CREATING A NEW PATH IN VINYL

Possibilities™ vinyl sheet flooring features three fabric-like visuals designed to work together. Heathered pattern in 2' width serves as a border or accent for dot or weave visuals. All available in 10 contract colors.
For more information, call 1 800 233-3823 and ask for Possibilities.
Openings have existed since the beginning of time. Unfortunately, so has the way they're specified.

Consider how you specify openings now. You go over the floor plan once for hollow metal doors and frames. Once for architectural wood doors. Once for finish hardware.

Identifying each part, page by page, category by category. Specifying each part as if it were independent of the other.

Quite honestly, it's a way of doing business that's been carved in stone. Until now.

Now you can specify the entire opening as a system. An Essex doorway system.

We know that an opening isn't just specifying parts. It's specifying parts that complement each other. Which is why we've brought together some of the best names in the business. Curries hollow metal doors and frames. Graham architectural doors. McKinney hinges. Sargent hardware. All represented by a single sales force.

Saving you time at the start. And at punch list time there's only one rep to call. The same rep who gives you a warranty that covers the entire opening. Ensuring that every opening is functional, compatible and durable.

All of which represents an idea so simple you'll wonder why it took eons to discover.
Performance by Design.

Lees Commercial Carpets
A Division of Burlington Industries, Inc.
1-800-545-9765

Circle No. 321 on Reader Service Card
Morton International Building, p. 94.
The Apple® Macintosh® II fx and Macintosh IIci are two of the most powerful personal computers in the world today.

Both boast lightning-fast 32-bit Motorola 68030 microprocessors (running at 40 and 25 megahertz, respectively). Both have a math coprocessor on board as standard equipment. And both can handle up to 128 megabytes of RAM on the logic board.

Both have enough expansion slots under the hood to add everything from 24-bit video cards to graphic accelerators, and just about any kind of networking card you can think of, from Ethernet to Token-Ring.

It's the kind of pure processing muscle you need to run industry-standard design programs like AutoCAD, MicroStation and Virtus WalkThrough. And support industry standards like CALS, DXF and IGES.

With Apple's fully compliant version of UNIX®—AU/UX® 2.0—the Macintosh II fx and IIci can also run UNIX, the X Window System, Macintosh programs and even MS-DOS programs at the same time. And you'll have UNIX multitasking and networking, including TCP/IP as well as NFS.

That's real power. The kind no other PC can imitate. Which brings us to the civilized part.
Macintosh design programs work in the same graphic, intuitive way as thousands of off-the-shelf Macintosh personal productivity programs.

Everything from a FORTRAN compiler to a spreadsheet works in a consistent way. So you'll find you'll tap into more power more often.

And Macintosh programs all work together. So you can copy your conceptual drawings and renderings from CAD programs and then paste them into presentations, memos or manuals—choosing from thousands of innovative programs—with a few simple keystrokes. Or even cut and paste between other environments.

Every personal computer should have the power to work this easily. But only an Apple Macintosh does.

And dollar for dollar, chip for chip, independent tests by Ingram Laboratories reveal that Macintosh is actually a better value than some formidable 486 PCs from Compaq and IBM running Windows 3.0.

For a free copy of those test results** and the name and location of your nearest authorized Apple reseller, call 800-446-3000, extension 530.

You'll soon find Macintosh has the power to change the way you think about power. The power to be your best.
Forms + Surfaces

Boldly Beautiful
FS3 Walls

Bold, high-tech panels. Deep relief, geometric patterns. FS3 provides the look in an interior wall casting system complete with corner trim and reveal accent strips. Lightweight, easy-to-install and economical. Specify up to 10 prefinished lacquer or metallic colors. Or field finish in the color of your choice.

Forms + Surfaces
Box 5215 Santa Barbara, CA 93150
(805) 969-7721 FAX (805) 565-1578

Circle No. 319
A profession that recoils unthinkingly from sleazy, quick-buck design may be too isolated from public sentiment.

One observation in the brief, thoughtful talk by Gold Medalist Charles Moore at the recent AIA convention (page 27) was that we may suffer from a "morbid fear of schlock." He did not elaborate much on this in his short speech, but it set me thinking about why a fear of "merchandise of meretricious or obviously inferior quality," as my dictionary defines "schlock," might be a handicap.

What architects ostensibly offer the world, in return for their fees, is quality: built environments that work well, are durable, and please the senses. It is no secret, however, that much of what gets built these days—everywhere in the world—is pretty schlocky. Much of the recent architecture we could see on the blocks right around the Washington Convention Center where the architects were meeting involved shoddy, vulgar imitations of other, grander buildings. Their walls are so paper thin, their borrowed motifs so diagrammatic, the scale of their detail so unrelated to any meaningful experience of the user, their formal pretensions so obviously meant to earn a quick buck that they perfectly fit the definition of schlock. Clearly, this is the kind of inferior merchandise that does little for society and little to enhance the prestige of architects (though it obviously must yield significant fees).

Why, then, should we not have a justifiable fear of such schlock? Because we could learn some valuable lessons by confronting such work, examining it, determining how it satisfies the desires of its clients, and whether it pleases the public—which clearly does not always interpret these qualities the way professionals do. (Notwithstanding divergent opinions within the profession, I suspect that 90 out of 100 architects would agree on which work is schlock.) Hardly any such study is done, at least consciously, and P/A cannot claim to have shed much light on this subject—not since our Taste in America issue of June 1978, which effectively addressed popular symbolism and the appeal of glitz.

What I inferred from Moore's brief reference here was that the lessons we could learn from a dispassionate examination of schlock could be incorporated wisely in what our best architects do. Moore's own work clearly embodies such lessons—not by being schlock itself, but by giving the public the kind of bold archways and columns, polychromed ornament, and even neon that have traditionally been used to make buildings look ritzy. Sometimes, Moore's applied ornament gets almost flimsy, and the allusion to schlock veers perilously close to the real article. Moore must have occasionally felt a provocative premonition of schlock, if not a morbid fear.

Of course, Robert Venturi, Denise Scott Brown, and their collaborators have been urging architects for years to learn from Las Vegas and Levittown, and from Main Street, which is "almost all right." These have been examined as the products of popular impulses, largely untrammeled by professional dogma, but in contemporary America such places have been heavily tainted by the sleazy motives that produce schlock.

Notwithstanding the great number of currently identifiable design movements, today's leading architects can be divided into two camps by the fear-of-schlock test. Some are willing to risk tackiness or glitziness by adopting elements of either naive pop imagery or professional schlock design (not at all the same; in fact the professional schlock-mongers borrow their motifs mainly from high-design sources). Frank Gehry, for instance, fits so uncomfortably into the (dubious) category of Deconstructivism in part because he borrows freely from the world of pop symbols and cheap construction components, while the other Decon architects use almost exclusively the abstract forms and materials of mainstream Modernism. While Moore and Venturi, among the Post-Modernists, regularly use pop references and other crowd-pleasing devices, Graves and Stern do so only on Disney commissions.

There is no prescription to be written out here. Probably the design attitude should vary with the situation. Moore did not use neon at the Sea Ranch; Gehry is unlikely to use chainlink on the Los Angeles concert hall. But the position of high-design architects is probably too Olympian, on the whole, too far removed from the reactions of the person on the street. Empirical study of today's plentiful schlock—and of innocent vernacular work, where it can still be found—could help bridge the chasm that still yawns between professional design judgment and public opinion.

Editorial

Schlock and the Fear of Schlock
If the emphasis is a slip-resistant floor, the ceramic tile should be Canyonstone™. The arch enemy of a safe commercial food preparation environment is the concentration of grease and water. Unlike trough-body products, Canyonstone’s™ impervious slip-resistant surface prevents the absorption of grease and moisture. Canyonstone™ is available in several earthen colors and in two different finishes: regular and Plus. Canyonstone Plus™ offers an even higher slip-resistance for commercial kitchens and similar applications. All colors come complete with single bullnose and 6” x 8” sanitary cove base.

Contact our National Accounts Department at (214) 226-0110, FAX (214) 226-2263, or see our extensive product line in Sweet’s General Building and Renovation File, section 09300/AMA, Buyline 4908.
Exploitation Meets Demographics

Our profession, like some species of fish, is known to consume its offspring. Thomas Fisher's editorial in the May issue (p. 9) painted an all too accurate picture of the exploitative nature of our apprentice system. This treatment of interns, however, will not continue. The reason is demographics.

The postwar baby boom assured American industry a continuous supply of young workers to fill our drafting rooms. Now the baby bust generation is entering a market with more chiefs than Indians. Some lower level positions may be eliminated with automation, but when the labor supply falls behind demand the twentysome-thing crowd will still be in a stronger negotiating position than their predecessors. Baby Boomers, now employers rather than employees, will have to recognize that it is a new game. Competition for labor will allow interns to demand improved working conditions and compensation. The architecture firms who will flourish in this new environment will be those who appreciate their employees for the valuable resource they are. In these offices, a strategy of employee empowerment will replace exploitation, and interns will become team members rather than minnows.

Regan Young, AIA
Regan Young Architects, PC
Hainesport, New Jersey

Aggressive Architecture?

Your excellent March issue on Architects and the environment almost made up for your February coverage of Zaha Hadid's aggressive and violent interiors in Japan (pp. 64–69). Sadly, the widespread fascination in critical circles with terrorized Modernism does not bode well for those of us struggling with the real problems of design for livable cities and human comfort.

In the interest of diversity, these photogenic trends should be given coverage. Yet, all the sharp, menacing angles and the spiky, metallic planes lead me to wonder about the kind of public spaces our cities would have if these stylists were let loose. Forbidding and unstable, these places would further alienate the average citizen, already brutalized by urban crime, poverty and incivility.

Social responsibility is not very fashionable among architects who conveniently hold up the failed optimism of the Modern Movement as a disclaimer. It is ironic that they have appropriated and subverted the images of Modernism, turning the dreams of Utopia into artful objects poised to impale. Are these the kinds of buildings we want for the cities of the future? Are these places we can ingrain in our collective memories to form social bonds?

Raul A. Rosas, Architect
New York

Phoenix Oasis Clarification

The Urban Oasis project in Phoenix (P/A, March 1991, p. 97) is still very much alive, with NBBJ as the architect, in association with Larry Medlin (faculty architect, University of Arizona), and the Environmental Research Laboratory. Having passed Phoenix Design Committee review, it is scheduled to be bid early this summer.
In building designs calling for a steel structural support system, the call for windows has typically been to metal. But consider now, if you will, the atypical beauty of Andersen Perma-Shield® windows.

Precisely, their ability to bring warmth and character to nearly any design. To enhance, not detract from, its integrity. Whatever the support system, whatever the facade.

It’s a beauty that comes by design. Through smooth, simple lines; crisp, tight corners and a clean, functional look.

So whether you specify white or our Terratone® earthtone color, with clear, reflective or tinted glazing, Andersen Perma-Shield windows steal nothing from your design.

Rather, their beauty and compatibility are yours for the taking.

Call 1-800-426-7691 for the name of your local Andersen representative. Or write Andersen Commercial Group®, P.O. Box 12, Bayport, MN 55003.
Ask for genuine Intel
or who knows what you
or something you may know nothing about?

If you need a math coprocessor to speed your power applications, ask yourself this question: Which would you rather have sitting next to your Intel microprocessor — an Intel Math CoProcessor

Because if you don't specify Intel, that's basically what you're getting — a big question mark. With Intel, however, there's simply no question. You're getting quality.

That's because Intel has the longest track
Math CoProcessors, I'll have to count on.

In fact, we've manufactured and sold millions more than all the others combined. And we've tested every one of them with the most exhaustive battery of tests in the industry. All to assure you absolute reliability.

So ask for Intel Math CoProcessors. Or there's no calculating what you'll end up with.

For a free information packet, call (800)548-4725.

Intel

The Computer Inside.
Introducing Summitville's Hi-Performance Impervious Porcelain Pavers

IMPERVERA
Independent tests prove Summitville's new impervious porcelain pavers shatter industry standards.

After 3 years of intensive R&D, Summitville engineers have developed an innovative process that utilizes recycled waste products that previously overloaded landfills.

The result of this new process is a unique fusion of glaze to body and a tile body with a reduced gas bubble structure prevalent in traditional clay- and shale-based tile, eliminating the surface pinholes.

These innovations increase glaze wearability and decrease traffic pattern wear and maintenance costs.

IMPERVERA GRANITE

MORGANMATES
Other benefits are a water absorption rate of only 0.05%, an abrasive surface for improved slip resistance, and breaking strength double the ANSI standard.

SUMMITSHADES
Summitville’s new impervious porcelain pavers are modular and color compatible with Summitville's lines of glazed mosaics, wall tile and counter tiles. Sizes ranging from 2" x 2" to 12" x 12" provide you with unlimited design flexibility.

Contact your Summitville distributor for samples of these new high-performance impervious porcelain pavers, available in 39 colors in sizes 6" x 6", 8" x 8", 12" x 12", and 8" octagon with 2" dot.

Summitville
Summitville Tiles Inc. • Summitville, Ohio 43962

Circle No. 337 on Reader Service Card
Major flaws

Even the best plans can fail if your phone system's capabilities are in question. So the companies of Bell Atlantic have developed some customized phone solutions to help keep your firm's valuable time and money from slipping through the cracks.

found in

By providing 'call accounting' capabilities, Bell Atlantic was able to help Hankins and Anderson Inc. track the length of their client calls. This permitted billable hours to be accurately evaluated and invoiced. And for Bernardon & Associates, Bell Atlantic added 'voice paging,' allowing the staff to get their calls quickly and easily. To get the phone system that's right for you, call your representative at Bell of Pennsylvania, Diamond State Telephone, New Jersey Bell or The C&P Telephone companies.

architectural

Let Bell Atlantic help your company build a better foundation. 1-800-843-2255.

© 1991 Bell Atlantic

©Bell Atlantic
We're More Than Just Talk.

Circle No. 344 on Reader Service Card
IMPORTANT NEW RIZZOLI ARCHITECTURE BOOKS

MORPHOSIS: Buildings and Projects
Essay by Peter Cook and George Rand. Documents the award-winning work of Thom Mayne and Michael Rotondi, partners in the firm Morphosis, recognized as the leader in avant-garde architecture in California. 240 pages. 8" x 11". 300 illus. 100 in color. Hardcover: 1030-5. $53. Paper: 1031-3. $38

SPANISH DESIGN AND ARCHITECTURE
Emma Dent Coad. This well-illustrated sourcebook examines the many layers of tradition that have inspired the recent explosive growth of Spanish arts and architecture, catapulting Spain to the forefront of international design. 208 pages. 9" x 10". 200 illus., 150 in color. 1173-5. $48

TWENTIETH-CENTURY ARCHITECTURE: Frankfurt Museum Collection
Heinrich Klots. This book, based on the permanent collection of a distinguished museum, serves as an eloquent record of world architecture. Chronologically presented are works by Wright, Gropius, Mies, Le Corbusier, Kahn, Moore, and Rossi, among others. 352 pages. 9" x 11". 485 illus., most in color. 1212-X. $78

VLADIVOSTOCK: A Trilogy
John Hejduk. Illustrated with Hejduk's exquisite drawings, this book covers 96 of Hejduk's architectural projects over the last ten years and explores his ideas for new urban forms in three cities in the Soviet Union. 272 pages. 9" x 12". 250 illus., 100 in color. Hardcover: 1129-8. $53. Paperback: 1130-1. $38

THE NEW MODERS: From Late- to Neo-Modernism
Charles Jencks. An exploration of the "new" architectural practitioners (Eisenman, Gehry, Johnson, Maki, et al) of the "new" modernism and the influences on their work. Each architect who designs in a range of vocabularies—deconstruction, high-tech, and late-modernism—is presented with introduction and criticism by Jencks. 300 pages. 10" x 12". Over 500 illus., most color. 1212-X. $78

THE WEISSENHOF SIEDLUNG: Experimental Housing
Built for the Deutscher Werkbund, Stuttgart, 1927
Karin Kirsch. An account of Weissenhofsiedlung, the public housing built by leading architects of the modern movement (Le Corbusier, Gropius, and Behrens) for a 1927 Stuttgart exhibition on "The Home." 224 pages. 9" x 11". 348 black-and-white illus. 1107-7. $53

STEPS AND STAIRWAYS
Cleo Baldon and Ib Melchior. Traces the intriguing evolution of the stair, from the notched tree trunks of prehistory to the escalator. Superb photographs depict the grandest, the most unusual, the steepest, and most intricate stairways ever built, as well as great stairways immortalized in art and in theatre. "A serious, conscientious, and consistently engaging work of history." —Paul Goldberger, New York Times. 264 pages. 10" x 10". 320 illus., 80 color. 1075-5. $48

BRUCE GRAHAM, SOM
Introduction by Stanley Tigerman. An important monograph on the architect largely responsible for shaping Skidmore, Owings, and Merril's sense of aesthetics by bringing a high refinement to the buildings of corporate America. Among the 27 works presented are the John Hancock Center and the Sears Tower. 200 pages. 10" x 10". 305 illus., 105 in color. Hardcover: 1087-9. $48. Paper: 1088-7. $32.95

JOSEPH PAUL KLEIHUES: Museum Projects
160 pages. 8" x 10". 150 illus., 50 in color. 1151-4. $48 Paper: 1126-3. $32.95

288 pages. 8" x 10". 400 illus., 125 in color. 1127-1. $53. Paper: 1128-8. $38

256 pages. 8" x 11". 270 illus., 140 in color. 1152-2. $53. Paper: 1127-7. $38

Send orders to: Progressive Architecture • 600 Summer Street • Stamford, CT 06904 • Att: Paul McKenna

Enclosed is my check or money order $______ for the following books.

Name
Company/Institution
Address (no P.O. Boxes)
City State Zip
Daytime Phone

All orders must be prepaid. Shipping charge is included in prices shown.

RIZZOLI INTERNATIONAL PUBLICATIONS
STRESS ANALYSIS ON YOUR PC USING ROARK & YOUNG'S FORMULAS FOR STRESS & STRAIN

Since 1938 Roark's Formulas for Stress & Strain has maintained its position as one of the most widely used engineering reference works in the world. Now 37 tables, over 1,400 cases and more than 5,000 formulas from the new 6th Edition of this book are combined for the first time with the power of TK Solver Plus software.

The program covers the entire 6th Edition of the book • Provides stress and strain solutions for beams, plates, columns, and pressure vessels • Handles superposition of loads • A set of unit conversions and an expandable materials library are included • Program menuing system helps you select the particular chapter, table, and case from the book • Results include plots of cross section (to scale), bending moment, shear, stress, slope, and deflection • Outputs to screen, printer or plotter.

Most importantly—you can solve problems forward or backward. For example: if the calculated deflection of a plate is too large, specify the maximum deflection you can tolerate. Then let the dimension of plate thickness become the unknown, and solve again. This back-solving feature is a designer's dream.

Roark & Young On TK $990
(For the IBM PC family or compatibles, and the Macintosh)
NOTE: The $990 price includes TK Solver Plus software (below) and a copy of the new 6th Edition.

TK SOLVER PLUS SOFTWARE $395
Solve dozens of linear, non-linear or differential equations simultaneously • backsolving lets you do "What-if" analysis • if, then, else rules • iterative solving • list solving • automatic plotting • automatic unit conversion • differentiation and integration • over 300 built-in functions and library routines • math co-processor support • Lotus 1-2-3, ASCII, and DIF interfaces • CAD link available as an option.

HEAT TRANSFER ON TK
Based on the widely used text Fundamentals of Heat Transfer, 3rd Ed. by Frank Incropera and David DeWitt (Wiley & Sons).
Solves over 200 heat and mass transfer problems including Steady-state and transient conduction; internal, external, and free flow convection; boiling and condensation; heat exchangers; and radiation. Program includes automatic unit conversion; an expandable table of gas, fluid, and material properties; and automatic plotting for design analysis.

Heat Transfer On TK $990
Includes TK Solver Plus software (above) and a copy of the new 3rd Edition of the text.

SATISFACTION GUARANTEED!
Use these programs on your PC. If they don’t perform as described, just return the packages within 30 days for full credit or refund.

PENTON EDUCATION DIVISION
1100 Superior Avenue
Cleveland, Ohio 44114
Toll-free 800-321-7003
(in Ohio 216-696-7000)
FAX 216-696-4369
NEW!...THE MOST POWERFUL...MOST ACCURATE CLUB IN GOLF!
The CONTROLLER® HITS 30-50 YARDS LONGER, AUTOMATICALLY CORRECTS HOOKS AND SLICES ...MUST CUT STROKES — OR MONEY BACK!

Put your #3, #4 and #5 woods in the cellar. Tests show our new Controller driving iron can outhit all three by 30 to 50 yards.

And that's only half the story. The Controller automatically corrects hooks and slices! The club is so powerful, so accurate, we unconditionally guarantee it will cut 5 to 10 strokes off your score — or you owe us nothing! In fact, to prove it we'll send you one risk-free.

Test it against your #3 wood. If it doesn't give you 30 more yards (if you are a fairly good golfer), send the club back for a refund.

But it will give you 30 more yards! In fact, the Controller is so powerful many golfers use it off the tee, especially on narrow fairways.

Here is the Controller's exact distance advantage as compiled by some low-80's golfers.

CONTROLLER® .. 220 yards
#3 Wood ... 190 yards
#4 Wood ... 180 yards
#5 Wood ... 170 yards

Now test the Controller's accuracy against your 3-iron. Purposely hit a shot off the toe of each club and watch what happens. Your 3-iron will hook the ball violently — the Controller will keep it down the middle! The same is true with heel shots. Your 3-iron will slice the ball violently — the Controller will automatically keep it on course!

THE GREATEST STROKE-CUTTER IN GOLF

These scientific breakthroughs make the Controller driving iron the most powerful stroke-cutter in golf. We believe the club will transform the game. First of all, it obsoletes fairway woods! The Controller not only hits 30 to 50 yards farther than fairway woods, it automatically corrects hooks and slices! Here's how it works.

AUTOMATIC ACCURACY

The Controller has an invisible curve across its hitting surface — a curve that's going to revolutionize your game. No other iron has it! Hit a shot off the Controller's sweet spot and it will go straight, as it would with an ordinary iron. But even pros hit off the heel and toe.

Now, here is the Controller's genius... here is why you could cut as many as 10 strokes off your score. Hit the ball off the Controller's heel or toe and its invisible curve will automatically impart a corrective spin to what would otherwise be a disastrous hook or slice. The ball will actually fade or draw back on course! It's an incredible sight and you can prove it to yourself with only a few test shots. THIS IS THE MOST IMPORTANT GOLFING BREAKTHROUGH IN GENERATIONS. ALONG WITH THE CONTROLLER'S EXTRA 30-50 YARDS, YOU SHOULD EASILY CUT 5-10 STROKES OFF YOUR GAME!

THE CONTROLLER HITS LONGER AND STRAIGHTER THAN ANY OTHER CLUB IN GOLF.

IF IT DOESN'T CUT 5-10 STROKES, YOU OWE US NOTHING! ACT NOW!
Progressive Architecture announces its 39th annual P/A Awards program. The purpose of this competition is to recognize and encourage outstanding work in architecture and related environmental design fields before it is executed. Submissions are invited in the three general categories of architectural design, urban design, and architectural research. Designations of first award, award, and citation may be made by the invited jury, based on overall excellence and advances in the art.

Jury for the 39th P/A Awards

Architecture

Architectural Design

Steven Holl, AIA, Principal, Steven Holl Architects, New York, and Professor, Graduate School of Architecture and Planning, Columbia University;
Diane Logge Kemp, FAIA, Consultant/Landscape Architecture, Decker & Kemp Architecture and Urban Design, Chicago, and Adjunct Advisor, University of Illinois, Urbana-Champaign;
Wolf D. Prix, Principal, Coop Himmelblau, West Los Angeles and Vienna, Adjunct Professor, Southern California Institute of Architecture, Santa Monica, and Professor, Hochschüler für Angewandte Kunst, Vienna;
Stanley Saitowitz, Principal, Stanley Saitowitz Office, San Francisco, and Professor, University of California, Berkeley.

