For a good many years the building industry in general, and the architectural profession in particular, has had its efforts and ingenuity thwarted by antiquated building codes. To a great degree the building codes in most of our cities remain substantially unchanged since their adoption—and most were patterned after the National Code that was written shortly after the great “Chicago Fire” at the turn of the century.

The past ten years has been a decade of great technological development. There have been a great many new materials and new construction methods developed that meant savings in time and money and have opened up new possibilities to the architect for the design of buildings. The metal curtain wall that has been used so well in many of our newer buildings could not have been used without special ordinance written to take precedence over the code as it was written.

Our outdated building codes are costing the building industry untold thousands of dollars of expense that often serve no useful purpose. These codes should be revised and updated in a practical manner recognizing the technological advancement of the building industry. The architect would do a great service to his community and to his profession if he would provide the leadership to get this job done.

It is well to evaluate each material or each building method as it is presented to our building officials for consideration, but let us hope that it will not be necessary for “Mrs. O’Leary’s cow to kick over a lantern setting off another holocaust” before our building codes are again revised.

Sincerely,

JACK CORGAN

President
Texas Society of Architects
Historic Conference

An international Seminar Conference between Mexican and American architects, preliminary to the 21st Annual Convention Seminars in El Paso, November 2-3-4, won enthusiastic endorsement when the body concluded its planning session with a special report to Governor Price Daniel of Texas.

Meeting in Austin’s Commodore Perry Hotel Sept. 10 through 12, the group came together as the result of arrangements made by Past AIA Director R. Max Brooks. At a conference in Mexico two weeks earlier, Mr. Brooks personally invited the distinguished Mexican delegation to attend.

(Continued on next page)
Pictured with Gov. Daniel on page 3 are, left to right, seated, Philip Will, Jr., of Chicago, President of AIA; and Arq. Guillermo Rossell, Under Secretary of the Ministry Patrimonio Nacional (Public Properties). Standing are E. W. Carroll of El Paso, Convention Chairman; Arq. Ramon Corona, Vice President of the UIA (international organization of architects with representation in 46 countries) and Chairman of the Committee of International Affairs of the Mexican Society of Architects; Regional Roberts, AIA Director, San Antonio; Jack Corgan, TSA President, Dallas; Robert P. Woltz, Jr., Past Pres. TSA, Ft. Worth; Arthur Fehr, Sec.-Treas. TSA, Austin; R. Max Brooks, Past AIA Director, Austin; L. W. Pitts, Pres. Elect TSA, Beaumont; John G. Flowers, Jr., Exec. Dir. TSA; Hector Mestra, Architect, Mexico, D.F.; Harold Calhoun, Vice Pres. TSA, Houston; Carlos Contreras, Architect, Mexico, D.F.

Out of three days of intensive work came a new understanding by the representatives of the two professional Societies. The Mexicans presented the historic, economic and sociological reasons for their desires to build a great new area along their borders—the fastest growing cities in their nation.

From the American architects present came an explanation of how planning is carried on in this country; how professional interchanges of information take place; how many professional bodies are involved in anything so monumental as trying to change the face of border areas.

From mutual understanding of common problems came a format for presenting the dramatic possibilities of joint cooperation between nations in a way it can be presented at the El Paso Convention program. Everyone present felt a new bond had been forged, new areas of understanding had been found, and that a new era of mutual cooperation was imminent.

In the views of all who attended the Austin conference, the El Paso Convention will be a great event in that it marks an important “first”—the first time architects of adjoining countries have met to discuss common border problems of architectural planning.

The programs which this Seminar will develop should lead to the enlistment of cooperation by allied professional groups and eventual governmental action to revitalize the entire border areas.

If only a part of the enthusiasm and dedication of the persons who worked on the program in Austin can come through in El Paso, all present will agree that it will rank among the great experiences of TSA.
Approximately 40,000 square feet interior and 20,000 square feet exterior terrazzo made with Trinity White portland cement is in the Royal Poinciana Shopping Center, Palm Beach, Florida. John L. Wolk & Associates, Palm Beach, Architects; terrazzo by E. R. Anderson & Co., West Palm Beach.

