillance from the guard station just inside the doors. The radial parking is contained within a ring of eucalyptus trees and earth berms that effectively shield the building from the surrounding residential neighborhood.

The Justice Department Building reflects the concerns of the client with its fortresslike appearance from the road. The most prominent façade contains windowless computer mechanical, storage, and loading dock areas built during a first phase of the project. The second phase of offices offers only narrow slits of reflective or tinted glass, interrupted by two-story recesses of reflective glass marking the location of the building's corridor. The building is clad in a scored reddish stucco, which was not the architect's first choice of unglazed quarry tile, but which was necessitated by budget constraints.

A "main street" bisects the building, connecting the two entrances. At right angles to that spine, every 72 feet, extend transverse corridors with glass end walls to accommodate future expansion. The corridors are 1 foot wide with 8-foot-wide second-floor walkways, topped by double-glazed and reflective glass clerestories that bring daylight into the center of the building and give a spaciousness to the tightly packed plan. The corridor...
connect several small “neighborhood” courtyards and wrap around a large, open-air town square.” Those courts not only bring light and air into the non-air-conditioned corridors and allow employee access to the outdoors without moving beyond the security guards, but also identify the entrances to the bureaus housed within the 350,000-square-foot facility. The architects’ reference to the courts as neighborhoods and the corridors as streets is not inappropriate. The size and scale of those spaces, within a secure exterior wall, has the character of a fortified European village.

Energy details
It is in the details of its energy-conserving strategies as much as in its plan that the Justice Department Building stands out. The exterior walls along the north and south elevations have an ingenious section, with a narrow band of reflective glass for the view of people seated at desks, a sloped white panel for reflecting daylight onto the ceilings, a recessed transom light with tinted glass and horizontal blinds to prevent glare, and an operable vent within the soffit for intake air.

The concrete frame (top) that extends beyond the entrance to the building conveys the image of a front porch. The building’s expansability, implied in the entrance’s concrete frame, becomes even more clear at the east elevation (bottom) where office wings extend to different lengths between the regular interval of corridors.
serving the night air-cooling system. While the limited view when one is standing in the offices creates a certain claustrophobia, the exterior wall section acts as a compact and efficient environmental filter.

The night air-cooling system takes advantage of Sacramento's wide diurnal temperature swings to reduce the cooling loads and lower the courtyard temperatures. The building's concrete waffle floor slabs absorb the daytime heat generated by people, lights, and equipment. At night, low horsepower propeller fans, located in the corridor ceilings, pull cool air through the opened exterior soffit vents, under the slab to cool it, through transom vents in the corridors, and out barrel-vaulted louvers on the roof. Placing that air plenum above a suspended ceiling keeps the night air against the slab and prevents the rapid cooling of offices, allowing their 24-hour use. At a cost of $100,000, the night air-cooling system should pay for itself in 11 years, with an anticipated saving of $245,000 in energy costs over the next 20 years.

Not all of the heat generated internally in the building is exhausted through that system. The computer center's heated air passes through double-bundle condensers before being exhausted to make it available for domestic hot water (supplementing the 650 square feet of solar collectors on the roof), for space heating in winter, and for reheating the computer terminals in summer. A separate charcoal filter system allows the recycling of the toilet exhaust air.

With water consumption and distribution a major political issue in California, the Justice Department Building uses low flow volume water fixtures. And with high electrical rates and peak demand taxing the generating capacity of utilities, the building employs several power conservation methods. Its air-conditioning refrigeration equipment operates at night at lower condenser temperatures; a concrete tank stores the chilled water for use the next day. With a budget of 1.5 watts per square foot, the offices use a combination of task and ambient lighting, with fluorescent task lights providing an initial 80 footcandles on dimmers so that individuals can make their own adjustments, and ambient lights that use low brightness paralume fixtures providing an initial 20 to 30 footcandles. The luminaire ballasts can give alternate intensities of 10 or 15 footcandles. Exterior and storage room lighting use low pressure sodium fixtures, with non-yellow high pressure sodium fixtures anticipated for the corridors. A computer switches lights in little used areas in addition to monitoring and controlling the HVAC system. Other equipment that reduces the power demand includes photocell controls, which operate fixtures near windows when sufficient daylight makes artificial light unnecessary; enthalpy and economizer controls, which reduce equipment operation during mild temperatures; variable air volume systems, which run at reduced capacity more than 85 percent of the time; chiller controls, which allow the temperature of the chilled water to change with load requirements; and variable-pitch axial supply fans, which use 40 percent less power than centrifugal fans. As juror Sital Daryanani said of the Justice Department Building after it unanimously won the Owens-Corning energy conservation award in the government-design category, "a lot of
these systems have been developed and used in small prototype buildings. When you scale them up... with complex functions, and still keep the simplicity of those systems working, that in fact is an innovation in its own right."

Concrete shear walls stabilize the building against earthquakes. The architects decided to leave all shear walls exposed, scoring them with horizontal lines and, when located adjacent to a courtyard, punching circular windows in them to allow a view without disturbing their structural integrity. The scored lines unify several architectural components. Their horizontal dimensions locate the mullions in the glass walls, the head and sill heights for doors and windows in offices overlooking the daylit corridors, and least successfully, the height of colored bands that form wall graphics in some of the open offices.

Marquis Associates have some misgivings about the office interiors. A tight budget allowed only the simplest finish material and treatment. Except for built-in cabinets and a movable partition system designed by the architects and built by prison labor, the furniture came from previous Justice Department
offices. The finish colors, though, were kept light to maximize interior reflectance. Daylight provides adequate ambient light about 15 feet from both exterior and corridor windows; additional skylights were not used to illuminate the remaining artificially lit space because of their security risk.

The building's accessible courtyards, well-appointed cafeteria, and open corridors meet the program's requirements for social interaction. That openness, however, creates other problems. The double-height corridors make isolation of parts of the building difficult. To separate low- and high-security areas, a wall was built across one corridor, creating an awkward dead-end space. The openness also raises some fire code issues, solved by sprinklering the corridor, installing wire glass in rated frames in all corridor doors and windows, and using the corridor exhaust fans for smoke removal.

Obvious care was taken in avoiding solar heat gain. On the exterior, few windows exist on the east and west elevations; other windows have reflective glass or tinted glass beneath overhangs. In the corridors, building projections, external sun shades, and recesses keep out direct sun in the summer and allow it to bathe the concrete floors in winter. Rigid insulation, 3½ inches thick, and a light-colored roof prevent the concrete deck from overheating.

The building's anticipated total energy usage is 38,000 Btu/sq ft/year. Fred Dubin, the energy consultant on the project, thinks that the figure “could have gone to 25,000 had there not been such a tight budget.” With 12 years as the maximum payback (for the solar domestic hot water system) and 3 years as the minimum payback (for the computer control system), and with an anticipated saving of $4.4 million in energy costs over the next 20 years for the entire building, the higher initial investment in energy-related systems (approximately 29 percent of the $26 million budget) seems amply justified.

Verdict pending
How the Justice Department Building actually performs and is received by employees remains a question. Will employee productivity be affected by the wider range of interior temperature or lighting levels? Will the architects’ efforts at explaining the building's operation in the department's newsletter effectively counter any misuse of the energy systems? Will the building strike the balance, so difficult to achieve in offices, between automated and individualized climate control?

What is certain is that the Justice Department Building shows the positive effect conservation can have on architectural form, providing a basis for decisions that vary from fenestration details to the organization of the overall plan, without being visually obtrusive or physically inconvenient. The architects have given conservation a fair trial, judiciously weighing energy efficiency against equally important issues of security, productivity, and aesthetics. Where the building slips architecturally, in its somewhat disappointing interior and exterior finishes, it does so mainly out of budget constraints. Where it excels, in the ingenuity and breadth of its conservation strategies and in the humane, noninstitutional quality of its interior organization, it deserves careful deliberation. The jury of building users is still out, but the verdict looks good. [Thomas Fisher]
THE GE OPTIMISER LIGHTING SYSTEM COSTS MORE. BUT IT’S LESS EXPENSIVE.

This new General Electric Optimiser lighting system combines energy-efficient 28-watt lamps with specially-designed, hybrid solid state 2-lamp lasters to save 17% in energy costs compared to standard fluorescent systems. Yet, most fixtures, there is only a slight (3%) reduction in maintained light levels.

Typical 4-Lamp Enclosed Trolley Performance

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>4-Standard</th>
<th>4-Optimiser</th>
<th>4-Standard</th>
<th>4-Optimiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamps Used</td>
<td>20,000</td>
<td>15,000+</td>
<td>20,000</td>
<td>15,000+</td>
</tr>
<tr>
<td>Lamps Life (Hrs.)</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Lumens</td>
<td>1876</td>
<td>1876</td>
<td>1876</td>
<td>1876</td>
</tr>
<tr>
<td>(Typical Office)</td>
<td>73.2</td>
<td>73.2</td>
<td>73.2</td>
<td>73.2</td>
</tr>
</tbody>
</table>

The performance-matched Optimiser lamps and ballasts increase system efficiency by 39%. A typical 4-lamp troffer with standard lamps and ballasts uses 186 watts. In the average office lighting application, the energy savings per fixture will be $12.60 per year (3000 ABHR, 7¢/KWH).

And because the Optimiser fits all standard 40-watt four-lamp fixtures, it’s especially suited to retrofitting, in addition to its many applications in renovation and new construction projects.

Technically speaking.

The key to the Optimiser System's performance is the combination of improved electromagnetic circuitry and field proven electronic components in the ballast matched to a specially designed lamp. The heart of the system is a solid state switch in the ballast that cuts off power to the lamp's bi-modal cathodes once the lamp is on. The lamps continue to operate at full light output without cathode heater voltage. The result is a highly efficient fluorescent system that operates at 34% lower wattage than standard.

This also means the Optimiser ballast operates up to 30°C cooler than standard ballasts. Which results in extended ballast life and, depending upon the particular HVAC system, may lower air conditioning costs.

Typical Initial & Annual Operating Costs (New Fixtures)

<table>
<thead>
<tr>
<th>Lamp Ballast</th>
<th>4-Standard</th>
<th>4-Optimiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fixtures</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>Initial Cost</td>
<td>$15,362</td>
<td>$15,684</td>
</tr>
<tr>
<td>Annual Operating Cost</td>
<td>$3,784</td>
<td>$3,784</td>
</tr>
<tr>
<td>Watts/Sq. Ft.</td>
<td>1.42</td>
<td>1.42</td>
</tr>
</tbody>
</table>

It's obvious the Optimiser System is more sophisticated than the standard fluorescent system. In the matrix above Optimiser proves to be the most cost effective system. For your next lighting project compare Optimiser and you'll see how a lighting system that costs a little more initially can be a lot less expensive to operate in the long run.

If you'd like a complete package of information or just have some questions about the Optimiser System, call us toll free at 800-321-7170. (In Ohio, 800-362-2750.)

We bring good things to life.

General Electric

Circle No. 347 on Reader Service Card
"Practicality"

His buildings seem now timeless. By attention to all detail he achieved the design mastery he sought. And time has proven the superb, enduring, practicality of what he created.

The lesson was well taught. Rixson door pivots in Frank Lloyd Wright buildings provide more than obvious aesthetic advantages. Their mechanical superiority has, unnoticed, better protected countless doors and frames from the ravages of the years. There is no better means of door hanging than the Rixson pivot.*

*Additional information on request.

RIXSON-FIREMARK
9100 West Belmont Avenue, Franklin Park, Illinois 60131
and Rexdale, Ontario——312/671-5670

Circle No. 390 on Reader Service Card

A DIVISION OF CONRAC CORPORATION
ENERGY-EFFICIENT SYSTEMS HAVE ALWAYS COST LESS TO OPERATE. HERE'S ONE THAT COSTS LESS TO INSTALL.

specifier Series: No. 2
The GE Maxi-Miser II system.

There's more than one way to design an energy-efficient lighting system. You can cut wattage while keeping the same light level. Or you can keep the same amount of watts, get more light, and use fewer lamps and ballasts.

Which is exactly the principle behind the Maxi-Miser™ II lighting system from General Electric. It's comprised of Maxi-Miser II lamps combined with Maxi-Miser II ballasts. Together, they deliver more light than any other 4-foot fluorescent system commercially available.

And unlike any energy-efficient system you've dealt with, the Maxi-Miser II system costs less to install. Fewer lamps and ballasts are needed, so labor costs are lower.

The highest in the industry for a 40-watt fluorescent lamp.

The Maxi-Miser II system in the four-lamp troffer.

With this system, you can reduce the number of 2 x 4, 4-foot fixtures needed by 20%. This cuts energy costs while maintaining the same light levels as a standard lamp and ballast system.

The Maxi-Miser II system in the three-lamp troffer.

If energy codes are requiring you to limit watts per square foot, you can do so without reducing light levels. Just specify the Maxi-Miser II system in a three-lamp fixture. The maintained light output will be equal to a standard four-lamp troffer. But wattage will be cut by 28%. In addition, where air-handling fixtures are the choice, Maxi-Miser II lamps can perform even better.

The Maxi-Miser II system: maximum design flexibility.

The Maxi-Miser II system gives you the quality of light you demand along with the energy efficiency you need. It's ideal for new construction and major renovation. Because it provides the design flexibility that's required to meet different criteria.

It gives you flexibility with choice of fixture. Because General Electric works with fixture manufacturers to ensure our lamps are compatible with virtually any fixture you specify. Maxi-Miser lamps, in either warm or cool colors, are readily available in all parts of the country.

For more information, give us a call at 800-321-7170. (In Ohio, 800-362-2750.) We'll try to answer all your questions right over the phone. If you need application assistance, we'll refer you to the GE lighting specialist in your area.

He can tell you about GE's other energy-efficient light systems, too, and what they're best suited for. The Watt-Miser™ system for normal replacement. And the Optimiser System for group replacement.

The Maxi-Miser II lighting system. Now you've got a good reason to specify a lot fewer lamps and ballasts.

We bring good things to life.

GENERAL ELECTRIC
Circle No. 349 on Reader Service Card

TYPICAL INITIAL & ANNUAL OPERATING COSTS

<table>
<thead>
<tr>
<th>FIXTURE Type</th>
<th>LAMP BALLAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 LAMP-LENSES</td>
<td>MAXI-MISER II</td>
</tr>
<tr>
<td>STANDARD</td>
<td>MAXI-MISER II</td>
</tr>
<tr>
<td>STANDARD</td>
<td>MAXI-MISER II</td>
</tr>
</tbody>
</table>

TYPICAL TROFFER PERFORMANCE*

<table>
<thead>
<tr>
<th>FIXTURE TYPE</th>
<th>LAMP BALLAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 LAMP OPEN (TANDEM WIRED)</td>
<td>MAXI-MISER II</td>
</tr>
<tr>
<td>3 LAMP OPEN (TANDEM WIRED)</td>
<td>MAXI-MISER II</td>
</tr>
</tbody>
</table>

*Based on GE Tests

1. More light from a 40-watt lamp.

There are sound reasons for its extra light output. First, a Maxi-Miser II lamp has a special electrically-insulated shield of high purity steel around each cathode. This shield catches end-blackening material, which improves lumen maintenance substantially.

Second, GE combines neon in the gaseous mixture with a coating of high performance phosphors to give these lamps a 3450 lumens rating.
Levolor. Helping you solve beautiful problems.

Regardless of the size, shape, space or special problem, Levolor will manufacture the perfect blind to fit your solution. Whether it's special assemblies or an extra small Bantam™ head, Levolor will give you the capability to create light, temperature and glare control in places and spaces where blinds have never gone before. For a guide to many of the beautiful solutions from Levolor, write Levolor Lorentzen, Inc., 1280 Wall St. West, Lyndhurst, N.J. 07071.

©1982 Levolor. A product of Levolor Lorentzen, Inc.
The need for energy conservation continues to generate new developments in lighting design, technology, and products.

In the design of virtually all buildings since the mid-1970s, the conservation and management of all forms of energy have been top priorities. Energy has had an impact on the exterior envelope, HVAC systems, and most of the equipment used within. But no system of the building has been more obviously affected than its lighting system.

Daylight and electric lighting systems are the only practical modern techniques for providing light. Prior to the “energy crisis” of 1973, building designs having large-scale and effective daylighting systems were few; typical designs involved large areas within a building envelope. Electric lighting systems providing task lighting levels in every corner of the space were the state of the art. At that time, lighting consumed about 5 percent of the nation’s energy and about 20 percent of the generated electricity. When the energy crisis began, people were encouraged to “turn off the lights” and thus save energy.

Despite numerous energy regulations, countless studies, many federal and state specifications, and various energy-saving guides, energy conservation and management involving lighting have been profoundly affected by one thing: the rise of the cost of energy. In the last decade, the cost of electricity has risen about 400 percent. Today, the most energy-efficient buildings will cost about $0.50 per square foot annually to light; conventional designs of the 1960s, in comparison, would easily demand three times that amount.

The energy equation

In general, lighting calculations lend themselves well to a fundamental energy equation (Energy = Power \times Time), since most electrical devices are rated in watts (power) and the unit of electrical energy is kilowatt-hours. There are no subtle factors, such as thermal mass, to make the calculations more difficult. Thus, the architect or engineer can, through design: minimize the power of lighting systems and minimize the time in which lighting systems are used.

Most energy codes (such as ASHRAE standards 90-75 and 90-80) address only the connected power of the lighting system, providing no practical formula to address length of use. However, by demand of building owners and users, the industry has responded with equipment and systems that address both parts of the equation. By utilizing the proper combination, the architect can dramatically decrease the cost of lighting energy.

Daylighting design

Introducing daylighting as a major source of interior lighting can save large amounts of energy. Daylight has an excellent color spectrum and well-understood psychological benefits in interior spaces. Compared to electric light sources in terms of the relative impact on HVAC systems, daylight is equivalent to having electric sources operating at 140 lumens per watt without dirt or lumen depreciation factors.

To use daylight effectively in energy-conscious design, however, the designer faces a considerably more difficult problem. First, the light must be directed to the work area. Second, it must be of an appropriate level (illuminance) for the work tasks. And finally, there should be means to control and compensate for its many variations, including day/night cycle, daily weather variations, and seasonal differences in solar angle.

Aside from classic design standards, architects have used scale models and generalized calculation techniques in order to predict the effects of daylight on designs. Recent developments in illuminating engineering have enabled computer programs to be written that provide detailed point calculations of daylighting effects on an interior space. Using such tools during conceptual design, the architect could determine whether the design effectively lights the task, or simply floods a small part of the room with too much light. In more complicated designs, illuminating engineers may consult and help in the development of reflectors or diffusers. (Kahn’s Kimbell Museum, P/A, Nov. 1972, p. 25, is an example of such interaction; his consultants, Richard Kelly and Isaac Goodbar, used mathematics to confirm and then engineer Kahn’s original idea.)

It is necessary to minimize stray daylight, just as one minimizes the use of electric lights when not needed. Adding energy to a space in the form of light represents a heat load. Even if the space is shielded from direct solar radiation, the amount of this energy can be significant, if not controlled. A well-designed daylighting system will impose 50 to 75 per-

James R. Benya

Chief Electrical Engineer

Health Facilities at Smith, inchman & Grylls Associates, inc., Architects, Engineers, and Planners, Detroit, Mich. He also but as Lecturer in Lighting design at the University of Michigan, School of Art.
Energy-conserving lighting

1a) Floor plan of test model: A nominal 15' x 15' office with south-facing window is used for demonstrating electric lighting and daylighting techniques later.

1b) Section of test model: This shows specifically an overhang whose impact on daylighting is analyzed in Fig. 2.

2a) This computer simulation of daylight entering the office without an exterior overhang shows that natural light penetrates only a few feet into the room; that light levels near the windows are very high, averaging over 1100 footcandles; and that the contrast or illuminance ratio is, at its worst, 80:1. To match that lighting level with artificial illumination would require 10 watts per square foot.

2b) The second computer simulation is of daylight entering the office with the overhang shown in 1b. The light levels still exceed minimum requirements, averaging 160 footcandles. But the light penetrates further into the room; the illumination is more widely and evenly dispersed; and the illuminance ratio falls, at its worst, to 5:1. The electric light equivalent also falls to 1.43 watts per square foot.

cent of the cooling load imposed by an electric light system providing the same lighting level. More often, the cooling load is significantly higher, because the daylight is not controlled properly.

The computer modeling technique allows the designer to vary all the components of his system, including glass, orientation, angles of fenestration, and overhangs or shielding mechanisms, and then to study each for the appropriate seasonal and climatic variations. In Fig. 2a, the illumination of the simple office (Figs. la and lb) caused by daylighting without an exterior overhang is shown. By adding an overhang, the light distribution is made much more even, yet the levels on the desk are still quite high.

Similar studies can be undertaken of the effects of physical control of daylight. By varying the transmittance of the glazing, the computer program can demonstrate the effect of blinds, draperies, or other treatments. Daylighting systems that can vary transmittance through the use of mechanical controls are likely to have a broader range of conditions under which supplementary light is not required.

