Build...

• Quality with Economy
• Beauty thru Color
• Standard Shapes
• Uniform Dimensions
• Fire Rated
• Job Proven
• A.S.T.M. C-126-60T

A COMPLETE LIGHTWEIGHT CONCRETE MASONRY SYSTEM

With Spectra-Glaze glazed concrete masonry units

For Additional Information and Brochure
Contact Your Nearest Spectra-Glaze Manufacturer

GLAZED PRODUCTS, INC.
P. O. Box 8346 — Houston, Texas

SOUTHWEST GLAZED MASONRY CORP.
P. O. Box 895 — Texarkana, Texas

NOLAN BROWNE CO.
P. O. Box 575 — Dallas, Texas

FEATHERLITE TILE CO. of LUBBOCK
P. O. Box 489 — Lubbock, Texas
KEY
TO SUCCESSFUL BUILDING IS

THE ARCHITECT

ADDITIONAL KEYS ARE QUALITY CONCRETE PRODUCTS AND BUILDING MATERIALS THAT PROVIDE ENDURANCE - COLOR - ECONOMY - DESIGN

... that's why architects are specifying materials from

BLACK-BROLLIER

3010 DIXIE DRIVE • HOUSTON • Riverside 7-7100
NEW!

AUTOCLABED
CRO-LITE
MASTORRY UNITS

QUALITY UNEXCELLED, THE NEAREST PERFECT
MASSONY UNITS BEING MADE TODAY. THE ALL-
NEW AUTOCLABED CRO-LITE BLOCK, NOW BEING
MANUFACTURED AT CROWE-GULDE'S
REVOLUTIONARY, COMPLETELY
AUTOMATED
BLOCK PLANT, LOCATED AT
NELSON & E. 3rd
CROWE-GULDE
AMARILLO, TEXAS

This is an invitation to
Texas architects to visit
this all-new, fully auto-
mated block plant,
strategically located to
serve three states.

SINCE 1926
Crowe-Gulde CEMENT COMPANY
90 N. Tyler P.O. Box 9026 • DR 3/4206 • Amarillo, Texas
ALSO IN CANYON AND HEREFORD

TEXAS ARCHITECT
50,000 people can meet at one time in Chicago's new McCormick Place. Its walls are precast sculptured concrete panels.

So many beautiful and useful things are made with TRINITY WHITE

Progress in new fields is bringing new jobs for product plants. A recent example is solar screens, so important to air conditioning and light control; and for their beautifying value.

New techniques in building construction will bring new assignments for the product plant and Trinity White as is seen in the increased use of precast concrete curtain wall panels.

Wherever concrete products need to be beautiful, use Trinity White.

Trinity White is a product of General Portland Cement Co.

Like lace-work done by a giant's hand is this decorative screen from the forms of a products plant using Trinity White.
NEW ILLUMINATED WALL BRACKET spotlights handrails in corridors and stairways. • Incandescent recessed lighting provides added safety and decorative night lighting for:

HOSPITALS • HOMES FOR AGED • THEATRES • HOTELS • SHIPS

Blumcraft of Pittsburgh

General catalog of complete Blumcraft line available on request

Copyright 1961 by Blumcraft of Pittsburgh • 460 Melwood Street, Pittsburgh 13, Pennsylvania
The President's Letter

By

L. W. "Skeet" Pitts

President

Texas Society of Architects

Education has been called "the cheapest defense of nations." Today it is a magic word. Many talk of ways to improve our systems in America—many are doing something about it. A good education is more important than ever.

The Texas Society of Architects is dedicating its 1961 Annual Convention to Architectural Education. The Texas Architectural Foundation is diligently seeking funds that can be used to improve the teaching of architecture and to assist the students in advancing their education. The Association of Collegiate Schools of Architecture and the American Institute of Architects have jointly made a real contribution with their summer seminars for young teachers and potential teachers. We can be proud of these fine efforts.

No one can serve on our National Committee on Education—take his turn on a College Accreditation Inspection Team—or work with young architects in the office and fail to appreciate the value of top quality in the teaching profession. A department or school of architecture mirrors the capability of its director and his staff. In Texas, we are blessed with a number of dedicated and talented architects who are making it their business to train our future practitioners. We should be grateful to these men—we should make our appreciation known and we should offer our fullest cooperation towards a program for building greater remuneration and even more stature for this high calling.

The desire to teach and the capacity to teach must be expanded. One step in this direction is support of arrangements for our teachers of architecture to enrich their knowledge by actual practice, provided such activity does not interfere with their prime responsibility to their college or university. A successful teacher must learn more than he can teach. It is disturbing to find a few persons who do not grasp the importance of expanding a teachers horizon through actual practice concurrent with teaching. How could a surgeon teach without operating?

We are experiencing great educational movements in our country today—new teaching techniques—accelerated programs for the gifted—more graduate work—adults returning for more education in advanced and refined areas. To support these important movements we must recruit and maintain a larger staff of qualified teachers.

Emerson has said "The secret of education lies in respecting the pupil"—surely the secret also lies in respecting the educator.

Faithfully yours,

L. W. "Skeet" Pitts
22nd Annual

CONVENTION

Texas Society of Architects

CONVENTION PROGRAM

November 8, 1961

8:30 a.m. Golfers' Breakfast—River Crest Country Club
9:30 a.m. Texas Quarries' Golf Tournament
10:00 a.m. Registration, Mezzanine Floor, Texas
3:30 p.m. TSA Study Committee on organization of AIA
4:00 p.m. Chapter Officers Conclave—Convention Meeting Room, Mezzanine Floor
4:30 p.m. TSA Executive Committee Meeting
5:00 p.m. Visit Educational Exhibits and Hospitality Room, Mezzanine Floor
6:00 p.m. Close Registration
7:30 p.m. Transportation to Casa Manana Theatre at 8th Street entrance of Texas Hotel
8:15 p.m. Casa Manana world premiere of "Take Me For An Angel"

November 9, 1961

8:00 a.m. Acme Brick Breakfast—Fort Worth Club
9:00 a.m. Registration
9:30 a.m. Opening Business Session—Robert P. Woltz, Jr., Convention Chairman, presiding
Invocation—Dr. G. Alfred Brown, District Superintendent of Methodist Churches
Hon. John Justin, Mayor of Fort Worth, Greetings
Thaddeus P. Harden, Jr., President, Fort Worth Chapter, Greetings
L. W. Pitts, F.A.I.A., President's Report
Reginald Roberts, A.I.A., Regional Director's Report
TSA Business Session, L. W. Pitts, F.A.I.A., presiding

* * * *

11:00 p.m. Ladies Visit the Amon Carter Museum of Western Art
12:00 noon Ladies Sherry Party—Shady Oaks Country Club
12:45 p.m. Ladies Luncheon and Style Show—Shady Oaks Country Club

* * * *

11:30 a.m. Keynote Address “Education For The Free World”—Dr. John Ely Burchard,
Dean of the School of Humanities, M.I.T.
12:15 p.m. Architects' and Exhibitors' Luncheon, Crystal Ballroom, Texas Hotel
1:30 p.m. Visit Educational Exhibits and Hospitality Room, Mezzanine Floor
2:30 p.m. First Seminar Session, Philip D. Creer, F.A.I.A., presiding
4:30 p.m. Visit Educational Exhibits and Hospitality Room, Mezzanine Floor
5:30 p.m. Close Ticket Booth
6:30 p.m. Producers' Council Cocktail Party, Junior Ballroom, Texas Hotel
7:30 p.m. President's Banquet and Ball, Crystal Ballroom, Texas Hotel

November 10, 1961

8:00 a.m. Committee Breakfast Meetings
 Insurance Committee “Early Risers” Breakfast
 Public Affairs and Public Relations Joint Committee Meeting
 Preservation of Historic Buildings Committee
 Office Practice Committee
 Hospitals and Health Committee
 Texas Architectural Foundation Board of Trustees