COSTS HAVE BEEN KEPT on terrazzo and 6 competitive floors. First cost plus seven years of maintenance for each were compared. Terrazzo was the least expensive of any type—less costly by one-third than 5 of the 6 types. And it had far more remaining value after seven years than any other type.

Ask for Trinity White’s full-color reproductions showing 24 chip and matrix color combinations plus standard terrazzo specifications. Address: Trinity White, 111 West Monroe St., Chicago 3.

A product of GENERAL PORTLAND CEMENT CO.
CHICAGO • CHATTANOOGA • DALLAS • FORT WORTH • FREDONIA, KANSAS
HOUSTON • JACKSON, MICHIGAN • TAMPA • MIAMI • LOS ANGELES
Honorary Texans

Having just been declared "Honorary Texans", TSA's distinguished guests from across the border listen intently as Gov. Price Daniel reads the wording on the citation. Mexican Architects shown with the Governor are, left to right, Arq. Mestre, Arq. Corona, Arq. Rossell and Arq. Contreras.

Rely on MONARCH for...

★ "Colorblend" glazed ceramic wall tile.
★ Ceramic porcelain, natural clay and quarry floor tile.
★ "Kristaline" hard glaze tile for residential floors.
★ Complete line of vitreous china bathroom accessories.
★ "Multi-Set" method for precision installation of wall tile.
★ Thin set materials, including both organic and inorganic.
★ Both wet wall and dry wall grouts.
★ Design service for both wall and floor tile installations.
★ Proven quality and personalized service.
Delegates to the Fifth National Convention of Women in Construction unanimously acclaimed Mrs. Lois J. Acker of Dallas, Texas, as their National President for the year 1960-61. The convention was held at the Herring Hotel in Amarillo, Texas, on Friday and Saturday, September 16 and 17, and was attended by nearly four hundred women.

Current President of the Dallas Chapter, Mrs. Acker has been closely associated with Architect George L. Dahl since 1932. She is administrative assistant and a staff member of the firm of George L. Dahl Architects & Engineers.

Mrs. Acker has also served as First Vice President of the local Women in Construction Chapter and as Dallas representative to the National Association. In addition, she has served as past President of the Altrusa Club, a charter member of the Park Cities Toastmistress Club, a member of the Business and Professional Women's Club and of the Palm Club.

Continuing the western theme of the Convention and of Mrs. Acker's acceptance speech, she received a pair of engraved silver spurs, a gift of her employer. An appropriate poem, composed by John Barthel, was read by Mrs. Helen Reid during the presentation.

The Dallas Chapter, represented by Mrs. Catherine Wood, presented Mrs. Acker a bouquet of three dozen American Beauty roses.

The new slate of National Officers also includes:

First Vice-President — Mrs. Mary DeCamp, Windrom, Haglund & Venable, Architects, Memphis, Tennessee, succeeding Miss Viola Brown, Knox-Gill, Inc., Little Rock, Arkansas.

Second Vice-President — Mrs. Dorothy Vanderhyde, Paderewski, Mitchell, Dean & Associates, Architects, San Diego, California, succeeding Miss Peggy LeBlanc, Associated General Contractors, Baton Rouge, Louisiana.

Third Vice-President — Mrs. Margaret Tuttle, Lippert Brothers, Inc., Oklahoma City, Oklahoma, succeeding Mrs. Maria A. Plante, DiNatalie Floors, Incorporated, Boston, Massachusetts.

Secretary — Mrs. Daria Curry, Safe-way Scaffolds Co. of Houston, Houston, Texas, succeeding Mrs. Frances R. Crabtree, Harper & Kemp, Architects, Dallas, Texas.

Treasurer — Miss Delores Hinton, Pittsburgh Plate Glass Co., Shreveport, Louisiana, succeeding Miss Maxine Studebaker, Frank R. Rundell, General Contractor, Austin, Texas.

Mrs. Lucille Holman of Corpus Christi, Texas, a past National President, installed the new officers.

Mrs. Merle Allen of Amarillo, Texas, was the National Convention Chairman.