Urban Design

Gregory S. Baldwin, FAIA, Partner, Zimmer Gunsul Frasca Partnership, Portland, Oregon;

Research:

John Archea, Associate Professor, State University of New York, Buffalo;
Tom Peters, Director, Institute for the Study of the High Rise Habitat and Professor of Architecture and History, Lehigh University, Bethlehem, Pennsylvania.

Judging will take place between September 27 and October 4, 1991. Winners will be notified, confidentially, before October 31. Public announcement of winners will be made at a ceremony in New York in January 1992, and winning entries will be featured in the January issue of P/A. Clients, as well as professionals responsible, will be recognized. P/A will arrange for coverage of winning entries in national and local media.

Turn page for rules and entry forms.
Entry form: 39th P/A Awards Program

Please fill out all parts and submit, intact, with each entry (see paragraph 14 of instructions). Copies of this form may be used.

<table>
<thead>
<tr>
<th>Entry number</th>
<th>Address:</th>
<th>Project:</th>
<th>Location:</th>
<th>Client:</th>
<th>Client phone number:</th>
<th>Category:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eligibility

1. Architects and other environmental design professionals practicing in the U.S. or Canada may enter one or more submissions. Proposals may be for any location, but work must have been directed and substantially executed in U.S. and/or Canadian offices.

2. All entries must have been commissioned, for compensation, by clients with the authority and the intention to carry out the proposal submitted. In the case of design competitions, the submitted design must be the one the client intends to execute. (For special provision in Research category only, see Item 6.)

3. Prior publication does not affect eligibility.

4. Architectural design entries may include only buildings and complexes, new or remodelled, that are scheduled to be completed after January 1, 1992. Indicate schedule on synopsis page (Item 12).

5. Urban design entries must have been accepted by a client who intends to base actions on them. Explain implementation plans on synopsis page (Item 12).

6. Research entries may include only reports accepted by the client for implementation or research studies undertaken by entrant with intention to publish or market results. Explain basis of eligibility on synopsis page (Item 12).

7. The jury's decision to premiate any submission will be contingent on verification by P/A that it meets all eligibility requirements. For this purpose, clients of all entries selected for recognition will be contacted by P/A. P/A reserves final decision on eligibility and accepts no liability in that regard. Please be certain entry meets above rules before submitting.

Publication agreement

8. If the submission should win, the entrant agrees to make available further graphic material as needed by P/A.

9. In the case of architectural design entries, P/A must be granted the first opportunity among architectural magazines for feature publication of any winning project upon completion.

Submission requirements

10. Entries must consist of legibly reproduced graphic material and text adequate to explain the proposal, firmly found in binders no larger than 17” in either dimension (9” x 11” preferred). No fold-out sheets; avoid fragile spiral or ring bindings. Unbound material in boxes, sleeves, etc., will not be considered.

11. No models, slides, films, or videotapes will be accepted. Original drawings are not required, and P/A will accept no liability for them.

12. Each submission must include a one-page synopsis, in English, on the first page inside the binder, identifying the project and location, clarifying eligibility (see Item 4, 5 or 6), and summarizing principal features that merit recognition in this program.

13. To maintain anonymity, no names of entrants or collaborating parties may appear on any part of submission, except on entry forms. Credits may be concealed by any simple means. Do not conceal identity and location of projects.

14. Each submission must be accompanied by a signed entry form, to be found on this page. Reproductions of this form are acceptable. All four sections of the form must be filled out, legibly. Insert entire form, intact, into unsealed envelope attached inside back cover of submission.

15. For purposes of jury procedure only, please identify each entry at one of the following: Education, Houses (Single-family), Housing (Multiple), Commercial, Industrial, Governmental, Cultural, Recreational, Religious, Health, Urban Design, Applied Research. Mixed-use entries should be classified by the larger function. If unable to classify, enter Miscellaneous.

16. Entry fee of $90 must accompany each submission. An entry submission fee of $75 per entry will be accepted for entries dispatched (with postmark or other evidence) by August 19. (Canadian office please send drafts in U.S. dollars.) Fee must be inserted in unsealed envelope containing entry form (Item 14, above). Make check or money order (no cash, please) payable to Progressive Architecture.

17. P/A intends to return all entries intact, but can assume no liability for loss or damage.

18. Deadlines for sending entries is September 6, 1991. Deadline for early submission fee is August 19 (Item 16). Entries must show postmark or other evidence of being en route by midnight, September 6. Entries must be received at P/A on or before September 27 to be eligible. P/A accepts no liability for the failure of any carrier to deliver entry to this address by that date. Hand-delivered entries must be received at street address shown here, 6th floor reception desk, by 5 p.m. on September 6 (August 19 for early submissions).

Pointers for submission

Based on recent jurors' observations:

- Document site and surroundings with photos and drawings.
- For additions and remodelings, clearly indicate old and new.
- If design projects involved substantial research, explain it concisely.
- For research entries, indicate applicability to design.
- For buildings and urban design, give basics of funding, rental of space, etc., as applicable.

Deadline summary

August 19: Early entry deadline (Item 16) - out of entrant's hands before midnight, as shown by postmark or other evidence on entry.

September 6: Regular entry deadline - same conditions as above; hand-delivered entries must be at P/A (Item 18) by 5 p.m.

September 27: Must be in P/A's hands, regardless of method of delivery.

Deadlines are strictly enforced.

Address entries to:

Awards Editor
Progressive Architecture
600 Summer Street
P.O. Box 136
Stamford, CT 06904
The TI TravelMates. They're making a hit coast to coast.

The new look of power. Editors across the country are praising the performance, size and weight of the Texas Instruments TravelMate™ 2000 and 3000 notebook computers.

"The TravelMate is as close as you can get to the ultimate portable." — BYTE, November 1990.

"Not until you hold this computer in your hands do you begin to understand what sets it apart from the pack."— PC Computing, December 1990.

Both TravelMate models are only 8½" x 11" in size, including a hard disk drive and feature a 10" diagonal VGA display and comfortable full-function keyboard.

With the TM 2000 you get 286TM processing in a computer that's 1.4" thin and 4.4 lbs. light. The TM 3000, meanwhile, packs 20MHz 386SX power into a mere 1.8" and 5.7 lbs.

Find out how to take the new look of power with you coast to coast. Or wherever your work takes you.

For the name of the dealer nearest you, call 1-800-527-3500, ext. 29.

TEXAS INSTRUMENTS

Circle No. 003 on Reader Service Card
Curves straight from Steelite

Introducing Curved Architectural Panels (CAP System™)

We can now curve our roofing and siding panels to meet your individual design requirements. With the new CAP System, you can add dramatic new lines to your designs and work with a wide range of contours and shapes. The possibilities are endless. Curves add striking esthetics and expand design freedom, especially when formed from Steelite's extensive selection of panel profiles.

Contact Steelite directly for more detailed information about our new CAP System. We'll give you the straight story on curves.

Facility Maintenance Complex, Newark International Airport
Owner: The Port Authority of New York and New Jersey
Architect: TAMS (Tippett-Abbott-McCarthy-Stratton)
Designer: The Port Authority of New York and New Jersey, Joseph M. Cosenza, Chief Architect
Dealer: Oxhandler Structural Enterprises
Panel Manufacturer: Steelite, Inc.
Products: Steelite Super-Rib and Econolap®

STEELITE, INC.
1010 Ohio River Boulevard
Pittsburgh, PA 15202-2836
(412) 734-2600; Toll-Free: 800-824-1371

Circle No. 343 on Reader Service Card
New Towers Crown Los Angeles Skyline

Three new office towers in Downtown Los Angeles are raising the design ante, as well lending a new coherence, to what was formerly a scattered group of unremarkable buildings.

Most prominent of the new buildings is the 73-story First Interstate World Center by Harry Cobb of Pei Cobb Freed & Partners, in association with Ellerbe Becket, Inc. Besides being the tallest building in California, the cylindrical First Interstate has also displaced John Portman’s Westin Bonaventure Hotel as the postcard building of Downtown L.A. The developer, Maguire Thomas Partners of Santa Monica, was able to build at above-normal height and density, thanks to air rights granted by city officials in exchange for a $49-million contribution to the renovation of Bertram Goodhue’s 1926 Los Angeles Central Library. Resembling a telescope in faceted white and gray granite, First Interstate makes its best impression from a distance; critics contend the building looks bland and underdetailed up close. The lobby, with a wraparound mural by David Hockney, is surprisingly small, making a visit to the biggest building in town seem anticlimactic.

The best part of First Interstate, arguably, is the set of steps outside the building, leading up from the library to Bunker Hill. Designed by Lawrence Halprin of San Francisco, the steps are not completely satisfying in themselves. The classical arches seem contrived, and an attempt to hide escalators running alongside the stairs makes a vice of necessity. Yet such considerations seem to matter little in the urban design context, since the stairs remedy a long-standing need for a pedestrian connection between the different levels of Downtown. The Halprin steps are a welcome amenity in a city that is among the least pedestrian-friendly in the country; they pull together the fragments of Downtown, making the area seem at once smaller and more accessible.

Another recently completed building, the 52-story Sanwa Bank Plaza, attempts to provide downtown with an Art Deco building. Architects at Albert C. Martin & Associates twisted the building 45 degrees off the downtown grid, enhancing visibility and creating triangular plazas the developer promises to fill with cafe tables. The building is rich in detail, if not subtlety: Two enormous entrance lobbies – the tallest is 82’ – bulge outward from the base. Inside, the lobby is covered with three different shades of marble.

Perhaps most successful is the 777 Tower, designed by Cesar Pelli in association with Langdon Wilson Architects. Pelli has described the tower as “a Los Angeles building,” since the light color recalls the white buildings of an earlier era, most notably City Hall. The elevation avoids stone alto-
Josef Paul Kleihues of Berlin (P/A, May 1990, p. 85) has been selected to design a new building and sculpture garden for the Museum of Contemporary Art in Chicago. The museum, to be completed in 1995, will occupy the two-acre site where the Chicago Avenue Armory now stands.

The competition-winning design by Barton Myers for the U.S. Pavilion at the Seville World’s Fair (P/A, Aug. 1989, p. 19; Feb. 1991, p. 90) has been abandoned by the U.S. Information Agency because of budget woes. A USIA spokesperson says that that the agency will bring two geodesic domes out of storage to house its exhibits. Carlos Langdon of Madrid is architect-of-record for the new scheme, which retains the water wall and tracking sails of Myers’s design.

British journalist and critic Janet Abrams has been named director of the Chicago Institute for Architecture and Urbanism (a spin-off of the Skidmore, Owings & Merrill Foundation, see P/A, April 1989, p. 79). Abrams replaces founding director John Whiteman.

The American Academy and Institute of Arts and Letters has named Tadao Ando as recipient of the Arnold W. Brunner Memorial Prize; Boston architects Rodolfo Machado and Jorge Silvetti have won the first Academy-Institute Award in Architecture.

The Partnership for the Homeless, an interfaith, nonprofit organization dedicated to sheltering New York City’s homeless population, has launched a new program called Furnish a Future. The program calls upon the furniture industry and the public to donate goods for the homes of “newly located, formerly homeless families.” Contact Furnish a Future (718) 875-5353.

A New Comiskey Park in the Shadow of the Old
Considered in isolation, the new Comiskey Park on Chicago’s South Side isn’t bad. Whether it is better than the old Comiskey Park across the street, now being demolished, is debatable.

The new baseball stadium has been controversial. It was approved, along with $35 million in public financing, after the owners of the Chicago White Sox threatened to move the team to another state if they were not given a new park. They got it. To make way for the new Comiskey and more than 7000 new parking places surrounding it, a commercial district and more than two dozen moderate-income family homes were demolished. The stadium and its parking take a total of 115 acres, leaving another wound in the South Side, an area already scarred.

To its credit, the new stadium, designed by the HOK Sports Facilities Group, is a ballpark, unlike the many recent multipurpose arenas where all sports can be played – none of them well. The architects took pains to emulate the old Comiskey’s charm. The rose-colored precast concrete exterior suggests the original’s unpainted masonry, and the brick arches that marched the circumference of old Comiskey’s wall have become arched windows here. The windows are unfortunately obscured by six monstrously scaled switchback ramps.

With seating for 44,000, capacity is roughly the same at the new and old ballparks. Even so, the new Comiskey is at least two stories taller. The greater height accommodates expanded facilities for the players and some of the greatly increased profit-generating amenities, including private restaurants and 90 skyboxes.

As a result, many fans sit up higher and back further from the action of the game than they did at old Comiskey. In the dizzying, steeply pitched upper decks, fans may take consolation from the unobstructed views in the new column-free park.

It is impossible to ignore the demolition of the ballpark across the street – the oldest in the country and the architects’ model for the new stadium. Although some private organizations fought to have it landmarked, it was doomed on the basis of privately commissioned engineering reports that were disputed by city inspectors. Old Comiskey will soon become the site of more surface parking. As for the new park, however well it may function, it is essentially flawed as a result of the bullying sense of urbanism that animated it. Cheryl Kent
Architecture in Sculpture at Storm King

Human perception of the built environment – how we are influenced and controlled by its many manifestations – is the subject of "Enclosures and Encounters: Architectural Aspects of Recent Sculpture." The Storm King Art Center, a 400-acre oasis of rolling fields and wooded areas 55 miles north of Manhattan in Mountainville, New York, is the site of this six-artist exhibition.

Dennis Adams, Siah Armajani, Alice Aycock, Donna Dennis, Lauren Ewing, and Dan Graham each offer a different perspective on built-environment issues through architectural constructions; they build using traditional techniques or imply structure with traditional forms and materials. It is, however, impossible to categorize this work other than to say that it is all visually and/or physically participatory.

Dennis Adams uses the very public venue of the bus shelter to present social incongruities. He skews the traditional right angles of this building type and replaces the advertisements normally found in bus shelter lightboxes with photographic images representing social issues. Lauren Ewing also plays on a familiar architectural structure with "The Wilderness Screen" (1985). This two-dimen-
Wood Design Awards
(continued from previous page)

- Low-cost housing, Sutton, Massachusetts, by Jonathan Levi Architect, Brookline, Massachusetts;
- House and studio, Sea Ranch, California, by Lynnon/Buchanan Associates, Berkeley, California;
- Allen/Bethea House, Cush- ing's Island, Maine, by Stevens, Morton, Rose & Thompson, Portland, Maine;
- Boy Scout camp on the Fox River, Illinois, by Tigerman McCurry Architects, Chicago.

AIA Convention (continued from previous page)

Freeman Lee, billed as an "artist, scholar, and humanist," urged architects to cultivate the "three C's": communication, creativity, and caring. Former RIBA president Rod Hackney, sharing an "In Community" session with Andres Duany and Charles Correa, spoke about "community architecture," the British movement in which architects are helping to reclaim blighted neighborhoods. "I hear architects at this convention complaining about lack of work. You only have to walk two blocks to see the work that needs to be done," he said. Environmental researcher Amory Lovins gave an earnest but overly specific address on energy issues.

Social issues were also raised in smaller sessions, including a seminar on opportunities in affordable housing, a forum on women in architecture, a seminar on discrimination based on sexual orientation, and a presentation by Architects/Designers/Planners for Social Responsibility.

At an awards presentation Friday night, the AIA Honor Awards (P/A, Feb. 1991, p. 22) were presented, along with some previously unannounced prizes:
- Architect John F. Hartray, Jr., of Chicago was given the Edward C. Kemper Award for contributions to the Institute and the profession;
- Architect Robert A. Kennard of Los Angeles received the Whitney M. Young, Jr., Citation for "significant contributions toward meeting the social responsibilities of the nation;"
- The Ellis Island Immigration Museum (P/A, Nov. 1990, p. 23), by New York architects Beyer Blinder Belle and Notter Finegold + Alexander, won the Henry Bacon Medal for memorial architecture; and
- The Bank of China in Hong Kong, by Pei Cobb Freed & Partners and Kung + Lee, won the R.S. Reynolds Award for distinguished architecture using aluminum, administered by the AIA and sponsored by Reynolds Metals.

In official convention business, 16 resolutions were passed, only three of which provoked serious debate. A task-force-driven proposal to restructure AIA membership categories called for special categories for interns who are enrolled in state-approved licensing programs and for people in allied professions and industries. (Many component chapters already have an "allied" or "affiliate" membership category, but these are currently unrecognized by the national AIA.) Other controversial resolutions included a call for a single national building code and a proposal to consider mandatory continuing education for AIA members.

Besides Maxman, the new officers elected are treasurer Michael E. Bolinger, Baltimore; and vice-presidents Philip T. Markwood, Columbus, Ohio; Thomas L. McKittrick, Houston; and Robert S. Woodhurst, Augusta, Georgia.

Mark Alden Branch

Saarinen's Smithsonian Drawings Retrieved

As reported in the Washington Post in January, the finding was an adventure: discovery by a conscientious Federal employee of a half-century-old stack of architectural drawings scheduled for disposal; a telephone call to the Smithsonian's Senior Architectural Historian; a race through a snowstorm in a requisitioned car; and, finally, the retrieval from a General Services Administration warehouse of virtually the entire set of panels from the first stage in the 1939 Smithsonian Gallery of Art Competition, as well as the missing second-stage drawings by winners Elie! and Eero Saarinen.

Dr. Mina Marefat, historian at the National Museum of American History, has established that the cache includes 29 of the 30 drawings submitted in both stages. She has subsequently located a further set of preliminary studies by Paul Philippe Cret, the senior of the group, whose second-stage drawings remain missing. The drawings will receive badly needed conservation, out of which may grow an opportunity to evaluate once again the significance of the controversial designs.

The Smithsonian competition was a critical event in American architecture, as was recognized by James Kornwolf in his important exhibition of 1985 at the College of William & Mary, "Modernism in America 1938-1941." The Saarinen model
Fiber backed Acrovyn installs in a breeze with a water based primer and adhesive.

NEW ACROVYN HIGH IMPACT WALL COVERING:
NEW COLORS, NEW TEXTURES, NEW EASE OF INSTALLATION

Don't confuse new Acrovyn Wall Covering with anything you've ever used before.

Acrovyn is completely new, with 64 new colors in 16 new textures, from quietly subtle to deeply embossed bolds.

And durable, new Acrovyn installs easily with a water based primer and adhesive. The entire system is U.I.® Classified, Class I Fire Rated and easy to clean.

For colorful, free literature call The C/S Group toll free 800-233-8493.

ACROVYN INTERIORS
Circle No. 341
of the Smithsonian design had survived and was displayed, but as Kornwolf lamented, "The records that do survive from the Smithsonian competition are scattered and fragmentary; others may be permanently interred in unlocatable files in government warehouses."

Architects Look for California at Monterey

An identity crisis of sorts underlay the theme of the 1991 Monterey Design Conference, "Will the Real California Architecture Please Stand Up?" which took place in March. The question inquired into the fundamental nature and meaning of California architecture, and prodded architects to examine their role at a time of rapid change in California's patterns of urbanism and population.

The first difficulty in examining "real" California architecture is to separate it from the imaginary California, a place with a firm hold on the American imagination. Often, the real fails to measure up to the imaginary, as in the recreation...

The real California, of course, has a 200-year history of buildings ranging from the missions of Junipero Serra to the work of such avant-gardists as Frank Israel, who showed recent projects for houses and offices he described as "cities within cities." Regional architecture continues to be a source for architects such as Michael Graves, who cited the San Juan Capistrano mission as an inspiration for his library in the same city, while William Warkentin and Stephen Wraight followed the examples of Bernard Maybeck, Irving Gill, and the traditional California bungalow in their seaside housing tract in Long Beach. Canadian architect and author Witold Rybczynski argued, however, that regionalism was incompatible with "dynamic societies" of rapid cultural and technological change. Veteran Bay Area architect Joseph Esherick agreed. "Historicism seems particularly ill-fitted for California... I sometimes feel the promoters of historicism are seeking some final solution where a new fundamentalism will dominate everything."

Change is a truism for California cities, which could be described as incessantly expanding suburbs. California, in fact, is the progenitor of the "new standard form of the American city," according to Washington Post writer Joel Garreau, who proclaimed the emergence of the "edge city," an economically self-contained suburb with housing, shopping and jobs. Too often, however, these suburbs are unsocial environments lacking in public space, where circulation breaks down into a tangle of cul-de-sacs. For Craig Hodgetts, California architecture has become "too infatuated with design values; we should turn our skills to repairing community," adding that he was "very distressed over increasing privatism and the absolute neglect of the public realm." Peter Calthorpe (P/A, May 1989, p. 88) explained his attempt to bring urban virtues in the form of "pedestrian pockets" to the emerging-edge city of Laguna West, while Douglas Gardner of developer Maguire Thomas Partners showed how Calthorpe's ideas, among others, may bring urban coherence and small-town densities to Playa Vista, the largest undeveloped portion of metro L.A.

Most conferees, including Esherick, agreed that California's people, climate, and economy were too diverse to allow a simple definition of California architecture. For him, "the real California architecture is alive and vital – seriously grappling with the world about us, with reality. It is too dynamic and too varied to be subject to any material definition. The only definitions are moral and spiritual." Morris Newman
Furniture-Integrated Ambient Lighting by Peerless:
glare-free lighting where it's never been possible before.

A 1989 study (the Steelcase® Office Environment Index) established eyestrain as the number one hazard in America's offices.

A 1990 study by Cornell University established that glare-free lighting from lensed indirect fixtures dramatically reduces employee time loss from vision-related problems.

Until now, the only lensed indirect lighting you could buy was permanently mounted to the ceiling or walls.

Now there's an alternative for low ceilings, or for when you're planning a move and you want to move the lighting with you.

For the first time, there's furniture-integrated lighting that meets the strictest standards for illuminating a VDT area.

It was designed exclusively for Steelcase® systems furniture, with Softshine Optics as advanced as any Peerless has ever devised.

It combines gracefully with ceiling or wall-mounted lensed indirect fixtures.

It delivers the right levels of glare-free illumination in a complete luminous environment.

If you need it, call us. Or talk to your lighting professional. Or see it at the Steelcase® showroom in Chicago.
Calendar

Exhibitions

The New Furniture
Through August 4

Roberto Burle Marx
Through August 13

McKim, Mead & White
Through August 18

What Modern Was
Through August 25
Los Angeles. "Design 1935-1965: What Modern Was" is a thematically organized exhibition of furniture, ceramics, textiles, graphics, metalware, and jewelry chronicling one of the most prolific periods of the century. The contents of this traveling show are from the Musée des Arts Décoratifs de Montréal. Los Angeles County Museum of Art.

Stanley Saitowitz
Through August 25
San Francisco. In "Geological Architecture," Saitowitz's theory of site and structure as a formation of geology is symbolically realized with an installation of 20 models floating on a glass, wood, and steel structure. The show was designed for the Walker Art Center's Architecture Tomorrow series. Museum of Modern Art.

A Design Resource
Through August 30

Mediterranean Revival Architecture
Through September 1
Fort Lauderdale, Florida. The history and development of Mediterranean Revival Architecture is examined from its heyday in the 1920s to the present. Historical Society.

Mondo Materialis
Through September 2
Washington, D.C. This traveling exhibition of collage panels by architects and designers was produced by the Steelcase Design Partnership. National Building Museum.

Architectural Sculpture
Through October 31
Mountainville, New York. "Enclosures and Encounters: Architectural Aspects of Recent Sculpture" (see page 27) includes 12 pieces by six artists: Dennis Adams, Siah Armajani, Alice Aycock, Donna Dennis, Lauren Ewing, and Dan Graham. Storm King Art Center.

Competitions

Precast/Prestressed Concrete
Submission deadline July 31
Chicago. The Precast/Prestressed Concrete Institute has announced its 1991 Design Awards and Industry Advancement Competitions. Architects, designers, and engineers may submit general structures or bridges in the U.S. or Canada that use plant-manufactured precast/ prestressed concrete or architectural precast concrete. Contact Precast/Prestressed Concrete Institute, 175 West Jackson Blvd., Chicago, IL 60604 (312) 786-4080.