8:30 a.m. Open Ticket Booth
9:00 a.m. Visit Educational Exhibits and Hospitality Room, Mezzanine Floor
9:30 a.m. Second Seminar Session, Philip D. Creer, F.A.I.A., presiding
12:00 noon Awards Luncheon—Crystal Ballroom, Texas Hotel
2:00 p.m. Visit Educational Exhibits and Hospitality Room
2:30 p.m. Closing Business Session, Convention Meeting Room, L. W. Pitts, F.A.I.A., presiding
4:30 p.m. Post Convention Board Meeting—Santa Gurtrudis Room, Texas Hotel,
 Harold E. Calhoun, F.A.I.A., presiding
4:30 p.m. Close Ticket Booth
6:30 p.m. Transportation to Pioneer Palace at 8th Street entrance of Texas Hotel
 to “Texas Under Six Flags” Costume Party

CONVENTION COMMITTEE CHAIRMEN

Robert P. Woltz, Jr., Convention Chairman
Edward L. Wilson, F.A.I.A., Committee for Convention Guests
Earl E. Koeppe, Exhibit Booths
Herman G. Cox, President's Dinner and Producers' Council Party
Clyde Hueppelsheuser, Costume Party
William R. Lane, Golf Program
George S. Sowden, Transportation
George W. Shuppee, Students Committee and Exhibits
Jim Johnson, Hospitality Room
Jay Teel Dunlap, House Committee
T. Z. Hamm, Students Seminar
John W. Floore, Finance
Jack Schutts, Public Relations
Mrs. Robert P. Woltz, Jr., Ladies Program

FORT WORTH CHAPTER OFFICERS

T. E. Harden, Jr., President
T. Z. Hamm, II, Vice President
Warren G. White, Secretary
Albert S. Komatsu, Treasurer
Joseph J. Patterson, TSA Director
Architectural education is uppermost in the minds of the entire profession in 1961. The challenge to rebuild an entirely new America within the next forty years has focused a penetrating interest on the education of the practitioners who will be called upon to design as much construction in the remaining years of this century as has been built in all of the years of the nation's existence.

An unusually distinguished panel of speakers has been invited to examine in depth the whole gamut of architectural education today. The distinguished Dr. John Ely Burchard, Dean of the School of Humanities, M.I.T., will sound the keynote in his address "Education For The Free World."

The probing of the fascinating subject of who should become an architect begins with Dr. Donald G. MacKinnon, Director, Institute of Personality Development and Assessment, University of California. Dr. MacKinnon is a highly regarded specialist in his field and has just recently concluded a several year research project to determine the characteristics of creative people, with emphasis on their selection and guidance into the design professions with a reasonable prediction of success in this field.

The remaining panel speakers, working from the premise that the right people have been guided toward the architectural profession, will commence the examination of the present day college curriculum in architecture and the manifold changes taking place now with a look at future suggestion for further curriculum enrichment. The post-graduate scene, the architect-in-training program, the education of the young practitioner, further education for the older practitioner, education of the public about architects and architecture, and finally, a look at research programs for architecture will be the areas under probing consideration.

Other distinguished panelists will include Walter F. Bogner, F.A. I.A., well known practitioner and Professor in the School of Design at Harvard, who has just completed a year's investigation of architectural schools in Europe; Burnham Kelley, A.I.A., Dean, School of Architecture, Cornell University, who is a planner of note, with a rich experience in planning and practice and a former member of the Research Committee, AIA; Thomas J. Biggs, AIA, practicing architect of Jackson, Mississippi, who is Chairman of the AIA Education Sub-Committee on Architect-in-Training; Mr. Harold Horwitz of the staff of the Building Research Institute in Washington, D. C., who has worked closely with AIA members on research programs, and Mr. Donald Q. Faragher, F.A.I.A., practicing architect of Rochester, New York, Chairman of the AIA Education Committee and Past President of the New York State Association of Architects.

The educational exhibits of new materials, new applications and new products are especially important for all practitioners this year.

The exhibits of the winners of the Texas Architecture—1961 competition and the exhibits of the student award winners are also on display.

But no convention is complete without a gracious and lively social program. Two most unusual events are scheduled for Fort Worth. The world premiere of an American comedy which is Broadway bound and entitled "Take Me For An Angel" is scheduled for Wednesday night at the Casa Manana Theatre. "Texas Under Six Flags" is a gala evening of the sort only Fort Worth can provide in the Pioneer Palace. It is a costume party with a world of built in surprises. Costumes are to reflect one of the six periods of Texas history.
concrete masonry
now broadens your home design opportunities!

Across the country, homes of fresh interest evidence the special character and charm that can be created with today's new forms of concrete masonry.

The array of modern masonry units in concrete stimulate the imaginative designer. New styles, sizes and shapes, new textures and colors! Individually and in combination, they provide an almost limitless fund for personal expression of wall treatments, both exterior and interior ... even within the traditional styles of architecture.

Acceptance grows for concrete masonry ... with buyers, with financiers of quality homes. This is truly living concrete for it matches people's mood for modern, gracious living. Write for free copy: Gracious Homes of Living Concrete. (U.S. and Canada only.)

PORTLAND CEMENT ASSOCIATION
110 East Eighth, Austin 1, Texas
A national organization to improve and extend the uses of concrete
CONTROL JOINTS

by N. Robert Batten
Executive Secretary
T.C.M.A.

Technical material furnished through the courtesy of Joseph N. Lucas and J. A. Jones, A.A. Wire Products Company, Chicago. Reprints from Concrete Masonry Information Manual, published by TCMA.

Concrete masonry units, as a building material, are increasing rapidly throughout the United States with more than 2½ billion units being used in all types of construction.

Concrete masonry, just as other construction materials, is subject to expansion and contraction from various causes, some of which are: moisture change, chemical change, temperature change, unequal settlement of the building foundation, high concentrations of applied loads such as roof members, high stresses in masonry at weakened wall sections and localized built-in restraints, such as columns and intersecting walls.

Cracks in masonry walls are, in effect, nothing more than control joints themselves; however, they usually disfigure a wall and need to be repaired.

CONTROL JOINTS

Cracking can be controlled by proper use of control joints. These joints are continuous from the bottom to the top of the masonry wall and are constructed through the entire thickness of the wall.

Since concrete masonry is not a perfectly elastic material, the correct locations for control joints cannot be predicted with mathematical accuracy. Specifying control joints becomes a matter of judgment based on experience and past performance of the concrete masonry units to be used.

Control joints are placed in walls for many reasons, some of which are:

1. At all abrupt changes in wall height

2. In buildings with cast in place concrete foundations which contain joints—the joint should be continued up through the concrete masonry wall.

3. Expansion joints in roof slabs—these joints should also be continued down through the concrete masonry wall.

4. Openings, such as doors and windows—below windows, the joints extend directly below the sides of the openings. Generally, openings less than six feet need only a control joint on one
side; wider openings need joints along both sides. Above doors and windows they are offset to the end of the lintels.

5. Where there is an abrupt change in wall thickness at such points as the juncture of a single story wing with a multi-story building or at columns or pilasters.

6. Control joints should be placed in concrete masonry partition walls, where joints occur in concrete floors, and at intersections of masonry walls. A mortar bond should not tie intersecting walls together — a steel tie bar is often used for load bearing intersecting walls to provide load transfer and provide stability without restraining the walls from moving. If the intersecting wall is a non-load bearing partition, galvanized hardware cloth will do the job and is generally placed in every other mortar course.

METHODS ON CONSTRUCTING CONTROL JOINTS

One popular method of constructing a control joint is by using a control joint block. These 8 x 8 x 16 units are used alternately with 8 x 8 x 8 units in the appropriate course to make the control joint. The joint is caulked with an elastic caulking compound.

The control joint shown provides excellent lateral stability to the wall.

Before placing the caulking compound in a c-joint, the joint should be primed with a sealing material to prevent the dry block from absorbing oils from the caulking compound.

These are examples of instances where control joints are used and the methods of joint construction.