When electric light is required to supplement daylight, the control of electric light is introduced as another element of the system. Even if the electric light source is extremely efficient, it should not be allowed to be energized unless needed. The problem of maintaining a minimal light level is best handled by an “equi-illumination” system. Equi-illumination systems respond to daylight by dimming the output of supplemental electric lights. Depending upon the many conditions of location and orientation of space, local climate, and normal operation schedule, equi-illumination systems could reduce energy consumption in otherwise simply switch rooms by as much as 60 to 70 percent.

Appropriate lighting levels

The most often criticized lighting design practices of the 1960s and early 1970s were overlighting (“more light, better sight”) and general lighting. Overlighting was caused principally by the availability of cheap energy. It encouraged architects and engineers to design lighting for the most difficult expected task rather than tailoring the light levels to the actual tasks. High light levels, typical 100 footcandles or more, became standard in the building industry.

General lighting was made prevalent by the availability of cheap energy and the lack of fast, accurate means for calculating light levels at individual task locations. Lighti
systems were in turn manufactured to give evenly distributed lighting when spaced at recommended intervals. The zonal cavity technique of calculations, once used by all engineers and architects for determining light levels, was based on the assumption of even, uniform lighting.

The problems of overlighting and general lighting were always known but generally ignored because of cheap energy. With the energy crisis came a shift toward the modern practice of task lighting. It involves four major elements:

1. Determination of the appropriate lighting level for the task actually being performed, including consideration of the age of the viewer, the importance of speed and accuracy, and the visual difficulty of the particular task compared with the average for the type. (See Appendix "A" of the IES Lighting Handbook, 6th Edition.)
2. Determination of appropriate lighting levels for areas around the task ("ambient") that are generally lower than those required or the task.
3. Design of lighting systems that provide only the amount needed for the task and other areas.
4. Choosing lighting systems that lend themselves to the reorientation or moving of tasks within the space.

Task lighting—and not just furniture-integrated "task lights"—should be part of every design. Again, computer programs allow the computation of task light levels on a point-by-point basis. It is, in fact, possible to aim conventional troffers using this method (see Fig. 3). Regardless of final luminaire selection, task lighting can save 50 percent or more in connected lighting power compared with traditional general lighting systems.

High-efficiency lamps

The last decade has seen a tremendous emphasis on energy-saving devices and equipment, with electric lamp manufacturers leading the introduction of new products. At first, the lamp companies provided retrofit equipment, especially the 34/35-watt fluorescent tube. But designers expressed a need for lamps that had better color rendering properties as well, and this spurred new development. Contemporary practice steers away from the use of incandescent lamps as such as possible for, as shown in Fig. 4, they have very low efficacy compared with virtually all other conventional sources. Low-voltage incandescent lamps have, however, received new emphasis and development. Offered in conventional PAR lamps and in new, -inch-diameter "MR-16" projector lamps, the low-voltage lamp's superior optical control will continue to offset its otherwise low efficacy for highlighting and for situations requiring sharp focus and precise beam control. Incandescent lamps also are still used here full-range dimming or instantaneous peration at all temperatures is required.

Fluorescent lamps are one of the largest areas of development and application. At first, the 34/35-watt retrofit lamps were introduced with average color rendering properties. With the introduction of new prime-color spectrum lamps and hybrid spectrum lamps, good color and high efficacy were made possible. Recognizing the designer's needs for various color temperatures as well, lamps have been introduced ranging from incandescent-simulating at 3000 K to daylight-simulating at over 7500 K. While most of these lamps have been designed for compatibility with existing 3- and 4-foot fixtures and other common technologies, a few (most notably the T-8 lamp) will require all new luminaires and auxiliary equipment. One major area of new development has been in the fluorescent lamp replacements for incandescent lamps, especially for residential and light commercial use. The circular fluorescent replacement has been on the market for several years. New developments in miniature lamps will provide compact, long-life sources with minimal energy consumption.

High-intensity discharge (HID) lamps have also undergone significant development and greater use. High-pressure sodium lamps are the most efficacious of the "white" HID lamps, but their golden-white color caused considerable controversy wherever they were installed. Improvements in color, while maintaining the desirable efficacy and life characteristics of the lamp, were among the major technical achievements recently introduced. Metal halide lamps have gained the greatest acceptance of the HID lamps for interior applications, as their efficacy and lamp life have increased. The traditionally cool color of the lamps also has been warmed up; 3000 K metal halide lamps are now available. And specialty lamps, such as the compact source iodide (CSI) and the HMI lamp, designed for film and stadium lighting, have added options in excellent color rendition and efficient optical control. Roadway lighting has seen the introduction of the low-pressure sodium (LPS) lamp to the United States. Offering efficacy exceeding that of all other conventional sources, its energy-saving potential could not be overlooked despite its monochromatic yellow light.

Choosing the right source as an energy-conserving measure has been part of lighting

3 Task lighting—Test room with electric lights only (two-2 lamp F40CW parabolic troffers): Despite an average illumination level of 24 footcandles (maintained) and a connected power of 0.881 watts per square foot, nearly 50 footcandles ESI are produced in the task work area.
Energy-conserving lighting

design practice throughout history. The most significant difference now is that the selection of the source is a compromise between energy, color rendition, and operating considerations that include life, lumen depreciation rate, sensitivity to temperature and humidity, warm-up and restrike time, and ability to be dimmed to lower output levels. (It is especially important in systems supplementing daylight to be easily and effectively dimmable; it should be noted that HID lamps dim very poorly under the best of conditions, exhibiting very poor efficacy and undesirable color shift as their output is reduced from full value.)

High efficiency lighting systems

Design approaches have changed significantly in response to the demand for energy conservation. This has in turn caused the development of more efficient reflectors, louvers, lenses, and other components of the optic system. The net result is lighting equipment that is exceptionally efficient without sacrificing glare control. In recessed lighting systems, the best examples of this modern technology are the parabolic louvered troffer and the high-efficiency prismatic lens. Originally designed with deep louver "cells" for outstanding glare control and batwing distribution to enhance the ability of the system to render contrast (ESI), parabolic troffers now offer higher efficiency (over 70 percent) without substantial sacrifice of either glare control or distribution. And a number of new prismatic lenses are available which have the efficiency of the classic pattern 12 lens, but with better optical and glare-control features.

Indirect lighting systems, long recognized for their low glare and broad general distribution of light, have gained appeal as "ambient" lighting. The result has been the introduction of the HID lamp ambient light luminaire in many shapes and sizes, and the refinement and added efficiency of fluorescent indirect luminaires. Both approaches have also been used successfully for general lighting at task levels. With task lighting having come many luminaires using fluorescent lamps, designed to be attached to or integrated into office furniture. A few ingenious designs of luminaires provide, either from the furniture or from the ceiling, both task and ambient lighting.

Selecting the proper lighting system often involves the use of several different types of luminaires, each doing a specific job. This design approach takes advantage of the most efficient luminaires for the purpose, such as task lighting or ambient lighting. It also allows the designer to solve the problems of each independently, since the most difficult problem in task lighting—its ability to move around the space—differs substantially from that of ambient lighting—making the system efficient and controllable. Whether the same luminaires or separate systems are used for

<table>
<thead>
<tr>
<th>Incandescent</th>
<th>Age of technology¹</th>
<th>Typical wattage²</th>
<th>Efficacy, lumens/watt³ including auxiliaries</th>
<th>Energy saving features</th>
<th>Relative color rendering</th>
</tr>
</thead>
<tbody>
<tr>
<td>• conventional</td>
<td>pre-1970</td>
<td>3-2000</td>
<td>4-25</td>
<td>—</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• tungsten halogen</td>
<td>pre-1970</td>
<td>75-1500</td>
<td>18-21</td>
<td>—</td>
<td>excellent</td>
</tr>
<tr>
<td>• low-voltage</td>
<td>pre-1970 and current</td>
<td>25-300</td>
<td>15-20</td>
<td>superior optic allows lower unit wattages</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• energy-saving</td>
<td>1977-present</td>
<td>40-135</td>
<td>12-20</td>
<td>slightly lower unit wattage and/or better optical control</td>
<td>very good to excellent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluorescent</th>
<th>Age of technology¹</th>
<th>Typical wattage²</th>
<th>Efficacy, lumens/watt³ including auxiliaries</th>
<th>Energy saving features</th>
<th>Relative color rendering</th>
</tr>
</thead>
<tbody>
<tr>
<td>• conventional rapid start T-12</td>
<td>pre-1970</td>
<td>30-215</td>
<td>73</td>
<td>50</td>
<td>fair color is typical of "cool white" fluorescents which tend to "gray" earth tones & reds (CRI less than 75)</td>
</tr>
<tr>
<td>• energy-saving rapid start T-12</td>
<td>1977</td>
<td>25-185</td>
<td>73</td>
<td>lower unit wattage</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• hybrid/prime color technology T-12</td>
<td>1979</td>
<td>25-95</td>
<td>73</td>
<td>increased efficacy with good color</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• second generation energy saving T-12</td>
<td>1981</td>
<td>34/35</td>
<td>78</td>
<td>increased efficacy, slightly better color</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• T-8 technology</td>
<td>1982</td>
<td>32</td>
<td>80</td>
<td>increased efficacy with good color</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• T-12 filament turn-off technology</td>
<td>1982</td>
<td>26</td>
<td>85</td>
<td>increased efficacy</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• incandescent replacement T-26 and FO</td>
<td>1977-1980</td>
<td>25-44</td>
<td>40-48</td>
<td>lower unit wattage and/or better optical control</td>
<td>very good to excellent</td>
</tr>
<tr>
<td>• "PL" lamps</td>
<td>1982</td>
<td>7-13</td>
<td>50</td>
<td>low unit wattage, small size</td>
<td>very good to excellent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High intensity discharge</th>
<th>Age of technology¹</th>
<th>Typical wattage²</th>
<th>Efficacy, lumens/watt³ including auxiliaries</th>
<th>Energy saving features</th>
<th>Relative color rendering</th>
</tr>
</thead>
<tbody>
<tr>
<td>• conventional</td>
<td>pre-1970</td>
<td>40-1000</td>
<td>23-59</td>
<td>—</td>
<td>fair</td>
</tr>
<tr>
<td>• improved color</td>
<td>1970</td>
<td>40-1000</td>
<td>16-50</td>
<td>—</td>
<td>good; warm color (3000°K)</td>
</tr>
<tr>
<td>• conventional metal halide</td>
<td>1970</td>
<td>175-1500</td>
<td>72-102</td>
<td>high efficacy</td>
<td>very good; cool color (3500-4500°K)</td>
</tr>
<tr>
<td>• super metal halide</td>
<td>1975</td>
<td>1000</td>
<td>117</td>
<td>higher efficacy</td>
<td>very good; warm color (3300°K)</td>
</tr>
<tr>
<td>• super metal halide</td>
<td>1982</td>
<td>175-400</td>
<td>72-85</td>
<td>improved color</td>
<td>very good; warm color (3300°K)</td>
</tr>
<tr>
<td>• conventional high pressure</td>
<td>1975</td>
<td>50-1000</td>
<td>60-131</td>
<td>high efficacy</td>
<td>poor to fair (2000°K)</td>
</tr>
<tr>
<td>• high pressure sodium retrofits for mercury</td>
<td>1977</td>
<td>150-360</td>
<td>72-89</td>
<td>lower unit wattage and higher efficacy</td>
<td>poor to fair (2000°K)</td>
</tr>
<tr>
<td>• color-improved high pressure sodium</td>
<td>1980</td>
<td>150-250</td>
<td>76-86</td>
<td>improved color</td>
<td>fair (2400°K)</td>
</tr>
<tr>
<td>• low-pressure sodium</td>
<td>1970</td>
<td>18-180</td>
<td>62-150</td>
<td>traditionally high efficacy</td>
<td>very poor (monochromatic yellow)</td>
</tr>
</tbody>
</table>

Notes
1 Approximate year of commercial availability, generally by more than one manufacturer.
2 Range typical to architectural applications. Others exist.
3 Range where shown generally from smallest wattages to largest wattages, respectively.
4 Not all features are available in other lengths or types such as Slimline or Instant Start. The emphasis is on the four foot lamp as it represents the largest market.

FIGURE 4: OUTLINE GUIDE TO ENERGY DEVELOPMENTS IN LAMPS
task and ambient light, the goal should be to minimize connected electrical load. Select the most efficient alternative, once assured that each has the same ability to meet design criteria (assuming that other pertinent issues such as aesthetics, cost, or function have been resolved).

Auxiliary equipment

Auxiliary equipment, which includes ballasts, sockets, wiring, and similar parts, superficially appears to have no bearing upon energy or efficiency. Ballasts were the first of these components recognized as candidates for energy-oriented development. Fluorescent lamp ballasts have traditionally consisted of magnetic (reactive) coils operating at the nominal power distribution frequency of 60 hertz. The internal losses in the ballast typically ran from about 10 percent (super premium or low-heat grade) to 15 percent (specification grade). Modern energy-saving ballasts for standard four-foot lamps (the most common and highly developed) are of three types:

- **Low-loss 60-cycle magnetic**, which are conventional ballasts designed specifically for operation with 34/35-watt lamps;
- **Low-loss 60-cycle magnetic with filament switch**, designed specifically for operation with special 28-watt lamps, the cathode-heating filaments of which are de-energized when not needed;
- **Electronic high-frequency**, capable of operating with most 40- and 34/35-watt lamps, which actually cause lamps to produce 10–15 percent more light per watt.

The choice of ballast generally involves a concern for first costs, particularly with the electronic ballast, whose current market price is significantly higher than the magnetic types. The other two magnetic systems, however, are limited to standard rapid-start technology, and tend to operate lamps on the edge of thermal stability, supporting the prediction that electronic ballasts will become competitive in the foreseeable future. In any case, energy-saving ballasts can reduce overall energy consumption by 10 to 15 percent compared with standard ballasting. HID ballasts have not yet felt the emphasis on energy-conserving concepts. This is partly because of the delicate balance between ballast and lamp, especially for the HPS lamp, and also because the ballasts have always been relatively efficient (7–15 percent) and are not easily improved. Electronics will enter this realm at a much slower pace, largely due to concerns over the reliability of power semiconductors compared to magnetic coils.

Among auxiliary components, the most widely sold as a pure energy saver is the rectifier disc. Placed in a standard medium-base socket for an incandescent lamp, the disc converts the power delivered to the lamp, thereby delivering slightly over 50 percent of the power ordinarily consumed by the lamp. Although it reduces lamp output by 75 percent, reduces efficacy by 50 percent, and changes the color rendering properties of the lamp, the disc provides the side benefit of dramatically extending lamp life. Used in areas oversupplied with incandescent light, it may be a wise investment, but such devices are for retrofit applications, not new designs.

Controls

Of the ways in which the revolution in electronics has served the construction industry, lighting control is one of the most significant. In some instances, electronics have updated traditional concepts, such as the multiprogram time clock. But most of the newer products have no precedent. The designer is faced initially with a number of control possibilities (see Fig. 5). Beginning with manual controls, such as ordinary light switches, these include, progressively, automatic time control systems, automatic light (photocell) control systems, proximity detection systems, and equi-illumination (automatic dimming) systems. The most sophisticated concepts use building management systems to include all of the systems described above, plus the overall building electrical loads for demand limiting and co-generation applications. The selection of the control type depends on the maximum energy-saving potential, based on how the building or space is used, compared with the cost of energy.

Another major design issue is the definition of control zones. For facilities with rigorous work schedules and fully manned work areas, an on-off switch or simple time clock could effectively control millions of square feet. An infrequently used space, on the other hand, would benefit from an individual switch or occupancy sensor. This issue becomes important when considering open office plans and similar spaces with varying work schedules, unpredictable personal schedules, and ill-defined personal territory.

The third major issue for the designer involves techniques of wiring and system communication. Line-voltage control systems, such as conventional wall switches, work directly upon the wires providing power to the lighting load. This is also true of unit automatic control devices, such as simple time clocks and residential photocell switches. But at more complex levels of system operation, especially if the system is communicating to a central computer, the designer may select from low-voltage, low-voltage multiplex, or power-line signal (carrier current) systems. The selection of these options depends on the control functions and zoning of the system; the more expensive carrier-current system components require significantly lower labor costs when switching individual fixtures.

The fourth major issue confronting the designer involves the use of dimming, especially when not part of an equi-illumination system. Theatrical dimming technology, including digital dimmers, smart dimmers, automated presets, and foolproof controls, is being introduced into the expanding architectural dimming market, and offers potential energy savings. A ballroom system in a hotel, for
Energy-conserving lighting

example, can limit the connected power except during programmed periods to only those loads necessary for setup or cleaning.

Strategies for design

Given these six major areas in which energy can be conserved or managed—daylighting, task lighting, lamps, luminaires, auxiliaries, and controls (Fig. 6)—the designer needs a strategy for balancing each to gain the optimum benefit. In the strategy outlined below, the first four steps are taken prior to the schematic design of the building, permitting the development of basic architectural design involving daylighting and electric lighting concepts. These steps should not, however, prejudice the lighting design itself.

1. Determine the desired benefit or energy goals of the project. Very few projects will invest in energy-conserving measures without demonstration of a reasonable payback or return on the investment. Conversely, many projects will make an investment above a minimum first-cost budget dependent upon the return on that incremental investment. Because of the cost of energy, the goal is often measured in economic terms. Therefore, the architect or engineer needs to discover the payback or return on investment expected by the investor.

2. Qualify the project according to its potential for various methods of conservation. A project’s siting, including climate, orientation, and relationship to nearby buildings, will heavily influence pursuit of daylight, for example, whereas a rigorous, industrial work schedule might suggest time-oriented control systems.

3. Establish design criteria for illumination levels, required visual comfort, color rendition, and general human functionality of the lighting system. This will narrow the design alternatives considerably. For instance, a requirement for excellent color rendition in a supermarket would eliminate most HID lamps, especially HPS. Or the need to relocate a certain task frequently within a large, otherwise non-task area might disqualify recessed troffers as both ambient and task-lighting systems.

4. Identify the suitability of auxiliary equipment, particularly for fluorescent systems. Aside from cost concerns, owners of existing facilities might wish to retain a certain technology, such as standard 40-watt rapid-start lamps, rather than incur the complications of stocking several different lamp and ballast types for maintenance purposes.

5. Consider the potential of daylighting as part of the architectural design of the project. The use of both illumination and mechanical consultants on complicated designs can optimize the daylighting effects without adding substantially to the cooling load. The daylighting design, in turn, presents various opportunities to the overall lighting design, particularly for electric lighting equipment.

The remaining steps in developing the strategy can then be pursued.

6. Assess each space for the impact of daylighting and determine the amount of energy left to be subject to further measures.

7. Propose practical and acceptable combinations of luminaires, lamps, and auxiliary equipment as complete lighting designs for each space. This will establish a maximum power upon selection of a scheme. Note that in the proposing of alternative designs, or in the selection of the scheme itself, it may be necessary to evaluate the cost benefit of reduced power equipment versus added investment.

8. Propose practical and acceptable control schemes, including types of control equipment and system zoning. This is the last major step, because each scheme will be compared on the basis of its energy savings versus its investment over and above the minimum code requirements. It stands to reason that, while lighting is obviously required for a space, sophisticated controls (such as occupancy sensors) are optional for the functional and effective use of the space, and any proposal should justify such an investment.

Earlier steps may be taken over again if warranted by the conclusions of a later step. In fact, this outline, like the strategy it suggests, must remain flexible if it is to benefit the wide variety of projects to which the conservation and management of energy through lighting design now apply.
The bioclimatic chart originally developed by Victor and Aladar Olgyay in the 1950s (P/A, Oct. 1982, p. 114) has been revised as a result of additional research and is keyed to the new ASHRAE comfort standards.

Low to use the chart

With average daily temperature and humidity amplitudes for various months, select the appropriate design element—Solar radiation, Surface radiation, Air velocity, or Evaporative cooling—and determine the amounts needed to provide thermal comfort.

Evaporative cooling (blue): High temperatures and low relative humidities can be made comfortable by evaporative cooling, effective only in the shaded area to the left of the "evaporative cooling" line. For example, 91°F and 20 percent relative humidity would be restored to the upper boundary of the comfort zone by adding, on the average, 21 grains of water per pound of dry air to the environment.

Air velocity (green): Temperatures in the upper 80s can be comfortable if the relative humidity is not high and there is a breeze. The air velocity lines describe the upper limits of comfort at various humidities and air velocities. For example, 90°F and 50 percent relative humidity is thermally comfortable with an air velocity of 800 feet per minute, about 9 mph.

Solar radiation (yellow): Temperatures as low as the mid-40s are comfortable under the full effects of the sun. Above that temperature, provide shading as required to avoid overheating. For example, 56°F and 60 percent relative humidity is comfortable with approximately 50 percent of an average sun at 45° elevation.