Historic Preservation Awards
Entry deadline July 31
Washington, D.C. The Advisory Council on Historic Preservation has announced a call for entries in the President’s Historic Preservation Awards (honoring excellence in privately funded preservation) and the National Historic Preservation Awards (honoring excellence in federally assisted preservation). Contact Awards, (continued on next page)
Calendar (continued from previous page)

P/A Awards
Entry deadline September 6

Stamford, Connecticut. The 39th annual P/A Awards (see p. 21) recognize unbuilt projects in the categories of architectural design, urban design, and architectural research. Projects must be scheduled for completion after January 1, 1992. Winning entries will be featured in the January P/A. Contact Awards Editor, Progressive Architecture, 600 Summer Street, P.O. Box 1561, Stamford, Connecticut 06904.

"Another Glass House"
Submission deadline September 9

Tokyo. Philip Johnson and Tadao Ando, jurors for the Shinkenchiku Residential Design Competition 1991, challenge entrants with the following statement: "... in the 1990s, might not there be other, as yet unexplored, possibilities (other than those that involve the distortion of the Cartesian grid) for steel and glass structures?" "Another Glass House" is this year's competition theme. Entries must never have been made public; they will not be returned. Contact Entries Committee, Shinkenchiku Residential Design Competition, Shinkenchiku-sha Co., Ltd., 5-1-2, Yushima 2-chome, Bunkyo-ku, Tokyo 113 Japan.

Conferences

ACM SIGGRAPH ’91
July 28-August 2

IESNA Annual Conference
August 11-15

Montreal. The Illuminating Engineering Society of North America's 85th annual conference will include educational seminars, technical sessions, and workshops on advances in the field of illumination, new products, and services. Contact IESNA, 345 E. 47th St., New York, NY 10017 (212) 705-7926.

Solar Energy Congress
August 17-24

Denver. With the second environmental movement well beyond the grassroots stage (at least in theory), the biennial International Solar Energy Society Solar World Congress will provide a timely forum on current solar technologies and applications. Contact 1991 Solar World Congress, American Solar Energy Society®, 2400 Central Ave., Suite B-1, Boulder, CO 80301 (303) 443-3130 or FAX (303) 443-3212.

SEGD Conference
August 22-24

Pasadena, California. The Society of Environmental Graphic Designers’ National Conference will be held at the Art Center College of Design in Pasadena. Winning entries in the 1991 SEGD Design Competition, "All Things Considered: Client/Context/Solution," will be announced. Contact SEGD, 47 Third St., Cambridge, MA 02141 (617) 577-8225.

Passive/Low Energy Architecture
August 24-30

Phoenix, Arizona. "Living With the Sun" is the title of the Passive and Low Energy Architecture (PLEA) 1991 Study Tour. Architects, planners, researchers, and others are invited to discuss climate-responsive design in the arid regions of the Southwest. Workshops and study sessions will be augmented with tours of significant sites such as Montezuma Castle, Biosphere II, Taliesin West, and Arcosanti. Contact PLEA Coordinator, Arizona Energy Office, Suite 1200, 5800 N. Central, Phoenix, AZ 85012 (602) 280-1440 or FAX (602) 280-1305.

One-of-a-kind problem solvers.

Sitecraft brings your most creative ideas to life. We work with you at every step and offer the custom expertise and experience that other site furnishings manufacturers just can’t match. Sitecraft benches, planters, planter benches and site accents are available in clear, all heart California redwood or other choice woods. Even the most demanding custom configuration can be created to your exact specifications. One-of-a-kind site furnishings solutions are not a problem when you call Sitecraft.

For information on the complete line of Sitecraft site furnishings send for your FREE SITECRAFT IDEA BOOK today.

Want to discuss a particular custom design idea and how Sitecraft can help? Easy, just FAX your sketch or concept to us at 718-482-0661 or call Toll Free 800-221-1448.

Circle No. 338 on Reader Service Card
Introducing DrawingMaster Plus

While DrawingMaster Plus is hot, complicated it's not.
There are no pens, no toner and no chemicals involved. You simply load a roll of paper or film and plot—more than 50 E-sized plots completely unattended.

DrawingMaster Plus is exceptionally reliable too. Plus it's backed by a standard one year on-site warranty. And no other 406 dpi plotter comes close to DrawingMaster Plus in price.

DrawingMaster®Plus is hot to plot.
In fact, it was specifically designed to run with the fastest CAD systems—taking just minutes to do jobs that take pen plotters hours.
And high throughput doesn’t mean low resolution. At 406 X 406 dpi, you get exceptionally clean lines that rival laser and electrostatic plotters.
For fast checkplots, select QuikPlot® mode and cut plotting time almost in half.

Warming up to our new hot plotter?
For more information, call us at 800-CALCOMP today. In Canada, 416-635-9010. Or write: CalComp, P.O. Box 3250, Anaheim, CA 92803.

We draw on your imagination.

CalComp
A Lockheed Company

*DrawingMaster, QuikPlot, DirectWrite and We draw on your imagination are trademarks or registered trademarks of CalComp Inc.
Circle No. 316 on Reader Service Card
ONLY ONE WINDOW COMPANY DARED TO TAKE ON THIS CITY HALL.
When Baltimore decided to replace the windows in its 120 year-old City Hall, Baltimore talked to all of the major window companies.

Then Baltimore chose Marvin. Baltimore chose Marvin because no one had more experience at making windows to order. Because no one was better-equipped to actually make all of the different shapes and sizes. Because no one else could incorporate more maintenance and energy-efficiency features into such historically accurate replicas.

And because we make windows to order, we could apply more know-how and technical support to the job. We could deliver on a schedule and in an order that let the contractor do his job quickly and cost-efficiently.

No other window company could have handled this job as well as we did. The proof is right there at Baltimore City Hall.

And nobody can argue with City Hall.

For more information, call us toll-free at 1-800-328-0268 (in Minnesota, dial 1-612-854-1464). Or just write Marvin Windows, 8043 24th Avenue South, Minneapolis, MN 55425.

MARVIN WINDOWS ARE MADE TO ORDER.
Crystelle® by Avonite®
It's hard to believe it's not Granite.

And that's not surprising... you've come to expect innovation in solid surfacing from AVONITE.
The new CRystelle Collection reflects the beauty of the rarest granites with the workability of solid hardwoods. Bold, multi-hued textures suspended in a translucent matrix give CRystelle® an unsurpassed look of elegance.

Once again, AVONITE takes surfacing to a new dimension... see for yourself, call us toll free for the name and telephone number of a distributor nearest you, 1-800-4-AVONITE or FAX 505/864-7790.

Circle No. 333
Technics
The Ultimate Faux Surfaces?

Plastic laminate and solid surfacing render work surfaces and cabinetry fields of color and pattern.

We offer guidelines and design examples to indicate the options at hand.

Despite (or because of) their prevalence, we use fabricated plastic surfaces without heed to any design rules; they have rarely been the topic of theoretical debate. However, the Viennese architect Adolf Loos offered advice that applies to the laminates we take for granted. In the Law of Cladding (1898) he wrote that “We must work in such a way that a confusion of the material clad with its cladding is impossible ...” Many of today's decorative patterns (at least those that don’t replicate natural materials) seem compatible with the advice of Loos - ironically, since he questioned the propriety of Modern ornament. However, one wonders what he would say about today’s wood grain laminates and granite pattern solid surfacing - composites that resemble materials of nature rather than factory products.

Regardless of the rationale architects and designers follow when they select laminates and solid surfaces, they have no reservations about their durability, testimony to the industry’s adherence to standards set by the National Electrical Manufacturers Association (NEMA) (see sidebar on pp. 40-42). In the past few years, solid surfacing manufacturers have adapted NEMA's standards for their own products; they have yet to form a separate consortium for solid surfacing.

High Pressure Decorative Laminate

The electrical and laminate industries are an ostensibly mismatched alliance, but in fact NEMA’s role is a holdover from the first decade of the century, when Westinghouse introduced Micarta, the first plastic-coated paper laminate, an insulating wrapper for wiring in electric motors. These forms of phenolic resin-impregnated kraft paper, laminated under high heat and pressure, preceded the plastic decorative laminate sheets popularized by a younger firm. Its name - Formica - bespeaks the founders’ former ties with Micarta. Today’s high-pressure laminates are manufactured in much the same way laminate panels have been made since 1927: Sheets of resinson kraft
NEMA’s 16-point Laminate Test

Every 5 years, NEMA publishes standards and recommendations for the installation of high-pressure decorative laminates. Copies of the booklet, BSR/NEMA LD3, High-Pressure Decorative Laminates ($5.00) can be ordered from:
National Electrical Manufacturers Association
Attn: H. Colin Smith
142 Arundel Road
Paramus, NJ 07652-1911

The following tests are described in the booklet:

1. Wear Resistance
Discs of laminate are abraded with sandpaper to find when the laminate’s decorative pattern and/or color begin to wear away.

2. Scuff Resistance
A small sheet of laminate is struck once by a ballistic pendulum and inspected for cracks, dents, or tears; a change in color or gloss is acceptable.

3. Ball Impact Resistance
A large ball is dropped in several free falls to find the impact value that cracks the laminate.

4. Dimensional Change
Test pieces of laminate are placed in an air oven and in a humidity chamber and then inspected for gross dimensional changes induced by a change in relative humidity.

5. Boiling Water Resistance
A vessel of boiling water is placed on a piece of laminate for 20 minutes; the laminate is then inspected for changes in color or surface texture.

(continued on page 42)
paper are layered beneath a decorative melamine sheet and an alphacellulose overlay; heat and pressure bind this composite and give it exceptional strength.

Laminates are virtually maintenance-free and are taken for granted once installed. A bit of forethought, however, will serve the specifying architect well: Grades and prices of laminate, adhesive, and substrate vary. For example, vertical surfaces and cabinet interiors, which endure much less wear than table and countertops, can be specified as thermoset decorative panels, where a substrate is integral with a low-pressure melamine overlay. These thermoset laminates follow the same NEMA standards for general purpose high-pressure laminates, and their range of colors and patterns has steadily grown more diverse.

There are four basic adhesives for installing high-pressure decorative laminates: Urea and resorcinol are typical rigid adhesives that allow forces of expansion and contraction to transfer to the substrate. Polyvinyl acetate (PVA) creates a semi-rigid bond; contact cement, the most prevalent bonding agent, combines neoprene and phenolic resins. One should consult fabricating guides.
6. High-Temperature Resistance
This test follows test #5, but the vessel is filled with heated bath wax instead of water.

7. Radiant Heat Resistance
A resistor coil is held 0.313" from a laminate sample to find the number of seconds that elapse before the laminate fails.

8. Conductive Heat Resistance
A sheet of laminate is placed face down on a heated aluminum plate for five minutes and then inspected for changes in color, blistering, or crazing.

9. Stain Resistance
Small samples of housekeeping items, from cooking oil to shoe polish, are left on a laminate sample for 24 hours. The surface is then washed clean and studied for visible stains.

10. Light Resistance
A carbon-arc fading lamp, whose radiant energy approximates that of sunlight, shines on a laminate sample for 48 hours; the laminate is then inspected for changes in color or texture.

11. Appearance
An entire sheet of laminate is inspected for smudges, fingerprints, and foreign particles.

12. Cleanability of Surface
A soiling agent of potting soil, clay is applied to a laminate. Once rinsed, the laminate is wiped clean with a spray of cleaning solution and a cloth; the number of scrubbing strokes required is recorded.

13. Surface Finish
A gloss meter (which measures the amount of light reflected by a surface) is used to detect any variation in the gloss level on a full-size sheet of laminate.

14. Formability
A heated sample of laminate is placed in a forming apparatus. Once the laminate cools, it is inspected to see if it formed a prescribed curve without visible surface damage.

15. Blister Resistance
To simulate postforming (the method of curving laminate) a strip of laminate is placed face down on a heating apparatus to count the seconds that elapse before the laminate blisters.

16. Dart Impact Resistance
A steel dart tipped with a 5 mm ball is dropped from heights of 5", 6", 7", etc., to find the maximum height at which five impacts fail to fracture the laminate.

to match the proper adhesive to the substrate, usually particleboard or medium density fiberboard. The range of substrates should be studied: Specifications vary according to the need for fire retardance, impact resistance, dimensional stability, and the ability to hold screws.

Recently architects have raised questions about the effects of laminate adhesives and the formaldehyde in particleboard on indoor air quality (see P/A March 1990, p. 58). Concerned specifiers should feel free to ask industry representatives about the safety of their products. In a recent query about potential health problems with laminates and solid surfaces, a representative of the Environmental Resource Center said that these substances pose little chance of chemical degradation: Resins in the laminate polymerize during the heated pressurization process and develop chemical bonds that remain stable indefinitely. During installation, however, adhesives could be hazardous if the manufacturers’ guidelines for ventilation are not respected. The safety of the formaldehyde in particleboard has long been a topic of debate: Some claim it is dangerous to the respiratory system. Fortunately, the National Particleboard Association reports that the quantity of formaldehyde released from particleboard has dropped almost 80 percent since the early 1980s; standards set by HUD for mobile homes now apply (at the initiative of the National Particleboard Association) to 95 percent of the particleboard used in the United States. To our benefit, laminate is an effective seal on particleboard: It prevents practically all long-term formaldehyde emissions.

Solid Surfacing

This alloy of polyester and acrylic is kindred to laminates; it is a homogeneous sheet practically impervious to water and staining. Solid surfacing looks like stone, but is warm to the touch and light enough to be cut by a circular saw.

Until about 6 years ago, solid surfaces were the market of a single manufacturer; today most laminate producers also offer a line of solid surfaces. They believe its market, which is already increasing at a 15 percent annual rate, has great potential (even though it can easily cost three times as much as high pressure laminate). While most solid surfacing is specified for homes, primarily for countertops and lavatories, the industry is developing details for commercial applications: wainscoting, window thresholds, and interiors in schools, hospitals, and restaurants.

Unlike laminates, whose scratches are permanent, solid surfaces are reparable — cigarette burns and the few stains that discolor the resinous surface can be removed with a household abrasive cleanser or sanded away. These materials can be routed like stone to create a contrasting polished
and matte finish. But because a solid surface is not a multi-ply material, it doesn’t offer the patterns and colors readily printed on laminates. Countertops with stoves call for special detailing when covered with solid surfaced: A strip of metal should surround the stove (see illustration on p. 42) to prevent the heat of the appliance from cracking the surfacing. Likewise, any countertop appliance that generates heat should stand on an extra layer of solid surfacing for added insulation.

The most important decision in choosing solid surfacing is the choice of fabricator: While most manufacturers will not ship their material to anyone who has not passed company-sponsored seminars (typically one day long), architects and designers find word-of-mouth recommendations the best assurance of a fabricator’s skills. While woodworking is the most likely background for fabricators, solid surfacing is more akin to acrylic than wood; it can be tricky to manipulate. Thermomolding, where one heats the solid surfacing to curve it, is a somewhat inaccurate process that calls for an intuitive sense of the material. (Not every solid surfacing line thermosets well; one should check before specifying). “Welding” pieces of solid surfacing is tricky, and calls for precisely applied pressure and more exact alignments than does wood, according to David LaMoureux, a fabricator with 16 years of experience. He suggests that construction specs have a line item for solid surfacing. Otherwise, a subcontractor lacking experience with the material might offer an unrealistically low bid that forces compromises elsewhere.

A small sampling of the uses of solid surfacing appears on these pages. While few architects have exploited solid surfacing’s sculptural potential, fabricators are enthusiastic about the freedom it offers: One suggests that practically any item the designer draws – from furniture to wall paneling – can be built with solid surfacing. It is up to architects to explore ways to use it creatively.

Philip Arcidi
Introducing Step Master™ slip-retardant tile.

Step Master vinyl composition tile takes floor safety to a new power. Its gritty texture and raised geometric pattern provide a more secure walking surface than smooth vinyl products. This superior traction enhances the safety of cafeterias, locker rooms, supermarkets and other areas. The contemporary design and standard thickness allow Step Master to be used alone or with other floor tile. And it offers lower unit cost and easier installation than most sheet flooring.

For more information, call 1 800 233-3823 and ask for Step Master.

Armstrong

Circle No. 355
Technics Topics: Slip Resistance and the Designer

Safety and security consultant Robert L. Kohr, C.S.P., C.P.P., describes measures that designers and specifiers can take to ensure safer floors.

Architects are being challenged more and more on the issues of floor safety. But there is very little guidance about slip resistance as it relates to a specific project. Researchers Robert Brungraber and John Templer recently pointed out in P/A the lack of guidance from model codes and the controversy surrounding testing and slip resistance benchmarks.1 But what can architects, designers, and specifiers do to meet the growing demand for slip-resistant surfaces? What is their responsibility? Can they be held liable for improper selections that cause accidents?

What's Reasonable?

With the explosion of personal injury litigation, damage suits are routinely filed that charge several defendants simultaneously. This is the so-called "deep pocket" approach. Are you at risk? Given current trends, you probably are.

Today, U.S. laws still follow old English common-law principles in dealing with negligence. The burden of proof that negligence existed and was a proximate cause of the accident rests with the plaintiff. However, defense counsels are having to exert just as much, if not more, effort to counter the plaintiffs' allegations. This is because, in my opinion, juries have stretched the definition of "reasonable care."

Reasonable care can be defined as the legal obligation to act as an ordinary, prudent and reasonable person, that is, not to do something that will cause an injury to guests or customers. When it comes to damage suits, this definition can change, depending on how the jury perceives the situation, or how they are instructed on its application to a specific case. The bottom line is that what was reasonable five years ago probably isn't today.

Architects' Responsibilities

The architect must provide a building that not only pleases the client, but takes into consideration the potential uses, abuses, and misuses of the that facility; it must be a "reasonably" safe place. In my practice, I have seen many cases where a slip, trip, or fall resulted from a design defect. In these situations, it is not uncommon for the defense to name the architect as co-defendant or to file a cross complaint to transfer total responsibility.

As Brungraber and Templer said in their article, "For the building designer, meaningful model code provisions do not yet exist" in the area of slip resistance.1 But this does not relieve the architect of the legal responsibility to provide reasonably safe premises.

Even though the model codes do not define slip resistance of various surfaces, all-
Mexicali

The Southwestern Look
With Ro-Tile's proven high quality and durability

Mexicali is a kiln-run tile with random color and texture variations.

Available 8¼" x 8¼" or 11¾" x 11¾" squares, plus rectangles and hexagons.

Hand-quarried appearance and semi-gloss finish . . .
for interior use only.

Ro-Tile Inc.
1615 South Stockton Street
Lodi, CA 95240
209/334-1380
800/698-1380
FAX 209/334-3136

Circle No. 331 on Reader Service Card
slip resistance = surfaces + environment + contaminants + people.

This opinion is based on many years of investigating falls of all types and testing and specifying materials and products to prevent accidents and injuries. The ultimate slip meter is the accident experience on a particular surface in real life conditions.7,9,10

For example, consider an indoor pool deck: You write a specification that calls for a slip-resistant tile complying with ASTM C 1028, which must have a static coefficient of friction no less than 0.5. The supplier provides a transmittal stating that the tile achieves 0.56 dry and 0.51 wet, using neolite, in accord with ASTM C 1028. In use, the pool has several contaminants, including chlorine, body oils, tanning oils, and residual floor cleaners. There is a high bather load and lots of water on the surface, and the tile becomes a skating rink. Why did this happen? One reason is the test’s limitation on the sensor. No one has found an adequate sensor to emulate skin. But had the contaminants been used with the neolite, the tile probably would not have passed the test. Was this flooring adequate for the intended use? Was the static friction bench mark adequate? Were reasonably safe premises provided? The jury will decide.

What Should You Do?

By now you must be saying, “I am an architect, how am I supposed to know this stuff?” People fall for many reasons. But in the slip type falls I’ve investigated and analyzed, over 90 percent involved a contaminant on the surface, like water or grease. A comprehensive approach to selecting and specifying walking and bathing surfaces for work areas and public spaces anticipates and accounts for these contaminants, in conjunction with naming the proper reference specifications. The following is a recipe for your specifications cookbook.7,9,10,11,12

Step 1 Reference the appropriate ANSI and ASTM slip resistance and product standards when specifying floor surfaces and bathing facilities. Some ASTM standards are

- C 1028 Test Method for Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces,
- F 609 Test Method for Static Slip Resistance of Footwear, Sole, Heel or Related Materials,
- F 462 Consumer Safety Specification for Slip-Resistant Bathing Facilities, and
- D 2047 Test Method for Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine.

As noted by Brungraber and Templer, each of these tests has its own limitations. However, each standard is based on a body of test data representing many years of experience on the part of its respective committee. Comparisons between similar products cannot be made if the tests do not use the same methodology. As mentioned earlier, the ultimate test method is to install a surface, allow human and environmental contact, and see if people fall. This is an excellent way of establishing bench mark control surfaces. Once you know the surface type that minimizes slips and falls, it is a simple matter to compare test data.

But this is not enough in itself.

Step 2 Require the supplier to provide an independent laboratory test that measures the slip resistance by the appropriate ASTM method, sensors, and contaminants. However, you should also include the following language in your specifications:

"A walking or bathing surface shall be designed, selected, and installed that is capable of providing adequate slip resistance under anticipated environmental conditions (maintenance, cleanliness, weather, humidity), contamination (water, oil, grease), and pedestrian load factors (volume, public or worker, footwear, demographics)."

Note that no minimum coefficient of friction value is specified in step 2. I firmly believe that a minimum standard cannot be set to cover all situations, even though these are appearing in case law, OSHA, and now the ADA; until better standards related to environmental conditions are agreed on by consensus, I suggest the following minimum values for step 2 above:

- Minimum of 0.5 slip resistance everywhere, to meet legal considerations;
- Minimum of 0.5 slip resistance on interior level and stair tread surfaces (I prefer 0.6 on walkways);
- Minimum of 0.6 slip resistance on all interior ramps;
- Minimum of 0.04 slip resistance for porcelain and plastic bathing facilities.

Architects can no longer hide behind the veil of building codes. Codes are minimum standards, and juries routinely find negligence based on the foreseeability of a hazard that was not abated."
"In the slip type falls I've investigated and analyzed, over 90 percent involved a contaminant on the surface, like water or grease."

Slip and Fall Trivia Facts

- Falls are the second leading cause of accidental death, after motor vehicles.
- 12,000 deaths annually result from falls.
- Falls account for 12 million non-fatal injuries annually.
- 200,000 injuries and 200 drownings occur annually from falls in bathtubs.
- Ten percent of deaths from falls occur on stairs, and five percent on a level surface, but 44 percent are not identified.
- The young and the elderly are most susceptible to serious injuries from falls.

Data compiled from:

These minimums will not provide 100 percent prevention of slips and falls. Two examples follow, one where these minimum values work and one where they don't.7

Example 1 Consider a commercial kitchen floor where grease is an ever-present contaminant. The environment is controlled by HVAC and the pedestrian load consists of workers in slip-resistant footwear. Utilizing ASTM C 1028 and/or F 609, the proposed tile and footwear could be evaluated by applying fryer grease and water to the surface of the tile and the minimums in step 2 would be adequate under these conditions. But what if you do not know the type of employee footwear? Based on my research using C 1028 or F 609 with a neonlce sensor, a slip resistance value of 0.28 in this messy environment would be adequate to prevent falls.7,12

Example 2 Consider a pool deck where a glazed tile with abrasive particles is to be used. If we test the tile according to ASTM C 1028 with footwear sensors and achieve the minimum value, we will have a skating rink. So, a correction must be introduced to the method. Using the slip resistance equation, we add a touch of suntan oil and highly chlorinated water, with the anticipation of a high bather load. It's almost the same situation as a kitchen. This will help, but with abrasive glazed tile, my experience has shown a need for a coefficient of 0.8 or higher, per C 1028, both wet and dry, without the suntan oil added for this type of tile.

Step 3 After installation, require a quality assurance test to verify that the installed product meets the specification.

Step 4 Require the supplier to educate the end-user in proper floor maintenance procedures.

Step 5 Document all activities and keep copies in your project archives.

If you are overwhelmed, hire a safety consultant to assist you in the process. You can locate consultants by contacting the American Society of Safety Engineers.13 Consultants are certified through them as "Certified Safety Professionals," C.S.P. and the American Society for Industrial Security ("Certified Protection Professional," C.P.P.). Architects should look for consultants with these credentials.