Another method of forming a control joint makes use of regular open end units. A strip of 30-pound felt or equal is curled in the core formed by the two ends of the regular open end units placed together, and the core is filled with mortar or grout. These exposed mortar joints are raked ¾” and caulked with an elastic caulking compound.

The felt prevents bond, and the control joint allows for small longitudinal movements in the wall.

Please turn to Page 23
The advent of new vibratory types of block machine caused the industry to investigate mixes, curing, handling, and storage methods. One study was an investigation of aggregate types for concrete masonry manufacture. Studies were made of natural aggregate of volcanic origin—commonly called scoria. These are natural deposits of vitrified stone with many small air pockets or cells closely dispersed throughout the material. This excellent aggregate in turn brought about the use of manufactured lightweight aggregates or expanded shale aggregates. Shale, slates and clays having suitable characteristics are kilned at temperatures of from 1900° to 2200°F. Gases formed, usually CO₂, within the shale thus expand, forming myriads of tiny air cells within the mass, which are retained upon cooling and solidification. This results in a cellular aggregate with each cell being surrounded by a hard vitreous membrane. Continued investigation and experimentation is being done in this field.

One of the natural or chemical reactions that takes place when cement and water are mixed is called hydration. This process of hydration continues over a long period of time and this action of water and cement must be kept going in order to develop the qualities we look for in concrete or concrete products. Therefore, we have the process called curing.

Originally, concrete masonry units were—and some still are—cured in air. In order that hydration can be completed the units must be dampened for a period of at least seven days and then stored under cover for a total of at least 28 days so that the required strength and dryness may be obtained. This necessitates a large covered storage yard before a producer can deliver a stable, quality product that meets ASTM specifications.

In order to accelerate the rate of hydration and allow
Strength of concrete masonry walls has been investigated. The Portland Cement Association just recently published a paper "Load Tests of Patterned Concrete Masonry Walls." Most building codes require the wall to withstand a maximum load of 85 pounds per square inch over the gross area. The weakest wall under test resulted in a factor of safety of 4.2 over the required wall strength. The tests were made on load bearing values, so applied to approximate walls in service and transverse loads. Walls of many patterns were tested including running bond, basket weaves, and coursed ashlar. Walls with continuous vertical joints were about 30% weaker than those of running bond. The diagonal basket weaves and diagonal bonds failed due to mortar shear or loss of bond between unit and mortar. However, the weakest wall was well within the code requirements and had a factor of safety of 4.2.

Another field of study has been in the glazed plastic face block. Recently a company has come out with an improved sand called S.G. sand. With this in their facing mix, these units will meet all the requirements of ASTM C-126 set up for glazed structural clay products. Tests are available from independent testing labs from various parts of the states that indicate complete compliance with ASTM C-126 specifications. This faced unit is impervious, meets the opacity requirements, resists the listed chemicals, is resistant to crazing and staining, will not support combustion and has a "fire factor" of 28.2. This is very good when you compare it to the 75 allowable maximum for materials in corridors of public buildings. About 1/3 that allowed by the most stringent codes.

Studies are underway dealing with the use of heavy aggregates and thicker face shells for use in low order nuclear shielding. These units will have a unit weight of 150 pounds per cubic foot. Experimentation in this field looks very promising. These units use barites, dolomites, traprock, limonites, magnetite and steel, or iron punchings as aggregates. Saving in time and labor can be made if low order radiation shielding is needed in existing plants of hospitals and laboratories if you could design and build these shields of concrete masonry units and not have to go into extensive remodeling or demolitions in order to construct such shielding.

Then there are new shapes in concrete masonry units. These coupled with white marble aggregates, white sands, and white cement and, of course, covering compounds and portland cement paints leave no limit on the designer. The shapes and forms of his ideas are only limited to his own ingenuity as a designer. They are practically unlimited in scope—these new shapes.

Finally frets are being applied to concrete masonry units and fired up to 2300°F to make porcelainized faces. Much work is being done in this field of study in order to get colors and glazed impervious faces on the units.

These, then, are some of the ideas and techniques that have been advanced in this industry. There are many more under consideration and test. Where more information is available, it will be passed on to you.
Assuming good engineering practices are followed in the preparation of soil base and the design of footings, the architect's first consideration in the design of concrete masonry walls is the utility and function of the structure. Secondly, he must consider its esthetic value as related to the whole. Finally, and of no small significance, is the soundness of structure and its ability to withstand the ravages of time, elements, and children.

The basic requirements having been established, proper attention to detail now becomes a factor. Overall length and height of walls, openings and returns should be carefully planned to utilize stock shapes and sizes of masonry units, thereby eliminating the need for costly and unnecessary cutting and filling. Careful selection of modular doors and windows is of prime importance. A wall laid out in four inch modules will assure the architect of an orderly and economical assembly.

Concrete masonry units, as all masonry materials, are subject to expansion and contraction when exposed to moisture and temperature changes. To compensate for this movement, control joints should be located at openings, changes in wall heights, and at recommended distances in long, unbroken walls. Changes in wall heights may also be treated with a bond beam running in and completely around the top course of the lower wall, or up to a point where a control joint is reached.

Having laid out the walls and located control joints, next comes the design of bond beams and placement of joint reinforcing. Such requirements will often vary according to the individual application, but, in general, masonry reinforcing should be placed on sixteen inch centers vertically, and bond beams should occur at eight foot intervals in the height of the wall.

Good bonding of concrete masonry units requires good mortar. In the design of a mortar mix, proportioning of materials will be dependent on strength criteria and the degree of exposure. A good rule-of-thumb, however, for a mortar to be used above-grade, is one part Portland Cement, one part hydrated lime or lime putty, and six parts clean, sharp sand. For applications below grade or in columns and footings, use a mix containing one part Portland Cement, one-fourth part lime or lime putty, and two or three parts sand.

The final and most important step in the procedure is masonry erection. The masonry contractor must take care to assure that all units are laid plumb and true, that all head and bed joints are sufficiently tight and properly aligned, and that joint tooling is done at the most appropriate time. He must also see that no unit is moved after being placed in mortar, for any movement at this time will surely impair the bond and lead to future problems.

Joint types preferred are the Concave, the Vee, and the Weathered joints. Good tooling practice where the mason can shove the mortar tight against the edges of both units will result in weathertight joints, and weathertight joints make weathertight walls.

There are innumerable methods for finishing and decorating concrete masonry walls. These, of course, will vary depending on the desired result.

All too often the painter is called upon to perform extra duty in concealing errors made by the mason. Concrete masonry walls—or any walls—are and can be no better than the quality of materials and workmanship used in their assembly ... and some errors even Michaelangelo couldn't hide. Be sure of good working plans. Be sure of quality materials. Select a qualified and proven masonry contractor. Remember—"you get what you pay for."
In recent years the use of highly decorative elements has again crept into Architectural design. With the use of these decorative elements the designer's "search for expression" has become a search for materials with which to express himself. With its myriad possibilities, concrete masonry has become an impressive factor in this search. Concrete masonry of today offers characteristics not found collectively in any other material. It provides excellent sound absorption qualities and insulating values, is highly fire resistance, and has excellent structural qualities. Its use is certainly not prohibitive in cost, and minimum maintenance makes it even more desirable.

The versatility by which concrete masonry caters to the designers' needs is amazing. There are an unlimited number of surface finishes and textures to be obtained by an ever-increasing supply of new materials. Surface textures and colors may be changed as easily as changing the aggregate in the units. Complete wall surface textures, or patterns in light and shadow, may be obtained by simply arranging the units themselves into the desired position. Grilles, using either standard or special shapes, are appearing in never ending combinations. Friezes and accents are encountered in many designs. Ceramic tile, glass, brick, metals and many other materials used in combination with concrete masonry units seem to enhance both materials and only add to the unlimited uses to which concrete masonry may be put.

Concrete masonry, thanks to the imaginative designers and progressive manufacturers of today, has turned into one of the most interesting and flexible materials at our command.
FEATHERLITE BLOCK CO.
IRVING • SAN ANTONIO
TETHERLITE
ARCHITECT'S CHOICE

TEXAS CONCRETE BLOCK CO.
ABILENE • MIDLAND • LUBBOCK
for beauty . . .
for durability . . .
you can always count on . . .