The National Scrapbook Competition was won by the Dallas Chap-

MRS. LOIS J. ACKER

As acknowledgment for having sponsored six new chapters during the past year, Mrs. Lee Dillon, Chairman of the local Extension Committee, accepted the National Organization and Extension Committee Trophy for the Dallas Chapter.

The San Francisco, California, Chapter, represented by Mrs. Marie Lustig, received the Membership Trophy for increasing their membership sixty-five percent during the period March 1 to July 1. The trophy is a gift of George Marquette, President of Marco Constructors, Inc. of Houston. Mrs. Marquette (Carrie Ann) is immediate past National President.

The emblem of the man who can solve your architectural hardware problems.

American Society of Architectural Hardware Consultants
Lone Star Chapter
architecture of merit
in the past 10 years

Our entry into a new decade would seem to offer an appropriate time to look in retrospect to the accomplishments of Texas architects during the “fifties”.

To this point, the TEXAS ARCHITECT presents in this and future issues the best examples of buildings designed by Texas architects and constructed in this state during the past ten years.

Fifty-one buildings have been selected by a jury of three prominent architects from other states. Works submitted in competition by architects representing all parts of Texas were judged by Truett H. Coston of Oklahoma City, Oklahoma; Bradley P. Kidder of Santa Fe, New Mexico, and William B. Wiener of Shreveport, Louisiana.

In addition, nine buildings constructed during this period which received national recognition by awards from the American Institute of Architects will also be presented.

It is felt that these sixty Texas buildings truly represent architecture of merit in the past ten years.

STATE OFFICE BUILDING
AUSTIN, TEXAS

STATE BUILDING ARCHITECTS:
Kuehne, Brooks and Barr, Austin
Stone and Pitts, Beaumont
Ayres and Ayres, San Antonio
George Dahl, Dallas
Cato and Austin, Houston
LIBRARY BUILDING
HUSTON-TILLOTSON COLLEGE
AUSTIN, TEXAS

ARCHITECTS:
Kuehne, Brooks and Barr
Austin, Texas

MAIN BANK AND TRUST
SAN ANTONIO, TEXAS

ASSOCIATED ARCHITECTS:
Reginald Roberts Associates
San Antonio, Texas
Kuehne, Brooks and Barr
Austin, Texas

LOCAL AND DISTRICT
OFFICE BUILDING
TEXAS EMPLOYMENT COMMISSION
AUSTIN, TEXAS

ARCHITECTS:
Kuehne, Brooks and Barr
Austin, Texas

REAL SHOPS BUILDING
9 HIGHWAY DEPARTMENT
IN, TEXAS

ARCHITECTS:
Kuehne, Brooks and Barr
In, Texas
Each building has its own atmosphere . . . which is dictated by the building's function. Through the years genuine burned clay products have kept pace with the constantly changing demand for architectural expression. Shapes and structures have changed markedly during that time and with each change new colors, shapes and textures have been introduced by the brick industry. Genuine burned clay products have not only met these changing demands, they have stood the test of the ages. For strength, beauty, flexibility and color—think brick and tile—use brick and tile!
What is desired?

It is estimated that in order to erase the backlog of shortages for school classrooms and still meet the demand for additional ones in this country, we must expect to build a new classroom every five minutes for six years!

What are the properties most desired in a school building?

Probably everyone will agree that they are low initial cost; low maintenance; good appearance over a long period of time; safety; and comfort derived through heating qualities and noise reduction.

But probably there would be as many opinions as to the order of the above as there are properties listed. We, therefore, make no attempt to list them in order of importance. They are all important, but maybe to different people.

However, more and more school districts, and more and more architects, are discovering for themselves that in concrete block they have the one building material giving the most desirable qualities at the most reasonable cost over the 20 or 30 years amortization period.

Concrete masonry schools, like other buildings, cost only a few cents per square foot of wall more than the cheapest construction material, and that small difference is more than made up for in the almost total lack of maintenance through the years. Properly designed and constructed schools of concrete masonry are attractive.

Concrete masonry insulates, heat-wise, very well; concrete block walls, exterior or partition, absorb as much noise, and transmit as little, as any other building material, and far more than most.