Surface radiation (yellow): Surfaces that are warmer than the surrounding air temperature can have a warming effect similar to the sun. This difference between the Mean Radiant Temperature and air temperature is shown on the chart as MRT-Ta. For example, 56°F and 60 percent relative humidity is comfortable with radiation from nearby surfaces whose mean radiant temperature is 30.5°F above the 56°F air temperature.

Acknowledgments

Research was conducted by Edward Arens, UC Berkeley; Lutfi Zeren, Technical University of Istanbul; Richard Gonzalez and Larry Berglund, J.B. Pierce Foundation Laboratory; and Preston McNall, National Bureau of Standards. The work was supported by the Department of Energy. We would like to thank the National Bureau of Standards for permission to reprint the chart.
Over the last year, this series of energy-conscious design articles has taken a fresh look at the largest building research project ever undertaken: the energy redesign of 168 building designs in 13 building types as part of DOE’s Building Energy Performance Standards (BEPS). Although many design professionals are aware of the controversial regulatory aspects of BEPS, an analysis of the actual redesign strategies forming the technical basis of the design energy budgets has never appeared in print prior to this series in P/A.

After reflecting on the six technical articles in this series discussing the redesign of 12 different building types, we have come to a number of conclusions regarding the targets of opportunity in energy-conscious design. We have found the consistent application of several design strategies and have identified noticeable patterns in the application of design strategies that cut across many of the building types where similar energy concerns are shared. These strategy patterns in the redesigns led to a regrouping of the building types originally used in the experiment into three basic categories: offices, including clinics and schools because of similar energy relationships; retail buildings, which we have further subdivided; and buildings that contain a mix of residential spaces as well as service areas.

Because of similarities in usage patterns and functional space mix, highly individualistic buildings can be grouped into generic types. From an energy standpoint, a working knowledge of the energy impacts of usage patterns and space use is invaluable to designers, especially in the preliminary design phase when initial decisions can have enormous impact on subsequent energy efficiency. A regular daytime occupancy profile, for example, raises a different set of concerns from those found in buildings used predominantly at night, because internal and solar loads affect heating and cooling requirements in dramatically different ways. Also, space use in the building determines the predominant environmental conditions to be maintained, as well as artificial lighting levels and certain envelope criteria, such as window area.

Awareness of the relative impact of these factors is essential to the selection of appropriate design strategies for a given building. The use of design analysis tools to predict results can fine-tune the design and provide a higher level of confidence in their selection.

Offices

Small and large offices, clinics, and elementary and secondary schools all share a predominant daytime occupancy pattern. The diurnal heating and cooling problem, which was evident in the office building analysis, is also found to apply to both clinics and schools. In these buildings, internal loads due to lighting, occupants, and equipment impose a cooling requirement even in cool climates. During periods of little or no occupancy, the situation is reversed, and heating loads due to nighttime conduction losses are of concern. Depending on the climate, most of the annual heating consumption can occur during unoccupied periods in these buildings.

In response, strategies that reduce conduction losses were frequently used. Surface-to-volume ratios shrank, insulation levels were improved, and nonconditioned spaces were often placed as buffer zones between a conditioned space and the building’s exterior. Building reorientation, primarily in the smal offices, clinics, and schools, allowed the redesigners to take advantage of controlled solar exposure on a season-by-season basis.

Control of solar gain was found to be especially important in these buildings. A main redesign trend was the nonuniform treatment of the building envelope depending on solar exposure. Window area reduction, selective reorientation of glazing, and use of both internal and external shading devices were the major solar control strategies employed. These strategies respond to the dynamic interaction of internal loads and solar gains that change by exposure over the course of a day.

Artificial lighting is a major end use in offices, clinics, and schools, and much emphasis was placed on the reduction of artificial lighting and use of efficient luminaires. Lighting reduction lowered internal heat gains from light fixtures. Daylighting strategies were emphasized in offices and schools, much more so than in other building types. Thus many of the redesigned building forms were markedly different from their original configurations.

HVAC equipment selection and control strategies were quite similar for the large and small offices and the clinic. Redesigners of these building types consistently chose variable air volum...
Retail stores

Retail buildings were originally classified as stores and shopping centers. To examine the retail redesign strategies in more detail in these articles, however, these buildings were reclassified as regional, neighborhood, and strip shopping centers, and department stores.

The merchandising orientation of retail buildings naturally places design emphasis more on the building's interior systems than its façade. In contrast, buildings in the office category, retail facilities are less concerned with the dynamic solar load conditions, since they typically have minimal window areas. Instead, high and uniform internal loads due to lighting and occupants impose almost "steady state" cooling loads on the building at given weather conditions. Therefore, the redesign teams retained the original constant volume HVAC systems, but also applied many control strategies to minimize space conditioning energy. Economizers, exhaust air heat recovery, and time-of-day HVAC controls were particularly effective.

Artificial lighting energy, which is often about 35 percent of the total annual energy usage, was a natural focus of attention in the store redesigns.

Major lighting trends included the reduction of installed lighting capacity and switching from incandescent to fluorescent fixtures. Daylighting applications were mostly restricted to public circulation areas in regional shopping centers where walkways can comprise as much as one-third of the artificially lighted area.

Site, form, and orientation strategies may have had little apparent impact on energy reductions, except perhaps in trip shopping centers. Retail facilities are often subject to rigid site constraints. Roof area is often significant in this building type, and reflective roof treatments and added roof insulation have the potential to be effective.

Residential occupancies

The occurrence of significant redesign tends common to buildings that share residential occupancies has led us to group together high- and low-rise multifamily buildings, nursing homes, hotels and motels, and hospitals.

While these buildings are quite dissimilar in many ways, they all share the common attribute of sleeping rooms attached to some type of service area. The continuity of functional space mixes can become increasingly complex from an energy standpoint as service areas comprise larger portions of the building program.

Guest rooms, patient rooms, and dwelling units have similar usage profiles and, to some extent, similar physical characteristics. They are generally occupied at night when outside temperatures can be at their lowest. Temperature setpoints are generally high, which sets the stage for high conduction losses over an extended period of time. Vision glass in these spaces often contributes to nighttime conduction losses as well as solar gains. When uncontrolled, these gains impose substantial daytime cooling loads on the space and its systems. This same glazing, however, can also be properly oriented and shaded for beneficial solar gains to offset heating losses if mass storage is provided.

Design approaches directed toward these energy concerns were applied to sleeping rooms in all these disparate building types. Wall and roof insulation was increased, glazing areas were reduced, building forms were made more compact, often with selective reorientation of south-facing glass. However, the requirements for environmental conditions in hospital patient rooms and for those in nursing homes may limit the use of passive solar strategies more so than in multifamily dwelling units and in motel and hotel guest rooms.

The difference in energy complexity among buildings that include sleeping areas is most evident in the mix of service areas to which these spaces are attached. In multifamily buildings, for example, these service areas or common spaces may be predominantly circulation areas with few internal loads. In other cases, service areas can range from large commercial kitchens in hotels to ancillary and support service areas in hospitals in which strict environmental conditions must be maintained. Although the exact nature of the space and its usage may determine (and even restrict) the design strategies applicable to it, service areas all share the potential for centralized control of energy use.

In the common spaces of multifamily buildings, centralized control was incorporated into HVAC systems for both recreation areas and corridors. Lighting

Over the past five years, over $30 million has been spent on research initiated to produce "baseline" data on the energy performance of new buildings and to determine maximum practical levels of potential annual energy conservation for the designs of new buildings. The effort was primarily to develop a data base that did not exist at the time to support the proposed Building Energy Performance Standards (BEPS). In these articles, the authors have attempted to strip away the regulatory issues that have obscured what the redesign teams accomplished, and to present it in a useful format. These articles have included:

A baseline for energy design (April 1982), which provides an introduction to the series, briefly describes the principal individual elements of the research, and presents overall results and observations.

Energy design of office buildings (June 1982), which focuses on the major redesign strategies used in small and large offices to address the characteristic concerns of diurnal heating and cooling and dynamic solar gains.

Energy for sales (August 1982), which emphasizes effective redesign strategies for retail buildings and discusses interior systems, such as lighting and HVAC, in characteristic internally loaded steady-state operation.

Dwelling with energy (October 1982), which concentrates on energy strategies for high- and low-rise multifamily dwellings and revealed that solar control and architectural design features play a surprisingly influential role in energy use.

Bed, board, and Btu's (December 1982), which examines the diversity of nursing homes, motels and hotels as a continuum, with increasingly complex relationships between sleeping rooms and service areas. Relocation of spaces, outside air reductions, and shell tightening are a few of the strategies employed.

Energy to recover (February 1983), which highlighted HVAC and heat recovery strategies that were key in dramatically reducing hospital energy use without compromising health care criteria.

Energy: a class by itself (March 1983), which concludes that the energy importance of intermittent usage patterns inherent in elementary and secondary schools resulted in design decisions that enhanced the use of natural lighting while minimizing conductive gains and losses. Mechanical system controls for idle spaces were also important contributors to higher than average energy savings.
systems for these spaces were put under the control of timeclocks. More elaborate strategies were used in hospitals to control strict environmental conditions by a strategic rezoning of hospital functional spaces to group together areas with similar environmental requirements on the same HVAC system.

Service areas are also often characterized by the presence of high internal loads caused by lights, equipment, and processes. Spaces such as these are candidates for the application of various heat recovery systems, such as exhaust air heat recovery. Also, a substantial portion of the cooling load in these spaces can be handled with economizer equipment. From a space usage standpoint, service areas, mechanical storage rooms, and corridors are often useful as buffer zones that can shield other conditioned spaces from conductive heat loss or solar gain when properly located.

Research shortcomings

The redesign experiment was complex and fast-tracked, and subject to a number of geographic, energy, and economic analysis shortcomings. Building samples were limited to 37 different cities throughout the nation. In many instances, buildings from the Rocky Mountain states and the Sun Belt were underrepresented or not represented at all.

There also were flaws in the data. The energy analysis computer program, while sophisticated for its time, was unable to estimate the energy savings due to daylighting strategies or those attributable to the use of the temperature “deadband.” There were also certain data handling errors, which resulted in unrealistic end use estimates for service water heating and appliance usage in certain building types. More important, energy usage and internal loads from “process” equipment were not included in the energy analysis because of certain policy decisions.

A significant shortcoming to the redesign experiment was the lack of economic analysis to test the cost effectiveness of the redesign strategies. Economic data for the redesigns are limited to the change in first cost of construction in the redesign compared with that of the original building, a crude measure at best. The only detailed economic analysis performed was that of a life cycle cost study conducted on three office buildings one year after the major research was completed.

We feel that these limitations do not invalidate the basic findings of our research and the conclusions on energy characteristics and strategy patterns. We do think, however, that a different set of design strategies could have emerged if the major objective of the original BEP research had been to reduce energy costs instead of energy consumption.
The results

The principal product of the original BEPS research, from a design standpoint, was the development of design energy targets in a consistent and methodical manner. Ranges of energy use for 13 commercial building types in 78 geographic locations are now available for use by design professionals. Other DOE studies on contemporary energy-efficient building designs have shown that these targets are both reasonable and achievable.

The research for this series has looked beyond these abstract energy numbers to identify an additional set of products: the actual architectural and mechanical design strategies responsible for the substantial energy savings achieved by the redesign teams. The patterns of using these strategies in the redesigns are useful generic design data that can be effectively used by designers, especially in the early stages of design.
Feedback

In January, the authors of this series presented a summary of their research results at a seminar held in conjunction with the 30th Annual P/A Awards. Following the presentation, a panel of P/A Award winners and energy experts, moderated by series editor Richard Rush, discussed the articles and related design topics. Comments were then solicited from award winners and guests in the audience. Highlights of the discussion are presented in the second part of this article. Readers of P/A are encouraged to continue this feedback process with letters and expressions of their own opinions of the value of this article or any in the series.

Rush: From your experience as the designer of specific buildings, what is the relevance of a broad generic study such as this to your practice?

Mack Scogin: I think that what happens to a lot of people like myself who are somewhat neophytes at dealing with technical issues like energy is that we began to look at these kinds of articles and say, "Oh, my God, here's something else I need to know something about, and I'd better start doing something about it." What we've discovered over the last couple of years in our projects is that a lot of these norms and the intuitive responses developed after reading or scanning these types of articles are not necessarily applicable to specific buildings. Therefore, I think care must be taken with these sorts of generic articles not to overlook the fact that people have very, very simplistic responses to them. Don't be embarrassed as an energy expert to admit that this is a very complex problem and present it that way.

Rush: Donn Logan, does your experience in designing the San Jose State Office Building correspond to the overall trends represented in the series and if not, how does it differ?

Donn Logan: The State Office Building in San Jose would fall into the large office building category. It has more than 50,000 square feet (it's about 150,000 square feet), and yes, it does support the trends in a general way. I think we did, at least our computer printout says that we will, a little bit better with the general numbers. We may be down to 26,000 to 28,000 Btu's per square foot. The strategy we used emphasized daylighting more than some of the sample buildings.

Rush: What are the relative merits of an architectural magazine publishing a series of individual buildings as opposed to a series of articles about various building types? Should there be more emphasis in the press on such research?

Joseph Fleischer: There are a lot of very good bits of general information contained within the articles that one can get lost in, and they're the kind of things that we all do know exist and rarely, if ever, I'm afraid, apply to the general building design. It has a lot to do with the priorities that certain offices establish and the way in which they approach their designs. The use of the generic building types is important in that it gives us all general directions. Far too many people in the offices and in the profession, particularly the decision makers, are not oriented to this type of article per se, but more oriented towards understanding specific buildings and the way in which the problems were solved within those buildings.

Rush: Harrison Fraker, what studies of a similar nature could the government fund that would have a similar value to the profession?

Harrison Fraker: I'm primarily a designer and a teacher, so I'm interested in the nature of the information in these articles that reveals to a designer why a building loses energy in the patterns that it does. I think the work that P/A has done in this area in bringing out the beginning understanding of such reasons is commendable. But I think we're a lot wiser now, and I think we can take the work quite a bit further.

Before 1978, we didn't even know how much energy each of these building types used, and this first step at least breaks the energy use down by end use so we know how much is used for heating, how much for lighting, how much for cooling and hot water. That information is a first step, and we can begin to understand what causes the changes in the redesigned building. I'm interested in taking that information and taking each of those end-use areas and showing why a building uses so much for cooling, why it uses so much for heating, and so on. When designers identify the major targets of opportunity, they can then address those aspects of the building or the whole system that will really make significant reductions in the use of energy.

Another step of the process is what happens when utility costs are added to these numbers. In many places the biasing structure of the utility sets the priority on design strategies much more than the building form and envelope and shape, and much more than the mechanical system. Here's an example.

In the energy consumption in hotels and motels, the overall Btu consumption for hot water is relatively low. The manager of a hotel will tell you that the number one priority is domestic hot water. The designer has to ask why. The reason is that all the hot water is used in one hour and in most cases there is a huge demand upon the system. If you analyze the energy, you wouldn't think it was a problem. If you analyze the dollar consumption and broke it down into both dollars consumed for energy and demand, you would see that it is a number one priority.

Rush: We'll ask Ted Kurkowski of DOE to address this next question. Would government fund a government grant to construct 60 buildings each costing a half million dollars and yield more valuable information than a $30 million research project such as BEPS?

Ted Kurkowski: My reaction to the question is that a program that intends ultimately to transfer useful information to other people must spend an incredible amount of money documenting what has been done. What would have happened if we had built real buildings rather than the study is that we would have studied only a few buildings, in great detail, and probably not learned as much; we possibly would have had a greater acceptance of the data. Now, money is saved by not building buildings.

Rush: Fred Dubin is in the audience and participated heavily in the redesign program. Fred, do you have some comments?

Fred Dubin: First of all, you can't design a building from any article that's ever written. If you do, it's not the right building. I believe in using specific buildings in the socratic method of pointing out principles and sensitivities. The redesign program had tremendously beneficial effects, whether it was worth $30 million or not. It did provide directions. It also established average which is very, very dangerous. If we
The panelists in the photograph from left to right are: Mack Scogin, Heery & Heery; Joseph L. Fleischer, James Stewart Polshek & Partners; Harrison Fraker, Harrison Fraker Architects; Richard Rush, American Institute of Architects; Donn Logan, ELS Design Group; Dr. Vladimir Bazjanac, University of California at Berkeley; Harry P. Misuriello, W.S. Fleming & Associates. Not pictured: Joseph J. Deringer, Gifford, Deringer & Company.

I have one foot in the refrigerator and one foot on the stove, the “average” temperature is comfortable. There is a need to do a very specific study for each building and each building type on a specific micro location and micro climate. Perhaps, with the building guidelines that came out of this program, one has an idea of what can be accomplished and then specific goals can be established. There is a great deal more work needed to develop design tools, a design vocabulary, and a library of parts and components information so that architects or engineering designers will know the consequences of their decisions before they have a building.

Rush: John Cable was instrumental in the initiation of this article series while he was still with DOE. John, what are your thoughts?

John Cable: As much information as his series of articles seems to contain, it simply scratches the surface. There are some other pieces of good information available if you choose to dig for them. One of the fellows who used to work with me has now been in private practice for a year. I asked for his impressions, having crossed over from research to design. He replied: “I forgot that architects were so overwhelmed with getting a contract, signing a job, administering the contract, working with the client, meeting structural requirements, working with the code officials, getting the building financed, and trying to solve the liability problems.” Energy was only a minute piece if at all. I don’t know what your future plans are, but I think a book that just has all these articles in it with the summary of what we’ve learned would be a great desktop piece right beside the usual graphic standards and the structural steel handbook.

Rush: Bob Shibley was involved in a similar study, an analysis of the Owens-Corning award winners. I would be curious to know if he agreed or disagreed with the general conclusions.

Robert Shibley: There weren’t any startling surprises. What we did find in the OCF trend analysis was that in the early 1970s we were doing a few energy-conserving strategies very well, and they were being celebrated in award-winning buildings as innovative or ingenious strategies. As more and more strategies became available, the challenge to the award jury was to relate the strategies and the confluence of all the issues necessary to bring a good quality building out of the ground. As part of that, and I’m going back to Ted Kurkowski’s observations, if you have a choice between studying it or building it, and building it and studying it, build it and study it. Only then can we truly understand the implications and the context of anything we have to deal with to build.

Rush: This is the second such DOE-sponsored research effort P/A has been involved in. The first was a two-year study based upon individual computer analysis of chosen buildings, led by Vladimir Bazjanac. Vladimir, what is the difference between the qualitative information one gets from the sophisticated energy analysis of existing single building design and the kind of information obtained from examining 168 buildings or 25 buildings of a specific building type altogether. What can the individual architect do with the two kinds of information?

Vladimir Bazjanac: The 168 buildings do not basically provide you with enough information to be directly useful in the design process. All they can tell you is what might be done, and they give you an idea in the negotiating stages of what energy consumption the building is going to have. Some very useful ranges were produced. I wouldn’t try for the exact numbers, simply because of the inconsistencies of methodology over a period of time. What we did with individual buildings was to provide a measure of what is accomplished by varying the design parameters. It was narrowed straight down to a specific set of design decisions that were investigated.

From the BEPS article, one can tell the client what the range of savings might be and what is reasonable to expect. Nothing would be learned about the specific building. Now, if the building was in a climate somewhat like Chicago, say, our energy analysis of Helmut Jahn’s building, might produce relevant material.

There were a couple of examples in the BEPS articles that sort of dealt with buildings as we did. They often could not tell you in detail how much those components contributed. But they illustrated how some of those savings might be achieved.

In last April’s issue, you used a number of descriptive titles: This is who and where and what. If you use that kind of terminology, ours would be called this is how. The BEPS study could be called this is how much.

Also in attendance: Bernard Babka, Hammond Beeby & Babka; Robert Beckley, Beckley/Myers; Richard Bozic, Architecture-Research-Construction, Inc.; Harvey Bryan, Assistant Professor, MIT, School of Architecture and Planning; Alan Chimacoff; William Conklin, Conklin & Rossant Architects; Fred Dubin, Dubin-Bloom Associates; Elizabeth Erickson, Shibley Bulfinch Richardson & Abbott; John Eberhard, Advisory Board on the Built Environment; W. Paul Farmer, Planning and Design Partnership; Sheldon Fox, Kohn Pedersen Fox & Associates; Geoffrey Freeman, Geoffrey Freeman Associates; Robert Geddes, Geddes, Brecher, Qualls & Cunningham; Susan Gill, ABRI Design Associates; Raymond Gindroz, UDA Architects; Alan Green, Educational Facilities Laboratories; Robert Gutman; Michael Keihn; Doug Kelbaugh, Kelbaugh & Lee; Jonathan King, Architectural Research Laboratory, The University of Michigan, Ann Arbor; William Lam; Theodore Liebman, Liebman Williams Ellis; Cung Lee, Kelbaugh & Lee; David Lewis, UDA Architects; S.I. Morris; Daniel Pang, Daniel Pang & Associates; Donald Prowler, Department of Architecture, University of Pennsylvania; Peter Ringenbach, Perry Dean Stahl Rogers; Walter Rosenfeld, The Architects Collaborative; James Rossant, Conklin & Rossant, Architects; Peter Sanborn, Green & Partners; Frederic Schwartz, Venturi, Rauch & Scott Brown; Robert Shibley, SUNY, Department of Architecture; Richard Stein; Thomas Vonier, Thomas Vonier Associates, Inc.; Peter Waldman; Ralph Warburton; Lawrence P. Witzling, Planning and Design Partnership.