ATLAS
QUALITY BUILDING PRODUCTS

THE ATLAS BUILDING PRODUCTS CO. • 200 NORTH GLENWOOD DRIVE • EL PASO, TEXAS
CRACK-FREE cement plaster jobs

A new method of preventing cracks in Portland cement plaster jobs while retaining strength and durability is considered an unqualified success by Texas architects who have proven its merit on a variety of building projects over the past year.

Without exception, the reports have uniformly been: "No drying cracks," even in situations where a severe cracking tendency was known to exist. As a result, it is anticipated that the use of Portland cement plaster may double or even triple.

The key to the improved method is a spreading and plasticizing agent named X-59 by its originators, James E. Madden and W. J. Newell of Fort Worth. Only three-quarters of a pound of X-59 per sack of cement, plus sand and water produces a plaster which may be applied with ease but which keeps unchanged the strength and shrinkage properties characteristic of Portland cement.

Madden's search for the right material stemmed from forty years in the plastering trade, observing how available spreading agents reduced the strength and increased the shrinkage so that costly touch-up work was often required. He found the answer in a finely divided silica produced by the Cabot Corporation of Boston, Massachusetts. Laboratory tests confirmed field observations that, in the proportion of ¾ pound of X-59 to a sack of cement, the plaster not only had the same drying shrinkage but also retained the high compressive, flexural and tensile strength of straight Portland cement sand combinations.

Among the earliest architects to take advantage of the material was Edward Wilson of the Fort Worth firm of Wilson, Patterson, Sowden, Dunlap and Eppler, who specified it for several of the North Texas State University buildings in Denton, including the canopy ceiling around one side of the music building. The results were so good that he has specified it for a number of subsequent jobs, including all the cement plaster in the Birdville Baptist Sunday School Building just outside Fort Worth. "We're very pleased with this material," comments Mr. Wilson. "We've used it repeatedly, and it has been successful with no shrinkage problem."

Similar results in Fort Worth were obtained in nearly a quarter-mile of canopy ceilings for Alcon Laboratories, where the architectural firm was Floore and Hueppelsheuser; and the canopy ceilings of the new Telephone Credit Union, where Woltz and Lane were the architects.

X-59 is available in ten-pound bags through Van Waters and Rogers, Inc., of Houston and Dallas, and a premixed product is planned for availability in six months to meet anticipated demand. The excellent results secured by users have more than justified the cost of the X-59, which is about 75¢ per bag of cement in the plaster mix.

The X-59 is added directly to the mixer with the other ingredients at the time each batch of Portland plaster is prepared, and contractors using it have found that the preferable order of addition is water, then X-59, then cement, then sand.

Mixing specifications for the scratch coat include one bag of Portland cement, ¾ pound X-59, 2 to 2½ cubic feet of sand over the metal lath base, or 2 to 3 cubic feet of sand...
over masonry base. For the brown coat, the mix is one bag of Portland cement and ¾ pound of X-59 to a minimum of 3 cubic feet of sand. For a sand finish, interior or exterior, the finish coat mix is one bag of Portland cement and ¾ pound of X-59 to 2 to 2½ cubic feet of sand. For the finish coat only, added workability may be obtained by adding finishing lime in an amount not to exceed 10 percent of the weight of cement used.

The X-59 plaster pumps readily to different levels of the job and applies very satisfactorily by machine.

The basic material of X-59 is a grade of pyrogenic colloidal silica, whose special properties have previously found useful application as a reinforcing agent in silicone rubber, a suspending agent in paints, a flatting agent in varnishes and lacquers, and a free-flowing or anti-caking agent. Its new utilization in the building field solves a long-standing problem for architects and plaster contractors.
Continued from Page 13

In discussing the use of horizontal wire reinforcement, it is best to say that horizontal reinforcement does not eliminate cracking in masonry walls; it merely controls cracking. Reinforcement does nothing until the wall begins to crack. At this time, the higher tensile steel wire pulls against the lower tensile mortar joint, or masonry unit, and tends to close the crack or keep the crack very small.

When a crack occurs in an un-reinforced masonry wall, the crack becomes a weak point, and further cracking may occur at this point, resulting in a larger crack. In a reinforced wall, there may be fine hairline cracks that are barely visible in most instances.

The size of cracks and the effectiveness of the horizontal reinforcement to do its job is largely dependent upon the bond strength that can be developed between the reinforcement and the masonry mortar. The better the bond strength, the quicker the wire reinforcement acts against cracking.

Experience has shown that cracks in masonry walls tend to be localized in certain areas, areas of stress concentrations such as windows, doors and parapet walls. A good rule to follow is to require that the first two courses above and below all wall openings be reinforced. Reinforcement above and below openings should extend at least 24" beyond the openings. The use of horizontal reinforcement in the balance of the wall should be dependent upon the length of the wall, spacing of control joints or wall design. Horizontal reinforcing should not be placed through a control joint.

When placing horizontal joint reinforcing in a wall, the mortar should be spread first and the reinforcing placed in the mortar, rather than reinforcing and then mortar. This method gives a better bond strength and a greater resistance to corrosion.

It is wise to use the right thickness of side rods for the mortar joint, generally a reinforcement which equals one-half the thickness of the mortar joint. Using a side rod too heavy for the joint may actually cause the wall to crack because the rod is unprotected by mortar and may rust. The rusting of the unprotected rod may cause expansion and a crack may occur. The problem of insufficient bonding occurs when using reinforcing which is too thick—then it will not develop its reinforcing potential.

JACK FREELAND & CO.
CONTRACTORS
8637 W. Commerce
San Antonio 7, Texas
GE 2-5541
POURED
and
AIR PLANTED
CONCRETE
8300 N. Loop Rd.
El Paso, Texas
LY 8-2511

NEW...
FROM LAMBERT
CRYSTAL CLEAR SEAL
CONCRETE FLOOR TREATMENT
DELIVERS THE BIG
CURES HARDENS
SEALS DUSTPROOFS
FOR TECHNICAL DATA
AND INFORMATION
FOLDER WRITE:
LAMBERT Corporation
HOUSTON, TEXAS P. O. Box 151
ORLANDO, FLORIDA P. O. Box 2226

NOVEMBER, 1961 Page 25
BLOK-LOK
- controls shrinkage cracking
- settlement cracking
- temperature cracking
- adds lateral strength

CORNER-LOK
- provides added strength at corners

PARTITION-LOK
- ties intersections—permits flexibility

TITEWALL
- rubber control joint with double flange made to fit sash block

For maximum bond strength and maximum corrosion resistance, lay BLOK-LOK in mortar bed as shown above. Only steel in tension adds strength.

TITELWALL

PARTITION-LOK

CORNER-LOK

©1958, AA Wire Products Company
DYESS CHURCH OF CHRIST
Abilene, Texas

ARCHITECT:
Tittle and Luther, Abilene

- Barlite Concrete Blocks
- Barlite Lightweight Concrete Aggregate
- Ready-Mix Concrete
- Sand and Gravel Concrete Aggregate
- Colored Building Stone
- Colored Catalina Blocks
- Sacked Mortar Mix
- Sacked Concrete Mix

Barlite, Inc.

Barrett Industries

manufacturers of concrete aggregates and concrete products

main office and plant
2718 Southwest Military Drive • Walnut 2-1271 • San Antonio, Texas

EXPERIENCE and PRIDE in WORKMANSHIP — is YOUR GUARANTEE

Herman L. May & Co., Inc.

MASONRY CONTRACTORS
900 EAST HOUSTON
GR 3-7686 PASADENA, TEXAS

Member — Associated Masonry Contractors of Houston

NOVEMBER, 1961
LEADS THE FIELD

Through perfect blending, the different styles of concrete masonry units lend a grace and beauty that can be achieved in no other fashion.