The cost factor is the problem faced by all school boards and local citizens when faced with the expansion of their present school and classroom facilities. In addition, there are other factors that should be considered, such as: fire safety, acoustical properties, insulating value, future maintenance costs and permanence.

Those responsible for paying for school construction costs are interested in getting the best at the most reasonable cost. As an example, in Jefferson, Texas, a 15-room school built out of masonry was constructed for a cost of $6.71 per square foot. There are hundreds of examples of school costs ranging from $6.71 per square foot to $9.50 per square foot using concrete masonry, concrete masonry with concrete brick facing or concrete masonry with clay brick facing giving the school districts a fire-safe masonry facility. These construction costs are the actual costs of building the facility, not including furnishings, etc.

Economy — Not Cheapness!

Concrete masonry provides economical school construction, without cheapness! Reasonable initial cost added to minimum maintenance cost means low annual cost. But there are intangibles too; such as safe construction, proper student environment, and beauty that will add to civic pride.

There is a masonry unit for every phase of the planned structure. Strength, fire safety, permanence, structural or economic requirements are all within the realm of masonry construction. The units, with their respective colors and textures, offer a wealth of expression for the archi-
It has been my experience that in the minds of the public the main impression of the United States Forest Service is one limited to fire lookouts and fire fighting. This impression is also mingled with a confusion between the Forest Service and the Park Service because of our recreations areas. While fire fighting and recreation are vastly important to the agency itself and to the public, it does not begin to indicate the scope of the Forest Service endeavors.

The United States Forest Service activities embrace resource-management, research and state and private forestry. Its managerial operations include supervision of the timber, grazing, watershed, wildlife and recreational resources of our National Forests. Its research fields cover biology, botany, chemistry, physics, timber products of all natures, and even mechanical equipment. Needless to say, the personnel required to accomplish this mission are largely professional.

The structures required by the Forest Service are as varied as the tasks that must be performed. They include laboratories, wind tunnels, administrative buildings, shops, greenhouses, utility buildings, storage buildings, and in isolated areas, housing for personnel. In urban and metropolitan areas, the office requirements are usually handled by the General Services Administration. The research buildings are designed to Forest Service requirements by consulting architects and engineers who have a large enough staff and a background of previous research experience to cope with the intricacies of such design. These professional service contracts are supervised by the architects and engineers of the Forest Service. However, the greatest number of the Forest Service buildings, those located on the forests and at forest supervisors headquarters, are usually designed by Forest Service architects. It is on these buildings that I wish to concentrate the remainder of this discussion.

Because the Forest Service activities cover such a vast area there are no service-wide standard plans. This is due to the disparity in climatic and site conditions, differences in locally available materials and local construction practices. There are of course service standards and guidelines. The guide lines include cost and size limitations and a requirement of basic simplicity. Within this framework, however, each region develops its own plans and specifications which for reasons of economy, are standardized to the greatest extent possible. In the Southwestern Region, of which I am regional architect, we have developed two standards for our most frequently constructed buildings, one for the woodland and timber areas, and are for
the semi-arid and grassland areas. Special buildings or unusual sites are handled as individual items.

Our main objectives of design are similar to that which perhaps any architect would list, namely: that the building must suit its intended function, it should compliment or blend with its surroundings and it should provide a pleasant environment for working or living. The objectives, however, become somewhat complicated by various restrictions and impediments. These being the stringent budget restrictions on space and costs previously mentioned, difficulties of construction in isolated areas, wide variety of climatic conditions, and the selection of the most predominately available materials which will accomplish a given task with a minimum of future maintenance. While on one hand these items can be restrictions, they also become a challenge to the ingenuity of the architect. In view of this, the architect must constantly strive for new and better construction methods which will reduce materials, labor, or field construction time. The need for design of prefabrication of component parts and overall simplicity of construction becomes evident. The architect must also be fully aware of the local availability of various materials and current market conditions and guide his work accordingly to overcome some of these handicaps.

Of all the design objectives and influencing factors, the most inspiring to me is the natural setting and beauty of the environment. In the Southwestern Region the variety is great. One might even say extreme. Our administrative sites vary from alpine timber locations with elevations above 9000 feet and winter temperatures of 30 degrees F., to semi-arid and grassland locations with saguaro cactus and summer temperatures up to +120 degrees F. These factors necessitate a different approach in construction, use of materials, design and orientation.