Contributors: A number of individuals and organizations have contributed to the development of this article series. Principal researchers: Harry P. Misuriello, Principals, W.S. Fleming & Associates, Inc.; Joseph J. Deringer, President, and Santiago Moreno, Associate, Gifford, Deringer & Company. Researchers: James Binkley, Chief, and Ted Kurkowski, Program Manager, Commercial Building Systems Analysis, Architectural and Engineering Systems Branch, DOE; John Stoops, Project Manager, Ray Reilly, Program Manager, and Stan Pansky, Project Architect, Battelle/Pacific Northwest Laboratories; John H. Cable, Principal, The Ehrenkrantz Group; Richard Menge, Saudi Arabian Parsons, Ltd; Roger Easley, Consultant to Battelle; Mike Gilford, Richard Meilan, and Terry Ann Nyberg with Gilford, Deringer & Company; Verna D. Hawkins, W.S. Fleming & Associates, Inc.
In airports: Carpets of Antron® perform with style.
When you step off a plane at Miami International Airport, you step onto carpet of Du Pont ANTRON® 50,000 sq. yds. of it! Performance and styling are the reasons why ANTRON® used in more major airports than any other carpet fiber.

ANTRON® nylon is specifically engineered by Du Pont to handle heavy traffic. Unique fiber shapes hide soil and actually keep carpet of ANTRON® cleaner longer.

Carpet of ANTRON® resists crushing and matting—suitcases on wheels, luggage racks and dollies leave it daunted.

And only carpet of ANTRON® can make your designs soar in so many styles, colors and textures. More than any other commercial carpet fiber.

At Miami International Airport—5 years and millions of passengers later—the carpet of ANTRON® still looks beautiful.

No wonder Du Pont ANTRON® is the most specified commercial carpet fiber in the country!

For a free copy of our new Specification Guide, write Du Pont Carpet Fibers, Rm.X-39830, Wilmington, DE 19898.
In today's business world, the key to success is adaptability.

Advancing technology, mergers and competition are a few influences which can force dramatic changes in the way your clients do business. The ability to adapt to their changing needs is a hallmark of All-Steel systems design.

All-Steel furniture and components are engineered to let you add to or rearrange office plans with the least possible disruption. Business people appreciate this. And you'll appreciate All-Steel's expanded line. You now have the choices you need to make a design statement that is unique while satisfying your client's practical requirements.

See your dealer, write All-Steel Inc., Aurora, IL 60507, or call toll-free 800/323-0112. (In Illinois, call 800/942-6015.)
The Number One Name
In Dictation Presents
The "Dictaphone" Of
Word Processors.

What Dictaphone did for dictation, Dictaphone is now doing for word processing.

Dictaphone has long been at the forefront of office productivity. Now we're about to outdo even ourselves.
The Dictaphone System 6000 is everything you could ask for in a word processor. And some things you probably never considered possible.

Its Main Purpose in Life is Word Processing.
The Dictaphone System 6000 excels in the business of text editing, formatting and documentation. (It's also a records processor powerful enough to make you think it's a data processor, but that's gravy.)

Not only does it let you change words and sentences, its exclusive Footnoter feature "floats" footnotes over to their correct page. DictaSpell checks and corrects spelling. And SideStep, another Dictaphone exclusive, lets your more experienced people skip unnecessary steps. The work never went so fast.

It's Also Part of the Dictaphone Integrated Office System.
You can move from the stand-alone word processor to a hard disk cluster system, or even tie into Dictaphone Omninet, a local area network that lets you communicate and share information with other office equipment.

The Final Touch is the Dictaphone Personal Touch Training.
Dictaphone Marketing Support Representatives give you hands-on instruction, expert installation and application-oriented follow-up. We even do a 90-Day Productivity Audit to see that you're getting all you can out of your System 6000.

It's all part of what has made the Dictaphone name first in the office for so many years.

Dictaphone
A Pitney Bowes Company

To see the "Dictaphone" of word processors, complete this coupon. Or call toll-free:
1-800-431-1052
(Except Hawaii and Alaska)
In New York call 1-914-967-6067

Name ____________________________
Address ____________________________
City ____ State ____ Zip ______

Mail to: Dictaphone Corporation
120 Old Post Road, Rye, New York 10580

Circle No. 334 on Reader Service Card

Dictaphone, DictaSpell, and Personal Touch are trademarks of the Dictaphone Corporation; Rye, N.Y. Omninet is a registered trademark of Covus Systems, Inc. This product contains software, portions of which were developed under license from Symantec. © 1982, Dictaphone Corp.
Don't Miss It...

The largest automation & reprographics show for the A/E profession...

84 practical seminars by 65 experts in A/E automation, reprographics and management. The latest in computer graphics, mini and microcomputers, reprographics and management systems. 400 exhibit booths by leading suppliers of hardware, software and services. Over 5000 design professionals will attend.

Conference Program

• Conferences on "Implementing Computer Systems," "Computers: The Engineer's Competitive Edge" and "The Use of Computers in Marketing."

• 7 tutorials on such subjects as "Getting the Most from Your Small Computer" and "Implementing and Managing Your CADD System."

• 84 one-hour seminars on such subjects as "Systems Drafting for the Small Office," "Using CADD in Design" and Financing A/E Automation."

A/E SYSTEMS '83 is sponsored by A/E SYSTEMS REPORT, the largest sponsor of management and systems-related seminars for the design profession.

Among the Exhibitors

American Bell
Arrigoni Computer Graphics
Calcomp, Inc.
Computervision Corporation
CPT Corporation
Digital Equipment Corporation
DuPont Company
Herman Miller
Hewlett-Packard
IBM
Intergraph Corporation
Keuffel & Esser
MCAuto
Summagraphics Corporation
Teledyne Post
3M Company
Wang Laboratories
Xerox Corporation
and 125 more

Other Highlights

• Automated Design Office - an actual office will be set up showing the latest in electronic A/E tools.

• In Plant Reprographics Center - a complete reprographic production center will be operational.

• User Discussion Groups - attendees will have a chance to swap information with other users of their same hardware and software.

• Software Corner - over 50 software vendors who specialize in serving the A/E profession will be on display.

A/E SYSTEMS '83 is the one annual event where design professionals can actually see and learn about all the latest practice aids for the front office and back room. All in one place at one time. Don't miss it.

June 8-10, 1983
Market Hall
Dallas, Texas

All at the Fourth International Conference on Automation and Reprographics in Professional Design Firms

A/E SYSTEMS '83

For more information call toll free 800-227-1617 In California 800-772-3545, ask for extension 132. or send your business card to A/E SYSTEMS REPORT, P.O. Box 11318, Newington, CT 06111.
LOOK WHAT HAPPENS WHEN YOU ADD KORFIL TO MASONRY

Korfil inserts have a way of turning standard masonry block into extraordinary value.

They can nearly double the insulation characteristics of a masonry wall. And because each block is insulated before it reaches the job-site, you can realize significant labor and clean-up savings, on the job-site. It all makes sense because it all means value.

But you don’t have to practice magic to see what Korfil can do for you. All you have to do is specify Korfil for your next project...then watch what happens.

P.O. Box 123, Chicopee, MA 01014 • In Mass: (413) 532-4400 All Other States: (800) 628-8476
THE TOP ROOF FOR ANY BOTTOM LINE.

No two roofs are the same. No two applications will be either. At Owens-Corning, we offer a full range of specifications to fit virtually every roofing need. So we can put the best roof over your head at a cost that won’t go over your budget.

GO RIGHT TO THE TOP.

It stands to reason that to get the best roof, you have to start with the best roofing materials.

For instance, although it's underneath where you can't see it, your roof insulation deserves top priority. The chart shows you why Owens-Corning is your best choice.

We offer insulations for every application. In a full range of thermal values. A double layer of Fiberglas® or FURi® roof insulation can even provide R-values up to 40.

And the double layer serves a double purpose. It delivers better performance. By installing a second layer of Fiberglas roof insulation over the first and offsetting joints, you eliminate continuous vertical gaps. So heat loss and gain is lowered. Membrane stress is reduced by as much as 10%. And roof life is increased.

THE PROOF IS ON THE ROOF.

We've built our roofing reputation on the most durable roofing felt ever. Perma Ply-R®

Our unique continuous-strand glass mat has the highest tensile strength, best tear resistance and unequalled proven durability. Over four billion square feet installed over 17 years.

OUR TOP ROOF.

AFTER IT'S PUT DOWN, WE'LL STAY ON TOP OF IT.

Even the best built-up roof is only as good as the way it's put down. That's why Owens-Corning has set up a unique Certified Roofing Contractor Program. Certified Contractors are specially selected professionals who have met the industry's most stringent requirements—Owens-Corning's. The result: roofs that set the industry's highest standards.

And when a Certified Contractor installs our double-layer insulation, 4-ply Perma Ply-R roof, you can get the industry's best guaranty. 20 years.

YOU CAN'T AFFORD TO OVERLOOK OUR ROOF.

The best products. The best contractors. The best guaranty. When you specify an Owens-Corning roof, you'll know it's not only cost competitive, it's the best you can get for your money.

Let us show you how you can hold the bottom line. Call L. Diller at (800) 537-3476. In Ohio, (419) 248-5511. Or write Owens-Corning Fiberglas Corp., Fiberglas Tower, Toledo, Ohio 43659.
ALLIANCEWALL PORCELAIN ENAMEL ON STEEL.
IMPERVIOUS TO BAD ART.

Vandals and would-be artists can’t leave their marks on our walls. Because porcelain enamel’s hard-as-glass surface simply wipes clean. Panels won’t mar, chip or scratch. No matter what. But that’s just part of their beauty. They also double as on-the-spot writing surfaces, with our colorful, Rite On/Wipe Off® markers. Or as convenient, magnetic-based bulletin boards. Contact us soon to see how we can help with your next interior project. Porcelain enamel on steel—for practicality, versatility and lasting beauty.
Computers keep on coming, not just in the numbers being manufactured, but in the number being used within professional design firms. The A/E Systems 83 show testifies to that. Since its initiation three years ago, the show has grown 100 percent each year in both attendance and number of exhibitors, making it the largest computer automation and reprographics event held specifically for architects and engineers. It has also become the largest single gathering of registered design professionals.

A/E Systems 83, sponsored by A/E Systems Report, will be held June 8–10, 1983, at Market Hall in Dallas. The show’s offerings are varied and impressive. Some 150 exhibitors in 400 booths will include most of the automation and reprographic vendors now serving the design professions. Over 5000 architects and engineers are expected to attend, in addition to about 1500 representatives of computer hardware and software companies. Other organizations sponsoring programs during the conference are the Professional Services Management Association, with a program on “Implementing and Managing the Change to Computer Systems”; the Society for Marketing Professional Services, sponsoring “The Use of Computers in Marketing”; and the American Consulting Engineers Council, giving a one day seminar entitled “Computers: The Engineer’s Competitive Edge.”

Sixty-eight one-hour seminars will be given throughout the three-day conference. Included in those seminars are panel discussions on the future of computer-aided design and drafting, the use of computers in small firms, the management and financing of computers, and the use of computer graphic services. The seminar leaders represent computer and management consulting firms as well as automated architectural and engineering companies.

Seven tutorials, each three hours long, will allow a more in-depth coverage of a few topics. The tutorials will range from the basic operations of microcomputers and computer graphic systems to the use of computers in the management of a professional design firm and in systems drafting. The tutorials are a new addition to the show this year, initiated at the request of past attendees who wanted a more focused coverage of some areas.

For those already using computers, 14 one-hour discussion groups will bring together users of specific hardware or of service bureaus to exchange ideas. A design professional familiar with the particular system will lead each discussion group, with a company or service bureau representative present to answer questions. Among the companies participating are: Apple, CPT Corporation, Digital, IBM, MasterSpec, Radio Shack, Wang, and Xerox.

Other companies will hold a series of free seminars on topics that vary from telecommunications and microdrafting to systems drafting and reprographics. Those nine seminars are open on a first-come, first-served basis. Two multivendor special exhibits will give people attending A/E Systems 83 an opportunity to visualize the interaction of systems within a typical design office.

The value of A/E Systems 83 for the architect and engineer is the opportunity it gives people to gather and share information about computers. The exhibition area will be open 18 hours over the three days of the conference. Of the 50 software vendors attending the show, some will have their own booths. The remainder will display information about their products in an area of the hall designated as the software corner. In another corner, over 25 management consultants specializing in architectural and engineering services will offer free, half-hour private consultation sessions on questions related to systems selection, management, marketing, and personnel.

Awards for the most comprehensive and the most innovative use of computers by a design firm will be given. And each afternoon, a microcomputer and its accompanying software will be raffled off.

In the words of its sponsors, “A/E Systems 83 is the most effective way for the design professional to learn how computer graphics, mini- and micro-computers, reprographics, and management systems are revolutionizing the way we practice architecture and engineering.” The show shouldn’t be missed.

For information, write to A/E Systems 83, P.O. Box 11318, Newington, Conn. 06111 or call 800-227-1617 (in California, 800-772-3545); ask for extension 132. Watch for the official guide to A/E Systems 83 in the May issue of P/A.
Specifications clinic

From manufacturer's data into specifications

Walter Rosenfeld

Even with the help of CSI-sponsored documents, product information provided by manufacturers can seldom be transformed into specifications without additional work by the specifier.

As part of their sales programs, manufacturers of construction products have always provided descriptive literature and product data to inform prospective users of the characteristics and virtues of their materials. Traditionally, specifiers have relied heavily on such literature in preparing specifications for building projects. Before the days of industry-wide master specifications, "writing from scratch," using this kind of data, was the norm for both new materials and new applications of familiar materials and took a lot of the specifier's time and energy.

The trouble with most manufacturers' handouts and catalog information was their sales orientation. Limitations on use were seldom indicated, and needed technical data were often omitted. Incomplete or missing installation information frequently presented problems, and the data each manufacturer chose to supply were often different from those of competitors, which made comparison of characteristics, construction, and performance quite difficult. No general standards for format or content of manufacturers' literature existed until CSI introduced Spec-Data to deal with the situation.

In the words of James Sigel, current manager of this very successful program, "Spec-Data is a product bulletin, condensed to eliminate extraneous materials and promotional language. All data are arranged into ten standard categories: product name, manufacturer, description, technical data, installation, availability and costs, guarantee, maintenance, technical services, and filing systems. This standard arrangement aids product comparisons and locating specific information." While use of Spec-Data sheets reduces the time needed for research and telephone calls to manufacturers when transforming product information into specifications, a great deal of "writing from scratch" is still required because of the way the data are structured.

Can more be done to speed the process? The next logical step beyond Spec-Data has already been taken: Under the CSI Manu-Spec program, the manufacturer drafts a sample specification for the specifier's use. As Sigel puts it, "Manu-Spec is a prepared specification section written in the CSI three-part format, but for a manufacturer's specific product. It shows the way a manufacturer's product should be specified." Thus a Manu-Spec for a chosen product can be rather easily transformed into a narrow-scope section for a particular project manual or incorporated into a broader scope section, which includes it among other products.

Is this the end of specifying as we have known it? Hardly. For among the things neither CSI nor the manufacturer can do for us is choose the appropriate products for the project and decide what characteristics we want in the products we select. Frequently one product alone is not enough for a competitive situation where the contractor, too, must be given a chance to choose. And of course, each project has its own requirements and rules, to which the specifications must be adapted.

While a large number and a great variety of products are covered by Spec-Data, fewer Manu-Specs have been written so far. One hopes this program will also prosper and multiply. But for product groups and processes not completely covered by either Spec-Data or Manu-Spec, CSI does offer another service: the Technical Aids Series (TAS), which describes the resources, documents, and information available to the researcher of building components and materials. Each TAS document covers one category and lists all applicable standards and regulations available specification aids (such as those mentioned above), institute and association publications, related books and periodicals and all known manufacturers. It is a complete bibliography of the essential information needed to prepare a specification, and is thus of great time-saving value.

But no matter what form product information may take, the specifier still has to get the project manual organized and written. He still must make sure that the appropriate products are properly specified and closely coordinated. When resource materials don't have the answer, he must still consult directly with manufacturers' representatives to get the information he needs. And in spite of all the documentary help available, specifier surprisingly still find products, applications and variations that are not adequately described, that still require "writing from scratch" new descriptions, new instructions or new sections on many of their projects.

Even today, turning product information into specifications continues to be one of the basic activities of the specifier. It's a lot easier now because of CSI-sponsored documents but it still requires experience, skill, and good judgment, as all specifying does.
New Shakertown Colonial II cedar shingle siding will give you the look you want. Twice as fast. Twice as easy.

With two 7" courses per panel Colonial II cuts application time by half over regular 7" lap siding and by three-fourths over individual shingles. Only eleven panels are needed to cover 100 sq. ft.

Colonial II panels are self-aligning which eliminates measuring and chalk-lining after the first course. Panels are full 8' length with no shorts, no grade fall down and very little waste. Color matched nails are included with only two nails per stud required.

Matching mitered corners complete the system. Get the full story on Colonial II.

Call Joe Hendrickson at 1-800-426-8970.
How Laminated Glass helped move the great outdoors upstairs.

It was an inspired idea. Instead of a ground-level atrium, create a sunny, open space on the top eight floors of Chicago’s 33 West Monroe building.

Without foregoing any of the physical beauty of glass, it offers fallout protection. In the event of breakage, shards and fragments tend to adhere to the Saflex® polyvinyl butyral interlayer.

This configuration provides the following performance characteristics:

<table>
<thead>
<tr>
<th></th>
<th>Winter (Nighttime)</th>
<th>Summer (Daytime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Value</td>
<td>.49</td>
<td>.57</td>
</tr>
<tr>
<td>Shading Coefficient</td>
<td>.55</td>
<td>.55</td>
</tr>
</tbody>
</table>

Laminated glass, with a Saflex interlayer, gives you opportunities no other glass offers. That’s why it ended up on top at 33 West Monroe.

If your aspirations are equally high, write us for a list of suppliers.

Monsanto Polymer Products Company, an operating unit of Monsanto Company, Dept. 804, 800 N. Lindber Blvd., St. Louis, Missouri 63167.
When you seek better answers
for water coolers and drinking
fountains, look to the First family—
Halsey Taylor. First with the most
complete product line. First in
design innovation—like the first
energy-efficient water coolers.
First in beautiful styling and color choices.
And still the only line that offers the satisfying
one-stream anti-squirt projector.

Just a few of the reasons
Halsey Taylor is first choice—the
brand specified most frequently by
architects and consulting engineers
for new construction and repeatedly
first in brand recognition among
architects, engineers, contractors and wholesalers
as proved by independent industry research projects.
The First family—Halsey Taylor
Route 75, Freeport, Illinois, 61032.
ANATOMY OF A DOCK

SPECIALISTS:
Advance is the only lift manufacturer in the world that dedicates itself solely to designing and building dok lifts. This may well be why we have become the industry leader. We invite you to compare the performance characteristics and design features of our Superdoks to any other dok lift. We are confident that you will find Advance Superdoks the best value for your dock application.

INTERNAL CYLINDER STOPS:
Superdok hydraulic cylinders are engineered for safety with positive internal mechanical stops rather than external, less reliable limiting devices. These positive internal stops prevent the cylinder rods from leaving the cylinder casings and are essential in any good design to prevent the lift from collapsing when fully extended.

ANODIZED ALUMINUM VALVE:
This easy to service, one piece, hydraulic valve manifold is made from anodized aluminum to protect against corrosion and hydraulic erosion of the valve.

CORNER SUPPORT:
The rams lift and support the platform at all four corners to handle heavy truck axle loading over the ends of the platform.

CANOPY:
This rugged all weather fiberglass canopy protects personnel and merchandise from falling rain and snow.

DOCK LIGHT:
Available only with the canopy, this dock light provides illumination inside the truck.

QUICK DISCONNECT PUSH:
BUTTON CONTROL:
The weatherproof push button control can be plugged into the 24 volt control circuit right on the lift itself rather than draping a control cord from the building to the lift.

Write for literature on all Advance Products

Circle No. 509 on Reader Service Card
Ruling sets precedent affecting zoning laws

In 1975, the New Jersey Supreme Court ruled, in a dramatic and precedent-shattering case, that the town of Mount Laurel's zoning ordinance, whose practical economic effect was to exclude low-income and minority groups from residence in the municipality, violated the New Jersey Constitution (Southern Burlington County NAACP, et al. v. Mount Laurel; see "It's the Law," P/A, Aug. and Sept. 1975). The court ruled that every municipality was required under its land use regulations to make realistically possible an appropriate variety and choice of housing. No municipality, stated the court, may foreclose the opportunity for low- and moderate-income housing, but rather must affirmatively afford that opportunity to the extent of the municipality's fair share of present and prospective regional needs.