Columbia Machine, Inc. prides itself in building precision block equipment plus the finest molds to turn out such lasting tributes to the modern art of everyday living.

Your nearest Columbia representative can give you full information . . . write, wire or phone.

Columbia MACHINE

107 Grand Boulevard, Vancouver, Washington, U. S. A.
Telephone: Vancouver—OXford 4-1501
Cablegram Directions: "COLMAC"
Branch Offices: Mattoon, Illinois; Burbank, California; Orlando, Florida.
completely free from cracks

Typical of Portland cement plaster work using Texas-originated X-59 is the close-up of canopy ceiling at left, after months of test exposure. Regarding the X-59 use in the H. S. Thompson School of Dallas, at right, architect J. Allen Boyle of Dallas says: "This suspended plaster ceiling of more than 14,000 square feet was installed during the very hottest and driest Texas July-August days—a true test for any material."

BANK YOUR DIVIDENDS ON
AESTHETIC TERRAZZO

Texas Terrazzo Contractors Association, Inc.

KNOWE & HAMM, ARCHITECTS

C. R. Moore - Field Director, 4007 Turbot Lane, Fort Worth, Texas

NOVEMBER, 1961
Membership Roster for Texas Society of Architects - 1961

ABILENE CHAPTER
Corporate Members
Boone, Daniel, 242 Leggett
Bridges, John M., 279 North Willis
Brown, Woodfield, Mims Building
Brazel, Rich, 242 South 7th
Castille, David S., Jr., Box 124
Hilton, Joseph D., 3208 Avenue B, Snyder
Lindberg, Paul T., 2218 Sayles
Luther, John J., 542 Buttermilk
Moore, Bob G., 687 Redwood
Sample, William, Box 12, Brownwood
Strickland, J. F., Jr., Box 2259
Tittle, James D., 542 College Station

Associate Members
Canon, Yal, c/o Chasko and Zantbelt, Architects, San Angelo
Loving, Horace, 542 Buttermilk
McDonald, Ed, 242 Leggett
Olds, Franklin Davis, Jr., 15 mill Court
Pope, William A., 242 Leggett
Price, Homer Luster, 770 Anherst
Wheeler, James H., 242 Leggett

Junior Associate Members
Martin, William J., 25 Eria Circle
Olds, William Ray, 1458 Westwood

BRAZOS CHAPTER
Fellow and Member Emeritus
Laegfurd, Professor Ernest, Box 4712, South Station, College Station

Corporate Members
Evans, Benjamin H., Engineering Experiment Station, College Station
Hildebrandt, Edward F., Washington County State Bank Bldg., Brenham
Hoffman, Theo R., Division of Architecture, A & M College, College Station
Jossey, Henry Campbell, 607 West 29th St., Bryan
Matthews, Wilbur B., 314 Varisco Bldg., Bryan
Mayfield, Henry D., Duke University, Durham, N. C.
Nash, Wm. E., Box 41, Bryan
Romenicke, Edward J., 88 Morningside Drive, New York 27, N. Y.
Yrooman, Richard, APO 143, Box DAC, c/o Post Office, San Francisco, California

Wagner, William G., Department of Architecture, A & M College, College Station

Central Chapter
Associates
Godin, Charles J., 1903-A South College Road, Bryan
Hammons, Doll S., 1504 Texas Avenue, Bryan
Rothb, Malvin M., Division of Architecture, A & M College, College Station
Whitson, Frank E., Jr., Division of Architecture, A & M College, College Station

COLUMNS TEXAS CHAPTER
Fellows
Brooks, R. Max, 203 Perry-Brooks Building
Cree, Philip D., School of Architecture, University of Texas
Fehr, Arthur, P. O. Box 93
Goldsmith, Goldwin, 4934 Bryce Ave., Fort Worth
Kuehne, Hugo F., International Life Building
Southerland Louis F., P. O. Box 855

Corporate Members
Allen, John Cliles, 2414 Pearl
Baldridge, Doyle M., 4005 Jefferson
Barnes, Jay W., Jr., 1103 East 30th St.
Barr, Howard H., 203 Perry-Brooks Bldg.
Bible, Philip L., Jr., 2031 Quarry Road
Bowman, Jno, 3500 Cherry Lane
Brush, Carlton, 4000 Ullwood

Cloutier, J. Jack, Box 398, Shiner
Coates, Paul H., Jr., 2914 Pearl
Collar, William M., Jr., 2500 Addison
Crow, James W., 417 W. 4th St.
Crume, Herbert C., 2650 In-Labonde
Day, Fred W., Jr., 2410 San Antonio
Dean, Thomas Scott, 3406 Bonnie Road
DeLaney, Miles, 2308 Rundell
Dornberger, Walter W., 810 E. 23rd St.
Driscoll, Dan J., 3414 Hillview
Gannaway, Alwynn G., 204 Meadowbrook Drive
George, W. Eugene, Jr., 3215 Churchill Drive
Grasser, David C., 4509 Balcones Trail
Granger, Charles, 1501 O. Box 93
Greenan, Alton E., 2814 Hampill Park
Griffin, Lankford O., Jr., P. O. Box 93
Guille, Edward H., 4601 Ridgelea Drive
Gustafson, Winfred O., 133-J A, Congress
Hannan, H. E., 2814 Hampill Park
Jenks, W. L., 2814 Hampill Park
Jones, James C., Box 2292, Capitol Sta.
Kermacx, Martin S., 2814 Woodlidge
Kuehne, Hugo F., International Life Bldg.
Landes, Robert P., 1031 East 395, St.
Legge, Don Edward, 2814 Pearl
Leipziger-Pearce, Patricia, 1314 Possum Trot
Logsdon, Yal E., 3217 Monticello, Temple
Lundgren, Leonard J., 1203 West 4th St.
McAdams, Kelly R., 2407 Great Oaks Parkway
Mckinna, Hugh L., 2410 In-Labonde
Maurer, Edward J., 1203 West 4th St.
Mayhall, Temple B., 1906 Raleigh
Milburn, William W., Jr., 403 Jessie St.
Millhouse, Charles A., 2814 Hampill Park
Mills, Madison H., 3313 Bridle Path
Moore, Walter C., Jr., 4170 Parkcrest Drive
Morris, Edgar A., Jr., 1809 Kerr
Nuh, Kenneth J., 2305 Randall Place
O'Connell, W., 504 West 7th
Page, C. H., Jr., 305 West 11th St.
Page, George M., P. O. Box 855
Page, Louis C., Jr., 350 West 11th St.
Panday, C. C., Jr., 2410 San Antonio
Phillips, Henry W., Jr., P. O. Box 855
Probst, Victor G., 504 West 7th St.
Riley, Bartom D., 1211 W. 34th
Roessler, Robin G., 2410 Foothills Terrace
Rowe, Richard S., 2403 Oaklair Ct.
Rucker, W. Glen, Jr., 802 First Natl. BK.
Saunders, William E., 208 East 10th St.
Shefelem, Thomas M., 2717 Woodlidge
Staats, Carl H., 1704 Esplanade
Swallow, Richard P., 4401 Balcones
Thomas, Roy L., 2812 Hampill Park
Walling, George L., 405 East 15th St.
Watson, Mrs. A. R. P., O. Box 270
White, James Roy, 203 Perry-Brooks Bldg.
White, Robert L., Office of Supervisor, Architect, University of Texas
Weskoski, Joes Eugene, P. O. Box 7788
University Station
Youngblood, B. Lamar, 1204 Loma Drive
Zapata, George M., P. O. Box 93

Forestier, Paul, 2520 Spring Lane
Pringle, Robert B., 3112 Manor Road

Honorary Members
Goeth, Ralph, P. O. Box 876
Gubbels, Jerr L., 2515 Woodlidge Drive

COASTAL BEND CHAPTER
Corporate Members
Anderson, Walter H., 3226 Reid Dr.
Beasley, Robert P., Box 848, Beaville
Blanton, Paul T., 1104 Reid Dr.
Brock, Victor, 204 Jones Bldg.
Donnelly, C. P., 2220 Morgan St.
Gibson, James P., 1101 S. Brownie
Hamon, E. Dester, Box 3376, 2211 16th St.
Hans, Joseph, 1317 3rd St.
Johnson, Otis F., 141 Naples St.
Mabrey, Leslie, 204 Jones Bldg.
MacHl, Jim W., 4209 Nottingham
Martin, Dan W., 1101 S. Brownie
McCorde, Horace B., 1220 S. Staples St.
Meyers, Irwin Don, 1363 Ocean Dr.
Miller, Boyd K., 208 Petroleum Bldg., Alice
Pennington, Sam A., 539 S. Water St.
Skellett, Benjamin N., 204 Norton St., Box 2402
Smith, Vernon, 415 Jones Bldg.
Smith, Joe G., 1806 S. Alameda St.
Smyth, Needham R., 1806 S. Alameda St.
Tanner, Carroll V., 3940 Floyd Ave.
Turner, Jack R., 1227 3rd St.
Whitlet, Wm. S., Box 6323, United Savings Bldg.
Winston, Walter, 3164 Reid Dr.