For the architect, there are two important aspects to slips, trips, and falls: prevention and litigation defense. The best defense is adequate prevention. Don't get caught in measurement controversies. Understand the issues, set your own standards and criteria, and stick by them. Robert L. Kohr, C.S.P., C.P.P.

The author owns Kohr & Associates in Mount Airy, Maryland, a risk consulting firm specializing in safety, security, and fire prevention management and design. He was director of technical services for the Marriott Corporation, and is the author of Accident Prevention for Hotels, Motels, and Restaurants (Van Nostrand Reinhold, 1991). Kohr is a member of BOCA, ASTM, NFPA, and the National Safety Council, among other groups.

References

Lonplate
ALL-VINYL RESILIENT SHEET FLOORING
Lonseal, Inc.
Introducing The Masters Series. The Fastest, Most Productive Copying System Ever To Come From Sharp.

The new Masters Series SD-2075 Copier/Duplicator is the complete copying system that's tough to beat. This is the one high-volume copier researched and engineered to set new standards for office productivity.

With the Masters Series, we did what we do best. Sharp took the most advanced copier technology available, packaged it at the most cost-efficient price — and made it easy for anyone to use and maintain. This is what we call Sharp Thinking.

The SD-2075 is loaded with all the features you'd want in a high-speed copier, and they're all standard. The Masters Series is built tough. It produces high-quality documents at 75 cpm.

Copies from fanfold computer forms, auto-inserts covers and chapters, finishes and much more. It took Sharp Thinking to create a copier that delivers such high quality and such high value. This kind of thinking is built into all Sharp copiers. It's why we're rated number one in customer satisfaction again and again.

To see a demonstration of the new Masters Series SD-2075, the copier/duplicator that's in a class by itself, call 1-800-BE-SHARP for the dealer nearest you.
Brian Lewis describes an association of small firms in Great Britain that has potential application in the U.S.

Management: Practice Associations

In an innovative effort to offer clients the resources of a large national practice, yet retain the local knowledge and personal attention of small firms, 11 architectural offices in Great Britain have joined together over the last four years in a permanent association that they have named Acanthus Associated Architectural Practices, Ltd. Acanthus (taken from the conventionalized leaf design on Corinthian capitals) is a nationwide network of small to medium-sized independent practices. By choice, they limit membership to other firms with like values, in their case a strong interest in building conservation. As a group, they find they all like to do about 40 percent rehabilitation work and 60 percent new design.

Since the first few principals met four years ago and decided their individual firms' future would be enhanced by association (as an alternative to merger or acquisition), they have received 10 to 15 applications per year from other firms wanting to join their group. They have preferred, however, to grow by select invitation to other firms they believe share their values and objectives. Today, the 11 firms in Acanthus have a combined staff of 225, of whom 91 are architects. Individual firms range in size from 4 to 44 people.

All are first-generation firms less than 13 years old. A large majority of the principals are in their forties, the eldest in his fifties. All have a strong commitment to raising the standard of design and building, as well as a dedication to high quality conservation and traditional craftsman-ship. Because of these shared values, they can easily work together on projects that would be too large to handle alone.

How Acanthus Benefits Its Members

Acanthus members support each other in their determination to maintain the highest standards; they share information, experience, resources, and facilities. Most have standardized office systems, using the Apple Macintosh PC to facilitate inter-communication. They also get together once a year for a public conference. Another association-wide program in which they all participate is quality management, and they are able to pack more punch in staff recruitment by jointly advertising under the Acanthus imprint.

While member practices are spread across England, Wales, and Scotland, they maintain the Acanthus Association office in the suburbs of London, headed by a managing director whose primary mission is to make the market aware of Acanthus. He is assisted by a part-time marketing coordinator, experienced in journalism, who helps open doors to publicity.

Acanthus currently has an annual budget of $200,000, which is raised by a levy against individual practice fees, ranging between 1% and 5 percent of fees. Principals of U.S. practices who might say they could not afford to pay such a levy will be heartened by the experience of Acanthus principals who indicate they have found, through participation in Acanthus, that they have been able to negotiate 5 percent higher fees for their projects, which has more than offset their Acanthus levy. Even better, Acanthus expects to be able soon to start paying dividends.

One advantage they see just around the corner in 1992: Acanthus has already started looking for affiliations with firms on the European mainland where clearly the clout of 225 staff members can command respect yet offer clients direct hands-on local knowledge of zoning, regulations, and politics.

Could Acanthus Work in the U.S.?

Could such an association offer benefits to small and mid-size U.S. practices who wish to retain their independence yet compete more equably with the larger firms? We think so. While the larger distances in North America may militate against a viable nationwide affiliation of those with shared values, it is undoubtedly quite viable for regional associations to work well.

A permanent association like Acanthus has the advantage of getting away from the temporary joint venture, which often scares away clients worried about who, in the end, will be responsible for their project, particularly if the sponsor of the association is a small firm. Principals of those smaller firms who have been wondering if they have to merge to survive may be able to use the Acanthus approach as a way to "have their cake and eat it too"—remain small yet pack a big punch when necessary. Brian Lewis

The author is a member of The Case Group, a consulting organization specializing in the management of architectural and other professional design firms.
Waco Products is an international resource for eclectic art objects and collectibles. When Waco redesigned their work space, the designer preferred an office system that would help create a synergistic, productive atmosphere for Waco employees. The designer chose the Cetra System. Cetra offered work extensions in a dimension where employees could group together, and panel heights where eye contact and energy could continually flow. And distinguishing Cetra laminates and fabrics readily supported the dynamic style of the office. The Cetra System. The art of design.
Walter Rosenfeld proposes a simplified way of referring to excavation fill materials in project manuals.

Specifications: Dig We Must

One of the difficulties architects and specifiers face in writing the earthwork specification sections for building construction is that the materials descriptions as well as the rules are all established by civil engineers and are embodied in state highway manuals that differ considerably from state to state.

No one actually objects to this situation because it is clearly founded on realistic needs and existing conditions. Much earthwork is in fact structural in nature. Bearing capacity, drainage capability, and compaction potential are all soil characteristics that count in the long-term durability of the installation. Civil engineers have studied these characteristics most, and the rest of us depend on their recommendations.

Then, too, the big earth-moving jobs have generally been civil works: highways, bridge abutments, dams, reservoirs, and the like. The engineers familiar with such projects set the standards and probably should. Since state and local governments are among the major buyers of excavation and fill, their wants have been standardized and set down in manuals that all public bidders become familiar with and rely on when pricing and constructing such public works. Because they are usually appropriate as well as widely known, the same standards are inevitably used for private construction as well. Specifiers constantly refer to them.

Most of the problems specifiers face lie with nature. Materials suitable for fill are not uniformly distributed around any state, much less around the country, and each has its own geologic history to provide sub-surface conditions and materials for extraction. So, in effect, there are at least 50 such manuals, each different in some ways, reflecting not only the preferred practice in the state (responding to its public works conditions), but also reflecting the natural materials available for use. And, each manual calls each material by the name historically or locally used.

The variety of nomenclature is large: "gravel borrow," "crusher-run stone," "ordinary borrow," "granular fill," "crushed stone," "bank-run gravel," "permeable structure back-fill," "processed gravel," "aggregate sub-base" are just a few taken at random. Since each public works manual typically describes the local materials and their permitted uses, a specifier working in several jurisdictions has to: carry a long list of material descriptions and characteristics in guide specifications; incorporate fully or by reference the highway manual materials specifications for each state; become thoroughly familiar with all the materials so that they can be called by their local names. Or the specifier must work out a simplified way of handling it all.

In an attempt to deal with such variety, commercial master specifications often refer to national standards, such as those of the American Society for Testing and Materials (here ASTM D-2487 soil classification groups), or somewhat better, to the American Association of State Highway and Transportation Officials (here AASHTO M-145 classification). These are sometimes referred to in state manuals. But needs of building construction earthwork are not so complex, and not all architects have AASHTO standards at hand. In any case, the state highway manual will probably still have to be consulted to determine what is available and common in the locality of the building.

Another problem architects face is that drafters need ways to refer to fill materials on the drawings to indicate which type goes where, especially when the specifications cannot fully cover locations. Drafters, working on projects in different states, cannot memorize or research the handbooks in each place; that requires considerably more experience and decision-making capability than most drafters possess. The potential for conflicts here and the need for coordination are substantial.

Digging, hauling, and placing of fill are all expensive operations. The type of material used, the qualities placed, and compaction density achieved are often questioned and may require third-party resolution. Disputes over earthwork are among the most common in construction litigation and often costly to resolve. Is there a way to simplify some of the confusion over terminology and make things easier for those producing construction contract documents? Some specifiers believe there is.

A good look at fill materials for building construction seems to indicate that, functionally, there are three basic types: materials requiring structural properties (structural fill); porous materials for drainage (drainage fill); and less critical backfilling soil (ordinary fill). If architects and their consultants accept this rudimentary classification, many things are simplified. Drafters can indicate the fill by function; the specifier can maintain a master Earthwork section applicable wherever the building may be located; and all parties can get the drawings and specifications to agree.

But how does this solve the problem of local materials variation and the differing state highway specification requirements? Very easily. The specifier merely defines "structural fill" for the particular job as the material referred to in the highway standards as "dense graded crushed stone" (for example), and by inclusion or by reference, gives the proper sieve analysis. The same procedure works for drainage fill, and perhaps even for ordinary fill where on-site materials are inadequate.

It is far less confusing (particularly for younger architects) to define fill by function than to face the often bewildering array of unfamiliar terminology and references in the state manuals. But this does not mean that, in fact, there are only three types of fill, or that special situations don't sometimes arise where finer distinctions must be made. Nor is it an invitation to civil engineers to abandon the search for economical solutions just to save space in someone's database. This procedure does, however, shift the emphasis for architects to the use of the material and away from its local name, and encourages internal consistency, continuity of approach from job to job, and greater clarity in contract documents when earthwork is required. Walter Rosenfeld
When Mutual Assurance Incorporated of Birmingham began redesigning their workspace, they decided that each systems office would reflect an atmosphere of privacy. Singular areas where work could be efficiently conducted. Yet accessible enough that employees could express their individual styles and openly interact. Their designer chose the Cetra System. Cetra's integration of spaciousness and privacy, along with its availability in warm wood accents and an array of fabrics and finishes assured Mutual of the atmosphere they desired. The Cetra System. Mutually beneficial.
Products: Substitution Abuse

Too many architects refuse to accept responsibility for their actions or to recognize the consequences of their behavior when it comes to the enforcement of project specifications and tolerance of product substitutions. During a complex building project, it is inevitable that some substitutions will be used in lieu of specified products. In moderation, substitutions provide a sort of value engineering, save time and money, and introduce innovative solutions. But too frequently the integrity upon which the construction industry depends is disregarded and substitution abuse occurs.

Architects usually blame substitutions on the avarice of contractors who gamble on increasing profits by cutting corners or on suppliers who are unavailable when design assistance is needed, but who materialize at bid time. Architects, however, must accept responsibility for their own behavior rather than look for ways to justify it. We must enforce fair and practical procedures for substitutions, and refuse products that do not meet specifications. For those who give in to temptation and become substitution abusers, the consequences can be severe.

Building Failures
Substitution abuse greatly increases the potential for building failures. The myriad products on a building must be carefully researched and coordinated throughout the design and specification process. Substitutions made during the bidding process or during construction are seldom given the scrutiny afforded the originally specified products. This occurs because, too often, insufficient time or money is allocated for contract administration. Decisions about substitutions are made under pressure from bidders, the contractor, or even the owner, leading architects to use products with which they have no experience. And because the design team that specified the product often has broken up by the time submittals are considered, substitutions may be evaluated by individuals who do not understand the original design intent.

According to estimates by a leading forensic engineer, building failures are ten times more likely to happen when a substitution is involved than when the project is built according to specs. Also the legal claim of responsibility for an inadequate substitution is a difficult charge for an architect to defend against.

Substitution abuse increases failures even when the substitute product is apparently similar in quality to the specified product. While proposed substitutions may be compared against the specified product, the effect of a substitution on related construction may be overlooked.

Sales Support
Architects depend on building product manufacturers and sales representatives for far more than just keeping catalogs up to date. Few architects have comprehensive knowledge of all building materials, so they rely on reps as uncompensated consultants. Many architects, for example, depend on hardware salespeople to prepare hardware schedules or on roofing representatives to inspect existing roofs. Architects also have become accustomed to using manufacturers' toll-free telephone numbers and getting next-day delivery of catalogs, details, specifications, and samples at no charge. While paying for these services may seem inconceivable, it may come to that unless the architectural profession starts re-asserting control over substitution abuse.

Many suppliers are reducing their architectural sales forces and placing greater importance on selling directly to contractors and to building owners. "Why should I spend time with architects," many building product manufacturers ask, "when they can't even enforce their own specs?"

Architectural Credibility
Substitution abuse erodes the foundation of confidence and authority upon which so many of the architectural profession is based. From our historic stature as masterbuilders, the profession has gradually but steadily retreated from a position of authority with regard to construction. By allowing nearly uncontrolled substitutions, architects undermine their position. Once contractors realize the ease with which they can break a specification, then what will be their impetus to comply with any architectural requirements? And once building owners perceive that their architects' specifications are not fixed and that contractors are making most of the actual product selections, then what will be the impetus for an owner to hire an architect instead of a design/build contractor?

Architectural firms must develop and enforce clear and practical specification policies regarding product selection and substitution procedures. (See Construction Specification Institute Manual of Practice Part I, Chapter 9, "Substitutions" for suggested guidelines. Order from CSI at (703) 684-0300.) And contract documents must say what you mean and mean what you say. To provide competition without the problems of substitutions, architects should avoid specifications that name a single product "or equal." As recommended by Walter Rosenfeld in P/A (October 1990, p. 53), architects should do the research to find the three acceptable products before bidding (or pricing) starts, not during bidding or after construction has begun. After the start of construction, substitutions should be treated formally as change orders instead of casually as shop drawings. Firms must allow an adequate budget to review substitutions and prepare their clients to pay for this service. As a project moves from one phase of architectural service to the next, new members of the project team must be oriented as to why certain products were selected. To break the habit, substitution abuse must become part of the architectural agenda. It must be discussed in architectural and trade associations and included as part of each firm's quality assurance program. Michael Chusid
The house phone that's truly at your beck and call.
The Siedle System HT 611-01 House Phone. A single system answering many needs. With an extremely low profile for mounting on a wall or table-top. Variable lateral frame available in highly polished black or aluminum or black and white Korian. Award-winning innovative design '91.

The average house phone seems to just hang there in your entryway. About the only thing it does is buzz from time to time. Not so of the new Siedle System HT 611-01 House Phone. Besides being simply beautiful in black or white, it's beautifully simple to operate. And thanks to Siedle's system technology each button has a lot of brain power. Number 1 opens your door, of course. And the others go on to do a whole lot more.

With six additional functions for you to choose from, you can adapt it to your individual lifestyle. You can communicate from room to room with a clarity of sound that's assured by the Siedle electret microphone. At the push of a button you can open doors, operate gates, raise blinds, control lights and more besides. With the Siedle System House Phone you can take life a lot easier. To find out more, send in the reply coupon - or call toll free 800-874-3353, fax 215-353-9716.

Circle No. 320 on Reader Service Card

Intercommunication systems.
Look to FORBO for high quality interior surface products for walls, floors furnishings, and a wide variety of other commercial and residential applications. They're five established North American companies with proven products. As part of FORBO S.A. of Zurich, Switzerland, they enjoy an unsurpassed reputation for product integrity and responsive service. When you specify a FORBO product, you get international design excellence, uncompromising quality, and the convenience of North American manufacturing and distribution.

For information on products, distributors and sales offices throughout the United States and Canada, please circle the readers service card.

Circle No. 323
A moment of inspiration. 423 hours of designing. 7 weekends. 36 meetings.
36 revisions. 1,521 cups of coffee (not decaf).

You put so much into it,

put Olympic® paints and stains on it.

Specify Olympic Professional Products for long lasting protection in a wide range of beautiful colors. Quality products, packaged specifically for the professional applicator; available through professional paint stores nationwide.
Holt Hinshaw Pfau Jones and Christopher Alexander's Center for Environmental Structure, both Bay Area firms, are featured in this issue.

Although their work looks radically different, each firm operates from a philosophical position that has broad implications for the practice of architecture.

Other noteworthy features in the issue include an inquiry article on schools, an analysis of an admirable new office tower in Chicago, some insightful reviews of books, and competition results. Thomas Fisher

Zip-a-tone drawing of the mirror assemblies on the back of the Astronauts Memorial at the Kennedy Space Center by Holt Hinshaw Pfau Jones.
HOLT HINSHAW PF AU JONES

Introduction

"The essence of technology is in a lofty sense ambiguous."
Martin Heidegger, The Question Concerning Technology

The technology-driven architecture of Holt Hinshaw Pfau Jones - HHPJ - seems anything but ambiguous. Characterized by exposed structural and mechanical systems and clearly articulated moving parts, the work of the firm appears to be frankly Modernist, a literal interpretation of Le Corbusier's dictum "A house is a machine for living." HHPJ's buildings also seem clearly related to the "high tech" architecture of Norman Foster or Richard Rogers - less coolly detailed than Foster's, perhaps, and less colorfully articulated than Rogers', but similar nevertheless.

Yet, such interpretations miss the point - and the importance - of HHPJ's work. To understand the difference demands a brief look at the thought of the German existential philosopher, Martin Heidegger. Heidegger, unlike the Modernists of his era, believed that our dependence upon technology and our faith in science have alienated us from our own existence, from our being. His thinking has had special appeal for architects since, in essays such as "Building, Dwelling, Thinking," Heidegger argued that learning how to be in the world is integral to the act of building and dwelling.

Most architects influenced by Heidegger have assumed that he was against advanced technology, and they have tended to produce buildings that used a simpler, more craft-oriented technology. But Wes Jones of HHPJ disputes that assumption, finding support for his position in the lesser-known essay by Heidegger entitled "The Question Concerning Technology." In that piece, Heidegger does say that advanced technology poses a danger if used to impose a mechanical order on life and to treat people like machines. But he claims in the second half of the essay that in the very danger of advanced technology lies "its saving power." The dehumanization that can come with advanced technology, he thought, can also make us see most clearly what it means to be human. An appreciation of our existence, in other words, comes with an awareness of our possible extinction.

The work of HHPJ forces such a confrontation with technology's "dangers." The firm's buildings are dark and brooding, far from the optimistic empiricism of "high tech" architecture or the Modernist's faith in progress. If there is a faith here, it is the existential belief that salvation comes from facing the abyss. The questions HHPJ raises with its work are not those typically asked by architects, and, no doubt, there are some in the profession who would say these issues are not legitimately architectural. Perhaps the best response to that is something that Heidegger himself might have said: Look to the thing itself. Judge the ideas here by the power of the objects they engender. Diverse juries in the P/A Awards Program have done that and have premiated six HHPJ projects in just five years.

On these and the following pages, we are featuring some of the first works by HHPJ to be completed, including two P/A Award winners: the Right Away Redy Mix building and the Astronauts Memorial, plus a new film storage building for Paramount Studios and a new display system for the company Details. We have also included two essays by outside critics, Gavin Hogben of Cambridge University and Jeffrey Kipnis of Ohio State University, who examine the relationship of HHPJ's work to Modernist and Post-Structuralist ideas. Thomas Fisher
The Astronauts Memorial Foundation, founded and chaired by Orlando architect Alan Helman, held a competition in 1987 for a monument to commemorate our deceased astronauts. HHPJ won (March 1988, pp. 45-46) with this design, consisting of a four-story-high granite wall, and a computer-operated mechanism that rotates the structure and directs mirrors to reflect sunlight through the astronauts' names which are cut through the stone. A smaller commemorative "mission" wall, also sheathed in granite but fixed in place, terminates a walkway that extends back at an angle from the main structure. The memorial stands on a small rise next to a lake, with a ramped walkway leading up to it and a switchback concrete ramp, cantilevered out over water, leading back to the nearby exhibit buildings of Spaceport USA, NASA's visitors center at Cape Canaveral.

Winner of a P/A Award (Jan. 1989, pp. 68-70), the memorial makes explicit references to historical monuments, and to its immediate context of steel rocket launchers. The structure also speaks, however, to some of the larger existential questions raised by Heidegger and apparent in most of HHPJ's work. Heidegger, for example, wanted us to go beyond the various metaphysical systems that we use to "enframe" reality so that we could once again see the magic of things, the wonder of the ordinary objects that surround us. The Astronauts Memorial works such "magic," making the astronauts' names blaze, almost blindingly, with the light of the reflected sun. And yet, by showing us the
mechanism used to achieve this "magic," the memorial raises its own very Heideggerian questions: Has technology, rather than metaphysics, become the ultimate "enframer" of reality? Has the reality generated by technology become more real to us than reality itself?

The memorial also pursues Heidegger's notion that existence becomes most real to us when we confront death. This structure is, quite literally, a confrontation with death—with the names of people who have died exploring space. But it addresses other, more existential hazards as well. By exposing the huge mechanism that rotates and backlights the granite wall, HHPJ expresses our technical prowess in manipulating nature, and yet reminds us of the price we must pay for that ability: the excess of technology behind even the simple act of lighting names in a wall, which are themselves reminders of human sacrifice to a technological cause.

And, by polishing the stone surface to a mirror-like finish, like that of the Vietnam Memorial, HHPJ makes us see our own mortality as we stand there, reflected in the granite, among the names of the dead and the reflections of the sky where, at least metaphorically, all of us may one day dwell.

The Astronauts Memorial is an absolutely brilliant work—provoking, disturbing, and moving. It is, at once, a paean to the power of our technology and an essay on its existential danger. If the project has a flaw, it is its location. Standing next to the entrance to Spaceport USA and adjacent to that museum's extremely banal buildings, the structure must compete with too many other distractions. With so much land at its disposal, NASA should have placed the memorial, recently declared a National Monument, in a more isolated spot, a place more conducive to the contemplation that this design deserves.

The memorial stands at the entrance to Spaceport USA, an exhibition complex run as part of the Kennedy Space Center (2). The ramp that extends out into the lake gives visitors access to the mechanism that operates the rotating wall (drawings at left). Two screwjacks tilt the wall back and forth depending upon the height of the sun above the horizon; a large weight at the base of the wall counters the gravitational or wind forces acting to overturn the tilting structure. A gear mechanism rotates the wall along a slewing ring over the course of a day, as the sun moves from east to west. All of these operations are controlled by a computer. The architects designed an innovative mechanical railing that could be raised and lowered as the wall moved, but this was superseded by a fixed railing that keeps visitors away from the wall.
Client: The Astronauts Memorial Foundation, Alan Helman, chairman.

Site: six-acre site at the entrance to Spaceport USA, within the 140,000-acre Kennedy Space Center.

Program: a memorial to the 14 astronauts who have died, and to all future astronauts who may be lost in the line of duty.

Structural system: welded, rotatable, steel structure, 62 feet high, supporting a 42' x 50' panel of granite slabs; precast piles and concrete footings and foundations.

Major materials: concrete, steel, polished granite (see Building Materials, p. 138)

Mechanical system: 16-foot-diameter slewing ring operated by screwjacks.

Consultants: VSL Corporation, structural and mechanical; MTH Engineers, electrical; Professor Lambertus Hesselink, Stanford University, optical.

General contractor: W&W Construction, concrete and site work; VSL Corporation, steel, stone, and mechanical work.

Costs: $4,500,910.

Photos: Mark Darley/Esto.

Perhaps the most visually dynamic parts of the memorial are the mirrors attached to the white-painted steel trusses at the back of the rotating wall (3). These mirrors also track the sun and reflect its light through the astronauts' names cut through the wall's granite by means of an abrasive water-blasting technique (see Product Features, p. 122). Glazing is attached to the back of these names, making them appear to glow (drawing, right). Lighting fixtures, attached to the outer edge of the mirrors, illuminate the names at night or on cloudy days (4). The memorial is approached from Spaceport USA along a paved walkway beside a grassy bowl (5). After climbing the sloped walkway to the wall itself, visitors return via a ramp (6) to the low spaces under the memorial (7), where the sun-tracking mechanisms are exposed.
Gavin Hogben relates the Astronauts Memorial to Modernist ideas of the machine.