Following this decision, however, very little change occurred in land use in the town of Mount Laurel, and although some acreage was set aside for moderate- and low-income housing, such housing was never developed. As a consequence, the highest court of New Jersey was again called upon to rule on the validity of the Mount Laurel zoning ordinance, as well as the zoning statutes of several other New Jersey communities. In 1983, the court handed down another dramatic and precedent-setting decision, which may affect the zoning laws of communities throughout the United States. The court ruled that municipalities were constitutionally required not only to change their zoning ordinances to provide areas for low- and moderate-income housing, but that such municipalities were obligated to provide tax or other incentives, which would encourage and make it economically feasible for private developers to build such housing and/or to require low-income units to be included in upper-income projects.

Mount Laurel is a suburb of Philadelphia consisting of one-family homes, farms, woods, orchards, and back roads. Its population is approximately 17,000, and it comprises 14,176 acres, of which approximately 58 percent is undeveloped. There is no concentrated business area in the town. In the master plan, it was contemplated that the bulk of its growth would be in clusters known as planned unit developments, which were to be a mix of townhouses, garden apartments, and multistoried structures. The proposed cluster housing, when fully developed, would utilize approximately 50 percent of the town's acreage; the other 70 percent would remain open space. The residents were, for the most part, professionals, businessmen, and farmers who were united in opposition to the open housing plans currently under consideration in the 1970s. Consequently, there was no enthusiasm for the development of low-income housing.

When the New Jersey Supreme Court invalidated the zoning ordinance in 1975, the town's response was to rezone three widely separate plots totaling 35 acres. It was apparently the town's contemplation or hope that approximately 515 new units would be constructed on this acreage and that thereby the court's requirements would be satisfied. These plots were owned by separate individuals or companies, however, who apparently had no interest in either developing the property for low-income housing or in selling it. As a consequence, no low-income housing was developed.

Following the 1975 court decision, the courts in New Jersey were inundated with litigation challenging the zoning ordinances of various communities. In reaction to this litigation and to the lack of any program by the town of Mount Laurel to develop low-income housing, the Supreme Court of New Jersey consolidated several of these cases into one proceeding and considered it for a period of over two years before issuing a decision in 1983. The concern for the social issue involved was reflected in the court's description of the actions, or lack thereof, of the town of Mount Laurel. It stated:

"After all this time, Mount Laurel remains afflicted with a blatantly exclusionary ordinance. . . . Papered over with studies, rationalized by hired experts, the ordinance at its core is true to nothing but Mount Laurel's determination to exclude the poor . . . We have learned from experience that unless a strong hand is used, Mount Laurel will not result in housing, but in paper, process, witnesses, trials and appeals."

The general thrust of the decision is to require the municipalities to do whatever is necessary to assure that housing for the poor will actually be built. The remedy to the problem prescribed by the court is to require communities to provide tax or zoning incentives, to provide assistance to developers in applying for Federal aid, and to require developers of high-income projects to include low-income units in their projects. Further, in order to simplify and avoid costly and time-consuming litigation, the court provided that issues relating to exclusionary zoning be determined by specially qualified judges, and that a planning study, known as the New Jersey State Development Guide Plan, be used to determine the fair share of regional needs for low- and moderate-income housing to be borne by the various municipalities of the state.

Critics of the decision argue that the court has usurped the function of the legislature, and that its decision reflects its own concerns and social consciousness relative to the lack of low-income housing. This decision is bound to have a strong influence on the determinations of courts in other states, and if followed, will result in a revolutionary change in land use patterns in the United States.
AND NOW U.S.G. BRINGS YOU THE NEW

At left: Finesse, an Accustone® ceiling returns in style!
Center: Accustone® Glacier panels now clear-through color.
Right: Auratone® Horizons series. Decorative textures moderate priced!
Widest choice of ceilings with color all the way through!

WRITE NOW for our latest illustrated folder featuring 15 new integral colors in ACOUSTONE® and 7 new colors in AURATONE® acoustical ceilings. These high-quality products are keyed to current design trends in walls, floors, and furniture—cover all your commercial ceiling needs for aesthetics, sound control, and fire ratings. Get specifics from your U.S.G. Representative. Or write to Sound Control Products, 101 S. Wacker Dr., Chicago, IL 60606, Dept. PA-483S

© 1982 United States Gypsum

UNIVERS STATES GYPSUM // BUILDING AMERICA

Circle No. 418 on Reader Service Card
'CLOSE HARMONY

In Graceful Tension Structures By Helios.

The delicacy and beauty of these tensioned membrane structures is thoroughly practical. In this economical shelter for an outdoor music amphitheater, the natural beauty of the site is preserved, with only minimal disturbance for footings for structural elements. The smaller white tensioned structure at the Aspen Design Conference in Colorado is even simpler, facilitating its erection and demounting each year.

All these structures, including the festive rest area sunshades, are fabricated of vinyl-coated polyester material held in tension on a steel framework. The result is a lightweight, rigid structure engineered to withstand heavy wind. Though a tensioned membrane structure is in a higher price class than a tent, it offers far greater strength and durability. Compared to alternative structures of wood, steel or masonry, it typically results in important cost savings.

When your imagination calls up sweeping curvilinear shapes or great enclosed space, HELIOS INDUSTRIES, INC. are the people to try your ideas on. We specialize in helping architects translate their innovative designs into practical reality. Our expertise includes design, engineering, fabrication and erection—a total, comprehensive service unmatched in the U.S.

HELIOS INDUSTRIES, INC.
20303 Mack Street
Hayward, California 94545, U.S.A.
Telephone (415) 887-4800, Telex 17622

HELIOS INDUSTRIES, INC.
Soft Shell Structures Division
(Formerly Helios Tension Products, Inc.)
Circle No. 353 on Reader Service Card
This is an authentically idiosyncratic book. Nominally it is a do-it-yourself handbook on how to reuse fabricated waste artifacts—automobile tires, beer cans, pop bottles, cardboard tubing, and the like—in the construction of buildings. But the fact that it is published by the Sierra Club suggests that it has more serious ambitions; and so indeed it has, as a reading of the text will quickly prove. The paradox comes from the case histories that the author, the Anglo-Canadian architect Martin Pawley, insists on using to illustrate his points. These consist of an almost comically awkward collection of small structures fabricated of cans, tubes, and tires. Since all of the artifacts have a circular, tubular, or domical geometry and all of them are very positively discrete and independent, it requires inordinate ingenuity to assemble them into special entities that are even arguably habitable.

The paradox is one of Pawley's own making since he insists, on very meager evidence, that it is more economical "to build with wastes as they are instead of processing them into special building materials at giant municipal plants" (p. 115). It is of course obvious that it takes additional energy to reprocess aluminum cans into aluminum nails or siding. But the trade-off between embodied energy saved by building an awkward glop of cans, along with the enormous amount of human energy required to assemble such an unstable shape, and the amount of energy required to heat or cool it during a predictably short and unsatisfactory life, seems to argue against Pawley's position.

He says that the use of waste products should, as far as possible, take place without preliminary energy-consuming industrial processing. That is to say, "building with bottles makes more sense than smashing bottles, color sorting the glass and melting it down and making special glass buildings..." (Books continued on page 161)
High-tech comes to multiple seating in a self-rising, trim, flip-up seat.

Comforto Incorporated, P.O. Box 917, Lincolnton, North Carolina 28092. Space 1041-1042, Chicago Merchandise Mart.

Circle No. 330 on Reader Service Card
It makes more sense only if one is dealing with a single and primitive building type of the sort Pawley and his students have built.

As the man who is simultaneously giving us a chillingly lucid account of waste in contemporary American society, Pawley the architect is offering a singularly unconvincing theory for handling this waste. Thus, in two tables (19 and 20) he is contrasting the net energy intensity of a wall built of aluminum cans and a wall built of traditional building elements of reprocessed aluminum—but he neglects to give us on-site labor involved in either system! His argument is theoretically even weaker when treating the broader aspects of waste conservation. How can the energy embodied in garbage and sewage be recovered except by the investment of still more energy, since neither form can be used in its raw state? (In order to fully industrialize their sugar cane industry, the Cubans have been forced to convert from simply burning the waste bagasse to a series of processes producing alcohol,aper, building board, and fuel for the boilers.)

It is a pleasant surprise to turn from Pawley's architectural case histories to his text, which is a perceptive argument for a hole new national attitude toward the very concept of waste." Thus he reminds us that "because matter is indestructible, what we conceive to be the creation of waste is, in reality, the incomplete transformation of matter . . . what we call waste (by the word waste) is the conversion of useful materials into useless or inaccessible ones by the operation of the economy" (p. 41).

In the chapter entitled "Toward a Ruthless Product Environment," Pawley draws analogies from the natural world calculated to drive the proponents of Reaganomics into an early grave. In nature, he points out, the development and survival of organisms is controlled by the rigors of the environment in which they evolve. In earlier primitive and preindustrial societies, similar restraints operated in the genetic evolution of tools and artifacts. But such societal controls have disappeared in a world increasingly dominated by international cartels. They control "the genetic pool" of technological invention and development. But their vested interests dictate the suppression of all but the tiniest sector that happens, at any given moment, to be the biggest profit-maker. Thus the internal combustion motor is promoted at the expense of all other means of locomotion, and the voltaic cell is suppressed except in space, though the patents are controlled by the same corporations.

Pawley proposes a new Department of Product Evolution to correct this situation: "Armed with computer-modeled data on the totality of resources, production and reproduction capabilities, life-cycle costings and waste disposal operations . . . such an organization would have at its fingertips an immense designing and planning capability, covering all patents held . . . its mode of technology assessment would be governed by energy calculations, incorporating embodied, direct, operating and disposal elements all freely traded off one against the other in pursuit of an optimal energy budget" (p. 34).

Pawley confesses that "with the experience of recent years it is difficult to conceive of regulatory agencies as a source of economy and efficiency." But he nails the argument down with the warning that "it is futile for industry to argue against regulation because no other principle than regulation operates in nature: there is no alternative because no alternative exists." Mr. Pawley is here using a geologic, not a human, scale, and he is certainly right. Perhaps his argument will even more convincing if he can be persuaded to omit all his illustrations from the next edition.
What color is your wall?
R-wall™ is ready now in 101 colors.

Create unusual designs and multi-dimensional motifs in an array of contrasting colors. Specify R-wall Exterior Insulation and Finish System in any of 101 colors at no additional cost. Precise quality control and factory mixing assure absolute color consistency, batch to batch, every time. Wrap your building in the R-wall System. Get color and protection for years and years. Call us at 1-800-343-1188. ISPO INC., 792 South Main Street, Mansfield, MA 02048.
Books continued from page 161

comprehensive if somewhat general introduction to subter-
anean structures. Although it briefly reviews historical and
modern examples of that building type and sketches their
urban design potential, the book's strength lies in its coverage
of the architectural design implications of earth sheltering,
with a thorough analysis of soil conditions, site considerations,
and ventilation techniques, and with more than a passing rec-
ognition of the psychological and legal hurdles that still exist.
There are few plans and construction details, and some of the
ravings, such as the possible shapes of windows, are point-
less. The book, nevertheless, remains a valuable reference,
worth owning by anyone at all interested in earth-sheltered
design.

Assive Solar Architecture, Logic and Beauty by David Wright
and Dennis A. Andrejko. Van Nostrand Reinhold Company, New
York, 1982, illus., 255 pp., cloth $24.95, paper $16.95.
The authors of this book had two objectives, made clear in its
subtitle. The first is to show, through the example of 35
ouses located in almost every climatic region in the country,
how energy-conscious design follows some basic principles
that were a part of every architect's working knowledge until
his century. That is the logic. The second objective-
eauty—is to show how those principles can be integrated into
coherent architectural design. Not every house is quite as
eautiful as one might hope, but the book's format, with crisp
photographs, consistently drawn plans and sections, and clear
project summaries, shows each to its best advantage. For those
looking for design ideas that incorporate passive solar strat-
gies, the book is most useful.

Weather and Energy by Bruce Schwoegler and Michael McClin-
$22.50.

Weather systems contain enormous amounts of energy, which
we need only harness through technology. So runs the basic
remise of this book, the first half of which explains how
weather systems work and the second half, how emerging
disciplines might best utilize the energy of the sun, the wind,
the rivers, the ocean, and the trees. The book makes good
background reading on the macroclimate and on new energy
disciplines, but it has little in the way of specific archi-
tectural applications or guidance.

Five Degrees of Conservation, A Graphic Analysis of
Energy Alternatives for a Northern Climate by Lance LaVine,
Larry Fagerson, and Sharon Roe. University of Minnesota Press,
Minneapolis, Minn., 1982, cloth $19.50, paper $10.95.

A carefully documented research report on the performance
of five energy-conscious houses in Minnesota, this publication
provides, among other things, that superinsulation is one of
the most, and active solar space heating one of the least,
effective ways to conserve energy. The research suffers,
though, in its presentation. There are two many redundant
paragraphs and axonometrics and too little detailed information
about the houses to be of use to most architects.

Solar Architecture, The Direct Gain Approach by Timothy E.
$21.50.

It is for those who fear calculations, this book contains a
calculations of reference material on the design of direct gain build-
gs, from the placement of vegetation and interior partitions
the sizing of windows, the detailing of glazing, and the
control of glare. It offers a direct gain design method and
ids with appendices on calculator programs, climatic and
solar data, and a sample heat loss calculation. Recom-

UNITED STATES GYPSUM
BUILDING AMERICA

Takes abuse better than any other hard-surface panel!

GLATEX AURATONE
Acoustical Ceiling Panels.

This attractive mineral-fiber panel is ideal for stairways,
for gyms, for wherever people play rough! It's also
touted first in ability to conceal damage that gets
through the heavy, textured coat. In 5/8 x 24 x 24 in.
and 24 x 48 in. sizes.
For complete details, see your U.S.G. Representative or
write to Sound Control Products, 101 S. Wacker Drive,
Chicago, IL 60606, Dept. PA483O

Circle No. 409 on Reader Service Card
DORMA

VS.

SMOKE.

It's a
Shutout!

Specify the Dorma TS73 EMR door closer. At the first detection of smoke the built-in smoke detector interrupts the electro-magnetic hold-open device and the door closes automatically and quickly. The smoke is confined. It's a sure shutout!

When the smoke clears, the non-latching detector automatically resets so the doors can be reopened and traffic flow resumed.

The Dorma TS73 EMR functions on either 24 volt DC, 120 volt AC, or 220 volt AC. No transformer is needed. It interfaces easily with supervised fire alarm systems. It can also activate up to four additional detectored units and five slave units. Ideal for new construction or retrofit.

Consider these other features which make the Dorma TS73 EMR the leader in the fire safety door control field.

It can be field tested anytime by a tamper proof magnetic reed switch to simulate alarm conditions and verify operation. It is available in hold-open models that can be held at any point from 85° to 180° with no setting or adjustments required. Top jamb and track arm applications are all available non-handed.

Underwriters Laboratories Inc., lists Dorma's TS73 EMR under their continuing reinspection program.

Call or write today for facts and specifications on the technically advanced Dorma TS73 EMR. Literature also contains information on other Dorma fire safety products.
AMERICA'S LARGEST HOME JUST CONVERTED TO GAS.

To heat large spaces economically you can't beat natural gas. That's why the owners of the 250-room Biltmore House converted their oil-fired boilers to utilize gas. They expect to save 30% on their annual fuel bill by replacing the 80,000 gallons of oil normally used in a winter heating season.

The large greenhouse complex, part of the extensive gardens surrounding the house, will also be heated by natural gas. The greenhouse complex, which contains many rare plants, has 14,500 square feet of floor space with approximately 165,000 cubic feet of space under glass.

In addition to fuel cost savings, clean-burning natural gas will reduce the maintenance time and costs required for cleaning the heating system.

Whatever size space you have to heat, more than likely you, too, will find gas is the most efficient way to do it. For more information contact your local gas company.

Gas: The future belongs to the efficient.

Circle No. 314 on Reader Service Card
Less: Cost for lighting and air conditioning.
More: Superior accent lighting.

Progress Low Voltage Track Lighting does it for the Hillman Hall of Minerals and Gems in Pittsburgh's Carnegie Museum of Natural History.

Progress Low Voltage Track Lighting provides precisely controlled accent lighting of minerals in this 'black room'. They focus a punch of light exactly where it's needed... with a minimum of distracting stray light.

Visual results are dramatic. Economic benefits are significant.

Progress Low Voltage lampholders lessen lighting costs because a 12-volt 50W PAR-36 narrow spot provides more center beam footcandles than a 120-volt 150W R-40 spot or flood. They do the lighting job more efficiently, with less energy. And for every 100 watts saved, there are 341 less BTU's of heat to remove with air conditioning. A 1,000 watt reduction saves ¾-ton of air conditioning per hour. Less saves more!

Available in a selection of form finishes. All can be used with matching volt Progress lampholders on the same line. Ideal for museums, galleries, showrooms and other accent lighting.

Progress Low Voltage Track Lighting... Superior accent lighting that reduces energy costs. For further information, circle reader service card.

LOW VOLTAGE TRACK LIGHTING

Subsidiary of Kidde, Inc. KIDDE Philadelphia, PA 19134
Circle No. 36 on Reader Service Card
Products and literature

The following items are related to the general theme of this issue, conservation of energy and resources.

Water conservation

Products

Kitchen faucets in the 7300-A series include the Flow-Rater® aerator, to control water flow to 2.5 gallons per minute, and a Temperature Memory that adjusts water temperature gradually. Control handle and 9-inch-long spout are chrome-plated brass. Stanadyne, inc., Moen Div.
Circle 100 on reader service card

The Superinse® toilet, described in a data sheet, flushes completely and quietly with just one gallon of water—about 20 percent of the amount used in conventional toilets, according to the manufacturer. An antisiphon fill valve and conventional flush valve are its only moving parts. Superinse can be used with existing plumbing and requires no air or electrical connections. Thetford Corp.
Circle 201 on reader service card

Cascade toilets, manufactured in Sweden use very low water volume. Model 3250 uses only .8 gallon of water, yet operates quickly and efficiently. Models 3260 (visible "S" trap), 3300 (concealed trap), and 3293 (wall hung) use 1.6 gallons per flush. They are made of polished vitreous china, with acetal plastic working parts and polypropylene seat. Rough-in dimensions are different from those for U.S.-made units, but retrofits are possible. A four-page brochure illustrates methods of new or retrofit installation and includes charts of water savings possible and colors available. Ifö Sanitar AB.
Circle 202 on reader service card

Water-Saver toilets that operate with 3.5 gallons of water, 30 percent less than regular toilets, save both fresh water use and wastewater processing. The water-saver feature is available in several models, which are described and illustrated in a 12-page brochure, and include Cadet, Plebe, Roma, and Elissa. American-Standard, Inc.
Circle 203 on reader service card

Water Economy toilets operate with only 3.5 gallons of water, yet are said to operate as efficiently as conventional units, which require as much as five or six gallons. Tanks are equipped with insulating linings that eliminate condensation that otherwise might form on tank exteriors. A four-page brochure describes the Water Economy toilets and the Neu-Hygiene bidet. Crane Co.
Circle 204 on reader service card

Water-Guard faucets are equipped with aerators to control flow and reduce water consumption. Finishes include brushed or polished chromium, brushed or polished 24-carat gold, and polished or burnished brass. Several designs for lavatory, bath/shower, and kitchen are illustrated and described in a 28-page color brochure that also includes information about Water-Guard, valve features, and Rite-Temp temperature control. Kohler Co.
Circle 205 on reader service card

Faucets for lavatory, tub/shower, and kitchen, illustrated and described in a 14-page color brochure, include models with water-saving features. Many are equipped with aerators having 2.5-gallon-per-minute flow restrictors. There are models to blend with any style. American-Standard, Inc.
Circle 206 on reader service card

'Selecting the Proper Flushing System' compares Sloan's Flushometer with tank-type installations. Factors considered in the 14-page brochure are aesthetics, noise level, maintenance, water/sewer cost savings, performance and reliability, initial costs, and life-cycle costs. A case history of a 192-unit hotel/motel charts a 25-year, $56,770 cost saving. Sloan Valve Co.
Circle 207 on reader service card

Air quality products

The Talking Gastechtor talks to the user by means of a simulated-voice chip. It leads the user through steps to operate the device. In the event that it detects high concentrations of gas, the user is warned to leave the area. The warning is followed by a continuous sound that varies depending on the degree of emergency. GasTech, Inc.
Circle 102 on reader service card

Gas monitor Model 2321 is a rack-mounted multipoint system for continuously monitoring up to 16 locations.

[Products continued on page 168]
Each channel has an individual meter display. Modules available can monitor oxygen, combustible gases, carbon monoxide, and hydrogen sulfide. They have individual relays and high and low alarms. GasTech, Inc.