Associate Members
Atmar, Richard S., 838 Adel
Bennett, Ralph G., Jr., 4618 Kirkwood
Green, Donald G., 4811 Westlwood
Jones, Delbert, 1029 Jefferson, Alice
Martin, John O., 1405 Ray Dr.
Olson, John M., 3114 Reid Dr.
Roberts, Edward E., Box 5366, Schacht-Mill Roots, Orby, 402 Palmetto
Winston, Lloyd, 2320 Reid Dr.
Yeager, Arlin, Jr., 1458 Arlington, Apt. A
Junior Associate Members
Husht, Erland J., Jr., 4237 Camden
Peterson, Soren J., 5714 Bellev
Thoreau, Ben A., Jr., 441 Paloma

DALLAS CHAPTER
Honorary Members
Bywaters, Jerry, Dallas Museum Fine Arts
Houston, B. L., City Hall
Marcus, Stanley, Naiman-Marcus
Springer, Marvin, 2020 Fidelity Union Tower
Swindle, D. D., 212 East Eight
Thornton, Mayor R. L., Maricastle National Bank
Members Emeriti
Kleuser, M. C., 318 Cadiz
Porter, I. D., 6910 Robin Road
Thomson, Henry B., 4320 Larchmont
Williams, David R., 324 N. Sterling St.
Lafayette, La.
Woerner, F. J., 1608 Stonewall

Fellows
Bennett, J. Murrall, 2014 Fairmount
Broad, Thomas D., Mercantile Dallas Bldg.
Bryan, Ralph, U. S. Public Health Service
Dahl, George L., 2101 N. 25th
DeWitt, Roscoe P., 2025 Cedar Springs Ave.
Meyer, Howard R., 2727 Oak Lawn
Nelson, Donald S., Maricastle Dallas Bldg.
Tatum, Herbert M., 2012 Fairmount
Thomas, Arthur E., 870 N. Harwood

Pfluger, James, 1906 Romeria
Presler, Paul, 2520 Spring Lane
Pringle, Robert B., 3112 Manor Road

TEXAS ARCHITECTS
Through Autoclaving, complete curing is accomplished in a few hours, therefore time as a yardstick of quality is obsolete. In addition, the autoclave process is easily duplicated from one cycle to the other taking the "guesswork" out of curing with the assurance that every run is of equally high quality.

EAST TEXAS LEADING PRODUCER OF LIGHTWEIGHT AUTOCLAVED UNITS

DODDS & FOUNTAIN
BUILDING PRODUCTS INC.
TYLER, TEXAS

NOVEMBER, 1961
Etkin, Harvey E., 2442 Roger Williams, Irving
Floyd, James Wallace, 11319 Coral Hills Dr.
Gallagher, John William, 9385 Estacado
Gill, G. Douglas, 4621 Edmondson
Goeser, Paul, 5208 Kings Rd.
Graham, Walter Nichols, 111, 10302 Brockbank Dr.
Hale, Warren H., 9110 Woodward
Harrell, Robert S., 4225 Fomora Rd.
Hayden, Chester H., 2704 Westminster
Hillard, J. Edward, 117 N. East St., Arlington
Huddleston, Norman Harper, 4592 Belfort
John, Edward Curtis, 4029 Hawthorne
Kelman, Ralph, 4753 Travis St.
Kerr, Edward L., 1143 Brunner
Kleinheimsch, Donald, 2268 Springhill
Koehn, Thomas G., 2331 Gus Thomason Rd.
Kuhlman, Joseph J., 821 Overland
Lacy, Larry, 3716 Shawnodoah
Malone, Gary Rodger, 1206 Ridgeway, Arlington
Martinson, Hermann, 4055 Prestige
Matthews, Harry Ernest, 8924 Carrol
McFadden, Robert W., 9721 Ash Creek Drive
McGraw, William E., 7828 Idlewood
Melvin, Norman Clement, 4330 Ridge Rd.
Morton, Marion D., Jr., 634 Newberry Dr.
Richardson
Palm, Thomas J., Jr., 7103 Inwood Rd.
Palmer, Fred Niles, Jr., 703 Nsbbitt
Flague, Roman C., 10203 Longmeadow Dr.
Roberts, James H., 4165 Brookhurst
Russell, James A., 4164 Southern
Sheffield, Orlon, 1900 Vaughn Blvd.
Sibley, Gordon, 4644 Lupton Dr.
Skippert, Carlton, 927 Goldwood
Smith, David W., Engineering Dept., Soccoro
Mobile Co., 150 E. 42nd St., New York 17
Smith, Stanley S., 6225 Bordeaux, Apt. 205
Stimson, Robert, 2515 Melbourne Ave.
Summy, Orrilla M., 1915 Myrtlewood Dr.
Telfel, Alberi, 3145 Mountain Springs
Tucker, Oliver T., 1714 Winthrop, Irving
Upshaw, Forrest, 508 Noel Dr.
Volk, Leonard William, 11, 7000 Vasser
Watson, Stanley Gene, 6336 Bordeaux
Willey, James E., 3739 Blakney
Boerner, Eugene F., 5056 Royal Lane
Bollock, James Richard, 4427 McKinney
Cinot, Frank James, 603 Bon Aire Drive
Cooper, James F., 3772 Malador Dr.
Edney, Edward F., Jr., 10818 Cassandria Way
Gray, James Phillip, 1701 Migon, Carlington
Halford, Robert Lavrette, 8807 Lanarkshire
Holt, Allen H., 5814 Walnut Hill Lane
Helle, Marjory, 2611 Southland Dr.
Hibbard, William John, Jr., 6414 Airline Rd.
Hogendorf, Eugene Patrick, 2307-C Nicholson Dr.
Jones, James T., 2650 Cockrell Hill Rd.
Jones, Robert Howard, Jr., 820 N. Harwood
Marinich, Otto A., 2703 Shook
Milburn, Joe W., 9204 Highridge Dr.
Mirsanda, R. V., 833 Valley View Dr., Grand Prairie
Monroe, Harold Willis, 2833 Lee St.
Moss, John G., 2511 Springvale
Parker, Howard C., 4402 Emerson Ave.
Rash, Joel J., Jr., 6733 Santa Anela
Richer, J. Harvey, 6528 Gilbert
Rutherford, Gene Rankin, 3715 Durango
Schumann, Al., 2708 Northaven Dr.
Selzer, Dale E., 4251 Ruene Vista
Sintell, Gordon Douglas, 8546 Stillwater Dr.
Sinclair, Carroll Mart, 2271 Barberry Dr.
Yoeld, Herbert Austin, 925 Lautsanne
Wardell, Marshall H., 822 Robertson Rd., Grand Prairie
Wressin, Carl Robert, 982 Ryan Rd.
Watson, R. Mickey, 7314 W. Cranston Ct., Irving
Winstead, James Richard, 3326-B Southern Oaks
Woodward, Thomas, 5426 Stoneleigh
Worrell, Gerald H., 5630 Mercedes
YMSA Members
Alexander, Robert E., Jr., 3704 Altamans Rd.
Metcalf, James E., Jr., 1707 W. Fifth Ave., Corpusca
Reed, Wm. D., Jr., 530 Main. Sec. Blvd.