Life in the Machine

The hybrid machine architecture of HHPJ's Astronauts Memorial pays homage to Le Corbusier's heroic vision of Vers une Architecture in a way that the master could hardly have anticipated. Despite his admiration for the achievements of the engineers of his age, Corb showed little enthusiasm for utilitarian or mechanistic architectures. His declaration of the house as a machine à habiter was an appeal for the dwelling to adopt the machine-age spirit rather than its specific forms. Machines in the modern age showed that a "well-stated problem" always met its solution as in the car or the airplane, but that the "problem" of the dwelling went far beyond utility. Clean lines, sharp light, and fresh air were to nourish the mind and body of the modern citizen, and, no doubt, to foster the same clarity of thought that Corb found endemic among engineers and so foreign to architects.

All the same, satisfaction of the intellect was not enough, and the architect had to prove himself a plastic artist and no "mere engineer" by his mastery of profile and contour, through which measure alone architecture could touch the heart. Ships, planes, and cars might spur the imagination, but Phidias' Parthenon was the paramount example and standard that must be pursued. The machine à habiter was a problem of the human spirit.

Donald Egbert has observed that a machine is defined by the sum of its parts, but that an organism always exceeds that sum. Corb's machines exceed their sums. Classical theories of architecture had sought harmony in a system of parts at rest, but Corb's machines always presume the spark of life that will stir our emotions. Mary Shelley's Frankenstein, and Diderot's earlier writings on genius and sublimity, had explored the accident of such a spark kindling the mechanism. Organic theories and motive power developed side by side throughout the 19th Century.

Organic theories also revealed the inexorable forces within the social machine, whose ruthless slipstream came to be glorified in the reckless addiction to change and speed of Marinetti and the Futurists. Their exuberance was to be extinguished by the mechanized slaughter of World War I. And yet the desperate wartime evolution of the airplane gave Corb hope for the peace and the reconstruction. He believed that the rapid and undeviating path of the airplane's development had driven its engineers to powers of intelligence and daring of a visionary pitch, aptly symbolized by the uniquely direct line and panoramic vision of flight itself. Here in the ether, as in the conception of the machine, man was free to realize his destiny as a purposive creature. Architecture too must take flight.

Some 68 years later HHPJ faces a different kind of reconstruction with the Astronauts Memorial. They must rekindle a faith in the powers of machines, of pioneers, and of collective social effort, and do so at the scale of the nation. The explosion of Challenger shook what was already weak. The machine-age has become tired; oil crises, ozone depletion, computer viruses, all have stalled our excite-

(continued on page 142)

Jeffrey Kipnis contrasts the "decidability" of HHPJ's work to the "undecidability" within the academy.

The Mechanism of Power

What does architecture mean? What else does it mean? What can it mean; what should it mean? Indeed, can it or should it mean anything at all? A factional debate over the answers to these questions continues today as architectural design wrestles to overcome the symbolic impoverishment and the stylistic colonialism that are the legacy of Modernism.

To situate the work of Holt Hinshaw Pfau Jones in that debate, let us call upon the traditional prerogative of the critic to assign a proper name to a tendency in design. On one hand, insofar as it inevitably distorts the irreducible singularity of a particular practice, assigning such names is conspicuously biased, even violent. Yet, on the other hand, it is an important task, since a persuasive proper name wrests the work from the proprietorship of its authors and allows it to be disseminated; without such a name, the work remains immobile and idiosyncratic.

Shall we call it Mechanism? The name does have certain advantages over other prevailing "isms" such as Post Modernism or Deconstructivism. In these latter names, the "ism" ending is hanging on like an ornament to enlarge the root/practice into a doctrine, theory, or system. Mechanism, on the other hand, is a word where the "ism" is integral; its ending speaks more of action or process than of doctrine. Avoiding doctrine is not insignificant today, considering that the destitution caused by architectural Modernism can be traced to its ultimate formulation as a design doctrine. Thus, the name Mechanism might capture HHPJ's desire to extricate architecture from the weight of academicism, while distinguishing it from other technology-associated architectures. By calling upon the raw fascination that great steel mechanisms in complex motion hold for us, HHPJ seeks to produce an architecture with an appeal more visceral than cerebral. This aspiration is not merely a gesture towards popular taste, though the work, indeed, has a broad allure. Rather, it constitutes HHPJ's primary strategy to assert the status of intention and decidability in the face of the contemporary academy's bewitchment by undecidability. As Wes Jones writes, "the machine is that which decides anyway in the face of undecidability. The machine is embodied intention."

Undecidability names the fundamental impossibility of knowing the meaning of any work. According to post-structuralist thinking on undecidability, meaning is only wrought (temporarily) by the aggressive repression of other meanings. Whereas some architects today see the task posed by undecidability to consist of relaxing the systems of repression to give greater play to the consequences of undecidability, HHPJ draws the opposite conclusion. The firm increases repression aggressively to achieve meaning, however provisional that achievement may be. Jones refers to the work as a "celebration of the mechanisms of repression which give meaning." On the question of meaning, HHPJ is to the architects of undecidability what Steven Spielberg is to David Lynch.

(continued on page 142)
HHPF's administrative and maintenance facility for the concrete batching company, Right Away Redy Mix, includes a concrete-block garage out of which extends a second-floor, steel-framed control room and office (8). The back of the garage forms a wall to the street, which is in keeping with the area's low-scale industrial buildings and walled-in concrete plants (11). Recalling the forms of the nearby batching plant, with its exposed steel structure, conveyor belts, and hoppers, this administration building features movable panels that shade the glass and the controllers' eyes from the sun, (10) an exposed steel structure that supports the panels, and an open stair that scales the outside of the buildings (9).
The idea of technology as a kind of Goliath, swallowing us whole, emerges in HHPJ's Right Away Redy Mix administrative and maintenance facility, also winner of a P/A Award (Jan. 1987, pp. 101–103). This office, control center, and garage for a concrete batching plant blends in well with the industrial equipment and structures that surround it. But this is not just an exercise in contextualism. The building itself is a machine. Steel stairs, for example, scale the face of the building like a conveyor belt to the top of the nearby batching tower; and exterior panels, which move up and down to keep the sun out of the controllers' eyes, recall the action of the hopper doors that separate the plant's various cements and aggregates. Although the second-floor office and control room are quite pleasant, the building has a darker side as well. HHPJ's equation of building and machine suggests that the people who work within this structure are of a piece with the mechanisms they control. Heidegger saw technology's greatest danger in its ability to incorporate us into some larger mechanical order. At Right Away Redy Mix, HHPJ makes that idea concrete and thus confronts us, as Heidegger would say, with its "saving power."

HHF’s film and tape archives building for Paramount Pictures features a zone of exposed mechanical equipment set within a steel frame that supports an artificial sky backdrop (12). The concrete box that holds the film and tape vaults and the editing studios is entered at one end of the mechanical equipment zone (14), adjacent to a projecting stair housing. This layering of functions continues in the building itself, where there is a zone of vault spaces, consisting of row after row of fixed and movable files, and a zone of editing studios, where directors cut and merge takes into films (plans, right). The steel frame that supports that equipment stops short of the vault building at the entrance end (13) and extends beyond it at the other (15).
Heidegger, as Wes Jones points out, realized that what we must fear is not technology's dangers, but our own desire to disguise them, to keep them hidden. HHPJ explores that idea in its design of film and tape archives for Paramount Pictures. The company needed a large, climate-controlled and highly secure place where old tapes could be stored and where directors could work on the editing of new films. The structure would replace an old scene-painting loft and a sky backdrop. HHPJ responded by designing a nearly windowless concrete box with an attached steel structure supporting the building's extensive mechanical equipment and a rebuilt sky backdrop.

The architects layered the building, in plan, with various types of artificial realities: the zone of the artificial sky, the zone of editing studios in which fictional worlds are created, and the zone of storage rooms with film recording the artifacts of times past. Through this layering, HHPJ explores the idea of "between-ness." Architects, like film editors, structure parts of things into wholes, which in turn become parts of larger wholes. Thus, every act of design or editing is always a moving between parts and wholes. In this building, the editors' offices, accordingly, stand between and adjoin both the sky fragment and the whole films in the archives.

HHPJ also exposes here the seams that architects and editors are always attempting to conceal. The firm has pulled apart the various functions of the building, like editors cutting apart frames in a movie, and has revealed the technology that supports the sky backdrop, like movie directors inviting the audience into the projection booth. As in all of HHPJ's work, the intent here is to reveal meaning, to remove the disguises we use to hide reality. Despite its apparent "inhuman-ness," this architecture is deeply humane and morally driven.

This structure, too, can be seen as a comment upon the technology - ducts, wires, and pipes - that often lies hidden within the walls of buildings. By bringing this equipment out from behind the disguise of interior wallboard and exterior cladding, HHPJ reminds us that, in
the thickness of every wall, there remains hidden a whole infrastructure of technology without which our own existence in buildings would be impossible – and without which the sky would fall.

Project: Paramount Pictures Film and Tape Archives, Los Angeles.
Client: Paramount Pictures (Earl Lastz, president, studio group; Chris Essel, vice president of planning and development; Ann Gray, executive director, design development; Mike Romano, executive director, construction services).
Site: A 17-acre site east of Paramount water tower.
Program: 39,000 square feet of film vaults and editing studio.
Structural system: cast-in-place and precast walls, precast T beams, steel frame supporting mechanical system.
Major materials: concrete panel walls, steel windows, painted steel frame (see Building Materials, p. 138).
Mechanical system: forced air.
Consultants: Ove Arup & Partners, engineering.
General contractor: Turner Construction.
Costs: withheld at owner's request.
Photos: Mark Darley/Esto.

The billboard wall and exposed chillers of HHPJ's film and tape archives building (16) seem right at home among the stage sets and film equipment of Paramount Studios. Less contextually determined is HHPJ's design for a moveable display system for Details, a desk accessories company. The system consists of a black-painted steel structure which curls up and folds back, depending upon the company's display needs (17). Products are placed upon or hung from the system's yellow steel shelving and panels. Designed for indoor and outdoor sites, it has the character of a hot rod car, with various components clipped to a steel frame (18). Three screw-jacks operate the machine. Contrasting with this steel machine are the soft airbags, inflated by small fans, which circulate air through flexible ducts (drawing, facing page bottom).
HHPJ raises questions about the production and consumption of goods in its display system for Details, a manufacturer of office accessories. To support shelving on which the accessories are displayed and to provide flexibility in the arrangement of the products, HHPJ has created a large black machine, with yellow skin, that moves into a number of prone or upright positions. The huge mechanism seems dangerous and overwhelming, but it has a magnetic appeal, even for those who might otherwise be uninterested in desk accessories. Like a hot rod, the system achieves flexibility without losing its “strong” form.

This display machine reminds us of the complex fabricating equipment needed to produce something as seemingly simple as a paper holder or a task light. It also comments on our own passivity as consumers. You can stand before the Details display and let the machine bring the products to you, exposing the often incredible behind-the-scenes efforts of business to make consumption an effortless, painless process. But this is no friendly robot. The huge, looming object brings to mind a kind of “1984” vision of a consumer world in which we are enslaved by the very technology that serves us.

Project: Details display units.

Architects: Holt Hinshaw Pfau Jones, San Francisco (Paul Holt, Marc Hinshaw, Peter Pfau, Wes Jones, Mark Sparrowhawk, design team; David Willett, Susan Michael, Douglas Gauthier, Dwight Ashdown, Jean Jones, Robert Shepherd, Glen Butler, Rick Silsaim, fabrication team).

Client: Details, a division of the Steelcase Design Partnership.

Site: 600 square feet in various indoor and outdoor showroom spaces.

Program: display system for contract interiors trade shows.

Structural system: welded steel frame.

Major materials: cold rolled steel angles and plates, aluminum plates.

Mechanical system: electro-mechanical actuators, airbags that circulate air to people viewing the display.

Consultants: Holt Hinshaw Pfau Jones and Kaleva Design, structural, mechanical, and electrical.

General contractor: Holt Hinshaw Pfau Jones, West Edge and Weekend Engineering, steel fabrication.

Costs: withheld at owner’s request.
P/A Inquiry: Schools

Once the mainstay of many architectural offices, school commissions are emerging from a 1980s hiatus.

Some Current Issues

It appears that vestigial traces of the open plan and team teaching still persist, although to a far lesser degree than earlier. Change continues to affect education. Both Ben Graves and Bill Brubaker note the effect of the computer on many school planning areas.

Aside from the shift from computer labs to general classroom use, computers are changing the functions of the library/media center, and Graves wonders if they might also substitute simulation for certain laboratory and shop functions. Student educational planning constitutes just one other possibility.

Both men see a movement to reverse increases in school size. Subdivision of schools into schools-within-schools, each with its own administration, is one way they see besides simply making smaller schools.

Brubaker also sees many alternative kinds of schools, and notes that a “magnet” school built in Chicago years ago is still functional.

Equalization, a term meaning functional equality in facilities and equal expenditures within the jurisdiction of a given district, is an issue that bears watching, Graves comments. As an oversimplified explanation, an entity comprising several school districts would collect tax monies from all of its school districts and redistribute the funds equally among them. Since the idea is still full of legal holes yet to be challenged, it could yet fail to be widely adopted.

During the 1950s and 1960s, the nation could scarcely build enough schools to keep up with educational needs. Changes began in the 1970s, as enrollments started to drop; the 1980s saw existing schools becoming less populated, being closed, or even reconfigured for new uses such as housing or commercial office space. However, with the passing of “Baby Boomers” into middle age, society’s needs are again changing; schools are again needed, if not quite at the earlier frenetic pace.

The new schools can indicate either growth or the need to create more appropriate environments in which to learn and through which applicable new technologies can be effectively applied.

In addition to these seemingly obvious challenges, there are a number of other factors that may not be quite so readily apparent. Some solutions show up in the examples shown on these pages, but perhaps a larger percentage of the issues are yet to be dealt with in future school designs. One reason is that new projects are most often conceived through programs written by practicing educators, who may not be trained to look to future needs and who, therefore, react to current educational pressures. These programs, thus, may be flawed at the outset because they fail to provide for the rapid advance of technology, changing social or economic emphases, or environmental and energy developments.

In the 1950s and 1960s when school building programs were at their peak, the Educational Facilities Laboratory (EFL), an organization under the aegis of the Ford Foundation, provided invaluable information to architects about all aspects of school design. One of the EFL’s key players was Ben Graves, now a principal of Educational Planning Consultants, Austin, Texas. In his current role, he is consulting with school boards and architects all over the country about programming and philosophies that will be instrumental in forming both physical school facilities and their ideological bases in the future. Because of their lifelong commitment to the design of educational facilities, P/A talked with him, and with architect C. William (Bill) Brubaker of Perkins & Will, Chicago, an innovator in school design. Both agree on several key points, some of them paraphrased in the sidebar column to the left.

Many of these involve the computer, in one way or the other, an indication of the swath this technology cuts across most disciplines. Previously-held absolutes such as language labs (largely gone), media centers (libraries, in flux), fixed one-track programs (college prep, etc.), and even other laboratory functions have come into, or are coming into, question. Programmatic elements many of us took as unchallengeable imperatives are disappearing from the educational lexicon. These are straight academic concerns, but there are changes resulting from other forces.

Additional sources of agreement: the growing need to make the school more interactive with the community concerns and activities; the trend toward extended use of schools, in hourly or yearly terms; the need to identify the role of schools in daycare, preschool, special education, and adult education programs. Issues of site size, finance, and alternatives were also addressed.

Brubaker comments that, in comparing schools, “You have to be very careful about the statistics.” In temperate climates like California, for instance, a number of functions that must be protected from cold weather can be carried on under shelter outdoors. Even with locally differing area-per-student requirements, building costs per square foot vary widely over the country; so Brubaker feels most of these comparisons tend to be meaningless unless used with full knowledge of the variables.

In addition to the increased concern for the environment, Graves mentions another recurrent concern—one that, it is hoped, will remain in the architectural consciousness permanently. “Energy is back,” he notes. While school design has never been simple, it has never had so many lively possibilities.

Jim Murphy
Named for the Indian symbol of peace and harmony, this 750-student K–6 school, on a sharply sloped 10-acre site (40 percent smaller than recommended), realizes a ratio of 103 square feet per student, 20 percent more efficient than average. The building is located on the more sloped portions of the site, preserving flatter areas for play fields and parking. A treeless hill with a view toward a lake and undeveloped countryside, the land was used effectively, with a two-level structure taking advantage of the terrain.

To build class esteem and sense of community, as well as to allow for variations of combined class instruction and/or team teaching, the school is broken down by grade into "minischools." Further distinction is marked by color coding, and by separating play areas for the primary-grade minischools.

Over all, the school is designed to reach maximum use of computer learning technology over time, without the attendant high costs. To reach the programmatic goal of one classroom computer for every two students (initially, one per seven students), classrooms are equipped with computer station outlets, and the shared learning space adjoining each classroom contains a class-size computer instruction lab with 16 rolling computer stations. The stations can thus be used in those areas or in the adjoining classrooms. Further enhancing this "minischool-within-a-school" approach, each classroom has a series of glazed French doors which may be opened to the shared learning spaces.

Central to the scheme, both functionally and logistically, the administrative "village" is a colorful series of individual buildings in a high clerestoried space flooded with light. All special function areas are visible from the "village." The activities area is surrounded by a colonnade and, in turn, by special program spaces. The academic wing forms the two-story component.
Deerwood Elementary School represents the school district's long-held policy of using open planning. The 78,000-sq-ft building is set into a hillside, with its main entry on the upper level; its central focus is its two-story Instructional Materials Center (IMC). Surrounding classrooms have walls partially screening three sides, while the fourth remains open to the common area, buffered by student lockers.

Designed for 750 students, Deerwood serves children from preschool through fifth grade, and includes a special education curriculum for emotionally and behaviorally disturbed youngsters (EBD), and for community education programs. EBD students typically have experienced severe emotional trauma or have a behavioral disability, such as autism.

An adaptation of the campus plan, this 2900-student school adopts colonnades and space frame canopies to provide shady areas usable in Arizona's milder seasons. The plan is also organized to respect the scale of the surrounding neighborhoods, keeping the lower-scale classrooms at the perimeter screening the larger-scale gymnasium, auditorium, and library/media center elements.

The 225,054-square-foot facility comprises six main buildings, and the shaded and landscaped courtyards are nodes for pedestrian activity. Low maintenance native plants were used, for erosion control and water conservation on the grounds. To meet increasing operating costs, alternative energy-saving devices were incorporated in the central plant, including an ice thermal storage facility capable of making 2700 ton hours of ice to offset peak cooling demand periods.
Rural imagery, taken from the once predominantly agrarian area of Orange County’s Irvine Ranch, informs the design of Chapman Hills Elementary. Simple agricultural building forms and landscape reminiscent of orderly citrus groves combine in what the architects see as the “high touch” aspect of a two-part theme, as opposed to the “high tech” facet also invoked by the program.

This is the response the architects evolved from client desires for integration of information age technology and classroom, a nurturing physical environment, programmatic flexibility, expanded use for day-long, year-long use, daycare and community activities, energy efficiency, and maintainable buildings based on the principles of life cycle cost and value engineering.

Project: Chapman Hills Elementary School, Orange, California
Architects: Dougherty and Dougherty, Newport Beach, California

Project: Garfield Elementary School, Santa Ana, California
Architects: Dougherty and Dougherty, Newport Beach, California

Seen by the architects as a “city within a city,” the design creates a tight composition comprising a “network of streets and squares, alleys and parkways.” Two colliding and juxtaposed grids form the axes from which the design focus develops. Formally, the pitched roof and tower of the historic power station at the edge of the site are reference cues for the design of the new school.

The monumental media center, seen as the anchor for the “city,” and a clock tower serve as reference points for both this complex and the surrounding neighborhoods. Acknowledging the youngest students, the four-square plan of the kindergarten provides appropriate scale. Housing the remaining population of the complex, the classroom building is placed on its own axis.
Project: Douglass Elementary School, Cincinnati, Ohio
Architects: E.A. Glendening, FAIA, Architects, Cincinnati

Originally planned as a replacement for two aging elementary schools in old inner-city Cincinnati, the project changed to become a Montessori school in Cincinnati's Alternative School Program. It remains a part of the neighborhood school plan, serving grades K through 6. Neighborhood participation was a key element in what the architects describe as a rich design experience.

As in many inner-city neighborhoods, the school faced serious security problems owing to vandalism, drugs, and vagrant loitering. It could not be a school "open to the community, yet it absolutely could not turn its back to the community," say the architects. This was resolved by orienting the school around a courtyard, used for natural light and for recess by its youngest students. Skylights and larger window areas on the safer street-facing façades supplement the court as light sources.

Project: Warren Community Elementary School, Warren, Massachusetts
Architects: Earl R. Flansburgh + Associates, Boston

Located in what is basically a farming community, the 74,000-square-foot school serves preschool through sixth grade, as well as community functions. It is conceived as "a large, simple, mass appropriate to the rural landscape," with additional smaller-scale, highly articulated elements. The whole is contained in two parts, the north-south, two-story classroom/administration element, and the east-west auditorium/gymnasium, cafeteria, instructional media center block. The latter areas are designed as community-use facilities, accessible without entry to the rest of the school.

Pilasters and angled roof support braces are meant to evoke images of the surrounding woods, and form part of the smaller-scale elements making the desired large- to small-scale transition.
While there are some other schools included here that are in urban settings, none are quite so definitively urban as Queens, New York. So program needs here differ considerably from our other examples. New York City has long had interest in certain specific facilities having a single-focus orientation not unlike the 'magnet' schools popular in the 1960s and 1970s.

The specialty of the 1034-student Townsend Harris facility is the humanities; strong programmatic emphasis was placed on the library in the high school curriculum, with all that implies in terms of computers and making the school responsive to that technology. Also stressed was the desire to achieve a prescribed program to circulation ratio of 65 percent to 35 percent. The school also includes classrooms for language, math, and history; laboratories for sciences, languages, and broadcast media; arts and music; a 500-seat auditorium, a 350-seat gymnasium, and a 350-seat cafeteria.

Unlike many of the other examples shown here, this school required no strong expression for expanded community-related functions, but the need was for maintaining "its own domain, ensuring students a harbor for their unique position within the broader environment." To achieve that in part, yet to relate to the campus fabric, forms were chosen that engage in an architectural dialogue with the campus mall and clock tower. The north entry tower, for instance, is seen as a counterpoint to the dominant college clock tower.
Flagstaff does not conform to the outsider's preconceived image of Arizona—arid, treeless expanses of terrain. The Ponderosa pine forest in which this elementary school is located, offers the proof. The 700-student, 65,000-square-foot facility is designed to save the forest growth and to incorporate the vegetation into that solution. The building plan follows the steep site contours, minimizing cut and fill needs.

Perceptions of the school by students, faculty, and the public were intended to be "clear and logical, but also dramatic and inviting," according to the architects. The main entrance to the school is on the upper level, to accommodate the sloping site. The experience is enhanced by framed views of the forest at nodes along the two-level circulation "street" or spine of the plan, along which all school functions and classrooms are located. The gym is on axis with the entry, and can be reached using the central stair at the entry. A continuous south-facing clerestory along the spine also serves as a passive solar heat source in winter, which can be severe in Flagstaff.

Both the gym and library are meant to serve much public use, being easily accessible from the entry. The library, entered from the upper level, has its own internal octagonal stair leading down to the main reading area. The library and its cupola, the gym, the elevator/belltower, and the connecting outdoor stair contribute to the effect of an Italian piazzetta, seen by the architects as the heart of the school, overlooking the soccer fields.

A large expanse of metal roof is green, as is the metal building trim, merging with the forest colors. Buff brick is accented with a pattern of lighter brick at the classroom windows, the belltower, and the gym.
At 8.5 acres, the site is small for its assigned use for a 500-student school. To complicate matters, there are wetlands, stream corridors, a steep slope, and a forest of large oak and fir trees. The site, treasured and held for over 20 years by the school district, is in a neighborhood of large new residences. The land’s natural beauty was a prime concern. As with some of the other examples here, the school was designed for the least interference with the site, both in its plan shape and its two-story configuration. Positioned on the most sloping part of the land, the facility preserves the flatter parts for playing fields and parking. The southeastern part of the land, with its wetlands and trees, is preserved for the school, providing mature landscape, views, solar protection, and a resource for science lessons.