Circle 103 on reader service card

A personal carbon monoxide alarm monitor is equipped with audible and visible alarms, and has earphones available for use in noisy areas. The continuous concentration display is made possible by the use of a low-power CMOS analog to digital converter/display driver. The unit, measuring 6” x 3” x 2”, is enclosed in a rugged case and has a long-life battery. The display space indicates when the battery has only eight hours of life remaining. The leather carrying case comes with a belt loop for easy portability. Interscan Corp.

Circle 104 on reader service card

The Miniram personal dust monitor measures dust concentrations sampled from natural air convection. Designed for on-person use, it weighs only 14 oz and measures 4” x 4” x 2”, making it suitable for carrying on a belt, hard hat, or shoulder strap. A brochure describes the monitor, its performance, and electronic controls and includes information about accessories and prices. GCA/Technology Div.

Circle 105 on reader service card

Track Etch® radon detector measures the average radon level in home or office. Attached to a wall in one or two locations, it registers radiation from radon in the air. At the end of approximately three months, it is returned to the company for processing and analysis. A six-page leaflet discusses radon, its sources and effects, and outlines the features of the detector. Terradex Corp.

Circle 106 on reader service card

HVAC control products

NTZ and NTLZ remote sensor thermostats save energy by controlling hot water or steam heat in baseboard radiation, convectors, and freestanding radiators. The thermostats are not electric, but operate on a temperature-sensing wax element that expands or contracts to operate an actuator that opens or closes the valve. A dial allows the user to select the desired room temperature. They are said to be suitable for use in schools, offices, apartments, and hotels. Macon Control Corp.

Circle 107 on reader service card

Excel direct control for heating, ventilation, and air-conditioning systems uses microprocessor technology and software logic to provide efficient building energy management. A single controller can handle one or several HVAC systems. The software has the flexibility to change functions with changing hardware, wiring, or piping. Honeywell, Inc.

Circle 108 on reader service card

Microprocessor heating control Mode HWR is designed for hot water system in apartment houses, office buildings, industrial plants, and institutions. It has a seven-day electronic clock that time space temperature levels to meet occupancy schedules. Eight heat level changes can be made each day, and each day can be programmed differently. Depending upon the type of control, it can save from 15 to 30 percent of fuel used. Heat-Timer Corp.

Circle 109 on reader service card

Microprocessor heating control Mode HWR is designed for hot water system in apartment houses, office buildings, industrial plants, and institutions. It has a seven-day electronic clock that time space temperature levels to meet occupancy schedules. Eight heat level changes can be made each day, and each day can be programmed differently. Depending upon the type of control, it can save from 15 to 30 percent of fuel used. Heat-Timer Corp.

Circle 109 on reader service card

[Products continued on page 170]
Knoll The Pollock Chair

The original classic Pollock chair, designed for Knoll in 1965. To date, so many executives worldwide have chosen it as their chair, it is by far the most popular executive chair in Knoll's history. And the most imitated.

Knoll International, The Knoll Building, 655 Madison Avenue, New York, NY 10021
Power/Perfect 4500 microprocessor-based energy management system integrates four energy-saving controls: Programmed start/stop, Load cycling, Demand limiting, and Optional start/stop. It is expandable from single-building to multi-building monitoring by connecting remote units to a central terminal using nondedicated telephone lines. Johnson Controls.

Circle 110 on reader service card

Temp-Miser energy management system, with eight analog temperature sensors, controls HVAC equipment through optimum start operation. Data from indoor and outdoor temperature sensors determine start times and avoid unnecessary equipment operation. The system is programmable for time-of-day and day-of-week schedules, with holidays planned up to a year in advance and special scheduling up to a week in advance. It has battery backup and audible alarm. MicroControl Systems, Inc. Circle 111 on reader service card

Compusat II digital setback thermostat for industrial/commercial applications combines seven-day independent scheduling and automatic heating/cooling changeover. One or two set-up and set-back periods can be scheduled for each of seven days. Temperature control is maintained at an accuracy of ±0.5 F. The thermostat can replace most 24-30-volt single-stage thermostats with no additional wiring. Compusat II is available in heating only or heating/cooling models. PSG Industries, Inc. Circle 112 on reader service card

Enerstat® microcomputer thermostat for residential use automatically adjusts temperature levels four times a day to meet occupancy schedules. For use with furnace or air conditioner, Enerstat allows adjustment of the temperature span to reduce on/off cycles. By reducing temperatures during unoccupied periods and sleeping periods, savings can amount to as much as 30 percent during the heating season and 25 percent during the cooling season. It easily replaces an existing thermostat; if location is a problem, there is a remote sensor available, which can be placed in the most effective location. Valera Electronics, Inc. Circle 113 on reader service card

Lighting and controls

Products

Bulb-Miser, a thermal-shock-absorbing disc, extends the life of incandescent bulbs. By regulating the initial flow of electricity to the filament, the disc allows the bulb to reach maximum lighting capacity gradually. According to the manufacturer, there is no decrease in light output. Bulb-Miser, which can be used with all incandescent bulbs up to 250 watts, is especially cost effective when used with more expensive incandescent track lighting, spotlighting, and similar incandescent bulbs. Bulb-Miser Corporation of America. Circle 114 on reader service card

Parabolume 60® fluorescent lighting fixture consumes less energy than traditional lighting, according to the manufacturer, and is less expensive. The 20 x 60" fixture, which will hold two or three fluorescent lamps, is designed to replace 20" x 48" fixtures to fit into 60 inch ceiling grids. Installation costs are also reduced up to 25 percent. Columbia Lighting, Inc. Circle 116 on reader service card

Parabolume 60® fluorescent lighting fixture consumes less energy than traditional lighting, according to the manufacturer, and is less expensive. The 20 x 60" fixture, which will hold two or three fluorescent lamps, is designed to replace 20" x 48" fixtures to fit into 60 inch ceiling grids. Installation costs are also reduced up to 25 percent. Columbia Lighting, Inc. Circle 116 on reader service card

A 22-watt fluorescent fixture, Mode 892-22, designed to replace an incandescent [Products continued on page 172]
Light Diet

A strict regimen of reduced energy consumption, coupled with enhanced visual comfort. An attractive alliance, engineered by Gardco’s Focus Ten. H.I.D. sources deliver both reflected ambient and direct lighting (diffused or controlled task beam) from freestanding and ceiling-mounted luminaires. Touches of light from the ring reveal and lower aperture grace the outline of the luminaire. Now quality of light does the work of mere quantity, and curbs the powerful appetite of office lighting. Gardco Lighting, 2661 Alvarado Street, San Leandro, California, 94577. 800/227-0758 (In California 415/357-6900).
Products continued from page 170

descent downlight, fits inside a 6-inch recessed “can” and fastens to the ceiling. The housing is heavy-gauge steel with black polyurethane exterior finish, white reflective interior coating, and acrylic prism diffuser. According to the manufacturer, it casts as much light as a 75-watt incandescent lamp. Moore-Lambert Industries.
Circle 117 on reader service card

Energy-saving desk, floor, and wall lamps that use 9-watt fluorescent bulbs are said to offer light equivalent to that of a 60-watt incandescent bulb. Reflectors are painted white inside for added light reflection. They rotate 90 degrees to direct light where it is needed. Bulb life is 10,000 hours, reducing maintenance costs. All lamps are solid brass with polished brass or polished chromium finish. Nessen Lamp, Inc.
Circle 119 on reader service card

The Econ-Nova® compact fluorescent lighting system for incandescent sockets consists of a base with ballast, a fluorescent tube, and a removable translucent diffuser. It produces light equivalent to that of a 75-watt bulb, says the manufacturer, yet uses only 25 watts—a 66 percent reduction in energy use. Bulb life is 7500 hours. It is a suitable replacement in many residential, industrial, or commercial lamps and fixtures. Westinghouse Electric Corp.
Circle 118 on reader service card

Task light STC-30, for direct mounting to the underside of cabinets or shelves, uses a 14-watt, white light, U-shaped fluorescent bulb. Two of the fixtures provide more illumination than a 40-watt fluorescent light. An asymmetric reflector directs 70 percent of the illumination directly to the work surface for greater efficiency. Accessories are available to convert the light to a wall-mounted fixture or a desk lamp. Halo Lighting, Div. of McGraw-Edison Co.
Circle 120 on reader service card

The C-10 lighting control system provides custom lighting control in applications from individual rooms to multibuilding systems. It can be used on indoor or outdoor lighting having incandescent, fluorescent, HID, or quartz light sources. Its modular components can be relocated as requirements change. The system operates by means of a wall-mounted or portable desktop control for local lighting or programmable controls and minicomputer for central control of larger installations. RELOC, Lithonia Lighting.
Circle 123 on reader service card

Lightwatch lighting controls use infrared sensors to detect temperature changes, such as that of the human body, and turn on lights. A time delay allows the lights to remain on for a period of time after the area has been vacated. Exterior control Lightwatch II has an all-weather housing and is available as control only, with one lampholder, or with two lampholders. Indoor control Lightwatch 9 is made in six models with a choice of surveillance patterns. Colorado Electro-Optics, Inc.
Circle 122 on reader service card

The C-10 lighting control system provides custom lighting control in applications from individual rooms to multibuilding systems. It can be used on indoor or outdoor lighting having incandescent, fluorescent, HID, or quartz light sources. Its modular components can be relocated as requirements change. The system operates by means of a wall-mounted or portable desktop control for local lighting or programmable controls and minicomputer for central control of larger installations. RELOC, Lithonia Lighting.
Circle 123 on reader service card

[Literature continued on page 174]
Stark Carpets are specified by top designers for their most important projects.

Medalist design in 12 stock colorways, and Bedford II design in 6 stock colorways; featuring Ultron Z®, a soil-shedding nylon fiber from Monsanto. Ultron Z® provides improved resistance to soil, better cleanliness and enhanced appearance retention.

Design: Dondhia Associates

PepsiCo World Headquarters, Over 30,000 yards installed.

Bedford II—Taupe Bedford II—Beige Bedford II—Forest Green Bedford II—Rose Bedford II—Light Grey Bedford II—Charcoal
Literature continued from page 172

Literature

‘Energy Saving Ballast Replacement Guide’ lists 6 Mark III ballasts that can replace 142 ballasts from Advance and three other manufacturers. They operate on 120V and 277V models and their cooler operation doubles ballast life expectancy. The guide lists energy-saving benefits and shows annual expected dollar savings. The ballasts meet ANSI specifications for standard lamps and are physically interchangeable with standard ballasts. Advance Transformer. Circle 208 on reader service card

Conservolite® Daylight Savings System has sensors that detect available light around each fixture and reeluce wattage to meet desired light level. Individual switches can override the system where light is needed when the system is off. The brochure offers a design guide. Wide-Lite Corp. Circle 210 on reader service card

‘Office Lighting,’ a 44-page publication, covers planning, designing, and energy management of lighting systems for office tasks and environments. Intended for use by lighting designers, architects, engineers, and contractors, the publication has been approved by the American National Standards Institute. “Office Lighting.” Publication ISBN 0-87995-011-0, is $9 for IES members, $13.50 for nonmembers. Copies can be ordered from The Illuminating Engineering Society of North America, 345 E. 47 St., New York, N.Y. 10017.

Other energy products

COSS® control system simplifier offers data transfer in any control system, such as energy management, having sensing and operating devices more than 75 feet from the controller. The system consists of compatible components, each with a specific communications function, that connect a control computer or programmable controller with input-output points of a control system. Instead of being hardwired, units are connected by a single communications cable up to 7000 feet long. It is said to save more than 90 percent of installation cost compared with wires in conduit from the controller to each input-output point, and it offers further savings because the modular system can be changed easily and inexpensively. Other applications include industry automation, building security, and fire safety. Control Junctions. Circle 124 on reader service card

The Solar Card, a site evaluation tool, is a transparent 8” x 10” flat plastic sheet with the sun’s path for each month drawn on it. It is possible to tell by looking through the card whether objects will shade a house at various times of day and days of the year. It can be used for solar water heating, house heating, solar electricity, and summer shading. Cards can be specified for a particular latitude. They can be ordered, at $12.95 each, from Design Works, Inc., P.O. Box 489, North Amherst, Mass. 01059.

‘Tyvek’ housewrap air infiltration barrier of spunbonded olefin is reported to reduce air exchange rates as much as 55 percent. Tyvek is wrapped around the exterior over sheathing, before windows and siding are added. The material is moisture-vapor permeable, eliminating the danger of in-wall condensation. The average house can be wrapped in about two hours. Tyvek also is suitable for use under stucco. Du Pont Company. Circle 125 on reader service card

[Products continued on page 176]
Now you can have a standing seam roof and a superior insulation system.

With the Vulcraft Roof Insulation System (RIS), you can have a metal roof and a solid blanket of insulation. No more thermal “short circuits” caused by compressed insulation at the roof/joist connections.

Our standoff system eliminates those thermal inefficiencies and allows for up to 6 1/2" of glass-fiber blanket insulation. Which means you can meet critical thermal demands up to R-20 (U=0.05).

And the supportive interior membrane, erected separately from the insulation, gives a clean interior appearance. It allows use of less expensive, unfaced insulation, prevents unsightly sagging and provides a superior vapor barrier.

The Vulcraft panel support beam then provides the structural base for your standing seam roof.

Keep the Vulcraft Roof Insulation System in mind. Because some day you’re going to want a standing seam roof and a superior insulation system.

For more information concerning The Vulcraft Roof Insulation System, or a copy of our catalog, contact the nearest Vulcraft plant listed below. Or see Sweet’s 7.2/Vu.

VULCRAFT RIS™
A Division of Nucor Corporation

P.O. Box 637, Brigham City, UT 84302 801/734-9433
*P.O. Box 186, Grapeland, TX 75844 713/687-4665
P.O. Box F-2, Florence, SC 29502 803/662-0381
P.O. Box 59, Norfolk, NE 68701 402/371-0020
P.O. Box 169, Fort Payne, AL 35967 205/845-2460
*P.O. Box 1000, St. Joe, IN 46785 219/337-5411

*Roof Insulation System manufacturing locations

Circle No. 380 on Reader Service Card
Products continued from page 174

Cyroflex® double-skinned ¼-inch-thick polycarbonate sheet for greenhouse glazing offers 80 percent light transmission, insulation characteristics, and impact resistance. It has a high strength-to-weight ratio and is flexible enough to be curved easily without heating. Its U-factor is .69 Btu/hour/sq ft°F. CYRO Industries.

Circle 126 on reader service card

Energy-Kote® radiant heating panels convert electricity into infrared radiant energy to warm room occupants rather than air. According to the manufacturer, they are silent, do not circulate dust, do not affect humidity levels, and require no maintenance. The lightweight panels, ranging in size from 2' x 4' to 4' x 8', are easy to install and come in all common voltages and wattages. TVI Energy Corp.

Circle 127 on reader service card

Building materials

Major materials suppliers for buildings that are featured this month as they were furnished to P/A by the architects.

The Lock of Gibraltar.

Introducing the Russwin 7000 Series. A landmark advance in protective strength and security.

Like the famed island fortress, this new heavy duty mortise lock is made to endure. It has absolutely no equal in architectural hardware. All stress and security parts—including a 1” dead bolt and 3/4” latch bolt—are manufactured from solid stainless steel to assure increased wear resistance and smoothness of operation. The heavy gauge steel case is specially coated with a gold, polyester baked finish with an anti-friction agent added to resist corrosion and assure velvet-smooth action.

You'll find, too, that this beautifully crafted, UL listed lockset offers the peace of mind and assured protection of a five-year limited warranty.

For your ordering and specifying convenience, the Russwin 7000 is now listed in our new specifications manual, The Russwin Specifier. Ask your Russwin Distributor or call for details.

1-203-225-7411. Russwin Division, Emhart Hardware Group, 225 Episcopal Road, Berlin, CT 06037.
AFG SOLAR GLASS MANAGES THE SUN.

In passive solar design, AFG solar glass gives you reduced construction costs, no harsh sunlight, flexibility in design, and high performance.

Circle No. 310 on Reader Service Card
There's a lot to see in Bradley washroom accessories. Look closely and you could win an Apple III computer!

Here's a contest that's as easy to enter as it is to specify Bradley products. It's also the last mix-up you'll ever have when choosing washroom accessories! With Bradley you can be sure of long-lasting, dependable performance...of washroom equipment that is not only attractive but vandal-resistant and easy to maintain.

You'll enjoy unscrambling your business and household problems on your own personal Apple computer—it delivers the dependable performance you get from Bradley accessories! To enter, unscramble the names and send in the entry form today. All correct forms must be postmarked by June 1, 1983, to be eligible for the drawing on June 30, 1983. (One entry per envelope please. One winner will be drawn from entries submitted with correct answers. Contest is void where prohibited by law.

Win this Apple III Personal Computer

The Apple III is an extremely versatile personal computer performing functions from job costing and scheduling to word processing and billing. It's the ideal personal computer for professionals. The Apple III with monitor has a suggested retail price of $3,244.

To enter our drawing, unscramble the answers to these questions!

QUESTIONS

1. Whose pre-assembled wash centers get 12 different accessories into a space 17" wide x 67" high?
2. Who guarantees their mirrors for 15 years against silver spoilage?
3. Whose grab bars hold over 1,300 pounds?
4. Whose hand and hair dryers provide 10,000 hours of maintenance-free service?
5. Who offers you hundreds of different washroom accessories?
6. Who has more than 200 reps and 70 offices nationwide?

ANSWERS

1. BARDLEY
2. BELDRAY
3. YELDARB
4. BERDLAY
5. BLYDARE
6. DARBYEL

Write your answers here:

Solve the anagrams and return the form to: Bradley, PO. Box 309, Menomonee Falls, WI 53051.

□ Here are my answers. Please enter them in the Apple computer drawing and send me more information on Bradley's full line of washroom accessories.
□ Please have a Bradley representative contact me.
□ Please send more information on Apple personal computers.

Name ____________
Title ____________
Company ____________
Address ____________
City ____________ State __ Zip __
Telephone ____________
A beautiful answer to the water conservation problem...

Water Saver Toilet

With average use of a four-member family 70 gallons of water a day can be saved! That's over 2,000 gallons per month. This represents exceptional water conservation while lowering monthly water bills. The IFO Cascade is available in a full range of colors and standard white, several designs and tank capacities.

4/5 gallons per flush
1.5 gallons per flush

• Superior quality vitreous china
• Non-corrosive working parts

Also, the oil-new 1.5 gallon model is designed to meet U.S. codes and rough-in dimensions.

U.S. Marketing Office
P. O. Box 231,
Avery, CA 95224
(209) 795-1758

IFÖ Sanitär

IFÖ SANITÄR AB, BRÖMOLLA, SWEDEN

Building materials cont. from page 176

A very beautiful answer to the water conservation problem... IFÖ Cascade

Water Saver Toilet

With average use of a four-member family 70 gallons of water a day can be saved! That's over 2,000 gallons per month. This represents exceptional water conservation while lowering monthly water bills. The IFO Cascade is available in a full range of colors and standard white, several designs and tank capacities.

4/5 gallons per flush
1.5 gallons per flush

• Superior quality vitreous china
• Non-corrosive working parts

Also, the oil-new 1.5 gallon model is designed to meet U.S. codes and rough-in dimensions.

U.S. Marketing Office
P. O. Box 231,
Avery, CA 95224
(209) 795-1758

IFÖ Sanitär

IFÖ SANITÄR AB, BRÖMOLLA, SWEDEN

Creative Dining Areas

This dramatic "Spacemaker" from Four Seasons Greenhouses will attract and enchant diners. It's truly "Outdoor Dining-Indoors." The casual elegance of a "Spacemaker" is unmistakably from Four Seasons. A wide variety of sizes permits designs from a small entrance foyer up to a full scale lavish dining room. Create an "Outdoor Cafe" that will help brighten your summer days. Look at these quality features:

• Custom or standard prefab units available for easy installations by your contractor.
• Factory sealed insulated safety glass available in clear, tinted or solar-cool bronze.
• Exclusive patented automatic ventilation and shading.
• Heavy duty P.G. bronze or white finish aluminum structure in curved or straight design.

PuR-R-Vent™

Complete structure from one at an amazing low price!

• Nationwide dealer network.
• Full specifications in Sweet's Catalog Sec 13.20/Fa.

FOUR SEASONS GREENHOUSES

Mfg. by Four Seasons Solar Products Corp.
100 Route 11B, Dept. PA-304
Northampton, N.Y. 11757

Circle No. 358 on Reader Service Card

Circle No. 342 on Reader Service Card

FOUR SEASONS GREENHOUSES

Mfg. by Four Seasons Solar Products Corp.
100 Route 11B, Dept. PA-304
Northampton, N.Y. 11757

CALL TOLL FREE 1-800-945-5827 IN N.Y. CALL 516-693-1400
beauty and durability today...and tomorrow. Versatile redwood—there's a
trade for every project. Send for our booklet, “Redwood Grades and Uses.”

CALIFORNIA REDWOOD ASSOCIATION One Lombard Street, San Francisco, CA 94111. (415) 392-7880.