Nature is so gifted in design, color, and the use of materials, that one cannot hope to surpass or enhance it by man-made structures. However, one must strive to compliment it. This can be accomplished by judicious use of form, color, and material. By this I do not intend to infer that a rustic approach is indicated in timber country or that adobe construction is a necessity on the desert. Quite the contrary, I feel that a contemporary approach is most feasible.

Forms, proportions and texture can be used to compliment nature in many ways — the shape or slope of a roof to indicate the flowing quality of Spruce trees or to augment distant mountains, vertical siding repetitious of tree trunks in a Pine forest, a low pitched roof and horizontal appearance to relieve the verticality of trees or blend in with the vastness and wide angle look of the desert. The texture of stone, wood and other materials in their proper applications are vital in creating a compatible atmosphere. The judicious use of glass areas can enhance design and provide pleasant vistas for the building occupants.

The selection and use of materials are also important from a standpoint other than texture. Wood, native stone, and even concrete masonry when colored, can be attractive in the proper setting. However, their effectiveness as a building material depends upon their application. Frame construction and wood siding in the woodland and timber locations can be used very advantageously. This is mainly due to its appropriateness in this environment and its effectiveness in insulation. In the semi-arid locations, building material of colored concrete masonry is often appropriate. Concrete masonry is efficient in withstanding the harsh rays of the sun and when the cells are filled with pumice or vermiculite, it provides effective mass density resistance to heat. With the variety of shapes and sizes offered, these blocks can be made into an attractive, practical and economical building.

Color too can be used advantageously, with light reflective colors on the desert and darker absorbant colors in the forest and colder climates.

These ideas on the use of form, materials and colors, are however, subject to the overriding limitations of cost and basic simplicity. It is our task, therefore, to find ways and means for them to become our aid in meeting imposed restrictions rather than handicap.
Program Requirement: Provide a high school athletic plant in a city of 70,000 population with a high school of 2,000 students. The plant to include a football stadium of 12,000 seats, practice facilities for football, baseball and track, together with the necessary dressing rooms, office space, etc.

The facility had to be constructed to meet the needs of the community for use by the local Jr. College (900 students) and by the local Air Force Base for football games. Also, it was to be utilized for outside gatherings such as patriotic celebrations, with press box facilities adequate for a football club playing a minimum of 10 games per season.

Solution: Depress the playing field an average of 14 feet below natural ground level, and form the seats on the sloping sides of the bowl-shaped excavation. Use the soil removed from the excavation to form an embankment which will extend the sides of the bowl upward above natural ground level, thereby providing for additional seating on the slopes.

At a construction cost of approximately $445,000 (excluding land) the San Angelo Public School District got: a 12,180-seat stadium; ½ mile cinder track; three football fields; one baseball field; press box, concession stands; public toilets; and field house with dressing rooms. The concrete stands were built directly on the earth fill and are finished with wood seat boards.
NEW TREATMENT FOR PRE-CAST TREADS
STAIR RAIL MOUNTINGS WITH BUILT-IN STEEL Anchor Assembly

ABOVE TRIM AVAILABLE FOR ALL BLUMCRAFT POSTS

Blumcraft OF PITTSBURGH

SEND FOR COMPLETE GENERAL CATALOG OF ALUMINUM RAILINGS AND GRILLS
COPYRIGHT 1960 BY BLUMCRAFT OF PITTSBURGH • 460 MEIWOOD ST. PITTSBURGH 13 PENNSYLVANIA
The best ideas are more exciting in concrete

Concrete “pleats” and precast “lace” create a temple of delicate beauty

Only concrete could have inspired it. The serrated roof line and sunscreen façade bring to this contemporary house of worship a stimulating, yet reverent beauty.

And despite its dainty, fragile look, the structure is built to endure. All of concrete’s lasting strength is there.

Today’s architects find the versatility of concrete gives opportunity for design that is economically practical and dramatically different.

PORTLAND CEMENT ASSOCIATION

110 East Eighth Street, Austin 1, Texas
A national organization to improve and extend the uses of concrete.