Similar to the example on the facing page, the building is arranged along an indoor street/spine that is clerestoried; and it is widened or narrowed as student traffic demands. Open to the main entrance, the centrally placed library overlooks wooded wetlands. Program elements cluster along the spine to keep the scale of the overall facility in keeping with the neighborhood and the students. Groupings of 4 to 6 classrooms around common areas enhance student/faculty team efforts. Gym/kitchen/community zones are semi-detached to allow maximum control and security and easy after-hours community use. A canopy/tower shelters students and provides an appropriate civic marker. On the uphill side, the one-story elements respect the adjacent neighborhood and provide an intimate, child-scaled entrance. Brick and painted metal panels on the exterior also complement the colors in the residential area, as well as providing durable, low-maintenance surfaces.
Confident Times Revisited

Rising along the Chicago River, a 36-story tower by Perkins & Will recalls the clarity and optimism of the early Modern Movement.

The office towers recently added to the Chicago Loop present a selection of images from the history of the building type: the early and late Chicago School, the Classical Revival, the vertically striated Modernistic. Confronting these unsettling stylistic exercises from a position across the Chicago River, the new Morton International Building by Perkins & Will displays a revived enthusiasm for the plainly presented curtain wall. It recalls a time when architects were first exploring the textural and compositional possibilities of glass and panels set into metal grids. But neither the surface patterns here nor the building forms have the Miesian restraint of the 1950s curtain-walled slabs.

Perkins & Will design principal Ralph Johnson produces work that Miesians would see as impure—more Modernistic than orthodox Modern. His additive building compositions, explained through characteristic exploded axonometrics (page 96), combine strictly functional volumes with frankly symbolic ones. In his almost simultaneous Orland Park Village Center (P/A, October 1990, pp. 66–77), the result was visibly comparable to the work of the early Dutch Modernist Willem Dudok, whom Johnson particularly admires. In this case, the first model that comes to mind is Howe & Lescaze’s landmark PSFS Building of 1931. Johnson cites the way the PSFS designers developed an assemblage of volumes, some expressing internal functions, some making site-specific adaptations. They also used a variety of wall treatments, as Johnson does here, to differentiate the building’s functional parts.

In discussing the design of the Morton building, Johnson speaks of the “generic” office blocks at its core, which were then “layered” with “urban pieces” to form the whole. On his exploded axonometric the high-rise portion, for instance, starts with a basic slab, to which a “glazed bay element” and a slender clocktower are added on the river side, thus acknowledging the river and “asymmetrically weighting” the building toward it. As the plans show, the interior of these additive pieces is just more square footage of office space, albeit space with particularly dramatic views.

The functional demands behind the building massing were by no means simple to begin with. On a site where railroad lines obstruct construction, the developer was meeting the program needs of Illinois Bell for a computer center with six floors of 46,200 square feet each, covering (continued on page 98)
A view from the south (4) shows the exposed steel trusses from which the west half of the mid-rise portion (left in photo) is suspended over active railroad tracks that could not be interrupted by piers. Assembled from simple rolled sections, the trusses echo those of the river's drawbridges. At first glance, these trusses appear to be symmetrical, despite their totally unbalanced loading, but closer inspection reveals differing component thicknesses.

Conceptually, the building is composed of additive volumes (exploded axonometric, right) with subtly varying curtain wall treatments that stress horizontals or verticals. At the top of one of these volumes, overlooking the river, is a loggia (5) that recalls Stone and Goodwin's members' terrace on the Museum of Modern Art in New York. The main entrance, just off Randolph Street on the river side, is marked with a bold but minimal canopy at the base of the attenuated clocktower projection. Although the architects would have liked to use fine exposed metal in the curtain wall, the “stick” elements are actually gray-painted metal, with stainless steel accents at the main entrance and lobby.
The lobby of Morton International makes a virtue of the need to go up one floor to the elevators. (The track below forced elevator pits up to street level.) A graceful stair (7) offers an appealing alternative — at least coming down — to the escalator (8), which in this instance is well integrated in both form and sleek materials with the lobby as a whole. Just inside the main door (9) the visitor is enveloped in gray marble walls and terrazzo floors, articulated with stainless steel and gray painted metal, with light dispersed by baffles in the manner of 1930s Modernism. In photos of this neutral dark/light composition only the green of the plants makes it clear that color film was used.

(continued from page 94)

virtually the whole site, topped by 23 rental floors of 23,400 square feet. Illinois Bell has its own lobby, facing Randolph Street to the north, and the tower floors are reached through the main lobby, at the northeast corner of the site. For pedestrians coming from the commuter stations just to the south, a long colonnade leads from Washington Street to these lobbies. The rail lines under the building do not allow for elevator pits below street level, so elevators start from the mezzanines of two-level lobbies; below-street parking is also ruled out, so four levels of garage have been inserted above the tall lobbies.

The varied exterior treatment of Johnson’s different “pieces” is based in part on differing functional demands: The parking levels have low ceiling heights, while the extensive computer center above requires extra height for raised floors; only in the tower are floor-to-floor heights typical. Further visual distinctions have been made using granite spandrel panels of three different shades of gray, or by leaving out granite — as on the “glazed bay element” running up the river side of the tower — and by variously emphasizing vertical or horizontal elements in the wall.

Structural Puzzle

The array of railroad tracks on this site had discouraged any previous development. Even this building’s developers originally expected an area 50’ x 150’ at the southwest corner of the property to be left vacant, since no piers could be sunk through its tracks. But the engineers found a way to meet the computer center’s floor area needs by suspending 12 floors over this area from a rooftop truss, which is cantilevered from the east portion of the structure (page 96).

As Ralph Johnson points out, however, the framing of this building would be extremely complex even without this extraordinary cantilever. Even where caissons could be sunk between the railroad tracks, their placement could in no way conform to the bays of the building above. As a result, the lower portions of the structure conceal massive transfer girders and a six-story-high rigid frame that mediate between the bay dimensions of the office floors, the ramp-riddled parking levels, and the available gaps in the track network. Structurally, this rather buoyant-looking tower is a tour de force.

John Morris Dixon
The Real Meaning of Architecture

Highlights from four works by Christopher Alexander, Gary Black, and Hajo Neis of the Center for Environmental Structure eloquently vindicate the firm’s integrated, empirical approach to design and construction.
Since at least the Middle Ages, religious and other charitable organizations have taken the lead in giving shelter to the homeless. And Christopher Alexander seems to acknowledge that in his design of the Julian Street Inn, which recalls the form and materials of a medieval cloister. The building turns monastically inward, with its perimeter dormitory structure wrapping around a central dining hall and service wing and a series of intimate colonnaded courtyards.

Alexander and his collaborators of the Center for Environmental Structure have managed to capture the quality and feeling of a traditional place of charity not through any specific stylistic reference, but through the building’s form, materials, and scale. That is due, in large part, to the process Alexander and his colleagues employ: a design-build method in which many decisions about form and construction are decided on site with the involvement of the owners and users. His is not a seamless process: The person who runs the mission talks about the painful delays incurred while Alexander worked to get the concrete trusses in the dining hall just right. But Alexander’s approach presents a fundamental challenge to us and our style-obsessed age. It suggests that a beautiful form can come about only through a process that is meaningful to people. It also implies that certain types of processes, regardless of when they occur or who does them, can lead to certain types of forms. The Julian Street shelter does not just look like a medieval cloister. It is like a medieval cloister in the best sense—the product of faith, hope, and charity.

Thomas Fisher

Designed and built by Christopher Alexander, Gary Black, Eleni Coronvül, Carl Lindberg, Kleoniki Tsetroponlou, James Maguire; Oliver Construction, general contracting.
The scope and complexity of the Eishin campus have provided a unique testing ground for the empirical design/build methods of the Center for Environmental Structure, which previously had been employed only on smaller projects. With some 30 buildings completed since work began in 1982, at a cost of about $13 million, Eishin is the first Japanese institution to combine a high school and college within the same campus (P/A, June 1986, p. 92). The first step in its planning was to derive a "pattern language," an 80-page document worked out with the users, as a physical, social, and cultural "blueprint" for the entire project. Next, the various buildings were staked out on the 300 m by 300 m site, using hundreds of six-foot flags; the knowledge thus garnered, combined with input from users, was transferred daily to a 1:100 model. After studying the site for close to a year, Christopher Alexander and his collaborators set about compiling a palette of materials, based on their strong sense of local conditions. A 10' x 14' mockup took shape as a "statistical," or proportional profile of the complex mix of concrete, wood, stone, and plaster in predominant hues of black, white, green, and gray that best suited the compound's physical and emotional landscape, and the light's "odd mixture of softness and harshness." By then, a good deal of information about each building had accrued, Alexander explains. The main work remained, "to make a beautiful structure" for each in keeping with its nature.

Designed, built, and managed by Christopher Alexander, Hajo Neis, Gary Black, Ingrid King, Artemis Anninos, Eleni Coromvli, Hiro Nakano, with Fujita Construction Company.
VERANDAH OFF LIVING ROOM

STAIR DESCENDING FROM ENTRANCE

ARTIST'S STUDIO
Residence, Lake Berryessa, California

Built on a heavily wooded mountainside, this 1600-square-foot home for a teacher and an artist steps down the slope with a series of volumes connected by stairs. The building masses themselves are symmetrical forms, which are placed in a syncopated way in response to particular characteristics of the site.

The number and relation of the house's various components were derived from the "pattern language work," or intensive discussion with the clients, that is an inalienable part of CES's design process. The next step was to "stake out" the building on the land. In this case, the procedure was made all the more crucial by unique site constraints. With only rough sketches to work from, the CES construction crew went up early on to walk about the site, locating immovable natural obstacles such as rocks and trees, and accordingly adapting and placing the formwork for the exterior perimeter of the buildings. Only after this was done could the house be drawn up in a conventional manner.

Other major considerations for the disposition of the house's parts were light conditions and views, as they changed every three or four feet. "That plan is not a style," Alexander asserts. "It came about because of a fundamental process of relating the building to the land."

The climate in the area, some 80 miles north of San Francisco, can be very hot, and so the building needed to be of cementitious materials. The construction technique, one pioneered by CES, employed a 6x6 post and beam system for the vertical structure, with a 2-inch concrete shell forming the shear structure.

Designed and built by Christopher Alexander, Gary Black, Artemis Anninou, Bob Theis, Carl Lindberg, Seth Wachtel.
This house for a couple occupies a tiny knoll in the midst of acres of steep, forested terrain on an island in Puget Sound. Culminating a long and complex series of probing conversations with the clients, the architects of CES realized that the physical form suggested by the couple's life together was that of a building whose rooms were arranged "like a necklace of beads." At the same time, the CES crew spent a good deal of time on the site trying to pinpoint the most suitable disposition of the elongated volume. In this case, "construction" began virtually from the first visit: The knoll was so heavily wooded that it was necessary to cut some trees just to be able to grasp the lay of the land—a sensitive, non-reversible operation Alexander likens to "brain surgery."

From the knowledge that the house was essentially a long, thin volume stretching southward on the site, the plan took shape as a progression of spaces, with the entrance at one end, leading through a series of secondary rooms to the kitchen and family room at the center of the chain. The living room occupies the most protected, light-washed, southern end. The organization of the second floor similarly locates the "very precious" library and master bedroom at the extremities of the house. As Alexander puts it, "a deep understanding of form leads you to an understanding of function." - Ziva Freiman

Designed and built by Christopher Alexander, Gary Black, Kurt Brown, Jim Dow, Bryan Almquist.
Perspectives: Manifesto 1991

Christopher Alexander opens the door to a new and entirely different theory – and practice – of architecture.

Collapse of the Present Mainstream Theory of Architecture

In scientific terms, we may broadly describe the present view of architecture, which has held sway in one form or another since 1920, as “the mainstream theory of architecture.”

During the last 15 years, a wide variety of attacks have been made on this theory, and the theory has been shown to be seriously defective in many important areas. It is now reasonable to say that the mainstream theory is on the verge of collapse. In order to understand this fact, it is merely necessary to make a catalog of the broad issues that the theory fails to address:

1. The definition of quality that is used as the basis for judgment according to “the tiny fraction of the buildings that are built.”
2. The theory does not deal with ecological problems.
3. The theory does not deal with or incorporate a wide range of facts now known about the relation between human behavior and the environment.
4. The theory does not deal with money or cost in a reasonable fashion.
5. The theory has no substantive or clear empirical relationship with human feeling.
6. The theory has failed to give any general coherent explanation of the values necessary for building well.
7. The theory has not produced buildings that ordinary people like. On the contrary, it has mainly produced buildings that people see as ugly and unsuitable.
8. The theory does not deal with or incorporate a wide range of facts now known about the relation between human behavior and the environment.
9. The theory has failed to give any general coherent explanation of the values necessary for building well.
10. The theory has not produced buildings that ordinary people like. On the contrary, it has mainly produced buildings that people see as ugly and unsuitable.
11. The theory has not provided any moral leadership that can establish the value inherent in the built world.

Yet, in spite of these failures, which signal the slow collapse of the mainstream theory, the theory is still taught in most schools of architecture, and is, indeed, not only taught in many schools, but remains as the core of the curriculum.

As in the situation near the collapse of any paradigm, many younger professionals are more and more nervous about the possibility that the whole theory is nonsense.

In an effort to provide architects with an entirely different model, I have agreed to make a statement about a new way of thinking about these things.

In December 1989, P/A Executive Editor Thomas Fisher wrote a highly negative Editorial about Prince Charles. I got a phone call from a London newspaper asking for my comment on his editorial. I responded with an angry letter that was published. The letter directly questioned and criticized Tom Fisher, perhaps too personally. A few hours later, I thought that Tom deserved a copy of what I had written. So, out of politeness more than expectation, I sent it to him, never really expecting that P/A would publish it. To my astonishment, a few days later he called to tell me that he wanted to print the letter. I must say that moved me greatly. I never imagined Tom would have the courage to print something that attacked him personally.

I felt that the possibility of real dialogue about the meaning of architecture had begun again.

A few months later Ziva Freiman came to see me, with the request that I write a longer piece expanding on the ideas expressed in that letter [P/A, April 1990, p. 11]. We met in the library of my house.

A Conversation with Ziva Freiman

She asks me what I am thinking.

I sit in my library, trying to answer. Gary and Randy and I have just been working on some blocks of concrete we are making for a building in the Sierras. I think about these blocks. We have been building forms; pouring the concrete, mixing color, cutting chases in the concrete to form stones: these massive stones are the base of the building. There are incisions in the stone, into which thin slivers of marble will be inserted.

The concrete is massive. You feel its weight. Not only when you lift it – each stone weighs about 200 pounds – but you feel it in your heart. There is an emotional gravity.

It is wonderful just thinking about these stones. Getting ready to build with them. Thinking about the building that will come from these stones.

What is this – this activity? It is the weight of a heavy thing, nothing like the thing we call architecture now. Something entirely different from...
It is nervous work thinking about that. What if the answer leads to some impossible place? Or is it better, safer, not to think about these things?

A few months ago I saw a remarkable film on PBS entitled Letter to the Next Generation, made by Jim Klein, who described himself as a 1960s radical, and made a film of a series of conversations with students from Ohio State University. Many of the students are expressing the materialism of the 1980s. They explain how they are not interested in deeper questions or foundations - the main thing they want is to succeed, to make sure they have a job when they leave the university. They are nice students, quite unabashed. The film-maker isn’t heavy.

"There are thousands of architects who have given their lives to architecture, who want to make something beautiful, and who are beginning to realize that the present organization of the profession makes it all but impossible."

He doesn’t moralize. Throughout the film, he talks to the students, gently asking questions, saying how the kinds of things they are talking about don’t quite make sense to him; that he wants to know more about bigger questions, not so much about jobs. Gradually, you see the students themselves begin to wonder a little.

By the end of the film, real doubt has been created. One feels that things are going to change, that it is impossible that they can continue on such a silly level. That money will rise up again, question themselves, look for something deeper. But it is so gently done. That is what I would like to get in this piece for P/A - something gentle in tone, very gentle - but able to bring people, wondering, to their senses. A whisper that will make people doubt the self-satisfied images that have been living in them and that have been published continuously in this magazine and in almost all architecture magazines during the last two or three decades. A new life for architecture; a new life for architects.

"Tell me, so I know what you are hoping for: What is the name of the piece?" I ask Ziva. "Something about morality." Finally, after a long silence she adds, "Perhaps something biblical." Another silence. "A righteous man."

I am astonished. I didn’t expect this. Does it mean that my effort, after all these years, is beginning to be heard? Can it be that even the people who have said for many years that what I want to do in architecture is impossible - can it be that they, too, are so confused that they are now beginning to doubt, beginning to wonder if after all there may be a shred of truth in what I say?

I have been isolated for a long time. It is not my choice. And, I think, it has not been the choice of the professionals either; nor of the magazines. Then why has it happened?

It is because of this thing, the difference in paradigm. That isn’t just an easy phrase, a cute gimmick. It is true. What I do is so different, in every pore, that it is almost impossible to describe it from the inside of the profession as it exists today in the words the profession uses.

But this isolation is not good for the profession. And it is not good for me.

I want to talk more about the big cast blocks we have been making. They are like massive stones, 24" by 18" by 6". They will be cast on site and then laid up, one or two courses at a time, then tied together with reinforced concrete poured behind. Each can be shaped for entrances, arches, windows, sills, ornaments.

It is something, doing this, like digging a ditch. There is a connection to reality which carries through every phase, the walking about on the site, talking to the family, preparing for construction, talking to the workmen, thinking about the ornament, working through the structure. It is all one thing, on a level of physical reality that makes it something entirely different, worthwhile, you feel like a person, living, breathing, swimming; sex is engaged.
Making these stones, building with them, is as different from making working drawings for a contractor as eating real food is different from looking at pictures of food.

This is the real moral force of what it means to build. But unfortunately, the process of building, as we know it today, is something very different. Magazines like P/A, and architects, and developers' money have cooperated to create an entirely different picture of what it means to build.

I have taken it as my task to shake this situation: to make it clear what it really means to build; to free architects from the mental picture that has been constructed for them.

That is the core of the whole thing. There are thousands of architects who have given their lives to architecture, who want to make something beautiful, and who are beginning to realize that the present organization of the profession makes it all but impossible.

What it comes down to, in the end, is practical. How can a person actually live and work in the way I have been describing? Is it practical to make buildings in the ways I have shown, is it a viable model for thousands of architects all over the country?

Can the attitudes and the ways of building I have developed be used for large public buildings? Can they be used for large housing developments? Office furniture and office interiors?

The feeling of desperation that architects feel is that the contract, the whole system of how architecture is "supposed" to be done, seems efficient, sophisticated, worldly — when actually it is not. The status of the profession is highly deceptive. It seems elegant, integral, self-sustaining, worked out as a coherent body of thought, practice, and action. But it is in a state of collapse, its authority undermined. Even those architects who feel sympathetic to what I say do not see a way out of this ball of string.

But to do what I have done involves risks and changes that are very great. In the early 1970s I taught myself to become a licensed general contractor. I had little more experience of it than any other architects trained in architecture school, but I knew that building meant nothing unless one actually did the building work itself.

The essence of the thing is to make the building — large or small.

I go back to the problem of how to do it. At the bottom of the whole thing is a system of understanding the world, what space and matter are, which includes the idea of soul.

The trouble is that within a mechanistic view of space and matter — the one considered normal by all right-thinking people today — architecture must inevitably become shallow and trivial.

In The Nature of Order (a 1000-page book I have been writing for the last 20 years, which is still not finished but is circulated now, in many versions, in many parts of the world) I have tried to explore these questions, and I have found a picture of space and matter that makes sense of things, that shows what it means for spirit to occur in something, that shows how feeling is inevitably integrated in design — and how matter itself, understood as a Godlike substance, shows us what we have to do when we try to bring life into a doorknob, or a window, or a whole building project. It becomes clear, because it comes from an entirely different way of looking at the world.

This way is connected to ecology and respect for nature. But so far, the ecological revolution is still mechanistic in its fundamental way of looking at the world, and so still creates an arbitrariness that we see in the kinds of "ecological" buildings which have become associated with the name.

The real thing is deeper, and more serious. It is also more human. The respect for living things is not just a respect for plants, and rivers, and vanishing species... It is a respect for ourselves, for our own vulnerable, pathetic, and marvelous heart. It is an architecture, then, that comes out of the voice of that heart — not

some sham, not some money scheme, but something that pleases me, in my own heart, and you in yours — so that we never have to say: "Let me explain it to you. You don't understand..." and then go into the artificial rap, the falsehoods that make up our architecture now.

A Conversation with Kenneth Frampton

A year ago I showed pictures of the Eishin campus near Tokyo (p. 103) at the Cooper Union in New York where Herzberger and I were both talking on the same evening. Ken Frampton was in the audience, and made some very sympathetic statements with respect to our two very different points of view. But later, in private, Frampton told me: "The best part [of Eishin] is the lake — isn't it — the buildings are not really the important part." The subtle message, very politely put, was that the buildings are too romantic, too traditional — how could they possibly be serious architecture — so he dismissed it by talking about something else.

But it is just this emotionally cynical and subtle, offhand way of trying to put down or de-
mean things of beauty on the grounds that it "is not really architecture," which is the craziest and most destructive part of modern architecture of the last 50 years. Here we go right to the core of the giant scam, the invented series of concepts about space and volume and style, which has erected an imaginary set of criteria as if they were a "truth" - but a so-called truth which is entirely fictitious, which is not connected to real human feelings, but only to the artificially constructed aesthetic rules of a design intelligentsia.

The subtle put-down, and the unspoken rap about nothing real, is the catch-all method that both Modern and Post-Modern architecture have been using to propagate their ideas.

I am sure Ken Frampton is a serious person. I do not believe he did this willfully, and he is perhaps one of the present-day theorists who is willing to go furthest towards the possibility that something might be seriously wrong. But even he, for all his insight, was trapped in this net of lies. (Yes, unfortunately, from an intellectual point of view, they are just lies - because they intentionally distort the landscape of our feelings as they actually occur, and replace them with something false).

That is what we are fighting. The loss of innocence that makes you elevate garbage to something worthwhile, trying to puff yourself up to be an "Architect," and refusing simple and beautiful things that have substance or feeling in them.

But what does "beautiful" mean? It means that the thing makes me feel joyous, more rooted in the world, more whole as a person.

Of course, there is nothing harder in the world than making a building that has this quality. I fail ten times in every moment I try to do it, before I succeed. But it is unbelievably worthwhile. While I do succeed, and even while I am failing, I feel happy.

A Practical Program of Action

I will try to sketch out the characteristics of an entirely new way of looking at architecture, which solves the problems that beset the mainstream theory, and which holds the possibility of resolving the moral and practical dilemmas that exist in present mainstream practice. The most important considerations are these:

- Architects must see themselves as custodians of harmony in the world. This care for harmony cannot be abused, must not go out to hire, and should be aimed only towards increase in life. This ethic must be just as applicable to big buildings and large developments as it is to small projects.

- The quality of harmony is very hard to attain. But by group work it can be attained. It is not a matter of opinion, nor of taste: it is an objective reality.

- The wholesomeness can only be created by a process in which design and construction are unified, and in which the material of the building, the way it is made - is itself considered part of that harmony. This requires a process in which we understand the key process as a process of making, not a process of designing. The money, process, time, craft, and art are all interwoven. Decoration comes out of the process of making. Structure and solid materials are essential to it.

- Such materials and processes include concrete in its various forms as a plastic material that can be shaped; tile; terrazzo; marble insets into concrete; relief work; casting; formwork; blocks; wood for finishing; plaster; paint not chosen according to a formula, but mixed on site.

- The construction contract must be re-organized so that work can change throughout the building process while cost is still controlled. This is central to the process. My colleagues and I have invented and developed various versions of a contract that accomplishes this aim. The idea of change orders is removed, the permit drawings are understood as a rough idea of the building that is to be built, not as an accurate prediction of the finished product, and the client's need for security about matters of money is guaranteed by the form of control embodied in the contract. Subcontracts are bid to a fixed sum, with variable specifications, so that budget is met no matter what. The architect retains the right to move items around within the budget at his discretion while construction is going on, and to change design and specs as needed. Quality of building depends on a balance of roughly made and finely made items in an overall harmony dictated by the budget. The guarantee of a good result under these fluctuating conditions depends on the architect's integrity and professional skill.