GEORGIA-PACIFIC CORPORATION • HARWOOD PRODUCTS COMPANY • MILLER REDWOOD COMPANY • THE PACIFIC LUMBER COMPANY • SIMCON TIMBER COMPANY
The ASES/83 program appears on page 188.

Each year, the American Solar Energy Society's Annual Meeting and Solar Technologies Conference provides the nation's only multidisciplinary forum for discussing the renewable energy field and the future of the quickly evolving energy production sector. This year's conference, to be held from May 30 through June 4, 1983, in Minneapolis, Minn., will bring researchers, professionals, and manufacturers working in the field up to date on technical advances and on the future prospects of technologies in various markets.

The theme of the conference is "Renewable Energy, Renewable Living." It will look at how we can make the transition from a society dependent upon unreliable, depleting energy resources to a society living within its energy means, sustained by a balance between efficient energy use and renewable energy sources. ASES 83 will be more than a solar conference. It will present a national forum on the technological, economic, social, and political strategies necessary to ensure the evolution of a renewable society over the decades to come.

The American Solar Energy Society will offer, at this year's conference, one of the most complete agendas on renewable energy ever assembled. In-depth workshops sponsored by the Minnesota Solar Energy Association will also provide an opportunity for conference participants to hone professional skills in a variety of specific interest areas. Plenary sessions, aimed at drawing the many diverse interests and technologies into a coherent image, will be moderated by futurist Joel Barker. Other nationally prominent speakers are Hazel Henderson, economist and author; Paul Maycock, former director of the U.S. Department of Energy photovoltaic programs; David Morris, director of the Institute for Local Self Reliance; and Vladimir Jackovles, with the Organization of American States.

The program
Over 350 papers will be presented at the conference. The papers will address the information needs of those with a professional interest in solar energy research, policy making, design and construction, business, and education. The categories of paper topics include architecture and construction, with a special emphasis on design for northern climates; active and passive solar engineering; agricultural applications; socioeconomics; biotechnology and chemical sciences; physics; and solar radiation.

A special feature of this year's conference is the Sixth Biennial Wind Conference and Workshop, which is sponsored by the Wind Energy Division of ASES and cosponsored by the ASES Architecture and Constructive Division, the American Institute of Aeronautics and Astronautics, the American Society of Mechanical Engineer Solar Energy Division, the American Wind Energy Association, the Electric Power Research Institute's Advanced Power System Division, and Alternative Sources of Energy magazine. The workshop will cover current research on wind energy going on both here and abroad.

A "Sustainable Communities Design Charrette," cosponsored by the American College of Architecture and the American Institute of Architects, will present a national forum on the technological, economic, social, and political strategies necessary to ensure the evolution of a sustainable society over the decades to come.

The theme of the conference is "Renewable Energy, Renewable Living." It will look at how we can make the transition from a society dependent upon unreliable, depleting energy resources to a society living within its energy means, sustained by a balance between efficient energy use and renewable energy sources. ASES 83 will be more than a solar conference. It will present a national forum on the technological, economic, social, and political strategies necessary to ensure the evolution of a renewable society over the decades to come.

The theme of the conference is "Renewable Energy, Renewable Living." It will look at how we can make the transition from a society dependent upon unreliable, depleting energy resources to a society living within its energy means, sustained by a balance between efficient energy use and renewable energy sources. ASES 83 will be more than a solar conference. It will present a national forum on the technological, economic, social, and political strategies necessary to ensure the evolution of a renewable society over the decades to come.

The theme of the conference is "Renewable Energy, Renewable Living." It will look at how we can make the transition from a society dependent upon unreliable, depleting energy resources to a society living within its energy means, sustained by a balance between efficient energy use and renewable energy sources. ASES 83 will be more than a solar conference. It will present a national forum on the technological, economic, social, and political strategies necessary to ensure the evolution of a renewable society over the decades to come.
Precast/prestressed concrete buildings can provide exceptional resistance to the intrusion of outside air. That's one way to assure far greater stability of inside temperatures.

There are other ways in which precast/prestressed concrete can very economically provide superior insulation and passive energy conservation ... assure continuing savings throughout the life cycle of a building.

Learn the facts. Request: "The Energy Saver."

Circle No. 385 on Reader Service Card
Fire-Guard can also be used as a beautiful site and sound barrier, space divider or security door.

When needed, Fire-Guard closes automatically on a fail-safe back-up DC power supply activated by any standard smoke alarm.

FIRE-GUARD, THE SIMPLE, COST EFFECTIVE SOLUTION TO ELEVATOR LOBBY SEPARATION.

Each of the three model building codes now require that ALL elevator lobbies in buildings 75 feet or more in height be completely separated from the remainder of the building by a minimum of "one hour fire resistance rated construction."

Most building designers are just becoming aware of this new code requirement and are concerned about compliance.

Fortunately the Won-Door Fire-Guard provides a simple, low-cost solution to any potential compromises in design, aesthetics, or normal traffic and use of the building.

Contact Won-Door or your local Won-Door dealer for all the details.

Won-Door Corporation
1865 S. 3480 W.
Salt Lake City, Utah 84104
1 (801) 973-7500
Call toll free 1 (800) 453-8494

Circle No. 416

An optional "crash bar" handle provides easy access to even the most severely handicapped. A light bump on the bar opens the door automatically to a preset point then recloses it automatically when the individual passes.

Fire-Guard requires NO FLOOR TRACK! Yet is still a tested and proven barrier of not only flames, but SMOKE and TOXIC FUMES as well.

Fire-Guard stacks to a tiny 2½ inches per linear foot, making it simple to conceal (though you may not wish to since it is so beautiful) in a shallow wall pocket.

Fire-Guard is approved and/or listed by: UL, ICBO, CALIFORNIA STATE FIRE MARSHALL and various other state and government agencies.

Patented dual-wall construction means even when the fire side of the door reaches 1700° you can still put your hand on the opposite side!
Japanese Architecture will be the subject of an extensive special feature section, with a critical introduction by Hiroshi Watanabe. Chosen to show the diversity and inventiveness of current work in Japan, the completed buildings featured will range in scale from some remarkable houses to a bank, two small museums—nothing alike—a corporate training center, to a full-service community center. Diverse as they are, all of the architects involved reflect a heightened respect for the contexts in which they have built.

The P/A International Furniture Competition will be the subject of a major feature, showing the 16 winning entries, which will be displayed at NEOCON. Lively jury discussion will offer insights into the course of furniture design in relation to architecture.

NEOCON and Systems 83 will be the subjects of two special conference/exposition sections reviewing two events of particular interest to architects and interior designers, taking place in Chicago and Dallas, respectively, in June.

P/A in June will cast an affectionate but critical eye on the new craftsmanship that has become evident recently. Included will be works of architecture in which the materials and onnections are part of the concept, as well as articles on new craftsmanlike uses of stone, masonry, metals, and other traditional materials.

Specify Da-Lite

Leading architects choose the leading projection screen

Designers of the Harvard University Science Center, the Gulf Oil Building in Pittsburgh, the National Bank of Detroit's Renaissance Center offices and the Wisconsin Telephone Company headquarters all have one thing in common. They specified Da-Lite projection screens.

For visual impact...from convention centers to the most elaborate computer age audio visual facility...Da-Lite produces screens in all formats and sizes.

Da-Lite's automatic electric Electrol® screens, recessed in the ceiling and operated by remote control, lower and raise unobtrusively to set the stage for a professional presentation. Built-in rear projection and manual wall and ceiling screens offer additional versatility in perfecting the design concept.

Da-Lite, as the nation's leading projection screen manufacturer, provides complete specifications plus size and viewing angle guidelines, picture surface information, wiring diagrams and vital installation basics. To learn more, start with Swee's catalog (USA: 16.8a/Da, Canada: 16com/DAL). Then write us for the name of your nearest Da-Lite Audio-Visual Specialist Dealer.

Circle No. 332 on Reader Service Card

Specify Da-Lite

Leading architects choose the leading projection screen

Designers of the Harvard University Science Center, the Gulf Oil Building in Pittsburgh, the National Bank of Detroit's Renaissance Center offices and the Wisconsin Telephone Company headquarters all have one thing in common. They specified Da-Lite projection screens.

For visual impact...from convention centers to the most elaborate computer age audio visual facility...Da-Lite produces screens in all formats and sizes.

Da-Lite's automatic electric Electrol® screens, recessed in the ceiling and operated by remote control, lower and raise unobtrusively to set the stage for a professional presentation. Built-in rear projection and manual wall and ceiling screens offer additional versatility in perfecting the design concept.

Da-Lite, as the nation's leading projection screen manufacturer, provides complete specifications plus size and viewing angle guidelines, picture surface information, wiring diagrams and vital installation basics. To learn more, start with Swee's catalog (USA: 16.8a/Da, Canada: 16com/DAL). Then write us for the name of your nearest Da-Lite Audio-Visual Specialist Dealer.

Circle No. 332 on Reader Service Card

Specify Da-Lite

Leading architects choose the leading projection screen

Designers of the Harvard University Science Center, the Gulf Oil Building in Pittsburgh, the National Bank of Detroit's Renaissance Center offices and the Wisconsin Telephone Company headquarters all have one thing in common. They specified Da-Lite projection screens.

For visual impact...from convention centers to the most elaborate computer age audio visual facility...Da-Lite produces screens in all formats and sizes.

Da-Lite's automatic electric Electrol® screens, recessed in the ceiling and operated by remote control, lower and raise unobtrusively to set the stage for a professional presentation. Built-in rear projection and manual wall and ceiling screens offer additional versatility in perfecting the design concept.

Da-Lite, as the nation's leading projection screen manufacturer, provides complete specifications plus size and viewing angle guidelines, picture surface information, wiring diagrams and vital installation basics. To learn more, start with Swee's catalog (USA: 16.8a/Da, Canada: 16com/DAL). Then write us for the name of your nearest Da-Lite Audio-Visual Specialist Dealer.

Circle No. 332 on Reader Service Card

Specify Da-Lite

Leading architects choose the leading projection screen

Designers of the Harvard University Science Center, the Gulf Oil Building in Pittsburgh, the National Bank of Detroit's Renaissance Center offices and the Wisconsin Telephone Company headquarters all have one thing in common. They specified Da-Lite projection screens.

For visual impact...from convention centers to the most elaborate computer age audio visual facility...Da-Lite produces screens in all formats and sizes.

Da-Lite's automatic electric Electrol® screens, recessed in the ceiling and operated by remote control, lower and raise unobtrusively to set the stage for a professional presentation. Built-in rear projection and manual wall and ceiling screens offer additional versatility in perfecting the design concept.

Da-Lite, as the nation's leading projection screen manufacturer, provides complete specifications plus size and viewing angle guidelines, picture surface information, wiring diagrams and vital installation basics. To learn more, start with Swee's catalog (USA: 16.8a/Da, Canada: 16com/DAL). Then write us for the name of your nearest Da-Lite Audio-Visual Specialist Dealer.

Circle No. 332 on Reader Service Card
Workshops and Tours

Below are descriptions of the In-Depth Workshops and Tours that will take place before and after the ASES Annual Meeting.

Workshops

Tuesday, May 31, 8 A.M. to 5 P.M.
Photovoltaics for Designers, Builders, and Other Professionals
Learn the skills and information you need to design and construct photovoltaic residences. Information on the performance of a variety of PV arrays, exclusive marketing information, and forecasts of technical developments will be provided.
Conducted by Paul Maycock, Steve Strong, Dr. John Schaefer, and David Miller for the New Mexico Solar Energy Institute's Southwest Residential Experimental Station.
Fee: $55.

Tuesday, May 31, 9 A.M. to 5 P.M.
Solar Industrial Process Heat Applications
Covers equipment required, needs identification process, required user in-house capabilities, IPH economics, and tax ramifications.
Conducted by Minnesota Department of Energy and Staples and Rochester Area Vocational Technical Institutes (AVTI).
Fee: $55.

Tuesday, May 31, 9 A.M. to 5 P.M.
Solar Greenhouses for the North Country
Presentation will cover both commercial and home-size food-producing greenhouses. Research results from European and North American Universities will be tempered by experience of professional greenhouse owners. For horticulturists, greenhouse growers, builders, designers, and interested homeowners.
Conducted by Jim Wiley, horticultural instructor, Detroit Lakes, Minn. AVTI.
Fee: $55.

Tuesday, May 31, 9 A.M. to 12 M. or 5 P.M.
Energy Action: Legislation and Organizational
Morning session covers organizing broad-based support for commercializing renewable energy technologies and design and implementation of legislative campaigns. Optional afternoon session includes lunch and sharing of experiences and ideas.
Fee: $30 for A.M. only; add $10 for lunch and afternoon session.

Tuesday, May 31, 9 A.M. to 5 P.M.
Small Business Management
Workshop focuses on management planning for profit and on utilizing function and process analysis as problem-solving tools for management of renewable energy companies.
Conducted by Business Technology Centers of Control Data Corporation.
Fee: $55.

Tuesday, May 31, 1 P.M. to 5 P.M.
Biomass: Potential Resources, Developing Technologies, and Economic Assessment
Focuses on potential biomass resources (cattails, reeds, and short-rotation woody crops) and utilization, equipment, development, and economic assessment for the Upper Midwest region.
Conducted by Dr. Douglas Pratt, Bio-Energy Certification Office, University of Minnesota.
Fee: $30.

Thursday, June 2, 9 A.M. to 5 P.M.
Financing and Real Estate Appraisal
For lenders, appraisers, inspectors, and real estate agents' brokers. Will cover appraising and evaluating the energy-efficient house. University of Minnesota CEU's available.
Conducted by Minnesota Housing Finance Agency and the University of Minnesota.
Fee: $55.

Saturday, June 4, 9 A.M. to 5 P.M.
Solar Access Workshop
The latest in technology and research in energy-conscious landscape design for site planning, structural, topographic, and vegetative mass configurations will be presented.
Conducted by Dr. Nicholas Dines (University of Massachusetts), American Society of Landscape Architects, in cooperation with the Minnesota Chapter of ASLA.
Fee: $55.

Solar Tours

Tuesday, May 31, and Saturday, June 4, 9 A.M. to 12 M.
Energy-Conscious Design #1
Commercial, Industrial, Institutional Includes the highly publicized University campus, Minnesota Underground Bookstore and Civil and Mineral Energy buildings, St. Pat's Energy Park, Control Data's famed Work Distribution Center, and others.
Fee: $15.

Tuesday, May 31, and Saturday, June 4, 9 A.M. to 4 P.M.
Energy-Conscious Design #2
Residential
The Skujins residence (reported in Better Homes & Gardens), the Nelson residence (heavily monitored), and the Pfister residence are included, as well as energy efficient and earth-sheltered multifamily projects.
Fee: $15.
The Evolution Of A Classic.

This grand old U.S. Post Office in St. Louis is now a beautiful new federal office building. Mid-State's Carolina Colony Quarry Pavers were used to warm up the decor and stand up to traffic. Available in 6" x 6", 8" hex and 8" x 8" in five natural color ranges. Write for catalog at Box 1777, Lexington, N.C. 27292.

Mid-State Tile Company
ambiance™ is a new and completely unique lighting control system.

ambiance™ is unmatched by any other system for operating ease, cost efficiency and reliability. You literally select the “ambiance” of a room with the touch of a button.

ambiance™ systems begin to pay for themselves immediately, by saving maintenance, installation, energy, lamp and air conditioning costs.

ambiance™ uses a dual-function digital control module to establish lighting levels for six lighting channels. Each combination is then stored and recalled with the same push-button control. Up to six of these combinations can be stored.

ambiance™ provides control for virtually any lighting situation, including multiple-room, partitioned applications.

Write or call for our free literature.

Kliegl Bros.
32-32 48th Ave.
Long Island City
New York 11101
(212) 786-7474
Telex: 950158

Circle No. 359 on Reader Service Card

Building Energy Analysis

Main Frame Features on a Micro

+ 24 hour analysis on 4 typical days per month
+ Computer or user defined weather data
+ 1000 zones under 100 air systems
+ 8 wall and glass exposures allowed per zone
+ Cooling plants: All common types, including closed loop water source heat pump, absorption chiller, & user defined plant data
+ Heating plants: fueled furnaces and boilers, air source heat pump, electric resistance, open & closed loop water source heat pumps
+ 16 types of cooling and heating terminals
+ 8 types of energy sources and fuels
+ All this and much more for only 495.00

All Elite Software comes with a 30 day money back guarantee. Demonstration disks are also available on all programs for $30.00 each.

421 Hwy 30, Suite 121
College Station, TX 77840 (409) 696-3328

Circle No. 359 on Reader Service Card

architectural services corp

222 Mahantongo Avenue, Suite 210, White Plains, New York 10605
914-948-2425

The Architectural Services Corporation (ASC) has been organized to provide small to medium sized architectural firms with large office production capability, with no risk and no overhead. Our staff has been drawn from major architectural firms to provide you with professionally prepared documents, conforming to your design objectives, within your time and budget limitations.

Basically, we become your production department, linking our offices with electronic communication systems.

A highly qualified production team, with superb leadership, will work with your staff and service your needs.

- Quality Drawing & Specifications
- Meet Demanding Schedules
- Improve Quality Control
- Reduce Overhead
- Lock in Your Profits
- Expand Your Capacity

Circle No. 321 on Reader Service Card
Boston's Post Office Square selected custom designed Tubelite revolving doors. Here's why...

First impressions count. That's why it was important that the entry reflect the quality and aesthetics of this superb structure.

Custom tailored to the architects specifications, Tubelite revolving doors have a beauty that's more than skin deep. Door rails are one piece and butt joined at the corners. All fastenings are concealed. Speed controller and collapsing mechanism are concealed and protected against water and salt corrosion. A wide variety of options, finishes and materials are available in Aluminum, Stainless Steel and Bronze.

You can be certain that every Tubelite Revolving door is the very best we can make. After all, that's our name on your door. Send for free information on our custom designed doors as well as our complete line of pre-engineered revolving doors.

Write Customer Service Department, Tubelite Architectural Products, P. O. Box 118, Reed City, MI 49677 or call 616-832-2211
Among the various types of RVs are (clockwise from lower left) the Phasar motor home from Winnebago Industries Inc.'s Itasca Div.; Winnebago's Warrior mini; a pair of truck campers from Coachmen Industries Inc.; a Royal Coachmen fifth-wheel travel trailer; a Winnebago LeSharo motor home; a Coachmen folding camping trailer; and a Winnebago Brave motor home.

The RV way is an outdoor experience with some or all of the comforts of home. A recreation vehicle can provide temporary living for recreation, camping, touring, or seasonal use. Even the simplest RV offers a place to eat and sleep, while the most elaborate are miniature homes with refrigerators, showers and tubs, and air conditioning. In between there's a wide—and confusing—range of choices.

The top of the scale is the motor home. These 20 to 35 ft land yachts are mostly self-contained—with an independent power source and water and sewerage holding tanks.

The advantages of a motor home are that all facilities are available while en route and there are no parking or trailing problems. But while at a vacation site, mobility is limited.
DESIGN.
It's not just our name.
It's what we do.

And this year's limited edition van conversions from Lands Design are the finest we've ever built, incorporating our very latest technology and engineered to perform "as good as they look." We've designed our products for the discriminating, highly sophisticated buyer who isn't used to settling for less than the very best.

You'll find our design leadership exhibited through a tasteful blending of luxurious interior and exterior appointments. Features such as automatic headlights, 6 and 8-way power seats, lighted visor vanity mirrors, seek-and-scan color TV and stereo headphones. You'll appreciate the added touch of solid walnut in our game tables, overhead consoles and lighted cupholders, plus the comfort of our uniquely designed seating using the latest automotive fabrics or the rich feel of imported Scandinavian leather.

Our exacting quality control standards will meet and exceed your expectations for a true luxury vehicle.

Write or call us today. We'd like to send you our 12-page full-color brochure and the name of your nearest Lands Design dealership.

Let us design a conversion that's as individual and distinctive as you are.

Lands Design Inc.
59645 Thorne Drive
Elkhart, Indiana 46514
(219) 262-2567
Only TWA has First Class Sleeper-Seats℠ on every widebody.
For First Class comfort.

First and foremost, there are our First Class Sleeper-Seats. They are available on every 747, every L-1011, and every 767, everywhere we fly in the U.S., Europe and the Middle East. So you can rest easy every time you fly TWA.

Just settle into a Sleeper-Seat, and you'll be impressed with its incredible comfort and legroom. Then settle back—the seat stretches out with you.

Royal Ambassador℠ Service. First Class service in a class by itself.

TWA's Royal Ambassador Service is available on every transatlantic and transcontinental route we fly, as well as selected shorter domestic flights.

We offer a gourmet menu with a choice of entrees like Chateaubriand. Vintage wines from California and France. A selection of fine liqueurs and cognac. All cordially offered to you in a warm, personal manner.

We even cater to your needs before you take off. In major airports, you'll find a special First Class desk to speed you through check-in. And a special lounge for transatlantic passengers to relax in before flight time.