EL PASO CHAPTER
Corporation Members
Bynum, Milton Otto, 5933 Gateway Blvd., West
Carroll, Edwin W., 1001 E. Yandell Dr.
Crocker, Theodore, 827 E. Yandell Dr.
Davebe, Louis, 1001 E. Yandell Dr.
Davis, Ralph V., 1006 Mills Building
English, Hugh, 1001 E. Yandell Dr.
Fouts, Robert W., 1429 E. Yandell Dr.
Gardiner, Robert D., Jr., 1551 Montana Ave.
Gardiner, Robert D., 1551 Montana Ave.
Henry, Charles L., International Merchandise
Matt Blvd., Suite A-5
Higginl, Clarence M., 827 E. Yandell Dr.
Hillls, David E., Jr., 1551 Montana Ave.
Hohaus, Lawrence Matthew, 5933 Gateway Blvd., West
Kent, Stephen W., International Merchandise
Matt Blvd., Suite A-5
Kuykendall, W. E., Jr., 5801 Trowbridge
Lane, Harry Dean, 5933 Gateway Blvd., West
Langford, James E., 261 Mills Blvd.
Licht, Richard H., 827 E. Yandell Dr.
McCormack, Clinton L., 5801 Trowbridge
McGhee, Percy, 3015 N. Florence
McNab, Alexander J., Jr., 100 Texas
Middleton, Sam T., Jr., 1551 Montana Ave.
Monroe, James E., 827 E. Yandell Dr.
Nasmith, B. Rea, 5933 Gateway Blvd., West
Ring, John P., 1001 E. Yandell Dr.
Shaw, Robert P., 5933 Gateway Blvd., West
Skidmore, Dickson M., 702 F. Yandell
Stanley, Duffey B., 610 Mills Blvd.
Thompson, Wm. F., Jr., 1001 Mills Blvd.
Torrer, Dorris B., 5933 Gateway Blvd., West
Wafhouse, C. Ewing, 1001 E. Yandell Dr.
Young, Carl J., 1001 E. Yandell Dr.
Associate Members
Beeler, A. Y., Sr., 607 El Paso Nat'l Bank Bldg.
Boyd, William D., 5933 Gateway Blvd., West
Foster, John P., 1001 Mills Blvd.
Hust, James C., 827 E. Yandell Dr.
Rand, N. Patrick, 1001 E. Yandell Dr.
Junior Associate Members
Arbun, Robert W., 1001 E. Yandell Dr.
Bollock, Luther V., 5933 Gateway Blvd., West
Carson, John M., 5933 Gateway Blvd., West
De Wittier, Charles, 1551 Montana Ave.
Du Sang, George, Jr., 1001 E. Yandell Dr.
Fischer, Herbert M., 5933 Gateway Blvd., West
Henderson, Donald F., 1001 Mills Blvd.
Jones, J. Carlso, 5933 Gateway Blvd., West
McVay, Joss, 1551 Montana Ave.
Melander, Joe, 1551 Montana Ave.
Morgan, Albert, 1001 E. Yandell Dr.
Ramirez, Felipe, 1429 E. Yandell Dr.
Sawtelle, Gilbert G., 610 Mills Blvd.
Schaefer, Hippen, 1001 Mills Blvd.
Swanson, James B., 1001 E. Yandell Dr.
Staten, George, Jr., 1830 Texas St.
Honorary Members
Schack, Dr. Horst, North Loop
Member Emeritus
Thornman, Otto H., 1604 E. Yandell Dr.
Wurthmann, Wm. G., 310 N. Stanton

FORT WORTH CHAPTER
Member Emeritus
Capell, A. J., 800 32nd Avenue South, Lor 617,
St. Petersburg, Florida
Fellow
Wilton, Edward L., P. O. Box 9048
Corporates
Adams, Charles Rufus, 2400 Continental National
Rank Blvd.
Armstrong, Charles E., Box 9246
Bennett, R. R., 1225 Austin Ave., Waco
Bigley, Charles Leroy, 2014 South Hills
Boose, Orin, Sr., 391 Montana Ave.
Buchanan, James C., Jr., 2295 Timbner Drive
Burott, Richard Eugene, 3424 Stadium Drive
Chambers, Robert W., 3714 W. Winthrop
Chromey, William Wells, 4455 Precision
Clark, Clifton Gilbert, 3294 Mcllenny Lynn
Cocks, John W., Jr., 1557 Franklin, Waco
Cox, Harrison G., Neil P. Anderson Building

Announcing
Precision - AUTOCLAVED
Concrete Masonry Units
MANUFACTURED IN AUSTIN
BY
BOHLS BLOCK CO.
2303 East 6th Street

Page 32
Creston, M. E., Jr., P. O. Box 745
Digby-Roberts, P. W., 1205 Clover Lane
Dunlap, Jex Test, P. O. Box 1048
Eting Tommy M., 2424 S. Jones
Epperly, Don, P. O. Box 1045
Farmer, Phyllis, Ll., R. R. 4 Box 621, Waco
Fowler, John W., 1401 W. Lancaster
Fowler, Samuel Donald, 4001 Driskill Blvd.
Frye, Jason William, Jr., 3014 Sandage
Gerner, Larry M., 2407 Continental NaYl. Bk.
Ghera, T. Z., II, Continental Bldg.
Geren, Preston, 3014 Saddle Trail
Hedrick, Harold, 2612 S. Arlington Blvd.
Harrell, Pierrepont, 3711 Corto
Hamrick, Walter, 1401 W. Lancaster
Hellis, Chester Roland, Jr., 400 Bailey
Huebnerhaus, Clyde R., 1401 W. Lancaster
Jailinek, Robert, 6304 Kenwick
Johnson, John Buford, Sr., 819 Pann St.
Jones, Robert Chariton, Jr., 2311 Ryan Drive
King, Arthur George, 815 Pann Street
Koeppe, Earl E., P. O. Box 1704
Kondo, Albert Shigaki, 6300 Saddle Trail
Lane, William R., 1562 West Rosedale
McAdams, Albert Carlton, 257 Majestic Bldg.
Malin, Alfonso W., P. O. Box 9035
Maples, Horace Calvin, 305 Biss Blvd.
Moore, Dick C., 2070 Highway Terrace
Neal, W. Morris, P. O. Box 506
Padgett, Sidney T., 400 Bailey
Parker, Morris Buford, 3512 Western Avenue
Parrish, William, 5404 Stephanie Drive
Patterson, J. J., P. O. Box 1048
Pellic, Joseph R., 1203 Trans-American Bldg.
Pilk, Roy, P. O. Box 1847
Ploy, Paul Cwens, Jr., 2901 Bliglade Rd.
Shoup, George W., 1425 South Davis St., Arlington
Smith, George S., P. O. Box 1045
Stuart, Lee Jr., 2200 Bladford
Thomas, Raymond F., Grayson County State Bank
Tommison, DeWitt F., 3270 Crathaven Terrace
Vowell, J. D., 1412 Electric Bldg.
White, Warren G., 3817 W. Rosedale
Williams, Clifford Kilborn, Housing & Home
Finance Agency, 300 W. Vickery Blvd.
Witt, James D., P. O. Box 1699, Waco
Wolfe, Howard C., 3529 Winthrop
Wolffe, Robert, Jr., 1522 W. Rosedale
Woodruff, Clyde H., 3859 Medford Road

Quality Concrete Masonry Products Since 1927

Autoclaved Lightweight

Telephone
Federal 1-6588

NOLAN BROWNE COMPANY
3815 Singleton Blvd. P. O. Box 575
Dallas 21, Texas

Riley, William C., Jr., 2904 W. Boyce
Scevoll, Joseph S., 4067 W. 7th St.
Vackar, Laurence C., 3912 Hardeman