- This contractual process can and must be used for large buildings as well as small. These processes have become familiar in small-scale design build operations such as houses built by carpenters. But the essence of the new view of architecture is a reorganization of large-job conditions, in which millions
of dollars of construction in large building complexes can be managed in a similar fashion. In this situation, we may then once again see even an enormous project as a work of love and craft. This is not sentimental claptrap, but a practical objective, which directly governs every day-to-day process.

A Hippocratic Oath for Architects

Since the moral purpose of our work as architects and builders has become so unclear I have tried, for the purposes of this manifesto, to capture the essential points in a kind of Hippocratic oath, principles of action that any reasonable architect might be willing to adopt.

1. No matter how big the clients and nearby community — while it is being formed.
2. The involvement of users in the process is necessary — and widespread.
3. The architect undertakes to work directly with subcontractors, and to take direct control over their activities.
4. The architect assumes leadership and artist — but without pride. He or she retains the right to refuse user requests, not based on the architect's ego, but in cases where his (her) grasp of the problem is demonstrably greater.
5. Every architect must be able to work as an engineer at a modest level. Engineering is part of architecture, and building is conceived while being engineered.
6. The architect makes a profound commitment to find out — and to perceive — what the life of the site requires, and then to do just that thing that brings most life to the surroundings. Thus, to make each building small in importance in ordinary terms, that is the extent of this life, judged for some ceramic leopards we put in the floor of a house we built in Berkeley. When I was done with the template, I painted it and gave it to my children.

"Architects must see themselves as custodians of harmony in the world. This care for harmony cannot be abused, must not go out to hire, and should be aimed only towards increase in life. This ethic must be just as applicable to big buildings and large developments as it is to small projects."

building is, the architect does some craft work on every building, with his (or her) own hands.
2. The architect controls the flow of money completely: both its distribution at the outset, and the ongoing flow throughout the process.
3. The architect assumes legal responsibility for the actual construction.
4. The architect ensures that the building is designed on the site and is checked and understood by all relevant people —
5. The involvement of users in the process is necessary — and widespread.
6. The architect undertakes to work directly with subcontractors, and to take direct control over their activities.
7. The architect is leader and artist — but without pride. He or she retains the right to refuse user requests, not based on the architect's ego, but in cases where his (her) grasp of the problem is demonstrably greater.
8. Every architect must be able to work as an engineer at a modest level. Engineering is part of architecture, and building is conceived while being engineered.
9. The architect makes a profound commitment to find out — and to perceive — what the life of the site requires, and then to do just that thing that brings most life to the surroundings. Thus, to make each building small in importance in ordinary terms, that is the extent of this life, judged for some ceramic leopards we put in the floor of a house we built in Berkeley. When I was done with the template, I painted it and gave it to my children.

A panel of hand-painted tiles made in our workshops. Getting the right glazes took months of experiments. I carved this leopard when I was making templates for a mold for some ceramic leopards we put in the floor of a house we built in Berkeley. When I was done with the template, I painted it and gave it to my children.

Christopher Alexander

The photos included in this manifesto show works built by Christopher Alexander and his colleagues Gary Black, Hajo Neis, Ingrid King, Randy Schmidt, Kleoniki Tsotropoulou, Carl Lindberg, Artemis Anninou, Eleni Coromvli, Miyoko Tatsui, Karen Stanton, Harissos Tsiringas, Annie Der Bedrossian.
Projects: An Urbane Prospectus for Montreal

Diverse perspectives on public space emerge in three prize-winning redevelopment schemes.

The City of Montreal recently held an international "ideas" competition for the design of an important but poorly developed area in its center. The first-prize winner, Steven Peterson of Peterson/Littenberg Architects in New York, submitted a proposal that takes as its departure point the public square; second-prize winners Martin Liehebber of Toronto and Hiroshi Hara of Tokyo both took the opposite approach, with submissions dominated by powerful conglomerate structures. The contrasting approaches as well as the organization of the competition provide interesting lessons for the saving of our contemporary cities.

Over the last couple of decades, the site designated for the competition suffered badly: Montreal perpetrated sins upon its own flesh. The site, part of the city's Financial District, forms a link between the retail core of the city and the historic waterfront district. It has a few important properties, such as the Nervi-designed Stock Exchange tower and a historic Bank of Canada building. The area is also the primary southern entrance to Montreal.

In the past the city gave developers little guidance for the area; it mandated few design controls, and allowed traffic engineers to scar it deeply. On the area's east border, a wide asphalt surface lies open, patiently accepting the onslaught of traffic entering the city from the aboveground highways to the south. And across the middle of the site, east to west, a partially-covered underground highway has left an unattractive scar on a potentially valuable spot.

To stop the district's erosion and to maximize its good qualities, the city decided to seek a vision before it was too late. Taking on major local develop-
ers as partners — who were only too happy to conform to imposed limits if they would enhance property values — the city came up with a marketable theme for the area and organized a design competition to give it shape. Montreal designated the site “The International City.” To attract additional users to a region with the lowest birth rate in the Western world, the leaders decided to promote the city as a seat for international organizations. As part of the design, the 94 entrants were expected to use the air rights over the expressway to reconstitute the urban fabric. They were to preserve specified landmark buildings and to integrate with them an International Conference Center to provide offices and meeting facilities for international organizations.

The Premiated Schemes

Peterson/Littenberg Architects, one of five winners in the 1980 Les Halles site competition, and designers of other large urban projects, (including New York’s Clinton Community Master Plan, P/A Award, Jan. 1990, p. 110) proposed a scheme that carves out formal parks, squares, and boulevards at key locations throughout the district. They maintain historic buildings while retaining or increasing the buildable potential of every developer’s property.

The two second-prize winners took a less holistic approach to the redesign of the site and its relationships with the surrounding city. Liefhebber and Hara prescribed large buildings and Modernist plazas to be built over the painful scar — the expressway — at the center. The megastructure designed by Hara is especially beautiful, and would provide, graphically, a striking marketing tool for the city. But instead of mending the urban parts, it would provide yet another wall to divide it. The Liefhebber scheme has similar problems, and obscures the respective responsibilities of the public and private domains. Both schemes fail to take into account the realities of diverse real estate ownership, the need for incremental development, and the local demand for buildings with moderately-sized floorplates.
Architecturally, the first-place scheme is not as strong as Hara's second-place design: Peterson's buildings are unexciting, and his strategy of surrounding existing towers with low masses to provide a street wall (shown in the axonometric of the cruciform "Place du Canada") will be difficult to accomplish gracefully. Still, Peterson demonstrates an important point: that new buildings can – indeed should – be built over time by different architects, as long as height and materials guidelines are respected.

Peterson's concept of the city bespeaks his acquaintance with Colin Rowe at Cornell as well as his own 20 years of experience. Peterson believes that the role of the public garden is dominant in the city. But his garden is different from Olmsted's: It is garden-as-structure, a public room around which buildings can be assembled over time. At the west edge of the site, the major entrance to the city, Peterson sets off a new formal park with a wall of buildings. Here he proposes broader setbacks for new construction and a taller building-height limit, thereby defining a bolder city façade. To give form to the gardens in his plan, Peterson collages examples from famous architects and cities – the Spanish Steps of Rome, Parisian squares, and pieces from Serlio – adapted to Montreal. His urban gardens link residential and commercial districts that surround the site.

The City of Montreal has signed a contract with Peterson/Littenberg to develop these ideas further. Certain details – bridging over a major street and the location of the International Conference Center – may be problematic, but the basic design rings a positive note as a method to remake the city.

Susan Doubilet

The author, a former Senior Editor of P/A, works as a freelance journalist and architect in New Jersey. She is a native of Montreal and a graduate of McGill University's School of Architecture.

Despite an isolated location in a harsh climate, a difficult language which no one but natives speaks, and an obsessively introspective psyche, Finland exerts an influence on architecture far out of proportion to its size and wealth. Architects like Alvar Aalto and Elie! Saarinen are universally admired, and their iconic reputations seem unassailably secure. Whether or not the idealized Finnish architectural landscape is as pure or Romantic as outsiders believe it to be, the appearance of new books on the revered Saarinen and the controversial Reima Pietilä are significant publishing events.

The basic outline of Saarinen’s career – the National Romanticism of the Finnish Pavilion at the 1900 Paris World’s Fair, the Helsinki Railroad Station, the Chicago Tribune competition, and the subsequent years at Cranbrook – is generally well known. However, Saarinen revised history slightly by destroying many of his drawings, especially his early work. Moreover, he was afforded a final editor’s prerogative in Albert Christ-Janer’s “definitive” 1948 monograph.

So, to establish a more complete record the Museum of Finnish Architecture unleashed a small army of scholars and architects to seek out all possible sources of Saarinen material. The result, Elie Saarinen: Projects 1896–1923, has become the standard reference on the architect’s pre-American work – an incredible resource and history that reaffirms the greatness of the grand old man of Finnish architecture.

Marika Hausen’s thorough study of Saarinen’s architecture provides a detailed biography and a chronicle of his transformation from self-conscious nationalist to architectural statesman. The late Kirmo Mikkola discusses Saarinen as town planner. Beyond the plans for Canberra, Chicago, Helsinki, and Detroit, Mikkola explores the background and sources of Saarinen’s planning philosophy, his admiration for both Haussmann and Sitte, as well as his crucial friendship with Ebenezer Howard.

Anna-Lisa Amberg tackles Saarinen’s “non-architectural” oeuvre along with an analysis of ten key interiors. Here are his paintings, tapestries, furniture, ink wells, and postage stamps (the first for the new nation), not to mention designs for banknotes and the Finnish flag. Together they demonstrate the range and genius of this Nordic combination of Morris, Wright, and Gropius. In keeping with the book’s encyclopedic nature, every facet of each object is listed – material, finish, manufacturer, and so on.

Finally, it is Tytti Valto’s catalogue raisonné of Saarinen’s architecture and planning that rounds out this stunning monument in the literature of Modern architecture. Virtually every work (including many lost or heretofore unknown) comes with information on clients, planning period and construction dates, reviews, drawings, and sources. (continued on page 148)
Throughout history, napkins have been one of the great creative surfaces to rough out and present an idea. They're convenient and easy to use, but a napkin can't easily show three dimensions, different angles, or full color and real shadows.

That's why Alias, the world leader in 3D software brings you Upfront™ The first 3D conceptual drawing tool available for Microsoft Windows™ and the Apple Macintosh™

Upfront is remarkable in its simplicity and power. It enables architects, space planners, facility planners, set designers, interior designers, landscape architects — in fact anyone whose job demands they draw in three dimensions — to work with form, light and color directly in 3D perspective. With Upfront you spontaneously create and interact with space and form. Experiment with concepts in countless variations. Experience them at different angles, in full color, even cast accurate shadows for any time, day or location in the world. And when the idea is realized you can transfer it to other software packages such as AutoCAD® for the creation of design development and working drawings. Upfront, a completely new idea for evaluating and communicating design concepts, from Alias Research, the world leader in 3D software. For more information contact Alias Research Style Division, 1-800-267-8697.

Upfront supports the ability to create and evaluate a model in the true perspective of an existing photograph.

Alias Research Style Division
110 Richmond Street East
Toronto, Ontario, Canada M5C 1P1

© 1991 Andrew Bordwin, NYC
The accumulation of dirt and wear over time is an age-old problem that our technology constantly strives to overcome. Introducing a triumphant ANTRON® LEGACY nylon. No single fiber can do more to resist soil and keep commercial carpets looking newer longer.

ANTRON LEGACY is protected with advanced DuraTech®, the longest-lasting soil protection treatment for carpets available today. Which is just one of many reasons ANTRON LEGACY is the only fiber you should spec for most commercial applications. It comes in over 600 styles, by far the widest range of carpet colors and textures. No fiber gives you more options. Or more flexibility.

And the look you choose is sure to last. Because ANTRON LEGACY is, above all, ANTRON nylon. With outstanding resistance to crushing and matting. With unique fiber engineering that helps carpets repel soil. With the assurance of ANTRON nylon quality, certified to meet strict performance and construction standards.

It took us more than half a century to build our legacy. We think you'll find it well worth the time. ANTRON. There is no equal.
Precast concrete construction with Lehigh White Cement offers the architect unlimited freedom for creating sophisticated contemporary designs with functional advantages and construction economies.

The infinite range of color, texture, form, shape, size and pattern achievable with architectural precast concrete or glass fiber reinforced concrete is enhanced by the materials' properties, strength, noise reduction, efficient erection and low maintenance costs.

Lehigh White Cement is a true portland cement. The raw materials are carefully selected, using only the purest limestone, and manufactured under precise, rigidly controlled conditions to assure a uniform whiteness, consistent performance, and reliable strength.

With Lehigh White Cements, the whites are the purest white, hence the colors, hues and shades are a purer color. Any imaginable color scheme on the designer's palette is achievable with the use of Lehigh White Cement.

We invite you to discover more about Lehigh White Cements, or the advantages of precast concrete construction. For additional information or to request literature, call 1-800-523-5488 and speak to one of our representatives, or write to Lehigh Portland Cement Company, P.O. Box 1882, Allentown, PA 18105.

LEHIGH WHITE CEMENT
THE DESIGNERS PALETTE

Circle No. 317 on Reader Service Card
New Products and Literature

Milan exhibitors fluctuated between playing it (too) safe, and going out on (overworked) limbs.

"Artema" collection by Paolo Piva for B&B Italia (1); "Balzac" armchair by Matthew Hilton for SCP (2); "Checkers" chest by Lyn Godley and Lloyd Schwan of Godley-Schwan (3); "Acanto" table by Enzo Mari for Zanotta (4); "Regenza 3" chair by Toni Cordero for Morphos (5); "Talo" night table by Massimo Scolari for Giorgetti (6); "Leda" chair by Angela Oudekoven-Gerscher, shown by Mohel Perdu (7).

Report from Milan

Every furniture fair is to some extent a mixed bag, where kitsch sits cheek by jowl with refinement. But the Salone del Mobile held in Milan in April was even more so than usual: Within the ambitious high-design camp itself the quality of work was spotty; in a difficult economy manufacturers seemed to be casting about for winners rather than setting their own course.

B&B Italia launched, with much fanfare, the "Artema" seating collection by Paolo Piva. It doesn't attempt to break new ground: The pieces themselves are extremely comfortable and well made.

Zanotta, meanwhile, weighed in with an array of forgettable pieces, with the exception of the Modern, highly disciplined tempered glass and steel "Acanto" and "Ginepro" tables by Enzo Mari, minimalistic designs hardly lacking in expressiveness.

At the other end of the spectrum, Toni Cordera's "New Territories" collection for Morphos, a division of Acerbis, portrayed - albeit with great skill - the "Barbarian/Post Baroque" wave now besetting much European design. Basta così!

Giorgetti, another Italian manufacturer, was betting on big architects with a wonderful collection of pieces by Fantast Massimo Scolari, Leon Krier, and Heinz Tesar.

Among the best of the international contingent were biomorphic armchairs and sofas by Nigel Coates and Matthew Hilton for SCP and the fanciful and well-crafted chests and stacked cabinets by the New York-based Godley-Schwan. Ziva Freiman
1 Waterjet Cutting System
A computer-controlled abrasive-waterjet cutting system "combines water under extremely high pressure with a fine grit, usually crushed garnet." Steam created by this combination is used as a cutting tool to slice through materials (glass, metal, plastic, stone, and other man-made materials) up to five inches thick. Patterns can be cut, holes drilled, and strip-cutting achieved. The system was used to cut names into the black granite panels of the Astronauts Memorial by Holt Hinshaw Pfau Jones (see page 78). Creative Edge Corp.
Circle 107 on reader service card

2 Component Building System
The "Novatek" component building system — for commercial or residential applications — consists of steel framing, steel trusses, and "man-liftable" steel-reinforced concrete panels. The construction process is as follows: Framing is fastened to the foundation, steel belts are fastened to each upright steel column, lightweight steel trusses are connected to the belt, and panels are bolted to the steel structure. It is compatible with all types of exterior finishes and billed as being fire, wind (up to 190 miles per hour), warp, insect, termite, and rot-resistant.
Novatek International.
Circle 108 on reader service card

3 Ceramic Tile
"Smaltoporcellana" glaze unified with a porcelain body is used to produce "Ker'Life"® ceramic tile. Suitable for interior or exterior applications, it is designed for durability and is stain, acid, and frost-resistant. "Ker'Life" is nonporous and is available with or without a polished surface. Co.em. Ceramiche Cotto Emiliano S.r.l.
Circle 109 on reader service card

(continued on page 130)
Reliability \ri-,li-e-'bil-et-e\ n.
2: The extent to which a test, or measuring procedure yields the same results on repeated trials.

We know our specifiers expect reliability not liability.

These days the stakes are too high for specifiers and consultants to rely on anything less. So don't speculate, work with a proven performer.

Sarnafil thermoplastic membranes have been putting the proof in performance for specifiers and consultants for over 25 years. Our basic, original formulation has remained unchanged... still pliable... still hot-weldable... still watertight... and always reinforced since day one.

Specifiers and consultants know our roofs will not only work today, they'll perform tomorrow.

Sarnafil defines successful roofing.
1-800-451-2504

For your next new or re-roofing project, we've made it easier than ever to work with us. Simply fill out the form below and FAX to us for immediate assistance or further information.

Sarnafil Roofing Systems: FAX 1-617-828-5365

Name: ____________________________
Company: ___________________________
Title: ___________________________

☐ Architect (in firm) ☐ Project Manager ☐ Spec-writer ☐ Engineering Firm ☐ Roofing Consultant

Address (we need street address to ship UPS):
City: __________________ State: ______ Zip: ______

Phone (____) ______

☐ Yes, please have a Sarnafil rep. call on me IMMEDIATELY for a roofing spec., that we are working on.
☐ Yes, I would like to view Sarnafil's Video on questions specifiers and owners should ask when specifying the next roofing project.
☐ Yes, I would be interested in Sarnafil Computerized Details and Specifications on floppy disk.
☐ No, We have no immediate need, but please arrange to have "specification" information forwarded to us.
Thanks to Andersen CADD-I™ technology, architects are suddenly able to express themselves like never before. With more elaborate and detailed designs, 3-D perspectives. And comprehensive window details.

You see, the Andersen CADD-I™ program is IBM PC compatible and now runs with dozens of different computer-aided design packages. What's more, parametric programs are available for use with AutoCAD® and DataCAD® software. And the DXF symbol library allows Andersen CADD-I™ to run with most other CAD packages.

Whether you use AutoCAD®, DataCAD® software, or any program which can import a DXF file, you'll find that the more complicated the project, the more you'll really appreciate the power and
EXPRESSIONS THEMSELVES. BRILLIANTLY.

speed of the Andersen CADD-1™ program.

After all, it allows you to draw, move and duplicate window elevations, plans and details. All with the use of a few simple keystrokes.

You can choose options instantly, too. Because virtually every Andersen® product and option (over 200,000 windows and patio door variations) are on 3½" or 5¼" diskettes.

To find out how you can be brilliantly expressive, call 1-800-426-7691 for the name of your Andersen commercial representative. He can qualify you for your free Andersen CADD-1™ software.
New Products and Literature

The coolest, toughest, longest burning vapour proof fixture.

Vapor Proof Light Fixture
A new compact fluorescent non-metallic fixture, available in ceiling or wall-mounted models, has a thermoplastic body, clear glass globe, and 18-watt OSRAM Dulux D/E quad tube lamp. The fixture is billed as water and vapor proof.
Canlet®
Circle 110 on reader service card

Low E Windows
“Southern Low E” is a new low emissivity window coating designed for projects in warm climates. The windows allow “46 percent” fewer infrared rays into a room, thus reducing heat infiltration and lowering air conditioning costs.
Marvin
Circle 112 on reader service card

Textured Steel Panels
“Design Wall,” “Ultramovable,” and “Ready Wall” steel panel systems are now available with a factory-applied, baked-on polyester finish.
Clestra Hauserman.
Circle 111 on reader service card

CRSI Publication Catalog
The Concrete Reinforcing Institute has announced availability of its 1991 Publication Catalog and price list. The CRSI Handbook, Manual of Standard Practice and Rebar Design, and Detailing Charts have been updated; among the new products included are four new software programs for reinforced concrete design. Forty products are described in all.
CRSI.
Circle 200 on reader service card

New Brick Paver
“Red and Flashed Red Pavers” for commercial and residential, new construction or renovation projects. The “2-to-1 Paver” is 3¾” x 7½” for pattern making in mortarless applications; the “Flashed Modular Paver” is 3½” x 7¾” and can be used with or without mortar. All pavers are 2½-inch-thick.
K F Brick.
Circle 116 on reader service card

Wood Bench
The “Rochelle Bench,” for interior or exterior applications, is constructed of 2” x 3” California hardwood members (other woods may be specified) and is available in 60-, 72-, 84-, and 96-inch lengths.
Sitecraft.
Circle 114 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and wall systems. “Transparency” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Circle 115 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and walls systems. “Transpar­encies” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Circle 115 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and walls systems. “Transpar­encies” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Circle 115 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and walls systems. “Transpar­encies” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Circle 115 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and walls systems. “Transpar­encies” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Circle 115 on reader service card

Floor Covering Tiles Catalog
Technical, installation, and maintenance information for vinyl floor tile is augmented with illustrations of available tile styles and colors in this new catalog.
Nittoh® Tile.
Circle 117 on reader service card

Ceiling and Wall Brochure
Integrated Ceilings Specialty Products includes information on design, size, texture, and colors available in the line of ceiling and walls systems. “Transpar­encies” panels (lightweight, acrylic panels used in place of glass), pipe and junction systems, luminous skylights, reflective surfaces, fabric-wrapped ceiling and walls, and acoustic linear metal are among the products in this brochure.
USG Interiors.
Circle 202 on reader service card

Laminated Paper Forms
“Contour®” laminated paper forms may be used to cover beams and other surfaces and are manufactured in 130 shapes and sizes. They may be glued, stapled, nailed, and drilled, and can be covered with laminates, veneers, paints, lacquers, and fabrics.
Laminations Corporation.
Long after everything else has gone to ruins, it's worth noting that the entrance still makes a monumental impression.

Kawneer has a complete line of aluminum entrance systems, each a timeless classic in its own right.

Kawneer
The designer's element.

Circle No. 311
The "Timeless® Series II," an acrylic-impregnated laminated wood plank flooring line, is now available in lindenwood. It is engineered with a microbevel edge and has a $\frac{3}{8}$-inch profile. PermaGrain Products.

Circle 133 on reader service card

Paving Tiles
The "Softpave" line of high-grade rubber (manufactured from reclaimed tire treads and a urethane binder) now includes a cross-hatched grid pattern. The water permeable tiles for interior or exterior applications are available in red, grey, black, green, and flecked colors. Carlisle Tire & Rubber Company.

Circle 118 on reader service card

Drinking Fountain Catalog
Indoor and outdoor drinking fountains and water coolers for commercial and institutional use are described in a new catalog. The "Hands-off" sensor-operated water coolers and "Fashion-Plates™" drinking fountain and water coolers are among the products described. Haws Drinking Faucet Company.

Circle 203 on reader service card

Wood Bench Collection
The "Kenworthy Collection" includes five 72-inch garden style benches, each with a 24-inch companion chair. All are constructed of temperate-forest hardwoods and are suitable for interior or exterior use. "Rain forest products are not used." LFI/Landscape Forms.

Circle 119 on reader service card

Roofing Systems Catalog
The 1991 Swee't's Modified Bitumen Roofing Systems Catalog includes specification and detail illustrations, a Product Information Chart, Slope Requirement Chart, Fastening Chart, and information on other roofing-related issues. Siplast.

Circle 204 on reader service card

New Wallcovering Patterns
Five new 54-inch wallcovering patterns have been added to the "Volume IV" collection for commercial interiors. All wallcoverings are treated with antimicrobials for mildew and bacteria resistance. Koroseal® Wallcoverings.