So call your travel agent, corporate travel department, or TWA. Because for First Class service that's second to none, there's only one choice. TWA.
unless the motor home is disconnected from the site systems [RV resorts and campgrounds provide electric, water, and sewerage hookups]. Many motor home owners solve this problem with bicycles or motor bikes carried on racks—or tow a compact car for getting about locally.

Next come mini, compact, and low-profile motor homes—although some are not so little. The chopped vans, commonly called mini-motor homes, have many design variations as manufacturers develop ways of adding living quarters to a van chassis. The difference between the mini and the motor home is that the mini begins with a cab and van chassis purchased from an automotive manufacturer, whereas, with a motor home, the RV producer builds on a truck chassis.

In most cases, chopped-van RVs are less expensive to buy and operate than the motor home.

The compact is the smallest motor home, weighing less than 6,500 lb. Both the compact and low-profile models are less than 8 ft in height.

A van camper, another popular type, is a standard van to which the RV manufacturer has added a raised roof so that a person can stand upright in the living area. Sleeping and kitchen facilities are usually included and a toilet is not uncommon.

A van conversion, on the other hand, begins as a commercial-delivery van. The cab sits almost directly over the engine, and the wide side door provides access to the interior. The addition of bunks or seats, storage cabinets, and an ice chest transforms this versatile vehicle into a comfortable camping vehicle, one which many young families use in conjunction with a tent.

The disadvantage is that there is no headroom for standing, but that is balanced out by the vehicle’s ability to be used as a second "car."

Trucks and trailers. Truck campers are mounted on pickup trucks, and can be supported by jacks at the campsite, leaving the truck free for transportation. The truck cab is usually not accessible from the living quarters.

This is a good choice if you already own a pickup truck. However, it is important to determine if the truck can handle the chosen camper. A unit with kitchen facilities and beds can become heavy, especially those with large cab-over areas for sleeping.

Travel trailers are pulled by another vehicle. That brings the disadvantages of trailing and maneuvering the unit, and the living facilities aren’t available while driving. (State laws prohibit riding in a trailer while it is in motion.)

The obvious advantage is that once you arrive at your site the tow vehicle can be detached and used for transportation. For this reason, the travel

The way to be free
Fulltime freedom from the humdrum of ordinary living

Expect the best in living comforts and have confidence in Kountry Aire’s construction that stays solid. Kountry Aire has the experience, know how and desire to build units for living and traveling extended periods of time. Either for business or pleasure, Kountry Aire is an ideal traveling home.

There are conveniences that add pleasures to living. These include private bedrooms and baths, storage walls, thermostatically controlled heat or air, pull out pantries and complete kitchens. You are free to choose among 6 interior decors, light or dark paneling, 22 5th wheel trailer models, 11 travel trailer models and a variety of available equipment.

Living need not be of the ordinary variety. Write for a brochure and the nearest place to see a Kountry Aire.

The Suncruiser is one of the motor homes manufactured by Winnebago’s Itasca Div.

TENNIS: 15 courts, five lighted. Deluxe Har-Tru and Laykind courts separated by covered islands and water fountains. Instruction and clinics.

CENTRE CLUB: Complete center of services and boutiques for personal and business needs. Tri-level lounge. Dining at popular prices, or gourmet, entertainment/dancing. Meetings and banquets to 650. Additional meeting and dining facilities available.

ACCOMMODATIONS: 420 suites (644 bedrooms). Elegantly furnished hotel bedrooms, and one, two, or three-bedroom suites with living room, dining room, kitchen, private patio or balcony. Close to all amenities.

CONDOMINIUM SUITES ARE AVAILABLE FOR INDIVIDUAL OWNERSHIP. Call or write: C & A Investments, Inc. at Saddlebrook Resorts, Inc. Offer not valid in states where prohibited by law.

The Golf and Tennis Resort
Tampa Bay Area
Wesley Chapel, Florida 33599
Call toll free 800/237-7519
In Florida 813/973-1111
Represented by Thomas Silliman Associates

For vacation information, Circle No. 422
For meeting information, Circle No. 423
National forest campgrounds generally offer better scenery than private sites, but, in most instances, fall short on facilities.

Travel trailers come in all sizes from 10 to 35 ft long, and most cars, if the hitch is properly installed, can pull the small trailers (they are now being produced from lightweight materials).

Even the modest travel trailers can have many conveniences, while the larger ones may have almost any feature you'd want.

Some manufacturers offer a telescoping trailer, which lowers to car-top height during travel—eliminating wind drag for better gas mileage. Similarly, the folding camping trailer, sometimes called a pop-up, has great appeal. It can be pulled by even a compact car. This least expensive of all the RVs folds into a small, low unit for towing and storage, yet when it's in use it opens into spacious quarters. Even basic units have two double bunks and storage cabinets, and most have a stove and icebox or refrigerator. Some also include a toilet and shower.

Specialized units include the fifth-wheel travel trailer and the park trailer—seldom moved though it can be transported without special highway permits.

Expensive? While some of these RVs are costly, there are offsetting savings. The price of a single night for a family in a motel can often pay for a week's campground fees, and one restaurant tab can be triple the cost of a
Tell me more about Coachmen for 1983.

I'm interested in the following Coachmen RVs:
- Travel Trailers
- Motorhomes
- Vans/Van Campers
- Camping Trailers
- Fifth Wheels
- Truck Campers

Name

Address

City State Zip

Mail to: 1983 Coachmen, Coachmen Recreational Vehicles, P.O. Box 30, Middlebury, IN 46540

Get into a Coachmen and get away from it all.

Weekend escapes. Week-long adventures. With family or friends, or on your own. Coachmen can help you get away from the hectic days and long weeks you put in at work. And we can do it in the style and comfort you’re used to—all at an affordable price.

From motorhomes to tent campers, we’re America’s largest full-line manufacturer of RVs, and we’re at your service nationwide. Send in the coupon and find out more about how you can get away from it all with Coachmen.

Coachmen gets you where you want to be.

Get into a Coachmen and get away from it all.

Weekend escapes. Week-long adventures. With family or friends, or on your own. Coachmen can help you get away from the hectic days and long weeks you put in at work. And we can do it in the style and comfort you’re used to—all at an affordable price.

From motorhomes to tent campers, we’re America’s largest full-line manufacturer of RVs, and we’re at your service nationwide. Send in the coupon and find out more about how you can get away from it all with Coachmen.

Coachmen gets you where you want to be.

- Travel Trailers
- Motorhomes
- Vans/Van Campers
- Camping Trailers
- Fifth Wheels
- Truck Campers

Tell me more about Coachmen for 1983.

I'm interested in the following Coachmen RVs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>State</td>
</tr>
</tbody>
</table>

Mail to: 1983 Coachmen, Coachmen Recreational Vehicles, P.O. Box 30, Middlebury, IN 46540

Gasoline consumption is higher when you're driving or pulling an RV, but manufacturers have trimmed that by using lightweight materials, aerodynamic styling, and efficient engines. Gas guzzlers are as out of style in RVs as they are in cars. And multiple-use vans can serve in gas-saving car-pooling programs.

Other energy is also conserved when a family takes an RV vacation—winter or summer. The house is shut down—with electric and gas consumption at a minimum—while the recreation vehicle uses only a fraction of the energy needed by a conventional house to provide the same living comforts.

One way to try RVs is to rent one. Rental dealers can be found in the Yellow Pages under the headings of “Recreation Vehicles—Renting and Leasing” or “Camper Rentals.”

If you decide to buy, conventional RV secured loans can be negotiated for as long as seven or eight years, usually with a 20% to 25% down payment. RVs hold their value well and trade-in allowances are high for units that have been well-maintained.

Where to go? There are literally thousands of resorts and campgrounds, from luxury condominium resorts with saunas, golf courses, and yacht basins to primitive national-forest campgrounds with pine trees and tranquility.

When private enterprise entered the campground business in force some 20 years ago, it took the pressure off the government agencies that had traditionally supplied the nation’s campsites. Although public campgrounds, in most instances, have the more scenic locations, the private campgrounds provide better facilities and recreation. In a 1982 survey of users, Wheels Guide, an RV book, found that 44.5% preferred sites that are privately operated, 44.5% liked the private and public parks equally, 7.5% said public campgrounds were their choice, and 3.5% had no opinion.

As there is an RV for every need, so is there a variety of resorts or campgrounds, whether it is a site to lease for the summer or winter, one for a weekend of getaway time, or several located along major routes as overnight stops on a cross-country trip.
New Sof-Spike™ Golf Shoes!

WE GUARANTEE YOU'LL FORGET YOU HAVE THEM ON—OR MONEY BACK!

If new SOF-SPIKES™ don't make you forget you have golf shoes on, return them used and we'll refund their price promptly. No questions asked. That's how sure we are that new SOF-SPIKES™ are the most convenient, most comfortable, most stylish, most economical, lightest, longest-lasting golf shoes ever invented. They mark the end of heavy, steel-spiked shoes.

WEAR ANYWHERE!...With new SOF-SPIKES™ there is no need to change shoes before and after every round. You put SOF-SPIKES™ on at home and wear them in your car, on the course and in the clubhouse. There are no sharp points to rip up floors and carpets. SOF-SPIKES™ are safe and sure on any surface, outside or inside.

12 TIMES MORE GRIP!... They grip grass like a bear. SOF-SPIKES™ scientifically designed rubber spikes give you 12 times the gripping power of conventional steel-spiked shoes. They secure your footing on any kind of surface, hard, soft, wet or dry. And they don't dig up turf and greens, as steel spikes often do. SOF-SPIKES™ tread as softly as a baby's foot, a fact your greens-keeper will appreciate.

Each grip is scientifically placed to give you maximum hitting power from tee and fairway. For instance, the outer ring of grips is angled out slightly so your feet hold firm when you come down and through your swing. SOF-SPIKES™ has over 150 individual grips that will keep you hitting without a slip on the hilliest, wettest course in the world.

SLIPPER-SOFT!... You'll play more relaxed than ever before. You'll think SOF-SPIKES™ are slippers when you take them out of the box. Their feather-lightness comes from their new air-cushioned soles and, of course, the absence of heavy steel spikes. For pillow-like comfort we inject air into the soles. YOU LITERALLY WALK ON AIR! SOF-SPIKES™ weigh 52% less than conventional golf shoes, and that makes 18 holes a lot less tiring.

Additionally, our specialists have added a soft molded cushion around the collar of the shoe where your ankle fits. There is also a sole cradle inside the shoe for further comfort. "Slipper-soft and as light as a moccasin," said one golfer. And we guarantee it. Remember, if you don't forget you have them on, we'll take them back used.

More gripping power, less-tiring play, unequalled lightness, more walking comfort, freedom to go inside or outside without changing shoes—it all adds up to the greatest golf shoe in history! And that's not all.

REAL LEATHER/GOLF WHITE SOF-SPIKES™ Are made of real, full-grain leather for longer, cool, water-proof play. They come in traditional golf-white with a removable, all-leather kil-tie. SOF-SPIKES™ clean, elegant design is "at home" with any golfing wardrobe from Scotland to Singapore. You can get any men's size for $75 to $100 and SOF-SPIKES™ are real leather. However, through a highly guarded production technique and the economies of direct selling, we have cut the cost in half! SOF-SPIKES™ cost $39.95 (plus $2.50 shipping!) Two or more pair cost only $35.00 each and we pay shipping. YOU SAVE $15 ON TWO PAIR. We cannot guarantee this price indefinitely and supply is limited.

Remember, these new, wear anywhere, high-rip, slipper-soft, feather-light, real-leather-at-half-the-price golf shoes can be returned used anytime within 30 days for a full refund of their price. That's the guarantee of a company that has helped over 300,000 golfers play a better game. But I must urge you—ACT NOW!

PHONE ORDERS: 203-847-1231
Job Mart

** Situations Open **

Architect: We are seeking a highly responsible licensed professional with a minimum of 10 years experience. The individual should have demonstrated production abilities and a bent for technological innovation. Send resume, xerox non-returnable copies of working drawings and details, with salary requirements to Emilio Ambusz & Associates, Inc., Attn: Mr. Dwight Ashdown, 207 E. 52nd, New York, N.Y. 10016.

Architectural Delineator: National A/E firm seeking an Architectural Delineator to prepare site plans, concept floor plans, elevators and perspectives of a quality suitable for publication. Our offices are located in Iowa City, IA, Chicago, IL, and Orlando, FLA. Individuals will be considered for any location, but must be willing to travel as needed on a temporary basis. Will be working with project designers and managers to create desired product. Competitive salary with complete benefits package. Send resume in confidence to: Personnel, Hansen Lind Meyer, P.C., Drawer 310, Plaza Centre One, Iowa City, Iowa 52244. EOE. M/F

Assistant/Associate Faculty—Interior Design Program seeking experienced designers for two tenure track appointments beginning August 1983. Undergraduate and graduate teaching, research/appropriately expected. Master's required; university teaching experience and membership in professional organization(s) preferred. Send vita, three letters of reference, and slide portfolio to Marion Wyers-Smith, Division of Comprehensive Planning and Design, Southern Illinois University, Carbondale, IL. 62991. SIUC is an Equal Opportunity, Affirmative Action Employer.

** ARCHITECTURE **

** Department of Architecture, Ball State University ** is seeking outstanding candidates for fulltime tenure track and temporary faculty positions in architecture, for undergraduate and graduate programs, effective September 1983. Candidates should be able to teach architectural design and at least one of the following areas: Structures, History of Architecture Survey, Historic Preservation, Environmental Systems, Graphics, Computer Applications, and Building Technology, as well as actively pursue practice and/or research and scholarly activities. Most appointments will be at the Assistant Professor (or Associate Professor in exceptional circumstances) level. Registration and terminal degrees and salary dependent upon qualifications. Applicants should send letters of reference, curriculum vitae, transcripts, and 3 letters of reference. Application deadline: April 30, 1983. Apply to: Professor Marvin Rosenman, Chairman, Department of Architecture, College of Architecture and Planning, Ball State University, Muncie, IN 47306.

Women, Minorities, Handicapped, and Vietnam Veterans are invited to apply. Ball State University practices equal opportunity in education and employment.

Assistant Professor, Department of Architecture, North Dakota State University. 9-month basis beginning September 1983. Teaching architectural design and lectures/seminars in area of interest. First professional degree required; graduate degree desired; office and teaching experience considered. Application, resume and references by May 31 or until position filled. Search Committee, Department of Architecture, North Dakota State University, Fargo, N.D. 58105. NDSU is an Equal Opportunity Employer.

Auburn University's Department of Architecture is seeking candidates for nine-month, faculty positions beginning Fall 1983. The Department offers degrees in architecture, interior design, landscape architecture and urban planning. The Department anticipates openings in each professional degree program. Applicants should possess a terminal degree in appropriate discipline and have professional and academic experience. Teaching includes design studio and lecture or seminar in area of applicant's expertise. Salaries are competitive. Forward resume and representative examples of work to: Professor Gaines Blackwell, Chairman, Search Committee, Department of Architecture, Auburn University, Alabama 36849. Auburn University is an Equal Opportunity, Affirmative Action Employer.

** DESIGN ARCHITECT **

Expanding young firm in Dallas, Texas, seeking outstanding Design Architect with extensive experience in the design and presentation of commercial and multi-family projects. Must have exceptional skills in concept development, site planning, image sketches, presentation techniques and delineations. Outstanding career opportunity for aggressive, highly motivated professional dedicated to producing award-winning design. Interviews will be scheduled upon review of resume. Reply with resume to: Box 1361-421 Progressive Architecture

** Positions Open ** 75-year-old nationally recognized commercial interior architectural and design firm is currently interviewing for project designers, project architects, space programmers, space planners and account executives. Send resume and salary history to Department A, Cannell & Chaffin Commercial Interiors, 2843 West Seventh Street, Los Angeles, California 90005.

The Graduate School of Architecture and Planning, Columbia University in the City of New York, announces two anticipated vacancies for faculty positions in the Architecture Division at the Assistant or Associate Professor level, depending on experience. Applicants should have both professional and teaching experience, with emphasis on design studio. Other areas of expected teaching experience include architectural history, theory, particularly American and non-Western architecture. Send initial letter and curriculum vitae to Prof. J. Max Bond, Chairman, Division of Architecture, 404 Avery Hall, Columbia University, New York, N.Y. 10027, by April 15, 1983. Columbia University is an Affirmative Action/Equal Opportunity Employer.

** Services **

Learn To Build Your Designs Two week residential programs emphasize design, problem solving, detailing, and site management through hands-on construction of actual designed structures. Taught by practicing architects and contractors, this is an excellent offering for students and professionals alike. Free details; Design/Build, % Yestermorrow, Box 76a, Warren, VT 05674. (802) 496-5545.

RitaSue Siegel Agency?, a recruiting service for consultants, businesses and institutions for excellent architects, interior, graphic and industrial designers, marketing and sales support people. Confidential. Nationwide, international. 60 W 55 St, N.Y.C. 10019, 212 586-4750.

** SCI Sippican Consultants International, Inc. **

1353 Massachusetts Avenue
Cambridge, Massachusetts 02238

1033 Massachusetts Avenue

Consultants

30th & Third Avenue

Notice

Please address all correspondence to box number of advertised services as follows:

Progressive Architecture

% Box
600 Summer Street
Stamford, Connecticut 06904

Advertising Rates (Effective January '83 issue)

Non-display style: $125 per column inch. Seven lines per inch. Seven words per line. Maximum: 2 inches. Column width approximately 2 1/4". No charge for use of box number. Situations Wanted advertisements: $60 per column inch. Noncompositional.
New CertaSpray™

The first spray-on fiber glass insulation.

A fiber glass spray insulation for complete design flexibility. Sidewalls on high-rise projects. Ceilings on clear-span structures. Over pipes and joists, into cracks, around corners and onto the next area.

Nothing slows down new CertaSpray™. The only insulation that combines the thermal efficiency of fiber glass with the speed and coverage of a spray.

CertaSpray has an R-value of R-4 per inch and can be applied up to 5" thick on vertical surfaces, up to 3½" overhead in one application. It covers walls and ceilings completely, without thermal breaks. It's noncombustible and U.L. listed.

CertaSpray's noise reduction characteristics are outstanding; as little as 2" carry the highest NRC rating. In addition, CertaSpray reflects up to 90% of available light and can help lower lighting requirements.

It won't absorb moisture. It won't corrode pipes. It won't bunch, shift, flake or crack. And it won't disappoint you.

Get the full story on new CertaSpray. For free information and specifications, write: CertainTeed, Dept. PA-3, P.O. Box 860, Valley Forge, PA 19482.

Visit us at the AIA Convention May 22-25 in New Orleans, Booth No. 175.

Circle No. 328 on Reader Service Card
At the bottom of every job well done, you’ll find Kencove vinyl wall base.

It’s easy to see why Kentile’s Kencove® vinyl wall base is such a favorite with architects and designers. For one thing, Kencove means quality. It’s made with a unique formulation that insures dimensional stability. It won’t shrink. So it looks and holds better. Lasts a long time. Won’t fade. Won’t crack. Won’t chip. Won’t ever need painting. Ends butt up evenly and stay together. And you’ll find that its top lip is always snug against the wall.

Corners, too, are always snug. Because you can easily form Kencove into one seamless corner piece right on the job. Of course, Kentile® also makes pre-formed corners. And for carpeted floors, there’s also Kentile vinyl straight base.

In short, Kencove adapts to any architectural condition you can name. Which is why jobs well done are always done with Kencove. Kencove comes in 11 decorator colors. In 2½” and 4” heights in 48” lengths and 96’ rolls. And in 6” heights in 48” lengths only. White in 2½” and 4” heights in 48” lengths only. Call your Kentile representative now.

KENTILE FASHIONS FOR FLOORS
Kentile Floors Inc., Brooklyn, N.Y. 11215

the Kentile decision.
It’s the easiest one you’ll ever make.
The first family of fiber glass

When you specify fiber glass roofing felts from the Manville family, you can be sure you've made a wise selection.

You see, fiber glass felts are well-known for their unique features — conformability, porosity and resistance to moisture absorption. But what isn't well-known is that there are differences between fiber glass felts from different manufacturers.

Because the Manville family uses specially constructed fiber glass mat, the heart of all its fiber glass felts, the result is a family of products that not only meet ASTM requirements, but also provide other advantages — exceptional stability, greater uniformity and better natural resistance to all the other factors affecting roof performance.

This difference is built into all felts manufactured and marketed by the Manville family: GlasPly™ ply felts, GlasKap™ cap sheets, GlasBase™ base sheets, Ventsulation® felt and Planiroofing felts.

And it is this difference that sets the Manville family's fiber glass roofing products apart. That spells superior quality and assures long-lasting performance on the roof.

For more information, consult Sweet's or contact Al Sowers, Manville Roofing Systems Division, Ken-Caryl Ranch, Denver, Colorado 80217. (303) 978-2780.

Manville

Circle No. 371 on Reader Service Card