Cecil, Oscar B., 3524 Plymouth
Craft, Leslie A., 5711 White Settlement Rd.
Davis, Jerry Clifford, 2404 Miriam Lane
Green, Henry L., 3615 Shelby Drive
O'Toole, Charles Lee, 4617 Strong
Parker, Robert, 3149 Terra Alta Blvd.,
Tucson, Arizona
Wharton, Paul Clayton, 1700 Mignon, Apt. 219, Arlington
Wright, Robert Lee, 3161 N. Littijoan

HOUSTON CHAPTER
Fellows
Barthelme, Donald, 235 N-APC Bldg., 6910 Fannin
Briscoe, Birdsall P., 1811 Crawford
Brown, Hamilton, 3720 Sul Ross
Callihan, Harold E., 2506 Richthofen
Chilliman, James, Jr., c/o Rice Institute, P. O. Box 1892
Finn, Alfred C., 1005 Bankers Mortgage Bldg.
Golemon, Albert S., 5100 Travis
Kammath, Karl, 2713 Ferndale Place
Lloyd, Mermon, 4507 Mt. Vernon
MacKle, Fred, Jr., 2713 Ferndale
McGinty, Milton, 2814 Virginia
Munn, Stayton, 3272 Westheimer
Pierce, George F., P. O. Box 13351
Rathar, J. T., Jr., F.A.I.A., 2814 Virginia
Staub, John F., F.A.I.A., 1914 Virginia
Strong, Jr., F.A.I.A., 2814 Virginia
Taylor, Laurence W., 3001 Travis St.
Wilson, F. Talbot, P. O. Box 6216

Members Emeriti
Laube, Ron W., 2428 Southmore
Lillibert, Richard W., Jr., 6 South Wydan
Salisbury, H. A., Rogue Valley Manor, Apt. 527
Medford, Oregon
Smallwood, Robert C., 2439 Robinson
Woodruff, Lewis J., 2914 West Lane

SINCE 1927

GLAZED BLOCKS

TRUCK DELIVERY TO NORTH TEXAS POINTS

QUALITY CONCRETE MASONRY PRODUCTS SINCE 1927

GLAZED BLOCKS

Spectra-Glaze

NOVEMBER, 1961
THE TREND IS TO BLOCK CONSTRUCTION

and

More Architects are "Swinging"

to Featherlite Masonry

FROM

We also manufacture Hacienda Ledgestone in Eight Beautiful Colors for Residential Construction.

VALLEY BUILDERS SUPPLY, INC.

1/8 Miles East State Hwy.

PHARR, TEXAS

NOVEMBER, 1961
AGAIN WE SAY—
Hats off to the many producers of beautiful split-stone and brick concrete masonry units.

We are proud to be supplying the uniformly colored, thoroughly washed, accurately graded, crushed limestone aggregate for this building stone which has earned such wide acceptance by Architects, Engineers, Builders and Home Owners.

Other high quality products we supply: Near-White Roofing Stone, Ashphaltic Concrete, Base Material, Topping Rock, Concrete Aggregate, Filter Bed Stone, Ballast, Rip-Rap, etc.

Let us serve you as we have our many satisfied customers since 1931.

SERVTEX MATERIALS COMPANY
P. O. Box 729
Madison 5-3457
NEW BRAUNFELS, TEXAS

TEXAS ARCHITECT
TEXARKANA "LITE-CRETE" BLOCKS ARE CURED AT . . .

- SERVING THE FOUR STATES AREA -

150 Lb.
STEAM PRESSURE

100% HUMIDITY

366° TEMPERATURE

MODERN DELIVERY EQUIPMENT

WHICH PRODUCES THE BEST . . . IN MASONRY UNITS

TEXARKANA CONCRETE PRODUCTS COMPANY, INC.

P.O. BOX 895

NOVEMBER, 1961 Page 37
SUPER SNOWCEM

LOW-COST MASONRY WATERPROOFING • ABOVE AND BELOW GRADE • DOES NOT PEEL OFF • HAS LONG LIFE • FAST APPLICATION • LOW LABOR COSTS • 20 BEAUTIFUL PRE-MIXED COLORS AND WHITE • COLOR QUALITY • NO COSTLY SURFACE PRE-PREPARATION • LOW MAINTENANCE COSTS • ASTM WATERPROOFING, FIREPROOFING AND WEAR TEST RESULTS AVAILABLE.

DECORATIVE WATERPROOFERS USA

4603 IDAHO HOUSTON 21, TEXAS RIVERSIDE 7-8630

THREE PLANTS

LONE STAR STONE & BLOCK, INC.

P. O. Box 368 8" 12" 16"
Saginaw, Texas Alamo Brick Norman Brick Longhorn Stone
Phone MA 4-8438

FORT WORTH

BLOCK COMPANY, INC.

P. O. Box 10237 Ft. Worth, Texas
Phone Cl 6-2481
Versatile, Volume Stable Units

WICHITA BLOCK & STONE CO., INC.

800 Lee Street
Wichita Falls, Texas

Phone 322-6752

To Serve You in the
Ft. Worth - Dallas - North Central Texas Area
Mr. Architect
Every City, Texas

Dear Mr. Architect:

You can be sure of quality when you specify concrete masonry units manufactured by a member of TCMA.

A mandatory monthly ASTM testing of units manufactured, sampled by a commercial laboratory, assures you of the highest quality.

The Texas Concrete Masonry Association is dedicated to maintaining and improving the standards of quality within our industry in Texas. The association members stand ready to cooperate with you, the architect, and work closely with your association, the Texas Society of Architects.

Sincerely yours,

[Signature]

Members of TCMA

Affiliated Chapter of the National Concrete Masonry Association

TCMA MEMBERS

ABILENE
Texas Concrete Block Co.
ALTO
Quality Haydite Tile Co.
AMARILLO
Crowe-Gulde Cement Co.
AUSTIN
Bohls Block Co.
DALLAS
Nolan Browne Co.
Builders Concrete Prod. Mfg. Co.
DENTON
Moore Building Prod.
EL PASO
FORT WORTH
W. W. Worth Block Co.
HOUSTON
Black-Brower, Inc.
HURST
Western Builders Supply Co.
IRVING
Featherlite Block Co.
LONGVIEW
Dodds & Fountain Build. Prod., Inc.
LUBBOCK
Lubbock Building Products
MIDLAND
Texas Concrete Block Co.
ODESSA
Odessa Block & Pre-Stress, Inc.
PALLESTINE
Palestine Concrete Tile Co.
PHARR
Valley Builders Supply, Inc.
PORT NECHES
Bond Cement Products Co.
SAGINAW
Lone Star Stone & Block, Inc.
SAN ANTONIO
Barrett Industries, Inc.
Featherlite Block Co.
Holiday Hill Stone Prod., Inc.
TEXARKANA
Texarkana Concrete Prod. Co., Inc.
TYLER
Dodds & Fountain Build. Prod., Inc.
VICTORIA
Victoria Concrete Products
WACO
Jewell Concrete Products, Inc.
Texas Concrete Works, Inc.
THRU-OUT TEXAS AND OTHER STATES TOO.

Featherlite IS THERE TO WORK FOR YOU!

LIGHTWEIGHT AGGREGATE FOR:
- STRUCTURAL CONCRETE
- PRE-CAST — PRESTRESSED CONCRETE
- CONCRETE MASONRY

Rooflite Roofing Stone for Built Up Roofs
Concrete Roof Decks
Concrete Floor Fill

FEATHERLITE AGGREGATE

BUILD IT RIGHT WITH

Featherlite

PLANTS IN
RANGER
SAN ANTONIO

GENERAL OFFICES
AUSTIN

TEXAS
NEW MEXICO
OKLA.
ARK.
LA.

BUILD IT RIGHT WITH
EXPANDED SHALE AGGREGATE

TEXAS CONCRETE MASONRY ASSOCIATION

PLANTS IN
RANGER
SAN ANTONIO

GENERAL OFFICES
AUSTIN