Circle 120 on reader service card
It is not merely a coincidence that all architectural treasures are remembered for their entrances.

An exceptional building deserves an exceptional entrance. Which is why Kawneer aluminum entrance systems are part of the world's most memorable architecture. They make a building extraordinary.

Kawneer
The designer's element.
Masonry Wall Systems Catalog
“Spectra-Glaze® II” factory-finished, pre-glazed concrete masonry wall systems are the subject of a new catalog. Construction details and specification data for new products and a variety of exterior and interior installation possibilities are included. United Glazed Products.
Circle 205 on reader service card

Window Catalog
This new catalog describes and illustrates the complete line of windows. “Siteline” (an aluminum, heavy commercial window with narrow sashlines and beveled edges), heavy architectural windows with side-load sash, double-hung windows with side load sash, tilt sash windows, sliders, casements, and custom colors, shapes, panelling, and accessories are among the products in the catalog. Season-all.
Circle 206 on reader service card

Simulated Concrete
“Modar®” is a modified acrylic resin “designed to replace such conventional building materials as wood, aluminum, steel, and concrete or plaster...” Applications include: façades, columns, doors, panels, ductwork, decorative trim and moldings, window frames, and baseboards. It offers “high fire retardancy, plus low smoke and low smoke toxicity.”
ICI Acrylics.
Circle 121 on reader service card

Computer Products: New Software Releases

SPARCstation Renderer
“RenderStar” for the SPARC platform is a 3D rendering package that can run in conjunction with AutoCAD so it is possible to draw with CAD and render simultaneously.
Modern Medium.
Circle 122 on reader service card

Intelligent Models
“Thumbnail 3D®” allows designers to build a conceptual 3D model of a house beginning with bubble diagrams and “reference lines” and working toward a 3D wireframe model. A roof calculation system designs roof pitches to fit.
ICG.
Circle 123 on reader service card

Visualization
“Model Vision®” is a standalone rendering and animation package that can import 3D models created with AutoCAD or any other DXF-compatible CAD package. The images can be rendered with shade and shadow, texture-mapping (photographic textures can be captured with a video camera and applied to the model), and animation.
ASG.
Circle 124 on reader service card

New CAD Releases
A new graphical user interface, baseline and coordinate dimensioning, and import/export capabilities are part of “DesignCAD 2D” Version 5.0. Version 3.0 of “DesignCAD Macintosh” (a 3D CAD package with rendering capability) is System 7.0 compatible.
American Small Business Computers.
Circle 125 on reader service card
Artistry is what transforms an entrance from a passage through a building into a passage through time.

No matter what design statement you're making, Kawneer has an aluminum entrance system to help make it immortal.

Kawneer
The designer's element.

Circle No. 313
When it comes to metal furnishings, Ultrum sets the standard... in style, in durability and in innovative space design. Ultrum offers today's most exciting site furniture collection. For our new full-color catalog, contact your Ultrum sales representative or write GameTime, Inc., P.O. Box 121, Fort Payne, AL 35967. 205/845-5610, telex 782-534, FAX 205/845-2649.
Technics-Related Products

Interior Plastic Surfaces

1 Translucent Surfaces
"DIAFOS" is a translucent high-pressure plastic laminate surface available in three thicknesses: 1.2mm solid colors, 1.6mm solids and patterns, and a self-supporting solid-surface 12mm. Because the surfaces admit light, the materials can be used for applications such as lamps and screens.
Abet Laminati.

2 Granite Patterns
The “Crystelle” collection of solid-surface materials features “granites” with opaque and translucent particulates ranging in size from tiny specks to ½” “nuggets”. “Crystelle” is available in four colors: Black Ice, Snow Drift White, Aztec Brown, and Platinum Gray. Avonite.

3 Solid Colors
14 new solid color decorative laminates for residential and commercial applications, including “Dark Laurel, Deep Purple, and Seaspray,” are available in gloss or textured finishes. The new line also includes colors in the “Nuance,” “Patina,” and “Stipple” patterns. Nevamar.

4 Solid Surface
Three new "granite" patterns have been added to the "Surell®" line of solid surfacing material: Teal, Tidal Sand, and Fire Stone. The material, which is cast and nonporous, can be sanded, routed, inlaid, sandblasted, or buffed. Formica.

(continued on page 138)
Decorative Laminates Brochure
A 61-page color brochure describes the range of available decorative laminate types as well as specification information, design details, technical information, and a directory of suppliers. Architectural Woodwork Institute.

Circle 207 on reader service card

Plastic Molding Catalogue
A variety of base, ceiling, and fluted casing decorative plastic moldings are primed and ready to finish with oil or latex paint. Outwater Plastics.

Circle 208 on reader service card

Custom Decorative Laminates
"SpecFX®" laminates can be specified with custom graphics silkscreened or inlaid on any "Pionite" solid, pattern, stone, or woodgrain laminate. More than 1,000 inks, 100 base surfaces, and 10 finishes (e.g., gloss, matte, or alligator) are available. Pioneer.

Circle 130 on reader service card

Laminate Moldings Brochure
A new 12-page color brochure features the entire "Perma-Edge®" moldings line including new "pinstriped colorthrough" laminate moldings. Wilsonart.

Circle 211 on reader service card

Solid Surfaces
Complex edge treatments can be fabricated on "Solidex" solid surfacing materials. An interlocking rib and groove connects edges to sheetstock smoothly. Guardsman.

Circle 132 on reader service card

Building Materials
Major materials suppliers as they were furnished to P/A by the architects for buildings featured this month.

Progressive Architecture 7/81
When you’re looking for wall protection, how often do you run up against something this nice?

The Boston Bumper. Clean, simple lines that work subtly and unobtrusively to protect interiors from wear and tear.

The Boston Bumper. Flexible vinyl that, unlike rigid protection systems, absorbs the shock of impact more quietly. And then returns for more.

The Boston Bumper. Custom colors as well as standard, so you’ll never have to compromise the look you want to achieve.

The Boston Bumper. The nicest way to walk the fine line between protection and decor.

The Boston Bumper.

The finest line between protection and decor.

Circle No. 307
One AutoCAD.™ Over 1,000 Applications. With over 1,000 different add-on application programs, AutoCAD is perfect for architectural and engineering firms like yours.

Put AutoCAD to use.
Hundreds of thousands of architects and engineers use AutoCAD daily producing everything from conceptual design drawings to construction documents for airports, power plants, shopping malls, homes and office buildings. AutoCAD has the solution that will work right for you.

Then choose a program.
Detail designs with add-on applications for architectural, structural, electrical, HVAC and landscaping. There’s software for civil and site work, plant design and facilities management. A number of 3D design packages help you visualize your work. Plus AutoCAD models are perfect for rendering and animation with AutoShade®2 with Autodesk RenderMan® and Autodesk 3D Studio™.

Or program your own.
You can program AutoCAD yourself to handle specialized tasks. Information from a spreadsheet can be accessed for detailing drawings. Repetitive functions can be automated. Custom templates and menus round out the package, to fit our software to your particular way of working.

AutoCAD is your safest bet.
And the smart choice. It’s easier to find trained AutoCAD professionals since it’s the world’s most widely-taught CAD software. And AutoCAD runs in a range of operating environments, protecting your investment as your computing needs grow. Get your free copy of AutoCAD’s application reference guide by calling Autodesk today at 800-445-5415.
INHERENT QUALITY

High I.Q. for TCS

TCS® terne-coated stainless steel, has graduated Summa Cum Laude as a superbly functional roofing material for educational buildings. TCS has received an "A+" in the following subjects:
- Corrosion Resistance
- Freedom from Maintenance
- Life Cycle Cost Effectiveness
- Design Freedom
- Architectural Expression
- Predictable Performance

And because TCS weathers naturally to an attractive gray color, painting is eliminated and maintenance costs are reduced—allowing the school to budget money for the more important educational areas.

Follansbee is proud of TCS' performance in the educational field and would like to send you a substantiating transcript on this outstanding metal roof product. Call us toll-free 800-624-6906.
HHPJ (continued from page 79)

The Spielberg/Lynch analogy is not trivial, for HHPJ does not pursue its goal of immediacy of meaning by posturing naively about the abilities of the fundamental and timeless truths of architecture to mount a stalwart defense against the dangers of undecidability. Rather, the firm accepts the truth of undecidability, oxymoron notwithstanding. Consequently, it operates with cunning and wile, employing the same design tactics developed by its opposition.

Mechanism's regard for the machine is not that of Modernism, which found in the machine a paradigm of its utopian aspirations. Nor is it aligned with those architectures that cite the exchanges among the machine, technology, and architectural tectonics as a basis for truth in design. Rather, Mechanism revels in the figure of the mechanical and the power of that figure to lure and seduce. Indeed, for better or worse, perhaps HHPJ's greatest talent is in its ability to use that power to tap into a longing to revisit the "mechismo" of America's industrial frontierism. HHPJ's architecture achieves is conditioned more by image than by essence and more by desire than by truth. Mechanism is very Post Modern.

For those who feel nothing but despair when confronted with a catalog of tendencies in contemporary architecture limited to the sentimental fluff of Post Modernism, the visionless boredom of Modernism, and the arcane self-indulgences of Deconstructivism and the other speculative architectures that have followed in its wake, the tough energy of Mechanism offers a breath of fresh air. Yet, for those who respect undecidability as much for political as for stylistic reasons, Mechanism's pandering to popular tastes and John Wayne values is reactionary, if not vulgar, and HHPJ is the enemy within. The debate remains contentious. Jeffrey Kipnis

The author is an assistant professor of architecture at Ohio State University.

Gavin Hogben

The author is an architect who teaches at Cambridge University.

HHPJ (continued from page 79)

The present concern with surface and image is as true of architecture as it is of machines, and the aimless stylistism of the former, which Corb had hoped the spirit of the machine would cure, now threatens to overcome both fields. The recent machine architecture of HHPJ and others aims to stem or even turn this tide. Estranged from the spirit of the present, their projects have inverted Corb's practice by adopting directly the forthright forms of the machine's earlier heroic modern period to reassert architecture's irreducible spatiality, and to win back at least the articulacy, if not the full-spirited conviction, of his time.

The Astronauts Memorial grapples directly with the problems of space, time, and geometry inherent in the machine. Marking the landscape with a cross, its own elements pivot between those of the earth and the sky, simultaneously abstracting light and casting shadows as it tracks time like an obelisk. It is the animation of nature that fills the memorial with its characteristic economy and grace, that returns the machine and architecture to the sincerity of vision demanded by Le Corbusier, and honors the lost lives of the astronauts.

Jeffrey Kipnis

The author is an assistant professor of architecture at Ohio State University.

PRESERVATION...PLAN ON IT

Planning on restoring a house, saving a landmark, reviving your neighborhood?
Gain a wealth of experience and help preserve our historic and architectural heritage. Join the National Trust for Historic Preservation and support preservation efforts in your community.
Make preservation a blueprint for the future.

Write:
National Trust
for Historic Preservation
Department PA
1785 Massachusetts Ave., N.W.
Washington, D.C. 20036

A NATIONAL TRUST PROPERTY.

Montpelier, Montpelier Station, VA
USG® CAVITY SHAFT WALL

LOW RISE . . . HIGH RISE . . .
THE IS NO EQUAL!

USG® Cavity Shaft Wall Systems enclose
more elevator, stairwell and mechanical
shafts in megastructures and low rises
nationwide. For solid, cost-effective
reasons. No other masonry or drywall
system gets elevators running sooner to
speed job completion and occupancy. No
competitive system delivers all the critical
test numbers demanded by strict building
codes. And, no other “working wall”
gives you so many design options to work
with . . . or so much systems expertise
. . . from start to finish. Little wonder
USG Cavity Shaft Walls are preferred by the
shaft-enclosure market. Get the facts:

• Light weight easy installation,
 minimum components, simple drywall
techniques all combine to expedite
 erection from floor side of shaft.

• Wide choice of system performance:
 1, 2 and 4-hour fire ratings:
 Acoustical performance available to
 51 STC.

• Entranceways achieve 1½ hour
 B-rating in UL Design U438 2-hour
 rated shaftwall.

• High speed flex testing for positive/
 negative shaft pressures of one
 million oscillation cycles proves
 systems integrity. Exclusive USG
 designs for 5, 7½, 10 and 15 lb./sq. ft.
 loads.

Innovative design of our C-H Stud and 24
ga. J-runners help keep USG Cavity Shaft
Wall the systems of choice. For specifics,
contact your United States Gypsum
Company representative. See section
09250 of Sweet’s General Building &
Renovation File. Or write to us at 101 S.
Wacker Drive, Chicago, IL 60606-4361.

United States Gypsum Company

Circle No. 329 on Reader Service Card
Now—Two Ways To Save and Organize Your Copies of P/A.

Protect your P/A issues from soil and damage. Choose either the attractive library case or the all new binder. Both are custom-designed in blue simulated leather with the magazine's logo handsomely embossed in white.

Jesse James Box Corporation
499 East Erie Avenue, Dept. P/A
Philadelphia, Pa. 19134

My check or money order for $ is enclosed.

Company ____________________________

Check here for size: Before July 1990, 5 1/8" x 12 3/4" After July 1990, 5 1/8" x 11 1/2"

P/A Cases: ___1 for $7.95 ___ 3 for $21.95 ___ 6 for $39.95

P/A Binders: ___1 for $9.95 ___ 3 for $27.95 ___ 6 for $52.95

Check here for size: Before July 1990, 5 1/8" x 12 3/4" After July 1990, 5 1/8" x 11 1/2"

Name ____________________________
City ____________________________ State ______ Zip ________

Check must accompany order. Call 800-825-6690 for credit card orders. Add $1.00 per item for postage and handling. (2.50 per item outside U.S.A.) PA residents add 6% sales tax.

Allow 4-6 weeks delivery.

Progressive Architecture

Don't Miss Out!

1960-1969 $25

1970-1979 $15

1980-present $7

Phone or Fax your requests to be sure of availability. All orders must be prepaid and sent to street address—no P.O. Boxes. Major credit cards accepted, as well as checks and money orders.

Progressive Architecture
Dennis Lawrence
Back Issues
P.O. Box 1351
Stanford, CT 06904
Phone: (203) 548-7531
Fax: (203) 548-8025

Books (continued from page 116)

Added to this are extensive notes and bibliography, all gathered in a handsomely produced and lavishly illustrated volume.

Historians are less certain of Reima Pietilä's place in the pantheon of Finnish architect-heroes. Even so, this philosopher-poet deserves better than Roger Connah's Writing Architecture, a book that is as infuriating and disappointing as the Saarinen study is solid and worthwhile.

"One wonders how different [Pietilä's] career might have been had he heeded Aalto's admonition that what an architect says "does not mean a damned thing. What counts is what he does."

Pietilä has done much less work than Saarinen, yet the cave-like student center at Otaniemi Technical Institute, the bird-shaped library and the freeform Kaleva Church, both in Tampere, are provocative, challenging creations which are difficult to categorize, seemingly indebted to dozens of sources and influenced by none. Although a lot has been written on Pietilä and his theory (Malcolm Quantrell's 1985 book is the primary study in English), his idiosyncratic Expressionism cries out for objective analysis. But rather than looking at Pietilä's works of art, Connah's surreal essay on his guru-mentor attempts to fathom the mind of the "Arctic Shaman."

To be sure, the otherworldly Pietilä lends himself to ontological inquiry: ("It took me five years to work out one sentence he had said to me in the airport," a fellow architect remarked. "He was right."). But Connah's woolly approach wherein "digressions, speculations, even a spidery question cannot establish any authority reads like a self-indulgent conceit full of pretentious philosophizing—dialectic obscurantism masquerading as serious theory.

Writing Architecture is an endless parade of disjointed fragments from philosophy, film, poetry, and nonsense. It is most easier to observe who is not included here than who is: Orson Welles, the Beatles, John Cage, and of course Wittgenstein, Barthes, and Rilke, along with dozens of architects and obscure Finnish poets. James Baldwin's death, for example, is mentioned along with the Deconstructivist exhibition at the Museum of Modern Art; a Marimekko shirt is paired with the Kaleva Church.

This discursive, teeming, Duchampian reading of Pietilä is often witty and amusing, but what does it say of the buildings? ("Versions result, fictions which we call buildings, incomplete yet total appear, or rather in the Heideggerian become, unfold, disclose") An M.C. Escher drawing rather than something by Pietilä is featured on the title page; only rarely are there straightforward pictures of a Pietilä building and those are scattered among overlapping, frustratingly tiny images.

Pietilä is genuinely concerned with semiotics, and it would be a mistake to dismiss his attempts to create a metaphysical language of architecture. Yet one wonders how different his career might have been had he heeded Aalto's admonition that what an architect says "does not mean a damned thing. What counts is what he does." For one thing, there would have been no Connah high-wire act to divert us from the architect's non-cerebral achievements.

Even so, Writing Architecture should spark some intriguing dialogue. Juxtaposed with the completely opposite study of Saarinen, it demonstrates that Finland's stony soil remains fertile ground for outstanding architecture design and stimulating debate. William Morgan

The author teaches architectural history at the University of Louisville. In 1989 he was a visiting lecturer at Åbo Akademi, the Swedish-language university in Turku, Finland.
It's the fastest electrostatic plotter ever built.

Buckle your seat belt and return your tray-table to the full upright position. Because with CalComp's new 68000 Series, 400 dpi color electrostatic plotter, you're going to fly. Humming under the slick new skins is the latest high performance, RISC-based CPU—processing data faster than ever before.

Plotting speed is awesome too—a head-spinning 2.0 ips. And with its standard 4:1 mux, concurrent overlap loading—for simultaneous plotting and data processing—and auto take-up reel, the 68000 can speed along virtually non-stop, completely unattended.

Of course, you can run in cut-sheet mode, too. Plot quality is extraordinary. You get the sharpest lines and most vibrant colors because the system automatically optimizes plotting speed to plot density, and because CalComp's EnviroClean™ Toner System's Auto Replenisher continuously monitors and maintains consistent color density of the toner.

Even with all the high performance features, the 68000 Series is easy to run and maintain. You command all its features from a simple, four-button control panel. And you have front access to toner and media.

Reliability is excellent. And CalComp supports you with a 1-year on-site warranty and a full line of supplies.

A quick call is all it takes to find out more about the fastest electrostatic plotter: call 800-932-1212. In Canada, call 416-635-9010.

We're expecting to hear from you.

We draw on your imagination.

CalComp, P.O. Box 3250, Anaheim, Ca 92803. ©1991 CalComp. EnviroClean and We draw on your imagination are trademarks of CalComp.

Dealers Circle No. 314 on Reader Service Card
Users Circle No. 315 on Reader Service Card
Assistant Director, URBAN DESIGN. The University of Cincinnati's Center for Urban Design is seeking an assistant director. The individual hired will be responsible for the day-to-day administration of the Center, teaching, research, and community outreach. Applicants must have a Master's degree in urban design or planning and 3 years of appropriate experience. Salary: $33,605 per annum. Review of materials will begin July 29. The University of Cincinnati is an equal opportunity employer.

TO ANSWER BLIND BOX ADS

Send resume and salary history to:
Robbie, Lower, Patrick
1910 Harrington Drive, Lancaster, PA 17601
Installing
Replacing
Disposing of Surplus
OFFICE EQUIPMENT & FURNITURE

Need equipment right away and can't wait?
Buying new and the distributor won't take your old piece in trade?
Have surplus just gathering dust?
There's no quicker, better way to meet your needs, than the all new "USED EQUIPMENT NETWORK™".
A FREE SERVICE
Use your modem now to dial 201-625-2636 to list your equipment. (No computer - just send your list by mail or fax.) NO CHARGE for listing surplus equipment or equipment wanted by users.

USED EQUIPMENT NETWORK™
601 Pavonia Ave. • Jersey City, NJ 07306
201-653-4440 • 800-526-6052
FAX 201-653-1366

Situations Open
Proposals Invited
Educational Opportunities
Services . . .

You can reach more qualified professionals in P/A Classifieds.

For more information, call Lynne McLaughlin (216) 696-7000.

OUR LAWYERS CAN COLLECT FOR YOU FASTER THAN A COLLECTION AGENCY.
We are a unique management firm with a Network of Collection Attorneys specializing in collection law.
INNOVATIVE NETWORK
1-800-348-DEBT

FAX YOUR ORDER!
To Advertise in Penton Classifieds,
FAX: (216) 696-1267

You have a year . . .
from the date of this issue in which to order reprints of P/A articles.

Reprints are a dynamic marketing device to promote the accomplishments of your design firm.

We will print these promotional materials on top quality coated bond paper with P/A's prestigious logo on the cover page.

We can print brochures in black and white or handsome four color. The minimum order is 1,000 copies. For additional information, reprint costs, or assistance with layout call:
Gerry Katz (203) 348-7531
THE
MILLENNIUM
COLLECTION

Introducing a new Millennium of spirited design. It starts with your inspiration and culminates with Stark Ceramics' Millennium Collection. A peerless structural glazed ceramic wall product for exteriors that lets you design a building that's modern and sleek or warm and inviting. Create your next masterpiece with Millennium. 1 800 321 0662

Circle No. 318
Furthermore...

Whether or not one respects Prince Charles's views on architecture, they have certainly shaken up public debate on architecture in Britain. Smack in the epicenter of this upheaval is the National Gallery addition by Venturi, Scott Brown & Associates, which will be featured next month in P/A. This eminently contextual building now stands where an earlier scheme by Ahrends, Burton & Koralek would have taken shape had the prince not objected, likening it to "a monstrous carbuncle on the face of a much-loved and elegant friend."

The prince's comments captured the attention of the whole British public, but not everyone got the facts quite right. When P/A's editor, John Morris Dixon, was taking a taxi to the gallery's press opening this spring, his driver seemed positively disposed toward the Yank-designed addition and couldn't understand, he said, "why Prince Charles called this building a carbuncle." There just wasn't time — while calculating a tip in pounds on busy Trafalgar Square — to explain that this was not the carbuncle but the intended cure.

Susan Maxman's election as first vice-president/president-elect of the AIA (see page 27) is not only notable because she will be the first woman to hold the AIA's top spot; Maxman must also hold some kind of record for most national AIA honors at one convention.

She was elected to the Institute's College of Fellows this year and won an AIA Honor Award — the first won by an AIA officer in recent memory — for Camp Tweedale (above), a Girl Scout camp in Lower Oxford, Pennsylvania.

But Maxman is not the only unusual choice the AIA has made recently: Preceding her as president, beginning this December, will be W. Cecil Steward, Dean of the College of Architecture at the University of Nebraska, a representative of the species in the AIA leadership as rare as women: the non-practicing academic.

Among today's far-flung ideas for marketing innovation in architecture, the concept of the building exhibition has spread further than most. The 1984–1987 IBA in Berlin revived the idea — popular in Europe in the 1920s — of inviting architects of different nationalities to design buildings for an exhibition that would change the public view of housing design. The IBA idea came to Japan in 1986 in Arata Isozaki's baggage — he had been invited to Berlin — and took root in the minds of the Fukuoka Jisho Company, which has since built the Nexus World Kashii building exhibition on Kyushu Island in Fukuoka, the subject of a P/A feature next month. The six buildings in the first phase of Nexus World — intended to mean "us in the next world" — were designed by five Western architects: Steven Holl, Rem Koolhaas, Mark Mack, Christian de Portzamparc, and Oscar Tusquets; and one Japanese: Osamu Ishiyama.

Isozaki continued to spread the IBA idea as the "architectural producer" (in faux-Western lingo) of Artpolis, another building exhibition now in progress in Kumamoto, the prefecture adjacent to Fukuoka. In this case, the mission was to break the grip of the large and established architectural offices on public projects. In Kumamoto, Isozaki chose architects for some 39 buildings, sponsored not by a private developer as at Nexus World, but by the prefectural government. Among the seven that have been built are a police station by Kazuo Shinohara, a ferry terminal by Shoei Yoh, a city museum by Toyo Ito (left), and public housing projects by Rikken Yamamoto and Kunihiko Hayakawa. That the IBA idea should crop up in Japan is only logical: Amazing architecture is built every day in Japan, a situation American architects can only envy.